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The problem of entropy generation for the convection heat transfer over a solid 

sphere is studied numerically using a finite difference technique. The governing energy 

and momentum equations are numerically solved. The effect of controlling parameters 

like Reynolds number (Re), Grashof number (Gr) and Eckert number (Ecm) on the 

velocity components as well as the temperature within the boundary layer is investigated 

for both Forced and Mixed Convection. The entropy generation is calculated for both 

Forced and Mixed Convection and for the two boundary conditions, namely uniform heat 

flux and uniform wall temperature. In both the cases, the effects of various Controlling 

parameters like Re, Gr, and Eckert number (Ecm) on entropy generation is investigated. 

And the condition in which the entropy generation becomes minimum is established. 
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 ملخص البحث

 اللهث يا غمحمد: الإسم

تولد الانتروبي حول آرة من الصلب في وسط غازي              : رسالةعنوان ال 

 متحرك

 الهندسة الميكانيكية: المجال الرئيسي

 2004ديسمبر : تاريخ الدرجة

 

تم في هذه الدراسة تحليلا عدديا لتولّد الإنتروبي حول آرة من الصلب                 

في وسط يتم فيه انتقال الحرارة بالحمل و ذلك بطريقة عددية باستخدام                         

و قد تم حل معادلات الكتلة و آمية الحرآة و بقاء           . الفروق المحدودة طريقة  

 و   مثل رقم رينولدز   آما تمت دراسة تأثير العناصر المؤثرة       . الطاقة عددياَ 

رقم جراشوف و رقم إيكارت علي منحنيات السرعة و درجة الحرارة في                 

تم حساب  و قد   . الطبقة المتاخمة في حالتي الحمل القسري و الحمل المرآّب        

تولد الإنتروبي لحالتي الحمل القسري و الحمل المرآّب مع تطبيق حالتي                  

وفي آلتا  . و ثبات تكثيف الحرارة على سطح الكرة          أثبات درجة الحرارة      

الحالتين تمت دراسة تولد الإنتروبي آنتيجة لتغيير العناصر المؤثرة و قد تم       

 . الدنيا الإنتروبي عند قيمتهاهتحديد المدي الذي تكون في
 
 
 
 
 
 



 

 

CHAPTER I 

INTRODUCTION 

1.1 General 

At the root of the growing interest in the thermodynamic irreversibility of heat 

transfer lies the emphasis placed today on energy conservation and the efficient use of 

energy. In any power plant, for example, the thermodynamic nonideality (irreversibility) 

of any of its engineering components causes a decrease in the net power output of the 

cycle. Hence from an engineering point of view, it is essential to first identify the 

irreversibility associated with various components and, second, to design for less 

irreversibility in order to avoid the imminent loss of available power. 

 

Engineering components and devices for heat transfer are inherently irreversible, 

that is they are associated with entropy generation. The task of conserving useful energy 

rests heavily on our ability to produce thermodynamically efficient heat transfer 

processes and equipment for such processes. Entropy generation may be due to variety of 

sources, primarily heat transfer across temperature gradients in addition to viscous 

effects. The foundation of knowledge of entropy production goes back to Clausius’ and 

Kelvin’s studies on the irreversible aspects related to the second law of thermodynamics. 

Since then the theories based on these foundations have rapidly developed. 
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1.2 Scope of the Present Work 

Flow and convection heat transfer study over a sphere has gained enormous 

interest of researchers for many years. The present work is aimed at studying in detail the 

entropy generation around a solid sphere, which is kept in an air stream. The practical 

application of this analysis is found in solid fuel burning and evaporation, in some 

manufacturing systems such as in packed beds of spherical bodies, and in heat transfer in 

electronic components which are nearly spherical. In order to augment the heat transfer, 

entropy generation should be minimized. Entropy generation is positive and finite as soon 

as the temperature or velocity gradients are present in the medium. Few of the sources of 

entropy generation are fluid friction, solid friction, flow impact, heat transfer across finite 

temperature difference, plastic deformation, etc. 

