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THESIS ABSTRACT 

Name: Aregbesola Kassim Mayowa 

Title: Code Acquisition in DS-CDMA Systems Optimization and DSP Implementation 

Major Field: Electrical Engineering 

Date of Degree:  

Code synchronisation is as an attempt to synchronise the receiver clock to the transmitter clock. The process of acquiring 

the timing information of the transmitted spread spectrum signal is essential to the implementation of any form of spread 

spectrum technique. The overall system performance is dictated by the code acquisition subsystem since other subsystems 

rely on a successful code Acquisition 

In CDMA systems, the signal to interference plus noise ratio at the receiver depends on the chip pulse shape used in 

spreading the user signals. The performance of the acquisition system was extended using the Improved Gaussian 

approximation which gives a better account of the effect of interference on the CDMA system. 

The threshold should be set above the noise level, thus an estimate of this figure is required by the detector. Under stable 

channel conditions the threshold can be fixed but in dynamic channel conditions, where interference is present, adaptive 

threshold schemes should be used. It is necessary to design an acquisition threshold with its value being set according the 

effective SINR. A modified threshold setting system is proposed for the Hybrid search scheme. A modified threshold 

setting scheme was proposed for the Hybrid Search scheme. 

Implementation of the algorithms was also carried out on a Texas TMS320C6713. 
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 ملخص الرسالة

  معاوية قاسم ارجبسولا: الاســـــــــــــــم

  DSP  على وتطبيق DS-CDMA إستملاك رمزِ في تحقيقِ أمثلية أنظمةِ :الرسالة عنوان

  الهندسة الكهربائية: التخصــــــــص

  2005-05: التخــرج تاريخ

 المرسلة  CDMAطلب توقيت اشارة عملية , مزامنة الرموزهي محاولة مزامنة ساعة المستقبل و ساعة المرسل

الاداء الكلي للنظام يعتمد اساسا على نظام التوقيت للرموزلان آل النظم الاخرى . CDMAمهمة لتطبيق اي نظام 

  .مرتبطة به

نسبة الاشارة الى التداخل زائد الضجيج عند المستقبل تعتمد على شكل النبضة المستعملة لنشر , CDMAفي نظام 

 المحسن الذي ياخذ اآثر بعين الاعتبار تاثير Gaussianاداء نظام التوقيت مدد باستعمال تقريب . لاشارات المستعم

  .CDMAالتداخل على نظام 

تحت ظروف مستقرة للقناة فان . لذا فان تقدير هذه الصورة لازمة للملتقط, العتبة يجب تكون اآثر من حد الضجيج

الديناميكية للقناة  اين التداخل موجود فان استعمال عتبات تكيفية تصبح لكن في حالة الظروف , العتبة يمكن تثبيتها

  .يجب تصميم عتبة توقيتية اين يتم تغيير قيمتها تبعا لقيمة نسبة الاشارة الى التداخل زائد الضجيج. لازمة

 Texas الخوارزميات طبقت ايضا على. في هذه الرسالة نقترح نظام محسن لتحديد عتبة لنظام البحث الهجين

TMS320C6713.   
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CHAPTER 1  

INTRODUCTION 

In Digital Communications systems, it is necessary for the receiver to be 

synchronised (in time, frequency) with the received waveform. The subject of this 

thesis, is the additional task that must be performed by the receiver in a Code 

Division Multiple Access (CDMA) system, and that is code synchronisation, whereby 

the receiver synchronises its locally generated pseudonoise (PN) code  to the PN code 

of the received signal.  

Code synchronisation is an important aspect in a spread spectrum receiver and the 

performance of a spread spectrum system is often limited by the performance of the 

code synchronisation subsystem[1]. It is often considered to be composed of two 

parts: acquisition and tracking. Acquisition involves a search through the region of 

time-frequency phase uncertainty and it determines that the locally generated and 

the incoming code are closely aligned. Tracking is the process of maintaining 

alignment of the two signals using some kind of feedback loop.  
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Usually, there are two measures of performance of the acquisition procedure, 

namely, the mean acquisition time and the probability of successfully acquiring the 

code. The measure of mean acquisition time is well suited for commercial mobile 

networks where time constrains are crucial. 

The goals of this work are to explore initial code acquisition schemes, look at design 

issues and lastly, the implementation of these schemes on a programmable Digital 

Signal Processor (DSP). 

1.1 SPREAD SPECTRUM 

Spread Spectrum Communication is a communication technique wherein the 

modulated data is spread in bandwidth prior to transmission over the channel and 

then despread in bandwidth by the same amount at the receiver[2]. This modulation 

produces a transmitted spectrum much wider than the minimum bandwidth 

required. 

There are many ways to generate spread spectrum signals; direct sequence (DS), 

frequency hop (FH), time hop (TH), and Multi-carrier (MC), and of course, hybrid 

systems, that utilize the advantages of the different techniques. 

Spread Spectrum signals used for the transmission of digital information are 

distinguished by the characteristics that their bandwidths W are much greater than 

the information rate R in bits/s. The bandwidth expansion factor /eB W R= for a 

spread spectrum signal is greater than unity[3].  The large redundancy inherent in 

spread spectrum signals is required to overcome the severe levels of interference 

that are encountered in the transmission of digital information over some radio and 

satellite channels. 
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Advantages of Spread Spectrum can be summarized as; 

• Provision of resistance to interference and jamming, 

• Provision of means for masking the transmitted signal in the background 

noise in order to lower the probability of detection, 

• Resistance to signal interference from multiple transmission paths, 

• Multiuser access for common communication channel, 

• Provision of means of measuring distance between two points, 

• Soft Handover in cellular systems. 

1.2 DIRECT SEQUENCE SPREAD SPECTRUM CDMA 
COMMUNICATION SYSTEM 

A spread spectrum system, in addition to the elements of a conventional digital 

communication system, employs two identical pseudorandom sequence generators, 

one for spreading at the transmitting end and the other for despreading at the 

receivers. These two pseudorandom sequence generators generate the 

pseudorandom sequence used for spreading and despreading at the transmitter and 

receiver. The model of a Spread Spectrum System is depicted in Figure 1. 

In direct sequence spread spectrum system, the baseband data is spread by directly 

multiplying the baseband data pulses with a pseudonoise sequence that is produced 

by a pseudonoise generator[4]. In other words, a data-modulated signal is modulated 

a second time using a very wideband spreading signal.  

This wideband signal, spreading signal, consists of a sequence of small pseudonoise 

(PN) chips whose interval is much smaller than the symbol interval T . The 

sequence is actually a periodic random sequence with period N. The spread spectrum 
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signal can be converted (despread) back to the original signal by simply multiplying 

the received sequence with the same spreading sequence. 

Considering a BPSK signal having a constant power P, radian frequency 0ω and data 

phase modulation ( )d tθ [5]. 

 ( ) ( )02 cosd ds t P t tω θ= +⎡ ⎤⎣ ⎦  (1) 

A Direct Sequence is achieved by spreading ( )ds t  by the spreading signal (code) 

( )c t . The resulting transmitted signal is 

 ( ) ( ) ( )02 cost ds t Pc t t tω θ= +⎡ ⎤⎣ ⎦  (2) 

Demodulation is accomplished in part by first despreading with the appropriately 

delayed version of the spreading code1. The signal component of the output of the 

despreader is 

 ( ) ( ) l( ) ( )02 cosdd d ds t Pc t T c t T t t Tω θ φ= − − + − +⎡ ⎤⎣ ⎦  (3) 

where d cT Tζ= ,  is an arbitrary delay in the received signal. l dT is the receiver’s best 

estimate of the delay in the received signal. When correctly synchronised, the signal 

component of the output despreader is equal to ( )ds t  except for a random phase φ , 

and ( )ds t  can be demodulated using a conventional phase demodulator[5]. 

                                                 

1 There is delay in the received signal due to propagation delays. Thus, the locally generated 

PN code has to be delayed accordingly. 
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The spreading sequences used in CDMA Systems to achieve their multiple-access 

capability are chosen to have three desirable attributes[6] : 

1. the autocorrelation have small off-peak values, to allow for rapid sequence 

acquisition at the receiver and to minimize self interference due to multipath 

2. the cross-correlation are small at all delays, to minimize multiple-access 

interference 

3. the sequences are balanced as much as possible so that each element of the 

sequence alphabet occurs with equal frequency. 

All users in a CDMA system are assigned different spreading sequences to 

distinguish each user's signal. Hence the properties of spreading sequence a major 

factor to determining the performance of a CDMA system[6].  

1.3 CODE ACQUISITION IN DS-CDMA 

The pseudonoise (PN) code synchroniser is an essential element of the CDMA 

communication system because data transmission is possible only after a receiver 

accurately synchronises the locally generated PN sequence with the received PN 

sequence. For a Direct Sequence Spread Spectrum system, if we are off by a single 

chip duration, despreading the received spread spectrum signal may be impossible, 

since the spread sequence is designed to have a small out-of-phase autocorrelation 

magnitude. In essence, the process of acquiring the timing information of the 

transmitted spread spectrum signal is essential to the implementation of any form of 

spread spectrum technique. 
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Figure 1  Model of Spread-Spectrum Digital Communications System[7] 
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Figure 2  Direct Sequence CDMA Transmitter[7] 
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Figure 3  DS-CDMA Receiver[7] 
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The problem of initial synchronisation (code acquisition) may be viewed as an 

attempt to synchronise the receiver clock to the transmitter clock. Usually, 

extremely accurate and stable clocks are used in Spread Spectrum systems to reduce 

the time uncertainty between the receiver clock and the transmitter clock. 

Nevertheless, there is always an initial timing uncertainty that is due to 

propagation delay in the reception of the signal.  

1.4 THESIS MOTIVATION 

The CDMA air interface is used in both 2G and 3G networks. 2G CDMA standards 

are branded cdmaOne and it includes both IS-95A and IS-95B. CDMA is the 

foundation for 3G services: the two dominant IMT-2000 standards, CDMA2000 and 

WCDMA, are based on CDMA.  CDMA are used in Wireless Local Area Networks. 

Future generation systems and envisioned to use some form of CDMA. 

Code acquisition is one of the crucial subsystems in a CDMA system. There have 

been several techniques proposed in literature to solve the problem of 

synchronisation.  The Hybrid search scheme employed in the acquisition system is 

considered as one of the best candidates to fulfil the objectives of the code 

synchronisation subsystem. We choose to study this system in details for our work. 

The interference from other users in the CDMA network (Multiple Access 

Interference) affects the performance of CDMA system. Most studies on the effect of 

this interference focus on the error rate performance of the system. This interference 

is dependent on the chip waveform used in the spreading. Consequently the system 

performance which is dependent on the Signal to noise plus interference ratio is 

affected. Pulse shaping is essential especially in Mobile communications systems 
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where these systems operate with a large number of users given a minimal 

bandwidth constraint. 

The issues of Pulse shaping relating to PN code synchronisation has not received as 

much attention despite their major impact on the overall DS-CDMA system 

performance. To date, there is little work on the impact of chip waveform selection 

on the synchronisation performance of CDMA systems. In [40], conventional pulses 

(such as, rectangular, sinusoidal, raised-cosine, etc), were considered to show the 

effect on synchronisation and tracking using the parallel search scheme. In [41], 

half-sine and triangular pulses are found to yield better tracking performance when 

compared with a rectangular pulse at the transmitter. We extend these results in 

our work to include a more realistic analysis of the interference contribution using 

the improved Gaussian Approximation. The improved Gaussian Approximation has 

been shown to give results closer to “exact” scenarios from a probability of error 

perspective. By correctly modelling the system we can adequately plan for system 

capacity. 

The decision of correct acquisition is based on decision thresholds set at the receiver. 

