VLSI Implementation of Controllers for Communication Protocols from their Petri

Net Models

VLSI Implementation of Controllers for Communication Protocols
from their Petri Net Models

Asjad M. T. Khan Sadiq M. Sait

Gerhard F. Beckhoff

King Fahd University of Petroleum and Minerals
Dhahran, Saudi Arabia

Abstract

Petri nets are popular in the communication pro-
tocol community for modelling and analysis purposes.
This paper gives a procedure for extraction and imple-
meniation of controllers of protocols from their Peiri
net model. It adds another dimension to the use of
Petri nets and is suited for Network, Transport and
Data link protocols.

1 Introduction

Advances in fiber optics have resulted in increased
communication speeds. The links can now operate
at speeds of several Gigabits per second. The trend
towards ISDN and Multimedia systems require high
speed traffic handling. All this severely limits the com-
munication processing by software on general purpose
computers [1]. With these things in mind handling
of communication processing by a dedicated hardware
is desirable. This can be done by relatively inexpen-
sive (as compared to the processing power and time
of the host computer) VLSI circuit. A Protocol Pro-
cessor is typically a coprocessor VLSI chip or chip set
that relieves the host computer from communication
processing functions. A Protocol Controller is a VLSI
circuit that implements the functions of one or more
protocol layers.

Petri nets are suitable for fields which have distributed
or parallel components. Communication protocols are
an instance of this class. They are one of the two most
successful areas of application of Petri nets, the other
being performance evaluation [2]. The Australian and
the French telecommunication industries are using this
model on a large scale although the United States uses
a language based specification. The protocol specifi-
cation and verification community were one of the first
ones to experiment with Petri net modelling. The pro-
tocol in question is modelled by a Petri net and then
this model is analyzed for desirable properties. If some
error is found in the behavior of the protocol then the
model is changed and this cycle is continued till the
protocol exhibits desired behavior. Once the protocol
1s found to be correct it is implemented in software.

Having seen that Petri nets have been used to model

protocols and the fact that hardware implementations
of protocols exist, it is natural to ask whether the pro-
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tocols can be directly implemented from their Petri net
model and whether this process could be automated.
This work proposes to extend this modelling —analysis
cycle to include implementation in hardware so that
the entire design cycle, from specification to realiza-
tion can be done using Petri net model. This has the
obvious advantage of eliminating translation from one
specification to another and the possible errors asso-
ciated with it. Further a hardware realization has the
advantage of higher speed over software. Work on
translation of Petri net model to high level program-
ming language exists [3].

The terms and notations used for Petri nets are taken
from the survey-cum-tutorial by Murata [2].

2 Previous Work

Protocol controllers are a relatively new area. A
survey on the existing and proposed implementations
appeared in the literature [1]. Several implementa-
tions of the Data Link layer protocols exist, [4] im-
plements the complete layer. In [5] implementation
of network layer is found. Attempts have also been
made to implement Transport layer protocols too [6].
However, most of the work is restricted to Data Link,
Network and Transport layer protocols.

Petri nets provide a formal method for modelling asyn-
chronous systems. Initial approaches to Hardware
synthesis from Petri nets models were directed to-
wards asynchronous implementation and one of the
areas of application was design of fast control circuits
for computers. Patil and Furtek proposed modules for
direct implementation of certain classes of Petri nets
7,8] However, no efficient and systematic method has

een proposed [9]. A recent work postulates that Petri
nets may not be a good method for synthesis of asyn-
chronous circuits because states (markings) of a Petri
nets do not have a direct relationship with those of the
circuit (normally defined as vector of signals) [10] A
new technique called state transition graph has been
proposed for this purpose in [9].

Synchronous implementations have also been at-
tempted. Kwan et al. [11] and Auguin et.al [12] pro-
posed methods for decomposition and implementation
of a class of Petri nets by PLAs. However they did not
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consider distributed systems and the algorithm for de-
composition was restricted. In this paper we consider
synchronous implementation.

3 Modelling of Communication Pro-
tocols

3.1 Communication Protocols

The OSI reference model for computer networks has
a layered architecture. Each layer provides a certain
service to the layer above it and shields it from the
actual implementation details of the service. A layer
provides service to the one above it using the services
of its lower layer. The implementation of a layer on
a machine is called an entity. The entities compris-
ing the corresponding layers on different machines are
called Peer Processes. The rules and conventions used
in conversation between peer processes is termed as
the Protocol for that layer. A protocol is based on
message exchange, this includes synchronization mes-
sages between entities that wish to communicate be-
fore they can handle data and the message transfer
that occurs during data exchange.