 

In the present work, a finite difference method has been developed to analyze the 

flow field, convective heat transfer and entropy generation around a solid sphere. The 

method used here needs less computer time and storage in comparison with the numerical 

methods discussed in the literature for the flow and heat transfer analysis, and it also 

handles wide range of Reynolds number, Grashof number and Eckert number. To the best 

of author’s knowledge, this is the first attempt to study entropy generation over a sphere 

as will be demonstrated in the next chapters. 

 

This chapter included an introduction and the scope of the present study. Chapter II 

presents the Literature survey. Chapter III will be devoted to the problem formulation, 

non-dimensional form of governing equations as well as the boundary layer 



 

 

3

simplification. In Chapter IV, the grid system and finite-difference forms of the 

governing equations are presented. The overall solution methodology and the method 

employed for calculating the engineering parameters are discussed in Chapter V. The 

results for forced convection case are presented and discussed in Chapter VI and for 

mixed convection case in Chapter VII. Finally conclusions and recommendations are 

presented in Chapter VIII followed by references and the appendix. The appendix 

presents the detailed derivation of the entropy generation equation and non-

dimensionalizing of the entropy generation for both Uniform wall temperature and 

Uniform heat flux cases. 

 

 



 

 

CHAPTER II 

LITERATURE SURVEY 

2.1 Introduction 

The present literature survey will be classified into two different parts. First, the 

fluid flow and heat transfer over sphere with and without rotation, both for forced and 

mixed convection. Second, the entropy generation analysis for external and internal flows 

over bodies of different shapes with different boundary conditions. 

 

2.2 Fluid flow and Convection Heat Transfer over Spheres 

 

Jia and Gogos [1] studied the laminar natural convection heat transfer from 

isothermal spheres numerically for wide range of Grashof numbers ( 81 1010 << Gr ) and 

for Prandlt numbers 0.72 and 7.0. They noticed that a plume with a mushroom-shaped 

front forms above the sphere whose length and thickness decrease with increasing Gr. At 

higher Gr ( )72.0Pr107 =≥ andGr , flow seperation and an associated recirculation vortex 

exist in the wake of the sphere. The vortex size increases with Gr and this vortex is 

responsible for the sharp increase in the local Nusselt number near the top of the sphere. 
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Mixed convection boundary layer flow about a sphere with constant surface 

temperature was studied by Nazar et al. [2]. They used mixed convection paramter 

(Gr/Re2 ) ranging between -4.0 to 20.They found that the aiding flows delay separation 

and can, if the aiding flow is strong enough, supress it completely. The opposing flow on 

the other hand, brings the seperation point nearer to the lower stagnation point of the 

sphere. The results also showed that the values of the local skin friction coefficient are 

lower and those of the local heat transfer coefficient are higher for Pr=6.8 than Pr=0.7 

when buoyancy parameter is fixed. They also showed that in the case of aiding flow, an 

increase in the buoyancy forces results in a decrease of the temperature field and a 

decrease in the thermal boundary-layer thickness, and an opposite behaviour for opposing 

flow. 

 

Pruppacher[3] investigated numerically the steady incompressible flow around a 

sphere and solved Navier-Strokes equations for 40Re20 ≤≤  and found that the eddy 

length and separation angle increase with increasing Reynolds number. Axisymmetric 

laminar boundary-layer flow around a rotating sphere was investigated numerically by 

El-Bedeawi[4] and El-Shaarawi et al. [5] for a value of Reynolds number of 10000 over 

a wide range of the spinning parameter (upto Ta/Re2=10000). They reported that for the 

range of spin parameter considered, the separation point always lies behind the equatorial 

plane and shifts forward as the value of the parameter Ta/Re2 increases. El-Shaarawi et 

al. [6] studied the mixed convection about a rotating sphere maintained at  uniform 

surface heat flux for wide ranges of Re (1000≤Re≤10,000) ,Gr (-109≤Gr≤109), and 

Ta/Re2 (0 ≤Ta/Re2≤10,000). They reported that the aiding free convection causes an 
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increase in velocities (meridional and radial) as compared with the isothermal case (Gr = 

0), while an opposing free convection causes a decrease in these velocity 

components.They also found that an aiding/opposing flow causes a reduction/increase in 

the wall temperature. 

