
Buffer Size Driven Partitioning for HW/SW Co-Design

 Ta-Cheng Lin Sadiq M. Sait Walling R. Cyre
IBM Microelectronics Computer Engineering Dept. Electrical Engineering Dept.

 Austin, Texas 78758 King Fahd University of Petroleum & Minerals Virginia Tech
 tclin@ibm.net Dhahran-31261, Saudi Arabia Blacksburg, VA 24061-0111
 sait@kfupm.edu.sa cyre@vt.edu

Abstract
Partitioning is a very important task in hardware/software
co-design. Generally the size of the edge cut-set is used to
evaluate the communication cost. When communication
between components is through buffered channels, the size
of the edge cut-set is not adequate to estimate the buffer
size. A second important factor to measure the quality of
partitioning is the system delay. Most partitioning
approaches use the number of nodes/functions in each
partition as constraints and attempt to minimize the
communication cost. The data dependencies among
nodes/functions, and their delays are not considered. In
this paper we present partitioning with two objectives: (1)
buffer size, which is estimated by analyzing the data flow
patterns of the CDFG, and solved as a clique partitioning
problem, and (2) the system delay that is estimated using
List Scheduling. We pose the problem as a combinatorial
optimization and use an efficient non-deterministic search
algorithm called Problem-Space Genetic Algorithm to
search for the optimum. Results are compared with those
produced by simulated annealing.

1. Introduction

In this paper, we integrate a new buffer size estimation
algorithm and system delay for partitioning in a
hardware/software co-design environment. The goal of
HW/SW co-design is to map/partition the given system
specifications to software, which is to be executed by
microprocessors, and hardware, which is to be executed by
co-processors (such as full custom ASICs or synthesized
FPGAs), and satisfy the required system constraints. The
constraints may comprise area, performance, power, etc.
A communication channel must be established to transfer
the data back and forth between software and hardware
components. The communication channels can be queues,
stacks, or common memory areas [1,2].

The size of the communication channel is a good way
to estimate the communication cost for partitioning results

at the high-level design stage [1]. The size of the edge cut-
set is commonly used for the communication cost
estimation. As a matter of fact, the size of the
communication channel is usually smaller than the size of
the edge cut-set if the communication is through buffers
[1,2,3]. Furthermore, a larger edge cut-set does not imply
a larger buffer size. For example, Figure 1(a) and (b)
show the possible partitions for a design. The edge cut-sets
for (b) is 5 and for (a) is 3. Although (b) has a larger edge
cut-set than (a) has, (b) requires only 2 registers in its
buffer as opposed to 3 registers for (a). Details of
computing the buffer sizes will be presented in Section 4.
However, estimation of the buffer sizes at the function-
partition stage is not an easy task. The reasons are that the
technology, physical layout, clock speed, wire delay, etc.,
are unknown at the high-level design stage. These
unknowns cause the uncertainties of the variable lifetimes
at the function-partition stage, which makes the estimation
of buffer sizes very difficult.

Figure 1. Two possible partitions for a design
 with different edge cut-sets.

(a) (b)

a

b

c

d

e

x

y

z

1

2

3

4

5

6

1’

2’

3’
4’

5’

6’

Another important factor to measure the quality of the
partitioning result is the system delay. Most of the
partitioning approaches [4] set up the number of the
nodes/functions in each partition as the constraint for
partitioning, and then try to minimize the communication
cost. It may be noted that the granularity of functions

referred in this paper can be as fine as operations or as
coarse as tasks. The effects of the data dependency among
these nodes/functions, the delays of each function, and the
sequences of executing the functions are not considered.
These effects have a great impact on the system
performance. For example, in Figure 2, although (a) and
(b) have the same communication cost and the same
number of nodes in each partition, (a) is preferred. The
reason is that (b) requires a longer execution delay because
of the data dependencies among the functions and the
blocks of the functions assigned to.

In our co-design environment, the system
specifications are described using VHDL, and the VHDL
code is translated into Control Data Flow Graphs
(CDFGs). The CDFGs are used as inputs to a new
partitioning algorithm to map the functions/nodes in the
CDFGs into software or hardware. The communication
cost between the HW/SW components are estimated by the
buffer size. A new algorithm is proposed to estimate the
upper bound of the buffer size by labeling each edge in the
CDFG with a path vector. A procedure is then employed
to transform each edge’s path vector into a compatibility
graph. The problem of finding the buffer size upper bound
is transformed to a compatibility graph clique-partitioning
problem. The purpose of getting an accurate buffer size
estimation is to use the estimation as well as system delay
as a metric to evaluate the quality of the partition results.
We pose the problem as a combinatorial optimization and
use an efficient non-deterministic search algorithm called
Problem Space Genetic Algorithm (PSGA), which is a
variant of Genetic Algorithm, to search for the optimum.

