
In Proceedings of the 6th IASTED International Conference on Software Engineering and Applications (SEA’02), pp. 193-198, MIT,
Cambridge, MA, USA, Nov. 2002.

THE ADHERENCE OF OPEN SOURCE JAVA PROGRAMMERS TO
STANDARD CODING PRACTICES

Mahmoud O. Elish
Department of Computer Science

George Mason University
Fairfax VA 22030-4400 USA

melish@gmu.edu

Jeff Offutt†
Information and Software Engineering

George Mason University
Fairfax VA 22030-4400 USA

www.ise.gmu.edu/~ofut/
ofut@ise.gmu.edu

ABSTRACT
The use of agreed-upon coding practices is believed to
enhance program comprehension, which directly affects
reuse and maintainability. This paper describes a
controlled small-scale experiment that tries to determine
how well open source Java programmers adhere to a set
of well publicized coding practices. The experiment
evaluated 100 arbitrarily selected open source Java
classes from different programmers with respect to 16
standard coding practices. The results of this experiment
indicate that open source Java programmers do not
always adhere to standard coding practices. It was found
that only 4% of the subject classes have no violations to
any of the 16 standard coding practices and there were
only 5 of 16 coding practices that all subjects followed. It
was also found that there are positive correlations
between the number of violations found in a class and its
lines-of-code, number of methods, and number of
attributes.

KEY WORDS
Coding practices, experiment, Java classes, open source
software, software quality.

1. INTRODUCTION

The availability and use of open source software has
increased recently as they give users the freedom to run,
distribute, study, change and improve them [1]. However,
these open source software applications cannot be useful
unless they are of high quality and are perceived to be of
high quality. An important indicator of software quality is
that of standard coding practices. Whether programmers
adhere to coding standards is optional in the sense that
programs that violate the standards can still be
syntactically and functionally correct. Despite this,
adherence to standard coding practices is considered to be
essential to ensure readable and understandable software,

† Partially supported by the U.S. National Science Foundation
under grant CCR-00-97056.

and thus more likely to be easy to maintain and reuse [2,
3, 4]. As one coding standards author said: “In order to
write great software, you have to write software greatly”
[5].

In this study, a controlled small-scale experiment was
conducted to determine how well Java programmers who
develop software with the open source model adhere to
standard coding practices. One hundred arbitrarily
selected open source Java classes were evaluated with
respect to sixteen standard coding practices. This paper
reports on the experiment and its results.

The next section describes the standard coding
practices that were used in this experiment. Section 3
states the hypothesis and the corresponding research
questions. The experimental design, including its
subjects, measurements, and data analysis are presented
in Section 4. A discussion and several directions for
future work are given in Section 5.

2. STANDARD CODING PRACTICES

One of the difficulties with measuring adherence to
standard coding practices is that there are many styles in
use. In fact, most software engineers would agree that
adhering to some style is the most important step; the
particular style followed is often secondary. This makes
measuring adherence to programming standards a
potentially expensive task. Fortunately, a number of
standard coding practices for the Java programming
language have been developed and are fairly widely used
by the Java development community [2, 3, 4]. This
experiment uses sixteen standard coding practices that
satisfy two criteria: (1) they are widely used, and (2) they
can be measured by automated tools. In particular, we
were able to automatically collect data using the two Java
analysis tools JStyle and RSM [6, 7]. The sixteen
practices are grouped into four categories: naming
conventions (N), formatting (F), control structure use (C),
and visibility (V). The following subsections define these
sixteen coding practices, in some cases with rationales.

2.1. Naming Conventions

Naming conventions provide guidance for how to
choose names for Java’s classes, attributes, methods,
constant, and interfaces. The intent is that the category of
the name should be apparent from the spelling or
punctuation of the name.

• N1 – Class names should be in mixed case
starting with uppercase, and with the first letter
of each internal word capitalized [3, 6].

• N2 – Attribute names should be in mixed case
starting with lowercase, and with the first letter
of each internal word capitalized [3, 4, 6].

• N3 – Method names should be in mixed case
starting with lowercase, and with the first letter
of each internal word capitalized [3, 4, 6].

• N4 – Constant (final attribute) names should be
all uppercase using underscore to separate words
[3, 4, 6].

• N5 – Method names should be different from the
class name in which they are defined [6].
Rationale: Since a method has a return type, it
will not be treated as a constructor. Therefore, it
should be named differently to avoid confusion.

2.2. Formatting

This experiment considers the following standard
coding practices associated with file formatting and
organization.

• F1 – Line length should not exceed 80 characters
[3, 4, 7]. Rationale: Lines with more than 80
characters length may not be handled well by
many terminals and tools, thus resulting in line
truncation, horizontal scrolling, and wrapping,
both of which make the code difficult to read.

