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Abstract

This paper presents a Fuzzy Simulated Evo-
lution (FSE) algorithm for VLSI standard
cell placement. This is a hard multiobjec-
tive combinatorial optimization problem with
no known exact and efficient algorithm that
can guarantee finding a solution of specific
or desirable quality. Approximation iterative
heuristics such as Simulated Evolution are
best suited to perform an intelligent search
of the solution space. Due to the imprecise
nature of design information at the place-
ment stage the various objectives and con-
straints are expressed in the fuzzy domain.
The search is made to evolve toward a vec-
tor of fuzzy goals. The proposed heuristic is
compared with genetic algorithm. FSE was
able to achieve better solutions than GA in a
fraction of the time.

1 INTRODUCTION

In VLSI design, the placement problem consists of
assigning modules to locations on the silicon surface
under numerous design constraints while trading-off
several objectives. The number of modules can be in
range of thousands. Even in its simplest form, place-
ment is a generalization of the quadratic assignment
problem [4].

Formally this problem can be stated as follows: Given
a set of modules M = {my,ma,---,m,}, and a set of
signals V' = {vy,vs,- -, v}, each module m; € M is
associated with a set of signals V,,,, where V,,, C V.
Also each signal v; € V is associated with a set of mod-
ules M, where M,, = {mjlv; € Vi, }. M,, is called a
signal net. Placement problem is to assign each mod-
ule m; € M to a unique location such that a given

cost function is optimized and constraints are satis-
fied. Objectives addressed in this work are the mini-
mization of wire-length, power dissipation, and circuit
delay. Layout area is considered as a constraint. These
are estimated as follows.

Estimation of Wire-length: The wire-length cost
can be computed by adding wire-length estimates for
all the nets in the circuit.

COStwire = Z lj (1)
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where [; is the wire-length associated with net v; and
M is the set of all cells in the circuit. This wire-length
is computed using Steiner tree approximation.

Estimation of Power: In CMOS circuits, over 90%
power dissipation is due to the switching activity [2, 1],
expressed as:
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where P; denotes the total power, Vpp is the sup-
ply voltage, S; is the switching activity at the output
node of cell i (module m;) which indicate the num-
ber of gate output transition per clock cycle, f is the
clock frequency. The node total capacitance is denoted
by C;, and 3 is a technology dependent constant. As-
suming that clocking frequency and power voltages are
fixed, total power dissipation of the circuit is a function
of C; and S; of the various gates in the logic circuit.
The capacitive load C; of a gate comprises input gate
capacitances of the cells driven by cell 7 and that of
interconnects capacitance at the cell output node, as
shown in the following equation:

Ci=Ci+ Y Y (3)
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where C]“‘.’ is the input capacitance for cell (or gate)
J, C represents the interconnect capacitance at the
output node of cell i and M; is the set of fanout cells
of cell 7.

In case of standard cell design, cell properties are fixed
for a particular library, hence we cannot reduce C}'? .
Further C] are related to the corresponding inter-
connect wire-lengths [;, hence cost due to the overall
power in VLSI circuits can be termed as:

Costpower = Z Sili (4)

iEM

Estimation of Delay: Let path 7 consist of nets
{v1, v, ..., v}, then its path delay T is expressed by
the following equation:

k
T =Y (CD; +1D;) (5)

where C'D; is the switching delay of the cell driving
net vi and ID; is the interconnect delay of net wi.
The overall circuit delay is equal to 1., where 7, is
the longest path in the layout (most critical path).

CD; is constant and only I D; depends on placement.
Using the RC delay model, this delay is estimated as:

where LF; is load factor of the driving block (inde-
pendent of layout), R} is the interconnect resistance
of net v;, and Cj is the load capacitance of cell ¢ given
in Equation 3. The cost function due to timing per-
formance can be expressed as:

COStdelay =T (7)

Layout Width: In our work layout width is consid-
ered as a constraint. The upper limit on the layout
width is defined in Equation 8:

Widthmes = (1 + a) x Widthop (8)

where Widthy,q, is the maximum allowable width of
the layout, Widthep: is the minimum possible layout
width obtained by adding the widths of all cells and
dividing it by the number of rows in the layout. The
parameter a denotes how wide the layout can be as
compared to the optimal one.

