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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Overview 

A sign language maps the letters, words or expressions of a certain language to a 

set of hand gestures enabling an individual to communicate by using hands and gestures 

rather than by speaking. Automated recognition of sign languages is important in a 

world that is showing a continuously increasing interest in removing barriers faced by 

physically challenged individuals in communicating and contributing to the community 

and the workforce. Systems capable of recognizing sign-language symbols can be used 

as means of communication between hearing-impaired and normal people. They can be 

used to implement dictionaries for the various sign-languages and can be used as 

substitutes for voice recognition either for the use of the deaf community or for the use 

in environments where voice recognition is needed but not possible. In addition, virtual 

reality systems can largely benefit from the advances and successes in sign language 

computerized recognition. 

  Similar to the situation in the fields of voice and hand writing recognition, many 

difficulties are encountered in designing systems for sign-language interpretation. One 
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difficulty is that the use of traditional programming paradigms makes the system 

overwhelmingly complex and hence impractical. This dictates resorting to machine-

learning methods. Another difficulty encountered is the interface issue. Ideally, the 

interface should deliver accurate measurements to the processing machine, have low 

cost and provide input in a form that requires low pre-processing overhead. Building a 

system that satisfies these three requirements is not easy and design compromises must 

be accepted to build a practical system. 

 

1.2 Arabic Sign Language 

Until the recent publication of the unified Arabic Signs dictionary, only numbers 

and Arabic letters (finger spelling) were standardized among the users of the Arabic 

Sign Language. In fact, differences in signs might be found among speakers in the same 

country and sometimes even among speakers in neighboring cities. This is because signs 

are mostly created by the hearing-impaired individuals themselves and are highly 

influenced by the local environment. An example of this trend is referring to the white 

color by pointing to one's chest in Saudi Arabia, which originates from the fact that most 

males wear a white ``thoub''. The Arabic Sign Language accent used in this thesis is 

basically the Saudi Arabian accent, except for numbers and letters, which are the 

standard signs adopted by all Arabic speaking countries. 

Compared to other sign languages, not much has been done in the automation of 

Arabic Sign Language. However, attempts to build systems for automated Arabic Sign 

Language have been found in the literature. One system used moment invariants as 

features and the Support Vector Machine Algorithm for automating the recognition of 
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the letters of the Arabic alphabet signs [1].  Another system attempted to recognize the 

30 letters of the Arabic alphabet signs using a video camera as a system input device and 

neuro-fuzzy systems for recognition [2]. 

 

1.3 The Human-Machine Interface 

Interfaces in sign language systems can be categorized as being based on one of 

two major approaches. These approaches are the vision-based approach and the direct-

device approach. The direct-device approach uses measurement devices that are in direct 

contact with the hand such as instrumented gloves, flexion sensors, styli and position-

tracking devices. On the other hand, the vision-based approach captures the movement 

of the singer's hand using a camera that is sometimes aided by making the signer wear a 

glove that has painted areas indicating the positions of the fingers or knuckles. 

Vision-based systems include, as an example, the system proposed by Davis and 

Shah in which a camera and a glove with bright points painted on the edges of the 

fingers are used [3]. A more complex system in which each knuckle has a color code is 

proposed by Dorner [4]. Another system, designed by Starner, uses two differently 

colored simple gloves [5]. Isibuchi and his colleagues and Krueger proposed vision-

based systems that use 3D predictive modeling and a hand color probability 

transformation with no special gloves [6] [7]. The main advantage of vision-based 

systems is that the user isn't encumbered by any complex devices. Their main 

disadvantage, however, is that they require a large amount of computation just to extract 

the hand position before performing any analysis on the images.  
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The direct-device approach, on the other hand, requires much less computing 

power. The direct-device approach has been used by James Kramer, Peter Vamplew and 

others [8] [9]. Systems based on the direct-device approach typically use instrumented 

gloves that could be assisted by other devices. The first widely known instrumented 

glove was the Digital Data Entry Glove designed by Dr. Grims at AT&T Bell Labs and 

patented in 1983 [10]. It was originally proposed as an alternative input device to the 

keyboard and worked by generating ASCII characters according to finger positions. The 

gloves had finger flex sensors, tactile sensors at their tips, orientation sensors and wrist-

positioning sensors. The VPL DataGlove, designed by Thomas Zimmerman, followed. It 

used optical flex sensors that had fiber optic strands with a light at one end and a 

photodiode at the other. A simplified version, the Z-glove, was also built by 

Zimmerman. It used fiber optic devices to measure the angles of each of the first two 

knuckles of the fingers and was usually combined with a Polhemus tracking device. The 

Z-glove was the first commercially available instrumented glove. The Exon Dextrous 

Hand Master was developed afterwards and introduced a high level of accuracy. It had 

8-bits of accuracy, 20 degrees of freedom and a measurement frequency of 200 Hz [11].  

The CyberGlove, originally developed by James Kramer at Stanford University, 

is another patented instrumented glove [11]. It was designed specifically for the Talking 

Glove Project and was patented in 1991. It comes in two models: a model that has 18 

degrees of freedom and can measure the bend of the first two knuckles on each finger 

and a model that has 22 degrees of freedom and can measure the bend of the three 

knuckles on each finger. Both models use a strain gauge to measure the abduction 
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between fingers and a number of additional measures around the thumb. CyberGlove is 

now a commercial product of Immersion Corporation [12]. 

The PowerGlove manufactured by Mattel/Nintendo and based on VPL's glove is 

highly attractive price-wise, although it has less accuracy and fewer sensors compared to 

other gloves. In addition to its relatively low price, the PowerGlove can be easily 

connected to an RS-232 serial port by using an interface box. The PowerGlove offers, in 

conclusion, a less accurate but a highly cost effective alternative to other instrumented 

gloves [11].  

 

1.4 Literature Review 

 

1.4.1 The Image-based Approach 

Many researchers proposed or constructed image-based sign language 

recognition systems. A variety of pattern recognition schemes were employed by 

different researchers including artificial neural networks, instance-based learning, 

Hidden Markov Models (HMM) and an approach based on simple finite-state machines. 

Charayaphan and Marble proposed a system that attempted to recognize American Sign 

Language (ASL) from images by using three movement related features: The position at 

which the hand stopped, the course in space the hand followed and the shape of the hand 

when it stopped. A camera was used to capture the images and a method inspired by 

instance-based learning techniques was adopted for learning. The locations of the 

training set were averaged and used as typical examples. The system was able to 

successfully recognize 27 out of 31 ASL symbols [13].  
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 Davis and Shah proposed a system for gesture recognition comprised of a black-

and-white camera and a black glove with white finger tips. A finite-state machine with 

four states was used for recognition. The four states defined were: “keep hand in start 

position”, “slowly move hand to gesture position”, “keep hand in position for the desired 

duration” and “move fingers back to start position”. The finite-state machine was used to 

recognize a limited set of seven gestures (left, right, up, down, rotate, grab and stop).  

The major attractive feature of this system is its simplicity. However, this system has 

serious disadvantages when used for sign language recognition such as requiring stop 

and start signals, low frequency of operation (4 Hz) and its inability to monitor hand 

position. In addition, the finite state machine was found susceptible to going into the 

wrong state in some experiments [3].  

The system developed by Starner for recognizing continuous American Sign 

Language (ASL) consisted of a color camera and two gloves; a yellow glove for the 

right hand and an orange one for the left hand. An SGI Indigo workstation was used for 

processing the images. The images were taken at a rate of five shots per second and 

features such as x-y position and the bounding ellipse were extracted. The pattern 

recognition mechanism relied on an extension of Hidden Markov Models (HMM) that is 

able to handle distributions of multiple variables and not just simple output symbols. 