Acquisition systems decision threshold is crucial to the system performance. The 

threshold should be set above the noise level, thus an estimate of this figure is 

required by the detector. Under stable channel conditions the threshold can be fixed 

but in dynamic channel conditions, where for instance interference is present, 

adaptive threshold schemes are used. The channels in Mobile Systems are dynamic 

channels and thus the need for Adaptive Threshold Setting Schemes 
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Digital Signal Processors (DSPs) are well suited for signal processing in 

communication applications and are extensively used in developing products like 

Cellular phones and Base-stations.  In this work we used a Texas C6713 as our test 

bed to implement our acquisition algorithm. 

1.5 CONTRIBUTION OF THIS THESIS 

• Modifications were made to the analysis of the noncoherent Hybrid search 

schemes to reflect a more reflection performance measure.  The Improved 

Gaussian MAI approximation was applied in the analysis of the noncoherent 

Hybrid search receivers instead of the traditional Gaussian approximation. 

Numerical results are presented to illustrate the differences in performance 

between both approximations. 

• The effect of chip pulse shaping on the synchronisation performance of the 

hybrid noncoherent receivers was investigated. Results on the system 

perforce with different pulse shapes are found. 

• Adaptive Threshold Setting 

A modified Adaptive threshold setting scheme was proposed for the hybrid 

noncoherent receivers. Threshold setting is crucial to acquisition schemes, 

the system performance is dependent on it. Performance improvements of the 

scheme over other schemes are presented. 

• DSP implementation of the Hybrid Search Scheme 

The Hybrid Search Algorithm was implemented on a Texas C6713 DSK. 
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1.6 THESIS OVERVIEW 

The remainder of the thesis is organized as follows. Code acquisition in Direct 

Sequence Spread Spectrum is discussed in the next chapter, Chapter 2. Effects of 

user environments are also discussed. Our approach to code acquisition, the matched 

filter Hybrid Search Scheme acquisition is then presented in details.  

The pseudorandom sequences used in CDMA systems are shaped by a waveform to 

reduce the effects of the channel. The Multiple access interference, MAI varies 

according to the chip pulse shape used; consequently the probability of detection and 

mean acquisition time is affected. Effects of pulse shaping are elaborated on in 

chapter 3. Improved Gaussian Approximation is applied in the analysis of the effect 

of MAI on the acquisition scheme. Numerical results are presented. 

Threshold setting, its importance and implications are discussed in chapter 4. A 

modified Adaptive threshold scheme was proposed. Performance improvements of 

the scheme are included. 

Discussions on implementation of a programmable DSP are presented in chapter 5. 

Some implementation issues are discussed as trade offs. 
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CHAPTER 2  

CODE ACQUISITION IN DS-CDMA 

The pseudonoise (PN) code synchroniser is an essential element of the CDMA 

communication system because useful data reception is possible only after a receiver 

accurately synchronises the locally generated PN sequence with the received PN 

sequence. For a DS-SS system, if we are off by a single chip duration, despreading 

the received spread spectrum signal may be impossible, since the spread sequence is 

designed to have a small out-of-phase autocorrelation magnitude. In essence, the 

process of acquiring the timing information of the transmitted spread spectrum 

signal is essential to the implementation of any form of spread spectrum technique. 

The problem of initial synchronisation may be viewed as an attempt to synchronise 

the receiver clock to the transmitter clock. Usually, extremely accurate and stable 

clocks are used in SS systems to reduce the time uncertainty between the receiver 

clock and the transmitter clock. Nevertheless, there is always an initial timing 

uncertainty that is due to propagation delay in the received signal.  
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The problem of code acquisition is usually solved via a two-step approach:[5, 7, 8]  

• Initial code acquisition (coarse synchronisation) which synchronises the 

transmitter and receiver to within an uncertainty of a chip period i.e CT± , 

• Code tracking which maintains fine synchronisation between the transmitter 

and receiver. 

Given the initial acquisition, code tracking is a relatively easy task and is usually 

accomplished by a delay lock loop (DLL). The tracking loop keeps on operating 

during the whole communication period.  

2.1 ACQUISITION TECHNIQUES, PARAMETERS AND 
PERFORMANCE MEASURES. 

The essential operative constituents of code acquisition are search strategy and 

detector structure employed to identify the presence or not of alignment[7]. The set 

of design parameters for the acquisition procedure includes threshold settings, 

correlation length, number of tests per code chip, and system complexity as 

manifested by the choice of search strategy, verification logic, etc[9]. Also implicit is 

the knowledge of the design SNR, code rate, code length, code uncertainty region, 

reset penalty time and others. On the other hand, specification of satisfactory 

performance measures for the overall system is a more complicated task and very 

dependent on the particular application. However, the dominant parameters of 

interest in most cases are, the time which elapses prior to acquisition Tacq (Mean 

Acquisition Time) and the probability of detection DP . 

The receiver hypothesizes a code phase of the spreading sequence and attempts to 

despread the received signal using the hypothesized phase. In general, both the 

phase and the frequency of the received spread-spectrum signal will be unknown to 
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the receiver. An energy detector at the despreader output measures the signal plus 

noise energy in a narrow bandwidth at a known frequency. If the hypothesized 

phase matches the sequence in the received signal, the wide-band spread spectrum 

signal will be despread correctly to give a narrowband data signal. In this case, the 

receiver decides a coarse synchronisation has been achieved and activates the 

tracking loop to perform fine synchronisation. 

On the other hand, if the hypothesized phase does not match the received signal, the 

despreader will give a wideband output and the Band Pass Filter will only be able to 

collect a small portion of the power of the despread signal. Based on this, the 

receiver decides this hypothesized phase is incorrect and other phases will be tried. 

The position in which code sequences are in-phase, henceforth leading to the 

acquisition state (ACQ), is referred to as a synchro cell. The remaining out-of-phase 

positions between codes correspond to nonsynchro cells.  

Due to the presence of thermal noise, the operation of the detector is not perfect. 

Two parameters associated with the detector performance are the detection 

probability DP  and the false alarm probability FAP . The Mean acquisition time is a 

function of the probabilities DP  and FAP . The actual relationship between these 

detector probabilities and the dwell times will depend upon the type of detector 

which is used. 

Acquisition time is the duration taken to lock up the receiver from the start of the 

search and is an important measure of the receiver’s performance. In many 

instances, the time required to achieve synchronisation is sufficiently important to 

impose severe limitations upon the communications system. Under such 
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circumstances, it is desirable to obtain an optimum sync search procedure [10] such 

that: 

• the average time required to obtain sync is minimized, and 

• for a given synchronisation time, the probability of obtaining sync is 

maximized. 

Given the received signal r(t) and the locally generated code replica c(t), the receiver 

will a apply search strategy to determine the position in which code alignment 

occurs. Each relative position between the codes is called a cell[11]. The uncertainty 

region is defined as the total number of cells to be searched. Cells are tested by 

correlating the received and locally generated codes over a dwell time dT , i.e. the 

time it takes to test a cell..  

One additional parameter may also be required. This parameter is the penalty time, 

pT , for a false alarm[12]. When a false alarm does occur it is assumed that it can be 

recognized in some manner1 and the search for the proper cell will resume after a 

delay of pT  seconds. Moreover, the search will continue at the cell following the one 

producing the false alarm. It can also be assumed that the penalty time pT  can be 

approximated as an integer multiple of the dwell time [12] 

 p dT KT=  (4) 

According to [14], the sequence timing can be acquired and tracked accurately, and 

hence the spreading can be done , without the knowledge of carrier phase and with 

only a rough estimate of carrier frequency.. The timing and frequency uncertainty 

                                                 

1 One common way to identify a false alarm is the failure of the fine synchronization system 

to lock, the indication of which is provided by a lock detector [13]. 
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region may be graphically depicted by a rectangle with dimensions T FΔ ×Δ as in 

Figure 4 . It will be assumed that a priori information is available to the receiver 

which bounds the time uncertainty to a range of TΔ seconds and the frequency 

uncertainty to a range FΔ rad/s [5].This rectangle can be subdivided into smaller 

rectangles whose dimensions tΔ and fΔ are the range around the correct 

phase/frequency over which the system will yield a hit.  

Their total number of uncertainties is equal ( )( )T F

t f
q Δ Δ

Δ Δ
= . For accurate estimates the 

sizes of tΔ and fΔ should be small as possible, however should not be too small as 

that would overburden the receiver complexity or extend search time. 

2.1.1 DETECTOR STRUCTURES 
In order to determine whether a cell corresponds to the synchro position or not, the 

received signal r(t) is correlated with the locally generated delay-controllable version 

of the same code[7, 15, 16]. The operation is denoted as 

 l( ) ( ) l( )
0

d

cr t c t T dt
τ

λ ζ ζ= +∫  (5) 

which is the time domain correlation operation between the observed waveform and 

the local code, positioned at the candidate offset l cTζ . Where dτ  is the dwell time. 

This correlation result is thus a sufficient statistic for estimating ζ .  

In principle, two basic approaches detection are possible, namely coherent or 

noncoherent detection. Code acquisition in the absence of carrier phase information 

is designated as noncoherent code acquisition. In some cases there is enough SNR 

before dispreading to activate the tracking loop, in the case the coherent code 

acquisition (knowledge of cθ and/or Dω )  can be used.  
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Figure 4  Phase and Frequency uncertainty region 
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 In general, coherent detection is not used in the context of code acquisition due to 

this requirement of carrier phase information for the operation of coherent 

correlation. Another class of receivers are the differentially coherent receivers [17]. 

Like the noncoherent receivers,  the differentially coherent receivers do not require 

prior knowledge of the carrier phase. 

For the noncoherent receiver the ML estimator of ζ , the code phase , given that the 

received signal r(t) is observed during dτ seconds, is the lζ  maximizing  

 ( ) ( ) ( )2 2
c sλ ζ λ ζ λ ζ= +  (6) 

where 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

0

2 ; cos

2 ; sin

d

d

c c D

s c D

r t c t t t dt

r t c t t t dt

τ

τ

λ ζ ζ ω ω

λ ζ ζ ω ω

= +

= +

∫

∫
 (7) 

2.1.1.1 ACTIVE AND PASSIVE DETECTORS 
The basic unit in any acquisition receiver is the decision making device (detector). 

An energy detector is the structure used to carry out the correlating operation 

defined in equations (5) and(6). The detector plays a fundamental role in the 

performance of the acquisition process and its task is to detect with a high degree of 

reliability the presence of synchro or nonsynchro cells. If the phase and frequency of 

the local generated code are correct, the received signal will be despread, and 

translated to the central frequency of the bandpass filter, and the energy detector 

will detect the presence of signal. 
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Figure 5  (a) Active Correlating unit (b) Passive correlating unit (Code Matched Filter) 
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The acquisition receiver can be implemented using either an active correlator, where 

the correlation is performed serially on a chip-by-chip basis, or a passive correlator 

(matched filter), where the correlation is performed on chips in parallel[18].  

In active acquisition, the received signal is correlated with a replica of the code 

generated by the receiver while in the passive method, a filter matched to the 

spreading code is used[1]. 

Active Correlator 
The active correlator can be seen as a minimum complexity approach where only a 

simple correlating unit is employed[11].  As before, the receiver hypothesizes a 

phase of the spreading process. The despread signal is bandpass filtered with a 

bandwidth roughly equal to that of the narrowband data signal. The output of the 

bandpass filter is squared and integrated for a duration of Dτ to detect the energy of 

the despread signal. 

Matched Filter Energy Detector 
The receiver hypothesizes a phase of the spreading sequence to generate a reference 

signal l( )Cc t Tζ+ for despreading.  The PN matched filter is a passive device that 

stores a block of N PN code chips of duration CT , and coherently integrates over a 

signal period equal to the equivalent block length, CNT . A matched filter can be 

implemented such that the incoming code phases move (slides) with respect to a 

fixed local code. Thus by continuously observing the matched filter output, we can 

effectively evaluate different hypothesized phases. 

