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Abstract 

Modular inverse computation is needed in several 

public key cryptographic applications. In this work, we 

present two VLSI hardware implementations used in the 

calculation of Montgomery modular inverse operation. 

The implementations are based on the same inversion 
algorithm, however, one is fixed (fully parallel) and the 

other is scalable. The scalable design is the novel 

modification performed on the fixed hardware to make it 

occupy a small area and operate within better or similar 

speed. Both hardware designs are compared based on 
their speed and area. The area of the scalable design is 

on average 42% smaller than the fixed one. The delay of 

the designs, however, depends on the actual data size and 

the maximum numbers the hardware can handle. As the 

actual data size approach the hardware limit the scalable 

hardware speedup reduces in comparison to the fixed 
one, but still its delay is practical.  

 

 

1. Introduction 
 

Modular inverse arithmetic is an essential arithmetic 

operation in public-key cryptography. It is used in the 
Diffie-Hellman key exchange method [5], and it was also 

adopted to calculate private decryption key in the RSA 

technique [4]. Modular inversion is a basic operation in 

the elliptic curve cryptography (ECC) [1,2,7,13]. This 

work is targeted mainly toward the ECC utilization 
because of its promise to replace several older 

cryptographic systems [7,13].  

Inversion is well known to be the slowest 

computation among all other ECC arithmetic calculations 

[1,2,7,10-12]. To make modular inverse calculation faster 

is one of the two reasons to do inversion in hardware 
instead of software [10-12]. The other reason is security. 

For cryptographic applications, it is more secure to have 

all the computations handled in hardware, instead of 

mixing some computations in software with others in 

hardware. Software-based systems can be interrupted and 

trespassed by intruders much easier than hardware, which 
can jeopardize the whole application security. 

Modular inversion is often performed by algorithms 

based on the Extended Euclidean algorithm [7]. Several 

inversion hardware attempts are described in the literature 

[10-13]. However, most of them [11-13] are for inversion 

in Galois Fields GF(2k). The inversion in GF(2k) is fast 

due to the elimination of the carry propagation delay in 
GF(2k) calculations. Since we focus on GF(p), the designs 

proposed in [11-13] for GF(2k) have no direct link to this 

work. Takagi in [10], proposed a hardware inversion 

algorithm with a redundant binary representation to avoid 

carry propagation delay. However, it requires more area 

and data transformation that is usually expensive. 
The Montgomery modular inverse algorithm suitable 

for our research is portrayed in [1]. The algorithm 

requires two main operations: a Montgomery product and 

an almost Montgomery inverse (AlmMonInv) operation. 

This study is directed towards the implementation of the 

AlmMonInv. The Montgomery product is beyond the 
scope of this work and a scalable Montgomery multiplier, 

such as the one proposed in [6] can generate it.   

Two AlmMonInv implementations are modeled, 

namely the fixed design and the scalable one. The fixed 

design is fully parallel and processes full precision 
numbers at every clock cycle. The scalable hardware, 

however, divides the numbers in words where each word 

is processed in a clock cycle. We show that the scalable 

hardware is more appropriate for cryptographic 

applications. 

In the coming section, the reason behind choosing 
Montgomery modular method is described. Section 2 also 

presents the Montgomery inverse algorithm, used to 

derive the hardware algorithm proposed in this work. 

Section 3 explains the fixed (fully-parallel) hardware. 

Next, in section 4, the scalable hardware implementation 

is described in some detail. The comparison between the 
two hardware implementations is given in section 5.  

 

2. Montgomery Inverse Algorithms 
 

Cryptography is heavily based on modular 
multiplication, which involves the division by the 

modulus in its computations. Division, however, is a very 

expensive operation [8]. This fact made researchers seek 



out methods to reduce the division impact and make 

modulo multiplication less time consuming.    

 In 1985, P. Montgomery invented his ingenious 
algorithm to perform modular multiplication without trial 

division [9]. He replaced the normal division with 

divisions by two, which is easily performed in the binary 

number representation (shifting the binary representation 

of a number one bit to the right). The cost behind using 

Montgomery’s method is paid in some extra computations 
to represent the numbers into Montgomery domain and 

vice-versa [1,2,6,9]. 

