

Scalable VLSI Architecture for GF(p) Montgomery Modular Inverse Computation

Adnan Abdul-Aziz Gutub, Alexandre Ferreira Tenca, and Çetin Kaya Koç

Department of Electrical and Computer Engineering
Oregon State University, Corvallis, Oregon 97331, USA

{gutub,tenca,koc}@ece.orst.edu

Abstract

Modular inverse computation is needed in several

public key cryptographic applications. In this work, we

present two VLSI hardware implementations used in the

calculation of Montgomery modular inverse operation.

The implementations are based on the same inversion
algorithm, however, one is fixed (fully parallel) and the

other is scalable. The scalable design is the novel

modification performed on the fixed hardware to make it

occupy a small area and operate within better or similar

speed. Both hardware designs are compared based on
their speed and area. The area of the scalable design is

on average 42% smaller than the fixed one. The delay of

the designs, however, depends on the actual data size and

the maximum numbers the hardware can handle. As the

actual data size approach the hardware limit the scalable

hardware speedup reduces in comparison to the fixed
one, but still its delay is practical.

1. Introduction

Modular inverse arithmetic is an essential arithmetic

operation in public-key cryptography. It is used in the
Diffie-Hellman key exchange method [5], and it was also

adopted to calculate private decryption key in the RSA

technique [4]. Modular inversion is a basic operation in

the elliptic curve cryptography (ECC) [1,2,7,13]. This

work is targeted mainly toward the ECC utilization
because of its promise to replace several older

cryptographic systems [7,13].

Inversion is well known to be the slowest

computation among all other ECC arithmetic calculations

[1,2,7,10-12]. To make modular inverse calculation faster

is one of the two reasons to do inversion in hardware
instead of software [10-12]. The other reason is security.

For cryptographic applications, it is more secure to have

all the computations handled in hardware, instead of

mixing some computations in software with others in

hardware. Software-based systems can be interrupted and

trespassed by intruders much easier than hardware, which
can jeopardize the whole application security.

Modular inversion is often performed by algorithms

based on the Extended Euclidean algorithm [7]. Several

inversion hardware attempts are described in the literature

[10-13]. However, most of them [11-13] are for inversion

in Galois Fields GF(2k). The inversion in GF(2k) is fast

due to the elimination of the carry propagation delay in
GF(2k) calculations. Since we focus on GF(p), the designs

proposed in [11-13] for GF(2k) have no direct link to this

work. Takagi in [10], proposed a hardware inversion

algorithm with a redundant binary representation to avoid

carry propagation delay. However, it requires more area

and data transformation that is usually expensive.
The Montgomery modular inverse algorithm suitable

for our research is portrayed in [1]. The algorithm

requires two main operations: a Montgomery product and

an almost Montgomery inverse (AlmMonInv) operation.

This study is directed towards the implementation of the

AlmMonInv. The Montgomery product is beyond the
scope of this work and a scalable Montgomery multiplier,

such as the one proposed in [6] can generate it.

Two AlmMonInv implementations are modeled,

namely the fixed design and the scalable one. The fixed

design is fully parallel and processes full precision
numbers at every clock cycle. The scalable hardware,

however, divides the numbers in words where each word

is processed in a clock cycle. We show that the scalable

hardware is more appropriate for cryptographic

applications.

In the coming section, the reason behind choosing
Montgomery modular method is described. Section 2 also

presents the Montgomery inverse algorithm, used to

derive the hardware algorithm proposed in this work.

Section 3 explains the fixed (fully-parallel) hardware.

Next, in section 4, the scalable hardware implementation

is described in some detail. The comparison between the
two hardware implementations is given in section 5.

2. Montgomery Inverse Algorithms

Cryptography is heavily based on modular
multiplication, which involves the division by the

modulus in its computations. Division, however, is a very

expensive operation [8]. This fact made researchers seek

out methods to reduce the division impact and make

modulo multiplication less time consuming.

 In 1985, P. Montgomery invented his ingenious
algorithm to perform modular multiplication without trial

division [9]. He replaced the normal division with

divisions by two, which is easily performed in the binary

number representation (shifting the binary representation

of a number one bit to the right). The cost behind using

Montgomery’s method is paid in some extra computations
to represent the numbers into Montgomery domain and

vice-versa [1,2,6,9].