 

Lepalec and Daguenet[7] applied a power series of several variables to study the 

laminar mixed convection about an isothermal rotating sphere in a stream of arbitrary 

direction with respect to the axis of rotation, so that the velocity profile is essentially 

three dimensional. Boundary layer equations were numerically solved and the results for 

different values of rotation parmeter and buoyancy parameter were obtained. The results 

showed that the opposing flow produces  a larger velocity gradient at the wall with an 

acompanying increase in the friction factor and the local heat transfer rate that has a 

higher value at higher rotation speeds. They  also developed solutions for heat and mass 

transfer from a rotating sphere placed coaxially in an upward flowing stream. The 

theoretical results develped by boundary-layer analysis were verified by experiments 

utilizing an electrochemical reaction at the surface of an electrically charged sphere [8]. 

 

Mixed convection about a sphere was also investigated experimentally by 

Yuge[9] for small Reynolds and Grashof numbers. Chen and Mucoglu[10] studied 

mixed, forced and free convection heat transfer from isothermal spheres in air. It was 

reported that both the local friction factor and local Nusselt number increase with 

increase in buoyancy force for aiding flow and decrease with increasing buoyancy force 

for opposing flow. They also investigated the mixed convection case for uniform heat 
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flux boundary conditions for both aiding and opposing flows, and found that both the 

local wall shear and the local Nusselt number increase with increasing buoyancy force for 

assisting flow, where as for opposing flow, the local wall shear and Nusselt number 

decrease with increasing buoyancy force [11].  

Tang and Johnson[12] performed an experimental study and flow visualization 

for mixed convection about a sphere and proved that the mixed and natural convection 

depend on sphere diameter. Antar et al. [13] studied mixed convection for the flow over 

a liquid sphere and found that the results approach those of a solid sphere as the 

liquid/gas viscosity ratio increases. 

  

 Oscillating viscous flow over a sphere was studied by Alassar and Badr 

[14] and results were presented for periodic variation of the drag coefficient, surface 

vorticity and fpressure distributions for Reynolds numbers ranging from 5 to 200. They 

showed that at early phase angles, higher Re will produce longer recirculation regions 

and the  trend reversal takes place at later stages. The time variation of the velocity field 

during one complete oscilation has been presented in the form of stream line and 

equivorticity patterns. 

 

2.3 Study of Entropy Generation 

2.3.1 Entropy Generation for Internal flows 
 

Bejan [15] studied the entropy generation in convective heat transfer in a pipe 

flow, boundary-layer flow over flat plate, single cylinder in cross flow and flow in the 
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entrance region of a flat rectangular duct. In pipe flow with negligible axial conduction 

effect (Pe>> 4), the value of EcPr/τ (where, τ = ∆T/T) increases gradually to the point 

where viscous effects dominate '''S
N (entropy generation number). Peclet number Pe, 

governs the importance of irreversibility associated with conduction in the axial direction. 

For Pe<4 the axial conduction contribution dominates the radial conduction effect. In all 

cases the pipe wall region acts as strong concentrator of irreversibility. As the aggregate 

duty parameter Bo ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∞∞
2/13/1 )Pr(

/
TkU

LqBo µ
 increases, the optimum tube radius 

decreases (Re increases) and minimum entropy generation minNs  also decreases. 

 

Shohel  et al. [16] studied the second law characteristics of heat transfer and fluid 

flow due to forced convection of steady laminar flow of incompressible fluid inside 

circular and parallel plate channels. For different cases, the entropy generation number 

(Ns) and Bejan number (Be) were derived. The results for both Newtonian and non-

Newtonian fluids were obtained. The entropy generation number (Ns) was plotted against 

different parameters such as distance between plates, radius of cylinder and Brinkman 

number (EcPr). 