The overall acquisition time required for the Matched filter is much shorter than 

that of active correlators. However, the performance of the matched filter acquisition 

technique is severely limited by the presence of frequency uncertainty. As a result, 
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matched filter acquisition can only be employed in situations where the frequency 

uncertainty is very small. 

Though both active and passive correlating units materialize the correlation 

operation of (7), however there are some differences in terms of speed. If the 

sampling rate is CN T  and the correlation length of the matched filter spans 

CM chips, the matched filter requires CM N multiplications in every interval. On the 

contrary, if we use an active correlator, the same number of multiplications is 

required in every CT N  interval. Whereas for the active correlator is used, the same 

number of multiplications is required every C CM T  interval[19]. In terms of speed, 

the superiority of the MF scheme is clear for large values of N, but on the other 

hand, its inherent complexity makes its implementation feasible only for low to 

moderate values of N[11]. 

Matched filter can be implemented either in continuous-time or discrete-time mode 

using charge-coupled devices, surface acoustic wave convolvers, and discrete-time 

correlators. Modern matched filter synchronisation systems are usually 

implemented digitally. 

The envelope of the matched filter output is compared with a threshold after each 

sampling interval ST . If the sampling interval ST  equals CT N the search is 

conducted at the rate of CN T  sample positions (or, 1 N chip positions) per second 

after some initial latency time. However, the matched filter scheme requires more 

computations than active correlator does[15, 20].  
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2.1.2 SEARCH STRATEGIES 
The search strategy is the manner by which the receiver searches through the 

uncertainty region. This sweep can be carried out continuously or in discrete steps. 

The time uncertainty region is usually quantized into a finite number of elements 

(cells), through which the receiver is stepped. Which particular search strategy is 

selected by the receiver is dependent on the nature of the uncertainty region, 

available prior information, statistical quality of the tests performed, availability of 

stepping and rewinding mechanisms, etc. [9]. See [7, 9, 13, 21, 22] for more 

description of the different search strategies. 

Code Acquisition search schemes can be classified as serial, parallel or the hybrid. 

2.1.2.1 PARALLEL SEARCH 
Parallel search makes use of a larger number of correlating elements. In one 

extreme the receiver could use p correlating elements to simultaneously search the q 

cells composing the uncertainty region. This will largely reduce the acquisition time, 

but on the other hand, implementation complexity of such a receiver will increase 

with q, being unpractical for long spreading codes. The maximum likelihood (ML) 

approach to code acquisition can be seen as a method in which the timing 

information is obtained from the received signal by a concurrent testing of all 

possible cell positions[11, 15]. A detector performs simultaneous correlation between 

the received signal and each of the locally generated realizations of the code 

sequence. Such an approach is practically feasible in cases where uncertainty 

regions, q are considerable short, as with short spreading sequences.   

In general, when the uncertainty region is small to moderate in size, parallel 

acquisition brings only little improvement in performance as compared to serial-

search whereas the difference becomes more marked for large uncertainty regions. 
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Figure 6  Parallel Search Circuit[23] 
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2.1.2.2 SERIAL SEARCH 
The practical implementation of the parallel scheme is usually prohibitive, 

especially when the uncertainty region is large. A simpler alternative is to serially 

test all the possible code positions and then choose the position with the largest 

corresponding detector output. This reduces implementation complexity however, at 

the expense of longer periods to make decisions. 

This acquisition strategy is the serial search (Figure 7). In this method, the 

acquisition circuit attempts to cycle through and test all possible phases one by one 

[24] (serially) starting from an arbitrary cell or by some prior knowledge about the 

synchro cell and proceeds in a specified manner. At each phase, the detector output 

compared with a threshold and the process is repeated until a correct phase 

alignment is detected. The serial search techniques are by far the most commonly 

used spread-spectrum techniques[5]. 

The penalty time associated with a missing the correct phase (miss) is large. 

Therefore we need to select a larger integration (dwell) time to reduce the miss 

probability. This, together with the serial searching nature, gives a large overall 

acquisition time (i.e., slow acquisition). 

In cases where the probability density function of the synchro cell is known. If the 

probability distribution function of the synchro cell is known, then the most likely 

phase cells should be searched first and then the less likely. The main serial search 

strategies are the straight search, the z–search and the expanding window search. A 

structured classification of serial-search strategies and their analysis, including z–

search  and expanding window approaches, were studied in [9, 16, 18, 22, 24-27].  
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Figure 7  Serial Search Acquisition Scheme [7] 
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2.1.2.3 HYBRID SEARCH 
A good compromise between the two previous methods is the serial-parallel search 

(Hybrid Search). For a total number of q cells to be searched, a block of :p p q≤ cells 

is searched in parallel. If no synchronisation occurs the search phase is updated by p 

cells, until synchronisation occurs. This scheme is better than the serial search and 

the hardware complexity is lower compared to the full-parallel case. Hybrid serial-

parallel approaches have been proposed as an attractive solution for the trade-off 

between acquisition speed and implementation complexity [28-31]. 

2.1.2.4 SINGLE AND MULTIDWELL DETECTION 
Fixed Integration Time detectors can be further divided into single dwell and 

multiple dwell detectors. In a typical system there are far more nonsynchro cells 

than synchro cells. Thus, most of the time is spent in testing cells corresponding to 

nonsynchro positions[11]. In addition, since a false alarm state is associated with 

every nonsynchro cell, the time to acquire could be excessively long.  

Different approaches based on repeated observation of the cells have been developed 

to reduce the acquisition time. The methods considered so far make a cell decision 

based on a single-dwell or integration. In many practical code acquisition systems, to 

avoid any false alarm, a second dwell, usually characterized by longer integration 

time, could be used upon synchro cell detection by the first dwell, to verify the 

correctness of the first (or tentative) decision, thus avoiding occurrences of false 

alarms. The presence of a verification mode is usually denoted by the nomenclature 

“multiple-dwell-time detectors” as opposed to “single-dwell-time detectors” for no 

verification[9].  
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Figure 8  Hybrid Search Circuit[28] 
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Figure 9 Multidwell search circuit[5] 
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The verification process alternates with the search process: it is started whenever 

acquisition is declared; the search is in rest during verification, and is resumed when 

false alarm is declared. The verification can reduce the mean acquisition time 

especially when the probability of false alarm of the search mode is high. 

Generalization to multiple-dwell detectors, that is, consecutive tests to the same cell 

with successively increased dwell times, is straightforward. The synchro cell is 

declared only after all the stages result in synchro cell detection. A failure to detect a 

synchro cell at any dwell stage results in advancing the phase of the local code and 

repeating the multiple-dwell testing. 

2.1.3 OTHER CODE ACQUISITION SCHEMES 
Several acquisition receiver structures have been proposed and studied taking into 

consideration the particular performance degradation resulting from the MAI signal. 

A Least Mean Square (LMS) based Finite-Impulse Response (FIR) adaptive filter is 

used for code acquisition instead of a conventional MF in [32]. MAI is also taken into 

account by the LMS algorithm when computing FIR filter coefficients, acquisition–

based capacity is considerably higher for that case than for the MF approach (MF is 

matched to the spreading code but not to the MAI signal)[11]. A robust adaptive 

receiver for code acquisition is proposed and studied in [33]. As a filter adaptation 

the authors consider Recursive Least Square (RLS) and LMS algorithms. The RLS 

approach is found to provide much better resistance to MAI than the LMS 

algorithm. In [34], a blind code acquisition scheme using adaptive linear filtering 

based on a linearly constrained constant modulus algorithm (CMA) is proposed.  

A narrow-band interference suppression scheme for code acquisition is considered in 

[35]. Code acquisition in a CDMA overlay scenario where the spectrum is shared 
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with some narrowband users is studied in [36]. A linear prediction filter previous to 

the MF is used to reject carrier energy from the narrowband users. Considerable 

gains in terms of reduced acquisition times are obtained by interference suppression 

filters. Gains are reduced for increased bandwidth of the interference signals. The 

method exploits transform-domain techniques by which the received signal previous 

correlation is Fourier transformed, filtered in the frequency domain and inverse 

Fourier transformed. Analytical results show that the presence of the suppressor 

filter helps improving both probabilities of detection and false alarm. An 

interference-cancellation aided code acquisition in asynchronous CDMA networks 

was studied in [37]. Two approaches exploiting iterative interference cancellation 

are considered, based on removing at each stage either the strongest interference 

component or all the estimated components. The removed signals in a given stage 

are not estimated again in the following stage. The authors showed that both 

schemes are effective to combat the degrading near-far effects, though the second 

approach provides better performance. A parallel multistage interference 

cancellation approach for enhancing synchronization performance is proposed in 

[38], where it is shown that acquisition times are reduced as the number of 

interference cancellation stages is increased. A case where the algorithm adaptation 

uses a known training sequence is studied in [39] whereas a blind approach is 

considered in [40, 41]. It is found that the minimum mean square error approach is 

also effective to combat the near-far problem at the initial acquisition stage. In [42] 

use a parallel interference canceller (PIC) to suppress the MAI contribution of all 

synchronized users from the received signal. The authors show that this scheme 

allows the accommodation of more users in the network, increasing thus capacity. 
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Acquisition receivers robust to interference have also received considerable 

attention. Based on subspace decomposition techniques, the problem of delay 

estimation in scenarios affected by the near-far effect were considered in [43, 44] 

[41]. In [45], the problem of blind and joint acquisition and demodulation was 

considered, results show that the proposed receiver is near-far resistant. A 

maximum likelihood delay estimation approach where timing information is 

obtained from the sample mean and sample covariance matrix of the received signal 

is studied in [41]. A maximum-likelihood interference tolerant delay estimation 

scheme particularly suitable for CDMA networks with long code sequences in 

proposed and analysed in [46]. 

2.1.4 NON-COHERENT DETECTION 
For the non-coherent case, under the 0H , y is zero mean and it is 2χ distribution 

with two degrees of freedom, whose probability density function is given as [47] 

 ( )0 2 2 2

1 exp exp
2 2 2Th

x Thp y H dx
σ σ σ

∞ ⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫  (8) 

In the case of 1H , the random variable is the sum of the squares of two independent 

Gaussian variables of variances 2σ , in this case y has a non zero mean and it is   

2χ distributed 

 ( ) ( )
1 02 2 2

1 exp ,
2 2Th

y x y y Thp y H I dx Q
μ

σ σ σ σ σ
∞ ⎛ ⎞+⎛ ⎞ ⎛ ⎞= − =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠
∫  (9) 

Q is the Marcum’s Q-function. 

Where y is the decision variable, μ and σ are the mean and the is the variance of the 

noise respectively. 
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2.1.5 PERFORMANCE MEASURES 
A number of sources contribute to the randomness of the acquisition process[9] 

1. initial uncertainty about the code phase offset 

2. channel distortion 

3. possible presence of random data 

4. unknown carrier phase and carrier offset (Doppler) 

5. front-end receiver noise. 

6. partial correlation between the received code and the local replica. 

In investigating Tacq, one can distinguish two basic scenarios[9]. 

1. The case where no absolute time limit or termination time exists on the 

acquisition time Tacq. This situation arises when data are always present in 

the received waveform. 

2. In certain systems where data transmission starts after a certain time 

interval from the initial system turn-on, it is imperative that code acquisition 

be performed in that interval with very high probability; otherwise, 

communication is impossible. 

The above two possibilities constitute a first partition of the class of acquisition 

receivers. Of course, in both scenarios, the measure of performance is statistical in 

nature and is imbedded in the knowledge of the probability distribution function 

( )acqF t ) of the random time acqT . Having ( )acqF t , one can then derive and optimize 

any meaningful performance parameter, such as the mean acquisition time acqT (case 

1 ) or the probability of prompt acquisition Pr{ < } acqT T (case 2). 