To use Montgomery’s method for ECC, as an 

example, the integer numbers are first transformed into 

Montgomery domain, all the modular operations are 

performed in this Montgomery domain, and the result is 
converted back to the original integer values. Because the 

inversion is one of these ECC operations that need to be 

computed while computing in Montgomery domain, it 

made up the issue to have dedicated procedures to 

compute the modular inverse in the Montgomery domain 

[1,2]. They are named the Montgomery modular inverse 
algorithms. 

Two Montgomery modular inverse studies are found 

in the literature [1,2]. Both modify a technique proposed 

by Kaliski, which is derived from the Extended Euclidean 

algorithm [3]. Kaliski algorithm [1,3] is divided in two 
phases. Phase one also called almost Montgomery inverse 

(AlmMonInv) in this work, takes the integer inputs a and 

p, and give outputs r and k; where r = a-12k mod p, and 

n<k<2n (n is the actual number of bits of the modulus p). 

Phase two takes the outputs of phase one as its inputs, and 

gives the final result of Kaliski algorithm: x= a-12mmod p; 
where m is Montgomery constant [1-3]. Note that in both 

phases the integers: a and x ∈[1,p-1].  
Kaliski method, basically takes integer a, and 

produces x = a-12m mod p. If a, is an integer, the algorithm 

will calculate the inverse of a, but represented in 

Montgomery domain, as shown in Figure 1. In order to 

have fast ECC arithmetic, Montgomery multipliers are 
used and, as a consequence, numbers are represented into 

Montgomery domain and all modular operations should 

be performed in this domain. I.e., if the number a is 

already in Montgomery domain, the application of 

Kaliski’s routine will not give the needed Montgomery 

inverse result. Some extra arithmetic operations are 
required to get it. 

 
Figure 1 Kaliski algorithm 

T. Kobayashi and H. Morita in 1999 [2], proposed 

techniques for modular inversion to make it suitable and 
faster than the original Kaliski routine. They modified the 

AlmMonInv algorithm by performing several matrix 

multiplications, instead of the simple multiplications by 

two. Their modification was targeted toward software 

implementation and for this reason was not so important 

to our work.             
 In July 2000, Savas and Koç [1] proposed to replace 

phase two of Kaliski’s algorithm with a Montgomery 

multiplication, which resulted in a faster process. They 

also presented a complete Montgomery modular inverse 

algorithm by adding extra Montgomery multiplication 

operations. The main procedures used in the complete 
Montgomery inverse algorithm are the Montgomery 

product (MonPro) and the almost Montgomery inverse 

(AlmMonInv) [1]. Our effort, is directed towards the 

implementation of the AlmMonInv procedure in 

hardware. The MonPro is beyond the scope of this work. 

The AlmMonInv algorithm (Kaliski phase one [1,3]) is 
outlined below: 

AlmMonInv (Almost Montgomery Inverse Algorithm) 
Input: a and p; where a is in the range [1,p-1]. 

Output: r and k; where r = a-12k mod p, and n < k < 2n. 

1. u := p, v := a, r := 0, and s := 1,  

2. k := 0 

3. while (v > 0)  

4.  if u is even then u := u/2, s := 2s 

5.  else if v is even then v := v/2, r := 2r 

6.  else if u > v then u:=(u - v)/2, r:=r+s, s:=2s 

7.  else v := (v - u)/2, s := s+r, r := 2r 

8.  k := k + 1 

9. if r ≥ p then  r := r - p 

10. return r := p - r 

 

3. The Fixed (fully-parallel) Design 
 

This section discuses a fixed hardware design of the 

AlmMonInv algorithm. When observed from hardware 

point-of-view, the AlmMonInv algorithm contains 
operations that easily mopped to hardware features. For 

example, one-bit shifting of binary numbers to the right or 

left is equivalent to dividing or multiplying by two. 

Checking for a number to be even or odd is done 

observing its least significant bit (LSB). If it is found to 
be zero, the number is even. Comparison of two numbers 

is performed by subtracting them. If the subtraction result 

is positive (the subtractor output borrow bit is zero), then 

the first number is bigger. Such hardware mapping is 

shown in the hardware algorithm below: 

Hardware AlmMonInv Algorithm (HW-Alg) 
Input:  a ∈ [1, p-1], p = modulus.  

