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ABSTRACT

Simulated Evolution (SE) is a general meta-heuristic
for combinatorial optimization problems. A new solu-
tion is evolved from current solution by relocating some
of the solution elements. Elements with lower good-
nesses have higher probabilities of getting selected for
perturbation. Because it is not possible to accurately
estimate the goodness of individual elements, SE re-
sorts to a Selection Bias parameter. This parameter
has major impact on the algorithm run-time and the
quality of the solution subspace searched. In this work,
we propose an adaptive bias scheme which adjusts au-
tomatically to the quality of solution and makes the al-
gorithm independent of the problem class or instance,
as well as any user defined value. Experimental results
on benchmark tests show major speedup while main-
taining similar solution quality.

1. INTRODUCTION

Kling and Banerjee proposed Simulated Evolution (SE)
as a general meta-heuristic [1] for the solution of combi-
natorial optimization problems. Starting from a given
initial solution, SE repetitively executes the following
steps until stopping conditions are met: Evaluation,
Selection. and Allocation (see Figure 1). The eval-
uation step estimates the goodness g; € (0, 1) of each
element 7 in its current location. The goodness of an
element is a ratio of its optimum (minimum) cost Q; to
current cost estimate C;. A goodness near 1 indicates a
highly fit individual. In selection step, the algorithm
probabilistically selects unfit elements. Elements with
low goodness values have higher probabilities of get-
ting selected for relocation. The selected elements are
removed from the solution and reassigned one at a time
to new locations in a constructive allocation step. The
objective of this step is to improve their goodness val-
ues, thereby reducing the overall cost of the solution.
The accurate computation of goodness in SE is not
possible as it requires the knowledge of optimum cost.
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Algorithm Simulated-Evolution(B.®;, 4iq
NOTATION
B= Bias Value.

e;= Individual cell in ®.

;- StoppingCondition)

®= Complete Solution.

O;= Lower bound on cost of i'!

C;= Current cost of i'" cell in &. g;= Goodness of i'h
S= Queue to store the selected cells.
ALLOCATE(e;.®;)=Function to allocate ¢; in partial solution ®;

Repeat

cell.

cell in &,

EVALUATION: ForEach ¢; € ¢ DO
begin
g9i = &+
i
end
ForEach ¢; € ¢ DO
begin
IF Random > Min(g; + B. 1)
THEN begin

s§=x ¢;: Remove ¢; from &

SELECTION:

end
end
Sort the cdements of §
ALLOCATION: ForEach ¢; € S DO
begin

ALLOCATE(e;. ®;)

end
Until Stopping Coudition is sufisficd

Return Best solution.
End {Simulated.Evolution)

Figure 1: Simulated Evolution algorithm.

In order to compensate errors made in the estimation
of goodness, Kling and Banerjee proposed the use of
fixed selection bias to inflate or deflate the goodness
of elements. A high positive value of bias decreases the
probability of selection of elements thus reducing the
size of selection set. Lower bias values lead to higher
execution times caused by larger selection sets. The
quality of solution is also degraded due to uncertainty
created by large perturbations [1]. Similarly, for high
bias values the size of the selection set is small, and
the quality of solution is poor due to limitations of the
algorithm to escape local minima [1].

The approach recommended by Kling and Banerjee
for finding a suitable bias value for a given problem in-
stance is to make several trial runs with different bias
values. However, these trial runs will result in finding
the best bhias value for only that instance of the prob-
lem. Therefore, it can’t be used as a general value for
any set of problems. Furthermore, trial runs require
excessive execution time. Other rescarchers have pro-
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posed a normalized goodness scheme which consists
of a linear transformation that spreads cell goodnesses
on the entire interval (0,1), thus avoiding the use of
bias altogether {2, 3, 4]. However, as we will see, even
this scheme fails as the size of the problem increases. It
takes excessive execution time and deteriorates quality
of the best solution found.