This extension enabled the system to use features extracted directly from the data and 

eliminated the need for preprocessing. The system was designed to recognize signs from 

a set of 40 signs under the assumption that signs had one grammatical class (i.e. there 

are no signs that could be used both as verbs and as nouns). In addition, the order of 

words was restricted to ``pronoun, verb, noun, adjective, pronoun'' with the possibility of 
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leaving out pronouns and adjectives. With strict grammar, the system was able to 

achieve accuracy rates exceeding 99%. The major shortcoming for this system is that it 

doesn't consider the movements of fingers which are essential for finger-spelling and 

large-lexicon systems [5].  

Dorner devised a system that uses a cotton glove that has colored bands each 

corresponding to a specific joint on a specific finger. That is, each finger joint is marked 

by three rings: a central one that indicates the finger the joint belongs to and two bands 

on both sides of the central one indicating a specific joint on the finger. This design 

attempts to construct a model of the hand in time and 3D space [14]. Hagen, on the other 

hand, designed a deductive database for American Sign Language that includes features 

that are above the lexical level such as the movement of eyebrows to indicate the type of 

the sentence signed (indicating that the sentence is a question for example). This 

deductive database was shown to be able to successfully translate from a standardized 

form of ASL to spoken English. A complete sign language recognition system is 

realized by integrating Hagen's and Dorner's systems together [14]. 

Another image-based system for recognizing the American Sign Language 

(ASL) alphabet (finger spelling) was proposed by Isaac and Foo. It uses a camera for 

capturing 2D hand images and uses neural networks for recognition. The features used 

were based on wavelet decomposition methods. Two types of features were tested: 

features derived from energy and entropy and features derived from the lowest 

reasonable level of decomposition of each letter. The system was able to achieve a 

recognition rate of 99.9% on 24 letters of the alphabet (J and Z were not included)[15].  
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Bauer and Kraiss used the image-based approach for recognizing the German 

Sign Language (GSL). A video camera was used as an input device and Hidden Markov 

Models (HMM) were used for recognition. In order to reduce the number of required 

patterns needed for initial and future training when new signs are added to the system, 

they used sign subunits rather than whole signs for training the Hidden Markov Model 

(HMM). Unlike most other systems based on dividing signs into subunits, this system 

uses self-organized subunits that are derived from the data itself rather than phonemes. 

A total number of 150 subunits were used and a recognition accuracy of 92.5% was 

achieved for a set of 100 signs that were used for training, while a recognition accuracy 

of 81% was achieved for a set of 50 signs that were not used in the training for the 

subunits [16].  

Brasher, Starner, Lukowicz, Junker and Troster designed a wearable mobile sign 

language recognition system that is primarily image-based but utilizes a number of 

miniature accelerometers attached to the wrists and the torso of the signer as well. The 

system consists of a hat-mounted camera, a wearable computer and the three miniature 

acceleration sensors. Hidden Markov Model (HMM) was used as a recognition 

algorithm. The system performance was tested using three types of data: accelerometer 

data, vision data and combined accelerometer and vision data. It was able to achieve an 

accuracy of 52.38% on testing with vision data, 65.87% on testing with accelerometer 

data and an accuracy of 90.48% using both [17].  

Yoon and Jo designed a vision-based system for recognizing the Korean sign 

language alphabet, which consists of 16 consonants and 14 vowels. The system 

consisted of a video camera connected to a computer with an image capturing board. To 
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aid the system in extracting the hand shape form images, the user of the system wore 

gloves with different colors for each hand. Moment invariance was used for recognition 

and experiments with one person showed a recognition rate of 97% [18]. 

 

1.4.2 The Direct-device Approach 

 The GloveTalk project of Hinton and Fles used the VPL DataGlove Mark II as 

an interface, neural networks to process the input and a speech synthesizer to generate 

vocal words from the outputs of the neural networks. The speech synthesizer was a 

DecTalk module that executed on a SGI 4D/240S workstation. The glove was enhanced 

by a Polhemus tracker for position and orientation tracking. In GloveTalk, hand shape 

determined the root word while movement's direction determined the ending of the 

word. A separate neural network was used for each of these parameters and an additional 

network was used for classifying the signs. The problem with GloveTalk is the high 

complexity of the neural networks used and that its operation is computationally 

intensive [19]. 

GloveTalk-II was a refinement of GloveTalk with the objective of adapting the 

system to general-purpose use. This simplified version of GloveTalk had three neural 

networks instead of five. One network was used to decide whether the current letter was 

a vowel or a consonant; one was for individual vowel selection and one for individual 

consonant selection. A foot-pedal was used for controlling the volume of the generated 

sound and a keyboard was added to the system for generating stop sounds (e.g. B, D, P) 

because they are difficult to recognize. A CyberGlove replaced the DataGlove used in 
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Glove-Talk in order to provide more information to the system since the CyberGlove 

was equipped with more sensors compared to the DataGlove [19] [20]. 

Another system utilizing neural networks is the system proposed by Murakami 

and Taguchi for recognizing the Japanese finger alphabet using the VPL DataGlove and 

a recurrent neural network. In their work, they first trained the recurrent network to 

recognize 42 hand shapes form the Japanese finger alphabet and achieved a success rate 

of 98%. They then successfully attempted to make the system recognize continuous 

finger-spelling. After that, they attempted to recognize signs corresponding to whole 

words and chose a set of ten distinct signs to experiment with. They were able to achieve 

a success rate of 96% by using a recurrent network with 93 nodes in the input layer, 150 

in the hidden and 150 in the context layer. The input consisted of the three past frames, 

where each frame provided information about finger position, orientation information, 

relative and absolute position [21].   

Peter Vamplew also proposed a system for recognizing the Australian sign 

language (Auslan) using neural networks. The system, called SLARTI, used the 

CyberGlove as an input device and a Polhemus tracking device which provided six 

additional degrees of freedom. It used four feature extraction networks each trained for 

recognizing one feature. The feature vector produced by the four networks was used to 

perform the overall classification. A maximum recognition rate of 96.6 % was achieved 

over a test set supplied by the registered users (users who supplied the training signs), 

while a maximum recognition rate of 89.9 % was achieved over a test set supplied by 

unregistered users (users who didn’t supply any training samples) [9]. 



 

 

11 

Roman Erenshteyn, Pavel Laskov, Richard Foulds, Lynn Messing and Garland 

Stern employed neural networks to address the problem of recognizing dynamic signing 

(signing at natural speed) of the American Sign Language. The proposed system uses the 

CyberGlove for interfacing and neural network systems for recognition. Two neural 

network systems were used: one for recognizing manual alphabet shapes (finger 

spelling) and one for recognizing hand shapes (words). The system used for finger 

spelling recognition consisted of a multi-class recognition neural network with 18 inputs 

and 26 outputs. Satisfactory results were obtained when using more than 100 neurons in 

the hidden layers and more than 800 samples for training. Backpropagation with an 

adaptive learning rate and momentum was used for training. The second system (used 

for recognizing hand shapes) consisted of a hierarchy of neural networks in order to 

reduce the amount of time needed for training which is expected to be relatively large 

due to the large number of classes involved (77 classes). The bottom level of the 

hierarchy consisted of 15 neural networks each with 3 to 7 outputs, while the top level 

had a network that decided the most competent network below. Recognition accuracy 

exceeding 93% was achieved [22]. 

Weissmann and Salmon investigated the use of neural networks for gesture 

recognition. Two types of neural networks were investigated: Backpropagation networks 

and radial basis function networks. Three 3-layer backpropagation networks with 

different interconnection schemes were explored: 

1. Network fullBP : In this network, all hidden nodes were fully connected to all input 

nodes (30 hidden nodes). 
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2. Network pairBP : In this network, each hidden node was connected to input units 

pertaining to the measurements coming from a pair of fingers (15 hidden nodes as the 

measurements of thumb rotation, palm arch, wrist pitch and wrist yaw were treated as 

measurements from a sixth finger).  

3. Network tripleBP : In this network, each hidden node was connected to input units 

pertaining to the measurements coming from finger triples (15 hidden nodes).  