During placement most of the cost parameters can-
not, be precisely determined. For example, the exact
amount of wire-length and area of the layout can be
known only after the subsequent stage of design (rout-
ing). Also, the amount of power dissipated, or the

performance of the circuit, depends on the amount
of wire-length as well as the operation dynamics of
the circuit. For these reasons it is much easier for a
designer to describe desirable characteristics of place-
ment solutions in linguistic terms which is the basis of
fuzzy logic [7]. In this work the evaluation of the good-
ness values of individual modules in their current loca-
tions (a requirement of simulated evolution heuristic)
as well as the quality of the overall placement solution
are described using fuzzy rules.

2 SIMULATED EVOLUTION

Placement is a hard combinatorial optimization prob-
lem with no known exact and efficient optimization
algorithms that can find a solution of a given qual-
ity. Approximation iterative heuristics such as simu-
lated annealing, genetic algorithms, simulated evolu-
tion, tabu search, are robust search methods for this
category of problems [5].

Simulated Evolution (SE) is a general iterative heuris-
tic proposed by Ralph Kling [?]. It falls in the cate-
gory of algorithms which emphasize the behavioral link
between parents and offspring, or between reproduc-
tive populations, rather than the genetic link [?]. This
scheme combines iterative improvement and construc-
tive perturbation and saves itself from getting trapped
in local minima by following a stochastic perturbation
approach. It iteratively operates a sequence of evalu-
ation, selection and allocation steps on one solution.
The selection and allocation steps constitute a com-
pound move from current solution to another feasible
solution of the state space. SE proceeds as follows.
It starts with a randomly or constructively generated
valid initial solution. A solution is seen as a set of
movable elements (modules). Each element m; has an
associated goodness measure g; in the interval [0,1].
The main loop of the algorithm consists of three steps
(See Figure 1): evaluation, selection and alloca-
tion. These steps are carried out repetitively until
some stopping condition is satisfied. In the evalua-
tion step, the goodness of each element is estimated.
In the selection step, a subset of elements are se-
lected and removed from current solution. The lower
the goodness of a particular element, the higher is its
selection probability. A bias parameter B is used to
compensate for inaccuracies of the goodness measure.
Finally, the allocation step tries to assign the selected
elements to better locations. Other than these three
steps, some input parameters for the algorithm are set
in an earlier step known as initialization.



Algorithm Simulated_-Evolution(B, ®;nitial, StoppingCondition)
NOTATION

B= Bias Value.

®= Complete solution.

m;= Module 7.

gi= Goodness of m;.

ALLOCATE(m;,®;)=Function to allocate m; in partial solution ®;

Begin
Repeat

EVALUATION:
ForEach m; € ® evaluate g;;

/* Only elements that were affected by moves of previous */

/* iteration get their goodnesses recalculated*/
SELECTION:
ForEach m; € ® DO
begin
IF Random > Min(g; + B, 1)
THEN
begin
S=S U m;; Remove m; from ®
end
end
Sort the elements of S
ALLOCATION:
ForEach m; € S DO
begin
ALLOCATE(m;, ®;)
end
Until  Stopping Condition is satisfied
Return Best solution.
End (Simulated_Evolution)

Figure 1: Structure of the simulated evolution algo-
rithm.

3 FUZZY SIMULATED
EVOLUTION

In order to apply simulated evolution one has to de-
sign a suitable goodness measure, a cost function, and
an appropriate allocation operator. These three to-
gether have the most impact on the behavior of the
SE algorithm. Due to the multiobjective nature of
the placement problem, the goodness measure, cost
function, and the allocation operator should take into
consideration all objectives.

Balancing different objectives by weight functions is
difficult, or at best controversial. Fuzzy logic is a con-
venient vehicle for solving this problem. It allows to
map values of different criteria into linguistic values,
which characterize the level of satisfaction of the de-
signer with the numerical value of the objectives. All
these numerical values operate over values from the
interval [0,1] defined by the membership functions for
each objective. For placement, the designer seeks to
find solutions optimized with respect to wire-length,
delay, and power dissipation.

3.1 FUZZY GOODNESS EVALUATION

Following the generation of an initial solution, the
goodness of each cell in its current location is deter-
mined. A designated location of a cell is considered
good if it results in short wire-length for its nets, re-
duced delay, and reduced power. These conflicting re-
quirements can be conveniently expressed by the fol-
lowing fuzzy logic rule.