 

Haddad et al. [17] studied the entropy generation due to laminar forced 

convection in the entrance region of a concentric annulus. The effect of different flow 

parameters on thermal, viscous, and total entropy generation was studied for different 

thermal boundary conditions. The viscous term was included in the entropy generation 

equation although it was neglected in the temperature profile, in order to study the 
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contribution of both viscous and themal entropy on total entropy generation. Entropy 

generation was found to be inversly proportional to both Reynolds number and the 

dimensionless entrance temperature. Total entropy generation was found to be increasing 

with increasing Eckert number and/or radius ratio, and decreasing for increasing 

Reynolds number. Finally it was found that thermal entropy generation was dominant 

over viscous entropy generation.  

 

Entropy generation in Poiseuille-Benard flow using a control volume method was 

investigated by Abbassi et al. [18]. Variation of entropy generation and Bejan number as 

functions of Rayleigh number and irreversibility distribution ratio (φ ) were investigated. 

It was found that the limiting value of φ  is a decreasing function of Ra. The maximum 

entropy geneation is localized at areas where the heat exchange between the walls and the 

flow is maximum. The contour plots showed that the regions of maximum entropy 

generation coincides exactly with regions of maximum Nusselt numbers. Hence the 

augmentation of energy exchanged between the walls and the flow contribute to the 

augmentation of entropy generation via the increase of temperature gradient near the 

walls. Hence it was concluded that the entropy generation is largely higher near the walls 

than that in the central flow.  

 

Tasnim et al. [19] studied mixed convection and entropy generation in a vertical 

annular space with isothermal boundary conditions. For a particular group parameters, 

average entropy decreases with the increase of radius ratio ( Π ), shows its minimum and 

again increase with further increase of Π . Fluid friction irreversibility increased and heat 
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tranfser irreversibility decreased with increase in Π . Hence a minimum entropy 

generation for a particular optΠ  was obtained. The ratio of Brickman number to 

dimensionless temperature ( Ω/Br ) indicate the relative importance of viscous effect on 

irreversiblity. At lower Ω/Br  , minimum entropy generation occurs at higher Π . 

Average entropy generation number increases with the increase of Ω/Br   for a 

particular value of Π .  

 

Sahin [20] analytically investigated the second law analysis of laminar viscous 

flow through a duct subjected to a constant wall temperature. He used two fluids, water 

and glycerol in order to show the temperature dependence on the viscosity. He analysed 

the entropy generation for different duct lengths and fluid inlet temperatures considering 

the variation of viscosity with temperature. In this study, three dimensionless terms were 

derived namely, 1∏ (modified Stanton number), 2∏ (dimensionless group, Ec/St Re), and 

ψ (dimensionless entropy generation). A reasonably accurate emperical correlation of 

liquid viscosity with the temperature was taken from the literature so as to check the 

change of viscosity with temperature. The results showed that the effect of viscosity 

change due to temperature on the entropy generation for water was insignificant where as 

this change was significant for glycerol. For constant viscosity flow in the duct, entropy 

generation increased along the length of the duct. Its was stated that for a certain length 

of the duct there were minimum exergy losses. It was also found that increasing the 

dimensionless temperature difference between the inlet fluid and surface temperature, 

increased entropy generation, hence there is certain fluid inlet temperature exists for 

which the exergy losses are minimum.  
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Sahin [21] has also studied the entropy generation in turbulent flow through a 

smooth duct subjected to constant wall temperature. Similar to the case for laminar flow, 

this time also the temperature dependence of the viscosity was taken into consideration in 

the analysis. A comparison of results between temperature-dependent and constant 

viscosity cases showed that the constant viscosity assumption may yield a considerable 

amount of deviation in entropy generation from those of the temperature dependent 

viscosity cases, especially when high viscous fluids are considered. He used the same 

nondimensional terms as  in the laminar case, and found that the entropy generation per 

unit heat transfer rate decreases initially and then inceases along the duct length. It was 

also found that the entropy  increased with the increase in the dimensionless temperature 

difference between the inlet fluid and surface temperature. 

