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W (z) is determined using the estimate of B(z) obtained in the pre-
vious iteration as described in Section III-B. The estimate of the
coefficients of B(z) always converged after 6 iterations. Table III
gives the simulation results as prefilter order g is varied. Generally,
the best performance is achieved for a value of ¢ somewhere in the
interval N/2 < p + q < 3N/4. This is not unlike SVD methods
[83, [9]. Simulations for different SNR values but with ¢ fixed at
13 are tabulated in Table IV. The estimates of the frequencies are
appreciably worse than the CR bound (threshold) when SNR is less
than 7 dB. We note that the estimation accuracy is identical to that
of SVD method [8], [9]. In fact, the threshold SNR is also identical
to that of SVD method [8], [9], for this example, i.e., 7 dB. Fur-
ther results are available in [3].

VI. CONCLUSIONS

In this correspondence we have shown how FIR prefiltering can
provide an effective and simple means of improving the perfor-
mance of Prony’s method. However, any prefiltering should be such
that it does not violate the basic property of Prony’s method. This
can be ensured by restricting the transient effects of the prefilter
from lingering too long. We have described two prefiltering
schemes. In the first method the prefilter is synthesized by using
prior information regarding the approximate regions in the fre-
quency domain where the signals are known to lie. For the second
method no prior knowledge is necessary. The prefilter is computed
from the data samples themselves.

The simulation results given in Section VI show that the perfor-
mance of methods 1 and 2 are equal to or better than (if prior
knowledge is used) those predicted by the CR bounds. The itera-
tions of method 2 converged in all the trials we have attempted.
But proof of convergence is not provided.
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A New Technique for Velocity Estimation of Large
Moving Objects

Sabri A. Mahmoud

Abstract—A new technique for motion estimation of large moving ob-
jects is pr d. This techni is based on analyzing the Hartley
transform spectrum of the image sequence directly, instead of using it
to compute other transforms. This method is faster than other tech-
niques based on the Fourier transform.

I. INTRODUCTION

The estimation of velocity of large moving objects is needed in
many applications, such as biomedical cell motion analysis, track-
ing dust storms and clouds, and in industrial and military applica-
tions. Some researchers [1]-[5] used spatiotemporal-frequency
techniques in motion analysis employing the fast Fourier transform
(FFT) in their algorithms. This correspondence presents a new ap-
proach based on the analysis of the fast Hartley transform (FHT)
of the image sequence for motion estimation. Researchers [6]-[8]
have shown that computing the Fourier, cosine, and sine trans-
forms from the FHT is faster than computing it from their fast
transforms. Hence, the direct application of the FHT is faster than
other transforms, even when computed from the FHT. The pre-
sented modification to the algorithm of [4] allows it to run faster
while giving the same accuracy and results, with the additional
advantage of validating the results.

In this technique, the FHT is applied to the image sequence fol-
lowed by a peak detection procedure. The location of the peak is
related to the velocity of the moving object. Dividing the temporal
frequency f, corresponding to the detected peak by the correspond-
ing spatial frequency k, gives the velocity of the moving object.
The Fourier spectrum for a spatial frequency of k, is then com-
puted. This is followed by a peak detection of the Fourier spectrum
to validate the previous results and find the direction of the velocity
of the moving object.

The organization of the paper is as follows. The analytical model
and formulations for a large moving object in a time sequence are
presented in Section II. Section III covers an algorithm for motion
estimation, and Section IV presents the simulation results. Finally,
concluding remarks are given in Section V.

II. ANALYTICAL FORMULATION

The analytical formulation will be presented for the one-dimen-
sional time sequence. Reference may be made to [4] for the details
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of transforming a two-dimensional image sequence to two one-di-
mensional sequences.

A model for a large moving object in one-dimensional time se-
quence is given by

ofn ml = % A8l L, — m¥)] ),

where n, m are the pixel coordinates at data point n and frame m;
A;, L;, V;, r are the subobject amplitudes, initial position (from the
first data point of the first frame), the time frames at which the
subobjects enter the sequence, the velocity of the moving object,
and the size of the moving object in pixels, respectively; with 5[ ]
as the dirac-delta function.

In the above model, the large moving object is treated as a num-
ber of one-pixel objects that are adjacent and moving with the same
velocity (i.e., V; =V i,j=1,r,andi # j).

The discrete Hartley transform (DHT) of (1) is given by

Z_lo Ad[n — L, — mV}]

- cas [27fin/N] cas [2wkn /N ]

where N is the number of pixels and frames in the image, and

(2)

cas ¢ = cos ¢ + sin ¢.