Rule R1: IF cell i is near its optimal wire-length
AND near its optimal power AND (near its op-
timal net delay OR Tar(7) is much smaller than
Tae) THEN it has a high goodness.

where T),q, is the delay of most critical path in the
current iteration and Ty,q. (%) is the delay of the longest
path traversing cell ¢ in the current iteration.

A fuzzy logic rule is an If~Then rule. The If part
(antecedent) is a fuzzy predicate defined in terms of
linguistic values and fuzzy operators (Intersection
and Union). The Then part is called the conse-
quent. In our case, the linguistic value used in the
consequent part identifies the fuzzy subset of good
locations for that particular cell. There are many
implementations of fuzzy union and fuzzy intersec-
tion operators. Fuzzy union operators are known as
s-norm operators while fuzzy intersection operators
are known as t-norm. Generally, s-norm is im-
plemented using max and t-norm as min function,
ie., paup(z) = max (pa(2), up(v)), and panp(z) =
min (pa(z), pp(z)). This is known as the min — max
logic initialy introduced by Zadeh [7]. For example,
according to the min-max logic the rule above evalu-
ates to the following:

,LL;’ (:L’) = min (/J’fw (:L’), :ufp (1‘), ma‘x(:ufnet (:L’), ,ufpath (Z’)))

where the superscript e is used here to represent eval-
uation, x represents the location of cell 4, u$(x) repre-
sents the membership in the fuzzy set of high goodness,
iy, () and pf, () represent the memberships in fuzzy
subsets of near optimal wire-length and low power as
compared to other cells; uf,.;(z) and pg,,.p, () are the
memberships in fuzzy sets of near optimal net delay as
compared to other cells and “T',q, (i) is much smaller
than Thyaz” .

However, formulation of multi-criteria decision func-
tions do not desire pure “anding” of t-norm nor the
pure “oring” of s-norm. The reason for this is the
complete lack of compensation of t-norm for any par-
tial fulfillment and complete submission of s-norm to
fulfillment of any criteria. Also the indifference to the



individual criteria of each of these two forms of opera-
tors led to the development of Ordered Weighted Aver-
aging (OWA) operators [6]. This operator falls in the
category of compensatory fuzzy operators and allows
easy adjustment of the degree of “anding” and “or-
ing” embedded in the aggregation. According to [6],
“orlike” and “andlike” OWA for two fuzzy sets A and
B are implemented as given in Equations 10 and 11
respectively.

pa|yp(®) = B xmax(ua, pp) + (1= F) x %(MAHLB

panp(@) = B xmin(ua, pp) + (1 F5) %(MA + 1B

B is a constant parameter in the range [0,1]. It rep-
resents the degree to which OWA operator resembles
the pure “or” or pure “and” respectively.

With the AND and OR fuzzy operators implemented
as OWA operators, rule R1 evaluates to the expression
below:

gi = i (r) = B° x min(pug, (), pi,(2), piq(w))
1
+(1 - p°) x 3 > () (12)
Jj=w,p,d
where

/'Lfd (.’E) = 62 X ma’w(ufnet (ZU), /’prath (CU))

(1= B5) X 5 (e () + (@) (13)

gi is the goodness of cell i. 3¢ and (5 are constants
between 0 and 1 to control OWA operators. Whereas
u$,(x) represents the membership in fuzzy set of good
timing performance, it is obtained after applying orlike
OWA to s, (7) and g, (7).

Hiparn () is included in the computation of ug,(z) be-
cause if a cell is not on the critical path then it must
have high goodness with respect to the delay objective.

If a cell ¢ drives the net v;, {v1, vz, ....., v } is the set of
nets connected to cell ¢ and v, is the net driven by the
predecessor cell of cell i on the longest path traversing
cell 4, then base values X, (), X;p(x), Xinet(x) for
fuzzy sets near optimal wire-length, power, net delay
and Xipqtn (z) for fuzzy set “TInax (i) much smaller than
Thax are computed as given in Equations 14-17,
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Figure 2: Membership functions used in fuzzy evalua-
tion.
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where [7 is the optimal wire-length of net v;, com-
puted by placing all the cells connected to v; next
to each other on the layout surface and then estimat-
ing the wire-length; the product S; x [; is related to
the switching power dissipated in net v;; I D} is the
optimal interconnect delay of net v;, ID;, and 1D},
are the actual and optimal interconnect delays of net
driven by the predecessor cell of cell i on the current
longest path traversing cell i. Membership functions
of these base values are shown in Figure 2.

