

DEDICATION

This thesis is dedicated to my parents

for the love and support I received all the way in my studies.

To my mother for here sacrifices for bringing the happiness into my life.

To my father who has been a great source of motivation and inspiration.

iii

ACKNOWLEDGEMENTS

First and foremost, all praise to the Almighty Allah for His countless blessings.

Acknowledgement is due to King Fahd University of Petroleum & Minerals and the

College of Computer Science & Engineering for all the support to this work.

My sincere appreciation goes to my advisor, Dr. Muhammad Alsuwaiyel for his

incomparable guidance, support, and encouragement given to me throughout the course

of this work.

Many thanks to my committee members, Dr. Abdallah Al-Sukairi and Dr. Sahalu Junaidu

for all the help and support I received.

I offer my deepest gratitude and appreciation to Dr. Lahouri Gouti for his unstinting

commitment and generous support to help me through this work to its final completion,

also for his insightful comments and wise guidance during my thesis progress.

Finally, acknowledgments are extended to my parents, family members, and sincere

friends for their continuous prayers, encouragement, and moral support.

iv

TABLE OF CONTENTS

DEDICATION …………………………………………………………………... iii

ACKNOWLEDGEMENTS …...………………………………………………... iv

TABLE OF CONTENTS …………………..…………….………........….…..... v

LIST OF TABLES ………………………………..…………….………...…….. ix

LIST OF FIGURES …………………………………..…………….………….. xiii

THESIS ABSTRACT (ENGLISH) ………………..…………….………...…… xv

THESIS ABSTRACT (ARABIC) ………………..…………….………...…….. xvi

Chapter 1:

 Introduction …………………………….……………….……………..... 1

1.1 Statement of the Problem …………………………….….…………………… 3

1.2 Justification for and Significance of the Study ………………………………. 4

1.3 Thesis Organization ……….………………………….………....…………… 6

Chapter 2:

 Software Copyrights and Ownership Authentication …………........... 7

2.1 General Background on Software protection ….…………………. 7

2.2 Causes for Software Piracy ….…………………………………… 8

v

2.3 Research on Watermarking ………………………………………. 10

Chapter 3:

 Different Security Techniques ……... 12

3.1 Hardware Techniques…………………………………..……... 13

3.2 Software Techniques……………………………………........... 14

3.2.1 Encryption ……………………………………………… 15

3.2.2 Software Token ………………………………………… 15

3.2.3 Software Aging ……………………………………….... 16

3.2.4 Obfuscation and Tamer-proofing ……………………… 16

3.2.5 Watermarking …………………………………………... 16

Chapter 4:

 Studying Watermarking with Java …………………………..…........... 19

4.1 Why Java? ………….…………………………………………….. 19

4.2 Java Virtual Machine and Byte code ……………………….......... 20

4.3 Sandmark ……………………………………………………........ 20

Chapter 5:

 Comparative Study on Different Watermarking Techniques ……….. 23

5.1 Definition ……………………………………………..…….……. 23

5.2 Watermarking Classifications ……………………………………. 23

5.3 Software Watermarking Actors …….……………………………. 26

5.4 Static and Dynamic Watermark ………………………………….. 26

5.4.1 Static Watermark ……………………………………….. 27

5.4.2 Dynamic Watermark …………………………………… 28

vi

5.5 Static Watermarking Techniques ………………………………… 29

5.6 Dynamic Watermarking Techniques …………………….…….. 31

5.6.1 Dynamic Graph Watermarking ………………………… 31

5.6.2 Data Structures ………………………………………… 33

5.6.3 Execution Trace ……………..………………….……… 34

5.6.4 Easter Egg ……………………………………………… 35

5.7 Software Watermarking by Diversity ………………………..… 35

5.8 Other Software Watermarking Algorithms …………………….. 36

5.9 Attacks on Software Watermark ………………..……..……….. 37

5.10 Watermark Protection

………………………………..……..…..

42

Chapter 6:

Overview of the Proposed Work …..………..………………………………….. 43

6.1 The need for Evaluation Benchmarking …...….…………………. 43

6.2 Reminiscent Work ……………………...….…………………….. 44

6.3 Study Approach ……………………...….………………….……. 47

6.4 Proposed Evaluation Factors…...….………………….….……….. 48

6.4.1 Size Efficiency (data rate/capacity) ………………...……. 48

6.4.2 Time Efficiency ……………………………………..…… 49

6.4.3 Resilience Against Transformation Attacks (Robustness) 50

6.4.4 Stealth (Invisibility/Perceptibility) ………………………. 50

6.4.5 Nature of Watermarking Algorithm ……………………... 51

6.4.6 Other Factors …………………………………………… 52

Chapter 7:

Experiments and Results …..………..…………………………..……………… 55

vii

7.1 Experimenting Tools and Environment…...….…………..………. 55

7.2 Evaluation of Watermarks and Applications…...….……………... 56

7.3 Experimentation and Testing ……………………...….………….. 59

7.3.1 Size ……………………………………………………... 59

7.3.2 Time ……………………………………………………. 62

7.3.3 Obfuscation Attacks…………………………………….. 64

7.3.4 Optimization Attacks …………………………………... 66

7.3.5 Collusive Attacks ………………………………………. 67

7.3.6 Manual Attacks ………………………………………… 68

7.4 Analysis and Observations ……………………...….…………….. 69

7.4.1 Size ……………………………………………………... 69

7.4.2 Time ……………………………………………………. 69

7.4.3 Obfuscation Attacks…………………………………….. 82

7.4.4 Optimization Attacks …………………………………... 83

7.4.5 Collusive Attacks ………………………………………. 84

7.4.6 Manual Attacks ………………………………………… 84

Chapter 8:

Conclusion …..………..……………………………………….…………………. 87

8.1 Findings and Results …..….…………..………………………….. 87

8.2 Summary of Contributions …...….……………………………….. 88

8.3 Limitations and Future Work …………………………………….. 89

REFERENCES ………………………………………..…………………....….... 91

APPENDIX ………………………………………..…………….………...….…. 94

VITA ……………………………………..…………….………...….…................ 105

viii

ix

 LIST OF TABLES

Table.1: List of applied obfuscation techniques ………………………………… 22

Table.2: Classification of watermarking techniques according to [4] …………..

25

Table.3: Classification of watermarking techniques according to [5] …………...

25

Table.4: Examples of simple transformation attacks …………………………….

38

Table.5: Summary of proposed evaluation factors ………………………………

54

Table.6: Watermarks techniques used in the experimentations ………………….

57

Table.7: Obfuscation techniques used in the experimentations ………………….

57

Table.8: Sample applications used in the experimentations ……………………..

58

Table.9: Size of applications without watermarks being embedded ……………..

59

Table.10: Size of applications after watermarks being embedded ……………….

59

Table.11: Size of watermarks being embedded ………………………………….

60

Table.12: Percentage of change after embedding watermarks …………………..

60

Table.13: Execution time of applications without watermarks being embedded ..

62

x

Table.14: Execution time of applications after watermarks being embedded …...

62

Table.15: Execution time of watermarks being embedded ………………………

63

Table.16: Percentage of change of execution time after embedding watermarks ..

63

Table.17: Effect of Array Splitter Obfuscation attack …………………………...

64

Table.18: Effect of Block Make Obfuscation attack ……………………………..

65

Table.19: Effect of Bludgeon Obfuscation attack…………………………...........

65

Table.20: Effect of Class Encrypter attack …………………………....................

65

Table.21: Effect of Inliner optimization attack …………………………..............

66

Table.22: Effect of Variable Reassigner optimization attack ……………………

66

Table.23: Effect of adding the same watermarking algorithm twice to the first

watermark …………………………..

67

Table.24: Effect of adding the same watermarking algorithm twice to the second

watermark …………………………..

67

Table.25: Effect of adding different watermarking algorithm …………………...

68

xi

Table.26: Effect of Manual attacks on “spiro” application ……………………… 68

Table 27: Classification based on Expansion in Size

69

Table 28: Classification based on Expansion in Time

70

Table.29: Size over time ratio with no watermarks ………………………….......

70

Table.30: Size over time ratio with String Constant watermark …………………

71

Table.31: Size over time ratio with Stern watermark …………………………....

72

Table.32: Size over time ratio with Register Type watermark …………………..

73

Table.33: Size over time ratio with QuOotkonjak watermark …………………...

74

Table.34: Size over time ratio with Monden watermark …………………………

75

Table.35: Size over time ratio with GTW watermark ……………………………

76

Table.36: Size over time ratio with AddMethodField watermark ……………….

77

Table.37: Size over time ratio for XMLTree Application ……………………….

78

Table.38: Percentage of Size over time ratio for XMLTree Application ………...

79

Table.39: Size over time ratio for spiro Application …………………………......

80

xii

Table.40: Percentage of Size over time ratio for spiro Application ……………...

81

Table 41: Classification based on Size over Time Expansion

82

Table 42: Classification based on Obfuscation attack

83

Table 43: Classification based on Optimization attack

83

Table 44: Classification based on Collusive attacks

84

Table 45: Classification based on Manual attacks

85

Table.46: Summary of proposed benchmarking scheme for SW ………………..

86

xiii

LIST OF FIGURES

Figure 1: Software piracy cost in the world-wide in year 2003 …………………. 2

Figure 2: Average Software piracy rates based on regions of the world ………... 3

Figure 3: The graph only includes citing articles where the year of publication is

known for the paper by Ingemar J. Cox, Joe Kilian, Tom Leighton, Talal

Shamoon. “Secure Spread Spectrum Watermarking for Multimedia” (1995) …… 5

Figure 4: The graph only includes citing articles where the year of publication is

known for the paper by Christian Collberg, Clark Thomborson. “On the Limits

of Software Watermarking” (1998) ……………………………………………… 5

Figure 5: Example code before applying obfuscation techniques ………………. 21

Figure 6: Code after the effect of applying multiple obfuscation transformations. 22

Figure 7: Example of a data structure watermark .………………………………. 34

Figure 8: Percentage of change of size after embedding watermarks …………… 61

Figure 9: Percentage of change of size after embedding watermarks …………… 61

Figure 10: Percentage of change of execution time after embedding watermarks 64

Figure 11: Size over time ratio with no watermarks …………………………….

71

xiv

Figure 12: Size over time ratio with String Constant watermark ……………….. 72

Figure 13: Size over time ratio with Stern watermark …………………………... 73

Figure 14: Size over time ratio with Register Type watermark …………………. 74

Figure 15: Size over time ratio with QuOotkonjak watermark ………………….. 75

Figure 16: Size over time ratio with Monden watermark ……………………….. 76

Figure 17: Size over time ratio with GTW watermark ………………………….. 77

Figure 18: Size over time ratio with AddMethodField watermark ……………… 78

Figure 19: Size over time ratio for XMLTree Application ……………………… 79

Figure 20: Percentage of Size over time ratio for XMLTree Application ………. 80

Figure 21: Size over time ratio for spiro Application …………………………… 81

Figure 22: Percentage of Size over time ratio for spiro Application ……………. 82

xv

THESIS ABSTRACT

Name: Mohannad Ahmad AbdulAziz Al-Dharrab

Title: Benchmarking Framework for Software Watermarking

Major Field: Information & Computer Science

Date of Degree: June 2005

Software watermarking is one of the most important methods for protecting copyrights

and authenticating ownership; and hence preventing software piracy. It received more

attention recently and it is expected to even get more interest. However, in all the work

done in this area, none of them have used a specific or a particular evaluation measures to

criticize the proposed software watermarking technique.

In this thesis, several issues related to software watermarking were studied and a survey

was conducted on the current and promising new techniques designed to reliably preserve

and protect software programs. Different software watermarking techniques and attacks

to those techniques were classified and evaluated. A promising benchmarking framework

for software watermarking techniques was proposed, based on the results of conducted

experimentations, which allows for measuring the efficiency of current and possibly

future proposed software watermarking schemes. This will allow comparing different

watermarking techniques and will lead to speeding up the potential research work in this

area.

xvi

xvii

 ملخص الرسالــة

 مهند بن أحمد بن عبدالعزيز الضراب :الاســــــــــــــــم

 مقاييس وتقييم تقنية البصمة المائية في البرمجيات :عـنوان الرسالة

)Benchmarking framework for software watermarking(

 علوم الحاسب الآلي والمعلومات :التخصـــــــــص

 هـ1426الآخر ربيع :تاريخ الشهــادة

تعد البصمة المائية في البرمجيات أحد أهم الطرق لحماية وتوثيق حقوق الملكية للبرامج، وبالتالي منع قرصنة

ولقد حظيت البصمة المائية وتأثيرها في البرمجيات على اهتمام الباحثين مؤخراً، ويتوقع لها المزيد من . البرمجيات

الرغم من وجود عدة أبحاث في هذا المجال، إلا أن أياً منها لم يتطرق إلى وعلى . الاهتمام في المستقبل القريب

استخدام طريقة معينة للقياس أو التقييم أو حتى للحكم على التقنية المقترحة لاستخدام تقنية البصمة المائية في

 .البرمجيات

في هذه الأطروحة تمت دراسة العديد من المواضيع ذات العلاقة بالبصمة المائية في البرمجيات آما درست تقنيات

بالإضافة إلى تصنيف وتقييم العديد من التقنيات المختلفة لاستخدام أو . مختلفة ومعتمدة صممت لحفظ وحماية البرامج

راسة التحليلية وبناءاً على نتائج التجارب والاختبارات التي وآنتيجة للد. مهاجمة البصمة المائية في البرمجيات

أجريت في هذا البحث، فقد تم وضع طريقة مبتكرة وضوابط لاختبار وتقييم التقنيات المختلفة لوضع البصمة المائية

. و المستقبليةفي البرمجيات، وبالتالي إمكانية قياس فعالية وآفاءة تقنيات البصمة المائية في البرمجيات الحالية أ

وستساعد هذه الطريقة على إيجاد آلية واضحة ومحددة لمقارنة تقنيات مختلفة للبصمة المائية في البرمجيات، وبالتالي

 .الإسهام في تطوير وتسريع الأبحاث المستقبلية في هذا المجال

1

CHAPTER 1

INTRODUCTION

Software piracy became a major problem with the fast and vast growth in the use of the

internet. Moreover, the new computer technologies such as the ability to copy CDs fast

and easily aided in increasing software piracy. In fact, many people consider software too

expensive to buy and they lack the respect and enforcement of intellectual properties

laws. Specialists believe that there is no technique that can prevent all kinds of software

piracy though the effort on preventing software piracy is continuing, and hence, the goal

is to raise the cost for software pirates.

According to the Business Software Alliance organization (BSA), software piracy caused

a loss of nearly $29 billion in year 2003 only, which is 36% of software installed on

computers worldwide in the same year. The study, conducted for the first time by global

technology research firm International Data Corporation (IDC), incorporated major

software market segments including operating systems, consumer software and local

market software. The study found that while $80 billion in software was installed on

computers worldwide in 2003, only $51 billion was legally purchased [11]. See figure1

for more details.

2

Figure 1: Software piracy cost in the world-wide in year 2003

In 2004, the losses due to software piracy increased from $29 billion to $33 billion

though the percentage of pirated software installed dropped one percent from 36% to

35%. The legally purchased software cost more than $59 billion compared with $51

billion and total cost of software installed was over $90 billion compared to $80 billion in

2003. According to BSA president and CEO Robert Holleyman: “Worldwide, one out of

every three copies of software in use today has been obtained illegally. These losses have

a profound economic impact in countries around the world. Every copy of software used

without proper licensing costs tax revenue, jobs, and growth opportunities for burgeoning

software markets." [21]

3

Figure 2: Average Software piracy rates based on regions of the world

1.1 Statement of the Problem

Software watermarking is one of the most important methods in software ownership

arking, a secret message including the digital rights

ork defined for

evaluating and standardizing different software watermarking algorithms. The main

authentication. In software waterm

information is embedded in the software. This secret message can be retrieved later when

authentication is required. In this thesis, a survey was conducted on the current and

promising new techniques designed to reliably preserve and protect software programs.