Output: result ∈ [1, p-1] and k; where result=a-12kmod p 

1.  u = p, v = a, r = 0, s = 1, x = 0, y = 0, z = 0, k = 0 

2.  if (u0 = 0) then {u = shift R(u); s = shift L(s)}; goto 7 

3.  if (v0 = 0) then {v = shift R(v); r = shift L(r)}; goto 7 

4.  x = Subtract(u,v); y = Subtract(v,u); z = Add (r,s)  

5.  if(xborrow=0) then{u=shiftR(x);r=z;s=shiftL(s)};goto 7 

6.  s = z;  v = shift R (y); r = shift L (r) 

7.  k = k + 1 

8.  if (v ≠ 0) go to step 2 

9.  x = Subtract (p, r); y = Subtract (2p, r)  

10. if(xborrow=0) then {result = x}; else {result = y} 



Consider step 6 of AlmMonInv, if u > v then the 

subtraction (u - v) takes place, otherwise, the subtraction 

(v - u) is calculated. In the worst case, two subtraction 
operations are performed, because the comparison of u 

and v is accomplished through subtraction of u and v. 

These two subtractions can be done in parallel (two 

subtraction modules) as shown in step 4 of HW-Alg. The 

same case applies to steps 9 and 10 of AlmMonInv, both 

subtractions may be performed in parallel.  
All actual integers are represented by n-bit vectors, 

such as u = (un-1,un-2,…..,u2,u1,u0). The modulus is loaded 

into register u at step 1, then, register u is modified along 

with the algorithm. The modulus is essential at steps 9 

and 10 of HW-Alg and for this reason, it is stored in a 

special register named p. The value of r cannot equal p 
except when a equals infinity. Thus the result of 

AlmMonInv equals either 2p-r if r is greater than p, or p-r 

when r is less than p, as described in step 10 of HW-Alg. 
 

3.1. The Fixed Hardware Design 
 

 
Figure 2 Fixed design hardware outline 

The fixed design is made up of a memory unit, a 

controller, a k-counter, and a data path (arithmetic unit). 

The block diagram for the fixed design hardware is shown 

in Figure 2. All data buses are nmax bits wide (nmax is the 

maximum number of bits the hardware can handle). The 

memory unit is made of five registers u, v, r, s and p to 
hold nmax bits. The memory unit sends out all its content 

and loads new ones at every clock cycle, except register p 

that does not change during the computation. The data 

path (DP) takes the memory unit outputs and gives back 

the computed data to be stored through buses: u_out, 

v_out, r_out, and s_out. For example, in step 3 of HW-
Alg, the changing is performed on v and r only. However, 

the DP provides the data to all four buses. Buses v_out 

and r_out are found to be modifications of v and r, while 

u_out and s_out are just the same u and s fed back. The 

DP performs the required computation depending on the 
LSBs of u and v, as clarified by HW-Alg. It contains 

several multiplexers to route and shift the data buses to 

perform steps 2, 3, 5, 6 and 10. It consists of an adder and 

two subtractors to perform steps 4 and 9. The counter unit 

performs step 7 of HW-Alg. All the components in the 

design are directed and synchronized by the controller. 

4. The Scalable Design  
 

Application specific hardware architectures are 
usually designed to deal with a specific maximum number 

of bits. If this number of bits is to be increased, even by 

one, the complete hardware needs to be replaced. In 

addition to that, if the design is implemented for a large 

number of bits, the hardware is huge and its’ longest path 

is impractical. It will cause the hardware to run at a very 
low clock frequency. These issues motivated the search 

for a scalable hardware similar to what is proposed by 

Tenca and Koç in their Scalable Architecture for 

Montgomery Multiplication [6]. 

