
A Randomized Algorithm for Multiselection

M. H. Alsuwaiyel
Department of Information and Computer Science

King Fahd University of Petroleum & Minerals
Dhahran 31261, Saudi Arabia
e-mail: suwaiyel@kfupm.edu.sa

Abstract

Given a set S of n elements drawn from a linearly ordered set, and a set K = {k1, k2, . . . , kr}
of positive integers between 1 and n, the multiselection problem is to select the kith smallest
element for all values of i, 1 ≤ i ≤ r. We present an optimally efficient randomized algorithm
to solve this problem in time O(n log r) with probability 1−O(n−1).

Keywords: Randomized algorithms, Selection, Mmultiselection, Quickselect, Quicksort.

1 Introduction

Let S be a set of n elements drawn from a linearly ordered set, and let K = {k1, k2, . . . , kr}
be a sorted list of positive integers between 1 and n, that is a set of ranks. The multiselection
problem is to select the kith smallest element for all values of i, 1 ≤ i ≤ r. If r = 1, then we have
the classical selection problem. On the other hand, if r = n, then the problem is tantamount to
the problem of sorting.

It appears that finding efficient algorithms for the multiselection problem did not receive as
much attention in the sequential environment as in the parallel invironment. The classical and
simple sequential algorithm in [?] remains the only one, and based on which several parallel
algorithms were developed. It seems that the first parallelization of the multiselection problem
was that of Shen [?], in which he presented an optimal parallel algorithm that runs in time
O(nε log r) on the EREW PRAM with n1−ε processors, 0 < ε < 1. In the sepecial case, when
ε = log(log n log∗ n)/ log n, his algorithm runs in time O(log n log∗ n log r). He presented a general
framework, which is basically a parallelization of an optimal sequential algorithm that first finds
the element x with rank kr/2, partitions S into two groups: those elements smaller than x and
those greater than x, which induces two subproblems that are solved by applying the algorithm
recursively. Another algorithm with the same running time and number of processors can be
found in [?]. This algorithm is a result of a simple modification of the parallel quicksort

algorithm in [?]. In [?], an optimally efficient parallel algorithm was presented. It runs in
time O (((n/p) + ts(p))(lg r + lg(n/p))) on the EREW PRAM with p processors, r ≤ p < n,

where ts(p) is the time needed to sort p elements using p processors. This algorithm implies an
efficient parallelization of quicksort with multiple number of pivots on an EREW PRAM with p

processors. More on the work of Shen on parallel algorithms for the multiselection problem on
interconnection networks (e.g. the hypercube, the mesh and multidimesnsional meshes) can be
found in [?, ?, ?, ?].

In this work we attempt to switch to the sequential environment and exhibit not only an efficient,
but also a fast and practical randomized algorithm that is so simple to describe and analyze.
Moreover, the idea behind it is intuitive and its analysis is fairly simple.

2 Deterministic multiselection

The algorithm in [?], which we will refer to as multiselect, is straightforward. Find the dk/2eth
smallest element a, partition the input sets S into two sets S1 and S2 of elements, respectively,
smaller and larger than a and make two recursive calls: one with S1 and {k1, k2, . . . , dk/2e − 1}
and another with S2 and {dk/2e + 1, dk/2e + 2, . . . , kr}. A less informal description of the
algorithm is shown in Fig. ??. In Step 2, select is a deterministic Θ(n) time algorithm for

Algorithm multiselect (S, K)

1. If |K| > 0 do Step 2 to 6.

2. Set k = kdr/2e. Use Algorithm select to find s, the kth smallest element in S. Output s.

3. By comparing s with the elements in S, determine the two sets S1 and S2 of elements ≤ s
and > s, respectively.

4. Let K1 = {k1, k2, . . . , kdr/2e−1}, K2 = {kdr/2e+1, kdr/2e+2, . . . , kr}.

5. Recursively call multiselect on (S1,K1).

6. Recursively call multiselect on (S2,K2).

Figure 1: The classical sequential multiselection algorithm.

selection. Obviously, the algorithm solves the multiselection problem in time Θ(n log r), as the
recursion depth is log r and the work done in each level of the recursion tree is Θ(n). As to
the lower bound for multiselection, suppose that it is o(n log r). Then, by letting r = n, we
would be able to sort n elements in o(n log n) time, contradicting the Ω(n log n) lower bound for
comparison-based sorting on the decision tree model of computation. This lower bound has been
previously established in[?]. It follows that the multiselection problem is Ω(n log r), and hence
the algorithm given above is optimal.