To use Montgomery’s method for ECC, as an

example, the integer numbers are first transformed into

Montgomery domain, all the modular operations are

performed in this Montgomery domain, and the result is
converted back to the original integer values. Because the

inversion is one of these ECC operations that need to be

computed while computing in Montgomery domain, it

made up the issue to have dedicated procedures to

compute the modular inverse in the Montgomery domain

[1,2]. They are named the Montgomery modular inverse
algorithms.

Two Montgomery modular inverse studies are found

in the literature [1,2]. Both modify a technique proposed

by Kaliski, which is derived from the Extended Euclidean

algorithm [3]. Kaliski algorithm [1,3] is divided in two
phases. Phase one also called almost Montgomery inverse

(AlmMonInv) in this work, takes the integer inputs a and

p, and give outputs r and k; where r = a-12k mod p, and

n<k<2n (n is the actual number of bits of the modulus p).

Phase two takes the outputs of phase one as its inputs, and

gives the final result of Kaliski algorithm: x= a-12mmod p;
where m is Montgomery constant [1-3]. Note that in both

phases the integers: a and x ∈[1,p-1].
Kaliski method, basically takes integer a, and

produces x = a-12m mod p. If a, is an integer, the algorithm

will calculate the inverse of a, but represented in

Montgomery domain, as shown in Figure 1. In order to

have fast ECC arithmetic, Montgomery multipliers are
used and, as a consequence, numbers are represented into

Montgomery domain and all modular operations should

be performed in this domain. I.e., if the number a is

already in Montgomery domain, the application of

Kaliski’s routine will not give the needed Montgomery

inverse result. Some extra arithmetic operations are
required to get it.

Figure 1 Kaliski algorithm

T. Kobayashi and H. Morita in 1999 [2], proposed

techniques for modular inversion to make it suitable and
faster than the original Kaliski routine. They modified the

AlmMonInv algorithm by performing several matrix

multiplications, instead of the simple multiplications by

two. Their modification was targeted toward software

implementation and for this reason was not so important

to our work.
 In July 2000, Savas and Koç [1] proposed to replace

phase two of Kaliski’s algorithm with a Montgomery

multiplication, which resulted in a faster process. They

also presented a complete Montgomery modular inverse

algorithm by adding extra Montgomery multiplication

operations. The main procedures used in the complete
Montgomery inverse algorithm are the Montgomery

product (MonPro) and the almost Montgomery inverse

(AlmMonInv) [1]. Our effort, is directed towards the

implementation of the AlmMonInv procedure in

hardware. The MonPro is beyond the scope of this work.

The AlmMonInv algorithm (Kaliski phase one [1,3]) is
outlined below:

AlmMonInv (Almost Montgomery Inverse Algorithm)
Input: a and p; where a is in the range [1,p-1].

Output: r and k; where r = a-12k mod p, and n < k < 2n.

1. u := p, v := a, r := 0, and s := 1,

2. k := 0

3. while (v > 0)

4. if u is even then u := u/2, s := 2s

5. else if v is even then v := v/2, r := 2r

6. else if u > v then u:=(u - v)/2, r:=r+s, s:=2s

7. else v := (v - u)/2, s := s+r, r := 2r

8. k := k + 1

9. if r ≥ p then r := r - p

10. return r := p - r

3. The Fixed (fully-parallel) Design

This section discuses a fixed hardware design of the

AlmMonInv algorithm. When observed from hardware

point-of-view, the AlmMonInv algorithm contains
operations that easily mopped to hardware features. For

example, one-bit shifting of binary numbers to the right or

left is equivalent to dividing or multiplying by two.

Checking for a number to be even or odd is done

observing its least significant bit (LSB). If it is found to
be zero, the number is even. Comparison of two numbers

is performed by subtracting them. If the subtraction result

is positive (the subtractor output borrow bit is zero), then

the first number is bigger. Such hardware mapping is

shown in the hardware algorithm below:

Hardware AlmMonInv Algorithm (HW-Alg)
Input: a ∈ [1, p-1], p = modulus.

Output: result ∈ [1, p-1] and k; where result=a-12kmod p

1. u = p, v = a, r = 0, s = 1, x = 0, y = 0, z = 0, k = 0

2. if (u0 = 0) then {u = shift R(u); s = shift L(s)}; goto 7

3. if (v0 = 0) then {v = shift R(v); r = shift L(r)}; goto 7

4. x = Subtract(u,v); y = Subtract(v,u); z = Add (r,s)

5. if(xborrow=0) then{u=shiftR(x);r=z;s=shiftL(s)};goto 7

6. s = z; v = shift R (y); r = shift L (r)

7. k = k + 1

8. if (v ≠ 0) go to step 2

9. x = Subtract (p, r); y = Subtract (2p, r)

10. if(xborrow=0) then {result = x}; else {result = y}

Consider step 6 of AlmMonInv, if u > v then the

subtraction (u - v) takes place, otherwise, the subtraction

(v - u) is calculated. In the worst case, two subtraction
operations are performed, because the comparison of u

and v is accomplished through subtraction of u and v.