To determine the gesture corresponding to the input, the system outputs the 

gesture that corresponds to the network output of the highest value (among outputs 

exceeding an experimentally determined threshold of .8). The networks with partial 

interconnections were experimented with in order to exploit a possible correlation 

between pairs (or triples) of fingers and gestures. It was found that the fullBP  network 

doesn't perform well, while the two other networks achieved recognition rates of 99.5 % 

and 92.0 %, respectively. The radial basis function network showed good performance 

only when the training set size was increased. The main advantage of radial basis 

networks is that they can be retrained at run time because they require a small training 

time when compared to multi-layer perceptron backpropagation networks [23]. 

Jiangqin and his colleagues proposed a Chinese Sign Language recognition 

system that is based on both neural networks and Hidden Markov Models (HMM). The 

system works on the word level and uses the CyberGlove as its input device. 

Experiments performed using simulation produced a recognition rate over 90% [24].  

Takahashi and Kishino proposed a system for interpreting the Japanese Kana 

manual alphabet, which consists of 46 signs, using a VPL DataGlove and principal 
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component analysis (PCA). They built a table that maps the positions of individual 

fingers and joints to hand shapes which were then classified. The system was able to 

successfully recognize 30 out of the 46 signs [25].  

Vogler and Metaxes addressed the problem of recognition systems scaling with 

the increase of the vocabulary set size. They approached the problem of scalability using 

two key ideas. The first was breaking the signs to phonemes (the elementary constituents 

of signs) and the second was modeling the phonemes using a parallel extension of 

Hidden Markov Models (HMM). The first key idea is based on the fact that the number 

of phonemes is much less than the number of signs and the second idea is based on the 

fact that phonemes can occur in parallel. The proposed system was tested using a 

MotionStar 3D tracking system and a database consisting of 400 training sentences, 99 

testing sentences. The system achieved 84.85 % accuracy on the sentence level and 

94.23 % on the sign level [26]. 

The system designed by Kadous (GRASP) used a PowerGlove as an input device 

and explored the use of instance-based and symbolic-based learning for classifying 

signs. The data set used for constructing the classifier consisted of 6650 examples 

collected from 5 people. An SGI workstation was used to acquire data and extract 

features from it. Many different features were investigated. This included energy, 

distance, time, bounding boxes and the use of simple time division. Simple time 

division, which basically averages the raw quantities measured by the glove and uses 

them as features, was found to achieve good results. The system was able to recognize 

95 signs of the Auslan language at an accuracy of about 80% [27].  
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The Talking Glove Project carried out by Kramer and Liefer is an attempt to 

integrate several technologies together to build a system that can be used for 

communication between deaf, deaf-blind and non-vocal individuals. The CyberGlove 

mentioned earlier was originally designed and built as part of this work. Kramer used a 

prototyping approach for gesture recognition. In his work, each letter was associated 

with a prototype (called a beacon) that represented a point in the hand state vector space. 

Each of these points was surrounded by a hypersphere (called a recognition ball) and a 

letter was recognized when the hand entered its recognition ball. Each recognition ball 

was surrounded by another hypersphere (called a hysteresis ball) and it was required that 

the hand gets out of the hysteresis ball before repeating a sign. The system was found to 

be practical [8]. 

Another glove-based system was proposed by Mehdi and Khan. It used a seven-

sensor glove form 5DT and a multi-layer perceptron neural network to recognize the 

alphabet of the American Sign Language (ASL). The glove used provided only 

measurements for the bend of each finger and measured the tilt and the rotation of the 

hand. The neural network used had 7 neurons in the input layer, 54 neurons in the 

hidden layer and 26 neurons in the output layer.  The system was able to achieve an 

accuracy of around 88% [28]. 

Gao, Fang and Ma proposed a system for recognizing the Chinese Sign 

Language (CSL) using a pair of CyberGloves and three Polhemus tracker for input and 

Hidden Markov Models (HMM) for recognition. The HMM used was augmented with 

self-organizing feature maps (SOFM) to increase its ability to discriminate between 

patterns. In addition, a self-adjustment algorithm was employed to further enhance 
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recognition. The system was found to achieve a recognition rate of 90.7% with the 

HMM alone, a recognition rate of 95.3% with HMM and SOFM and a recognition rate 

of 96.6% with self-adjustment [29][30]. With the same input devices, Gao, Wang and 

Shan investigated the advantage of using phonemes as basic recognition units rather than 

using whole words in scaling the system in terms of the number of words it can 

recognize. An HMM was built for each phoneme (around 2400 phonemes) and each sign 

in the word set (5119 words, almost all words in CSL) was decomposed to its 

constituent phonemes. The system was tested over the 5119 words and was found to 

achieve a recognition rate over 90% [31]. SOFM-enhanced HMM and the input system 

consisting of two CyberGloves and three trackers was used by Gao, Chen, Fang and 

Yang to build The Chinese Sign Language Dialog System (CSLDS), which is a 

complete system for translating sign language sentences to voice and to graphical facial 

animations. The CSLDS can provide continuous, real-time recognition with an accuracy 

of 91.6 % over a data set of 5113 words [32].   
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CHAPTER 2 

 

THE PROPOSED RECOGNITION SYSTEM 

 

2.1 Primary Goal and Objectives 

The primary goal of this research work is to design and build a system for 

recognizing a subset of the Arabic sign language using a low cost instrumented glove as 

an interface and the support vector machine algorithm as a classifier. The main design 

objectives to be realized by the systems are the following: 

1. To contribute to research directed towards facilitating the communication with 

physically-challenged people (the hearing-impaired). 

2. To investigate an unexplored application (sign language recognition) of the support 

vector machine algorithm which has shown highly promising results in other 

applications. 

3. To provide research work on the automated recognition of Arabic Sign Language 

which has little research done in its automated recognition. 

4. To aid the unification and standardization of Arabic Sign Language accents through 

automating the recognition of Arabic Sign Language. 
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2.2 System Structure 

The proposed system basically consists of an instrumented glove that is 

connected through the serial port to a workstation running the support vector algorithm. 

The major hardware and software components of the system are presented below. 

 

2.3 System Hardware 

The three major hardware components of the proposed system are: 

1. An Instrumented glove: This is the direct interface between the system and the 

individual performing the sign. It takes measurements indicating the location and 

orientation of the hand at each instance of time. The instrumented glove used for this 

work is the Nintendo/Mattel PowerGlove. 

2. A computing device: The basic role of the computing device is to execute the machine 

learning code (the classification machine). It receives frames generated by the glove as a 

result of performing a certain sign, extracts features to be used as an input to the 

classification machine. In this work, a standard PC is used as the processing device 

while the classification algorithm used is the Support Vector Machine (SVM). 

3. An interface: The interface providing the link between the glove and the processing   

machine (the PC). Its role is to receive the frames containing location and orientation 

measurements form the glove, perform some processing and deglitching on them, and 

then re-send them to the PC in a specific, well defined format. It also interprets the 

commands coming from the PC and configures the glove accordingly. The interface 

used is in this research work is the PGSI (PowerGlove Serial Interface) unit designed 
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and built by the Students Chapter of the Association for Computing Machinery at the 

University of  Illinois, Urbana-Champaign campus (ACM at UIUC). 

 

2.4 System Software 

The software running on the computer includes: 

1. Data acquisition software for acquiring data from the glove. It reads the structured 

measurements frames sent through the serial port and stores them in a human readable 

format (ASCII text). 

2. Data processing software for processing the raw data and extracting features. It cleans 

the received data and extracts features from it. 

3. Machine learning software that implements the support vector machine algorithm for 

both training and testing (software that actually implements the classifier). 

4. Sound player software that is used to play one of the pre-recorded words depending 

on the output of the classification machine.  

  The Support Vector Machine package used in this work is the SVMTorch II 

package [33]. The feature extraction and data processing software uses the publicly 

available glove library, Perl scripts written by Kadous for GRASP and UNIX shell 

scripts I wrote.  