It appears that the deterministic multiselection algorithm above, as well as any other deter-
ministic algorithm, are typical of the well-known classical selection algorithm of Blum et al [?].
Algorithm multiselect is impractical, especially for small and moderate values of n. This

2

impracticality is inherited, and indeed compounded, by the classical sequential multiselection
algorithm. To see this, consider the case when K = {1, 2, 3}. The algorithm first calls Algorithm
select with the input set S to find the 2nd smallest element. In a subsequent call to Algorithm
select, n − 2 elements will be reprocessed to find the 3rd smallest element. In general, it can
be shown by referring to the recursion tree that if K = {1, 2, . . . , r}, then the algorithm will call
Algorithm select O(log log r) times with at least n− r − 1 elements.

Hoare’s find algorithm[?], which is also referred to in the literature as Algorithm quickselect,
is a very popular deterministic selection algorithm due to its simplicity and good average per-
formance in spite of its O(n2) worst case behavior. It seems that this algorithm is the best
candidate to be used in conjunction with Algorithm multiselect.

An obvious alternative for improving the efficiency of the algorithm is to resort to randomization.
A straighforward approach is to use a randomized version of Algorithm quickselect as a
replacement of Algorithm select in Step 2. However, the crucial issue of ranks being clustered
in one or more regions, especially at the two extremes, as exemplified above remains to be
resolved. If, for instance, the ranks are clustered at the beginning, e.g. K = {1, 2, . . . , r}, it
would be desirable to get rid of as many unwanted large elements as possible.

3 The algorithm

In this section, we propose a simple and efficient algorithm which is tailor-made for the problem
of multiselection. Randomized quicksort is a very powerful algorithm, and as it turns out,
a slight modification of the algorithm solves the multiselection problem efficiently. The idea is
so simple and straightforward. Call the elements sought by the multiselection problem targets.
For example if j ∈ K, then the jth smallest element in S is a target. Pick an element s ∈ S

uniformly at random, and partition the elements in S around s into small and large elements.
If both small and large elements contain targets, let quicksort continue normally. Otherwise,
if only the small (large) elements contain targets, then discard the large (small) elements and
recurse on the small (large) elements only. So, the algorithm is a hyprid of both quicksort

and quickselect algorithms. Note that by quicksort we mean the randomized version of the
algorithm.

In the algorithm to be presented, we will use the following (invariably standard) notation to
repeatedly partition S into smaller subsets. Let y ∈ S with rank ky ∈ K. Partition S into two
subsets

S≤ = {x ∈ S | x ≤ y}

and
S> = {x ∈ S | x > y}.

If we let ky denote the rank of y, this partitioning of S induces the following bipartitioning of K:

K≤ = {k ∈ K | k ≤ ky}

3

and
K> = {k − ky | k ∈ K and k > ky}.

The two pairs (S≤,K≤) and (S>,K>) will be called selection pairs. A selection pair (S, K), as
well as the sets S and K will be called active if |K| > 0; otherwise they will be called inactive.
A more formal description of the algorithm is shown in Fig. ??.

Algorithm quick-multiselect (S, K)

1. If |K| > 0 do Step 2 to 6.

2. If S = {a} and |K| = 1 then output a.

3. Let s be an an element chosen from S uniformly at random.

4. By comparing s with the elements in S, determine the two sets S≤ and S> of elements ≤ s
and > s, respectively. At the same time, compute r(s), the rank of s in S. Use r(s) to
partition K into K≤ and K>.

5. If |K≤| > 0, call quick-multiselect recursively on (S≤,K≤).

6. If |K>| > 0, call quick-multiselect recursively on (S>,K>).

Figure 2: The randomized multiselection algorithm.

Clearly, in Step 2 of the algorithm, recursion should be halted when the input size become
sufficiently small. It was stated this way only for the sake of simplifying its analysis and to make
it more general (so that it will degenerate to quicksort when r = n).