Different software watermarking techniques and attacks to those techniques were

classified and evaluated. The objective was to achieve high embedding capability while

maintaining high protection level with an acceptable execution cost for a watermarked

software program.

Current stat of art of research on software watermarking has no framew

4

contributing of this thesis is to propose a promising benchmark for software

watermarking techniques which allows for measuring the efficiency of current and

possibly future proposed software watermarking schemes. This will allow comparing

different watermarking techniques and will lead to speeding up the potential research

ork in this area.

iniscent of multimedia watermarking where research community

did not perceive its importance instantaneously as it was with Cox’s paper. As shown in

Figure 3, we illus ultimedia

waterm

other hand, Figure 4 illustrates

potentiality and m

w

1.2 Justification for and Significance of the Study

“Software watermarking is an area that has received very little attention. This is

unfortunate since software piracy is rampant. A sizeable fraction, estimated at 39% with

a valuation of 13 billion dollars, of business application software is installed annually

without a license [BSA2003, Malhotra94].” [4].

As mentioned above, research on this area is still considered new and the work done in

software watermarking is not much. The area of software watermarking also lacks

standardization and efforts done in software watermarking patents are yet limited. The

problem at hand is rem

trate the impact of Cox’s work on subsequent research in m

arking. This shows that it has taken four years for the concept to sell itself. On the

the early life of software watermarking by showing the

odernity in subsequent research for the work of Collberg and

5

Thomborson in one of their initial papers where they addressed the problems of software

watermarking.

Figure 3: The graph only includes citing articles where the year of

publication is known for the paper by Ingemar J. Cox, Joe Kilian, Tom

pread Spectrum Watermarking for Leighton, Talal Shamoon. “Secure S

Multimedia” (1995) [from CiteSeer.IST].

Figure 4: The graph only includes citing articles where the year of publication is

known for the paper by Christian Collberg, Clark Thomborson. “On the Limits of

Software Watermarking” (1998) [from CiteSeer.IST]

6

portance of

software copyrights and ownership authentication. In Chapter 3, different security

techniques such as hardware and software techniques are mentioned. The following

chapter explains the reason of studying watermarking with java in this thesis. Next, a

comparative study on different watermarking algorithms, including static and dynamic

watermarks, is presented. Also, several possible attacks on software watermarks are

analyzed. The major contributions in this thesis are shown in chapters 6 and 7. Chapter 6

is about an overview of the proposed work. First, the need for evaluation benchmarking

and some reminiscent unrelated work is presented. Then, our study approach is

enlightened. After that, the proposed benchmarking factors are explained in details. In

chapter 7, experimentation results, analysis, and observation are presented. Contributions

and results of this thesis are summarized in chapter 7 as well. In the last section, the

limitations of the work done and future work are addressed.

1.3 Thesis Organization

The rest of the thesis is organized as follows. Chapters 2 discuss the im

CHAPTER 2

SOFTWARE COPYRIGHTS AND

OWNERSHIP AUTHENTICATION

2.1 General Background on Software protection

No existing protective measure succeeded in preventing software piracy. Although most

software piracy cases can be discovered, following every single case is not feasible and

considered costly. In addition, it could take quite some time which might also negatively

lead to sliming down the reputation of the software company [1].

In most existing software protection schemes, the nature of defense is by building static

techniques in the distributed software. However, breaking the protection once will mean

that the software is no more protected. Therefore, no existing technique is perfectly

immune to protection attacks [1].

Only few patents exist in computer software protection area. The first one was published

in 1994 and claims a method to produce copies of a master file. The basic idea is to put a

predetermined block of data within a master copy of a software file. This idea is most

7

8

suitable for software distributed over the internet [10]. Another patent claims a method

for disabling software copies that are not authorized. It depends on having a set of

numbers defined based on an unusual mathematical property [19].

In 1996, a new patent was published which provides a method for generating and

auditing a unique signature for executable software. It helps in identifying authorized and

non authorized copies [9]. A digital watermarking method became a patent in 1998 aimed

to make copy protection of computer software. It encodes and protects computer code

copyrights by encoding the code with a digital watermark [13]. This patent is considered

the beginning of having watermarks in software programs.

2.2 Causes for Software Piracy

Software creators should think of there software legal users, illegal users, and attackers.

In fact, security and copyright issues should be thought of during the software

development life cycle as a whole.

Nowadays, software systems are not created by only one single vendor. Instead, multiple

parts or subsystems can be assembled together to make the complete software system.

This approach brought what is known as commercial off the shelf (COTS) to the software

industry. Benefits of having COTS, like saving money, time, and effort, increased the

need of such COTS subsystems and their vendors. As a result, those COTS vendors are

concerning protecting copyrights and preventing piracy to their software, and hence, they

9

sell their software products as binary codes or black box components, without giving the

design and source code [18].

A driving factor for software piracy is that the cost of producing first copy is very high

while producing the following copies is very cheap. Therefore, it’s worth adding more

value on the marginal cost of producing subsequent copies by making every copy

somehow unique. This could be done by having different license number, license file,

activation code, decryption key, or fingerprint. However, those unique identifications are

not part of the original program and they were added just for protecting the copyrights.

This is why they are easy to remove [1].

The fact that some software products are very expensive, almost with the same cost of

personal computer, has increased the piracy activities and encouraged individuals to

search for illegal low-priced copied software. Software piracy became the business for

some individuals and organizations in countries where copyright laws are not seriously

enforced. In fact, some illicit organizations are distributing and exporting millions of

pirated copies. Resources showed that around 20 billion US dollars are lost yearly only

because of software piracy [18].

10

2.3 Research on Watermarking

Watermarking is defined in the Oxford English Dictionary as follows: “a distinguishing

mark or device impressed in the substance of a sheet of paper during manufacture,

usually barely noticeable except when the sheet is held against strong light” [14].

The idea of watermarking first appeared hundreds of years ago. Watermarking

technology was used to mark information authenticity by many different means.

Watermarking technology has been used in computer as well. Most of the work on

computer watermarking technology was for embedding a watermark into images, audio,

and video files. In the last few years, few research, papers, and patents were published

and concerned applying watermarking embedding into software programs.

Media watermarking research is a very active area and digital image watermarking

became an interesting protection measure and got the attention of many researchers since

the early 1990s [14]. However, software watermarking is a more recent area of interest

with a little amount of published work. Research on software watermarking is very few

and just started in the last few years although software piracy cost is approximately 20

billion dollars every year.

11

The issue of software piracy is of concerns of both: software industry and academic

community. The reason behind this interest in software piracy is the large economical

factors and big losses only because of piracy [1].

As mentioned earlier, multimedia watermarking is a reminiscent for software

watermarking. Watermarking is being explored more in the watermarking section of

Chapter 3, about different security techniques. In chapter 5 of this thesis, more details

about different types of research that was done on software watermarking area.

CHAPTER 3

DIFFERENT SECURITY TECHNIQUES

Enforcing law measures is very important to prevent software piracy and protect

copyrights. Having the law by itself is not sufficient and there must be technical measures

to be implemented. These technical measures should be reliable enough to prevent piracy

and practical enough not to affect the software performance and economic value as well

[18].

The main objective of all the protection schemes is to raise the cost for pirates to break

the protection approaches [18]. Thus, the higher the cost for the pirates to break the

software security, the higher the protection level of the application. This fact leaded to the

existence of many software security techniques with varying nature.

To prevent piracy attacks, several approaches could be done. Examples include: creating

a list of certified customers, embedding the software into the hardware, and configuring

the software to automatically send the computer serial number when connected to the

internet. These approaches are so difficult to apply, especially with the improvement in

the internet, disassemblers, and de-compiler programs. The limitations of approaches

above have increased the research interest on another software protection technique

12

13

called software watermarking. The basic idea of software watermarking is to embed a

secret message (number) into the program such that when extracted, the owner proves

his\here ownership of the software [15].

Many media watermarking algorithms were developed and obviously they all have

different limitations and vulnerable to many constructed attacks. For example, applying a

sequence of image transformation will destroy many image watermarking schemes, as in

StirMark [4].

Media watermarking is done usually by embedding watermarks in redundant bits such

that it won’t be perceived by human eyes. Software watermarking is following a similar

concept that is a watermark can be embedded in sections of redundant code [4].

There are other protection techniques besides software watermarking. Those techniques

are such as using registration database, following patent law, cryptography with hardware

support, Obfuscation and Tamperproofing [14].

3.1 Hardware Techniques

Commonly, hardware-based protection approaches are based on using tokens. In this

case, the execution of software programs is made dependent on a specific hardware

element. Examples of hardware components are: CDs, dongles, smart cards, and so on.

The dependability level between the hardware and software varies and can be strong or

weak. If the software simply checks for the existence of the hardware token, then this

14

type of link between software and hardware is called weak. On the other hand, if the

software cannot run without being linked to the hardware then the link is strong [1].

Hardware tokens are using physical dongle that should exist while running the software.

Hardware tokens also can use distinctive characteristics of the floppy disk or CD to be

the token that checks the program during its execution. For example, the toke can be

based on the timing variances of the medium. This scheme will somewhat prevent

copying because of the existence of distinctive characteristics [18].

3.2 Software Techniques

Software-based protection techniques are dependant on the same distributed software.

Having the software itself as a protection model has many advantages such as increasing

the distribution flexibility and reducing the protection added cost. Commonly used

approaches for software protection, software-based approach, are by using a license key,

a license file, and online or distributed activation code [1].

Even future software protection schemes will be vulnerable to attacks because they must

be relying on finite-state machine to run the program, which can be examined and

modified. For example, Windows XP, which has online activation and CD, was cracked

and it took few months only to create a key generator for its activation. This means that

software protection concern should not be on whether it’s going to be broken or not.

15

Instead, it should consider the time it will take to be broken and the possible

consequences after being broken [1].

Insuring legal use of software can be done by keeping records of certified customers,

using licensing information, linking the software to the hardware such as having a

hardware movable dongle. One way to protect software against piracy is to use

encryption techniques [7].

3.2.1 Encryption

One approach for protecting software is to use encryption. The idea here is to

have the distributed software encrypted and a decryption key is needed to execute

the software. Many encryption techniques can be used, such as having multiple

encryption keys. A drawback of using encryption is the overhead it might add to

the performance of the software [18].

3.2.2 Software Token

Software tokens are using the license file that applies checks while running the

software. The token can also be obtained through connecting to the network [18].

A major drawback of having software tokens is that once the token is discovered,

it is easy to search the internet for getting the serial number or license file

information. For the online based token, its main disadvantage is that it forces the

legal user to connect his computer to the internet.

16

3.2.3 Software Aging

Software aging is another approach for protecting against software piracy. It

depends in creating program updates. Two advantages of this technique are: the

reduced usability of pirated copies because of not having updated versions, and

the need to frequently contact the pirate which increase the possibility of being

caught [1].

3.2.4 Obfuscation and Tamper-proofing

Tamper-proofing and obfuscation are not software protection techniques by

themselves. However, they are used in cooperation to increase the protection of

other mechanisms. Tamper-proofing makes it difficult to remove the embedded

protection message by making it hard to modify the program. Obfuscation hides

the location of the embedded protection message by making it difficult to analyze

the program [1].

3.2.5 Watermarking

A very common example to illustrate software watermarking is the following.

Alice built software and sold it to Bob. Bob tries to make a pirate copy while

Alice tries to copyright the software, by at least being able to prove ownership of

a given copy, which may help in reducing piracy attacks [15].

17

Digital watermarks can be either visible or invisible. Visible watermarks prove

the ownership by directly displaying the watermark transparently to everybody, as

in displaying the logo of a TV channel on the screen corner. Invisible watermarks

preserve hidden ownership information such as the source, author, creator, owner,

distributor, and so on. Extracting the invisible watermark needs special detection

software [7].

In watermarking, the pirated copy can be traced back to find the source of the

illegal copy by looking into the watermark [18].

Steganography stands for hiding a secret message in a cover (ordinary) message,

in order to be extracted at a destination. It basically allows for secret

communication. Cryptograph, on the other hand, aims to hide the message

contents, instead of trying to hide the message existence. Examples of

Steganography are such as using invisible ink, hidden tattoos, microdots, and

others [4].

Steganography have been used in media watermarking as in embedding invisible

copyright information in a host images, audio, video, or even text [4].

“Steganography is the art and science of communicating in a way which hides the

existence of the communication.” Watermarking is a special case of

Steganography [8].

18

Software watermarking and fingerprinting are techniques used for protecting

intellectual property and not for preventing copying the software. Basically they

discourage the pirate by raising the probability of tracing the pirated copies. The

basic idea is to embed an identification message in the original copies to identify

the owner of the software [1].

In fingerprinting, the attacker can not insure that the software is totally cracked

and the fingerprint is completely removed and no other fingerprints exist in the

code. Yet a straightforward disadvantage of fingerprinting is that it assumes the

ideal legal measures [1].

Software watermarking is different than software encryption. In encryption, a

public-key encryption is constructed which require the decryption key in order to

make the software files usable. After decrypting the software, it will become open

without any encryption effect [7].

In software watermarking, the software can be open or usable, contrasting what

happens in the encryption. The main objective of watermarking is not to prevent

executing or using illegal pirated copies, however, its target is to prove and

authenticate the ownership of the software by hiding a copyright message within

the code of the software itself [7].

CHAPTER 4

STUDYING WATERMARKING WITH

JAVA

4.1 Why Java?

Watermarking Java classes has the problem of being easy to decompile by the adversary.

On the other hand, Java has the advantage of the reliable integrity of heap-allocated data

structures [2] [3].

Studying any software watermarking scheme requires that we understand the language

structure in which the watermark will be embedded, the way of embedding and extracting

the watermark, possible kinds of attacks, and the overall cost of adding the watermark

[4]. Any watermarking technique has three basic concerns: watermark size and its

fraction of the program size, the form of the distributed program, and the expected

different types of possible attacks [4].

We assume that the distributed object is in the form of a jar file containing set of Java

class files. One trivial problem is that Java class files are easy to decompile and analyze.

19

20

However, Java classes have many factors that make it easier than others, like the integrity

of heap allocation and the non editable executing code [4].

Java classes are running in virtual machine independent of hardware, which makes Java

easily decompiled and reverse engineered. In order to hide the original Java classes and

make it difficult to be obtained, several techniques can be applied such as code

obfuscation, transformation, and watermarking [7].

Java uses bytecode and has the advantage of being portable. A disadvantage of bytecode

is that it allows decmopilation to get the source code, which increases the probability of

breaking the copyright and pirating the program. Java has the problem of piracy and

hence, it became important to protect copyrights of Java programs [8]. Watermarking is

basically a method of proving copyrights since the Java source code can never be

prevented form being copied [8].

4.2 Java Virtual Machine and Byte code

Java class file has many sections: constant pool table, method table, and line number

table [4]. More details about the Java Virtual Machine structure and functionality can be

found in the website of sun Microsystems, Inc. http://www.sun.com/java/.

4.3 Sandmark

A very useful tool in the area of software protection algorithms (code obfuscation,

software watermarking, and tamperproofing) is the SandMark, with more than 120,000

http://www.sun.com/java/

21

lines of Java code [http://sandmark.cs.arizona.edu]. It has many implemented algorithms,

reverse engineering tools, and software complexity metrics [4].

Normally, a software watermarking algorithm takes, as an input, a jar-file and produces,

as an output, a new jar-file. The jar-files contain class files (Java bytecode). SandMark

architecture contains a number of plug-ins such as BCEL, DynamicJava, and BLOAT for

bytecode editing, scripting, and code optimization in sequence [4].

The example below shows the effect of applying multiple obfuscating transformations

done by using the SandMark tool [4].

 5: ExFigure ample code before applying obfuscation techniques.

22

rmatio

 Obfuscation type

The applied transfo ns are:

 Effect
1 Boolean splitting Splitting a Boolean variable into two small integer variables.