These two subtractions can be done in parallel (two

subtraction modules) as shown in step 4 of HW-Alg. The

same case applies to steps 9 and 10 of AlmMonInv, both

subtractions may be performed in parallel.
All actual integers are represented by n-bit vectors,

such as u = (un-1,un-2,…..,u2,u1,u0). The modulus is loaded

into register u at step 1, then, register u is modified along

with the algorithm. The modulus is essential at steps 9

and 10 of HW-Alg and for this reason, it is stored in a

special register named p. The value of r cannot equal p
except when a equals infinity. Thus the result of

AlmMonInv equals either 2p-r if r is greater than p, or p-r

when r is less than p, as described in step 10 of HW-Alg.

3.1. The Fixed Hardware Design

Figure 2 Fixed design hardware outline

The fixed design is made up of a memory unit, a

controller, a k-counter, and a data path (arithmetic unit).

The block diagram for the fixed design hardware is shown

in Figure 2. All data buses are nmax bits wide (nmax is the

maximum number of bits the hardware can handle). The

memory unit is made of five registers u, v, r, s and p to
hold nmax bits. The memory unit sends out all its content

and loads new ones at every clock cycle, except register p

that does not change during the computation. The data

path (DP) takes the memory unit outputs and gives back

the computed data to be stored through buses: u_out,

v_out, r_out, and s_out. For example, in step 3 of HW-
Alg, the changing is performed on v and r only. However,

the DP provides the data to all four buses. Buses v_out

and r_out are found to be modifications of v and r, while

u_out and s_out are just the same u and s fed back. The

DP performs the required computation depending on the
LSBs of u and v, as clarified by HW-Alg. It contains

several multiplexers to route and shift the data buses to

perform steps 2, 3, 5, 6 and 10. It consists of an adder and

two subtractors to perform steps 4 and 9. The counter unit

performs step 7 of HW-Alg. All the components in the

design are directed and synchronized by the controller.

4. The Scalable Design

Application specific hardware architectures are
usually designed to deal with a specific maximum number

of bits. If this number of bits is to be increased, even by

one, the complete hardware needs to be replaced. In

addition to that, if the design is implemented for a large

number of bits, the hardware is huge and its’ longest path

is impractical. It will cause the hardware to run at a very
low clock frequency. These issues motivated the search

for a scalable hardware similar to what is proposed by

Tenca and Koç in their Scalable Architecture for

Montgomery Multiplication [6].

The scalable architecture solves the previous

problems with the following four hardware features. First,
the design’s longest path should be short and independent

of the operands’ length. Second, it is designed in such a

way that it fits in restricted hardware regions. Third, it can

handle the computation of numbers in a repetitive way up

to a certain limit usually imposed by the size of the

memory in the design. If the number of bits in the data
exceeds the memory size, the memory unit is replaced

while the scalable computing unit is not changed. Finally,

the number of clock cycles required for an operation to be

computed must depend on the actual size of the numbers

used, not on the maximum operand size.
Differently from what happens in the fixed precision

hardware design, the scalable hardware has multi-

precision operators for addition, subtraction and

comparison. The subtraction used for comparison (u > v),

is performed on a word-by-word basis until all the actual

data words are processed, then, the subtractor borrow out
bit is used to decide on the result. Also, depending on the

subtraction completion, variable r or s has to be shifted.

All variables, u, v, r and s, need to remain as is until the

subtractions processes complete, and the borrow-out bit

appears. This forced the use of three more registers: x, y

and z; where x = u-v, y = v-u and z = r+s. All operations
(addition, subtraction, and shifting) of the scalable

hardware algorithm are multi-precision computations. In

other words, the numbers are utilized in each operation on

a word-by-word basis until the entire number is

processed.