3.2 Protocol Specification

The specification for a layer involves service speci-
fication, interface specification and the protocol speci-
fication [13]. From the point of view of layers above
it, the input-output behavior of the layer constitutes
a service specification. It is an abstract black box de-
scription. It is based on a set of abstract service prim-
itives which describe the input/output functions e. g.
for data link services basic primitives are send, receive
etc. These service primitives are executed in a certain
order which is given in the specification. The order
may depend on constraints due to operations by the
same user (local) or other user (global). The execu-
tion of service primitives involve exchange of param-
eter values between the adjacent (vertically) entities.
The exact format of how the services are provided is
defined by the Interface specification which could be
different for different users.

Although interaction occurs between adjacent layers
(vertically) the basic concept behind the layered ar-
chitecture and the design of layers is that each entity
assumes that it is dealing with it’s peer. In the net-
work with physically separated users the protocol layer
is distributed and entities local to each user communi-
cate with one another via services of lower layers. The
rules for interaction between entities in providing the
layer’s service constitutes the layer’s actual protocol.
The term communication protocol, as commonly used,
refers to this protocol. Figure 1 shows a symbolic rep-
resentation of a protocol. The protocol specification is
basically a refinement or distributed implementation
of the service specification.

Three techniques have been used to model protocols,
finite state models, language based approaches and
a hybrid of the two. The finite state models in-
clude Finite State Machines (FSM), directed graphs,
Petri nets etc. and the programming language ap-
proach includes special languages designed for paral-
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Figure 1: The Protocol Specification

lel/distributed systems including Estelle , Lotos etc.
The transitional (Finite state) models are based on the
fact that protocols consist of simple processing in re-
sponse to occurrence of events such as commands from
the user, message arrival from lower layer) and inter-
nal events (such as timeouts). The general approach
in modelling protocols is to consider the protocol as a
distributed system (which it is) [14]. Each of the site
can be represented by a process and the overall model
can be represented by individual processes with inputs
and outputs which communicate or interact with each
other. The model then reduces to one of communicat-
ing processes. The entire network can be studied with
this modular multilevel approach [14].

Using this approach each site processor can be mod-
elled as a FSM. The inputs of site a, FSM are the out-
puts of the channel FSM and its outputs are inputs to
the channel FSM. The same holds true between FSM
of site b, and the channel. However some of the events
occurring in a process might be internal to it. These
events occur outside the specification of the protocol
but are related to the correct behavior. They in a way
imply that not only the protocol but some detail of
the process implementing it is also modelled. These
internal events occur without any external input and
may or may not produce an output. In the FSM model
they can be represented by the always true input e.

3.2.1 Petri Net Model

Petri nets evolved as mechanisms for interprocess com-
munication. They can model interaction between dif-
ferent components. It is this which makes Petri nets
useful in protocol modelling. The Petri net model of
protocols is derived in two steps [14], at first each en-
tity and the channel is modelled as a state machine
or a net and then the components are connected to-
gether by explicit interconnection mechanism corre-
sponding to the actual implementation to give the
global system model. In the approach given in [15],
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Figure 2: The global model obtained using (a) Shared
place and (b) merged transition mechanism

each entity and the medium is modelled as a FSM
and then a Petri net model is built by connecting the
machines together. For simple models of communi-
cation medium a number of interconnection mecha-
nisms have been proposed [14]. The basic ones are
given below: Shared Place: A place shared between
the sender and the receiver processes represents the
medium. It represents the fact that the message has
been sent by the sender and not yet reached by the
receiver. This is really the actual behavior denoting
the fact that the message is in transit in the medium.
It has been the most used interconnection mechanism
[14]. A shared place representation implies potentially
unbounded buffering, the sender is released after send-
ing the message.

Merged Transition: In this technique the sender
and the receiver processes share a transition to ex-
change a message. This implies no buffering, di-
rect transfer and a synchronized send/receive. The
shared place and merged transition mechanisms are
illustrated in Figure 2.

The shared place is the basic interconnection mecha-
nism for processes belonging to distinct entities. More
advanced models of medium have been considered.
These include a FIFO model. These have been mod-
elled using Predicate-Transition nets and Predicate-
Action nets. However, in the opinion of Diaz [14],
as a first step, protocols should be validated with
the shared place model for every exchanged message
as the corresponding graph model imposes very few
constraints on the medium. This approach has been
widely used [16]. As a next step, specific medium can
be accounted for.

It will be seen in the next section (on implementa-
tion? how this information about modelling helps in
implementation. If the abstract model of interconnec-
tion i1s not known then it has to be derived from the
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design.

4 VLSI Synthesis of Protocol Con-

troller

The implementation is in the form of a PLA which
is suitable for VLSI. This method can be automated
to realize a Petri net based DA system. The imple-
mentation method can be logically divided into two
phases — Frontend, it takes the Petri net model of the
protocol and produces a FSM for each of the controller
entities and the Backend which generates a PLA im-
plementation of the FSM.