This work proposes adaptive bias approach where
the bias value is adjusted as the solution is evolved.
Experiments show that the proposed bias scheme re-
sults in similar quality solutions as obtained with fixed
bias, with major savings in execution times. In this
work. the test problem used is cell placement problem
of VLSI design which is a generalization of quadratic
assignment problem [5]. Placement can be formulated
as follows [6): Given a finite set E of distinct movable
cells and o finite set L of locations, a state is defined
as an assignment function S : E — L satisfying cer-
tain constraints. The objective of placement is to as-
sign each cell e; € £ to a unique location L; such that
some criteria are optimized [6]. Generally minimization
of wire-length has been widely used as the objective of
VLSI placement.

2. NORMALIZED GOODNESS

One solution to the problem of finding suitable bias
value in advance is to normalize individual cell good-
nesses [2, 3. 4] and use zero bias value. The objective of
the normalization is to spread the goodness within the
range (Upper, Lower) where Upper + Lower < 1.0.
The advantage of this approach is that the SE algo-
rithm becomes independent of bias value. Yuh et. al. [2]
have normalized individual score in the range 0.05 and
0.95. Using this normalization method. individual cell
goodnesses are computed as follows:

min

9i — 9g;

nax min
9 9

g) =0.05 +0.95 x (1)

where g; is the actual goodness of cell i. g™" = min;(g;).
g™ = max;(g;), and g} is the goodness of cell 7 after
normalization. Using Equation 1, the best cell in a so-
lution will have a goodness of 0.95, and the worst cell
will have a goodness of 0.05.

3. PROPOSED ADAPTIVE SELECTION
BIAS

This work proposes an adaptive bias scheme where
the bias parameter is automatically estimated by the
algorithm as a function of current solution quality. Bias
value evolves with the search process. As the overall

goodness of the solution improves, bias is proportion-
ally adapted. Overall goodness of a solution is mea-
sured by the average across all cells in the solution. It
is an estimate of how near is each cell to its optimum
position. At k** iteration bias By is computed as fol-
lows.

By =1-Gk (2)

where G, is the average goodness of all the cells at the
end of k** iteration. This approach presents several
advantages.

1. Bias value is not arbitrarily selected and no trial
runs are required to find the suitable bias value.
The adaptive bias automatically adjusts accord-
ing to the problem state.

2. The state space search still corresponds to an er-
godic Markov chain, and therefore convergence
properties of SE algorithm are maintained®.

3. For poor quality solutions, the average goodness
is low, resulting in a high bias value. This will
make sure that the size of selection set is not ex-
cessively large. It will save the algorithm from
making excessively large perturbations.

4. For good quality solutions, the average goodness
is high, leading to a low bias value. This will
result in the selection of a sufficient number of
cells which will protect the algorithm from early
Convergence.

5. At iteration k only elements with goodness < G
have non zero probability of getting selected for
perturbation. Hence the search is always focused
on relocating poorly placed elements.

4. RESULTS AND DISCUSSION

In this section we compare three selection bias strate-
gies namely fixed bias (the original SE scheme pro-
posed by Kling and Banerjee). normalized goodness
with zero bias. and our proposed adaptive bias. The
test problem is VLSI cell placement. The tests are
carried out on ISCAS-85 benchmark circuits. Initial
solutions are randomly generated and algorithms are
executed for a fixed number of iterations on SUN Ultra
Sparc-1 Workstations. This comparison is based on the
quality of the solution and algorithm execution time.
The quality of a solution S, Q(S) =1 — NC(S) where
NC(S) € (0.1) is the normalized cost of that solution.

Table 1 compares the quality of final solution and
execution time of SE with different bias schemes. The

1Proof left out due to lack of space.
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Figure 2: Comparison of different bias schemes: (a) quality of solution; (b) execution time: and (c) cardinality of
selection set against frequency of solutions for different bias schemes for the SE algorithm.
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Figure 3: Comparison of different bias schemes depict-
ing average goodness of the selected elements.

normalized goodness based SE generates worst quality
solutions with excessive execution times. The reason is
that this algorithm variation fails to control the size of
selection set resulting in large and expensive perturba-
tions.

The quality of solution of the adaptive bias SE is
comparable to the best fixed bias SE. For all test cases.
the execution time of the proposed adaptive bias SE is
always a fraction of the other two approaches. fixed
bias and normalized goodness SE?.