 

2.5 Operation Modes 

The system has two modes of operation: training mode (offline mode) and 

recognition mode (online mode). In training mode, the support vector machine is taught 

to recognize the signs by presenting it with labeled examples. Each example consists of 
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a vector of features extracted from the raw measurements generated by the instrumented 

glove and a label that corresponds to a specific sign. The purpose of operating the 

system in this mode is to generate support vector machines that are adapted to recognize 

a performed sign form the features extracted from that sign's glove measurements. In 

recognition mode, the adapted support vector machines are used to actually recognize 

the performed signs. 

The features extracted from the performed sign are used as an input to the 

adapted (trained) support vector machines, which classifies it and then the word 

corresponding to the sign is either written on the screen or spoken out from the speakers. 

Figure 2.1 shows a flow diagram of the two modes of the system.  
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Figure 2.1: Flow diagrams for the system operation 
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CHAPTER 3 

 

THE POWERGLOVE 

 

3.1 The PowerGlove Hand-Machine Interface 

The PowerGlove is a low-cost instrumented glove that can measure the position 

of the hand in space, its rotation angle about the wrist and the bends of the fingers. It 

was developed by Abrams-Gentile Entertainment Incorporation (AGE Incorporation) 

which cooperated with the Mattel toy company to manufacture it for the use with the 

Nintendo Entertainment Systems (NES) video gaming machines. It is basically a 

downgraded version of the VPL DataGlove with a lower cost and lower measurement 

accuracy. AGE and Mattel performed many design modifications aimed towards 

reducing the cost of the glove (compared to the VPL DataGlove) and making it more 

suitable for the use with video games. 

Examples of such modifications include the use of an ultrasonic tracking 

mechanism rather than using the expensive Polhemus tracker, having sensors on four 

fingers only rather than all fingers, using resistive-ink flex sensors rather than the 

expensive optical fibers to measure the bend of fingers and having a flex measurement 
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resolution of two bits per finger rather than the eight bits of resolution provided by the 

VPL DataGlove [27]. 

The PowerGlove has a molded plastic body with two ultrasonic transmitters 

fitted on the part covering the hand and control buttons fitted on the part partially 

covering the arm. An ultrasonic tracker is used to locate the glove in space with respect 

to a companion unit with an accuracy of one fourth of an inch. Those two transmitters 

send pulses to three receivers mounted to an L-shaped bar that is usually put on the 

screen, and the time for these pulses to reach the receiver is used for tracking the 

position of the hand .The rotation of the wrist is also measured by the trackers. The bend 

of the fingers is measured using resistive-ink flex sensors that are embedded into the 

plastic body of the glove. The flex sensors measure the bend of the thumb, index, middle 

and ring fingers (the bend of the little finger is not measured). They work by measuring 

the electrical resistance of the conductive ink embedded in the plastics covering the 

fingers. Structured frames containing the measured information are sent to the device 

connected to the glove [27]. Figure 3.1 shows the PowerGlove.  
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Figure 3.1: The PowerGlove 

(Courtesy of Waleed Kadous) 
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3.2 PowerGlove Interfacing 

The first standard device for interfacing the PowerGlove with the serial port of a 

computer was the PGSA (PowerGlove Serial Adaptor), which was designed by the 

original designers of the Nintendo PowerGlove, namely the Abrams-Gentile 

Entertainment Incorporation (AGE Inc.,). Another popular interface that appeared after 

the PGSA is the ``Menelli box'', which is named after its designer Ron Menelli. Both 

interface protocols (AGE and Menelli) can operate either in continuous or request mode. 

In continuous mode, a new frame of information is sent from the PowerGlove to the host 

computer as soon as the information is received, while in request mode, the frame isn't 

sent unless the host computer sends a ``send frame'' command. The PGSI (PowerGlove 

Serial Interface) is the PowerGlove interface designed by a special computer architecture 

group (SIGArch) in the student chapter of the Association for Computing Machinery 

(ACM) at the University of Illinois, Urbana-Champaign campus (UIUC). It was 

designed after the PGSA and the Menelli box and is capable of transparently emulating 

either one of them. The PGSI can automatically switch to the proper mode of emulation 

depending on the mode used by the software running on the host computer. The AGE 

protocol provides more complete information and provides more control commands. 

Continuous mode is more suited for real-time applications like the continuous tracking 

of the hand. 

 

 

 



 

 

25 

3.2.1 PGSA 

The PowerGlove Serial Adapter is the interface box designed the Abrams-

Gentile Incorporation (the designer of the PowerGlove). The AGE interface protocol 

uses the same frame format for both continuous and request mode. The AGE frame 

format is shown in table 3.1.  
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TABLE 3.1: Detailed Frame format for the AGE protocol. 

Byte Position Name Description 

00 Header Frame starts 

01 Header Frame starts 

02 X X dimension reading 

03 Y Y dimension reading 

04 Z Z dimension reading 

05 Rotation  

06 Flex  

 Thumb flex 

 Forefinger flex 

 Middle finger flex 

7:6 

5:4 

3:2  Ring finger flex 

07 Keys Keys being pressed 

08 GSTAT1 General status 1 

09 GSTAT2 Unused 

10 RECVALS Receiver values 

5 Left top receiver from left transmitter  

4 Right bottom receiver from left transmitter 

3 Right top receiver from left transmitter  

2 Left top receiver from right transmitter 

1 Right bottom receiver from right transmitter 

0 

 

Right top receiver from right transmitter  
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3.2.2 The Menelli Box 

This interface is named after its designer Ron Menelli, who made it publicly 

available online. At the core of the design is a Motorola microcontroller that provides 

most of the interfacing functionality. The Menelli box sends six-byte frames in request 

mode and seven-byte frames in continuous mode [34]. Tables 3.2 and 3.2 respectively 

show the frame format of the Menelli protocol in continuous mode and in request mode. 
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TABLE 3.2: Frame format for the Menelli protocol in continuous mode. 

Position in Frame Name Description 

00 Header Signals start of frame 

01 X x-direction reading 

02 Y y-direction reading 

03 Z z-direction reading  

04 Rotation Rotation value in 30 degree increments 

05 Flex Position of thumb and first three fingers 

06 Switch Key codes 

 

 

TABLE 3.3: Frame format for the Menelli protocol in request mode. 

Position in Frame Name  Description  

00 X x-direction reading 

01 Y y-direction reading 

02 Z z-direction reading 

03 Rotation Rotation value in 30 degrees increments 

04 Flex Position of thumb and first three fingers 

05 Switch  Key code 
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3.2.3 PowerGlove Serial Interface (PGSI) 

The PGSI is the interface used for this thesis project. Just like the Menelli box, it 

is based on the Motorola microcontroller. It can provide 23 frames per second on 

average and is backward-compatible with the earlier interfacing standards (namely the 

AGE protocol and the Menelli box protocol). It has an AGE emulation mode and a 

Menelli emulation mode so that it appears as a PGSA for host software using the AGE 

protocol and as a Menelli box for host software using the Menelli protocol. It can be 

supplied by any source with a voltage ranging between 9 and 20 volts and current 

between .3 and 1 ampere (AC or DC as the unit has its own rectification circuitry). The 

frame format sent by the interface to the host computer will assume one of the above 

formats depending on the emulation and transmission modes used. The unit accepts a 

total of 35 commands including the AGE control commands and the Menelli commands 

and some commands that are specific to PGSI. Examples of the operations requested by 

the commands include switching the glove to the appropriate mode and turning various 

filters and A/D channels on or off. 

At the heart of the PGSI is an MC68HC11E2FN Motorola microcontroller, an E-

series member of the HC11 family of microcontrollers. The HC11 microcontroller used 

has 2048 (2k) of EEPROM memory and 256 bytes of RAM. The control program is 

stored in the EEPROM. The microcontroller has a total of 40 I/O pins that are used for 

communicating with the PowerGlove and the serial port of the host computer. The host 

computer sends special one byte commands to the PGSI and the firmware running on the 

microcontroller parses the commands, reads the values of the appropriate pins at the 

appropriate times and sends back a frame containing the information available from the 
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glove. The communication speed is at 9600 bps with no parity and 1 stop bit [34]. Figure 

3.2 shows a picture of the PGSI.  
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Figure 3.2: The PGSI. 