 

San et al [22] investigated the entropy generation for combined forced convection 

heat and mass transfer in a two dimensional channel with constant heat flux boundary 

condition. For laminar case, the entropy generation was obtained as a function of 

velocity, temperature, concentration gradients and the physical properties of the fluid. 

The optimum plate spacing was determined, considering that either the mass flow rate or 

the channel length is fixed. For the turbulent regime, a control volume approach that uses 

heat and mass transfer correlations was developed to obtain the entropy generation and 

optimum plate spacing. At plate spacing less than the optimum value, the entropy 

generation increased sharply. The end for the generation due to mass diffusion has a 
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similar form to that due to heat transfer and both are linearly dependent on the channels 

spacing. 

 

Tasnim et al [23] studied the entropy generation in a vertical concentric channel 

with temperature dependent viscosity for laminar flow with isothermal boundary 

conditions. The results showed that for a particular group of parameters, magnitude of 

Ns,av (average entropy generation number) decreases with an increase of the radius ratio 

( ∏ ), they showed that it reaches a minimum value for a particular value for ∏ , and 

increases with further increase in the radius ratio. ∏ dependent nature of fluid friction 

and heat transfer irreversibility was found opposite in character. Fluid-friction 

irreversibility increased and heat-transfer irreversibility decreased with the increase in 

radius ratio. The maginitude of ∏ , where entropy generation is minimum, was termed as 

opt∏ . At lower Ω/Br  (Brinkman number / dimensionless temperture difference), 

minimum entropy generation occured at higher ∏ . It was also found that at smaller 

radius ration( ∏ <2.0), average entropy gneration rate was the same in magnitude for all 

group parameters. 

 

Numerical predictions of entropy generation for mixed convection flows in a 

vertical channel with transverse fins was studied by Cheng et al [24]. A control volume-

based finite-difference method was used to solve the governing equations which were 

expressed in stream funciton-vortcicity form. The results showed that the larger gradients 

of velocity and temperature at the fin tips and wall surfaces result in relatively high 

entropy generation in these areas. In general, highest entropy generation rates appear in 
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the immidiate neighborhood of the fin tips. Effect of Reynolds number on entropy 

generation rates show that higher Reynolds number result in higher entropy generation. 

 

Second-law analysis of rectangular channels with square pin fins was studied 

experimentally by Sara et al [25]. Various fin ratios and inter fin distance ratios were 

used, and optimum pin fin arrays that minimize entropy generation were determined. The 

results showed that the heat transfer increased by the use of fins, while causing the 

increase in friction factor due to fins. It was also found that smaller the interfin spacing 

ratio, the higher is the entropy generation number. This entropy generation number also 

increased with increasing Reynolds number. Smaller entropy generation numbers were 

obtained at lower Reynolds number, higher clearance ratio and higher interfin spacing 

ratio. 

 

Shohel and Fraser [26] examined analytically the effects of radiation heat 

transfer on mixed convection through a vertical channel in the presence of transverse 

magnetic field. The location where the temperature gradient is zero is the idle point for 

the temperature entropy generation, where it will be also zero, and this was found to be at 

the center of the channel. Entropy generation profile was found to be symmetric about the 

centerline of the channel due to the symmetric distributions of velocity and temperature. 

For all the group parameters, each wall acts as a strong concentrator of entropy 

generation because of the high near wall gradients of velocity and temperature. Minimum 

entropy generation number was also found for different group parameters, Br/Ω (i.e. ratio 

of Brikman number to dimensionless temperature difference). 
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Shohel and Fraser [27] also investigated the first and second law characteristics 

of forced convection fluid flow and heat transfer inside a channel having two parallel 

plates with finite gap between them. No entropy generates in the center line of the duct 

for all the group parameters. Ns (entropy generation number) increases along vertical 

distance(Y). Bejan number was also plotted against Y, and it was found to be maximum 

at the center line and then drops slowly toward walls. Group parameter, Br/Ω (i.e. ratio of 

Brikman number to dimensionless temperature difference) has a significant effect on the 

entropy generation.  