Figure 2. Partition results with different system delays.

2 3

1
4

3

2
1

4

x y

x

y

P1 P2 P2P1

(a) (b)

The rest of this paper is organized as follows. Section
2 reviews related partition algorithms and applications of
genetic algorithms in digital design. Section 3 models
partitioning as a multi-objective optimization problem.
Section 4 presents the buffer size estimation algorithm.
Section 5 addresses the PSGA modeling technique.
Experimental results are summarized in Section 6 and
conclusions are in Section 7.

2. Previous Related Work

The min-cut partitioning algorithm [5] uses the size of
the edge cut-set to measure the quality of partitioning. The
algorithm interchanges subsets of nodes between two
blocks to get a maximal partitioning improvement.
Agrawal and Gupta stated that a min-cut partitioning
algorithm which uses the size of an edge cut-set is not
accurate enough to estimate the number of buffers needed,
which is a better partitioning quality measure, for inter-
processor communications [1]. They proposed a data-flow
assisted behavioral partitioning algorithm that can more
accurately estimate the inter-processor communication
cost. Their algorithm is limited to two-way partitioning,
and the number of functions in each partition is used as a
constraint instead of the system delay which is a better
measure of performance.

Partitioning is known to be an NP-complete problem
[4]. Approaches that have been proposed by previous
researchers are usually based on constructive heuristics
such as the min-cut algorithm, or some non-deterministic
hill-climbing algorithms such as the simulated annealing
[4]. The major disadvantage of constructive heuristics is
that they get trapped in local optima and are therefore
unable to attain global optimum solutions. For the
simulated annealing approach, in order to achieve a
satisfactory result, the cost of CPU time is usually very
high [4]. Another non-deterministic optimization
algorithm called the Genetic Algorithm has been applied
successfully in numerous research areas [6,7]. Problem
Space Genetic Algorithm was first proposed by Storer et
al. [8]. Storer et al. realized that infeasible solutions
occurred during the evolution process in each generation
for conventional genetic algorithms. The infeasible
solutions must be either corrected by a repairing
mechanism or be discarded. They proposed an alternative
way to handle the occurrence of infeasible solutions by
perturbing the problem space instead of the solution space.
A fast heuristic algorithm is then used to map the problem
space into the solution space, which guarantees that the
solutions are always feasible.

3. Problem Formulation

The CDFG G = (V, E), which is used to describe the
system behavior, consists of a set of functions which are
represented by vertices V = {vi | i = 1,2,..m}, and a set of
data dependencies which are represented by edges E = {eij |
eij = (vi,vj), vi, vj ∈ V}.

The CDFG is then used as input to our partitioning
algorithm. The problem of partitioning V into two or more
interacting blocks can be expressed as P = {Pi | i =
1,2,....N}, where Pi = (Vi, Ei), ∪ Vi = V, and Vi ∩ Vj =

Ø if i ≠ j, with the constraints of minimizing the
communication cost and system delay. The functions in
the same block, i.e., Vi, are assigned to the same
functional units or processors for execution. The delay for
each partition block is the sum of the functional execution
delays, and the time during which the functional unit is
idle. The system delay is therefore the maximum delay of
the functional unit delays, which can be expressed as:

T = max
j 1,N=

(Ti idle(j)
i 1,|Vj|

+
=
∑) (1)

Where Ti is the execution delay for function vi. The
interface communication cost is expressed as:

R = ∑ ∑
−= +=1N1,j N1,ji

jiij)b + (b (2)

Where bij and bji are the buffer sizes required to support
the two-way communication between partitions i and j .
The algorithm for buffer size estimation will be presented
in Section 4. Having defined the system delay and
communication cost, the objective of behavioral
partitioning can be formulated as follows:

Objective: Given a CDFG G = (V, E), find a
partition P such that the cost function

C = ααT + ββR (3)

is minimized, where αα and ββ are weights used to control
the desired tradeoff between system delay T, and
communication cost R.