4.1. The Scalable Hardware Design

The scalable hardware design is built of two main

parts, a memory unit and a computing unit. The memory

unit is not scalable because it has a limited storage defines

the value nmax. The data values of a and p are first loaded

in the memory unit. Then, the computing unit read/write
(modify) the data using a word size of w bits. The

computing unit is completely scalable. It is designed to

handle w bits every clock cycle. The computing unit does

not know the total number of bits, nmax, the memory is

holding. It computes until the controller indicates that all

operands words were processed. Note that the actual

numbers used may be way smaller than nmax bits.

Figure 3 Scalable design hardware outline

The block diagram for the scalable hardware is
shown in Figure 3. The memory unit is connected to the

computing unit components. The computing unit is made

of four hardware blocks, add/subtract block, shifter block,

data router block, and the controller. All these computing

unit blocks are briefly clarified after describing the non-

scalable memory unit. The memory unit contains a
counter to compute k (step 7 of HW-Alg) and eight first-

in-first-out (FIFO) registers used to store the algorithm’s

variables. All registers, u, v, r, s, x, y, z and p, are limited

to hold at most nmax bits. Each FIFO register has its own

reset signal generated by the controller. They have

counters to keep track of n (the number of bits actually
used by the application).

Figure 4 Scalable Add/Subtract unit

The add/subtract unit is built of an adder, two

subtractors, four flip-flops, three multiplexers, a

comparator, and logic gates, connected as shown in

Figure 4. This unit performs one of two operations, either
to calculate step 4 of HW-Alg: x=u-v, y=v-u, and z=r+s,

or to calculate step 9: x=p-r and y=2p-r. Three flip-flops

are used to hold the intermediate carry-bit of the adder

and borrow-bits of the two subtractors to implement the

multi-precision operations. The fourth flip-flop is used to

store a flag that keeps track of the comparison between u
and v. This flag is used to perform step 8 of HW-Alg. The

first subtractor borrow out bit is connected to the

controller through a signal that is useful only at the end of

the each multi-precision addition/subtraction operation. It

(as xborrow in HW-Alg) will affect the flow of the operation

to choose either step 5 or 6 of HW-Alg. It is also essential

in choosing the final result observed in step 10.

Figure 5 Shifter hardware

The shifter is made of two registers with special

mapping of some data bits, as shown in Figure 5. Two

types of shifting are needed in the hardware algorithm,

shifting an operand (u or v) through the uv bus one bit to

the right, and shifting another operand (r or s) through the

rs bus one bit to the left. Shifting u or v is performed
through Register1, which is of size w-1 bits. For each

word, all the bits of uv are stored in Register1 except the

LSB, it is read out immediately as the most significant bit

(MSB) of the output bus uv_out. Shifting r or s to the left

is performed via Register2, which is of size w+1 bits

similar to shifting uv but to the other direction.

Figure 6 Data router configurations

The data router is made of ten multiplexers to

connect the data going out of the memory unit to the

inputs of the add/subtract unit or shifter. It also directs the
shifted data values to go to their required locations in the

memory unit. The possible configurations of the data

router are shown in Figure 6. The controller is the unit

that coordinates the flow of data to guide the hardware

computation. Its made of a state machine easily derived

from HW-Alg. The controller does not include counters to
avoid any dependency on the number of bits that the

system can handle.

5. Modeling and Analysis

Both designs were modeled and simulated in VHDL.

The developed VHDL implementation of the scalable

hardware has two main parameters, namely nmax and w.

The fixed hardware, however, is parameterized by nmax

only. Their area and speed are presented in this section.

We didn’t define a specific architecture for the adders and
subtractors used in the design. Thus, the synthesis tool

chooses the best option from its library of standard cells.

Since, both designs use the same type of adders and

subtractors we can make a fair comparison.

5.1 Area Comparison

 nmax (bits)

Figure 7 Area comparison

The exact area of any design depends on the

technology and minimum feature size. For technology

independence, we use the number of NOT-gates as an
area measure [8]. A CAD tool from Mentor Graphics

(Leonardo) was used. Leonardo takes the VHDL design

code and provides a synthesized model with its area and

longest path delay. The target technology is a 0.5µm
CMOS defined by the ‘AMI0.5 fast’ library provided in

the ASIC Design Kit (ADK) from the same Mentor

Graphics Company [14]. It has to be mentioned here that
the ADK is developed for educational purposes and

cannot be thoroughly compared to technologies adopted

for marketable ASICs. It however, provides a framework

to contrast the scalable hardware with the fixed one.