(Courtesy of Joel Jordan of the ACM at UIUC) 
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3.3 The CyberGlove 

The CyberGlove, manufactured by Immersion Technologies, is a more 

sophisticated alternative to the PowerGlove. It is designed from the outset as a general-

purpose instrumented glove and has an accompanying comprehensive suite of 

interfacing software. The PowerGlove, in contrast, doesn’t have a standard set of 

application programming interface functions which could hinder rapid development. The 

CyberGlove is equipped with high accuracy, high repeatability 22 sensors for measuring 

the flex and abduction of fingers. Unlike, the PowerGlove, the basic system doesn’t 

provide motion tracking. However, it has provisions for connecting highly accurate 

tracking systems such as those provided by Polhemus and Ascension. Compared to the 

PowerGlove, the CyberGlove has more sensors and its sensors are more accurate and 

less prone to hysteresis and noise. The tracking systems used with the CyberGlove are 

more accurate and aren’t susceptible to ultrasonic noise and reflections as is the case 

with the PowerGlove.  The CyberGlove can readily interface with a standard serial port 

(RS-232) and can send measurement information at a rate of 150 frames per second.  

This is in contrast with the PowerGlove which needs an external interfacing device (the 

PGSI for example) and can only provide measurements at a rate of 23 frames per 

second. Compared to the PowerGlove’s plastic body, the lightweight fabric body of the 

CyberGlove makes it more convenient to use and allows for more movement flexibility. 

The major disadvantage of the CyberGlove is its high cost, which is around $10,000 

[12].  
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CHAPTER 4 

 

THE SUPPORT VECTOR MACHINE 

 

4.1 Introduction to the Support Vector Machine 

 

4.1.1 Supervised Learning Model 

Support vector learning belongs to the broad category of supervised learning 

methods, that is, learning by example. Radial basis functions and the multi-layer 

perceptron are examples of supervised learning as well. The general learning model of 

the supervised learning theory comprises three conceptual components: 

1. A generator of random vectors x, drawn independently from a fixed but unknown 

distribution )(xP . A random vector x corresponds in this thesis to the vector of features 

extracted from the data frames generated by the glove for a certain sign. 

2. A supervisor that returns an output vector y for every input vector x, according to a 

conditional distribution function P(y|x), that is fixed but unknown. The output y 

corresponds, in the context of this thesis, to the word represented by the sign performed. 

3. A learning machine capable of implementing a set of functions ),( αxf , called the 

hypothesis functions where x  is a vector of sign features while α is an adjustable 
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parameter of the learning machine.α could be, in general, a scalar variable or a vector. 

The objective of a learning algorithm (training algorithm), is to choose the value of 

α that best approximates the response of the supervisor. α corresponds for example, to 

the vector of weights in an MLP problem (Multilayer Perceptron Neural Network) [35]. 

The relationship between the components of the learning model is illustrated in figure 

4.1. 
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Figure 4.1: The supervised learning model 
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Training a learning machine is the process of finding a particular value of α . The design 

objective of a learning algorithm is to find the best value of α , in the sense that it leads 

to a learning machine that gives the best approximation of the underlying process.  

Two points are worth noting here regarding the above abstract learning model: 

1- The presented generic model for supervised learning encompasses many 

specific supervised learning problems. Three main ones are the pattern recognition 

problem, the regression estimation problem and the density estimation problem. The 

learning problem that is relevant to this thesis in particular is the pattern recognition 

problem 

2- Supervised learning has an optimization problem at its core and hence 

optimization theory and numerical algorithms are essential to machine learning [35]. 

 

4.1.2 Overview of the Support Vector Machine Algorithm 

The support vector machine learning (SVM) methodology was first introduced in 

1992 at the Computational Learning Theory Conference (COLT) by Vapnik and his co-

workers at Bell Laboratories. Since then, extensive research has been carried out in its 

theoretical analysis, implementation and applications [36]. 

The support vector machine has many attractive features some of which are 

unique compared to other competing methods such as multi-layer perceptron neural 

networks and radial basis function neural networks. Those advantages collectively 

constitute the main reason for selecting the SVM as the recognition algorithm used in 

this thesis. The advantageous features of the support vector machine learning include: 
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1. The optimization problem associated with the SVM machine has a unique solution. 

Other machine learning paradigms such as neural networks might have many local 

minima, which means that training might get stuck at one of them unable to reach the 

global minimum [35]. 

2. Training an SVM is relatively fast. Other learning paradigms such as the multi-layer 

perceptron can have relatively slow training due to the high dimensionality of the weight 

space [35]. 

3. The SVM algorithm has a simple geometric interpretation, which facilitates 

implementing and enhancing the algorithm [37]. 

4. Statistical learning theory a shows that the SVM either matches or significantly 

outperforms competing methods in generalization performance [37]. This is confirmed 

by empirical experiments. 

5. The SVM solution is sparse, which facilitates the development of efficient numerical 

solutions for it [38]. 

6. The SVM lends itself to parallelization [37].  

7. The SVM overcomes the curse of dimensionality (the exponential increase in 

complexity of a learning machine with the dimension of input space) [37]. 

The key idea used for the development of the SVM algorithm is the 

establishment of an optimal separating hyperplane between points belonging to two 

different classes. The hyperplane is described as optimal in this context, if it has the 

largest margin (the largest distance to the closest data point). The formulation of the 

SVM is presented in the following subsection beginning from the simplest case, which is 

finding the optimal hyperplane separating two linearly separable classes. The 
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formulation is then generalized to handle less restrictive cases, were the classes are not 

linearly separable and the separation isn't perfect (i.e. some controllable error is 

allowed). Figure 4.2 illustrates the concept of optimal hyperplane separating two linearly 

separable classes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

39 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: The optimal hyperplane. 
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4.2 Support Vector Machine Formulation 

 

4.2.1 Classification Support Vector Machine for Linearly Separable Data  

The basic idea behind the support vector machine algorithm is based, in its 

simplest form, on constructing a hyperplane that separates two linearly separable classes 

with the maximum margin. Assume that there is a set of vectors ix each having a label 

iy and that the separating hyperplane is 0. =+ bxw where w is a weight vector. Call the 

shortest distance between the separating hyperplane and the closest positive example +d  

and the shortest distance between the separating hyperplane and the closest negative 

example −d . The margin is defined as the shortest of +d and −d . Assume, also, that the 

separating hyperplane is scaled such that data points satisfy the following constraints: 

1. +≥+ bwxi for 1+=iy  (4-1) 

1. −≤+ bwxi for 1−=iy   (4-2) 

Combining the two equations: 

1).( ≥+ bxwy ii for li ,...,2,1=  (4-3) 

The above two constraints define two parallel hyperplanes with no data points between 

them. These hyperplanes are called the canonical hyperplanes. The optimal separating 

hyperplane is parallel to the canonical hyperplanes and has an equal distance from each 

of them. Normalizing the two planes yields: 

w
bx

w

w 1+
=+  (4-4) 



 

 

41 

w
bx

w

w 1−
=+  (4-5) 

 

The geometric distance between the two planes is then: 

w

2
  (4-6) 

and the margin is half of that: 

w

1
 (4-7) 

The optimum value for the weight vector is the values which maximizes the margin. 

This value can be obtained by minimizing  

2

2

1
w  (4-8)  

The cost function (
2

2

1
w ) and the constraints ( 1).( ≥+ bxwyi ) are used to construct the 

Lagrangian function PL : 
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(where iα  li ,,2,1 K=  are Lagrange Multipliers) 

Minimizing PL  is a convex quadratic programming problem. The dual of this problem 

can be obtained by using the stationarity conditions: 
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Substituting in PL , we get: 
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ααα  (4-12) 

The Lagrange multipliers that maximize the dual Lagrangian DL correspond to the 

weight vector that minimizes the primal Lagrangian PL .Computing the weight vector 

from the Lagrange multipliers can be done through the first stationarity conditions. The 

training data points having non-zero Lagrange multipliers are the points laying on the 

canonical hyperplanes and are called support vectors. Training an SVM machine is 

essentially solving the associated optimization problem in order to identify the support 

vectors and compute the Lagrange multipliers associated with them. The decision 

function (hypothesis) that is based on the optimal hyperplane is: 

bxxyxf ii

l

i

i +=∑
=

.)(
1

α  (4-13). 

  or 

bxsxf i

N

i

i +=∑
=

.)(
1

α    (4-14) 

(where N is the number of support vectors and is  with Ni ,,2,1 K= are the support 

vectors). 