2 basic block splitting Protecting bogus branch by inserting an opaquely false predicate.

3 string encoding “Answer:” is encoded into a meaningless string to be decoded at run time.

4 scalar promotion Converting integers to java.lang.Integer

5 signature unification Giving all possible methods the same Object[] signature.

6 name obfuscation “get0” replaced “gcd”

Table 1: List of applied obfuscation techniques.

Please refer to appendix A for more information about SandMark.

Figure 6: Code after the effect of applying multiple obfuscation transformations.

23

COMPARATIVE STUDY ON DIFFERENT

WATERMARKING TECHNIQUES

5.1 Definition

A for

“Software

stegosignatures1 or watermarks, such as cryptographic signature

and timestamp, in subject programs) and extraction (that is the detecting) of the

(that is watermarked program

sources). (“stego-xxx” means “xxx” in the context of hiding some embedded secret

5.2 watermarking Classifications

According to [4], we can classify different software watermarking functions as follows:

1- embed(P;w;key) Pw

CHAPTER 5

mal Model of Watermarking [2: 4]. Definition of software watermarking:

 watermarking that consists in embedding (that is the indelible unobtrusive

fixing of invisible

stegosignatures) embedded in the stegoprograms

information.)” [7].

24

By using a secret key and embedding a watermark w, we can transform a program

P into Pw.

2- extract(Pw;key) w

With the function extract, we can get the watermark w from Pw.

3- recognize(Pw;key;w) [0:0;1:0]

If we use the recognize function, the returned value could reflect the probability

of the existence of the watermark w in P.

4- attack(Pw) P’w

The purpose of attack function is to alter the program Pw such that w can no

longer be extracted.

The technique of embedding different watermark in every message is called

fingerprinting. By using fingerprinting, we can trace the chain of the attacked copy and

find the adversary. However, a trivial problem with fingerprinting is the vulnerability to

collusion attacks, where the adversary compares different fingerprinted copies to find the

location of the fingerprints [2] [3].

One type of watermarking, called fingerprinting, is simply embedding different secret

message in every distributed object. The main advantage of fingerprinting is that it helps

in tracing the source of theft in addition to detecting the theft incidence. Usually a

fingerprint includes an identification number referring to product, seller, and the buyer. A

very basic attack to fingerprinting is the collusion attack. This is done by simply

25

obtaining several copies of the program and applying set of comparisons until the

fingerprints are located [4].

Watermarking classifications in [14] is as follows:

Type Description Visibility Robustness

Authorship Mark (AM) It embeds information identifying

the author in the software

visible robust

Fingerprinting Mark (FM) It embeds information identifying

the serial number or purchaser of

the software

invisible robust

Validation Mark (VM) It embeds information verifying

that the software is not changed

from the originally authored

visible fragile

Licensing Mark (LM) It embeds information to control the

way of using software

invisible fragile

Table 2: Classification of watermarking techniques according to [14].

Watermarking classifications [20]:

Type Description Visibility Robustness

Assertion Marks Used to publicly claim the ownership of

certain software

visible robust

Prevention Marks Focuses in preventing unauthorized users invisible robust

Affirmation Mark Works as a seal of authoentcity visible fragile

Permission Mark Should become invalid or illegible

whenever there is a change or copy

invisible fragile

Table 3: Classification of watermarking techniques according to [20].

26

5.3 Software Watermarking Actors

When we talk about software watermarking, we should consider four different parties:

software producers, distributors, consumers, and adversaries [14].

Parties involved in software distribution are:

- Software provider: targeting maximizing profits.

- Legal user: paying for the software without searching for illegal copies.

- Pirate: have technical skills, target to break protection mechanisms with minimum

risk of being caught.

- Illegitimate users: not technically skilled and don’t want to pay for original copy [1].

5.4 Static and Dynamic Watermark

In general, there are two main approaches that can be used in software watermarking. The

first approach is to make the watermark as part of the program behavior itself. For

example, Easter Egg watermarking, where the watermark is displayed once a specific

input is entered. The other approach is to embed the watermark in the program data

structure, which can be traced while executing the program. An example of the second

approach is the idea, by Collberg and Thomborsen, to embed a number as a graph that

can be built as object structure while executing the program. Because of building the

object structures dynamically, it is difficult to analyze during program execution, which

involves flow analysis and pointer analysis. Therefore, it’s too difficult for the attacker to

locate the watermark statically [15].

27

An easy way to construct, embed, and extract a watermark is by adding static data

watermarks. Dynamic watermarks are different than static watermarks since extracting

the watermark is done while running the program and not by searching the data/code of

the program. The idea here is that when the application is running with a certain input

sequence, as a secret key owned by the software author, then the watermark can be

extracted from the program’s execution state [4].

5.4.1 Static Watermark

Static watermarks are stored in any section of the Java class file. Two static

watermarking types are basically: code watermarks, in the executable

instructions, and data watermarks, such as headers, and string sections [2] [3].

Data watermarks are easy to embed and extract, and hence, considered to be

common. However, it is very vulnerable to distortive attacks such as obfuscation.

For example, by splitting all strings into scattered substrings or by converting

static data into a program distortion will happen [2] [3].

Code watermarks contain redundant information, similar to media watermarks

having embedding in redundant bits. There are many simple distortive de-

watermarking attacks and code obfuscation techniques that attack code

watermarks. For example, flow-of-control can be destroyed by inserting

predicated branches to break the basic block order [2] [3]. The watermark is

28

stored in the program itself as data or code. It can then be extracted directly from

the program without executing it [7].

5.4.2 Dynamic Watermark

Static watermarks can be easily attacked by semantics-preserving transformations.

Less work was done in the area of dynamic watermarking. In dynamic

watermarks, the watermark is stored in the execution (behavior) of the program

and not in the program itself. Therefore, dynamic watermarks have fewer threats

of obfuscation transformations [2] [3].

Basically, there are three kinds of dynamic watermarks: Data Structure

Watermark, Execution Trace Watermark, and Easter Egg Watermark. Those three

methods differ in the way of storing and extracting the watermark. However, in

all of the three methods, the application runs with a predetermined input sequence

to enter the watermark state [2] [3].

Three common dynamic watermarks are: Dynamic Easter Egg Watermarks,

Dynamic Execution Trace Watermarks, and Dynamic Data Structure Watermarks.

Dynamic Easter Egg Watermarks is trivial and easily noticeable by the user since

it basically displays the watermarking message or image after entering a certain

input. If the watermark is extracted by tracing the addresses or instructions while

executing the program, with a special input, then it is called Dynamic Execution

29

Trace Watermarks. Finally, Dynamic Data Structure Watermarks can be extracted

by checking the values of particular program’s variables with a particular input

sequence, simply by using a debugger tool [4].

The watermark is stored in the execution state of the program. Three main types

of dynamic watermarking techniques are: Easter egg watermarking, Dynamic data

structure watermarking, and Dynamic execution trace watermarking [7].

5.5 Static Watermarking Techniques

Davidson and Myhrvold is the first published static software watermarking algorithm. It

is an order-based algorithm where embedding the watermark is done by rearranging the

order of the basic executing blocks. There are many possible attacks. A simple one is to

randomly reorder the program basic blocks [4] [5].

Qu and Potkonjak software watermarking algorithm is based on renaming. The

watermark is embedded in the program register allocation. It is based on renaming

structures of the program. The major weaknesses are that it is easily attacked by

decompilation/recompilation step and it has a low bit-rate [4] [5].

Static watermarks are embedded (or hidden) in the code or data of the program. The

watermark is hidden in the redundant areas of the program, just like the multimedia

watermarks, to be unpredictable.

30

Code watermarks can be stored in two different types of information:

1. Areas that don’t have data dependencies or control dependencies. Such as in

reordering case statements inside a switch statement or reordering control flow.

2. Alternate instructions, which have the same behavior. Java bytecode has many

instructions that are equivalent.

Data watermarks are embedded in strings in areas that do not contain instructions, like in

the constant pool.

Attacks such as optimization and obfuscation are major threats to static watermarks [8].

Moskowitz embeds a data watermark in an image. The image stored in the program static

data section. A media watermarking algorithm is used to embed and extract the

watermark. Distortion image attacks can be applied to this watermarking algorithm [4].

Arboit algorithm is based on embedding the watermark by adding a special opaque

predicates to the program. Pattern matching is used for the watermark extraction. Trivial

attacks by Pattern matching [4] [5].

Another static software watermarking algorithm was created by Stern. It uses a spread-

spectrum technique for embedding watermark. The algorithm changes frequencies of

certain instruction sequence by replacing them with equivalent sequence. The weaknesses

of this algorithm include its vulnerability of being attacked by obfuscation to change the

data-structures or data-encodings. Also it could be attacked by many low-level

optimizations [4] [5].

31

In Monden algorithm, the watermark is encoded and embedded in a bogus method,

guarded by a predicate always false, added to the program. This algorithm is vulnerable

to optimization attacks [4].

5.6 Dynamic Watermarking Techniques

Problems of dynamic watermarking arise from the fact that it needs special input in order

to extract the watermark. By using special tools that monitor program executions with

some debugging techniques, the watermarks can be located and removed, or even

destroyed. Program transformation techniques such as variable splitting or merging and

program optimization techniques can also destroy dynamic data structure watermarking.

These possible problems could threaten the research on this area (dynamic watermarking

scheme) such that they are classified ineffective [7]. Dynamic watermarks are embedded

in the program and can be generated while executing the program with certain input

sequence [8].

5.6.1 Dynamic Graph Watermarking

Dynamic graph watermarking is one of the newly developed software

watermarking technologies invented by Collberg and Thomborson in 1999 [2] [3].

One instance of the newly developed software watermarking technologies is

dynamic graph watermarking (DGW) [Collberg and Thomborson 1999]. This

32

technology uses a dynamically created graph structure to represent a watermark

message at the software execution time, instead of directly embedding a

watermark message into the software program. The watermark number can be

represented by the index of the watermark graph G in some convenient

enumeration. The basic idea in the embedding function is that if number n is

given; generate the nth graph in the enumeration. The recognition function works

similarly in such a way that if graph G is given, it extracts its index n in the

enumeration. Both operations have to be efficient and hence, this technique

cannot be used on generalized graphs since sub graph isomorphism is hard.

Collberg and Thomborson CT build the first dynamic watermarking algorithm.

The watermark is embedded in the topology of a dynamically built graph

structure. It is recognized at run time with a special input key. The main

advantage of the CT algorithm is that it can overcome many obfuscation and

optimization transformations [5].

Graph Theoretic Watermarking (GTW) has a high degree of stealth. It is resilient

to edge-flip attacks or reordering basic blocks by having error-correcting graph

techniques. However, the GTW has some weaknesses such as its dependability on

the stability in recognizing the marked basic blocks while extracting the

watermark. In addition, GTW is weak in resisting many semantics-preserving

transformation attacks [5] The CT Algorithm [4:p.5].

33

Palsberg et al. is a dynamic watermarking algorithm based on CT. The watermark

does not depend on a particular input sequence. The value of the watermark is

represented by a planted planar cubic tree (PPCT) graph. Attacks to this algorithm

can be through obfuscation transformations [4].

The watermark is embedded in the program by creating a graph structure that

holds the watermark number. The dynamic graph watermarks method is stronger

than other dynamic techniques because it has better resistance to transformation

and other distortive attacks. Attacks to graph watermarks involve analyzing the

program state, which is very difficult [8].

5.6.2 Data Structures

In dynamic data structure, the watermark is embedded in the state (global, heap,

and stack data) of a program running with a certain input. Extracting the

watermark is done either by examining current values of the application or by

using debugger while running the program. An advantage of data structure

watermarks is that the output does not immediately appear to an adversary. Also,

it’s difficult to locate the watermarks since only little information appears in the

executable itself. The problem of data structure watermarks is that it is not

immune to obfuscation attacks such as splitting or merging variables [2] [3].

Data structure watermarks differ since there is no specific output will be produced

as a result of entering the key input into the program [4]. The watermark can be

34

obtained by examining definite signed program data that holds the watermark

after entering a particular input values [7].

The watermark is embedded in the execution trace and it is not as easy to find as

in the Easter egg watermarks. A watermark detecting tool is used to trace the

program execution trace with a certain input sequence. The watermarks are

independent to the program execution, and hence, are not difficult to locate.

Those techniques are vulnerable to distortion attacks, such as obfuscation and

variables or methods splitting. For example, a data structure watermark can be

stored in the variables as shown below: [8]

char watermarks[];

watermarks[0] = ’c’ ;
watermarks[1] = ’o’ ;
watermarks[2] = ’p’ ;
watermarks[3] = ’y’ ;

watermarks[4] = ’r’ ;
watermarks[5] = ’i’ ;
watermarks[6] = ’g’ ;
watermarks[7] = ’h’ ;
watermarks[8] = ’t’ ;
watermarks[9] = ’.’ ;

Figure 7: Example of a data structure watermark.

5.6.3 Execution Trace

The watermark is embedded in the execution trace when the program is run with a

certain input. Again, code obfuscation will also affect the execution trace [2] [3].

The watermark is stored in the execution trace of the program and only obtained

for certain input sequence [7].

35

5.6.4 Easter Egg

If a code is watermarked in an Easter Egg, it performs a certain action such as

displaying a copyright message or image only after the user enters a very unusual

input. Unfortunately, the Easter Egg watermarks are easy to locate. Also, an

adversary might generate a sequence of random input and wait for some strange

output to be displayed [2] [3]. The watermark is extracted and displayed only after

a certain input sequence is entered [7].

Easter Egg watermarks are easy to find. If the right input was discovered and

entered then the watermark location can be easily traced by executing the program

and using a debugging tool [4].

The watermark is generated and displayed as an output after entering a predefined

input sequence. The watermark can be easily removed by an attacker once the

right watermark is discovered [8] [23].

5.7 Software Watermarking by Diversity

One approach, presented in [1], is based in the idea of preventing software piracy

through diversity. The scheme suggests that every installed copy of a program is

uniquely different from others to insure that if this copy was successfully attacks,

the same attack can not be generalized to other distributed copies. In order to escape

from the static protection nature, the scheme also added a proposed continues

36

software updates, which makes the protection being of dynamic nature. If there are

no updates on a particular distributed copy, then that copy is pirated. The advantage

is that the pirate needs to be in synch with those continuing updates. Also, this

scheme provides better control over the distributed copies. An analogy of applying

diversity scheme in software piracy is the nature genetic diversity that provides

protection against viruses and diseases [1].

The proposed scheme has several drawbacks. Simply, it is vulnerable to cracks and

serials piracy attacks. Also, a copy of legally installed software can be easily

obtained and installed in another personal computer, for example. Another

drawback is its resilience dependability on updates. The issue of having diverse

instance and multiple tailored updates adds another overhead. Moreover, the

process of identifying legal and illegal users is another cost [1].

5.8 Other Software Watermarking Algorithms

Signal detection watermarking approach has been used in multimedia

watermarking. The software watermarking can be designed using a similar

approach of applying signal detection scheme to programs. Spread-Spectrum

watermarking is a common watermark signal technique, such as the scheme using

mutable instructions by Stern et al. The basic idea is to extract a vector r carrying

37

certain properties from the program. For example, it can show the graph depth for a

specific point with a certain input sequence during program execution. An attack to

this scheme can add to the depth of the program without affecting the original

program operation. Like other software watermarking schemes, this scheme can be

tamper-proofed and obfuscated in order to increase its defense level to attacks [8].

5.9 Attacks on Software Watermark

In media watermarking, most of the schemes are vulnerable to distortion attacks [2].

Three basic types of attacks can happen to a watermark: Subtractive attack,

distortive attack, and additive attack. In the subtractive attack, the adversary tries to

locate and crop out the watermark W. Distortive attack occurs when the adversary

distort the watermark with an acceptable degraded quality. In the additive attack,

the adversary adds his own watermark W’, which overrides the original watermark

W, or become impossible to detect W [2].