The sizes of the two designs, the scalable and the

fixed one, are compared in Figure 7. Observe that the
fixed design has a better area if the maximum number of

bits used (nmax) is less than 32 what is not used in

cryptography, small numbers are useless [7]. In fact, the

advantage of the scalable hardware is found to make the

size of the design as small as possible. For example, if

nmax = 512 bits, the scalable hardware can be designed in
less than half the area necessary for the fixed hardware.

5.2. Speed Comparison

The total computation time is a product of the

number of clock cycles the algorithm takes and the clock

period of the final VLSI implementation. This clock
period changes with the value of w in the scalable

hardware, and changes with the value of nmax in the fixed

hardware. This is because w = nmax in the fixed hardware.

Table 1 lists the clock period for each design (data are

generated by Leonardo).

 The number of clock cycles depends completely on

the data and its computation. For the fixed design, the

number of clock cycles is k+4, where k is the number of

iterations counted through the HW-Alg loop, step 2 to 7.
The value of k (HW-Alg) is within the range [n,2n] [1],

which justify the use of its average of 3n/2, for

comparison purposes. This makes the total number of

clock cycles required for the fixed design to complete a

computation equal to Cf = (3n/2) + 4.

Table 1 All designs Clock cycle periods (nsec)
Scalable Hardware where w = n

max

4 8 16 32 64

Fixed

Design

4 9.62 12.39 19.48 30.66 54.93 11.41

8 9.62 12.39 19.48 30.66 54.93 15.96

16 9.62 12.39 19.48 30.66 54.93 26.5

32 9.62 12.39 19.48 30.66 54.93 48

64 9.62 12.39 19.48 30.66 54.93 92

128 9.62 12.39 19.48 30.66 54.93 178

256 9.62 12.39 19.48 30.66 54.93 350

512 9.62 12.39 19.48 30.66 54.93 694

1024 9.62 12.39 19.48 30.66 54.93 1382

The number of clock cycles in the scalable design is a

function of three factors: k, w and n. The number of

cycles to compute any scalable addition and/or

subtraction is calculated as n/w, which makes the actual
number of clock cycles depend on the real data used and

its size. However, after several experiments, we
concluded that approximately half the time step 2 or 3 of

HW-Alg is needed and the other half step 4 is required.

But the loop iteration time to execute step 2 or 3 is

different than step 4. Step 4 needs extra cycles for the

shifting operation after it. The number of cycles to

perform each loop iteration (step 2 to 7 of HW-Alg) is

calculated as CPLI=[(n/w+1)/2]+n/w+3, (CPLI stands

for the clock cycles per loop iteration). The number of
loop iterations of the algorithm is exactly equal to k. The

overall number of cycles equals the CPLI × k (the number
of loop iterations), plus the final operation of steps 9 and

10 (HW-Alg). The total number of cycles of the scalable

hardware equals to Cs=7+(7/2)k+[(4+(3/2)k)(n/w)],
which was verified by VHDL simulation. If k is

approximated to its average of 3n/2 (similar to the fixed

design), the function of the clock cycles would be

Cs=7+[(21/4)n]+[(4+(9/4)n)(n/w)].

The scalable hardware can have several designs for
each nmax depending on w. For example, Figure 8 shows

the delay of five designs of the scalable hardware

compared to the fixed hardware, all modeled for nmax=256

bits. Observe how the actual data size (n) plays a big role

on the speed of the designs. In other words, as n reduces
for small w, the number of clock cycles decrease

significantly, which considerably reduces the overall

computing time of the scalable design. This is a major

advantage of the scalable hardware over the fixed one.

The number of clock cycles of the fixed model

depends on the actual size of the data used. However, its
period always assume to have nmax bits to process. For

example, if we are using n = 64 bits, and the design is

made for nmax = 256 bits, as of Figure 8, the fixed design

will assume we are using all the 256 bits by placing zeros

for the unused bits. All nmax bits are processed into the
computation causing the fixed design to have more delay

than all different scalable ones.

Another observation seen from Figure 8 is that the

delay of all the scalable designs are better than the fixed

one when n≤ nmax/2, except for w=4 bits that is better

when n≤ 3nmax/8. The scalable designs with w = 8, 16, 32,

and 64 bits are faster than the fixed one as long as n ≤ 128

bits (n ≤ nmax/2). However, for the scalable design with

w = 4, it is faster than the fixed one while n ≤ 96 bits

(n ≤ 3nmax/8). In fact, as w gets bigger the delay decreases,
which is a normal speed area trade-off.