4 Analysis of the algorithm

Now we analyze the running time of the algorithm. First, we show that the recursion depth
is O(log n) with high probability. Next, we show that its running time is O(n log r) with high
probability too.

Fix a target element t ∈ S, and let the intervals containing t throughout the execution of the
algorithm be It

0, I
t
1, I

t
2, . . . of sizes n = nt

0, n
t
1, n

t
2, Henceforth, we will drop the superscript t,

and it should be understood from the context. In the jth partitioning step, a pivot vj chosen
randomly partitions the interval Ij into two intervals, one of which is Ij+1. Assume without loss
of generality that n ≡ 1 (mod 4). Then, nj+1 ≤ 3nj/4 if and only if vj is within a distance at
most (n− 1)/4 from the median. Hence, the probability that nj+1 ≤ 3nj/4 is

1 + 2(n− 1)/4
n

=
n + 1
2n

>
1
2
.

Let d = 16 ln(4/3) + 4. For clarity, we will write lg x in place of log4/3 x.

4

Lemma 1 For the sequence of intervals I0, I1, I2, . . ., after dm partitioning steps, |Idm| ≤
(3/4)mn with probability 1 − O((4/3)−2m). Consequently, the algorithm will terminate after
d lg n partitioning steps with probability 1−O(n−1).

proof. Call a partitioning step successful if it reduces the size of each induced interval by a factor
of at least 4/3. Since each successful partitioning reduces an interval size by a factor of 4/3 or
more, the number of successful splittings needed to reduce the size of I0 to at most (3/4)mn

is at most m. Therefore, it suffices to show that the number of failures excceds dm − m with
probability O((4/3)−2m).

Define the indicator variable Xj , 0 ≤ j < dm, to be 1 if nj+1 > 3nj/4 and 0 if nj+1 ≤ 3nj/4.
Let

X =
dm−1∑
j=0

Xj .

So, X counts the number of failures. Clearly, the Xj ’s are independent with Pr[Xj = 1] ≤ 1/2
as shown above, and hence X is the sum of indicator variables of Poisson trials, i.e. a collection
of individual Bernoulli trials, where Xj = 1 if the jth partitioning step leads to failure. The
expected value of X is

µ = E[X] =
dm−1∑
j=0

E[Xj] =
dm−1∑
j=0

Pr[Xj = 1] ≤ dm

2
.

Given the above, we can apply Chernoff bound

Pr[X ≥ (1 + δ)µ] ≤ exp
(
−µδ2

4

)
; 0 < δ < 2e− 1

to derive an upper bound on the number of failures. Specifically, we will bound the probability

Pr[X ≥ dm−m].

Pr[X ≥ dm−m] = Pr[X ≥ (2− 2/d)(dm/2)]

= Pr[X ≥ (1 + (1− 2/d))(dm/2)]

≤ exp
(
−(dm/2)(1− 2/d)2

4

)
= exp

(
−m(d− 4 + 4/d)

8

)
≤ exp

(
−m(d− 4)

8

)
= exp

(
−m(16 ln(4/3))

8

)
= e−2m ln(4/3)

= (4/3)−2m.

5

Consequently,
Pr[|Idm| ≤ (3/4)mn] ≥ Pr[X < dm−m] ≥ 1− (4/3)−2m.

Since the algorithm will terminate when the sizes of all active intervals becomes 1, setting m =
lg n, we have

Pr[|Id lg n| ≤ 1] = Pr[|Id lg n| ≤ (3/4)lg n n]

≥ Pr[X < d lg n− lg n]

≥ 1− (4/3)−2 lg n

= 1− n−2.

Since the number of targets (and hence intervals) can be as large as Ω(n), using Boole’s inequality,
it follows that the algorithm will terminate after d lg n partitioning steps with probability 1 −
O(n−1).

Theorem 1 The running time of the algorithm is O(n log r) with probability 1−O(n−1).

proof. The algorithm will go through two phases: the first phase consists of the first log r

iterations, and the remaining iterations constitute the second phase. The first phase consists of
“mostly” the first log r iterations of Algorithm quicksort, while the second phase is “mostly”
an execution of Algorithm quickselect. At the end of the first phase, the number of intervals
will be r + 1, with at most r being active. Throughout the second phase, the number of active
intervals will also be at most r. In each iteration, including those in the first phase, an active
interval I is split into two intervals. If both intervals are active, then they will be retained;
otherwise one will be discarded. So, for q ≥ 0, after 2q log r iterations, O(rq) intervals will have
been discarded, and at most r will have been retained.