Another important measure of system performance is the overall probability of code 

detection dP . If the acquisition process terminates only when the acquisition cell is 
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identified, the detection probability dP is one. Another deadlock can sometimes be 

created due to a false-alarm situation (FA). By false alarm, we indicate the case 

where the acquisition mechanism erroneously decides that code synchronisation has 

occurred and fine tracking via a code-tracking loop is initiated. The time required for 

the tracking loop to indicate false lock and the acquisition system to resume search 

is a random variable and can be modelled as such. In this case, we refer to the false 

alarm state as a returning state associated with a random Penalty time pT .1. In 

Some other cases, however, the delay involved in initiating the tracking loop is 

catastrophic for the system operation. False Alarm then corresponds to an absorbing 

state, whereupon reaching it results in complete loss of code acquisition (in other 

words, a final miss)[7]. 

In the presence of both system-deadlock situations, namely, finite acquisition 

stopping time, and absorbing false-alarm state, MP is the sum of the two 

probabilities: 

{ } { }Pr   Pr      MP FA before T neither FA nor acq before T= + where ACQ indicates the correct 

acquisition-absorbing state. 

Similarly, for case 1 (no stopping time), but with absorbing False Alarm, it follows 

that { }Pr    MP FA occurs some time=  

                                                 

1 For computational ease, pT  can also be modelled as a fixed, known time[12]. 
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2.2 CODE ACQUISITION ANALYSIS TOOLS 

Acquisition time is a random variable which depends on the starting position of the 

code, the number of false alarms, and the number of times the true code phase is 

missed. Although the mean and variance of the acquisition time may provide a 

description of the acquisition process[8] a complete evaluation of the acquisition 

performance must utilize the probability distribution of the acquisition time[48]. 

Two approaches have been previously used to obtain statistics of the acquisition 

time: time-domain techniques and transform-domain techniques (or circular-state 

diagram). The fact that code acquisition performance can be characterized by a 

number of cell parameters allows in general independent optimization of the 

detector structure and selection of the search strategy[16].  

Transform-domain techniques exploit the duality existing between the state 

transition diagram of a discrete time Markov process and the flow graph of electrical 

systems [9]. Historically, the flow graph technique was first applied to statistically 

characterize the code acquisition process in [13]. 

A different technique for the analysis of code acquisition is employed by time-domain 

analysis, also known as the direct approach [5, 7, 15, 16]. The same results can be 

obtained by considering code acquisition as a combinatorial process, as shown in [5, 

49]. In general, time domain analysis is relatively simple but results become 

cumbersome rather quickly [16].  

Flow graphs methods attain considerable dimensions, modelling and analysing a 

particular code acquisition scheme is usually a cumbersome task. Any changes in 

the system require an overall reworking of the model; hence flow graphs techniques 

are not appropriate for generalizations. A more systematic approach was proposed 
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by [9] by introducing the concept of a circular diagram. Exploiting the fact that the 

acquisition process repeats itself after all the cells have been visited, in [9],  the flow 

diagram was arranged in a circular fashion. In this manner systems with different 

search strategies and detector structures can be modelled with a similar scheme. 

As compared to the flow graph approach, the circular diagram method offers a more 

systematic and less tedious procedure to theoretically evaluate code acquisition 

performance. 

2.3 EFFECTS OF NOISE ON CODE ACQUISITION 

After despreading at receiver, the overall received signal will have three 

components: the useful signal, the multiple access interference (MAI), and Gaussian 

noise[50]. The useful signal will be proportional to the autocorrelation function of 

the code and will have high value if the input code and the locally generated replica 

are synchronised; otherwise the value of the autocorrelation is close to zero (for the 

ideal PN codes). The MAI is proportional to the cross correlations between the 

despreading code and the codes of all other users in the network.  

The presence of noise causes two different kinds of errors in the acquisition process: 

1. A false alarm occurs when the integrator output exceeds the threshold for an 

incorrect hypothesized phase. 

2.  A miss occurs when the integrator output falls below the threshold for a 

correct hypothesized phase. 

A false alarm will cause an incorrect phase to be passed to the code tracking loop 

which, as a result, will not be able to lock on to the DS-SS signal and will return the 

control back to the acquisition circuitry eventually. However, this process will 

impose severe time penalty to the overall acquisition time. On the other hand, a 
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miss will cause the acquisition circuitry to neglect the current correct hypothesized 

phase. Therefore a correct acquisition will not be achieved until the next correct 

hypothesized phase comes around. 

The time penalty of a miss depends on acquisition strategy. In general, we would 

like to design the acquisition circuitry to minimize both the false alarm and miss 

probabilities by properly selecting the decision threshold and the integration time. 

2.4 CODE ACQUISITION IN FADING CHANNELS 

In most practical radio channels, due to multipath propagation and the relative 

movement between transmitter and receiver, the attenuation and phase shift 

imposed by the channel cannot be considered as time invariant.  

The signal ( )r t at the front end of the acquisition receiver contains the modulated 

code (possibly with data) plus noise,  

 ( ) ( ) ( ) ( ) ( ) ( )2 cosc c D cr t P t d t c t T t t n tα ζ ω ω θ= + + + +  (10) 

cω and cθ are the nominal carrier radian frequency and random phase, respectively, P 

is the transmitter signal power, n(t) represents AWGN with one-sided power spectral 

density 0N , ( )d t is the data sequence, α  is a coefficient representing the fading 

process of the channel,  Dω  is the Doppler radian frequency.  

Performance of code acquisition in time-varying channels is computed by shaping 

the results obtained for the static channel model with the statistical behaviour of the 

channel. A common way of categorizing fading channels is according to their speeds 

is to compare the channel coherence time to the duration of a symbol[3, 4]. However, 

from the synchronisation problem standpoint, it is more reasonable to compare the 

coherence time cohT against the duration of the acquisition processing itself acqT .  
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Temporal fluctuations in the channel have a direct impact on the signal correlation 

process. This is particularly true at the synchro position, where due to the effect of 

fading, signals appear to be less correlated and consequently the probability of 

detecting that cell (PD) will be reduced. Since the correlation at nonsynchro positions 

is inherently low (ideally zero), this value is not affected much by the time-varying 

channel, hence the effect of fading on PFA is in general minor. Due to the mentioned 

reasons the fading process tends to degrade acquisition process performance. 

This is an essential condition for applying the analysis techniques discussed 

previously. For instance, homogeneous Markov chain theory, applied by the flow-

graph techniques, is based on the assumption that transition probabilities associated 

with the cells remain constant during the acquisition process. Some new analytical 

approaches considering the correlation incurred by fading (e.g., channel memory) 

have been proposed and are discussed later. 

2.5 THRESHOLD SETTING 

The decision whether a particular cell corresponds to the synchro or nonsynchro 

position is carried out by comparing the detector output to a threshold value Th. The 

threshold is a reference value used as the cell acceptance (or refusal) criterion. 

Depending of the statistical test approach employed by the detector, the threshold 

could be set fixed for all the cells or could be cell-dependent. The former case, based 

on the Neyman-Pearson decision criterion, attempts to keep PFA fixed and is used 

when no a priori information on the synchro cell is available. The latter, applying 

the Bayes test criterion, is used when a priori information on the synchro cell is 

available.  
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Figure 10 Dependence of PFA and PD on threshold value Th 

Since the probabilities PFA and PD depend both on the Th value, special care should be 

taken when setting the threshold to obtain a desired acquisition performance. In fact 

the average time to acquire depends, among others, on the level of prevailing SNR, 

PFA and PD. If the threshold is set too high, PFA will get smaller but so will PD. Too low 

of a threshold, on the other hand, will beneficially increase PD but will result also in a 

higher PFA. It is significant to note that PD and PFA are important only in how they 

affect the more meaningful measures of performance such as the mean time to 

acquisition and the mean hold-in time[8]. 

2.6 HYPOTHESIS TESTING IN CODE ACQUISITION 

Acquiring synchronisation in CDMA systems involve testing binary hypotheses 

indicating whether the synchronisation is achieved or not[47]. The model we 

consider assumes that the received signal r(t) is observed in some time interval. 

It also assumes that the conditional probability distributions of the process r(t) are 

known for the observations under the two hypotheses. In the case of the acquisition 

problem we denote these hypotheses 1H (synchronisation is achieved) and 

0H (synchronisation is absent).  
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The simple acquisition problem arises from “genie-aided” acquisition in the DS-

CDMA system. It is assumed that the desired user sends a known periodic BPSK 

signal to the acquisition receiver. The receiver searches serially through all potential 

time offset shifts of kζ . If synchronisation is not established (hypothesis 0H ), 

[ ] 0nE z = ; otherwise, (hypothesis 1H ) [ ] 0nE z ≠ . The variance ( )var nz is in both 

cases determined by background noise and the other user interference signals. 

The Neyman–Pearson criterion gives the optimal solution for these two problems. 

Neyman–Pearson Hypothesis Testing 
In the binary hypothesis problem we know that either one or the other hypothesis is 

true. The probabilities of the decision errors depend on the decision criterion we 

select. In the acquisition problem there is the probability to accept the hypothesis 

1H  when 0H  is true, PF - the false alarm probability and to accept the hypothesis 0H  

when 1H  is true, PM - the probability of a miss. The probability = 1-  D MP P  is the 

probability of detection. In general, it is desired to make PF as small as possible and 

PD as large as possible. An obvious criterion is to constrain one of the probabilities 

and maximize (or minimize) the other. The Neyman–Pearson criterion maximizes PD 

(or minimizes PM) under the constraint FP α≤ , where α is a pre determined constant. 

The solution is obtained easily by using Lagrange multipliers[47]. Say the function 

Φ   

 [ ]M FP Pλ αΦ = + −  (11) 

Or  

 ( ) ( )
0 1

1 0Z Z
p z dz p z dzλ α⎡ ⎤Φ = + −⎢ ⎥⎣ ⎦∫ ∫  (12) 
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Here the total observation space Z is divided into two parts, Z0 and Z1.Whenever an 

observation falls into Z0 we say 0H ; whenever an observation falls into Z1 we say 1H . 

Clearly, if PF = α, then minimizing Φ  minimizes PM and 

 ( ) ( ) ( )
0

1 01
Z

p z p z dzλ α λΦ = − + −⎡ ⎤⎣ ⎦∫  (13) 

The Neyman–Pearson criterion leads us to the likelihood ratio test 

 ( ) ( )
( )

1

1

0

0

H
p z

z Th
p z

H

>
Λ =

<
 (14) 

where Th is a numerical threshold that depends on the constraint on PF. If the ratio 

exceeds ψ, the hypothesis 1H  is chosen, whereas if it does not, the hypothesis 0H  is 

chosen. In fact, for any positive λ the likelihood ratio test will minimize Φ . 

This follows directly because to minimize Φ  we assign a point z to Z0 only when the 

term in the bracket of (13)  is negative. This is equivalent to the test (14) with Th = λ. 

To satisfy the constraint we choose λ such that  FP α= . 

2.7 CODE ACQUISITION IN CDMA NETWORKS 

The effect of the multiple access interference contribution from the 1uK −  users 

sharing the network, distinctive of a CDMA network, has to be incorporated in the 

analysis of code acquisition. As a result, the decision variable at the detector output 

contains three main terms: an autocorrelation term, product of the correlation 

between received and locally generated codes, a cross correlation term, containing 

the sum of particular cross correlations between other users and the local code, and 

a noise term 
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If a large number of users K  with the same bit-rate is assumed then the Central 

Limit Theorem can be applied to characterize the Multiple Access Interference (cross 

correlation term) with a Gaussian distribution with zero mean and variance 

proportional to K . In this fashion the effect of the Multiple Access Interference (MAI) 

is modelled as a net increase of the noise power affecting the acquisition process. 

This is the philosophy used in most literature [28, 51-53] dealing with this subject.   