4.1 Frontend

This phase consists of two basic steps, decomposi-
tion of the protocol model into two entities represent-
ing the N'** layer and for each entity, obtaining the
FSM for it’s implementation.

4.1.1 Decomposition of Protocol

Both the shared place and the merged transition mech-
anisms can be shown to be equivalent in terms of live-
ness and boundedness properties using the reduction
rules by Kwang et al. [17]. Although both repre-
sentations are equivalent, in a sense, using both si-
multaneously is not recommended as it is difficult to
handle them semantically and theoretically [18]. This
is understandable from the point of view of the inter-
connection service they provide. In terms of proto-
cols, it has been suggested that shared place be used
for modelling the protocol of a layer (the interaction
of distributed entity) and that merged transition be
used to model interface protocols (or, equivalently, in-
terfacing of protocol levels) [14].

The implementation of the protocol from the Petri
net model can be integrated into the design-analysis
cycle. The Petri net model is built using the struc-
tured approach of modelling each entity by an FSM
and the channel is represented by shared places or
merged transitions. The overall system can then be
analyzed and when the design is found to be correct
the task of implementation can be initiated. With this
scenario, it is realistic to assume that the composite
protocol model is known along with the information
about the models of the entities i. e. the model with
entities demarcated is known. This corresponds to the
existing approach in literature where the overall model
is given demarcated [19,20]. The task of automated
implementation then consists of detection of channel
and building a FSM for each component. With the
knowledge of entities, the task of channel detection
reduces to finding the common places or transitions.

Procedure 1 (Break Entities)

Input The Petri net model of the protocol with each
entity demarcated in the protocol

Output Petri net model of each isolated entity

1. if shared place mechanism is used then Search
for places which are common to both entities



9. for each entity, for each shared place, for each
arc connected to shared places

3. if the arc is connected from the transition to the
shared place, z (output arc) then assign an out-
put, z to the transition, (z) and cut the arc con-
necting the transition to shared place

4. if the arc is connected from the shared place to
the transition, z (input arc) then assign an input
condition, z to the transition,< z > and cut the
arc connecting the shared place to the transition

5. if merged transition is used then Search for tran-
sitions that are common to both entities

6. for each merged transition, for for each entity,
duplicate the transition; for each arc connected
to merged transition, if the arc connected to the
merged transition belongs to the other entity,
then

7. if it is an input arc and it comes from place v
then assign an input condition, < v > to the
transition and cut the arc

8. if is an output arc coming from place w then

9. assign an output, (w) to the transition and cut
the arc

By the application of this procedure, the Petri net is
separated into components representing each entity.
The Petri net obtained is annotated with input con-
ditions and outputs associated with the transitions.
This is not different from the Petri nets defined ear-
lier. They just represent a modelling convenience. The
input condition on the transition is equivalent to a
source place connected to the transition and models
the interface to the external world.

4.1.2 FSM Extraction

The process of obtaining the FSM from the annotated
Petri net has two steps: first, refinement of the entity
and next generating a FSM for the underlying unan-
notated Petri net.

Refinement: As discussed in the section on mod-
elling, each modelled entity contains some local ac-
tions which occur within the entity itself. These do
not involve any communication with the peer but are
related to the correct operation of the protocol (e. g.
timer in a data link protocol). Moreover, there is one
more type of signals coming to the controller, from the
upper layer. As the interface and service specifications
are usually treated separately from the protocol spec-
ification this can be handled by a separate Interface
controller. One way of handling refinement for local
actions is to associate labels to transitions signifying
local actions. In the protocol analysis stage these la-
bels are ignored and no interpretation is associated,
however, in the implementation stage these are inter-
preted as input conditions and outputs. Alternatively,
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this can be done at this stage (after entities hav= &=
separated). In the Petri net model of protocol PAR
presented Figure 3 the place transition label "timout’
models a local action.

FSM from annotated Petri net: The reachabil-
ity graph of the underlying unannotated Petri net is
isomorphic to an FSA which accepts the language of
firing sequences if the graph is bounded [21]. The con-
ditions and the output are used then to replace the
transitions labelling the arcs of the transition. This
then defines a FSM. Two theorems are presented to
support this assertion.

Theorem 1 For every isolated entity a FSM can be
obtained.

Outline of Proof: The proof is based on two previ-
ous results and the property of protocols [22]. It can
be assumed that the protocol to be implemented has
been verified to be correct. The protocol design rules
require that the protocol is live and bounded%%].
Using the result of [24] on partitioning of Petri nets,
it can be shown the entities will also be live and
bounded. Having shown that the subnets represent-
ing entities are live and bounded, a result from Valk
L?l] can be used to show that for every regular net,
ounded being a proper subclass of regular nets, the
reachability graph defines a finite automaton.