Clearly, the time needed for partitioning set S in the first phase of the algorithm is O(n log r).
As to partitioning the set K of ranks, which is sorted, binary search can be employed after each
partitioning of S. Since |K| = r, binary search will be applied at most r − 1 time for a total of
O(r log r) extra steps.

Now we use Lemma ?? to bound the running time required for the second phase. In this phase,
with high probability, there are at most d lg n − log r iterations with at most r intervals, whose
total number of elements is less than n at the beginning of the second phase. By Lemma ??, it fol-
lows that, with high probability, the number of comparisons in the second phase is upperbounded
by

r∑
t=1

d lg n−log r∑
j=1

(
3
4

)j

|It
log r|

=
r∑

t=1

|It
log r|

d lg n−log r∑
i=1

(
3
4

)j

6

< n
∞∑

i=0

(
3
4

)j

= 4n.

Consequently, the time taken by the second phase is O(n). As a result, the overall time taken
by the algorithm is O(n log r) with probability 1−O(n−1).

5 Conclusion

In this work, we have presented an efficient randomized algorithm for the multiselection problem
that runs in time O(n log r) with probability 1 − O(n−1). Algorithm quick-multiselect can
be viewed of as a unifying approach to randomized selection, multiselection and sorting, as it
degenerates to Algorithm quickselect when r = 1 and to Algorithm (quicksort) when r = n.
Obviously, in practice, the algorithm should be used only for multiselection with the condition
that r not being too large, i.e., r should be in the order of O(nε) for a sufficiently small ε as any
other algorithm for multiselection.

Acknowledgement

The author is grateful to King Fahd University of Petroleum and Minerals for their continual
support. Thanks to an anonymous reviewer for his valuable comments.

References

[1] S. G. Akl, The Design and Analysis of Parallel Algorithms, Prentice Hall, Englewood Cliffs,
New Jersey, 1989.

[2] M. H. Alsuwaiyel, “An Optimal Parallel Algorithm for the Multiselection Problem”, Parallel
Computing, 27(6), (2001), 861–865.

[3] M. H. Alsuwaiyel, “An Efficient and Adaptive Algorithm for Multiselection on the PRAM”,
Proc. of the ACIS 2nd Int’l Conf. on Software Engineering, Artificial Intelligence, Network-
ing & Parallel/Distributed Computing, (SNPD 01, Japan), Aug. 2001, 140–143.

[4] M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan. Time bounds for
selection, Journal of Computer and System Sciences, 7, 1973, 448–461.

[5] R. W. Floyd and R. L. Rivest. Expected time bounds for selection, Communication of the
ACM, 18, 1975, 165–172.

[6] M. L. Fredman and T. H. Spencer, “Refined complexity analysis for heap operations”,
Journal of Computer and System Sciences, (1987), 269–284.

[7] C. A. R. Hoare. find(Algorithm 65) Communication of the ACM , 4(7), 1961, 321–322.

7

[8] H. Shen, “Optimal parallel multiselection on EREW PRAM”, Parallel Computing, 23, 1997,
1987–1992.

[9] H. Shen, Efficient parallel multiselection on hypercubes, Proc. 1997 Intern. Symp. on Par-
allel Architectures, Algorithms and Networks (I-SPAN), IEEE CS Press, 1997, 338–342.

[10] H. Shen, Optimal multiselection in hypercubes, Parallel Algorithms and Applications, 14,
2000, 203–212.

[11] H. Shen, Y. Han, Y. Pan and D. J. Evans, “Optimal Parallel Algorithms for Multiselection
on Mesh-Connected Computers”, International Journal of Computer Mathematics, 80(2),
2003, 165–179.

[12] H. Shen and F. Chin, “Selection and Multiselection on Multi-Dimensional Meshes”, Proc.
of the International Conference on Parallel and Distributed Processing Techniques and Ap-
plications, 2002, 899–906.

8