Examples that make the value of the decision function (the hypothesis) negative are put 

in one class and those making the value of the function positive are put in the other class 

[37][38].  
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The trained SVM machine classifies an input pattern (an input vector) by: 

- Performing the dot product operation between the input pattern and each support 

vector. 

- Multiplying the result of the dot product by the Lagrange multiplier associated 

with the support vector with which the dot product was performed.  

- Adding the results of the dot products multiplied by the Lagrangian multipliers. 

- Finding the sign of the summation.  

This is depicted by figure 4.3 
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Figure 4.3: The structure of the basic support vector machine 
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Notice the following about the basic SVM: 

- A trained SVM machine is completely specified by identifying the support 

vectors and the Lagrange multipliers associated with them.  

- The basic SVM can only be used to separate linearly separable data. 

- The basic SVM is a brittle recognition machine that can’t tolerate errors. 

The next sections will present extensions to the basic SVM formulation that will expand 

its applicability to a larger sphere of real-world problems.  

 

4.2.2 Soft Margin Support Vector Machine  

The above formulations lead to a brittle estimator in the sense that no training 

errors are allowed. This can be a problem with real-world systems because of the 

existence of noise in the data and the existence of classification problems that are not 

linearly separable. The following introduces some slackness in the classification support 

vector machine developed above so that some error is tolerated. This is done by 

introducing slack variables that represent a violation of the margin constraints and 

adding them to the cost function so that they are optimized as part of the SVM 

optimization process. With this modification the optimization problem becomes: 

Minimize ∑
=

+
l

i

iCw
1

2

2

1
ζ   (4-15) 

subject to iii bxwy ξ−≥+ 1)).((  (4-16) 

where iξ , li ,,2,1 K= are non-negative slack variables and C is a constant coefficient 

whose best value is determined in practice by experimenting (a regularization 
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parameter). Obtaining the dual of the problem can be performed in a manner similar to 

what was done for the basic SVM formulation [37][38].  

 

4.2.3 Kernel Functions 

The above formulation can be extended for the use in classifying non-linearly 

separable data by projecting data into a high dimensional feature space. A support vector 

machine for separating non-linearly separable data can be built by first using a non-

linear mapping that transforms data from input space to feature space and then using a 

linear machine to separate classes in feature space. A function that represents the dot 

product in the feature space is called a kernel function )().(),( yxyxK φφ=  and since 

data points appear in the dual formulation exclusively as dot products, mapping to 

feature space can be achieved by simply replacing the dot products with kernel 

functions. A formal definition of the kernel function can be stated as: A kernel function 

K is a mapping such that for all x , y belonging to an n-dimensional input space Z, 

)().(),( yxyxK φφ=  where φ  is mapping between the input space Z and a feature space 

F ( FZ →:φ ). By replacing the dot product with the kernel function), the dual 

Lagrangian and the decision function (the hypothesis) become, respectively: 
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Figure 4.4 shows the structure of the SVM with the introduction of the kernel function 
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Figure 4.4: The structure of the support vector machine with kernel functions. 
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A number of different kernel functions can be found in the literature. Examples of kernel 

functions are: 

The polynomial kernel p

ii rxsxxxK ).(),( +=   

The sigmoidal kernel ).tanh(),( rxsxxxK ii +=  

The radial basis function kernel 
22

2/
),(

σixx

i exxK
−−

=   

p (polynomial degree), σ (standard deviation), s and r are parameters whose best values 

for a particular problem are to be determined empirically. Using the polynomial kernel 

produces a decision function that is a polynomial in data points:  

∑
=

++=
sN

i

p

iii brxsxyxf
1

).()( α  (4-19) 

Using the sigmoidal kernel produces a decision function that is equivalent to a two layer 

sigmoidal neural network: 

∑
=
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i

iii brxsxyxf
1

).tanh()( α  (4-20) 

Using the Gaussian Radial Basis Function kernel produces a decision function that is 

equivalent to an RBF network: 

∑
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Notice that the weights of this SVM-created RBF network are the Lagrange multipliers 

and that the centers of the RBF are the support vectors. Since the SVM algorithm 

determines  the support vectors, the Lagrange multipliers and the threshold b 

automatically, it has an advantage over traditional RBF networks. This automatic 
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selection of parameters is optimal since it is based on maximizing the margin of 

separation. An RBF SVM is depicted in figure 4.5. 
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Figure 4.5: The structure of the radial basis support vector machine 
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Different kernel functions with different parameters where explored in this research 

work [37][38][39]. 

 

4.2.4 Support Vector Machine for Multi-Class Classification 

The above formulations handled cases where two classes exist. The two-class 

classification can be generalized to construct n-class classifiers by one of the following 

methods: 

1. Build n classifiers, each capable of separating patterns belonging   to one class from 

all other patterns. 

2. Build the n-class classifier by feeding input to each of the two-class classifiers and 

choosing the class corresponding to the maximum nkxf k ,...,2,1),( = . 

The multi-class problem can be solved in a direct manner as well by generalizing the 

procedure used for the two-class case [40]. 

 

4.3 Numerical Solutions 

Numerical methods for solving optimization problems have been developed in 

the last decades with substantial work in the 1950's and 1960's. Although those can be 

readily applied to the SVM optimization problem and has been actually applied, large 

scale SVM problems pose computational difficulties to the standard optimization 

methods in terms of computational speed and efficiency. Fortunately, the SVM 

optimization problem possesses a number of desirable features that can be leveraged to 

reduce time and space complexity (convergence time and main memory space). 
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Convexity, sparseness and the implicit mapping to feature space, are features that can be 

exploited in designing faster and more computationally efficient algorithms for SVM 

problems. This section discusses the numerical algorithms used for solving SVM 

problems and shows how the mathematical properties of the SVM problem were utilized 

to improve the algorithms used. 

 

4.3.1 Standard Quadratic Programming  

Early on during the development of the support vector machine, generic 

Quadratic Programming (QP) optimization engines were used at the core of the SVM 

solving packages. Several freeware and commercial optimization engines based on 

standard algorithms are available. Examples include Newton methods, the conjugate 

gradient method and the primal dual interior point method [38]. The advantage of using 

such approach is that leveraging existing packages makes developing an SVM package 

much faster. Although, those packages work well for moderately sized to small 

problems they don't scale well for large size problems. The reason is that they need to 

handle the kernel matrix which grows quadratically with the training set size. This 

means that, assuming that each element is stored in an eight byte double precision 

number, almost three gigabytes of RAM are needed for a training set of 20,000 points. 

Even with sufficient memory, convergence speed suffers adversely as problems of larger 

scale are approached (a matrix where element are formed by applying the kernel 

operation between every possible pair of training points) [41]. 
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 4.3.2 Chunking  

In order to solve the scaling problem presented above, a number of methods have 

been devised. All of them are based on breaking the QP problem into smaller QP 

problems. Chucking was the first algorithm devised based on this approach. Chunking 

starts by selecting a partial set of the data and then limits training to the selected set. The 

support vectors found by training over the subset are used to form a hypothesis which is 

used to test all other data points. A number of points chosen according to a heuristic are 

added to the support vectors found so far and the whole working set is then used for 

training in the next iteration. The working set typically grows with each iteration until it 

eventually contains the support vectors only. Although chunking still relies on a generic 

optimization engine, the memory space requirements are reduced as the sub-problems 

solved at each iteration need less memory compared to the original problem [41]. 