The received signal in may be written as 

 ( ) ( ) ( ) ( ) ( )
1

2 cos
K

c c c D c
k

r t Pd t T c t T t t n tζ ζ ω ω θ
=

= + + + + +∑  (15) 

where K is the number of users and as before we assume that the receiver is trying 

to acquire synchronism on c1, and that ( ) 1d t = . Using a noncoherent matched filter 

detector, the test variable for the generic cell is given by  

 2 2
c sz x x= +  (16) 

where the , ,ix i c s= , are the outputs from the matched filters in the in-phase and 

quadrature branches, respectively. It holds 

 ( ) l( )0
cos

2
LpTc

i c c i i i ix r t c t T t p y Iπζ ω η⎛ ⎞= + + = + +⎜ ⎟
⎝ ⎠∫  (17) 

where ,i c s= and l( )cc t Tζ+  is the locally generated sequence. iy  is the desired 

signal, iI is the MAI contribution, and iη  is additive noise. 

The total variance of the disturbance on each receiver branch is therefore 

 2 2 2
Iησ σ σ= +  (18) 
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In essence, we can model the signal out of the matched filter in each branch as given 

by a useful part iy  and an additive Gaussian noise. More discussions on this 

contribution are given in chapter 5. 

2.8 DECISION CRITERIA 

Two criteria can be used in determining if the correct phase has been achieved; 

threshold crossing criterion and MAX criterion[51]. 

An estimate lζ can be obtained by comparing the test variables from all cells in the 

uncertainty region and selecting the maximum. The MAX criterion, which can be 

specified as: 

choose cell ( )q j if ( ) ( )y j y i> , for 1, 2, ci N= "  

However, testing all cells serially takes time. Therefore, it may be convenient to 

perform the decision on cells, tested in a specified order. In this case, the threshold 

crossing (TC) criterion can be used, for which the test variable is compared to a 

threshold hT  and, if the threshold is crossed, the hypothesis of having acquired 

synchronism is made (and possibly subsequently verified). The TC Criterion can be 

defined as 

choose cell ( )q j if ( ) hy j T≥ , else go to the next cell 

The threshold crossing criteria is simple to implement, but setting the threshold 

level is problematic; in a fading channel or in the presence of high noise levels, the 

acquisition algorithm can either overlook a user or falsely acquire when no user is 

present. 

While a search for maximum over a single symbol window can recover the user’s 

spreading code alignment, this result is valid only if the desired user is transmitting. 
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Since the maximum search algorithm will always return a peak location irrespective 

of the presence of a user, a single maximum search has no means of distinguishing a 

user peak from a peak caused by noise. Even with a transmitting user, noise could 

produce an alternate peak. A noise source, however, will not produce a peak that 

consistently appears at the same code phase over several symbols. By considering 

the peak position over several symbols, the persistent peak algorithm features 

reliable user detection while providing an accurate estimate of the user’s symbol 

phase. 

A hybrid criterion was  analyzed in [51], in this case, the uncertainty region is 

divided into NS sectors with S cells each, and inside a sector a cell is selected 

according to the MAX criterion and the test variables selected in each sector are 

compared to a threshold according to the TC criterion. 

MAX/TC criterion: 

in a sector, select cell ( )q j if ( ) ( )y j y i> , for 1, 2,i S= " ; 

choose cell ( )q j ) if ( )y j Th> , else go to next sector. 

Note that for cS N= , 1SN = , Th = −∞ the MAX/TC criterion reduces to the MAX 

criterion, while for 1S = , S CN N=  it reduces to the TC criterion. It follows that the 

formulation found in analyzing the MAX/TC criterion is most general, since other 

cases are obtained through simple substitutions. The usefulness of dealing with the 

MAX/TC criterion lies in the fact that the sector size S is a very important parameter 

to be optimized in order to achieve minimum acquisition time for a serial 

architecture, or reasonable complexity for a parallel architecture. 
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2.9 HYBRID SEARCH SCHEME 

Let ( )cc t Tζ+ be a 1± valued L-chip-long spreading code with chip time cT , seconds, 

delayed by cTζ . The signal ( )r t at the front end of the acquisition receiver contains 

the modulated code (possibly with data) plus noise,  

 ( ) ( ) ( ) ( ) ( )2 cosc c D cr t Pd t c t T t t n tζ ω ω θ= + + + +  (19) 

In (19) cω and cθ are the carrier radian frequency and random phase, respectively, P 

is the transmitter signal power, n(t) represents additive white Gaussian noise with 

one-sided power spectral density oN , ( )d t is the data sequence, and dω  is the 

Doppler radian frequency.  

 ( ) ( )k C
k

c t c t kTψ
∞

=−∞

= −∑  (20) 

ψ  is the pulse shaping filter1. { }kc is the pseudonoise code for the kth user and CT is 

the chip duration. For analysis purpose, it is assumed that ( ) 1d t = (data not 

present) and 0dω = (no Doppler effects).  

As stated earlier, the objective of code acquisition is to make the absolute phase 

offset (normalized by cT ) less than 1 i.e. l 1ε ζ ζ− <� .  

A hybrid search scheme combines features from both the parallel and serial search 

approaches. The search mode is best described by referring to Figure 12. It consists 

of a bank of PN  parallel correlators. LetΘ  represent the total number of chips in 

the uncertainty region of T seconds, i.e. / cT TΘ � . The uncertainty region Θ , is 

                                                 

1 Pulse shape will be discussed later in the next chapter. 
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divided into M sub sequences, where ( )/ S PL N NΘ = × . PN  and SN  are the 

number of parallel and serial searches respectively. The total delay of each subcode 

is M CT MT= where cT is the chip duration and its total number of taps is /q M= Δ  

with TΔ , delay between successive taps. The value of Δ  is 2 n−  where is n a positive 

integer. The value of Δ  is typically ½ and this is the value that was used in this 

thesis. 

Each correlator is matched to each of the S length subcode. The incoming code phase 

uncertainty region is searched in discrete steps. In MT  seconds, PqN  samples are 

collected and stored from the PN  parallel Matched filters, each sample corresponds 

to one possible phase in the uncertainty region.  

Each new input data sample is collected and, together with previous 1PqN −  input 

samples, is correlated with the PN  subcodes loaded in the PN  parallel correlators 

simultaneously. The process repeats q  times, each time with a unique code phase 

offset between the incoming PN code and the subcode loaded in any correlator, until 

all the possible PN code phases corresponding to the PN  subcodes are tested once. 

The correlators generate PqN  decision variables over the period, corresponding to 

the PqN  possible phases, respectively. In the next period of duration T, the PN  

noncoherent correlators are loaded with a new group of PN subcodes corresponding 

to another PqN  possible input code phases, and the correlation process continues 

until a coarse code phase alignment is sensed. In this way, over a period of S MN T , 

the PN  parallel noncoherent correlators generate /Θ Δ  decision variables 

corresponding to all possible discrete PN code phases of the input signal. The time 
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duration MT − Δ for collecting the initial 1PqN −  input signal samples is negligible 

when compared with the mean acquisition time. 

The Max/Tc criterion is used as the decision criteria. If the largest of the PqN  

samples exceeds a threshold 1Th , the corresponding phase is assumed, tentatively, to 

be the correct phase of the received signal and the acquisition system moves to the 

verification mode. If 1Th  is not exceeded, new PqN  samples are collected and the 

process is continued.  

The function of the verification mode is to avoid a costly false alarm that can supply 

the tracking system with a wrong phase. When a phase is selected by the search 

mode, it is correlated for a longer time, if the value exceeds a threshold 2Th  

acquisition is declared and the tracking system is enabled, otherwise the system 

goes back to the search mode.  

2.9.1.1 SIGNAL FLOW DIAGRAM ANALYSIS OF THE HYBRID SCHEME 

Definitions 
s

DiP  detection probability of the ith 1H cell in the search mode 

v
DiP  detection probability of the ith 1H cell in the verification mode. 

1
s

DP  detection probability in the search mode 

s
MP  probability of a miss in the search mode 

1
s

FP  false alarm probability of the search mode in the 1H  

0
s

FP  false alarm probability of the search mode in the 0H  

0
v

FP  false alarm probability of the search mode in the 0H  
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Assuming that there are 1Hλ  cells in the search space. For the 1H  cells, the 

probability of detection of the ith 1H ,  s
DiP  is the probability that the output of the 

detector is larger than  the threshold. From (8) and (9) 

 ( ) ( ) ( )
1

1 0 10 0
1

PqNy ys
Di i lTh

l
i l

P P y H P x H dx P z H dz dy
λ−∞

=
≠

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥⎣ ⎦

∏∫ ∫ ∫  (21) 

And the probability of a miss is the probability that all samples are less than 1Th  for 

the entire 1H  cells. 

 ( ) ( )
1

0 10 0
1

PqNTh Th

M l
l

P P x H dx P y H dy
λ−

=

⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∏∫ ∫i  (22) 

The false Alarm probability in the search mode for the 1H  is  

 1 1s s s
F M DP P P= − −  (23) 

The false alarm probability of the search mode in the 0H  is 

 ( )0 00
1

PqNys
FP P x H dx⎡ ⎤= − ⎢ ⎥⎣ ⎦∫  (24) 

The transfer function from an initial subset which is Q branches counter-clockwise 

from the ACQ (acquisition) state to the final destination (correct) subset is given by 

 ( ) ( ) ( )
( ) ( )

0
1

01

i
D

i Q
M

H z H z
U z

H z H z−=
−

 (25) 

The total transfer function U(z) is the moment generating function, is  

 ( ) ( )
( ) ( ) ( )

( )
1

01
11 0

1
1

Q
D i

iQ
iM F

H z
U z H z

Q H z H z H z
π

−

−
=

=
− −⎡ ⎤⎣ ⎦

∑  (26) 
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( )

( ) ( )

( ) ( ) ( )
( )
( )

1

1

111
1 1

1
11

0

1
1 1

1
0

1

1 1

v

p vv

p vv

v

v

Ks v
D Di D

i

K KKs s v s v
M M Di D F F

i
K KKs s v s v

F F F F F

Ks v
F F F

Ks v
F F F

H z P P z

H z P z P P z P P z

H z P z P P z P P z

H z P P z

H z P P z

λ

λ

+

=

+ ++

=

+ ++

+

+

=

= + − +

= − + − +

=

=

∑

∑
 (27) 

Assuming a uniform apriori probability,  1/i Qπ =  

 ( )
( ) ( )

( ) ( ) ( ) ( )( )

1
0

1
0 1 0

1

1 1

Q
D

Q
M f

H z H z
U z

Q H z H z H z H z

−

−

⎡ ⎤−⎣ ⎦=
⎡ ⎤− − −⎣ ⎦

 (28) 

The mean acquisition time is 

 ( )
1

acq

z

dE T U z S Tc
dz

=

⎛ ⎞⎡ ⎤⎜ ⎟⎡ ⎤ = +⎢ ⎥⎣ ⎦ ⎜ ⎟⎣ ⎦⎝ ⎠
 (29) 

where S accounts for the time it takes the matched filter to get filled.
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Figure 11 Non-Coherent Receiver 
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Figure 12  Hybrid Acquisition Scheme 
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Figure 13 State Diagram of the Hybrid Scheme 
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Figure 14 Reduced State Diagram
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CHAPTER 3  

EFFECT OF PULSE SHAPING IN CDMA 
CODE ACQUISITION 

Pulses are designed to be either band-limited or time limited. When pulses are 

passed through band-limited channels, the pulses may be distorted. This distortion 

arises because the channels are bandlimited and hence not all frequency components 

present in the pulse will experience the same gain. This distortion leads to 

intersymbol interference or overlaps.  

Pulse shaping is essential especially in Mobile communications systems where these 

systems operate with a large number of users given a minimal bandwidth 

constraint. Overlapping Pulses should have amplitudes that drop faster so that the 

tails of these pulses do not cause problems in the presence of jitter error, which leads 

to problems in synchronisation. 
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3.1 PULSE SHAPING IN CDMA 

Chip waveform shaping has a major impact on DS-CDMA performance. This has 

been thoroughly analyzed from an error performance standpoint [54, 55]. The 

selection of chip waveforms affects not only the bandwidth efficiency, but also the 

performance of a DS-CDMA system[55].  