Any technique used to make de-watermarking attacks ineffective is called tamper-

proofing [2]. Simple examples of such program transformation attacks are shown in

the table below:

38

Table 4: Examples of simple transformation attacks.

Watermarking type Example Program transformation attack

A comment /* My software, version 1.0 */ Remove all comments

A data string String v = “ My software,

version 1.0” ;

Split strings into shorter

substrings

Order of

instructions

n-branches or

switch-statement

Reorder (insignificant)

instructions

Idle instruction Initializing unused string Remove dead-code

Other than the semantics-preserving program transformation, there are three other basic

types of attacks that can happen to a watermark: Subtractive attack, distortive attack, and

additive attack. In the subtractive attack, the adversary tries to locate and crop out the

watermark W. Distortive attack occurs when the adversary distort the watermark with an

acceptable degraded quality. In the additive attack, the adversary adds his own watermark

W’, which overrides the original watermark W, or become impossible to detect W [2] [3]

[15].

Analyzing the text code is not the only way to attack a watermark. Observing the

program behavior such as analyzing the state of the heap and registers during execution

could help the attacker in finding the watermark [15].

39

Subtractive attacks can be protected by Tamperproofing and obfuscation, while

randomization is used to protect against collusion attacks [15].

Three basic types of attacks are:-

1- Subtractive attack: the attacker manages to detect and crop out the watermark

without affecting the original program.

2- Distortive attack: the attacker applies some distortive transformation attacks in a

way that the watermark is being distorted. This will, of course, reduce the quality

of the original program, but should be up to an acceptable level.

3- Additive attack: the attacker tends to insert one or more additional watermarks

such that it’s not possible to extract the original watermark, or at least to

determine the priority timestamp [4].

The most common threatening attack is the distortive attack by applying semantic-

preserving transformation. The goal is to make the watermark resistance to attacks such

as decompilation, obfuscation, compression, and optimization [4].

There are many different kinds of attacks to software watermarking schemes and all the

existing methods are susceptible to several attacks. A possible attack, but not reasonable,

is to rewrite the complete application after studying its behavior. There are available tools

that can help in doing translation, optimization, and obfuscation attacks. For example, a

distortive obfuscation attack can split strings into substrings, which could make the

watermark extraction more difficult. In fact, there are many software obfuscation

methods that are considered threatening distortion attacks to software watermarks. Those

transformations are like the following:

40

- Splitting/Merging a construct like a method or a variable.

- Increase/Decrease a construct dimension like an array.

- Change the nesting level of a construct.

- Redirect referencing like changing a method level of indirection.

- Rename a variable, method, or class construct.

- Reorder/Swap data statements or control dependencies.

- Clone a construct like duplicating a method [4].

Applying sequence of obfuscation techniques into a program will slow down, increase

the size, and add overhead to the transformed program. Therefore, the attacker needs to

insure that the overhead effects of transformations done into the program are acceptable.

Otherwise, if the cost of applying such de-watermarking transformations into the speed

and size of the program is so high, then they are not considered as attacks [4].

Software watermarking techniques are subject to several attacks such as:

Subtractive attacks: by locating and eliminating the existence of the watermark; like in

removing static dead code or code protected by opaque predicates.

Preventing subtractive attacks can be done by making the program execution dependent

on the watermark existence such that without the watermark the program will not be

usable.

Distortive attacks: by applying code transformations to make extracting the watermark

more difficult; like running obfuscation and optimization techniques. However, those

41

techniques can be considered, sometimes, as supportive to hide the watermark. Distortive

attacks can be prevented by considering only part of the code or program data to extract

the watermark. Yet, this does not guarantee that Distortive attacks became ineffective.

Additive attacks: by adding a new watermark to trim the value of the original

watermark. To prevent such attacks, the original uniquely watermarked program can be

compared with the attacked one.

Collusive attacks: by comparing different versions of the program where each is having

different fingerprint. This can be done by monitoring program execution or statically

analyze two or more versions of the programs. This attack can be prevented by allowing

embedding more than one watermark. Also, one common watermark can be embedded in

all the versions. In addition, more that one transformation can be applied to different

versions to complicate the comparison process [7].

A main threat to watermarking schemes is the meaning-preserving transformation attack.

This threat does not really count in media watermarking schemes [18]. A basic attack to

protections approaches that use tokens will try to locate and remove the code that checks

for the token existence by using a debugging tool. Also, the code that checks for license

violation can be searched and removed. The target of software vendors using such

approaches is to increase the cost of doing reverse engineering to there product [18].

42

5.10 Watermark Protection

Randomization, Obfuscation, and Tamperproofing are three powerful protection

mechanisms that can greatly improve watermarking systems [15]. Code partitioning

protection approach can be found in details in [18].

One obvious way to protect the watermark against attacks is to tamperproof and makes

de-watermarking attacks ineffective. Distortion attacks cause difficulties in extracting the

watermarks, as in cropping and compressing images, which made most media

watermarking schemes vulnerable [4].

43

CHAPTER 6

OVERVIEW OF THE PROPOSED WORK

6.1 The need for Evaluation Benchmark

Although the research on software watermarking is still in its early stages and the work

done in this area is comparatively low with reference to multimedia watermarking,

Software watermarking received more attention recently and it is expected to even get

more interest than what it was for the factors mentioned in earlier chapters. In fact, more

than ten different software watermarking techniques were published in the past few years,

regardless of there similarities and accreditation levels. Only few of them where studied,

implemented, and experimented.

However, in all the work done in this area, none of them have used a specific or a

particular evaluation measures to criticize the proposed software watermarking technique.

Therefore, it’s not clear yet how to practically evaluate and compare two or more

software watermarking techniques. Having such evaluation standards and measures will

perhaps lead to significant improvements on future research on software watermarking.

One main advantage of evaluating a software watermarking technique is to allow for

practical comparison among the available software watermarking techniques. Moreover,

44

having such benchmarking procedures will speed up the work and expedite the research

progress in software watermarking area.

6.2 Reminiscent “Unrelated” Work

As usually being compared with multimedia watermarking, the work done in evaluating

or benchmarking software watermarking is limited. In fact, there is some work on

benchmarking multimedia watermarking approaches [12]. For example, StirMark

benchmark 4.0 [16] is a well known benchmarking reference in the area of image

watermarking. Fabien Petitcolas, one of the pioneer researchers in the area of multimedia

watermarking, realized the importance of evaluating multimedia watermarks and

proposed the first benchmark for multimedia watermarking schemes in his published

paper Watermarking schemes evaluation in 2000 [17]. Other multimedia watermarking

Benchmark tools are Certimark, Checkmark, and Optimark [24].

Unfortunately, during the study of existing software watermarking techniques and

algorithms, we found that issues related to evaluating the proposed watermarking scheme

were ignored or slightly addressed by some of there authors. In few papers, authors

conducted some qualitative and quantitative experiments on there propose work. But yet,

sometimes they neglected important evaluation factors or didn’t consider certain

measurements.

45

According to Christian Collberg and Clark Thomborson [3], designing software

watermarks considers three issues: the size of the watermark with reference to the

program size, the form of the program code, and the expected de-watermarking attacks.

Reference [4] says that the quality of a Watermarking scheme depends on its response to

different attacks.

In the paper titled “Experience with Software Watermarking” published in 2000, [15]

software watermark quality is reflected by the degree of its resistance to piracy attacks.

Those attacks are such that finding the location of the watermark, distorting it, and the

ability of removing the watermark from the software. Experimenting can compare

different programs by looking at code size before and after watermark is embedded,

adding watermark time, retrieving watermark time, code execution time before and after

watermark is embedded, and heap space size after watermark is embedded [15].

Christian Collberg and Clark Thomborson said in [2], three (trade-off) metrics determine

the strength of a watermarked system: data-rate, stealth, and resilience. Data-rate

represents the quantity of data hidden in the message. Stealth is a measure of how

difficult for a user to recognize an embedded data. Resilience refers to the protection

degree of the embedded message from an adversary.

According to paper Dynamic Graph-Based Software Watermarking [4], data rate, stealth,

and resilience are three factors used to measure a watermarking scheme.

Data rate: number of bits of w / KB of cover message.

46

Stealth: measures w invisibility to the attacker.

Resilience: express w immunity degree to attackers.

Studies show trade-offs, i.e. high data rate implies low stealth and low resilience.

In [14], Jasvir Nagra, Collberg, and Thomborson wrote that different watermarking

techniques can be compared with reference to the following properties: visibility,

robustness, efficiency, and fidelity.

• Visibility measures the watermark level of unambiguous. It should look to how easy

it is to distinguish and detect a watermark.

• Robustness is measured by considering the class of transformation after applying the

watermarking algorithm. It is robust if the software program can survive after

distortions.

• Efficiency considers the computation cost of adding the watermark in terms of time

and memory usage.

• Fidelity is very much related to visibility. It measures the degree of effect that is

caused by embedding a watermark into the original program.

Curran, Hurley, and Cinneide identified three main characteristics for an effective

watermark are (with trade-offs):

Robustness: measures the resistance level of the watermark to attacks. Those attacks are

such as optimization, decmopilation, obfuscation, and so on. The watermark should be

present and extractable after the attack.

Capacity: measures the size of information embedded in the watermarking message.

47

Perceptibility: measures the visibility of the watermark. If the watermarked program has

low quality in any regard, then the watermark is considered perceptible [8].

In short, most of the work done in software watermarking was looking for innovative

embedding and extracting schemes. However, little work was done in evaluating those

algorithms. In fact, there is no particular framework created for evaluating software

watermarking algorithms.

6.3 Study Approach

According to Bender, (W. Bender, D. Gruhl, N. Morimoto, and A. Lu. Techniques for

data hiding. IBM Systems Journal, 35(3&4):313. 336, 1996.), about media watermarking:

“... all of the proposed methods have limitations. The goal of achieving protection of

large amounts of embedded data against intentional attempts at removal may be

unobtainable…” [4].

After looking into different software watermarking techniques with different embedding

and recognition schemes, we need to clearly identify the important evaluation parameters.

In this study we suggest an approach for evaluating and measuring software

watermarking techniques for different aspects. Basically, numbers of quality factors are

considered such as: embedding cost, extraction cost, running cost, the watermark itself,

and the watermarking algorithm. The details of the important evaluation parameters are

identified in the next section.

48

While size and time are important factors to consider, most software watermarking

approaches consider types of attacks that change the program form and not its behavior.

Those kinds of attacks, that intend to remove or distort watermarks embedded in the

program structure, are called semantics-preserving program transformation. Examples of

such attacks include: code optimization, dead-code removal, obfuscation, decompilation,

and so on.

6.4 Proposed Evaluation Benchmarking

6.4.1 Size Efficiency (data rate/capacity)

Size efficiency considers the size of the embedded watermark with

reference to the code of the application to be watermarked itself. It is

called sometimes data rate or capacity. Data rate is the ratio of the

added watermark Pw to the original code size P (Pw/P).

Measuring the size can be obtained by counting the lines of code, by

measuring number of bits, or by measuring the heap size. Usually, the

size is measured in terms of the number of bits. Of course, the larger

the size of the embedded watermarks, the lower the robustness.

Another way to measure the size efficiency is to check the heap size

while executing the watermarked and the un-watermarked applications

under the same environment and input sequence rather than measuring

49

the static code size of the application. The basic idea is to compare the

code size before and after embedding the watermark.

6.4.2 Time Efficiency

Time is a very critical factor in evaluating the effect of embedding the

watermark in the original application. It is very important to insure that

the applied watermarking scheme does not seriously degrade the

execution time efficiency.

In general, time factor can be measured for three different portions:

Execution time, Embedding time, and Extraction time. Embedding and

extraction time can be directly measured during applying the

watermarking scheme and are not affecting the watermarked

application quality since the cost is only done once.

Thus, the major concerning factor is the Execution time, sometimes

called embedding overhead. It is measured by finding the ration of

execution time for an application with watermark being added Tw to

the original execution time T. (Tw/T). Basically it measures running

time before and after embedding the watermark.

50

6.4.3 Resilience Against Transformation Attacks (Robustness)

The objective is to measure how good different watermarking

embedding algorithms are able to resist various attacks. It measures

the degree to which the watermark is unfragile and resilience against

transformation attacks (semantic-preserving transformations) such as

code obfuscation and code optimization, register re-allocation, local

variable splitting or merging, array splitting, class inheritance

modification, basic block splitting (add nodes to control-flow), method

merging (change control-flow graph), class encryption, code

duplication (add nodes to control-flow), primitive boxing (change

instructions in many basic blocks in a method), and so on.

Measuring the level of watermarking technique resilience against

transformation attacks is very critical. The test should return a discrete

value per any singular attack that is the attack result was success or

fail. We assume that no partial watermark can be obtained as this

indicates that the watermark is destroyed. After applying a set of tests

for different application with different attacks, then the resilience level

can be easily calculated.

6.4.4 Stealth (Invisibility/Perceptibility)

The stealth measures the degree to which the watermark is hidden and

resists to being detected. Synonyms to stealth are watermark

51

invisibility and watermark perceptibility. Mainly, manual attacks, with

the aid of some debugging tools, can help in locating the watermark

itself or the watermark code from which the watermark can be

retrieved.

Usually the stealth is not directly measured. First, the watermark is to

be found. Then, it is to be removed. In fact, with the help of some

advanced debugging tools it is not difficult to locate the watermark if

compared with the original un-watermarked code. More over, it is not

easy in many watermarking schemes to remove the watermark without

affecting the application itself. However, measuring stealth is not

straightforward since it depends on other factors such as having the

original code, knowing the watermarking algorithm, and using

advanced debugging tools.

6.4.5 Nature of the Watermarking Algorithm

The nature of the watermarking algorithm is a factor that depends on

the application being watermarked itself. For example, if the

watermarking algorithm is of high complexity and the application is

very big in the execution time and size, then the overhead cost will be

high. Also, the ability to understand or modify the algorithm could be

considered.

52

However, in many cases, this factor is not of importance to the

software producers as it does not affect the end users and pirates as

well.

6.4.6 Other Factors

 Information embedded in the watermark

Whether it is only a number, or it contains information such as

copyright year, privilege granted, secret information, and so on.

 Source code/Byte code

It looks for the watermark if it is embedded in the source code or

the byte code. In most cases, the watermarking scheme is applied

to the byte code for two reasons. First, it is easier having it in the

compiled byte code rather than the need to recompile every class

again. Second, normally the software organizations buy the

applications in a class format from their producers. Therefore, they

attempt to embed the watermark on the byte code directly rather

than the need to go back to the original programmer to embed the

watermark.

 Classes’ Watermarked (one or all)

It checks if the watermark is embedded to only one class, two

classes, or all classes in the program, if parts of the application are

53

watermarked or as a whole. Also, it considers whether the

watermark adds new classes or split classes or not.

 Number of keys

Every algorithm requires one or more keys in addition to the

watermark, which will be used for extracting the watermark. The

larger the number of keys means it is easier to destroy by the

attacker but difficult to discover the watermark.

Number of Bits

Lines of code Size

Heap size

Execution time

Embedding time Time

Extraction time

Optimization

Obfuscation

Register re-allocation

Local variable splitting/merging

Class inheritance modification

Basic block splitting

Array splitting

Method merging

Class encryption

Code duplication

Resilience

(against attacks)

…

Stealth Find W

54

 Remove W

Understandable
Nature Watermarking Algorithm

Modifiable

Numbers

Characters

Numbers and Characters

Copyright Unique Information

Privileges

Information embedded in the

watermark

Others

Source Code Source code/Byte code

 Byte Code

One

More than one

Modified classes
Classes’ Watermarked

Added classes

No keys

One key

Two keys
Number of keys

More…

Table 5: Summary of proposed evaluation factors

CHAPTER 7

EXPERIMENTS AND RESULTS

7.1 Experimenting Tools and Environment

In our experiment, many different tools were used for studying different software

protection algorithms. Large collection of watermarking schemes and attacks for Java

bytecode were used. The tools include different text files, folders, archives, editors,

decompilers, and other debugging and analysis tools.