 

Yilbas et al. [28] used CFD techniques to study natural convection and entropy 

generation in a square cavity with differential top and bottom wall temperatures. They 

showed that the entropy generation amplified when circulation along the x-axis increases 

and the entropy generation becomes minimum for a particular Rayleigh number. It was 

shown that the entropy generation is considerably high near the heated walls due to fluid 

friction and heat transfer, as expected. 

 

Baytas [29] studied the entropy generation for natural convection in an inclined 

porous cavity using Darcy’s law and Bousinesq-incompressible approximation. Two 

opposite walls were kept at different temperatures and the other two were thermally 

insulated. The effect of inclination angle on the flow and heat transfer characteristics and 

the entropy generation was studied by varying angle from 0o to 360o and dimensionless 

Rayliegh number from 102 to 104. The isotherms, the patterns of stream lines and their 
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corresponding entropy generation maps, the variation of entropy generation due to heat 

transfer and fluid friction irreversibility versus inclination angle for different Rayleigh 

numbers were presented. The results showed that when Ra decreases, heat transfer 

irreversibility begins to dominate the fluid friction irreversibility .  

 

Shuja et al. [30] investigated the mixed convection in a square cavity due to heat 

generating rectangular body for different exit port locations, and studied the 

irreversibility generation. Fifteen different locations of exit port were introduced while air 

is used as an environment in the cavity. It was found that non-uniform cooling of the 

solid body occurs for some exit port locations and in those cases, heat transfer reduces 

while irreversibility increases in the cavity. 

 

Magherbi et al. [31] studied the variation of total entropy generation at the onset 

of natural convection for the case of a square cavity with top and bottom walls with 

adiabatic boundary condition. The evolution of entropy generation, and the Bejan number 

in transient state were studied for different Rayleigh number and irreversibility 

distribution ratio. The results show that the dimensionless total entropy generation has a 

maximum value at the onset of the transient state, then decreases to reach a constant 

value in the steady state. This of constant value is for the small Ra values. For high Ra, 

an oscillation of the entropy generation was observed before reaching the steady state. 

These fluctuations in total entropy at high Ra number indicate that the flow exhibits 

oscillatory behavior which depends on the boundary conditions. Results also showed that 
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the Bejan number takes a minimum value in the beginning of the transient state which 

decreases with increasing Ra number and irrevesibility distribution ratio.  

 

Mahmud and Islam [32] investigated the laminar free convection and entropy 

genertion inside an inclined wavy enclosure bounded by two isothermal wavy walls and 

two adiabatic straight walls at different Rayleigh numbers and orientations, using a finite 

volume technique. As an alternative irreversibility distribution parameter Bejan number 

was used, which is the ratio of the heat transfer irreversibility to total entropy generation. 

At very low Ra, fluid is almost motionless in the cavity. Near wall concentration of Bejan 

number indicates the region of high irreversibility. 

Budair [33] investigated the case of impulsively started Couette flow. In his 

paper, he solved the one-dimensional volumetric entropy generation equation. It was 

shown that the entropy generation in the space between the plates is more considerable at 

initial times of motion than at later times, which showed that the frictional losses are 

much more than those incurred later in the motion in the steady state. For isothermal 

process, the dissipation energy will be only due to frictional losses as the case under 

consideration. The localized entropy generation is always near the vicinity of the plate. 

And this level of generation, how ever, decreases with time. 