Figure 8 Delay comparison with nmax=256 bits

6. Conclusion

This paper presents two VLSI implementations for an

algorithm used in the computation of Montgomery

modular inverse arithmetic. The two designs are the fixed

(fully parallel) hardware and the scalable hardware. The

scalable architecture makes the design’s longest-path
shorter, compared to the fixed hardware. This affected the

clock frequency of the scalable hardware to be higher.

The scalable hardware is also designed to fit in a small

area with the computation of numbers performed in a

repetitive way. The maximum number of bits (nmax) the
scalable hardware can handle depends only on the

memory. If the number of bits exceeds the memory size,

the memory unit is the only part that needs to be

modified, while the scalable computing unit does not

change. On the other hand, all the fixed hardware

components need to be changed completely if any extra
bit is to be added beyond the memory limit.

The scalable design shows area flexibility, depending

on the number of bits used at each clock cycle (w). For

example, if w = 4 bits and the design can handle up to 512

bits, the area of the scalable design is 60% less than the

fixed hardware. The speed of this scalable hardware
deviate depending on the actual number (n) of bits used; if

n ≤ 192, the scalable design is found to be faster than the
fixed one. Therefore, the real time required to execute the

algorithm loop iteration on the scalable hardware relies on

the actual size of the operands, which is not the case for

the fixed hardware. This made the scalable hardware

speed more realistic than the fixed hardware speed.
The comparisons show that this scalable structure is

very attractive for cryptographic systems, particularly for

ECC because of its need for modular inversion of large

numbers, which differ in size repetitively depending on

the application usage.

7. Acknowledgments

We are thankful to the Information Security

Laboratory researchers for their invaluable technical help

and recommendations. This research received financial

support from KFUPM-Saudi Arabia, NSF, and RTrust.

References

[1] Savas, and Koç, “The Montgomery Modular Inverse

Revisited”, IEEE Transactions on Computers, 49(7):763-766,

July 2000.

[2] Kobayashi, and Morita, “Fast Modular Inversion Algorithm

to Match Any Operation Unit”, IEICE Trans. Fundamentals,

E82-A(5):733-740, May 1999.

[3] Kaliski, “The Montgomery Inverse and its Applications”,

IEEE Transactions on Computers, 44(8):1064-1065, Aug. 1995.

[4] Rivest, Shamir, and Adleman, “A Method for Obtaining

Digital Signature and Public-Key Cryptosystems”, Comm. ACM,

21(2):120-126, Feb. 1978.

[5] Diffie, and Hellman, “New Directions on Cryptography”,

IEEE Transactions on Information Theory, 22:644-654, Nov.

1976.

[6] Tenca, and Koç, “A Scalable Architecture for Montgomery

Multiplication”, In Cryptographic Hardware and Embedded

Systems, number 1717 in Lecture notes in Computer Science.

Springer, Berlin, Germany, 1999.

[7] Blake, Seroussi, and Smart, Elliptic Curves in

Cryptography, Cambridge University Press: New York, 1999.

[8] Ercegovac, M. D., Lang, T., and Moreno, J. H., Introduction

to Digital System, John Wiley & Sons, Inc., New York, 1999.

[9] Montgomery, P.L., “Modular Multiplication Without Trail

Division”, Mathematics of Computation, 44(170):519-521, April

1985.

[10] Naofumi Takagi, “Modular Inversion Hardware with a

Redundant Binary Representation”, IEICE Transactions on

Information and Systems, E76-D(8): 863-869, Aug. 1993.

[11] Guo, J.-H., and Wang, C.-L., “Hardware-Efficient Systolic

Architecture for Inversion and Division in GF(2m)”, IEE

Proceedings: Computers and Digital Techniques, 145(4):272-

278, July 1998.

[12] Choudhury, P. Pal., and Barua, R., “Cellular Automata

Based VLSI Architecture for Computing Multiplication and

Inverses in GF(2m)”, Proceeding of the 7th IEEE International

Conference on VLSI Design, Calcutta, India, 5-8 January 1994.

[13] Hasan, M. A., “Efficient Computation of Multiplicative

Inverse for Cryptographic Applications”, Proceeding of the 15th

IEEE Symposium on Computer Arithmetic, Vail, Colorado, 11-

13 June 2001.

[14] http://www.mentor.com/partners/hep/AsicDesignKit/dsheet

/ami05databook.html, ASIC Design Kit, Mentor Graphics Co.