For all the experimentation done in this study, following are the specifications of the used

machine:

- Windows XP Professional

- Pentium 4

- CPU 2.66 GHz

- 1.00 GB of RAM

- JDK 1.4

55

56

7.2 Evaluation of Watermarks and Applications

Throughout the experiments, ten different watermarking techniques that are implemented

in SandMark where basically used. The experiment could be done to any number of

watermarking schemes and not limited only for the ones used in our study. In fact, during

the experimentations some difficulties were faced while trying to execute specific

algorithms for different cases. Nevertheless, those unsuccessful executions where noted

and included as part of the results. The algorithms that require manual modifications on

the source code where neglected. As stated earlier, the assumption is that the algorithms

are applied to applications in bytecode format. The table below shows the briefing

summary of the techniques used.

W1: String Constant

Embed a watermark in a string in the constant pool

W2: Stern

This algorithm (by Stern et. al.) embeds a static watermark spread throughout the body of the code as the

frequency of occurrence of identified groups of instructions. See Help for restrictions on input.

W3: Register Type

HatTrick is a way of encoding watermarks based on special local variables that encode a message based

on the locals' types. Each type maps to a base-10 digit that encodes a numerical watermark.

W4: Qu/Potkonjak

AssignLV is a watermarking algorithm that embeds the watermark in the local variable assignment by

adding constraints to the interference graphs.

W5: Monden

Implements the watermarking technique described in A Practical Method for Watermarking Java

Programs by A. Monden, H. Iida, K. Matsumoto, K. Inoue, and K. Torii. The watermark is embedded by

replacing instruction in a dummy method, which is added to the application.

W6: Graph Theoretic Watermarking

Venkatesan's Graph Theoretic Watermarking Algorithm embeds the watermark in control flow graph

within the program.

W7: AddMethField

57

AddMethField is a static watermarker which embeds the watermark by splitting it in half the first part

becomes the name of a new field and the second becomes part of the name of a new method.

W8: Add Switch

Embeds a watermark in the labels of a switch statement

W9: Add Initialization

Add Initialization is a StaticWatermarker which embeds a numeric watermark by breaking it into 2-digit

numbers and adding them to the constant pool

W10: Add Expression

This algorithm embeds a static watermark as a bogus expression that is assigned to a new local variable.

The watermark is recognized with the help of the local variable name

Table 6: Watermarks techniques used in the experimentations

The obfuscation techniques used in the experiment are as shown in the table below:

Obfuscation Description

O1: Field Assignment

The AddBogusFields obfuscator adds a bogus field to each class in an

application and throughout the class makes assignments to the field.

O2: Dynamic Inliner

DynamicInliner inlines non-static methods, determining which branch to use

at runtime.

O3: Duplicate Register

Takes a local variable in a method and splits references to it with a new

variable (which stays synchronized).

O4: Constant Pool ConstantPool Reorderer randomly reassigns constant pool indices.

O5: Class Encrypter

Class Encrypter encrypts class files and causes them to be decrypted at

runtime.

O6: Array Splitter Splits an array into 2 arrays, while preserving program semantics.

O7: Block Maker

Use a BasicBlockMarker to mark basic blocks randomly. This is a useful

against some watermarking algorithms

O8: Bludgeon Converts all static methods to take Object[] and return Object.

O9: Bolean Splitter

This algorithm detects boolean variables and arrays and modifies all uses and

definitions of these variables.

O10: Branch Inverter

This algorithm negates the if instruction in the ifelse statementand exchanges

the if and else part of the body

O11: Class Splitter

ClassSplitter splits a class in half by moving some methods and fields to a

superclass.

Table 7: Obfuscation techniques used in the experimentations

58

In the experimentations done, seven different applications were used with different

purposes and varying number of classes and size. The applications were randomly

selected to show reasonable results. All the applications are in an executable JAR format.

For more details, see the table below.

Application

No. of

classes
Description

XMLTree 27

A simple XML file editor. It displays XML nodes in a file in a tree

on the left hand side of the program window, and displays the

highlighted node's attributes on the right hand side.

TTT 4 The world's most famous game tic-tac-toe.

toy_1.4 124

Visual X-TOY simulator, a visually-appealing simulation of a

PDP8-style machine and an IDE for writing programs in the TOY

machine language

spiro 24
The Spiro applet is a tool for creating a certain kind of graphic, while

keeping things reasonably simple and portable.

jdrill2_3_1 18
A quiz window tool program for learning program for testing and

learning Japanese.

Cvt2Mae 28 A data format converter on various types of array data file formats.

Conzilla1.1Beta2 586
The second generation concept browser, a knowledge management

tool with many purposes.

Table 8: Sample applications used in the experimentations

59

7.3 Experimentation and Testing

7.3.1 Size

No Watermark

Application Code Size (KB)

XMLTree 57.2

TTT 8.53

toy_1.4 573

Spiro 73.5

jdrill2_3_1 77.6

Cvt2Mae 326

Conzilla1.1Beta2 1557

Average : 381.83

Table 9: Size of applications without watermarks being embedded

 Watermarked Code Size (KB)

Application W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

XMLTree 62.2 62.5 63.6 62 62.8 91.4 62.3 62.3 62.2 62.2

TTT 9.2 9.48 9.48 9.1 10.4 x 9.32 9.3 9.23 9.21

toy_1.4 573 573 574 571 593 x 573 573 573 573

spiro 81.1 81.4 82.1 80.5 85 115 81.3 81.3 81.2 81.2

jdrill2_3_1 86 85.7 85.7 85.2 88.1 x 85.6 84.5 85.5 85.5

Cvt2Mae 326 326 327 324 328 x 326 326 326 326

Conzilla1 1566 1566 1566 1563 1568 x 1566 1566 1566 1566

Average : 386.21 386.30 386.84 384.97 390.76 103.20 386.22 386.06 386.16 386.16

Table 10: Size of applications after watermarks being embedded

60

 Watermark Code Size (KB)

Application W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

XMLTree 5 5.3 6.4 4.8 5.6 34.2 5.1 5.1 5 5

TTT 0.67 0.95 0.95 0.57 1.87 x 0.79 0.77 0.7 0.68

toy_1.4 0 0 1 -2 20 x 0 0 0 0

spiro 7.6 7.9 8.6 7 11.5 41.5 7.8 7.8 7.7 7.7

jdrill2_3_1 8.4 8.1 8.1 7.6 10.5 x 8 6.9 7.9 7.9

Cvt2Mae 0 0 1 -2 2 x 0 0 0 0

Conzilla1 9 9 9 6 11 x 9 9 9 9

Average : 4.38 4.46 5.01 3.14 8.92 37.85 4.38 4.22 4.33 4.33

Table 11: Size of watermarks being embedded

Increase Change (%)

Application W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

XMLTree 11.76 12.47 15.06 11.29 13.18 37.42 12.00 12.00 11.76 11.76

TTT 1.58 2.24 2.24 1.34 4.40 x 1.86 1.81 1.65 1.60

toy_1.4 0.00 0.00 2.35 -4.71 47.06 x 0.00 0.00 0.00 0.00

spiro 17.88 18.59 20.24 16.47 27.06 97.65 18.35 18.35 18.12 18.12

jdrill2_3_1 19.76 19.06 19.06 17.88 24.71 x 18.82 16.24 18.59 18.59

Cvt2Mae 0.00 0.00 2.35 -4.71 4.71 x 0.00 0.00 0.00 0.00

Conzilla1 21.18 21.18 21.18 14.12 25.88 x 21.18 21.18 21.18 21.18

Average : 10.31 10.50 11.78 7.38 21.00 67.53 10.32 9.94 10.18 10.18

Table 12: Percentage of change after embedding watermarks

61

Percentage of change in Size

-10.00

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

1 2 3 4 5 6 7

String Constant
Stern
Register Type
QuPotkonjak
Monden
Graph Theoretic Watermark
Add Method Field
Add Switch
Add Initialization
Add Expression

Figure 8: Percentage of change of size after embedding watermarks

Percentage of change in Size

-10.00

0.00

10.00

20.00

30.00

40.00

50.00

1 2 3 4 5 6 7

Figure 9: Percentage of change of size after embedding watermarks

62

7.3.2 Time

No Watermark

Application Execution Time (ms)

XMLTree 2.126

TTT 1.624

toy_1.4 5.456

spiro 0.801

jdrill2_3_1 1.43

Cvt2Mae 1.63

Conzilla1.1Beta2 25.12

Average : 5.46

Table 13: Execution time of applications without watermarks being embedded

Watermarked Execution Time (ms)

Application W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

XMLTree 2.144 2.168 2.158 2.162 x 2.282 2.188 2.186 2.058 2.222

TTT 1.686 1.682 1.69 1.678 1.648 x 1.644 1.65 1.602 1.626

toy_1.4 5.57 5.618 5.43 5.8 6.12 x 5.628 5.508 5.542 5.822

spiro 0.868 0.906 0.871 0.861 0.945 0.924 0.904 0.925 0.896 0.889

jdrill2_3_1 1.416 1.374 1.352 1.432 1.438 x 1.392 1.356 1.402 1.4

Cvt2Mae 1.656 1.686 1.7 x 1.674 x 1.572 1.588 1.636 1.68

Conzilla1 24.98 25.14 24.78 25.23 25.14 x 24.86 25.61 25.12 25.38

Average : 5.47 5.51 5.43 6.19 6.16 1.60 5.46 5.55 5.47 5.57

Table 14: Execution time of applications after watermarks being embedded

63

Difference in Watermarked Execution Time (ms)

Application W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

XMLTree 0.018 0.042 0.032 0.036 x 0.156 0.062 0.06 -0.068 0.096

TTT 0.062 0.058 0.066 0.054 0.024 x 0.02 0.026 -0.022 0.002

toy_1.4 0.114 0.162 -0.026 0.344 0.664 x 0.172 0.052 0.086 0.366

spiro 0.067 0.105 0.07 0.06 0.144 0.123 0.103 0.124 0.095 0.088

jdrill2_3_1 -0.014 -0.056 -0.078 0.002 0.008 x -0.038 -0.074 -0.028 -0.03

Cvt2Mae 0.026 0.056 0.07 x 0.044 x -0.058 -0.042 0.006 0.05

Conzilla1 -0.14 0.02 -0.34 0.11 0.02 x -0.26 0.49 0 0.26

Average : 0.02 0.06 -0.03 0.10 0.15 0.14 0.00 0.09 0.01 0.12

Table 15: Execution time of watermarks being embedded

Increase Change (%)

Application W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

XMLTree 0.84 1.94 1.48 1.67 x 6.84 2.83 2.74 -3.30 4.32

TTT 3.68 3.45 3.91 3.22 1.46 x 1.22 1.58 -1.37 0.12

toy_1.4 2.05 2.88 -0.48 5.93 10.85 x 3.06 0.94 1.55 6.29

spiro 7.72 11.59 8.04 6.97 15.24 13.31 11.39 13.41 10.60 9.90

jdrill2_3_1 -0.99 -4.08 -5.77 0.14 0.56 x -2.73 -5.46 -2.00 -2.14

Cvt2Mae 1.57 3.32 4.12 x 2.63 x -3.69 -2.64 0.37 2.98

Conzilla1 -0.56 0.08 -1.37 0.44 0.08 x -1.05 1.91 0.00 1.02

Average : 2.04 2.74 1.42 3.06 5.13 10.07 1.58 1.78 0.84 3.21

Table 16: Percentage of change of execution time after embedding watermarks

64

Percentage of change in Time

-10.00

0.00

10.00

20.00

1 2 3 4 5 6 7

String Constant
Stern
Register Type
QuPotkonjak
Monden
Graph Theoretic Watermark
Add Method Field
Add Switch
Add Initialization
Add Expression

Figure 10: Percentage of change of execution time after embedding watermarks

7.3.3 Obfuscation Attacks

Results are exposed to be in binary measures as follows:

1: W found

0: W not found

x: Failed to execute

Obfuscation Attack: Array Splitter (O6)

Application W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

XMLTree 1 1 1 0 1 0 1 1 1 1

TTT 1 1 1 0 1 x 1 1 1 1

toy_1.4 x x x x x x x x x x

spiro 1 1 1 0 1 0 1 1 1 1

jdrill2_3_1 1 1 1 0 1 x 1 1 1 1

Cvt2Mae x x x x x x x x x x

Conzilla1 x x x x x x x x x x

Table 17: Effect of Array Splitter Obfuscation attack

65

Obfuscation Attack: Block Make (O7)

Application W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

XMLTree 1 1 1 0 1 0 1 1 1 1

TTT 1 1 1 0 1 0 1 1 1 1

Table 18: Effect of Block Make Obfuscation attack

Obfuscation Attack: Bludgeon (O8)

Application W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

XMLTree 1 1 1 0 1 0 1 1 1 1

TTT 1 1 1 0 1 0 1 1 1 1

Table 19: Effect of Bludgeon Obfuscation attack

Obfuscation Attack: Class Encrypter (O5)

Application W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

XMLTree 0 0 0 0 0 0 0 0 0 0

TTT 0 0 0 0 0 0 0 0 0 0

Table 20: Effect of Class Encrypter Obfuscation attack

66

7.3.4 Optimization Attacks

Optimization Attack: Inliner: inlines static methods.

Application W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

XMLTree 1 0 0 0 1 x 1 1 1 0

TTT 1 0 0 0 1 x 1 1 1 0

toy_1.4 1 0 0 0 1 x 0 1 1 0

spiro 1 1 0 0 1 x 1 1 1 0

jdrill2_3_1 1 1 0 0 1 x 1 1 1 0

Cvt2Mae 1 0 0 0 1 x 0 1 1 0

Conzilla1 x x x x x x x x x x

Table 21: Effect of Inliner optimization attack

Optimization Attack: Variable Reassigner

Application W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

XMLTree 1 1 0 0 1 0 1 1 1 0

TTT 1 1 0 0 1 x 1 1 1 0

spiro 1 1 0 0 1 0 1 1 1 0

Table 22: Effect of Variable Reassigner optimization attack

67

7.3.5 Collusive Attacks

Ability to recognize first Watermark if the same algorithm is applied twice

Application W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

XMLTree 1 1 0 0 1 x 1 0 0 1

TTT 0 1 1 0 1 x 0 0 0 0

toy_1.4 1 1 1 0 1 x 0 0 0 1

Spiro 1 0 0 0 1 x 1 0 0 1

jdrill2_3_1 0 1 1 0 1 x 0 0 0 0

Cvt2Mae 0 1 1 0 1 x 0 0 0 0

Conzilla1 0 0 1 0 0 x 0 0 0 0

Table 23: Effect of adding the same watermarking algorithm twice to the first watermark

Ability to recognize second Watermark if the same algorithm is applied twice

Application W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

XMLTree 0 1 1 0 0 x 0 1 1 0

TTT 1 1 0 0 0 x 1 1 1 1

toy_1.4 0 1 0 0 0 x 0 1 1 0

spiro 0 0 1 0 0 x 0 1 1 0

jdrill2_3_1 1 1 0 0 0 x 1 1 1 1

Cvt2Mae 1 1 0 0 0 x 1 1 1 1

Conzilla1 1 0 0 0 0 x 1 1 1 1

Table 24: Effect of adding the same watermarking algorithm twice to the 2nd watermark

68

Ability to recognize the original Watermark if a different algorithm is applied

Application W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

XMLTree 1 1 1 0 1 0 1 1 1 1

TTT 1 1 1 0 1 x 1 1 1 1

toy_1.4 1 1 1 0 1 x 0 1 1 1

spiro 1 1 1 0 1 0 1 1 1 1

jdrill2_3_1 1 1 1 0 1 x 1 1 1 1

Cvt2Mae 1 1 1 0 1 x 0 1 1 1

Conzilla1 1 0 1 0 0 x 0 1 1 1

Table 25: Effect of adding different watermarking algorithm

7.3.6 Manual Attacks

Results of experimenting “spiro” application only.