• F2 – TAB characters should be avoided [4, 7].
Rationale: Using TAB characters within source
code may result in a file that is print or display
device dependent.

2.3. Control Structure Use

This experiment examines the following standard
coding practices related to control structure use.

• C1 – The ‘switch’ statement should have a
‘default’ condition [7]. Rationale: Having a
‘default’ condition in a ‘switch’ statement makes
it deterministic.

• C2 – The keyword ‘break’ should not be used
outside a ‘switch’ block [4, 7]. Rationale: Using
the ‘break’ statement outside a ‘switch’ block
disrupts the linear flow of logic in a program.

• C3 – The ‘continue’ statement should be avoided
[4, 7]. Rationale: Using the ‘continue’ statement
breaks the linear flow of logic in a program.

• C4 – Assignments should be avoided in ‘while’,
‘do … while’, ‘for’, and ‘if’ logical conditions
[6, 7]. Rationale: Using ‘=’ instead of ‘==’ is
likely to be a typo. If not, it should be avoided as
it makes the code difficult to understand.

2.4. Visibility

This experiment focuses on the following standard
coding practices associated with the visibility of class
data members.

• V1 – Class attributes should not be declared
public [3, 4, 6, 7]. Rationale: Public attributes
break data encapsulation and information hiding
concepts.

• V2 – The constructor in a nonpublic class should
not be public [6]. Rationale: A nonpublic class
cannot be instantiated outside the package in
which it is defined, and hence there is no need
for a public constructor for such a class.

• V3 – A public class should have at least one
public member or protected constructor [6].
Rationale: A class cannot be used outside the
package unless it has public constructor(s)
and/or public member(s).

• V4 – Each local variable in a method should be
used at least once [6]. Rationale: Unused local
variables in a method reduce the cohesiveness of
the method.

• V5 – Each parameter in a method should be used
at least once [6]. Rationale: Unused parameters
in a method reduce the cohesiveness of the
method.

3. HYPOTHESIS AND RESEARCH
 QUESTIONS

The hypothesis of this study is that open source Java
software classes do not always conform to all standard
coding practices described above. In other words, there
are violations of some of the above coding practices in a
high percentage of Java classes. Given this hypothesis,
the following four research questions are investigated:

(1) Is there a correlation between class size,
measured by Lines-Of-Code (LOC), and the
number of violations found in that class?

(2) Is there a correlation between the number of
methods (NOM) defined in a class and the
number of violations found in that class?

(3) Is there a correlation between the number of
class attributes (NOA) and the number of
violations found in that class?

(4) Is there a correlation between the comment
density of a class (i.e. number of comment lines /
total number of lines) and the number of
violations found in that class?

4. THE EXPERIMENT

A controlled small-scale experiment was conducted
to determine how well open source Java classes conform
to the standard coding practices defined in Section 2. The
details of this experiment are discussed in the following
subsections.

4.1. Subjects

The subjects of this experiment are 100 arbitrarily
selected open source Java classes that were collected from
different open source web sites [8, 9, 10, 11]. Two factors
that could affect the results of this experiment are the
author of the classes and the size of the programs. The
program author could affect the results because it is
probably that individual programmers would use the same
coding style in all of their classes. This variable was
controlled by classes that were all written by different
programmers. The sizes of the program that the classes
appear in have a lesser impact. In OO software, each class
is relatively independent and the heavy reliance on reuse
dictates that the program size may vary anyway. This
variable was controlled by focusing on individual classes,
irrespective of program. At the class level, it is likely that
the sizes of classes in terms of LOC, NOM, and NOA
may vary significantly and impact the adherence to

standard coding practices, thus this was used as an
experimental variable and we measure correlations
between standards violations and class size.

4.2. Measurements and Data Analysis

Two tools were used to analyze the collected Java
classes: JStyle version 4.6 [6], and RSM (Resource
Standard Metrics) version 6.03 [7]. Both tools have free
demo versions and are available online. Table 1
summarizes the basic descriptive statistics for the 100
classes. The number of violations is the total number of
distinct violations of the 16 standard coding practices
found in a class. As indicated in Table 1, the mean
number of violations found per class is 2.6. The number
of violations found per class varies from 0 to 8, with
median and mode values of 3.

Figure 1 illustrates a histogram that shows the
number of classes that violates each one of the 16
standard coding practices described in Section 2. As
shown in this histogram, all subject classes follow the
coding standards N1, N5, C1, V2, and V3, and all other
standards were violated at least once. That is, only 5 out
of the 16 standard coding practices are followed by all
subjects.