4. Buffer Size Estimation

The buffer size between two partitions can be
estimated by tracing the data flow in the CDFG. The
algorithm is a two-step process, which includes labeling
the edges of the CDFG with path vectors (PVs) and then
transforming the edges into compatibility graphs. The
compatibility graphs are then used to find the upper bound
on the buffer size.

4.1 Path Vectors

Labeling the edges with path vectors is used to detect
the variables with non-overlapping lifetimes. The
variables with non-overlapping lifetimes can share the
same register in a buffer, which leads to buffer size
reduction. For example, in Figure 1(b), Variables a, c, and
e are non-overlapping because the data dependencies

among Functions 1, 2, 3, 4, 5 and 6. Variables a, c, and e
can share a register in Buffer b12.

A path vector is a bit vector. The dimension of a path
vector is the number of paths in the CDFG. The paths in
the CDFG can be found by using entry nodes, which are
the nodes without predecessors, as the roots, and then
performing the Depth-First Traversal [9]. For example, in
Figure 3(a), the roots for this CDFG are Nodes 1, 2, and 3.
After using the roots to find all the paths, which are
shown in Figure 3(b), each path is represented by a one-
hot bit vector, e.g., [001] is used to represent Path 1. All
the edges that belong to that path are labeled with the
same path vector. If an edge is traversed by more than one
path, the edge is labeled with the bit-wise OR of the path
vectors. For example, in Figure 3(a), edges c and d are
traversed by paths 1 and 2; therefore, edges c and d are
labeled with a path vector [011]. The formal notation of
the path vector for an edge is denoted as PV(eij), where eij

∈∈ E.
The path vectors are then used to determine whether

two variables are potentially lifetime overlapped or not.
Two variables are lifetime non-overlapping if the bit-wise
AND of their path vectors is not a zero vector. If the result
of bit-wise AND of two path vectors is a zero vector, then
the two variables are potentially lifetime overlapped.

1 2

4

5
3

7

6

a b

e

c

d

f

Figure 3. CDFG labeled path vectors.

Path 1. (1)-a-(4)-c-(5)-d-(7)

Path 2. (2)-b-(4)-c-(5)-d-(7)

Path 3. (3)-e-(6)-f-(7)

[100]

[100]

[001] [010]

[011]

[011]

(a) (b)

4.2 Buffer Size Upper Bound

After all the edges are labeled with path vectors,
compatibility graphs can be constructed to estimate the
upper bound of the buffer sizes. For two partition blocks Pi

and Pj, the edge cut set, which is used to represent the
variables generated by the functions in Pi and consumed
by the functions in Pj, is denoted as Cij = { cij | cij = (vi,vj),
vi ∈∈ Vi, vj ∈∈ Vj }. The compatibility graph for Cij is
constructed as follows:

• • for every edge pair (cij , cij ’), where cij , cij ’ ∈∈ Cij and
cij ≠≠ cij ’ ,

• if PV(cij) AND PV(cij ’) ≠≠ 0, then introduce an edge
between cij and cij ’ .

For example, if Figure (3) is partitioned into two blocks,
P1={1,3,5} and P2={2,4,6,7}, the edge cut-set C12 and the
path vectors are shown in Figure 4(a). The compatibility
graph is shown in Figure 4(b).

Figure 4. (a) Path vectors and (b)Compatibility graph for C 12.

C12 = {a,e,d}

PV(a) = 001
PV(e) = 100
PV(d) = 011

(a)

a

e

d

(b)

The buffer size upper bound for bij is then transformed
into a clique partition problem, which is to find the
minimal number of cliques to cover the compatibility
graph. Finding a clique partition is an NP-complete
problem [4,10, 11]. An effective heuristic algorithm
proposed by Tseng and Siewiorek [12] is used to find the
minimal number of cliques for our buffer size estimation
algorithm. Analogously, the buffer size for bji can be
obtained by applying the above procedure and the buffer
size upper bound for Partition i and j is equal to bij+bji .
The system buffer size can be attained by computing the
buffer sizes of each partition pair and then adding them
up, which is expressed in Equation (1). The pseudo-code
of the buffer size estimation algorithm is given in Figure
5.