The values of amin and amq, depend on the statistical
nature of the base values. A typical frequency of occu-
rance plot is shown in Figure 3, where we have plotted
XE,.(z) and XE(z) versus the number of cells having
these base values. It is clear from this figure that these
plots have nearly bell-shaped behavior. Therefore we
can say that around 95% cells have base values in the
range [X; — 20y, X; + 20;], where X; is the mean value
of X;(z) and o; is the standard deviation of X;(z) for
i = w,p,net. The values of a,,;, and aq, are there-
fore computed as:

Amin_i = Xl —20; and Gmaz_i = Xz + 20; (18)
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Figure 3: Base values vs frequency of occurance plot.

The values of a,;, and a4, are computed in the be-
ginning and then recomputed again when the size of
selection set is around 90 percent of the initial value.

3.2 SELECTION

In this stage of the algorithm some cells are selected
probabilistically depending on their goodness values.
Bias concept in selection step, present in the original
SE algorithm [3], is the major drawback of the heuris-
tic. It is not easy to select value of bias because it
varies from problem to problem. Also in the case of
placement it varies from circuit to circuit [?]. To over-
come this problem another selection scheme is pro-
posed. According to this scheme a random number is
generated in the range [0, M] and compared with g;. If
the generated random number is greater than g; then
the cell is selected for allocation. The value of M is
calculated as follows:

M =G + 20, (19)

where G and o, are the average goodness and stan-
dard deviation of goodness values of cells in current
iteration. Value of M is calculated in the beginning
and updated only once, when the size of selection set
is 90% of its initial size.

3.3 ALLOCATION

In allocation stage the selected cells are to be placed in
the best available locations. In our proposed scheme
we have considered selected cells as movable modules
and remaining cells as fixed modules. Selected cells are
sorted in descending order of their goodnesses with
respect to their partial connectivity with unselected
cells. Ties are broken with respect to their goodness
values. One cell from the sorted list is selected at a
time and its location is swapped with other movable
cells in the current solution. The swap that results in
the maximum gain is accepted and the cell is removed
from the selection set.

The goodness of the new location is characterized by
the following fuzzy rule:

Rule R2: IF a swap results in reduced overall wire-
length AND reduced overall power AND reduced
delay AND within acceptable layout width THEN
it gives good location.

The above rule is interpreted as follows.

uzq_pwd(l) = Ba X mzn(,ufp(l), uzqw(l)v /'Lzad(l))

- x s Y um @)

Jj=pw,d

pit (1) = man( pwian (D), 1 pwa() ) (21)

the superscript a is used here to represent allocation.
12 (1) is the membership of cell ¢ at location [ in the
fuzzy set of good location. uf ,,,(1) is the membership
in the fuzzy set of “reduced wire-length and reduced
power and reduced delay”. uf, (1), pg, (1), pi; (1), and
ws o (1) are the membership in the fuzzy sets of re-
duced wire-length, reduced power, reduced delay and
within acceptable width respectively.

Notice that the third AND operator in the above fuzzy
rule is implemented as a pure min because the width
constraint has to be always satisfied.

If a cell ¢ swaps its location with cell j then the base
values are computed as shown in Equations 22-25:

ki ) kj )
(Zm:l llm + Zm:l l]m)n (22)

Xi(l) = : :
(Eﬁ;:l lim + 22:1 ljm)n—l

i kj
(Efn:l Szmlzm + Zm:l S]ml,]m)n

X)) == ; (23)
! (8 Simlim + Yow—y Smbjm)n—1
ID; +1D; ID; +1D;)),
o,1) = LD+ IDip + 1D; 4 1Dyp) (24)
(IDZ' + IDip + ID]' + IDjp)n,l
Width,, (25)

i_width( ) = VWThOPt

where, subscript n and n — 1 show the iteration num-
bers, {vi1,Via, ..., Uik, } is the set of nets connected to
cell i, Width,, is the actual width at n" iteration.