 

2.3.2 Entropy Generation for External flows 
 

Bejan[15] studied the entropy generation in fundamental convective heat transfer 

problems such as pipe flow, boundary layer flow over flat plate, single cylinder in cross 

flow and flow in the entrance region of a flat rectangular duct. It was found that for the 
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laminar flow over a flat plate the higher the duty parameter ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∞∞
2/13/1 )Pr(

/
TkU

LqBo µ
, 

the higher the optimum Re (plate length), and the lower is the minimum entropy 

generation number. In other words, if the total heat transfer rate q’ is constant and the 

flow velocity increases, the optimum plate length decreases and the minimum attainable 

entropy generation rate increases. Similar results were obtained for the cylinder in cross 

flow, as the duty parameter increases, the optimum Reynolds increases and the minimum 

entropy generation number decreases. 

  

Abu-Hijleh [34] studied numerically the entropy generation for the laminar 

mixed convection over an isothermal heated cylinder for different values of Reynolds 

number(1 to 200), buoyancy parameter(κ = 0 to 10) and cylinder diameter(10-5 to 7.5). 

The general trend shows that the entropy generation number (Ns) decreases with D and 

increases with both κ ( GrD/ReD
2 ) and Re. For all values of ReD , the Ns was lowest for 

κ= 0 which results from a zero temperature difference between the cylinder and incoming 

flow so the entropy is generated only by viscous effects. Finally, the results showed that 

there is significant increase in entropy generation due to mixed convection over pure 

convection, especially at small cylinder diameters. The difference between the entropy 

generated due to mixed and pure convection decreases with increasing cylinder diameter. 

 

Abu-Hijleh et al. [35] investigated the entropy generation due to laminar natural 

convection over isothermal cylinder. Local and total entropy generations were calculated 

for Rayliegh numbers ranging from 1 to 107 and three cylinder radii ranging from 10-3 
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to10-1. An increase in Ra and thus higher temperature difference between the cylinder and 

surroundings, results in increase in value of total entropy generation, and use of larger 

cylinder radius results in lower temperature difference and in turn lower entropy 

generation for same value of Ra. The analysis of local entropy profiles revealed that the 

location of maximum entropy generation was dependent on size of the cylinder. 

 

Abu-Hijleh et al. [36] studied entropy generation due to laminar natural 

convection over a heated rotating cylinder with isothermal boundary condition. Higher 

value of buoyancy parameter κ ( GrD/ReD
2 ) results in the increase in heat transfer which 

is desired in heat exchangers, but usually at the expense of higher entropy generation, i.e. 

lower thermodynamic efficiency. In this study, they found that the use of very high 

values of κ results in minimal increase in entropy generation, thus heat transfer rates 

increase without lowering efficiency. Overall results showed that the total entropy 

generation decreased with the increase in cylinder radius. The contribution of conduction 

and viscous parts in total entropy generation were also studied in the paper. Entropy 

generation due to conduction effect was dominant at medium cylinder radius with an 

exception for the combination of low Reynolds number and buoyancy parameter, where 

the viscous contribution becomes dominant. 

 

Abu-Hijleh [37] investigated numerically the entropy generation due to laminar 

forced convection heat transfer from an isothermal horizontal cylinder covered with an 

orthotropic layer. The different parameters used for the study are non-dimensional porous 

layer thickness (Rp), non-dimensional pressure loss coefficient (Kr – radial and Kθ- 
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tangential) and Reynolds number (ReD= 5 to 150). Kr has a minimal effect on the total 

entropy generation. Only at high values of Rp and low values of Kθ, does a changing Kr 

result in noticeable change in Ns. Which indicates that Kθ is the dominating factor of the 

two pressure loss coefficients. Finally, the addition of orthotropic porous layer reduces 

heat transfer as well as the entropy generation. The general trend in entropy generation 

reduction was similar to that of the total entropy generation from the cylinder. There was 

an optimum porous layer beyond which the total entropy generation did not decrease. 