4.3 Complexity Analysis

The buffer size estimation algorithm contains two
major sub-algorithms. The first sub-algorithm is the
Depth-First Traversal algorithm. The complexity of the
Depth-First Traversal depends on the data representation
of the CDFG. If the CDFG is represented as an adjacency
list, which is adopted in our program implementation, the
complexity is O(n + e), where n is the number of nodes
and e is the number of edges. Because e is usually greater
than n, the complexity of Depth-First Traversal is often
considered as O(e) [9].

The second sub-algorithm is the heuristic clique-
partitioning algorithm proposed by Tseng and Siewiorek.
Their algorithm comprises processes of selections of a pair
of nodes with the maximum number of common neighbors
and then merging the nodes as a super node. All the

Algorithm Buffer_Size_Estimation
// initialize data
Ne = | E |; // number of edges in the CDFG
// set of nodes that don’t have predecessors in the CDFG
So = set of entry nodes;
// set of nodes that don’t have successors in the CDFG
Si = set of exit nodes;
Path = 1;
N = number of blocks; // N_way partitioning
For each edge i, i ∈ E;

PV(i) = [0]; // [0] is denoted as a 0 bit vector
End For;
// label the edges with path vectors
For each node i , i ∈ So;

use i as root to perform Depth-First Traversal;
if node j is visited ; j ∈ Si; then
// a path from Node i to Node j is found

Path = Path + 1;
Label each traversed edge e,
 with PV(e) = PV(e) | To_Bit_Vector (Path) ;
// ‘|’ is denoted as a bit-wise OR operation
// To_Bit_Vector() is a function to convert
// an integer to a bit vector

End For;
// construct compatibility graphs for each
// block pairs and then do clique partitioning
For each block pair Pi and Pj

// Cij is the edge cut-set between Block Pi and Block Pj

Cij = Get_Cut_Set(Pi,Pj);
For each edge pair cij and cij ’ ; cij ,cij ’ ∈∈ Cij and cij ≠≠ cij ’
 if (PV(cij) & PV(cij ’) ≠ [0]) then

// ‘&’ is denoted as a bit-wise AND operation
introduce an edge between Node cij and Node cij ’

End For;
// Get_Clique() is a clique partition algorithm proposed by
// Tseng and Siewiorek, and it returns the number of cliques

Nq = Get_Clique(Cij);
Buffer_Size = Buffer_Size + Nq;

// compute the buffer size for Cut-Set Cji

repeat the above steps for Cji;
End For;

Return Buffer_Size;
End Buffer_Size_Estimation.

Figure 5. Algorithm for Buffer Size Estimation.

incident edges of the merged nodes are deleted, and new
edges are added to their common neighbors. The
algorithm repeats the processes until all the edges in the
compatibility graph are deleted. For the worst case, in
each iteration, there are C(n,2) = (n2/2 - n/2) ways to
choose a pair of nodes to merge, which happens when
there are edges between every two nodes, i.e., a complete
graph. Therefore, in each iteration, the complexity is
O(n2/2 - n/2), which can be simplified to O(n2/2), n is the
number of nodes. n-1 iterations are needed for the worst
case, when the compatibility graph is a complete graph, so
that the complexity of the heuristic partitioning
algorithm is O((n-1)n2/2). For N_way partitioning, there
are 2C(N,2) compatibility graphs needed to be established
therefore 2C(N,2) = (N2- N) is the number of times the
clique partitioning algorithm is to be applied. The
complexity becomes O((n-1) n2/2(N2 - N)), which can be
simplified to O(n3N2/2).

From the above complexity analyses, the complexity

for buffer size estimation algorithm can be expressed as
O(e + n3N2/2), which allows us to estimate the buffer size
in polynomial time.

5. Partition Using Problem Space Genetic
Algorithm (PSGA)

Genetic algorithms (GAs) are powerful domain-
independent search algorithms for solving optimization
problems. In the GA approach, the solutions of the
optimization problems are encoded as string of symbols
called chromosomes. A number of possible solutions
(population) co-exist. During each iteration or generation,
a selection algorithm is used to choose parents (solutions)
from the population to produce offsprings. Two operators
are involved in the reproduction process, which are termed
as crossover and mutation. A fitness function is used to
evaluate the fitness value of each chromosome. The fitness
values are used to choose the chromosomes from the
population and the offsprings to form a new population for
the next (generation) iteration. The more fit the
chromosome, the higher the probability of it being
selected. The chromosomes that are not chosen are
discarded. The iteration process stops when a satisfactory
or optimum solution is reached.

