Scalable and Unified Hardware to Compute Montgomery Inverse in GF(p) and GF(2n)

(2002) Scalable and Unified Hardware to Compute Montgomery Inverse in GF(p) and GF(2n). In: Workshop on Cryptographic Hardware and Embedded Systems CHES’2002, August 13-15, 2002, San Francisco Bay (Redwood City), USA.

[img] HTML (Abstract)
C_i.htm

Download (6kB)
[img]
Preview
PDF (Paper)
C_I.pdf

Download (433kB) | Preview

Abstract

Computing the inverse of a number in finite fields GF(p) or GF(2n) is equally important for cryptographic applications. This paper proposes a novel scalable and unified architecture for a Montgomery inverse hardware that operates in both GF(p) and GF(2n) fields. We adjust and modify a GF(2n) Montgomery inverse algorithm to accommodate multi-bit shifting hardware, making it very similar to a previously proposed GF(p) algorithm. The architecture is intended to be scalable, which allows the hardware to compute the inverse of long precision numbers in a repetitive way. After implementing this unified design it was compared with other designs. The unified hardware was found to be eight times smaller than another reconfigurable design, with comparable performance. Even though the unified design consumes slightly more area and it is slightly slower than the scalable inverter implementations for GF(p) only, it is a practical solution whenever arithmetic in the two finite fields is needed.

Item Type: Conference or Workshop Item (Paper)
Subjects: Math
Systems
Computer
Electrical
Department: College of Computing and Mathematics > Computer Engineering
Depositing User: ADNAN ABDU GUTUB (gutub
Date Deposited: 17 May 2008 05:29
Last Modified: 01 Nov 2019 13:26
URI: http://eprints.kfupm.edu.sa/id/eprint/1303