 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

Searching for

the W
0 1 0 2 1 1 1 1 1 1

Ability of

removing W
3 1 3 3 2 3 1 1 1 1

Table 26: Effect of Manual attacks on “spiro” application

Where:

0: not found

1: easily

2: moderate

3: hardly

69

7.4 Analysis and Observations

7.4.1 Size

The percentage of change of size on the effect of watermarking is almost

following the same trend with minor difference. The majority of watermarks has

expansion rate of about 10% in size. The maximum tested result has increase in

size of about 67%. Levels of size expansion can be simply classified according to

the table below:

 Level 1 Level 2 Level 3 Level 4 Level 5

Expansion in Size < 10 % 10 – 20 % 20 – 50 % 50 – 100 % > 100 %

Table 27: Classification based on Expansion in Size

7.4.2 Time

As seen in the results above, the percentage of change of time on the effect of

watermarking is almost following the same trend with minor differences for some

applications and techniques. However, unlike the expansion in size, the rate of

change of execution time was comparatively low and some results showed even

negative values for certain applications. This is expected since applying the

scheme might have an overhead in time during embedding or recognizing the

watermark and not while executing the watermarked program. Nonetheless, the

main concern is the efficiency of the watermarked applications.

70

 Level 1 Level 2 Level 3 Level 4 Level 5

Expansion in Time < 1 % 1 – 5 % 5 – 10 % 10 – 20 % > 20 %

Table 28: Classification based on Expansion in Time

By observing size and time results the following results can be concluded:

 Almost the same trend between time and size is conserved no matter what

technique of watermarking is used.

No Watermarking

No Application Size(KB) Time(s) Time(ms)

1 spiro 73.5 0.801 80.1

2 jdrill2_3_1 77.6 1.43 143

3 TTT 8.53 1.624 162.4

4 Cvt2Mae 326 1.63 163

5 XMLTree 57.2 2.126 212.6

6 toy_1.4 573 5.456 545.6

7 Conzilla1.1Beta2 1557 25.12 2512

 Average 381.83 5.46 545.53

Table 29: Size over time ratio with no watermarks

71

No Watermarking

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7

Size (KB)
Time (ms)

Figure 11: Size over time ratio with no watermarks

String Constant

No Application Size(KB) Time(s) Time(ms)

1 spiro 81.1 0.868 86.8

2 jdrill2_3_1 86 1.416 141.6

3 TTT 9.2 1.686 168.6

4 Cvt2Mae 326 1.656 165.6

5 XMLTree 62.2 2.144 214.4

6 toy_1.4 573 5.57 557

7 Conzilla1.1Beta2 1566 24.98 2498

 Average 386.2143 5.474286 547.4286

Table 30: Size over time ratio with String Constant watermark

72

String Constant Watermark

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7

Size (KB)
Time (ms)

Figure 12: Size over time ratio with String Constant watermark

Stern Watermark

No Application Size(KB) Time(s) Time(ms)

1 spiro 81.4 0.906 90.6

2 jdrill2_3_1 85.7 1.374 137.4

3 TTT 9.48 1.682 168.2

4 Cvt2Mae 326 1.686 168.6

5 XMLTree 62.5 2.168 216.8

6 toy_1.4 573 5.618 561.8

7 Conzilla1.1Beta2 1566 25.14 2514

 Average 386.2971 5.510571 551.0571

Table 31: Size over time ratio with Stern watermark

73

Stern Watermark

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7

Size (KB)
Time (ms)

Figure 13: Size over time ratio with Stern watermark

Register Type

No Application Size(KB) Time(s) Time(ms)

1 spiro 82.1 0.871 87.1

2 jdrill2_3_1 85.7 1.352 135.2

3 TTT 9.48 1.69 169

4 Cvt2Mae 327 1.7 170

5 XMLTree 63.6 2.158 215.8

6 toy_1.4 574 5.43 543

7 Conzilla1.1Beta2 1566 24.78 2478

 Average 5.425857 386.84 542.5857

Table 32: Size over time ratio with Register Type watermark

74

Register Type Watermark

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7

Size (KB)
Time (ms)

Figure 14: Size over time ratio with Register Type watermark

QuPotkonjak

No Application Size(KB) Time(s) Time(ms)

1 spiro 80.5 0.861 86.1

2 jdrill2_3_1 85.2 1.432 143.2

3 TTT 9.1 1.678 167.8

4 Cvt2Mae 324 x x

5 XMLTree 62 2.162 216.2

6 toy_1.4 571 5.8 580

7 Conzilla1.1Beta2 1563 25.23 2523

 Average 6.193833 384.9714 619.3833

Table 33: Size over time ratio with QuOotkonjak watermark

75

QuPotkonjak Watermark

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7

Size (KB)
Time (ms)

Figure 15: Size over time ratio with QuOotkonjak watermark

Monden

No Application Size(KB) Time(s) Time(ms)

1 spiro 85 0.945 94.5

2 jdrill2_3_1 88.1 1.438 143.8

3 TTT 10.4 1.648 164.8

4 Cvt2Mae 328 1.674 167.4

5 XMLTree 62.8

6 toy_1.4 593 6.12 612

7 Conzilla1.1Beta2 1568 25.14 2514

 Average 6.160833 390.7571 616.0833

Table 34: Size over time ratio with Monden watermark

76

Monden Watermark

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7

Size (KB)
Time (ms)

Figure 16: Size over time ratio with Monden watermark

Graph Theoretic Watermark

No Application Size(KB) Time(s) Time(ms)

1 spiro 115 0.924 92.4

2 jdrill2_3_1 x x x

3 TTT x x x

4 Cvt2Mae x x x

5 XMLTree 91.4 2.282 228.2

6 toy_1.4 x x x

7 Conzilla1.1Beta2 x x x

 Average 1.603 103.2 160.3

Table 35: Size over time ratio with GTW watermark

77

Graph Theoretic Watermark

0

50

100

150

200

250

1 2 3 4 5 6 7

Size (KB)
Time (ms)

Figure 17: Size over time ratio with GTW watermark

AddMethField

No Application Size(KB) Time(s) Time(ms)

1 spiro 81.3 0.904 90.4

2 jdrill2_3_1 85.6 1.392 139.2

3 TTT 9.32 1.644 164.4

4 Cvt2Mae 326 1.572 157.2

5 XMLTree 62.3 2.188 218.8

6 toy_1.4 573 5.628 562.8

7 Conzilla1.1Beta2 1566 24.86 2486

 Average 5.455429 386.2171 545.5429

Table 36: Size over time ratio with AddMethodField watermark

78

Add Method Field Watermark

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7

Size (KB)
Time (ms)

Figure 18: Size over time ratio with AddMethodField watermark

 The variation between size and time could vary depending on the application

itself.

XMLTree Size (KB) Time (s) Time (ms)

No Watermark 57.2 2.126 212.6

String Constant 62.2 2.144 214.4

Stern 62.5 2.168 216.8

Register Type 63.6 2.158 215.8

QuPotkonjak 62 2.162 216.2

Monden 62.8 x X

Graph Theoretic Watermarking 91.4 2.282 228.2

AddMethField 62.3 2.188 218.8

Add Switch 62.3 2.186 218.6

Add Initialization 62.2 2.058 205.8

Add Expression 62.2 2.222 222.2

Average 64.60909 2.1694 216.94

Table 37: Size over time ratio for XMLTree Application

79

XMLTree

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11

Size (KB)
Time (ms)

Figure 19: Size over time ratio for XMLTree Application

XMLTree Size (%) Time (%)

No Watermark 0 0

String Constant 11.76 0.84

Stern 12.47 1.94

Register Type 15.06 1.48

QuPotkonjak 11.29 1.67

Monden 13.18 x

Graph Theoretic Watermarking 37.42 6.84

AddMethField 12 2.83

Add Switch 12 2.74

Add Initialization 11.76 3.3

Add Expression 11.76 4.32

Average 13.51818 2.596

Table 38: Percentage of Size over time ratio for XMLTree Application

80

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11

Size
Time

Figure 20: Percentage of Size over time ratio for XMLTree Application

spiro Size (KB) Time (s) Time (ms)

No Watermark 73.5 0.801 80.1

String Constant 81.1 0.868 86.8

Stern 81.4 0.906 90.6

Register Type 82.1 0.871 87.1

QuPotkonjak 80.5 0.861 86.1

Monden 85 0.945 94.5

Graph Theoretic Watermarking 115 0.924 92.4

AddMethField 81.3 0.904 90.4

Add Switch 81.3 0.925 92.5

Add Initialization 81.2 0.896 89.6

Add Expression 81.2 0.889 88.9

Average 83.96364 0.89 89

Table 39: Size over time ratio for spiro Application

81

spiro

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11

Size (KB)
Time (ms)

Figure 21: Size over time ratio for spiro Application

spiro Size (%) Time (%)

No Watermark 0 0

String Constant 17.88 7.72

Stern 18.59 11.59

Register Type 20.24 8.04

QuPotkonjak 16.47 6.97

Monden 27.06 15.24

Graph Theoretic Watermarking 97.65 13.31

AddMethField 18.35 11.39

Add Switch 18.35 13.41

Add Initialization 18.12 10.6

Add Expression 18.12 9.9

Average 24.62091 9.833636

Table 40: Percentage of Size over time ratio for spiro Application

82

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11

Size
Time

Figure 22: Percentage of Size over time ratio for spiro Application

From the previous analysis, a possible benchmarking factor can be added for

analyzing the watermark class with reference to size and time expansions. The

value is measured by dividing the ratio of size expansion over the ration of time

expansion for a certain watermarking scheme.

 Level 1 Level 2 Level 3 Level 4 Level 5

Size over Time

Expansion
< 5 % 5 – 10 % 10 – 20 % 20 – 50 % > 50 %

Table 41: Classification based on Size over Time Expansion

7.4.3 Obfuscation Attacks

The results also showed that some obfuscation attacks could destroy the

watermark completely while some do not have any perceptible effect. We can

83

conclude that some watermarking techniques are vulnerable to some obfuscation

attacks regardless of the application being watermarked. Therefore, if an

obfuscation attack breaks one watermarking scheme, then the same will be the

case if it applied to other applications. The opposite is also true. Applying any

obfuscation attack into an application could destroy the application and make it no

more executable. Otherwise, the result will be simply either that W is

recognizable or it is not.

 Class 1 Class 2 Class 3

Obfuscation attack Execution stopped W can be recognized W can not be recognized

Table 42: Classification based on Obfuscation attack

7.4.4 Optimization Attacks

Optimization attacks either destroy the watermark or not regardless of the

application being watermarked. Only two watermarking schemes out of the ten

being experimented showed variation on the effect of the optimization attack

depending on the tested application itself. Evaluating the effect of an optimization

attack will result on one of the three possible cases: W will be always recognized,

W will be recognized in some applications but no all, and W will never be

recognized.

 Class 1 Class 2 Class 3

Optimization attack W always recognized W sometimes recognized W never recognized

Table 43: Classification based on Optimization attack

84

7.4.5 Collusive Attacks

Results showed that collusive attacks are of great threat to watermarks, especially

if the same watermarking scheme is applied twice. However, there is no clear

trend on the relationship between the application and the different watermarks

applied with reference to collusive attacks. The collusive attack could be by either

applying the same watermark scheme used if known or by using another scheme.

As in optimization attacks, applying collusive attacks could have three results as

in the table below.

 Class 1 Class 2 Class 3

Adding same

Watermarking scheme
W always recognized W sometimes recognized W never recognized

Adding another

Watermarking scheme
W always recognized W sometimes recognized W never recognized

Table 44: Classification based on Collusive attacks

7.4.6 Manual Attacks

In manual attacks, if the watermark is easily found then it is highly probably that

it will be easily removed as well. The opposite is most likely to be true.

Evaluating this type of attacks seems to be vague. Therefore, the best way known

to us for measuring such human-factor based attack is to look for individuals’

evaluation as the table below suggests.

85

 Level 1 Level 2 Level 3 Level 4 Level 5

Finding W V. Low Low Moderate High V. High

Removing W V. Low Low Moderate High V. High

Table 45: Classification based on Manual attacks

In doing evaluation experimentations using the proposed benchmarking above, it

is expected to repeated the tests several times and to use several types of attacks

as well. Evaluation level will surely depend on the number and types of attacks

being used and the applications where watermarks are embedded on. An example

of an evaluation outline based on the proposed benchmarking is shown in the

table below.

86

 Level 1 Level 2 Level 3 Level 4 Level 5

Expansion in Size < 10 % 10 – 20 % 20 – 50 % 50 – 100 % > 100 %

Expansion in Time < 1 % 1 – 5 % 5 – 10 % 10 – 20 % > 20 %

Size over Time

Expansion
< 5 % 5 – 10 % 10 – 20 % 20 – 50 % > 50 %

 Class 1 Class 2 Class 3

Obfuscation

attack
Execution stopped W can be recognized

W can not be

recognized

Optimization

attack

W always

recognized

W sometimes

recognized
W never recognized

Adding same

Watermarking

scheme

W always

recognized

W sometimes

recognized
W never recognized

Adding another

Watermarking

scheme

W always

recognized

W sometimes

recognized
W never recognized

Finding W V. Low Low Moderate High V. High

Removing W V. Low Low Moderate High V. High

Table 46: Summary of proposed benchmarking scheme for SW

CHAPTER 8

CONCLUSION

8.1 Findings and Results

In this thesis, several issues related to software watermarking were reviewed and studied.

The matter of protecting copyrights and preventing piracy is very important and of great

interest to industry and academic research. However, it was found that though it has

many difficulties, working on the area of software security has many open areas for

improvement. After discussing software protection and the major drivers for software

piracy, an in-depth research on current software watermarking scheme was conducted.

Chapters 2 discussed the importance of software copyrights and ownership

authentication. In Chapter 3, different security techniques such as hardware and software

techniques where mentioned. The following chapter explained the reason of studying

watermarking with java in this thesis. Next, a comparative study on different

watermarking algorithms, including static and dynamic watermarks, was presented. Also,

several possible attacks on software watermarks were analyzed.

Our major contribution to the software watermarking community in this thesis work was

done in chapters 6 and 7. Chapter 6 was about an overview of the proposed work. First,

87

88

the need for evaluation benchmarking and some reminiscent unrelated work was

presented. Then, our study approach was enlightened. After that, the proposed

benchmarking factors were explained in details. In chapter 7, experimentation results,

analysis, and observation were presented. Contributions and results of this thesis are

summarized in the next section. In the last section, the limitations of the work done and

future work were addressed.

8.2 Summary of Contributions

The outcomes and contributions of the work done on this thesis research can be

summarized on the points below:

 Proposed, in details, a set of evaluation benchmarking attributes for any

software watermarking scheme.

 Demonstrated the significance of the proposed approach through numerical

experimentations comparing different varying sampling applications.

 Studied and surveyed the current and promising new techniques designed to

reliably preserve and protect software programs.

 Elaborated on the state of art and promising future interests for research in the

area of software watermarking.

 Evaluated and classified different software watermarking techniques and

attacks.

 Showed that all existing schemes, even in future, are not immune to all types

of attacks.

89

 Concluded that proposed dynamic watermarking schemes are vulnerable even

to attacks designed for static watermarking schemes.

 Identified the need of having benchmarking tools for software watermarking

to evaluate new schemes or to compare between existing schemes, which will

speed up the research in this area.

 Presented extensive experimentations and results of different watermarks and

attacks.

 Identified some promising new areas of improvements and future work on the

area of software watermarking.

8.3 Limitations and Future Work

The limitations of the work done in this thesis are as follows:

 Only few references and work were done in this area since the existing

research on software watermarking is considered new.

 Many proposed software watermarks are not completely explained or not even

implemented.

 Very limited number of software watermarking tools available, and all are in

evaluation (beta) versions.

 In the experimentations, only watermarks that are applied to bytecode and not

source code were considered. Moreover, the proposed benchmarking assumes

that there is no partial recognition of watermarks (non-binary problem).