4.3. Discussion

There are several aspects of these data that warrant
further examination, particularly for the practices that
were violated the most often. The violations of the
naming practices can be misleading. Although there is
fairly wide agreement among Java programmers, naming
practices are somewhat arbitrary, and it is more important
that a programmer follow some practice than he or she
follow a specific practice. It is entirely possible that some
of the reported violations were actually cases in which the
programmer simply followed a different practice.
Unfortunately, it is impossible to check for a variety of
unknown practices, thus we accept these data with the
caveat that adherence to naming standards might in fact
be better than it appears.

Table 1. Descriptive statistics for the 100 classes
LOC NOM NOA Comment Density No. of Violations

Mean 269.8 10.0 20.9 15.2% 2.6
Standard Dev. 323.2 7.1 18.6 12.2% 1.4
Mode 107.0 8.0 3.0 0.0% 3.0
Minimum 18.0 1.0 0.0 0.0% 0.0
1st Quartile 108.8 6.0 8.0 6.9% 1.8
Median 179.0 8.0 18.0 12.3% 3.0
3rd Quartile 280.5 12.0 25.5 21.3% 3.0
Maximum 1880.0 50.0 109.0 72.4% 8.0

28
18

3

67

4
11 15

63

18
24

5

0

20

40

60

80

100

N
1

N
2

N
3

N
4

N
5 F1 F2 C
1

C
2

C
3

C
4

V1 V2 V3 V4 V5

Violation Type

N
o.

 o
f C

la
ss

es

Figure 1. Violation type vs. number of classes

More disturbing is the fact that two formatting
practices are violated by most (over 60%) of the subject
classes. This indicates that the programmers of these
classes do not pay much attention to F1 and F2 coding
practices. We have several potential explanations for
these data. One might be that programmers simply do not
pay much attention to formatting, perhaps because it is
less visible to the naked eye. Another explanation might
reflect a limitation of the editing tools; by default, vi
inserts tabs automatically in text, and most mouse-based
editors completely screen the programmers from tabs and
line-wrapping. On the other hand, reuse and the open
source software development model dictates that different
developers will use different editors and software
development environments. Over time, violations of these
standards will lead to confusion and faults in the
software.

A detailed examination of the C2 practice violations
reveals that some programmers use the “break” statement
to force an early exit from a loop, and others to
implement a loop with a condition to exit in the middle of
the loop body. Although indiscriminate use of the “break”
statement is certainly undesirable, many experienced
programmers would agree that these uses of the “break”
statement are acceptable. It is very hard to distinguish
between “acceptable” violations of C2 and
“unacceptable” violations.

 The number of violations of the visibility practices
surprised us. V1 prohibits public class attributes, and
while there are certainly times when it is necessary, the
fact that 15% of the Java classes we looked at used public
class attributes is disturbing. It is quite possible that this
documents a significant problem with open source
software. This is particularly true when added to a recent

result by Schach, Offutt et al. [12], which found that the
open source Linux kernel exhibits so much common
coupling (public class attributes) that it could become un-
maintainable in the future.

The violations of V4 and V5 might not be such a
cause for alarm. Open source programs are frequently
works in progress and many methods may contain
variables and parameters that were introduced as
placeholders for expected future use and thus not
currently being used. On the other hand, unused variables
and parameters may also be a result of careless
programming or poor use of inheritance. We know of no
automated way to distinguish these cases.

Table 2 provides the percentage of classes that
completely followed all practices in each of the four
standard coding practice categories considered by this
experiment. On the positive side, over 50% of the subject
classes follow the naming conventions, control structure
use, and visibility standards. On the negative side, the
category that was violated the most is formatting, where
only 12% of the subject classes follow both F1 and F2
coding practices. This indicates potential for a long-term
problem.

Table 2. Percentage of classes that follow each coding

practice category
Coding practice

category
% of classes that follow

this category
Naming conventions (N) 60%
Formatting (F) 12%
Control structure use (C) 72%
Visibility (V) 63%

4

21 23

34

8 7
2 1

0

10

20

30

40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

No. of Violations

N
o.

 o
f C

la
ss

es

Figure 2. Number of violations vs. number of classes

The histogram in Figure 2 plots the classes that have
the same number of violations. Only 4% of the subject
classes have no violations, that is, follow all the 16
standard coding practices, which is disturbing. On the
other hand, the distribution in Figure 2 peaks early, with
90% of the subject classes having at most four violations.

4.4. Effect of Class Size on Violations

A related question that we had is whether the class
size would have an impact on the number of coding
standards violations. Correlation analyses were performed
to test for correlations between the numbers of violations
found in classes and their sizes in terms of LOC, NOM,
NOA, and comment density. At the 0.05 level of
significance (95% confidence level), the correlation
analyses concluded that there do exist positive
correlations between the number of violations found in a
class and its LOC, NOM, and NOA. However, it was
found that there is no correlation between the number of
violations found in a class and its comment density.
Figures 3, 4, 5, and 6 show the scatter plots with lines of
regression of the number of violations found versus LOC,
NOM, NOA, and comment density.