Theorem 2 (VALK) There is an effective procedure
that associates to every reqular Petri met N, a finite
automaton accepting F(N), defined as,

F(N) = {w € T*| Mo(w >}

Using this result from Valk [21] and the fact that each
entity subnet is bounded a FSA, can be obtained. In
the obtained FSA the arcs are labelled by transitions.
These are then replaced by input conditions and out-
puts associated with the transitions. The procedure of
obtaining FSM from the annotated Petri net is sum-
marized below:

Procedure 1 1. begin
2. for each entity '

3. find the reachability graph of underlying unanno-
tated Petri net,RG=(V,E), where, Nodes of the
graph, V=R(Mo) and the set of labelled, directed
arcs, E has an arc from V’ to V" labelled by ¢
if for the corresponding markings, M’ and M,
M,[t > MII

4. do for the reachability graph

5. for every arc

6. substitute the transition labelling the transition,
t by the input conditions, z,y,... and out-

puts, a,b,... associated with the transition as,
<zy,... > [(ab,...), where, all the conditions
z,y,... should be satisfied for the transition to

oceur and the change produces outputs a,b, ...
This is finite and isomorphous to a FSM.



4.1.3 Implementation Aspects

The basic tool for implementation of frontend was P-
NUT (Petri Net UTilities) developed at the University
of California at Irvine.

4.2 Backend

The backend is basically a silicon compiler for FSM.
It takes a description of the state machine to be imple-
mented and gives the layout of the PLA implement-
ing it. It is based on a subset of tools made at the
University of California, Berkeley, called 1986 VLSI
Tool Kit [25] and VLSI Design Tools [26]. The en-
tire process is automated. The first of the tools meg
(Mealy Equation Generator) takes a high level input
of the FSM and outputs the equations of the output
and next_state variables in terms of present_state and
input variables. This is then fed to eqntott which
outputs the truth table for implementation by a two
level circuit(PLA personality). This format is com-
patible with the espresso input which is used to min-
imize the function. The output can then be fed to
a PLA generator, mpla which outputs the layout in
the desired technology and style. What remains after
that is to place the PLA in a pad frame, connect the
input of FSM and the next state outputs, route the
inputs and outputs to 1/O ports and the chip would
be ready to be sent for fabrication. These tasks can
also be done using available tools. Finally, the FSM
can be extracted from the PLA and simulated to ver-
ify correctness of operation. The FSM is extracted
using circuit extractor, mextra and simulated using
rnl. The simulation output is viewed using another
tool, simscope.

Example 1 Certain aspects of the synthesis proce-
dure are explained with the help of an illustrative
example. The Petri net model of a of a simplex al-
ternating bit protocol, Positive Acknowledgment Re-
transmission, PAR is given in Figure 3. The places
and the transitions have been named according to
the state/action to facilitate understanding. There
are two processes, a sender and a receiver. The com-
munication between these is modelled by the channel
shown. The sender numbers the packets it sends by
a 0 or a 1. In the initial state, it sends packet 0 and
waits for the acknowledgment (abbreviated as ack) to
arrive from the receiver. If everything goes right, an
ack will arrive. It would then transmit packet_1 and
wait for the ack. However two things can go wrong.

1. The message may get lost. This simply means
that an error occurred in some part of the packet
received by the receiver, and so no ack was sent.
After a fixed amount of time (determined by vari-
ous factors including the distance between sender
and receiver) the sender times out and retrans-
mits packet_0.

2. The msg was received but the acknowledgment
sent by the receiver got lost. The sender does
not know what really happened and retransmits
packet 0. The receiver however is waiting for
packet_l. It rejects this packet and sends an
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ack. When this acknowledgment is received by
the sender it transmits packet.l1 and a sequence
similar to the above is repeated.

Figures 4, 5, 6, 7 show the major steps in realization
and verification of the protocol.

5 Summary and Conclusions

The paper presents preliminary results. A method
for synthesizing communication protocols was pre-
sented. It was assumed that the composite Petri net
model of the protocol is available. This is a realis-
tic assumption if this process is integrated in the de-
sign cycle and it agrees with the current approach in
modelling protocols. The problem of decomposition
of Petri nets into interacting components is not triv-
ial. In general, it is not possible to decompose a Petri
net into cooperating state machines. If it is assumed
that only the composite model is known then it is dif-
ficult to decompose the net [22]. However, if certain
restrictions are made on the model then the task is
easier. The option of using a subclass is investigated
in another work [27].
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