In prior genetic algorithm research [13], the
chromosomes in the population are encoded directly as the
solutions of the combinatorial optimization problem. One
major disadvantage for this type of chromosome encoding
is that after crossover and/or mutation operations, the
generated solutions may not be feasible. PSGA takes an
alternate approach by encoding the problem data not the
solution data. The problem space information is used by a
fast heuristic algorithm to map the problem information
into solutions. The major advantage of PSGA is that
crossover operator can be constructed easily to always
produce feasible solutions.

5.1. Modeling and Implementation Technique

For optimization of the behavioral partitioning
problem, a chromosome consists of two parts: (1) a list of
integers representing the block to which each function in
the CDFG is assigned, and (2) a list of integers
representing the work remaining (WR) [8] for each
function in the CDFG. A procedure is then provided to
generate the initial population. The detailed chromosome
representation and the initial population generation
procedure can be found in Ref. [14].

For each chromosome, the buffer size is estimated by
the Buffer_Size_Estimation algorithm. The system delay
is estimated by using the List Scheduling algorithm that
uses WRs (work remainings) as the priority function [4].

After the buffer size and the system delays are estimated,
the costs for the chromosome is computed using Equation
3.
Crossover is an operation that selects two parent
chromosomes from the population and produces two
offsprings. The selection of parents from the population is
based on the fitness values of the chromosomes. The
higher the fitness value, the higher the probability of a
chromosome being chosen for reproduction. The fitness
values for each chromosome are calculated as follows:

f(i) =

p

p
(Cmax - Ci + 1)

(Cmax Ci 1)
j 1,N

− +
=
∑

 (4)

where Cmax is the maximum cost in the population, Ci is
the cost for chromosome i , N is the population size, and p
is a parameter used to determine the selectivity of the
fitness function [8]. The plus 1 in the denominator is
needed for preventing a division by 0 error if all the
members in the population converge to an identical
chromosome.

After all the fitness values in the population are
computed, the Roulette Wheel Algorithm [6] is used to
select the chromosomes for crossover operation. The
crossover operator selects two chromosomes, Mm and Mf ,
and randomly generates a cut point i. The first offspring is
the concatenation of Mm(1:i) and Mf(i+1,|V|), and the
second offspring is the concatenation of Mf(1:i) and
Mm(i+1,|V|).

The mutation operator selects a small percentage,
usually less than 5% of the offsprings and changes their
block mappings and work remainings. The block change is
re-mapping the randomly selected functions into another
block. The work remaining change is re-assigning
randomly selected functions new work remainings.

The partitioning procedure using PSGA technique can
be summarized as: a) generate initial population (parents),
b) apply crossover and mutation operators to generate
offsprings, c) construct a new population by selecting the
chromosomes from parents and offsprings, d) iterate steps
b and c until the stop criteria is met, e) return the solution
by selecting the chromosome with the highest fitness
value.

6. Experimental Results

The buffer size driven partitioning algorithm is
implemented on a SUN SPARC workstation using C++
programming language. To assess the results obtained
using the PSGA algorithm, the simulated annealing (SA)
version of the buffer driven partitioning algorithm is also
implemented. The test cases used to evaluate the
algorithm performance are derived from Electromagnetic

Field Theory, Digital Signal Processing, and Image
Processing. The number of functions/nodes range from 19
to 241 and the number of edges range from 32 to 240. For
PSGA, the population size is set to 50, and the mutation
rate is set to 5%. For SA, the starting temperature is
computed using the algorithm proposed by [15], the
cooling parameter is set to 0.95, with 50 iterations at each
temperature.

In this experiment, the weights αα and ββ are set to 1
and 10 respectively. We also set up computation time
limits for PSGA and SA in each case. The results are
shown in Table 1, in which n denotes the number of
functions/nodes in the CDFG, N the number of partitions,
and m denotes the size of edge cut-sets. The delay
indicates system delays and the numbers are derived from
Intel Arithmetic Processor Unit 8231. The results show
that PSGA finds better solutions in most of the cases with
the same time limits. The table also shows that the buffer
sizes are smaller or equal to the edge cut-sets in all the test
cases, and some cases show that the buffer sizes are as low
as 50% of the sizes of the edge cut-sets.