Membership functions for these base values are shown
in Figure 4. The values of ay, ap, ag and ayian de-
pend upon priority on the optimization level of the
respective objective. Typical values for a,,, a, and aq
are in the range [0.75,0.95], whereas a@iqn is in the
range [0.2,0.5]. In our case we have set a,, = 0.75,
ap = 0.75, ag = 0.85 and ayiqen, = 0.25.



4 reduced wire-length 4 reduced power
1.0 1.0
l,l, a
a
w
My
a, 1.0 a, 1.0
a a
X, X,
A duced del A ’
reduced delay within acceptable width
1.0 1.0
a
M Hu
8y 1.0 1+,
a a
Xd X width

Figure 4: Membership functions used in allocation.

U Cvicth

1.0

1.0

> C/O, » Cuianl©
gw.dm

(b)

Figure 5: Membership functions within acceptable
range.

3.4 FUZZY COST MEASURE

In order to select the best solution found so far, it is re-
quired to develop some cost measure. In case of multi-
objective placement, the best placement is one which
results in lowest cost in terms of all objectives. How-
ever, such a solution most likely does not exist. Some
techniques to cope with this problem are mentioned in
[8]. All these techniques introduce some tradeoff be-
tween different objectives. In this work, a goal directed
search approach is adopted, where the best placement
is one that satisfies as much as possible a user specified
vector of fuzzy goals [?].

In order to combine three parameters and one con-
straint, following fuzzy rule is suggested.

Rule R3: IF a solution is within acceptable wire-
length AND acceptable power AND acceptable de-
lay AND within acceptable layout width THEN it
is an acceptable solution.

width

The above fuzzy rule translates to the following:

Hale) = B x min(u(a), uila), uf (x)) (26)
-5 x5 Y @
Jj=p,d,l
p@) = i) mn (@) (2D

where pf(x) is the membership of solution z in fuzzy
set, of acceptable solutions, ,u;dl(a:) is the membership
in fuzzy set of “acceptable power AND acceptable de-
lay AND acceptable wire-length”, whereas p§(z) for
j = p,d,l,width, are the individual membership values
in the fuzzy sets within acceptable wire-length, power,
delay, and layout width respectively. (¢ is the con-
stant in the range [0, 1], in our case we chose ¢ = 0.7,
the superscript ¢ represents “cost”. The solution that
results in maximum value of u°(x) is reported as the
best solution found by the search heuristic.

The membership functions for fuzzy sets within ac-
ceptable power, delay and wire-length are shown in
Figure 5(a), whereas the constraint within acceptable
layout width is given as a crisp set as shown in Fig-
ure 5(b).

Since layout width is a constraint, hence its member-
ship value is either 1 or 0 depending upon goal,iqtn (in
our case goalyiqen, = 1.25). However, for other objec-
tives by increasing and decreasing the value of goal; we
can vary its preference in overall membership function.
The lower bounds (O;s fori € {I,p,d, width}) are com-
puted as follows: O; = Y1 | 1,0, = 0, Sil7,Vv; €
{v1,v2, ..., Up }; Og = 2?21 CD;+ID; Vvjin path m;
and Oyatn = Width,pe; where k is the number of nets
in 7.

4 GA BASED OPTIMIZATION

For the comparison purpose we have also implemented
genetic algorithm (GA) [5]. Membership value in
the fuzzy set of acceptable solution given in Equa-
tion 27 is used as the fitness measure of a chromo-
some (solution). In parent selection step for crossover
roulette wheel selection scheme [5], is used. Par-
tially mapped crossover (PMX) is used to gener-
ate new offsprings. For the selection of next genera-
tion Extended Elitism Random Selection scheme
is used, where half of the chromosomes in the next
population are the best among offspring and current
population and half are selected randomly. A vari-
able mutation is used in the range [0.03,0.05] that
depends upon the standard deviation of fitness in the
current population. Stopping criteria is the maximum
number of generations.



5 EXPERIMENTS AND RESULTS

We have applied GA and FSE on eleven different
ISCAS-85 and ISCAS-89 benchmark circuits. In case
of FSE algorithm, execution is aborted when no im-
provement is observed in the best solution found so far
in 500 consecutive iterations. In case of GA stopping
criteria is 10,000 generations.