The issues of pulse shaping relating to PN code synchronisation has not received as 

much attention despite their major impact on the overall DS-CDMA system 

performance. To date, there is comparatively little work on the impact of chip 

waveform selection on the synchronisation performance of CDMA systems. In [56] , 

conventional pulses (such as, rectangular, sinusoidal, raised-cosine, etc), were 

considered to show the effect on the probability of detection of a parallel search 

system. In [57],  half-sine and triangular pulses are found to yield better tracking 

performance when combined with a rectangular pulse at the transmitter. Also, in 

[58] the performance of energy detectors with several known pulses is also discussed.  

We extend these results in our work to include a more realistic analysis of the 

interference contribution. We give results for the effect of different pulse shapes on 

the mean acquisition time and probability of detection for the hybrid search system. 

The signal ( )r t at the front end of the acquisition receiver contains the modulated 

code (possibly with data) plus noise,  

Following our previous notations, the received signal in may be written as 

 ( ) ( ) ( ) ( ) ( )
1

2 cos
Ku

c c c D c
k

r t Pd t T c t T t t n tζ ζ ω ω θ
=

= + + + + +∑  (30) 

 ( ) ( )
Ck T C

k
c t c p t kT

∞

=−∞

= −∑  (31) 
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Where 
CTp  is the pulse shaping filter, where K is the number of users and as before 

we assume that the receiver is trying to acquire synchronism on sequence 1c , and 

( ) 1d t = . Also we use a noncoherent matched filter detector, the test variable for the 

generic cell is given by  

 2 2
c sz x x= +  (32) 

where the , ,ix i c s= , are the outputs from the matched filters in the in-phase and 

quadrature branches, respectively. It holds 

 

( ) l( )
( ) ( ) ( ) l( )

0

0
1

2 cos cos
2

NTc

i c

KuNTc

c c c c c i
k

i i i i

x r t c t T dt

Pc t T t n t c t T t p dt

x y I

ζ

πζ ω θ ζ ω

η
=

= +

⎡ ⎤ ⎛ ⎞= + + + + +⎜ ⎟⎢ ⎥ ⎝ ⎠⎣ ⎦
= + +

∫

∑∫  (33) 

where ,i c s= and l( )cc t Tζ+  is the locally generated sequence. 

N L≤ is the number of chips in the correlation, 0, 1,c sp p= = iy  is the desired 

contribution, iI is the MAI contribution, and iη  is additive noise. The various 

disturbances can be assumed to be statistically independent random variables[51]. 

The desired contribution is given by 

 l( )1,1 cos ,
2 2i i
Py R p i c sπζ ζ φ⎧ ⎫⎛ ⎞= − + =⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭
 (34) 

where ( )1,1R ε is the autocorrelation function of the user signature sequence. 

The noise contribution iη  is given by 

 ( ) l( )0
cos

2
cT

i c c in t c t T t p dtπη ζ ω⎛ ⎞= + +⎜ ⎟
⎝ ⎠∫  (35) 
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and it can be described as a Gaussian random variable., with zero mean and 

variance equal to 

 2 0

2
cNT N

ησ =  (36) 

Considering the MAI contribution iI , the MAI results from the cross correlation 

between the desired users and other users. 

 ( ) ( ) l( )0
2

2 cos cos , ,
2

KuNTc

i c c c c c i
k

I Pc t T t c t T t p dt i c sπζ ω θ ζ ω
=

⎡ ⎤ ⎛ ⎞= + + + + =⎜ ⎟⎢ ⎥ ⎝ ⎠⎣ ⎦
∑∫ (37) 

The most straightforward approximation is the standard Gaussian approximation, 

where the MAI is approximated by a Gaussian random variable[59]. This 

approximation is simple, however it is not accurate in general. In situations where 

the number of users is not large, the Gaussian approximation is not appropriate, in 

depth analysis of must be applied. The improved Gaussian approximation[59, 60], 

provides a better approximation to the MAI term. The approximation conditions the 

interference term on the operation condition of each user. 

Previous works on acquisition have used the standard Gaussian approximation for 

the MAI contribution. The Gaussian approximation to the binomially distributed 

correlations might be somewhat questionable for small numbers of interfering 

signals if one is considering the tails of the distribution, i.e. very low probabilities of 

erroneous detection.  

The improved Gaussian approximation has been shown to estimate the variance 

contributed by the multiple users better than the standard Gaussian approximation 

especially for few number of users[59] from a probability of bit error perspective. The 

results in [59] were compared with “exact” results and it has been shown that the 



 

 

54

improved Gaussian approximation gives a result closer to true vales than the 

standard approximation. 

Defining the following terms 

 

( ) l ( )

l l ( ) ( )

( ) l ( )

� l ( ) ( )

ψψ ψ

ψψ ψ

ψψ ψ

ψψ ψ

τ τ τ τ

τ τ τ

τ τ τ

τ τ τ

= =

=

⎡ ⎤= +⎢ ⎥⎣ ⎦

=

∫ ∫

∫

∫

∫

22
3 30 0

3 0

222
5 0

2 2
5 0

1 1

1

1

1

C C

C

C

C

T T

C C

T

C

T

C

T

C

m R d R d
T T

m R R d
T

w R R d
T

w R R d
T

 (38) 

where  

 
( ) ( ) ( )

l ( ) ( ) ( )

( )C

C

C

T

CT

T

R t t T dt

R t t dt

ψ τ

ψ
τ

τ ψ ψ τ

τ ψ ψ τ

−
= − −

= −

∫

∫
 (39) 

The MAI variance using the standard Gaussian approximation is given as  

 ( )2 1
2

CNP K T
mμ ψσ

−
=  (40) 

where N is the number of Chips. 

Using the Improved Gaussian Approximation, the MAI variance has a mean and 

variance is given as  

 

( )

( ) ( ) � ( )( ) l

2

1
2 222

2

1
2

3 1 2 131
2 8 2

C

C

N K PT
m

N K NPT K w w m m
N N

μ ψ

ψ ψσ ψ ψ

ϕ

ϕ

−
=

⎡ ⎤− − −⎛ ⎞
= − + + +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

 (41) 

Both approximations show that the variance of the MAI contribution is dependent 

on ( )H f . Consequently, the probability of false alarm and detection are dependent 

on it.  
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The simplified Improved Gaussian expressions are based on the fact that a 

continuous function ( )f x , may be expressed as 

 ( ) ( ) ( ) ( ) ( ) ( )21' '' ..
2

f x f x f x fμ μ μ μ μ= + − + − +  (42) 

If x is a random variable and μ is the mean of x, then 

 ( ) ( ) ( )21 '' ..
2

E f x f x f xσ= + +⎡ ⎤⎣ ⎦  (43) 

where 2σ  is the variance of x. Further computation gives the approximation 

 ( ) ( ) ( ) ( ) ( )2

2

2
2

f h f f h
E f x f

h
μ μ μσμ
+ − + −⎛ ⎞

= +⎡ ⎤ ⎜ ⎟⎣ ⎦
⎝ ⎠

 (44) 

It was suggested by Holtzman [60] , that the appropriate choice for h is 3σ which 

yields 

 ( ) ( ) ( ) ( )2 1 13 3
3 6 6

E f x f f fμ μ σ μ σ= + + + −⎡ ⎤⎣ ⎦  (45) 

The corresponding Improved Gaussian approximation to the probability of false 

alarm and detection can be evaluated using (45). 

From Equations(8) &(9), 

 ( ) ( ) ( )0
2 1 1exp exp exp
3 2 6 62 3 2 3

Th Th Thp y H
μ μ σ μ σ

ϕ ϕ ϕ ϕ ϕ

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎜ ⎟ ⎜ ⎟≈ − + − + −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ −⎝ ⎠ ⎝ ⎠ ⎝ ⎠
(46) 

 

( )
( ) ( )

( ) ( )

1 , ,
2 3 2 3

,
2 3 2 3

y Th y Thp y H Q Q

y ThQ

μ μ μ σ μ σ

μ σ μ σ

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟≈ + ⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
⎛ ⎞
⎜ ⎟+ ⎜ ⎟
⎜ ⎟− −
⎝ ⎠

 (47) 

Q is the Marcum’s Q-function 
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Equations (46) and (47) are only valid when 3μ σϕ ϕ> to ensure that the 

denominator of the third term is positive. Also the improved Gaussian 

approximation should be used for the case where the number of users, 3K <  [4]. 

Numerical results are presented below to show the effect of the better approximation 

on the acquisition system performance i.e. Probability of detection and Mean 

Acquisition time. For evaluation five pulse types are used; (a) Rectangular pulse, (b) 

Half-Sine pulse, (c) truncated Gaussian Pulse, (d) Raised Cosine pulse and (e) the 

Blackman pulse. The properties of the pulses are given in  Appendix - A. 

3.2  NUMERICAL RESULTS 

Assuming that there is one ACQ cell, from (21) - (24), we have 

 

( ) ( )

( ) ( )

1

1 00

1

0 10 0

1 1

P

P

qNys
D Th

qNTh Th

M l

s s s
F M D

P P y H P x H dx dy

P P x H dx P y H dy

P P P

−∞

−

⎡ ⎤= ⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
= − −

∫ ∫

∫ ∫  (48) 

 ( )0 00
1

PqNys
FP P x H dx⎡ ⎤= − ⎢ ⎥⎣ ⎦∫  (49) 

The decision threshold is computed from(49), by setting the probability of false 

alarm to a particular value the resulting value, the threshold can be computed.  

The mean acquisition time 

 
( )

( ) ( )( )

1

1 0 0
1 1 1 1 1

acq c

z

s
M V F S V F F c

D

dE T U z S T
dz

V P K P N K P VP M T
P

=

⎛ ⎞⎡ ⎤⎜ ⎟⎡ ⎤ = +⎢ ⎥⎣ ⎦ ⎜ ⎟⎣ ⎦⎝ ⎠
⎛ ⎞⎡ ⎤= + − + + − + + +⎜ ⎟⎣ ⎦⎝ ⎠

 (50) 

The Normalised mean acquisition is the Mean acquisition time normalised by the bit 

period. 
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Table 1 Simulation Parameters 

Filter Length  64 

Search Space 512 

Post Integration length 320 

Pf 10-3 

Number of Users 10 

Ns 16 

Np 4 

 

 

Table 2 Pulse Parameters 

Pulse mψ  lmψ  wψ  �wψ  

Rectangular 3.3333e-001 1.6667e-001 4.6666e-001 3.3333e-002 

Half Sine 2.9332e-001 4.3318e-002 4.2291e-001 3.2365e-003 

Gaussian 2.9823e-001 5.4879e-002 4.2631e-001 4.5683e-003 

Raised Cosine 2.4055e-001 9.4533e-003 3.4366e-001 1.9039e-004 

Blackman 2.0298e-001 2.5002e-003 2.8282e-001 1.4144e-005 
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Comparison between both approximations 
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Figure 15 Probability of Detection (Pf = 10-3, Half Sine, Ec/No = -5dB) 

Comparison between Different Pulses 
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Figure 16 Probability of Detection (Pf = 10-3, N = 512, Eb/No = -5dB) 
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Figure 17 Mean Acquisition Time (Pf = 10-3, N = 512, Eb/No = -5dB) 

Bandlimited Channel Scenario 

Table 3 Simulation Parameters 

Chip Rate 3.84 Mcps 

Bandwidth 5Mhz 

Filter Length  64 

Search Space 512 

Post Integration length 320 

Pf 10-3 

Number of Users 10 

Ns 16 

Np 4 
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Table 4 Pulse Parameters 

Pulse 
Inbound 

Power 
mψ  lmψ  wψ  �wψ  

Rectangular 86.89% 3.2840e-001 1.8595e-001 4.3560e-001 4.0408e-002 

Half Sine 82.86% 2.6936e-001 9.7249e-002 3.0055e-001 1.5459e-002 

Gaussian 84.29% 2.7718e-001 1.0639e-001 3.1714e-001 1.7404e-002 

Raised Cosine 73.33% 2.0225e-001 5.3579e-002 1.7233e-001 6.8720e-003 

Blackman 66.13% 1.5795e-001 3.3917e-002 1.0615e-001 3.7978e-003 

 

Comparison between Different Pulses 
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Figure 18 Probability of Detection (Pf = 10-3, N = 512, Eb/No = -5dB) 
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Figure 19 Mean Acquisition Time (Pf = 10-3, N = 512, Eb/No = -5dB) 

3.3 CONCLUSIONS 

The probability of detection using both approximations has been evaluated. For a 

constant false alarm rate, the improved Gaussian approximation gives a lower 

probability of detection than the standard approximation. This shows that the 

standard approximation gives an optimistic result for both performance measures. 