These figures indicate that as the number of lines,
methods, and attributes increase, the number of coding
standards violations also increase. It is encouraging that
the increases in violations are linear with the increases in
size, that is, the frequency of violations does not change.

4.5. Summary of Results

The primary results and observations of this
experiment can be summarized as follows.

• The mean number of violations found per class
is 2.6.

• The number of violations found per class varies
from 0 to 8.

• All subject classes follow N1, N5, C1, V2, and
V3 coding practices, that is, only 5 out of the 16
standard coding practices are followed by all
subjects.

• 60% of the subjects follow naming convention
practices; 12% follow formatting practices; 72%
follow control structure use practices; and 63%
follow visibility practices

• Only 4% of the subject classes have no
violations, i.e. follow all the 16 standard coding
practices.

• 90% of the subject classes have at most 4
violations.

• There are positive correlations between LOC,
NOM, and NOA of a class and the number of
violations found in that class.

• There is no correlation between the comment
density of a class and the number of violations
found in that class.

5. CONCLUSIONS

This paper has described an experiment conducted to
assess the quality of open source Java programmers in
terms of their adherence to 16 standard coding practices.
Based on the experimental results, the hypothesis was
accepted, that is open source Java software does not
always conform to the 16 standard coding practices
examined by this experiment.

y = 73.045x + 82.796
R2 = 0.1046

0

500

1000

1500

2000

0 2 4 6 8

No. of Violations

LO
C

 Figure 3. Scatter plot of number of violations vs. LOC

 Figure 5. Scatter plot of number of violations vs. NOA

y = 1.5286x + 6.1267
R2 = 0.0957

0

20

40

60

0 2 4 6 8

No. of Violations

N
O

M

 Figure 4. Scatter plot of number of violations vs. NOM

y = -0.0006x + 0.1531
R2 = 5E-05

0%

20%

40%

60%

80%

0 2 4 6 8

No. of Violations

C
om

m
en

t D
en

si
ty

 Figure 6. Scatter plot of number of violations vs. comment
density

However, the data give many reasons to be positive.
Many of the violations are on standard coding practices
that are in some sense arbitrary (the naming standards).
Also, the fact that 90% of the classes violate at most four
of the standard practices is a positive sign. The most
troubling of the standards violations are the formatting
(F1 and F2) and the use of public attributes (V1). These
can potentially lead to severe problems, especially when
we consider that open source software needs to be easily
read and understand by programmers at different
organizations who use different tools.

This study evaluated single Java classes with
approximately 270 LOC on average. An interesting
question that remains is how open source software
compares to closed source software. Answering such a
question would be complicated because it seems likely
that there would be wide variance across development
organizations.

REFERENCES

[1] W. Harrison, Editorial: Open Source and Empirical
Software Engineering, Empirical Software Engineering
Journal, 6, 2001, 193-194.

[2] S. Ambler, Writing Robust Java Code: The AmbySoft
Inc. Coding Standards for Java, Jan. 2000. Online at
http://www.AmbySoft.com/javaCodingStandards.pdf

[3] Sun Microsystems, Code Conventions for the Java
Programming Language, Revised Apr. 1999. Online at
http://java.sun.com/docs/codeconv/html/CodeConvTOC.
doc.html

[4] Geotechnical Software Services, Java Programming
Style Guidelines, Version 3.0, Jan. 2002. Online at
http://www.geosoft.no/javastyle.html

[5] C. Badeaux, Netscape’s Software Coding Standards
Guide for Java, Online at
http://developer.netscape.com/docs/technote/java/codest
yle.html

[6] Man Machine Systems: JStyle. Online at
http://www.mmsindia.com/jstyle.html

[7] Resource Standard Metrics. Online at
http://m2tech.net/rsm/

[8] Code Beach – Free and Open Source Code and
Tutorials. Online at http://www.codebeach.com/

[9] Free Code. Online at http://www.freecode.com/index/

[10] Java Boutique. Online at
http://www.javaboutique.internet.com/javasource/

[11] Java’s Programmer Source Book. Online at
http://www.codeguru.com/java/

[12] S. R. Schach, B. Jin, D. Wright, G. Heller and J. Offutt,
Maintainability of the Linux Kernel, IEE Proceedings
Journal: Special Issue on Open Source Software
Engineering, 2002 (to appear).

y = 5.0871x + 7.8371
R2 = 0.1537

0

30

60

90

120

0 2 4 6 8

No. of Violations

N
O

A