The scalable architecture solves the previous 

problems with the following four hardware features. First, 
the design’s longest path should be short and independent 

of the operands’ length. Second, it is designed in such a 

way that it fits in restricted hardware regions. Third, it can 

handle the computation of numbers in a repetitive way up 

to a certain limit usually imposed by the size of the 

memory in the design. If the number of bits in the data 
exceeds the memory size, the memory unit is replaced 

while the scalable computing unit is not changed. Finally, 

the number of clock cycles required for an operation to be 

computed must depend on the actual size of the numbers 

used, not on the maximum operand size.  
Differently from what happens in the fixed precision 

hardware design, the scalable hardware has multi-

precision operators for addition, subtraction and 

comparison. The subtraction used for comparison (u > v), 

is performed on a word-by-word basis until all the actual 

data words are processed, then, the subtractor borrow out 
bit is used to decide on the result. Also, depending on the 

subtraction completion, variable r or s has to be shifted. 

All variables, u, v, r and s, need to remain as is until the 

subtractions processes complete, and the borrow-out bit 

appears. This forced the use of three more registers: x, y 

and z; where x = u-v, y = v-u and z = r+s. All operations 
(addition, subtraction, and shifting) of the scalable 

hardware algorithm are multi-precision computations. In 

other words, the numbers are utilized in each operation on 

a word-by-word basis until the entire number is 

processed. 
 

4.1. The Scalable Hardware Design 
 

The scalable hardware design is built of two main 

parts, a memory unit and a computing unit. The memory 

unit is not scalable because it has a limited storage defines 

the value nmax. The data values of a and p are first loaded 

in the memory unit. Then, the computing unit read/write 
(modify) the data using a word size of w bits. The 

computing unit is completely scalable. It is designed to 

handle w bits every clock cycle. The computing unit does 

not know the total number of bits, nmax, the memory is 

holding. It computes until the controller indicates that all 



operands words were processed. Note that the actual 

numbers used may be way smaller than nmax bits. 

 
Figure 3 Scalable design hardware outline 

The block diagram for the scalable hardware is 
shown in Figure 3. The memory unit is connected to the 

computing unit components. The computing unit is made 

of four hardware blocks, add/subtract block, shifter block, 

data router block, and the controller. All these computing 

unit blocks are briefly clarified after describing the non-

scalable memory unit. The memory unit contains a 
counter to compute k (step 7 of HW-Alg) and eight first-

in-first-out (FIFO) registers used to store the algorithm’s 

variables. All registers, u, v, r, s, x, y, z and p, are limited 

to hold at most nmax bits. Each FIFO register has its own 

reset signal generated by the controller. They have 

counters to keep track of n (the number of bits actually 
used by the application). 

 

Figure 4 Scalable Add/Subtract unit 

The add/subtract unit is built of an adder, two 

subtractors, four flip-flops, three multiplexers, a 

comparator, and logic gates, connected as shown in 

Figure 4. This unit performs one of two operations, either 
to calculate step 4 of HW-Alg: x=u-v, y=v-u, and z=r+s, 

or to calculate step 9: x=p-r and y=2p-r. Three flip-flops 

are used to hold the intermediate carry-bit of the adder 

and borrow-bits of the two subtractors to implement the 

multi-precision operations. The fourth flip-flop is used to 

store a flag that keeps track of the comparison between u 
and v. This flag is used to perform step 8 of HW-Alg. The 

first subtractor borrow out bit is connected to the 

controller through a signal that is useful only at the end of 

the each multi-precision addition/subtraction operation. It 

(as xborrow in HW-Alg) will affect the flow of the operation 

to choose either step 5 or 6 of HW-Alg. It is also essential 

in choosing the final result observed in step 10. 

 
Figure 5 Shifter hardware 

The shifter is made of two registers with special 

mapping of some data bits, as shown in Figure 5. Two 

types of shifting are needed in the hardware algorithm, 

shifting an operand (u or v) through the uv bus one bit to 

the right, and shifting another operand (r or s) through the 

rs bus one bit to the left. Shifting u or v is performed 
through Register1, which is of size w-1 bits. For each 

word, all the bits of uv are stored in Register1 except the 

LSB, it is read out immediately as the most significant bit 

(MSB) of the output bus uv_out. Shifting r or s to the left 

is performed via Register2, which is of size w+1 bits 

similar to shifting uv but to the other direction. 