The capacity of the system is smaller than what the standard approximation gives. 

To ensure proper planning for capacity, the improved Gaussian approximation 

should be used. 

The Blackman pulse performed best when compared with other pulse for both 

performance measures. In order of performance we have, Blackman, Raised Cosine, 

Half sine, truncated Gaussian and the worst being the Rectangular Pulse. 
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CHAPTER 4  

THRESHOLD SETTING OPTIMIZATION 

4.1 INTRODUCTION 

For the threshold crossing criterion discussed earlier in chapter 2, the decision 

whether a particular cell corresponds to the synchro or nonsynchro position is 

carried out by comparing the detector output to a threshold value Th. The threshold 

is a reference value used as the cell acceptance (or refusal) criterion. Depending of 

the statistical test approach employed by the detector, the threshold could be set 

fixed for all the cells or could be cell-dependent. The former case, based on the 

Neyman-Pearson decision criterion, attempts to keep probability of flase alarm, PFA 

fixed and is used when no a priori information on the synchro cell is available. The 

latter, applying the Bayes test criterion, is used when a priori information on the 

synchro cell is available.  

The probabilities PFA and PD depend both on the Th value, thus special care should be 

taken when setting the threshold to obtain desired acquisition performance. In fact 

the average time to acquire depends, among others, on the level of prevailing SNR, 

PFA and PD. If the threshold is set too high, PFA will get smaller but so will PD. Too low 
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of a threshold, on the other hand, will beneficially increase PD but will result also in a 

higher PFA.  

The threshold should be set above the noise level, thus an estimate of this figure is 

required by the detector. Under stable channel conditions the threshold can be fixed 

but in dynamic channel conditions, where for instance interference is present, 

adaptive threshold schemes are used.  

For a receiver based on the Neyman-Pearson criterion or constant threshold (CT) 

criterion, if the acquisition threshold Th is set relatively low in favour of receiving 

weak signals, the false acquisition probability will be too high when strong level 

signals show up, because the partial correlation sidelobes are likely to exceed the 

threshold before the main correlation peak is detected. On the other hand, if Th is 

set relatively high in favour of large signals, the probability that receivers miss 

those relatively weak packets will be increased. Both cause losses of many packets. 

Such phenomena become more serious in CDMA environment because the desired 

signal including the sidelobes (off-phase autocorellaion) and main peaks are more 

likely to fluctuate with the random number of active users in the system. Thus it is 

necessary to design an acquisition threshold with its value being set according the 

effective SNR of the main peak and the strengths of sidelobes. 

It is significant to note that PD and PFA are important only in how they affect the 

more meaningful measures of performance such as the mean time to acquisition and 

the mean hold-in time[8]. 
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Figure 20 Dependence of PFA and PD  with threshold value Th 

 

 

 
Figure 21  Threshold Setting Block Diagram 
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A threshold setting scheme based on the SNR or interference-to-signal power ratio is 

considered by [61]. Adaptive threshold can also be obtained by using reference filters 

[62], noise power measurements [63], median filters [64], or rank filters[65]. 

Automatic Decision Threshold Control (ADTLC) scheme based on the threshold 

crossing statistics during a repeated number of observations is proposed and 

analyzed in [66]. In the ADTLC approach the threshold value is simply computed 

from the pdf of the signal at the correlator output, the threshold Th resulting in a 

simple function of PFA and the noise power estimate. A comprehensive comparative 

study of different threshold setting techniques in single-path and multipath 

channels is presented in [67, 68].  

4.2 THRESHOLD SETTING ALGORITHMS 

4.2.1 THRESHOLD SETTING BASED ON POWER AVERAGING 
The threshold is set as a proportion of the estimated noise power. By estimating the 

noise values, the threshold can be computed for a desired probability of false alarm 

from equation (51) give below 

The false alarm probability of the search mode in the 0H  is 

 ( )00
1

PqNys
FP P y H dx⎡ ⎤= − ⎢ ⎥⎣ ⎦∫  (51) 

where 

 ( )0 2 2 2

1 exp exp
2 2 2Th

x Thp y H dx
σ σ σ

∞ ⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫  (52) 
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4.2.1.1 MEAN LEVEL SCHEME 
In the mean level scheme the power-level estimate is obtained by summing the cells 

of the window defined as 

 ( )
1

1 M

i

X y i
M =

= ∑  (53) 

where y are the code Matched filter output. The threshold is determined as  

 Th kX=  (54) 

where k is a factor used to achieve constant false alarm rate. The value of k is 

determined from the desired probability of false alarm i.e. Equation (51) 

4.2.1.2 RANK (ORDER) SCHEME 
In the order statistics scheme the data in the window are sorted in increasing order. 

The resulting ordered sequence is ( ) ( ) ( ) ( )1 2 1M My y y y−≤ ≤ ≤ ≤"" . A predetermined 

kth value in the order is chosen as the threshold.  

4.2.1.3 USE OF REFERENCE FILTER 
This is a technique suggested in [69]. A reference filter is loaded with a code 

orthogonal to the transmitting code. The output of this filter is considered as noise 

and it is used to estimate the noise.  

4.2.2 PROPOSED MODIFIED RANK ACQUISITION SCHEME 
In real situations involving mobile communication, there may exist multipath 

signals in the window of given size. For the Mean Level (ML) scheme, as some 

multipath components enter the window, a high threshold value will be given. 

However, the rank scheme has an inherent immunity to this problem. A problem 

with the rank scheme is how to determine the rank as the rank chosen affects the Pf. 
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Figure 22 Threshold estimator 
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We propose here to use a hybrid scheme, this takes the merits of the Mean Level 

(ML) scheme and the Rank scheme, the estimate is computed as an average of a 

window of sorted values. 

The ordered sequence is ( ) ( ) ( ) ( )1 2 1M My y y y−≤ ≤ ≤ ≤""  . The threshold is calculated 

as  

 ( )
2

12 1

1 l

i l

Th kX

where X y i
l l =

=

=
− ∑  (55) 

This ensures that the high values which can be attributed to multipath are removed. 

Similarly, very low values that may reduce the noise estimate are removed. For this 

work  1l  and 2l  are chosen to be 5% and 95%. 

4.3 THRESHOLD SETTING SIMULATION RESULTS 

Here are some comparison in the probability of detection and normalised1 mean 

acquisition of Time for the several search schemes are presented. 

The MF is matched to a segment of the spreading code.  The length of the filter is 64. 

The output signal of the filter (MF) is proportional to the partial autocorrelation 

function (ACF) of the code. Additive white Gaussian noise and the multiple user 

interference contribution are added to the desired signal. For the verification mode, 

after the Matched filter, there is an envelope detector for the non-coherent receiver.  

                                                 

1 Normalised by the Bit period Tb = NTc 
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4.3.1 AWGN CHANNEL 
Table 5 Simulation Parameters 

SN  1 

PN  2 

Filter Length 64 

Search Space 512 

Post Integration length 320 

Pf  10-4 

Pulse shape Half Sine 

Number of users 8 
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Figure 23  Probability of Detection (single path) 
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Figure 24  Probability of Detection (3-paths) 

-25 -20 -15 -10 -5 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
d - 

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n

SNR - Ec/No

Mean
REF
Modified Rank

 
Figure 25  Probability of Detection (half chip sampling & single path) 
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Figure 26  Probability of Detection (3-paths & half chip sampling) 
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Figure 27  Mean Acquisition Time (single path) 
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Figure 28  Mean Acquisition Time (3-paths) 
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Figure 29  Mean Acquisition Time (half chip sampling & single path) 
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Figure 30  Mean Acquisition Time (3-path & half chip sampling) 

4.3.2 FADING CHANNEL 
Table 6 Simulation Parameters 

SN  1 

PN  2 

Filter Length 64 

Search Space 512 

Post Integration length 320 

Pf  10-4 

Pulse shape Half Sine 

Number of users 8 
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Figure 31  Probability of Detection (single path) 
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Figure 32  Probability of Detection (3-paths) 
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Figure 33  Probability of Detection (half chip sampling & single path) 
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Figure 34  Probability of Detection (3-paths & half chip sampling)) 
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Figure 35  Mean Acquisition Time (single path) 
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Figure 36  Mean Acquisition Time (3-paths) 
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Figure 37  Mean Acquisition Time (half chip sampling) 
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Figure 38  Mean Acquisition Time (3-path & half chip sampling) 



 

 

78

4.4 REMARKS 

The modified scheme is seen in the simulation results to outperform other schemes 

when the time to acquire the correct phase is considered.  In the case were there is 

fading in a 3-path channel (Figure 33 and Figure 34), the Probability of detection of 

the Ref scheme is higher. However looking at the mean time to acquire, it has a 

higher mean time to acquire. This is due to a high false alarm rate. The Probability 

of detection is only meaningful when the Mean acquisition time is considered. For 

the same scenario, the time to acquire the correct phase for the modified scheme is 

lower. In summary the Modified scheme outperforms all the other schemes 

considered. 
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CHAPTER 5  

DIGITAL SIGNAL PROCESSOR 
IMPLEMENTATION 

Digital Signal Processor (DSP) is one of the key technologies that have made the 

mobile phone revolution possible. Recently, there has been a strong trend toward 

implementing more and more functionality of digital communication modems using 

flexible, programmable DSP platforms, especially in the early stages of system 

development and prototyping. DSPs are used for a wide range of applications, from 

communications and controls to speech and image processing. 

A migration to a highly integrated, cost and power efficient final hardware 

realization (Application Specific Integrated Circuit - ASIC) can then follow at a stage 

once the design has been validated. This recent trend has been even more successful 

with the tremendous improvement in processing speed and capability of the recently 

developed DSP platforms[70-73].  

In the case of CDMA, since the signalling schemes are spread-spectrum in nature 

(operating at a very high rate, the chip rate), the signal processing requirements are 

very demanding. However, with the constant improvement in DSP capability, it has 

recently become possible to implement all (or most) of the baseband CDMA modem 

functionalities using programmable DSPs[16]. 
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Specifically for the thesis work we worked on Texas Instruments’ DSK C6713-DSP 

based card [74] shown in Figure 52. Digitals signal processors such as the 

TMS320C67x family of processors are like fast special-purpose microprocessors with 

a specialized architecture and an instruction set is appropriate for signal 

processing[75].  

5.1 DSK C6713 DESCRIPTION 

The DSK package from spectrum Digital is a complete DSP system with hard and 

software support tools. The board includes a TI C6713 floating point DSP and a 32-

bit codec. 

The DSK board includes 16Mb of synchronous dynamic random access memory and 

256Kb of flash memory. Four connections on the board provides audio input and 

output; MIN in, LINE in, LINE out and Headphone. There are four user dip 

switches that provide users with feedback control. The DSK operates at 225 Mhz. 

The DSK supports a TMS320C6713 DSP which can operate at a clock frequency of 

up to 225 MHz.  The DSP core is designed for high performance floating point 

operation.  Beyond the DSP core, the C6713 integrates a number of on-chip 

resources that improve functionality and minimize hardware development 

complexity.   