 

4.3.3 Decomposition  

Decomposition is another method for breaking up the SVM problem to smaller 

problems and is conceptually similar to chunking. The working set performs training on 

a fixed size set of points in each iteration. At any stage, adding a number of points to the 

working set must be accompanied by removing an equivalent number of points. The 

advantage of decomposition is that the fixed size of the working set can be chosen so 

that it fits in memory which enables the algorithm to handle problems with arbitrary size 

[41]. 
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4.3.4 Sequential Minimal Optimization (SMO)  

Sequential minimal optimization (SMO) is a variation of decomposition that has 

a working set size of only two points. Limiting the working set to two points has several 

performance advantages. First, the memory requirements are minimal and data sets of 

arbitrarily large sizes can be handled. Second, with only two variables considered in the 

optimization process at every step, an analytical solution can be hard-coded into the 

inner loop and invoking a QP optimization engine can be avoided completely. Avoiding 

the processor intensive QP inner loop significantly improves the convergence speed. In 

addition, the training becomes less susceptible to numerical precision problems.  

The convergence speed of SMO is greater than the preceding methods by orders 

of magnitude. Two extra algorithm enhancements can be used to speed the convergence 

of the basic algorithm further. First, kernel evaluations can be cached. Second, selection 

of the two points that are to be jointly optimized could be based on heuristics rather than 

making it arbitrary. The selection heuristic gives higher priority for the points which 

when optimized, contribute more to the progress towards the solution [41]. Figure 4.6 

provides a visual comparison between the different numerical approaches for training 

the SVM. It represents how many points of the original problem are retained after each 

algorithm iteration.  
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Figure 4.6: Numerical solutions for the SVM 
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4.4.5 SVMTorch 

The SVM software package used for this work is the SVMTorch II [33]. 

SVMTorch II is a package developed in C++ by Ronan Collobert and Samy Bengio and 

is free for academic use. For classification, SVMTorch II implements an enhanced 

version of SMO based on the work of Keerthi and Gilbert [42].  
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CHAPTER 5 

 

METHODOLOGY AND RESULTS 

 

5.1 Feature Extraction 

Features are extracted from the raw data to be used as inputs to the learning 

machine. Each feature vector is then given a numerical label to identify the sign it 

represents. Time division is considered a low-level feature extraction approach, yet it is 

an effective one. With time division, the time over which the sign is performed is 

divided into segments and the average of each primitive attribute (x,y,z, rotational and 

flex values) is computed over each segment. This average over the ith segment can be 

mathematically expressed as:  

∑
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i dii
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x
s 10,

1
  (5-1) 

where: 

d:  The number of time segments.  

i: The segment index. 

j: The frame index (starts from j=1) 
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n: The total number of frames received during the signing time. 

li: The index of the first frame in segment i. 1+





=

d

n
ili  

ui:  The index of the last frame in segment i. 





+=

d

n
iui )1(  

Assume, for example, that during the signing time eight frames were received, 

then for a two-segment time division the time average for x over the first segment ( 0s ) is 

calculated as:  
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Thus, a continuous stream of frames is generated by the glove as the hand performs the 

sign. Each frame bears an instantaneous measurement of each of the following eight raw 

measurements: the x position of the hand, the y position, the z position, the roll of the 

hand, the flex of the thumb, the flex of the index finger, the flex of the fore finger and 

the flex of the ring finger. The features used as inputs to the pattern recognition 

algorithm are time division averages of the raw measurements. Time division averages 

are computed by dividing the entire time during which the sign was performed into a 

number of equal segments and then finding the average of each of the eight raw 

attributes over each segment. Within a segment, the average value of a certain raw 

measurement is taken over all frames generated during that segment [27]. The length of 

the feature vector will be eight times the number of time segments. Different numbers of 
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segments were explored in this research work. Figure 5.1 illustrates the feature 

extraction process.  
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Figure 5.1: Extracting time division averaging features. 
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The fact that this approach for feature extraction reduces the data to fixed sized 

features that are based on averaging provides the learning machine with smoother data 

with less noise. This approach has also the advantage of being relatively invariant with 

respect to the total time taken by a signer to complete a sign. This is because sign 

language performers generally maintain the relative timing between the hand 

movements composing the sign, regardless of the signing speed. In that regard, sign 

language speakers are just like vocal speakers who generally keep the same relative 

speaking speed while pronouncing a word regardless of the speed with which they talk 

[27]. The feature vector extracted through time division segmentation can be seen as an 

approximate trajectory of the sign (A rough approximation of the path the hand takes 

while performing the sign). A three dimensional plot for this trajectory for the sign 

“Allah” (God) is shown in figure 5.2.   
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Figure 5.2: The trajectory of the sign “Allah” in space. 
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The sign for “Allah” is performed by raising the hand and pointing upward. Notice in 

the figure how the hand tends to move towards the right before it is raised. The 

following plots show each of the eight basic measurements plotted over all frames 

received from the glove during the performance of the sign “Allah”. Points representing 

the measured value at each frame are plotted for X,Y and Z, while roll and finger flexes 

are represented using a step graph. This is done as the roll and flex can only take one of 

few discrete values. Measurement points for X, Y and Z are connected to enable the 

visualization of an approximate trajectory of the hand with respect to the measured 

dimension. The units used don’t correspond to any standard units and while the 

usefulness of the measurements would be more with the usage of standard units, neither 

the original functionality of the PowerGlove as intended by the manufacturer nor its 

functionality as used in this research work require it as long as the measurements are 

consistent.  
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Figure 5.3: The x values for the sign “Allah” 

 

 

 

 

 

 

 

 

 

Figure 5.4: The y values for the sign “Allah” 
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Figure 5.5: The z values for the sign “Allah” 

 

 

 

 

 

 

 

 

 

Figure 5.6: The roll values for the sign “Allah” 
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Figure 5.7: The thumb flex values for the sign “Allah” 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: The index flex values for the sign “Allah” 
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Figure 5.9: The forefinger flex values for the sign “Allah” 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: The ring flex values for the sign “Allah” 
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The following plots the time segmentation features extracted from the sign “Allah” with 

10 time segments (80 features).  
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Fig 5.11: X time average for the sign “Allah” 

 

 

 

 

 

 

 

 

 

Fig 5.12: Y time average for the sign “Allah” 
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Fig 5.13: Z time average for the sign “Allah” 

 

 

 

 

 

 

 

 

 

Fig 5.14: Roll time average for the sign “Allah” 
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Fig 5.15: Thumb flex time average for the sign “Allah” 

 

 

 

 

 

 

 

 

 

 

Fig 5.16: Index finger flex time average for the sign “Allah” 
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Fig 5.17: Forefinger flex time average for the sign “Allah” 

 

 

 

 

 

 

 

 

 

 

Fig 5.18: Ring finger flex time average for the sign “Allah” 
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5.2 Data Collection 

Three individual adults from the deaf community volunteered to perform the 

signs to generate samples for the learning machine. The individuals were chosen among 

adults to insure their fluency in sign language and the accuracy of their signs. More than 

twenty samples were collected per sign for each person (a total of around 10,000 

samples). The signer starts with his right hand resting on the table on which the screen is 

positioned and then presses the ``center button'' on the glove to signal the start of the 

sign. As soon as the sign is completed, the ``A'' button is pressed. This is repeated about 

20 times for each sign. Raw measurements are continuously sent by the glove to the host 

machine at an average rate of 23 frames per second [33]. Frames assume the AGE 

format illustrated previously.  

 

5.3 System Performance 

The training data for each sign consisted of 36 samples, while testing data for 

each sign consisted of 18 samples. For each word, 12 samples were taken for training 

per person, while 6 samples per person were taken for testing. Some preliminary results 

has been reported in [43]. The highest accuracy was realized by using a radial basis 

function kernel with a time segmentation of ten (80 features). This was achieved when 

the standard deviation was 10 and C was 10. With those parameters, an accuracy of 

about 70% was achieved for a word set of 120 words, while accuracy above 90 % was 

achieved for a word set of 10 words. The parameter selection process is explained in the 

following paragraphs. 
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As illustrated earlier, the SVM has a number of adjustable parameters whose 

values must be determined through trails in order to find the combination of parameter 

values leading to the least generalization error (least error on the testing set of samples). 