 PSGA SA

CDFG n N m buffer delay m buffer delay Time

E-field
superposition 19

2

4

 4 3 86 4 4 85 10 (sec)

 6 5 59 13 8 62 10(sec)

Elliptical Wave
Filter 34

2

4

19 8 311 13 6 311 20(sec)

23 10 251 25 12 251 20(sec)

Fresnel
Transition
Function

20

2

4

 3 3 101 3 3 107 10(sec)

 5 5 81 11 10 81 10(sec)

Wedge
Diffraction
Coefficient

150
2

4

90 45 664 81 45 711 12(min)

140 81 426 141 83 445 27(min)

Edge Detector 241
4 163 69 184 165 79 192 5(hr)

8 187 87 150 196 100 160 8(hr)

Table 1. Comaprison of PSGA and SA for partition results.

7. Conclusions

We have presented a new partitioning algorithm that is
based on the Problem Space Genetic Algorithm which is
an efficient way to search optimum solutions for NP-hard
problems. The partitioning algorithm uses buffer size
estimation and system delay to evaluate the qualities of the
solutions. The proposed buffer size estimation algorithm
starts from searching the paths in the CDFG. The edges of
CDFG are then labeled with path vectors, and the path
vectors are used to construct compatibility graphs. The
compatibility graph is then input to a fast heuristic
partition algorithm to find the upper bound on the buffer
size. The experimental results show that using buffer size

estimation as part of the cost function can obtain lower
communication costs than using the size of edge cut-set in
the final partitions if the communication is through buffer
channels and the cost is estimated by the buffer size.
PSGA results are compared with those produced by
simulated annealing.

References

[1]Agrawal, S. and Gupta R. K., “Data-flow Assisted Behavioral
Partitioning for Embedded Systems,” 34th DAC, 1997, 709-712.
[2] R.K. Gupta, C. Coelho, and G.D. Micheli, “Synthesis and
Simulation of Digital Systems Containing Interacting Hardware
and Software Components,” 29th DAC, 1992, 225-230.
[3] T. Amon and G. Borriello, “Sizing Synchronization Queues:
A Case Study in Higher Level Synthesis”, 28th DAC, 1991,690-
693.
[4] Gajski, D. D., High-Level Synthesis: Introduction to Chip
and System Design, Norwell, MA: Kluwer Academic Publishers,
1992, 213-294.
[5] Kernighan, B.W.and Lin, S. “An efficient heuristic procedure
for partitioning graphs,” Bell System Technical Journal, vol. 49,
pp. 291-307, Feb. 1970.
[6] Goldberg, D.E. Genetic Algorithms in Search, Optimization
and Machine Learning, Addison-Wesley, USA, 1989
[7] Holland, J.H., Adaptation in Natural and Artificial systems.
Ann Arbor, MI: University of Michigan, 1975.
[8] Storer, R.H., Wu, D.S., and Vaccari, R., “New search spaces
for sequencing problems with application to job shop
scheduling,” Management Science, 38(10), 1992, pp. 1495-1509.
[9] A.M. Tanenbaum, Y. Langsam, and M.J. Augenstein, Data
Structures Using C, Prentice-Hall, Englewood Cliff, N.J., 559-
560.
[10] C.J. Tseng and D.P. Siewiorek, “Automated Synthesis of
Data Path on Digital Systems,” IEEE trans. on Computer-Aided
Design of Integrated Circuits and Systems, vol. CAD-5, no
3,379-395,July 1986.
[11] Micheli,G., Synthesis and Optimization of Digital
Circuits, McGraw-Hill, New York, NY , 93, 63-67.
[12] Garey, M.R. and Johnson, D.S. Computers and
Intractability: A guide to the Theory of NP-Completeness. W.H.
Freeman and Company, 1979.
[13] Sait, S.M. et al “Scheduling and allocation in high-level
synthesis using stochastic techniques,” Microelectronics
Journal, vol.27,1996, pp 693-712.
[14] Lin, T-C,. Sait, S.M., and Cyre, W.R, “Performance and
Interface Buffer Size Driven Behavioral Partitioning for
Embedded Systems,” IEEE 9th RSP,1998, pp 116-121.
[15] Wong, D.F and Liu, C.L., “A new algorithm for floorplan
design,” 23rd DAC, 1986,101-107.

Acknowledgement
The second author acknowledges King Fahd University of
Petroleum and Minerals, Dhahran, Saudi Arabia, for all
support.