5.2 DSP TOOLS 

Code composer Studio 

Code composer studio is a fully Integrated DSP Development Environment. Code 

Composer StudioTM (CCStudio) Development Tools are a key element of the 

eXpressDSP Software and Development Tools strategy from Texas Instruments. 
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CCStudio delivers all of the host tools and runtime software support for your 

TMS320 DSP based real-time embedded application to market faster. 

The fully integrated development environment includes real-time analysis 

capabilities, easy to use debugger, C/C++ Compiler, Assembler, linker, editor, visual 

project manager, simulators, XDS560 and XDS510 emulation drivers and DSP/BIOS 

support.   

Embedded Target for TI TMS320 C6000 

Embedded Target for the TI TMS320C6000 DSP Platform integrates Simulink® and 

MATLAB® with Texas Instruments eXpressDSPTM tools. The software collection lets 

you develop and validate digital signal processing designs from concept through 

code. The Embedded Target for TI C6000 DSP consists of the TI C6000 target that 

automates rapid prototyping on your C6000 hardware targets. The target uses C 

code generated by Real-Time Workshop® and your TI development tools to build an 

executable file for your targeted processor. The Real-Time Workshop build process 

loads the targeted machine code to your board and runs the executable file on the 

digital signal processor. 

Link for Code Composer Studio 

Link for Code Composer Studio Development Tools lets you use MATLAB functions 

to communicate with Code Composer StudioTM and with information stored in 

memory and registers on a target. With the links you can transfer information to 

and from Code Composer Studio and with the embedded objects you get information 

about data and functions stored in your signal processor memory and registers, as 

well as information about functions in the project being implemented on the DSP. 
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5.3 SYSTEM BLOCKS 

5.3.1 TRANSMITTER 
The CDMA transmitter system model shown in Figure 39 was implemented in 

MATLAB. The signal generated in MATLAB was then loaded unto the DSP which 

performed the acquisition. 

5.3.1.1 USER DATA 
The desired user is generating a series of one, this is the preamble sequence. All the 

other users are generating random data. 

5.3.1.2 GOLD CODES 
The user data are spread using Gold Codes. Gold sequences are PN sequences which 

are optimal in terms of reaching the Sidelnikov bound[76] for the maximum auto 

and cross-correlation peaks for binary sequences with a given periodicity. Gold codes 

are generated using a shift register. 

In [77], Gold describes a method of generating large families of binary 

pseudorandom sequences and argues that they have consistently uniform correlation 

characteristics. These have subsequently been known as Gold sequences. They are 

formed by taking the modulo-2 sum of two preferred-pair m-sequences. 

General Properties of Gold Sequences 

They are periodic with periodicity = −2 1n
CN  

They have cross-correlation given as 

 ( )
2 2

1 0

1 1, 2 1, 2 1 0
n nA

Nc

τ

τ
τ

=⎧
⎪= ⎧ ⎫⎨ − − − − ≠⎨ ⎬⎪

⎩ ⎭⎩

 (56) 
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Figure 39 CDMA Transmitter 

 
Figure 40 Gold Sequence Generator [5] 
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Figure 41 Autocorrelation and Cross correlation properties of Gold codes 
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And cross correlation given as 

 ( )τ τ
⎧ ⎧ ⎫⎪= − − − − ≠⎨ ⎨ ⎬
⎪ ⎩ ⎭⎩

2 21 1, 2 1, 2 1 0
n n

C
Nc

 (57) 

A codelength of 511 was used. The generator polynomial is 001000010001. 

Gold codes are not perfectly orthogonal, i.e. ( ) 0, 0C τ τ≠ ≠  thus the cross 

correlation will have an effect on the acquisition system performance. 

5.3.1.3 PULSE SHAPING FILTER 
The chip waveform was spread using this filter. A design problem is the number of 

sample per pulse that is desired for a performance level. The number of sample per 

pulse affects the performance measures. More samples per chip give better 

performance results however at the expense of system speed and computation 

requirements. See Figure 42, Figure 43 and Table 7. Using a number of samples per 

pulse of 16 samples gives a good compromise between complexity and performance. 

5.3.1.4 FADING CHANNEL SIMULATOR 
A 3-path Rayleigh fading channel was used. The envelope of the Rayleigh was 

generated using the improved Jakes model [78].  

5.3.2 RECEIVER 
The CDMA receiver system model is shown in Figure 45.  The receiver was 

implemented on the DSP. 

5.3.2.1 RECEIVER FILTER 
The matched filter matched to the spreading waveform transmitter filter is used to 

first filter the received signal. 
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Figure 42  Performance with different sample per chip – Probability of Detection 
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Figure 43  Performance with different sample per chip – Normalised Mean Acquisition Time 

Table 7 Effect of Pulse samples on DSP performance 

Number of Samples Per Chip Number of CPU Cycles Processing Time 

8 1010109 4.4894ms 

16 2754238 12.2410ms 

24 5054684 22.4652ms 

32 8330783 37.0257 ms 
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5.3.2.2 HYBRID SEARCH ALGORITHM 
The simulation parameters of the system and the flowchart of for the algorithm is 

show in Table 8 and Figure 46 respectively. 

5.4 REMARKS 

The algorithm was implemented on the DSP. The number of sample per pulse affects 

the performance measures. More samples per chip give better performance results 

however at the expense of system speed and computation requirements. 

A good compromise between complexity and performance is to sample at a rate of 16 

samples per chip. 
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Figure 44 Rayleigh Fading Envelope 

Control Logic

Bandpass Filter

Reference 
Spreading 
waveform 
generator

Hybrid Search

�
CTξ

m
0ω

Reference 
Waveform

Received 
Signal

Despreading 
Mixer

 
Figure 45  CDMA receiver 

Table 8 DSP Implementation parameters 

Number of Samples per Symbol 16 

Sampling after matched filtering Half the chip time 

Codelength 511 

Code Matched filter Length 64 

Verification 640 sampling periods 
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Figure 46 (a) Flowchart for Receiver & (b) Flow chart for search algorithm 
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CHAPTER 6  

THESIS CONCLUSIONS 

6.1 THESIS SUMMARY 

The research goal of the thesis is to study the Hybrid Search scheme which is 

considered as one of the best candidates to fulfil the objectives of the acquisition 

subsystem. Our paramount objective was to investigate the effect of multiple access 

interference on the synchronisation performance of the search scheme. 

The Improved Gaussian MAI approximation was applied in the analysis of the 

noncoherent Hybrid search receivers instead of the traditional Gaussian 

approximation. Modifications were made to the analysis of the noncoherent Hybrid 

search schemes to accommodate a more accurate multiple access interference model. 

Numerical results show differences in the performance of the system for both 

models. Results show that the standard Gaussian approximation gives results that 

are optimistic. To ensure proper planning for capacity the improved Gaussian 

approximation should be used. 

The effect of different chip pulse shaping on the synchronisation performance was 

investigated. Blackman pulse gave the best results for both performance measures. 

The Blackman pulse performed best when compared with other pulse for both 
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performance measures. In order of performance we have, Blackman, Raised Cosine, 

Half sine, truncated Gaussian and the worst being the Rectangular Pulse. 

A modified Adaptive threshold setting scheme was proposed for the hybrid 

noncoherent receivers. Results show that the modified scheme outperforms other 

threshold schemes. The algorithm is also easy to implement. 

The Hybrid search scheme and the threshold setting schemes were implemented on 

a TI C6713 DSK. 

6.2 FUTURE WORK 

The improved Gaussian approximation should also be applied in the modelling of 

fading channels. In our work we have considered Time limited pulses, investigation 

should be made into the effect of bandlimited pulses on the acquisition schemes.  

We have assumed that the uncertainty period is uniformly distributed in our work. 

Future work should consider situations were there is apriori knowledge of where the 

correct cell is located. 

The acquisition subsystem was implemented on the DSP. A goal for future work 

should be to implement the whole system on a DSP and hardware implementation 

on FPGA & ASIC. Other acquisition schemes for instance the one proposed in [32], 

should also be implemented in te DSP. 

The algorithm was implemented using C and Assembly programming on the Code 

Composer Studio. Integration of Simulink and Code Composer studio for rapid 

prototyping on the DSP is a promising and simpler approach to software radio 

design. A future work should consider this young technology. This technology will 

provide a testbed for analysis of communication systems. 
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APPENDIX 

Appendix - A Pulses Examples 

Rectangular Pulse 
The time limited Rectangular Pulse Characteristics is given as 

 ( )
−⎧ ≤ <⎪= ⎨

⎪⎩

1,
2 2

0,

c cT Tt
x t

otherwise
 (58) 
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Figure 47 Rectangular Pulse 

Half-Sine Pulse 
The Half Sine Pulse Characteristics is given as 

 ( ) ( )2 sin , 0
0,

C ct T t T
x t

otherwise
π⎧ ≤ <⎪= ⎨

⎪⎩
 (59) 
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Figure 48 Half Sine Pulse 

Gaussian Pulse 
The Gaussian Pulse Characteristics is given as[47] 

 ( )
2t1 - , 0

0,

c
c

t T
x t T

otherwise

⎧
≤ <⎪= ⎨

⎪
⎩

 (60) 
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Raised Cosine Pulse 
The Time Domain Raised Cosine Pulse Characteristics is given as 

 ( )
22/3 1 cos , 0

0,

c
c

t t T
x t T

otherwise

π⎧ ⎡ ⎤⎛ ⎞
− ≤ <⎪ ⎢ ⎥⎜ ⎟= ⎨ ⎝ ⎠⎣ ⎦

⎪
⎩

 (61) 
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Figure 50 Raised Cosine Pulse 

Blackman Pulse 
The Blackman Pulse Characteristics is given as 

 
( )

( )

π π

−
= + + = = =

⎧ ⎡ ⎤⎛ ⎞ ⎛ ⎞
− + ≤ <⎪ ⎢ ⎥⎜ ⎟ ⎜ ⎟= ⎨ ⎝ ⎠ ⎝ ⎠⎣ ⎦

⎪
⎩

12 2 2 2

1 2 3 1 2 3

1 2 3

/ 2 / 2 , 0.42, 0.5, 0.08

2 4cos cos , 0

0,

c
C C

where c k k k k k k

t tc k k k t T
x t T T

otherwise
 (62) 
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Figure 51 Blackman Pulse 
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Appendix - B Texas Instruments C6713 DSK 
 

 

Figure 52  C6713-DSP Board 
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Features of the C6713  
Features of the processor include: 

• VLIW Core – VLIW is a processor architecture that allows many instructions to 

be issued (8 on the 6713 DSP) in a single clock while still allowing for very high 

clock rates.  

• 192Kbytes Internal Memory – high speed internal memory for maximum 

performance. 

• 64Kbytes L2 Cache/RAM – four 16Kbyte blocks of internal RAM that can be 

configured as RAM or cache. 

• 4Kb Program/Data Caches – separate caches for program code and data. 

• On-chip PLL – generates processor clock rate from slower external clock 

reference. 

• 2 Timers – generates periodic timer events as a function of the processor clock.  

Used by DSP/BIOS to create time slices for multitasking. 

• EDMA Controller – Enhanced DMA controller allows high speed data transfers 

without intervention from the DSP. 

• 2 McBSPs – Multichannel buffered serial ports.  Each McBSP can be used for 

high speed serial data transmission with external devices or reprogrammed as 

general purpose I/Os.  2 McASPs – Multichannel audio serial ports.  Used for 

multi-channel and professional audio applications. 

• 2 I2C Interfaces – Inter-Integrated Circuit Bus.  An I2C bus is a serial bus 

format that can support several standard devices per bus. 

• EMIF – External Memory Interface.  A 32-bit bus on which external memories 

and other devices can be connected.  The EMIF can interface to both synchronous 

and asynchronous memories. 
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