The kernel to be used, the values of kernel-specific parameters not automatically 

computed by the SVM and the value of the regularization parameter C are all to be 

empirically through iterative trial. Aside form the SVM-related parameters, the length of 

the feature vector (the number of features extracted per sample) that leads to the least 

generalization error is also to be determined empirically. The strategy adopted for 

parameter selection is to start with running a number of simulations with different values 

to get a sense about the range within which reasonable values lie and then narrow down 

the range through several iterations of simulations to fine-tune the values of the 

parameters for better generalization. Initially, a set of ten words is considered with a 

time segmentation of ten. After fine-tuning the SVM parameters, larger word sets (up to 

a maximum of 120 words) and different time segmentations (number of features per 

sample) are considered. The following will explain how the SVM parameters were 

chosen using this strategy.   

Several kernel functions were tried. Linear SVM and SVM with the sigmoidal 

kernel didn’t produce any useful results. In both cases, the SVM mostly didn’t converge. 

Better results were obtained by using polynomial kernel of the second degree. The best 

value of the s parameter was found to be .0002 (while fixing r at 10 and C at 10). Fixing 

the value of s at .0002 and trying different values for r over the range from 1 to 10 with 

an increment of 1 we find that the best value is 10. Since the value is at the end of the 

considered range, different values of r over the range of 10 to 100 with an increment of 
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10 were tried. In that range the best value was found to be 90. The range of values of 

100 to 1000 with an increment of 100 was then tried to insure that the best value for r 

lies between 10 and 100. Accuracy was found to be less in that range, so the focus was 

narrowed down to the range of 85 to 95. It was found that the best value for r was 89. 

With 89,0002. == rs , different values of C were tried. The best value of C was found 

to be 10. With ,10,89,0002. === Crs the system achieved accuracy just below 90% 

for a set of 10 words. Figures 5.19 to 5.24 show recognition accuracy using the 

polynomial kernel with different parameters.  
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Figure 5.19: Accuracy for different S values for the polynomial kernel (.0001-.0011)  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.20: Accuracy for different R values for the polynomial kernel (10-100)  
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Figure 5.21: Accuracy for different R values for the polynomial kernel (100-1000). 

 

 

 

Figure 5.22: Accuracy for different R values for the polynomial kernel (1-10) 
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Figure 5.23: Accuracy for different C values for the polynomial kernel (1-10) 
 

 
 

Figure 5.24: Accuracy for different C values for the polynomial kernel (10-50) 
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An accuracy of above 90 % was achieved using a radial basis function kernel. The 

standard deviation is the only adjustable kernel-specific parameter of the SVM 

constructed using RBF kernels as weights and function centers are automatically 

determined by the SVM algorithm. As mentioned earlier 10 was found to be the best 

value for both the standard deviation and for C. Since the RBF kernel was found to 

outperform other kernels, accuracy was computed for different time segmentations 

(number of features) and for different word sizes. As expected, the accuracy decreased 

with the number of words considered. Going beyond 10 segments (more than 80 

features) doesn’t yield better system performance.  System performance for an SVM 

with an RBF kernel for a variety of parameters is illustrated in figures 5.25 to 5.31.   
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Figure 5.25: Accuracy for different time segmentations for the RBF kernel (1-5) for ten 
words 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.26: Accuracy for different time segmentations for the RBF kernel (6-10) for 
ten words 
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Figure 5.27: Accuracy for different time segmentations for the RBF kernel (1-5) for ten 
words 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.28: Accuracy for different time segmentations for the RBF kernel (6-10) for 
sixty words. 
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Figure 5.29: Accuracy for different time segmentations for the RBF kernel (1-5) for one 
hundred and twenty words 

Figure 5.30: Accuracy for different time segmentations for the RBF kernel (6-10) for 
one hundred and twenty words 
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Figure 5.31: Accuracy for different time segmentations for the RBF kernel (7-20) for 
one hundred and twenty words 
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The generalization performance of an SVM is inversely proportional to the 

number of data points identified as support vectors. The percentage of data points that 

are support vectors is a bound on the expected generalization error [38]. This 

relationship between the number of support vectors and the generalization error is 

evident in the results obtained in this research work. Tables 5.1 and 5.2 show the error 

and the average number of support vectors for various values of C when using the radial 

basis function kernel with a standard deviation of 10 with 10 words and 10 time 

segments.   
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TABLE 5.1: Error Percentages for Different Numbers of Support Vectors for 10 words  

C Average Number of 

Support Vectors 

Percentage of 

Support Vectors 

Training 

Accuracy 

Testing 

Accuracy 

10 67 18.61 99.44 90.00 

20 71 19.72 96.94 86.67 

30 82 22.78 95.00 82.78 

40 88 24.44 94.17 84.44 

50 90 25.00 90.83 81.67 

 

 

TABLE 5.2: Error Percentages for Different Numbers of Support Vectors for 120 words  

C Average Number of 

Support Vectors 

Percentage of 

Support Vectors 

Training 

Accuracy 

Testing 

Accuracy 

10 123 2.92 95.67 69.90 

20 122 2.89 87.54 62.49 

30 132 3.13 83.83 59.07 

40 140 3.32 81.7 57.26 

50 143 3.40 80.39 56.41 
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5.4 Limitations 

The deficiencies of the PowerGlove are the main factors limiting the accuracy of 

the system. In addition to being single-handed, the sensors of the PowerGlove are 

susceptible to hysteresis. The glove sometimes sends data that is correlated to some 

extent with the previous signal rather than data that is completely independent of 

preceding signs. 

Another factor affecting the glove's accuracy is that the ultrasonic acoustic 

mechanism used for position tracking is susceptible to random ultrasonic noise resulting 

from fluorescent light bulbs and signal reflections on rigid surfaces. It is also susceptible 

to the loss of line of sight during some signals. The limited accuracy of the sensors is 

also a major disadvantage of the PowerGlove. Flex sensors are only available for four 

fingers. Yet, only two bits of resolution are available for storing finger bend 

measurements and the abduction between fingers isn't measured. Roll is the only 

rotational measurement available (yaw and pitch aren't measured).  
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CHAPTER 6 

 

CONCLUSION AND FUTURE WORK 

 

6.1 Conclusion  

A main objective of this research work is to contribute to the community of 

physically challenged people by offering a simple interface device that aids 

communication. Another main objective is to investigate an unexplored area of 

application of the SVM algorithm which is a relatively new algorithm that has shown 

promising results in many real-world applications. The thesis is also a contribution to the 

research in Arabic Sign Language which has no research done in its automated 

recognition. Achieving cost effectiveness, reasonable performance and the use of off-

the-shelf components are main design objectives. Although the system's performance is 

limited by the PowerGlove's deficiencies, the system has demonstrated reasonable 

performance and designing it can be seen as stepping stone for the development of more 

sophisticated systems with better generalization performance and better response.  
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6.2 Future Work 

The performance of the system can be greatly enhanced by utilizing a glove with 

higher accuracy (such as the CyberGlove). Following the general trend in electronic 

devices, the availability and of such an option at a reasonable price is expected. 

Optimizing the code implementing pattern recognition engine and running it on a 

dedicated processing machine can add to the performance of the system as well. Using 

two hands rather than one is an option worth investigating in future works. Using more 

sophisticated features could be also tested in future works.  
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NOMENCLATURE 

ix     An input vector 

is   A support vector 

iy    A classification label 

 w    Weight vector b 

 b   Threshold 

+d    Positive example margin  

−d    Negative example margin 

l       Number of data examples 

N   Number of support vectors 

PL   Lagrangian 

DL   Dual Lagrangian  

iα    A Lagrange Multiplier 

)(xf     The decision function (hypothesis)  

),( yxK   A kernel function  

φ    Mapping from input to feature space  

Z   Input space  

F   Feature space 
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