Figure 2(a) compares the search pattern for differ-
ent bias schemes. From this figure, it is clear that the
quality of search for fixed bias and adaptive bias are
almost identical. For the normalized goodness scheme,
we observed. as expected. more frequent poor quality
perturbations being performed. Further. the magni-
tude of these perturbations are larger than those ob-

2The run time of fixed bias SE is the sum of execution times
of all trial runs required to choose the value of bias. On average.
five trial runs were required.

Circuit Fixed Bias N.Goodness A. Bias
Q ] T] Q ] T] Q] T
fract 0.65 15.0 | 0.64 5.4 1 0.64 1.0

c499 0.64 17.5 | 0.64 204 | 0.63 2.8
€532 0.67 52.0 | 0.69 24.4 | 0.65 5.6
c880 0.77 62.0 | 0.75 72.0 | 0.77 17.4

c1355 | 0.74 | 372.0 | 0.65 | 648.0 | 0.75 93.6
struct | 0.76 | 1780.0 | 0.67 | 3180.0 | 0.77 | 222.0
c3540 | 0.75 | 1800.0 | 0.60 | 5760.0 | 0.75 | 502.0

Table 1: Comparison of solution quality (Q € (1,0))
and algorithm execution times (T in minutes) of best
fixed bias, normalized goodness (N.G.) and adaptive
bias (A. Bias) SE algorithms. A higher value of Q
‘means better solution.

served for fixed and adaptive bias schemes. (see Fig-
ure 2(a)). Figure 2(b) shows that both fixed bias and
adaptive bias SE require a fraction of time compared
to normalized goodness SE. The behavior illustrated
in these two figures is attributed to the number and
type of cells selected at each iteration for perturba-
tion. Figure 2(c) compares the cardinality of selection
set. From this figure, it is clear that for Adaptive bias
the selection set remains in a narrow band and slightly
more than the selection set size of the best fixed bias
scheme. The reason for narrow band is that when aver-
age goodness is low, high bias maintains a limited size
of selection set. On the other hand, normalized good-
ness SE algorithm always has a larger selection set than
any of the other schemes. Further, the selection set is
always excessively large making the state space walk
unnecessarily random rather than evolutionary. This
results in unnecessary perturbations of the well placed
cells. reducing the quality of solution and increasing the
execution time. Figure 3 shows the average goodness
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Figure 4: Comparison of different bias schemes. Quality of solution against iteration of the algovrithm for different
quality ranges: (a) fixed bias; (b) adaptive bias; and (c¢) normalized goodness SE algorithm.

of selected elements for these three schemes. Adaptive
bias scheme has lowest average goodness of selected
cells. It means that it selects more unfit elements than
other two schemes. The normalized goodness algorithm
selects high average goodness cells.

Figure 4 shows the quality of solutions found by
the three bias schemes. These graphs, plot the num-
ber of solutions found (in a step of 20 iterations) by
these schemes for different solution quality ranges. For
clarity, only four solution quality segments are shown.
According to Figures 4(a), during the initial stages of
the search, fixed bias scheme finds more solutions in low
quality range (0.4-0.3, 0.5-0.6). As the algorithm pro-
gresses, it finds more good quality solutions. The same
behavior is observed with the adaptive bias scheme in
Figure 4(b). Hence, both algorithms exhibit tendency
of narrowing the search to fitter solution subspaces.
The perturbations are not of excessive magnitude as to
cause deterioration in quality of solutions. In contrast.
the normalized goodness algorithm was unable to find
any solutions in the high quality range (0.7-0.8). This
shows the limitation of this algorithm variation to come
out of local minima.

5. CONCLUSION

This work proposes a new adaptive bias scheme where

bias value automatically evolves as the search progresses.

For each iteration of the SE algorithm, bias is set equal
to 1 — G. where G is the average population goodness
of current iteration. This makes the algorithm more
adaptable to the overall quality of solution. It also re-
duces the size of the selection set in early iterations
leading to a considerable saving in the execution time.
Further, Bias is no longer an algorithm parameter that
must be tuned for each problem instance. Experimen-
tal results with VLSI placement benchmark test cases
indicate that the proposed scheme results in a robust

and truly general algorithm for combinatorial optimiza-
tion.
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