90

 Evaluating manual attacks is still lacking quality metrics that do not depend

heavily on human factors.

After the work done in this thesis, many opening areas for future work were identified.

First of all, the limitations listed above are to be addressed. In addition, more

watermarking schemes can be considered to fatherly improve the benchmarking.

Moreover, we will try to find the feasibility of having automatic benchmarking tool for

software watermarking schemes. Another possibility is to work on developing a tool that

utilizes the information obtained from the proposed benchmarking in identifying the

watermark scheme being applied into an application.

Testing the benchmark with newly created software watermarking algorithms is also

considered in future work. Having results calculated for such testing will help in coming

up with a possible new ideas in this area. And finally, applying watermarking on

programs written on code other than Java, such as C#, will be another objective of our

future research.

REFERENCES

[1] B. Anckaert, Bjorn De Sutter and Koen De Bosschere. Software Piracy Prevention

through Diversity. Proceedings of the 4th ACM workshop on Digital rights
management, p.63-71, 2004.

[2] C. Collberg and C. Thomborson, On the limits of Software Watermarking, Technical

Report #164, Department of Computer Science, The University of Auckland, August
1998.

[3] C. Collberg and C. Thomborson, (1999), Software watermarking: Models and

dynamic embeddings, in `Principles of Programming Languages (POPL'99)', San
Antonio, TX, pp. 311-324.

[4] C. Collberg, Clark Thomborson, and Gregg Townsend. Dynamic graph-based

software watermarking. Technical report, Dept. of Computer Science, Univ. of
Arizona, 2004.

[5] C. Collberg, Andrew Huntwork, Edward Carter, and Gregg Townsend. Graph

Theoretic Software Watermarks: Implementation, Analysis, and Attacks. In 6th
Information Hiding Workshop, 2004.

[6] C. Collberg, E. Carter, S. Debray, A. Huntwork, C. Linn, M. Stepp, Dynamic Path-

Based Software Watermarking. PLDI 2004.

[7] P. Cousot and Radhia Cousot.. An Abstract Interpretation-Based Framework for

Software Watermarking. In Conference Record of the 31st ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Programming Languages, Venice,
Italy, January 14-16, 2004. ACM Press, New York, U.S.A. pp. 173—185.

[8] D. Curran, N.J. Hurley, and M. O. Cinneide. Securing java through software

watermarking. In Proceedings of the 2nd international conference on Principles
and practice of programming in Java, 2003.

[9] Davidson; Robert I. (Bellevue, WA);Myhrvold; Nathan (Bellevue, WA), Microsoft

Corporation (Redmond, WA), Computer software protection. United States Patent
5559884. 1996. http://freepatentsonline.com/5559884.html

http://freepatentsonline.com/5559884.html

92

[10] K. Holmes; (Dublin, IE), International Business Machines Corporation (Armonk,
NY), Computer software protection. United States Patent 5287407. 1994.
http://freepatentsonline.com/5287407.html

[11] Erin Joyce “Software Piracy Losses Add Up to $29B.” July 8, 2004.

http://www.enterpriseitplanet.com/security/news/article.php/3378251

[12] M. Kutter and F. A. Petitcolas "A Fair Benchmark for Image Watermarking
Systems" Proc. SPIE Security and Watermarking of Multimedia Contents vol. 3657,
pp. 226-239, January 1999.

[13] Moskowitz; Scott A. (North Miami Beach, FL);Cooperman; Marc (Palo Alto, CA),

The Dice Company (Miami, FL), Computer software protection. United States
Patent 5745569. 1998. http://freepatentsonline.com/5745569.html

[14] J. Nagra, C. Thomborson, and C. Collberg, (2002), A functional taxonomy for

software watermark- ing, in M. Oudshoorn, ed., `Proc. 25th Australasian Computer
Science Conference 2002', ACS, pp. 177-186.

[15] J. Palsberg and S. Krishnaswami, Kwon, M., Ma, D., Shao, Q. & Zhang, Y. (2001),

Experience with software watermarking, in `Proc. 16th Ann. Comp. Security
Applications Conf. (AC-SAC'00)', IEEE Computer Society, pp. 308-316.

[16] fabien a. p. petitcolas http://www.petitcolas.net/fabien/watermarking/stirmark/

[17] FAP Petitcolas,“Watermarking Schemes Evaluation”, IEEE Magazine of Signal.

Processing, Vol. 17, No. 5, , pp. 58-64, September 2000.

[18] T. Premkumar Devanbu and Stuart Stubblebine. Software engineering for security:

a roadmap. In Proceedings of the conference on The future of Software engineering,
pages 227-239. ACM Press, 2000.

[19] P. R. Samson; (San Francisco, CA), Autodesk, Inc. (Sausalito, CA), Computer

software protection. United States Patent 5287408. 1994.
http://freepatentsonline.com/5287408.html

[20] C. Thomborson, Nagra, J., Somaraju, R. and He, C. (2004). Tamper-proofing

Software Watermarks. In Proc. Second Australasian Information Security
Workshop (AISW2004), Dunedin, New Zealand. CRPIT, 32. Montague, P. and
Steketee, C., Eds., ACS. 27-36.

[21] “One Third of All Software in Use Still Pirated, Major Study Finds.” International

Data Corporation (IDC).
“http://www.idc.com/getdoc.jsp?containerId=prUS00150505”. WASHINGTON,
D.C., May 18, 2005.

http://freepatentsonline.com/5287407.html
http://www.enterpriseitplanet.com/security/news/article.php/3378251
http://freepatentsonline.com/5745569.html
http://www.petitcolas.net/fabien/watermarking/stirmark/
http://freepatentsonline.com/5287408.html
http://www.idc.com/getdoc.jsp?containerId=prUS00150505

93

[22] Business Software Alliance www.bsa.org.

[23] The Easter Egg ArchiveTM [www.eeggs.com/items/568.html]

[24] Watermarking - Quality Evaluations

http://wwwiti.cs.uni-magdeburg.de/iti_amsl/lehre/02_SoSem/mmsec/watermarking/

http://wwwiti.cs.uni-magdeburg.de/iti_amsl/lehre/02_SoSem/mmsec/watermarking/

APPENDIX

Experimental Results

95

execution time (ms)

XMLTree.jar
No Watermark

S E S-E
1 45.71 47.74 2.03
2 6.1 8.29 2.19
3 24.45 26.61 2.16
4 48.47 50.54 2.07
5 7.6 9.78 2.18

average 2.126
stdv 0.072

Monden

S E S-E
1 0
2 0
3 0
4 0
5 0

average 0
stdv 0

AddExpression

S E S-E
1 40.01 42.24 2.23
2 26.36 28.62 2.26
3 43.5 45.7 2.2
4 59.47 61.62 2.15
5 18.47 20.74 2.27

average 2.222
stdv 0.049

String Constant

S E S-E
1 20.9 23.07 2.17
2 12.64 14.77 2.13
3 44.21 46.39 2.18
4 52.99 55.06 2.07
5 8.92 11.09 2.17

average 2.144

stdv 0.046

GraphTheoreticWatermarking
S E S-E
1 41.37 43.69 2.32
2 45.14 47.43 2.29
3 48.6 50.85 2.25
4 51.68 53.94 2.26
5 54.76 57.05 2.29

average 2.282
stdv 0.028

Qu Potkonjak

S E S-E
1 35.3 37.38 2.08
2 58.48 60.65 2.17
3 19.69 21.93 2.24
4 33.75 35.81 2.06
5 52.63 54.89 2.26

average 2.162
stdv 0.091

Stern
S E S-E
1 34.41 36.52 2.11
2 23.28 25.41 2.13
3 38.34 40.65 2.31
4 52.37 54.44 2.07
5 11.28 13.5 2.22

average 2.168
stdv 0.097

AddSwitch

S E S-E
1 34.49 36.62 2.13
2 4.69 6.83 2.14
3 7.32 9.54 2.22
4 6.05 8.17 2.12
5 21.09 23.41 2.32

average 2.186

96

stdv 0.085

AddInitialization
S E S-E
1 3.04 5.12 2.08
2 31.59 33.56 1.97
3 44.33 46.3 1.97
4 55.87 58.04 2.17
5 9.99 12.09 2.1

average 2.058
stdv 0.087

RegisterType
S E S-E
1 59.84 61.97 2.13
2 23.79 25.85 2.06
3 39.89 42.11 2.22
4 20.65 22.71 2.06
5 6.84 9.16 2.32

average 2.158
stdv 0.112

AddMethField

S E S-E
1 42.24 44.48 2.24
2 43.29 45.57 2.28
3 28.16 30.24 2.08
4 52.94 55.02 2.08
5 31.21 33.47 2.26

average 2.188
stdv 0.1

execution time (ms)

spiro.jar
No Watermark

S E S-E
1 48.1 49.01 0.91
2 23.07 23.86 0.79
3 52.01 52.82 0.81
4 26.11 26.95 0.84
5 41.91 42.7 0.79
6 55.74 56.53 0.79
7 18.39 19.08 0.69
8 35.96 36.71 0.75

9 51.14 51.93 0.79
10 6.56 7.41 0.85

average 0.801
stdv 0.059

Monden

S E S-E
1 12.97 13.85 0.88
2 39.44 40.42 0.98
3 56.79 57.68 0.89
4 14.09 15.03 0.94
5 31.45 32.43 0.98
6 26.93 27.92 0.99
7 15.76 16.76 1
8 14.14 15.11 0.97
9 31.71 32.64 0.93

10 39.32 40.21 0.89
average 0.945

stdv 0.046

String Constant
S E S-E
1 38.92 39.77 0.85
2 50.58 51.44 0.86
3 18.59 19.4 0.81
4 36.7 37.59 0.89
5 51.55 52.36 0.81
6 37.81 38.66 0.85
7 52.59 53.44 0.85
8 5.36 6.31 0.95
9 21.95 22.9 0.95

10 36.36 37.22 0.86
average 0.868

stdv 0.049

GraphTheoreticWatermarking
S E S-E
1 40.21 41.14 0.93
2 35.51 36.37 0.86
3 55.09 55.95 0.86
4 11.7 12.61 0.91
5 7.83 8.74 0.91
6 41.35 42.35 1
7 17.48 18.4 0.92
8 28.39 29.36 0.97
9 35.08 36.05 0.97

97

10 24.34 25.25 0.91
average 0.924

stdv 0.046

Stern
S E S-E
1 29.93 30.89 0.96
2 41.72 42.58 0.86
3 6.63 7.53 0.9
4 29.35 30.25 0.9
5 39.5 40.41 0.91
6 51.43 52.38 0.95
7 55.36 56.22 0.86
8 23.05 24.04 0.99
9 41.14 42.01 0.87

10 30.21 31.07 0.86
average 0.906

stdv 0.047

AddSwitch
S E S-E
1 48.09 48.97 0.88
2 13.75 14.66 0.91
3 24.89 25.81 0.92
4 49.46 50.41 0.95
5 0.98 1.85 0.87
6 13.88 14.84 0.96
7 14.39 15.29 0.9
8 38.53 39.51 0.98
9 50.42 51.29 0.87

10 5.16 6.17 1.01
average 0.925

stdv 0.048

RegisterType
S E S-E
1 44.86 45.75 0.89
2 4.63 5.53 0.9
3 32.77 33.58 0.81
4 46.96 47.86 0.9
5 24.76 25.62 0.86
6 14.99 15.79 0.8
7 28.57 29.43 0.86
8 41.47 42.3 0.83
9 7.64 8.59 0.95

10 25.86 26.77 0.91

average 0.871
stdv 0.048

AddMethField

S E S-E
1 12.35 13.26 0.91
2 44.38 45.29 0.91
3 56.49 57.39 0.9
4 10.02 10.92 0.9
5 23.07 24.03 0.96
6 37.62 38.52 0.9
7 51.73 52.58 0.85
8 4.56 5.4 0.84
9 17.25 18.12 0.87

10 29.12 30.12 1
average 0.904

stdv 0.048
Qu Potkonjak

S E S-E
1 6.04 6.94 0.9
2 20.24 21.15 0.91
3 49.29 50.24 0.95
4 26.73 27.56 0.83
5 18.1 18.91 0.81
6 31.06 31.87 0.81
7 45.05 45.88 0.83
8 1.22 2.05 0.83
9 5.16 6.05 0.89

10 31.63 32.48 0.85
average 0.861

stdv 0.048

AddInitialization
S E S-E
1 19.75 20.65 0.9
2 17.1 17.92 0.82
3 55.92 56.83 0.91
4 16.24 17.14 0.9
5 29.38 30.22 0.84
6 9.06 9.95 0.89
7 55.56 56.52 0.96
8 45.38 46.24 0.86
9 17.57 18.48 0.91

10 43.53 44.5 0.97
average 0.896

stdv 0.047

98

AddExpression

S E S-E
1 4.91 5.82 0.91
2 19.73 20.64 0.91
3 36.58 37.48 0.9
4 51.95 52.88 0.93
5 6.34 7.25 0.91
6 20.49 21.44 0.95
7 32.59 33.39 0.8
8 45.07 45.88 0.81
9 58.43 59.34 0.91

10 12.93 13.79 0.86
average 0.889

stdv 0.05

execution time (ms)

toy_1.4.jar
No Watermark

S E S-E
1 29.94 35.38 5.44
2 34.08 39.53 5.45
3 17.51 22.96 5.45
4 48.18 53.62 5.44
5 54.75 60.25 5.5

average 5.456
stdv 0.025

Monden

S E S-E
1 12.6 19.08 6.48
2 44.97 50.58 5.61
3 54.32 61.05 6.73
4 2.74 8.8 6.06
5 29.53 35.25 5.72

average 6.12
stdv 0.481

Qu Potkonjak

S E S-E
1 58.29 65.18 6.89
2 5.9 11.27 5.37
3 12.25 17.71 5.46
4 43.36 48.74 5.38
5 50.35 56.25 5.9

average 5.8

stdv 0.647

String Constant
S E S-E
1 24.96 30.55 5.59
2 32.13 37.94 5.81
3 38.86 44.35 5.49
4 45.13 50.57 5.44
5 31.37 36.89 5.52

average 5.57
stdv 0.145

GraphTheoreticWatermarking
S E S-E
1 0
2 0
3 0
4 0
5 0

average 0
stdv 0

AddInitialization

S E S-E
1 42.89 48.32 5.43
2 32.56 38.19 5.63
3 49.74 55.26 5.52
4 5.97 11.58 5.61
5 21.03 26.55 5.52

average 5.542
stdv 0.08

Stern

S E S-E
1 40.14 45.67 5.53
2 34.2 39.71 5.51
3 27.77 33.12 5.35
4 21.73 27.29 5.56
5 36.06 42.2 6.14

average 5.618
stdv 0.303

AddSwitch

S E S-E
1 29.67 34.88 5.21
2 21.04 26.61 5.57

99

3 36.87 42.49 5.62
4 54.37 59.9 5.53
5 1.37 6.98 5.61

average 5.508
stdv 0.17

AddExpression

S E S-E
1 51.25 57.42 6.17
2 58.39 64.44 6.05
3 30.42 36.47 6.05
4 43.31 48.63 5.32
5 48.84 54.36 5.52

average 5.822
stdv 0.377

RegisterType

S E S-E
1 37.41 43.05 5.64
2 43.79 49.05 5.26
3 50.59 55.99 5.4
4 56.89 62.18 5.29
5 33.43 38.99 5.56

average 5.43
stdv 0.166

AddMethField

S E S-E
1 38.27 44.1 5.83
2 45.84 51.31 5.47
3 18.53 24.22 5.69
4 26.49 32.12 5.63
5 16.6 22.12 5.52

average 5.628
stdv 0.143

TTT.jar
No Watermark

S E S-E
1 26.31 27.9 1.59
2 29.69 31.24 1.55
3 4.54 6.18 1.64
4 54.71 56.36 1.65
5 11.33 13.02 1.69

average 1.624
stdv 0.055

Monden
S E S-E
1 27.34 28.87 1.53
2 42.57 44.28 1.71
3 55.68 57.33 1.65
4 8.21 9.86 1.65
5 21.3 23 1.7