 
Figure 6 Data router configurations 

The data router is made of ten multiplexers to 

connect the data going out of the memory unit to the 

inputs of the add/subtract unit or shifter. It also directs the 
shifted data values to go to their required locations in the 

memory unit. The possible configurations of the data 

router are shown in Figure 6. The controller is the unit 

that coordinates the flow of data to guide the hardware 

computation. Its made of a state machine easily derived 

from HW-Alg. The controller does not include counters to 
avoid any dependency on the number of bits that the 

system can handle. 

 

5. Modeling and Analysis 
 

Both designs were modeled and simulated in VHDL. 

The developed VHDL implementation of the scalable 

hardware has two main parameters, namely nmax and w. 

The fixed hardware, however, is parameterized by nmax 

only. Their area and speed are presented in this section. 

We didn’t define a specific architecture for the adders and 
subtractors used in the design. Thus, the synthesis tool 



chooses the best option from its library of standard cells. 

Since, both designs use the same type of adders and 

subtractors we can make a fair comparison. 
 

5.1 Area Comparison 

 
            nmax (bits) 

Figure 7 Area comparison 

The exact area of any design depends on the 

technology and minimum feature size. For technology 

independence, we use the number of NOT-gates as an 
area measure [8]. A CAD tool from Mentor Graphics 

(Leonardo) was used. Leonardo takes the VHDL design 

code and provides a synthesized model with its area and 

longest path delay. The target technology is a 0.5µm 
CMOS defined by the ‘AMI0.5 fast’ library provided in 

the ASIC Design Kit (ADK) from the same Mentor 

Graphics Company [14]. It has to be mentioned here that 
the ADK is developed for educational purposes and 

cannot be thoroughly compared to technologies adopted 

for marketable ASICs. It however, provides a framework 

to contrast the scalable hardware with the fixed one. 

The sizes of the two designs, the scalable and the 

fixed one, are compared in Figure 7. Observe that the 
fixed design has a better area if the maximum number of 

bits used (nmax) is less than 32 what is not used in 

cryptography, small numbers are useless [7]. In fact, the 

advantage of the scalable hardware is found to make the 

size of the design as small as possible. For example, if 

nmax = 512 bits, the scalable hardware can be designed in 
less than half the area necessary for the fixed hardware. 
 

5.2. Speed Comparison 
 

The total computation time is a product of the 

number of clock cycles the algorithm takes and the clock 

period of the final VLSI implementation. This clock 
period changes with the value of w in the scalable 

hardware, and changes with the value of nmax in the fixed 

hardware. This is because w = nmax in the fixed hardware. 

Table 1 lists the clock period for each design (data are 

generated by Leonardo).          

 The number of clock cycles depends completely on 

the data and its computation. For the fixed design, the 

number of clock cycles is k+4, where k is the number of 

iterations counted through the HW-Alg loop, step 2 to 7. 
The value of k (HW-Alg) is within the range [n,2n] [1], 

which justify the use of its average of 3n/2, for 

comparison purposes. This makes the total number of 

clock cycles required for the fixed design to complete a 

computation equal to Cf = (3n/2) + 4. 

Table 1 All designs Clock cycle periods (nsec) 
Scalable Hardware where w = n

max
 

4 8 16 32 64 

Fixed  

Design 

4 9.62 12.39 19.48 30.66 54.93 11.41 

8 9.62 12.39 19.48 30.66 54.93 15.96 

16 9.62 12.39 19.48 30.66 54.93 26.5 

32 9.62 12.39 19.48 30.66 54.93 48 

64 9.62 12.39 19.48 30.66 54.93 92 

128 9.62 12.39 19.48 30.66 54.93 178 

256 9.62 12.39 19.48 30.66 54.93 350 

512 9.62 12.39 19.48 30.66 54.93 694 

1024 9.62 12.39 19.48 30.66 54.93 1382 

 

The number of clock cycles in the scalable design is a 

function of three factors: k, w and n. The number of 

cycles to compute any scalable addition and/or 

subtraction is calculated as n/w, which makes the actual 
number of clock cycles depend on the real data used and 

its size. However, after several experiments, we 
concluded that approximately half the time step 2 or 3 of 

HW-Alg is needed and the other half step 4 is required. 