Table 1 compares the quality of final solution gener-
ated by FSE and GA. The circuits are listed in order
of their size (122-1753 modules). From the results, it
is clear that GA performs better than FSE for smaller
circuits, but for circuits with large number of cells FSE
outperforms GA. In all circuits it is observed that GA
takes considerably large amount of execution time as
compared to FSE.
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Figure 6: Comparison of FSE and GA. (a) and (c)
represent current and best fitness (membership) of the
solution obtained by FSE; (b) and (d) represent aver-
age and best solution obtained by GA, plotted versus
execution time in seconds.

To compare improvement in the quality of solution ver-
sus time, we have plotted current and best membership
values of the solution obtained by FSE versus actual
execution time in Figure 6-(a) and (c), for comparison
the average and best fitness (membership) values in a
current population obtained by GA versus execution
time are plotted in Figure 6-(b) and (d). These plots
are for test case S1196. It can be observed that qual-
ity of solution improves rapidly in FSE based search as
compared to GA. Due to lack of space plots for other
circuits are not included; however both heuristics ex-
hibited similar behavior on all circuits.
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Figure 7: Comparison of FSE and GA based on search
efforts in particular membership ranges; (a) and (b)
show number of solutions visited in particular mem-
bership ranges for FSE and GA respectively; (¢) and
(d) show cumulative number of solutions visited in a
specific membership range versus execution time in
seconds for FSE and GA respectively.

Figures 7(a) and (b) show the quality of solution sub-
space searched by FSE and GA. It is evident from the
figure that both heuristics concentrated in high fitness
subspaces which indicates that they were properly en-
gineered to solve this particular problem. The figure
also shows that FSE was able to evolve much faster
toward a better solution subspace (after few hundred
seconds). On the other hand GA required generations
in the order of thousands, where each generation con-
sisted of 32 solutions.

Figures 7(c) and (d) track with time the total number
of solutions found by FSE and GA for various member-
ship ranges. These are very informative plots as they
show, that as time progressed, the solutions found by
each heuristic were getting better. Note however that
FSE exhibited much faster evolutionary rate than GA.
For example, after about 400 seconds, almost all new
solutions discovered by FSE have a membership in the
interval 0.5-0.6 in the fuzzy subset of good solutions
with respect to all objectives, and almost none were
found with lower membership values (see Figure 7(c)).
In contrast, for GA, it is only after 10,000 seconds that
the first solution with membership in the interval 0.5-
0.6 was found (see Figure 7(d)). This behavior was
observed for all test cases.



Circuit GA FSE

L(um) [P (um) [D(s) [W(um)| T(s) |[Lpm)|[P@Em)|DIps)|Wwnm) | T()
S2081 2426 3883 113 142 2341 2693 462 112 152 13
5298 1062 838 130 171 2922 4989 1013 133 181 104
S386 6324 1665 193 181 3945 7083 1640 197 186 152
S832 21015 4787 | 395 232 7206 | 24705 5827 390 258 1643
S641 18320 4365 736 254 21082 | 13906 3321 702 296 618
S953 32031 5156 | 230 262 11221 | 32340 5242 245 262 1278
S1238 52670 | 15473 | 410 279 16208 | 39620 | 12377 371 310 1168
S1196 51804 | 15259 | 370 292 23070 | 42426 | 12745 364 325 1521
S1494 71021 | 17497 | 803 336 26032 | 56061 | 14071 719 360 3378
S148% 69702 | 17346 | 784 334 21434 | 57001 | 13837 710 358 3529
C3540 | 310996 | 109850 | 924 127 43232 | 164807 | 58055 734 507 18318

Table 1: Layout found by FSE and GA, “L”, “P” “D” and “W” represent the wire-length, power, delay, and

width costs and “T” represents execution time in seconds

6 CONCLUSION

In this paper, we have proposed an evolutionary algo-
rithm for low power high performance VLSI standard
cell placement. We have used FSE as search heuristic
and GA for comparison. Fuzzy logic is used to over-
come the multi-objective nature of the problem. In
FSE, fuzzy logic was implemented at evaluation and
allocation stages and to choose the best solution from
the set of solutions generated by FSE. In GA fuzzy
logic is used in the fitness evaluation.

It is observed that FSE performs much better than
GA in terms of execution time, it also performs better
than GA in terms of final solution in bigger circuits.
Also the quality of solution improved more rapidly in
FSE based search as compared to GA.
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