Assume that subobject i appears in the sequence in M; frames
(i.e., from frame m; tom; + M; — 1). Let

kV,=f thenV,=f/k (3)

Substituting (3) in (2), applying the limits, and summing with re-
spect to n, we have

i=r m=mi+M~\
H[k f1= El m§'m %A,{exp (j2m[m(f, — f) + kL]/N)

+ exp (—j2x[m(f — f) + kL]/N)
+ < [exp (j22[m( + ) + KL/N)

—exp (—j2x[m(f + f) + kLi]/N)]}‘

Summing with respect to m and combining terms, we have

s sinc (fi = f)M,/N
Hlk, f]= 2% Mf"f{ sinc (f; = f)/N

. cos(r[kLi + (fi=f)][2m + (M; - 1)/N])

sinc (f, + f)M;/N

sinc ( f; +f)/N sin (7r[kLl, + (fz +f)]

(4)

The peaks of (4) are at frequencies + f;. The velocity of the mov-
ing object is related to f; by (3).

A simple peak detection algorithm is used to detect the peaks in
the Hartley domain. The temporal frequency corresponding to the
detected peak is found. The velocity of the moving object is ob-
tained by dividing the temporal frequency f, by the respective spa-
tial frequency k,.

The algorithm proposed in this note is faster than other tech-
niques based on other transforms (viz., Fourier, cosine, and sine
transforms). However, it has one limitation—the direction of the
velocity is not unique. One way to overcome this problem is to
estimate the direction of motion by [4]. A faster implementation of

- [2m; + (M, ~ 1)/N])}

[4] is done by computing the Fourier spectrum for the spatial fre-
quency k, found above instead of computing the whole Fourier
spectrum. A peak is detected in the Fourier spectrum. The location
of the peak gives the direction (i.e., if the peak is located in the
negative frequency range then the velocity is positive, otherwise it
is negative). This modification makes the proposed algorithm faster
than other algorithms even in applications where the direction of
velocity is unknown.

III. ALGORITHM FOR MOTION ESTIMATION

The algorithm for motion estimation using the presented tech-
nique described in Section II is as follows.

1) Apply the Hartley transform to the time sequence in order to
obtain H[k, f].

2) Set the selected spatial frequency to ;.

3) Detect a peak in the Hartley spectrum for a spatial frequency
of K, (i.e., in H[k,, f]) and get the corresponding temporal fre-
quency, f,. The velocity of the moving object is given by v, =
ol ks
g 4) Compute the Fourier spectrum from H[£, f ] for a spatial fre-
quency, k, (i.e., compute Fk, f1).

5) Detect a peak in F[k;, f ] and get the corresponding temporal
frequency f;,. The velocity of the moving object is given by V; =
f»/ks and is opposite to the sign off;,.

6) Compare V, with V;, if not equal, then increment &, and go
to step 3, else done.

IV. SIMULATIONS

The simulations were carried out on an IBM PS/2 model 80 com-
puter using Turbo C. The graphs were produced using Surfer Ac-
cess System software of Golden Software Inc.

Fig. 1(a) shows a sequence with a large moving object. The
Hartley transform is applied to the time-sequence of Fig. 1(a). Fig.
1(b) shows the Hartley spectrum of the sequence. It is clear from
the figure that there are different peaks at the different values of the
spatial frequency k as expected from the mathematical formula-
tions. Fig. 1(c) shows the Fourier spectrum for the same sequence.
It is clear from Figs. 1(b) and (c) that the peaks in the Fourier
spectrum correspond to negative temporal frequencies while the
peaks in the Hartley spectrum corrrespond to both positive and neg-
ative temporal frequencies as expected from [4, eqs. (4) and (5)].
Fig. 1(d) shows the spectrum at a spatial frequency of 2. The de-
tected peak is at a temporal frequency of —4. Hence, the velocity
of the moving object is 4 /2 = 2 pixels per frame (PPF). The Fou-
rier spectrum at a spatial frequency of 2 is computed. Since the
peak in this spectrum is in the negative temporal frequency range,
the moving object’s velocity is positive (i.e., 2 PPF from left to
right).

V. CONCLUSIONS

We have described a simple and computationally efficient algo-
rithm for motion detection of large moving objects. The technique
is faster than other motion detection methods even when computed
from the FHT. However, it has one limitation. Although it esti-
mates the amplitude of the velocity correctly, the direction is not
unique. In some applications the direction is known. However, on
those applications, when the direction is not known, the suggested
modification to technique [4] can be used. The applicability of this
technique has been demonstrated by a new mathematical formula-
tion and simulation results obtained on the IBM PS/2.
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Fig. 1. (a) A sequence of large moving objects. (b) The Hartley spectrum of the time sequence. (c) The Fourier spectrum of
the time sequence. (d) The Hartley spectrum at a spatial frequency of 2.
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Toeplitz Determinants and Positive Semidefiniteness

John Makhoul

Abstract—We explore the role that the determinants of real, sym-
metric, Toeplitz matrices play in testing for their positive semidefinite-
ness. We show that the ““leading principal minor’’ test used to test for
positive definiteness is not sufficient in general to test for positive
semidefiniteness of Toeplitz matrices, except in certain cases. We de-
rive several properties and show in which cases the leading principal
minor test is indeed sufficient. We then present a simple method for
testing the positive semidefiniteness of all symmetric Toeplitz matrices.

1. INTRODUCTION

It is well known that the eigenvalues of a positive definite (ab-
breviated p.d.) matrix are all positive and those of a positive
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