But the loop iteration time to execute step 2 or 3 is 

different than step 4. Step 4 needs extra cycles for the 

shifting operation after it. The number of cycles to 

perform each loop iteration (step 2 to 7 of HW-Alg) is 

calculated as CPLI=[(n/w+1)/2]+n/w+3, (CPLI stands 

for the clock cycles per loop iteration). The number of 
loop iterations of the algorithm is exactly equal to k. The 

overall number of cycles equals the CPLI × k (the number 
of loop iterations), plus the final operation of steps 9 and 

10 (HW-Alg). The total number of cycles of the scalable 

hardware equals to Cs=7+(7/2)k+[(4+(3/2)k)(n/w)], 
which was verified by VHDL simulation. If k is 

approximated to its average of 3n/2 (similar to the fixed 

design), the function of the clock cycles would be 

Cs=7+[(21/4)n]+[(4+(9/4)n)(n/w )]. 

The scalable hardware can have several designs for 
each nmax depending on w. For example, Figure 8 shows 

the delay of five designs of the scalable hardware 

compared to the fixed hardware, all modeled for nmax=256 

bits. Observe how the actual data size (n) plays a big role 

on the speed of the designs. In other words, as n reduces 
for small w, the number of clock cycles decrease 

significantly, which considerably reduces the overall 

computing time of the scalable design. This is a major 

advantage of the scalable hardware over the fixed one. 

The number of clock cycles of the fixed model 

depends on the actual size of the data used. However, its 
period always assume to have nmax bits to process. For 

example, if we are using n = 64 bits, and the design is 



made for nmax = 256 bits, as of Figure 8, the fixed design 

will assume we are using all the 256 bits by placing zeros 

for the unused bits. All nmax bits are processed into the 
computation causing the fixed design to have more delay 

than all different scalable ones.  

Another observation seen from Figure 8 is that the 

delay of all the scalable designs are better than the fixed 

one when n≤ nmax/2, except for w=4 bits that is better 

when n≤ 3nmax/8. The scalable designs with w = 8, 16, 32, 

and 64 bits are faster than the fixed one as long as n ≤ 128 

bits (n ≤ nmax/2). However, for the scalable design with    

w = 4, it is faster than the fixed one while n ≤ 96 bits      

(n ≤ 3nmax/8). In fact, as w gets bigger the delay decreases, 
which is a normal speed area trade-off. 

 

Figure 8 Delay comparison with nmax=256 bits 
 

6. Conclusion 
 

This paper presents two VLSI implementations for an 

algorithm used in the computation of Montgomery 

modular inverse arithmetic. The two designs are the fixed 

(fully parallel) hardware and the scalable hardware. The 

scalable architecture makes the design’s longest-path 
shorter, compared to the fixed hardware. This affected the 

clock frequency of the scalable hardware to be higher. 

The scalable hardware is also designed to fit in a small 

area with the computation of numbers performed in a 

repetitive way. The maximum number of bits (nmax) the 
scalable hardware can handle depends only on the 

memory. If the number of bits exceeds the memory size, 

the memory unit is the only part that needs to be 

modified, while the scalable computing unit does not 

change. On the other hand, all the fixed hardware 

components need to be changed completely if any extra 
bit is to be added beyond the memory limit. 

The scalable design shows area flexibility, depending 

on the number of bits used at each clock cycle (w). For 

example, if w = 4 bits and the design can handle up to 512 

bits, the area of the scalable design is 60% less than the 

fixed hardware. The speed of this scalable hardware 
deviate depending on the actual number (n) of bits used; if 

n ≤ 192, the scalable design is found to be faster than the 
fixed one. Therefore, the real time required to execute the 

algorithm loop iteration on the scalable hardware relies on 

the actual size of the operands, which is not the case for 

the fixed hardware. This made the scalable hardware 

speed more realistic than the fixed hardware speed. 
The comparisons show that this scalable structure is 

very attractive for cryptographic systems, particularly for 

ECC because of its need for modular inversion of large 

numbers, which differ in size repetitively depending on 

the application usage.  
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