average 1.648
stdv 0.072

Qu Potkonjak

S E S-E
1 59.02 60.77 1.75
2 20.56 22.27 1.71
3 35.63 37.32 1.69
4 49.66 51.25 1.59
5 1.32 2.97 1.65

average 1.678
stdv 0.061

String Constant

S E S-E
1 53.34 55.15 1.81
2 9.68 11.35 1.67
3 22.16 23.82 1.66
4 38.13 39.78 1.65
5 53.96 55.6 1.64

average 1.686
stdv 0.07

GraphTheoreticWatermarking
S E S-E
1 0
2 0
3 0
4 0
5 0

average 0
stdv 0

AddInitialization

S E S-E
1 28.26 29.98 1.72
2 43.37 44.94 1.57
3 55.19 56.76 1.57
4 7.64 9.21 1.57

100

5 18.84 20.42 1.58
average 1.602

stdv 0.066

Stern
S E S-E
1 41.95 43.67 1.72
2 1.31 3.12 1.81
3 15.31 17.01 1.7
4 33.23 34.82 1.59
5 44.56 46.15 1.59

average 1.682
stdv 0.094

AddSwitch

S E S-E
1 31.43 33.12 1.69
2 54.51 56.25 1.74
3 10.2 11.85 1.65
4 49.2 50.79 1.59
5 2.18 3.76 1.58

average 1.65
stdv 0.067

AddExpression

S E S-E
1 51.02 52.64 1.62
2 26.71 28.32 1.61
3 18.01 19.65 1.64
4 30.52 32.17 1.65
5 44.33 45.94 1.61

average 1.626
stdv 0.018

RegisterType

S E S-E
1 34.28 35.92 1.64
2 57.64 59.38 1.74
3 2.51 4.19 1.68
4 21.89 23.53 1.64
5 35.45 37.2 1.75

average 1.69
stdv 0.053

AddMethField

S E S-E

1 17.3 19.03 1.73
2 35.87 37.48 1.61
3 50.21 51.87 1.66
4 2.9 4.48 1.58
5 12.47 14.11 1.64

average 1.644
stdv 0.057
jdrill2_3_1.jar

No Watermark
S E S-E
1 28.15 29.59 1.44
2 19.59 20.98 1.39
3 22.22 23.66 1.44
4 5.72 7.15 1.43
5 3.49 4.94 1.45

average 1.43
stdv 0.023

Monden

S E S-E
1 10.04 11.5 1.46
2 12.1 13.62 1.52
3 14.16 15.5 1.34
4 16.06 17.55 1.49
5 45.98 47.36 1.38

average 1.438
stdv 0.076

Qu Potkonjak

S E S-E
1 45.45 46.89 1.44
2 50.33 51.83 1.5
3 52.76 54.15 1.39
4 54.73 56.07 1.34
5 43.17 44.66 1.49

average 1.432
stdv 0.068

String Constant

S E S-E
1 35.3 36.85 1.55
2 37.68 39.08 1.4
3 46.02 47.3 1.28
4 41.8 43.25 1.45
5 43.93 45.33 1.4

average 1.416

101

stdv 0.098

GraphTheoreticWatermarking
S E S-E
1 0
2 0
3 0
4 0
5 0

average 0
stdv 0

AddInitialization

S E S-E
1 21.15 22.47 1.32
2 36.47 37.88 1.41
3 38.43 39.83 1.4
4 16.57 17.99 1.42
5 18.7 20.16 1.46

average 1.402
stdv 0.051

Stern

S E S-E
1 28.89 30.19 1.3
2 16.72 18.08 1.36
3 48.52 49.88 1.36
4 46.26 47.66 1.4
5 44.25 45.7 1.45

average 1.374
stdv 0.055

AddSwitch

S E S-E
1 26.66 28.1 1.44
2 48.77 50.02 1.25
3 50.52 51.97 1.45
4 52.5 53.8 1.3
5 28.71 30.05 1.34

average 1.356
stdv 0.087

AddExpression

S E S-E
1 56.95 58.3 1.35
2 54.96 56.4 1.44

3 15.65 17.1 1.45
4 17.65 18.96 1.31
5 52.91 54.36 1.45

average 1.4
stdv 0.066

RegisterType

S E S-E
1 17.4 18.79 1.39
2 19.92 21.28 1.36
3 22 23.26 1.26
4 24.03 25.44 1.41
5 56.41 57.75 1.34

average 1.352
stdv 0.058

AddMethField

S E S-E
1 13.15 14.49 1.34
2 44.17 45.65 1.48
3 46.3 47.6 1.3
4 17.17 18.52 1.35
5 15.13 16.62 1.49

average 1.392
stdv 0.087
Cvt2Mae.jar

No Watermark
S E S-E
1 45.17 46.82 1.65
2 28.58 30.23 1.65
3 49.1 50.74 1.64
4 51.16 52.71 1.55
5 30.5 32.16 1.66

average 1.63
stdv 0.045

Monden

S E S-E
1 49.46 51.13 1.67
2 40.92 42.53 1.61
3 42.94 44.6 1.66
4 51.56 53.29 1.73
5 47.29 48.99 1.7

average 1.674
stdv 0.045

102

Qu Potkonjak
S E S-E
1 0
2 0
3 0
4 0
5 0

average 0
stdv 0

String Constant

S E S-E
1 17.98 19.64 1.66
2 19.98 21.64 1.66
3 21.98 23.63 1.65
4 23.97 25.63 1.66
5 26.01 27.66 1.65

average 1.656
stdv 0.005

GraphTheoreticWatermarking
S E S-E
1 0
2 0
3 0
4 0
5 0

average 0
Stdv 0

AddInitialization

S E S-E
1 23.27 24.83 1.56
2 33.04 34.7 1.66
3 17.36 18.93 1.57
4 19.62 21.38 1.76
5 3.31 4.94 1.63

average 1.636
stdv 0.081

Stern

S E S-E
1 7.61 9.26 1.65
2 5.6 7.21 1.61
3 57.01 58.71 1.7
4 1.49 3.2 1.71

5 59.23 60.99 1.76
average 1.686

stdv 0.058

AddSwitch
S E S-E
1 50.19 51.81 1.62
2 42.79 44.38 1.59
3 44.79 46.33 1.54
4 47.03 48.57 1.54
5 32.62 34.27 1.65

average 1.588
stdv 0.049

AddExpression

S E S-E
1 3.96 5.6 1.64
2 6.04 7.69 1.65
3 8.03 9.74 1.71
4 47.74 49.44 1.7
5 50.36 52.06 1.7

average 1.68
stdv 0.032

RegisterType

S E S-E
1 11.6 13.27 1.67
2 13.67 15.37 1.7
3 15.74 17.51 1.77
4 18.02 19.68 1.66
5 21.87 23.57 1.7

average 1.7
stdv 0.043

AddMethField

S E S-E
1 21.88 23.54 1.66
2 24.15 25.69 1.54
3 41.27 42.9 1.63
4 28.38 29.87 1.49
5 21.53 23.07 1.54

average 1.572
stdv 0.07

Conzilla1.1Beta2.jar
No Watermark

S E S-E

103

1 9.91 35.16 25.25
2 37.85 62.91 25.06
3 5.13 29.73 24.6
4 11.41 36.91 25.5
5 49.77 74.97 25.2

average 25.12
stdv 0.332

Monden

S E S-E
1 6.26 31.18 24.92
2 33.03 58.5 25.47
3 0.76 25.62 24.86
4 31.46 56.48 25.02
5 59.66 85.11 25.45

average 25.14
stdv 0.294

Qu Potkonjak

S E S-E
1 55.42 81.8 26.38
2 23.93 48.98 25.05
3 57.87 82.76 24.89
4 37.16 61.8 24.64
5 15 40.19 25.19

average 25.23
stdv 0.675

String Constant

S E S-E
1 10.2 36.24 26.04
2 44.01 69.01 25
3 22.64 46.67 24.03
4 50.7 75.49 24.79
5 17.27 42.29 25.02

average 24.98
stdv 0.718

GraphTheoreticWatermarking
S E S-E
1 0
2 0
3 0
4 0
5 0

average 0

stdv 0

AddInitialization
S E S-E
1 26.32 53.09 26.77
2 54.33 79.1 24.77
3 20.7 45.28 24.58
4 46.57 71.68 25.11
5 13.14 37.52 24.38

average 25.12
stdv 0.96

Stern

S E S-E
1 15.45 39.76 24.31
2 42.16 67.57 25.41
3 10.41 35.41 25
4 38.86 64.65 25.79
5 9.5 34.69 25.19

average 25.14
stdv 0.549

AddSwitch

S E S-E
1 32 56.39 24.39
2 58.84 85.29 26.45
3 27.45 53.41 25.96
4 54.92 80.27 25.35
5 24.73 50.65 25.92

average 25.61
stdv 0.787

AddExpression

S E S-E
1 37.66 62.48 24.82
2 16.11 41.55 25.44
3 48.82 75.16 26.34
4 19.69 44.97 25.28
5 48.41 73.41 25

average 25.38
stdv 0.59

RegisterType

S E S-E
1 9.47 34.26 24.79
2 44.1 69.11 25.01

104

3 22.2 47.54 25.34
4 50.5 74.9 24.4
5 24.65 48.99 24.34

average 24.78
stdv 0.42

AddMethField

S E S-E

1 31.07 55.84 24.77
2 22.42 47.11 24.69
3 48.61 73 24.39
4 14.54 39.88 25.34
5 43.69 68.81 25.12

average 24.86
stdv 0.373

Execution Time (ms) Watermarked Execution Time (ms)

Application
No
W W1 W2 W3 W4 W5 W6

W
7 W8 W9 W10

XMLTree Avg 2.126 2.144 2.168 2.158 2.162 2.282
2.1
88 2.186 2.058 2.222

XMLTree Stdv 0.072 0.046 0.097 0.112 0.091 0.028 0.1 0.085 0.087 0.049

TTT Avg 1.624 1.686 1.682 1.69 1.678 1.648
1.6
44 1.65 1.602 1.626

TTT Stdv 0.055 0.07 0.094 0.053 0.061 0.072
0.0
57 0.067 0.066 18

toy_1.4 Avg 5.456 5.57 5.618 5.43 5.8 6.12
5.6
28 5.508 5.542 5.822

toy_1.4 Stdv 0.025 0.145 0.303 0.166 0.647 0.481
0.1
43 0.17 0.08 0.377

spiro Avg 0.801 0.868 0.906 0.871 0.861 0.945 0.924
0.9
04 0.925 0.896 0.889

spiro Stdv 0.059 0.049 0.047 0.048 0.048 0.046 0.046
0.0
48 0.048 0.047 0.050

jdrill2_3_1 Avg 1.43 1.416 1.374 1.352 1.432 1.438
1.3
92 1.356 1.402 1.4

jdrill2_3_1 Stdv 0.023 0.098 0.055 0.058 0.068 0.076
0.0
87 0.087 0.051 0.066

Cvt2Mae Avg 1.63 1.656 1.686 1.7 1.674
1.5
72 1.588 1.636 1.68

Cvt2Mae Stdv 0.045 0.005 0.058 0.043 0.045
0.0
7 0.049 0.081 0.032

Conzilla1 Avg 25.12 24.98 25.14 24.78 25.23 25.14
24.
86 25.61 25.12 25.38

Conzilla1 Stdv 0.332 0.718 0.549 0.42 0.675 0.294
0.3
73 0.787 0.96 0.59

Execution Time (ms) Difference in Watermarked Execution Time (ms)

Application W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

XMLTree Avg 0.018 0.042
0.03

2
0.03

6 0.156 0.062 0.06
-

0.068 0.096

XMLTree Stdv -0.026 0.025 0.04
0.01

9 -0.044 0.028 0.013 0.015
-

0.023

TTT Avg 0.062 0.058
0.06

6
0.05

4 0.024 0.02 0.026
-

0.022 0.002

TTT Stdv 0.015 0.039

-
0.00

2
0.00

6 0.017 0.002 0.012 0.011
17.94

5

toy_1.4 Avg 0.114 0.162

-
0.02

6
0.34

4 0.664 0.172 0.052 0.086 0.366

toy_1.4 Stdv 0.12 0.278
0.14

1
0.62

2 0.456 0.118 0.145 0.055 0.352

105

spiro Avg 0.067 0.105 0.07 0.06 0.144 0.123 0.103 0.124 0.095 0.088

spiro Stdv -0.010 -0.012

-
0.01

1

-
0.01

1 -0.013 -0.013 -0.011
-

0.011
-

0.012
-

0.009

jdrill2_3_1 Avg -0.014 -0.056

-
0.07

8
0.00

2 0.008 -0.038
-

0.074
-

0.028 -0.03

jdrill2_3_1 Stdv 0.075 0.032
0.03

5
0.04

5 0.053 0.064 0.064 0.028 0.043

Cvt2Mae Avg 0.026 0.056 0.07 0.044 -0.058
-

0.042 0.006 0.05

Cvt2Mae Stdv -0.04 0.013

-
0.00

2 0 0.025 0.004 0.036
-

0.013

Conzilla1 Avg -0.14 0.02
-

0.34 0.11 0.02 -0.26 0.49 0 0.26

Conzilla1 Stdv 0.386 0.217
0.08

8
0.34

3 -0.038 0.041 0.455 0.628 0.258

Execution Time (ms) Change (%)
Application W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

XMLTree Avg 0.84 1.94 1.48 1.67 6.84 2.83 2.74
-

3.30 4.32

XMLTree Stdv -56.52 25.77
35.7

1
20.8

8 -157.14
28.0

0 15.29
17.2

4

-
46.9

4

TTT Avg 3.68 3.45 3.91 3.22 1.46 1.22 1.58
-

1.37 0.12

TTT Stdv 21.43 41.49
-

3.77 9.84 23.61 3.51 17.91
16.6

7
99.6

9

toy_1.4 Avg 2.05 2.88
-

0.48 5.93 10.85 3.06 0.94 1.55 6.29

toy_1.4 Stdv 82.76 91.75
84.9

4
96.1

4 94.80
82.5

2 85.29
68.7

5
93.3

7

spiro Avg 7.72 11.59 8.04 6.97 15.24 13.31
11.3

9 13.41
10.6

0 9.90

spiro Stdv -20.41 -25.53

-
22.9

2

-
22.9

2 -28.26 -28.26

-
22.9

2 -22.92

-
25.5

3

-
18.0

0

jdrill2_3_1 Avg -0.99 -4.08
-

5.77 0.14 0.56
-

2.73 -5.46
-

2.00
-

2.14

jdrill2_3_1 Stdv 76.53 58.18
60.3

4
66.1

8 69.74
73.5

6 73.56
54.9

0
65.1

5

Cvt2Mae Avg 1.57 3.32 4.12
2.6284

3
-

3.69 -2.64 0.37 2.98

Cvt2Mae Stdv
-

800.00 22.41
-

4.65 0
35.7

1 8.16
44.4

4

-
40.6

3

Conzilla1 Avg -0.56 0.08
-

1.37 0.44 0.08
-

1.05 1.91 0.00 1.02

Conzilla1 Stdv 53.76 39.53
20.9

5
50.8

1 -12.93
10.9

9 57.81
65.4

2
43.7

3

VITA

 Mohannad Ahmad AbdulAziz Al-Dharrab

 Joined Saudi Aramco college preparatory program (CPP) - one year preparation

program - in 1998 after finishing high school and graduated with first honor in

September 1999.

 Received Bachelor of Science degree in Information & Computer Science from King

Fahd University of Petroleum & Minerals (KFUPM), Dhahran, Saudi Arabia in

February 2003.

 Currently working as a System Analyst in Saudi Aramco Information Technology

since March 2003.

 Completed the Master of Science degree in Information & Computer Science from

KFUPM, as a part time graduate student, in June 2005.