 

Abu-Hijleh [38] performed study on optimized use of baffles for reduced natural 

convection heat transfer from a horizontal cylinder. The aim was to optimize the number, 

size and location of the baffles for maximum natural convection heat transfer, that is 

Nusselt number for a wide range of Rayleigh number. Optimal tangential location for a 

single baffle and two baffles were found while comparing the data with uniform baffles 

for different baffle heights and Rayleigh number. The results showed that the use of 

baffles result in more thermodynamically efficient system. Entropy generation was 

mainly found due to thermal effects rather than the viscous effects, While the use of 

baffles on large cylinder diameters reduced the total entropy generation as a whole.  

 
Haddad et al. [39] studied the entropy generation due to laminar forced 

convection flow past a parabolic cylinder. It was reported that the thermal entropy 

generation increased as the temperature increased, while both the viscous and thermal 

entropy generation decreased as Reynolds number increased. Viscous contribution to 

entropy generation was dominant for all values of Mach number. And an increase in 

Mach number results in an increase in entropy generation as a whole. As thermal effects 
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played a secondary role for parabolic profile, the reduction in entropy generation should 

focus on controlling the hydrodynamics of the flow and not the temperature field. 

 

Iswar [40] studied the second law analysis of convective droplet burning, in 

which he studied the entropy generation equation applicable to chemically reacting flows 

and considered multiphase combustion like burning of particles in fluid stream. It was 

determined that for droplet burning at low Reynolds numbers the entropy generation is 

minimized by comparing two terms: one involving the mass loss from the droplet and the 

other involves the drag force. 

 

Carrington [41] used control volume method to establish the rate of entropy 

generation due to heat and mass transfer in a fluid stream, accompanied by fluid friction 

for internal and external flows. They showed that the application of Gibbs equation in its 

extensive representation leads to error because it fails to recognize the need for local 

thermodynamic equilibrium. The main work done in this paper was to evaluate the papers 

by others and then resolve the errors in their studies of entropy generation. 

 

Shuja et al. [42] used CFD to investigate the flow and entropy analysis over a 

solid rectangular body with constant heat flux for three different fluids. It was found that 

the fluid properties has a considerable effect on entropy generation, and that the entropy 

generation due to heat transfer well exceeds the entropy generation due to fluid friction. It 

was also shown through entropy contours that the shear flow close to the top surface and 

stagnation flow in the solid body contribute more to the flow irreversibility as compared 
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to the total flow field, i.e. the circulation behind the solid body appears to be contributing 

less in entropy generation. The entropy generation in the field due to convective heat 

transfer becomes negligible when compared to the entropy generation in the solid body 

due to conduction effect. 

 

Shuja et al. [43] studied vortex shedding over a rectangular cylinder with ground 

effect and extended the study to include the entropy generation in the solution domain. 

The results in the 3-D plots showed that the entropy generation due to heat transfer 

increases with time. Entropy generation due to fluid friction remains almost uniform with 

time except at long heating periods and with reducing gap heights. Moreover, the total 

entropy generation due to fluid friction and heat transfer increases considerably for small 

gap height, which is the height between the cylinder and ground. 

 

Lin and Lee [44] performed second law analysis on a flat plate-fin array under 

crossflow, from which the entropy generation was evaluated. The results showed that the 

increase in cross flow fluid velocity would enhance the heat transfer or equivalently, 

reduce the heat transfer irreversibility. Owing to the simultaneous increase in drag force 

exerting on the fin bodies, the hydrodynamic irreversibility increase as well. An optimal 

Reynolds number was thereby found for wide range operating conditions. Optimal 

design/operational conditions under fixed base areas constraint or fin volume constraint 

were searched for on the basis of entropy gneration minimization. The fin volume and 

total base area were found to be insignificant geometrical factors.  
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Shuja et al. [45] analyzed the heat transfer and irreversibility for the flow through 

a protruding bluff body for a transient case. Heat trasnfer characteretics were examined 

using normalized Stanton number. Normalized St attains the lowest values in the central 

region of the rear surface in the span-wise direction because of the less convection 

cooling of the surface. Alternatively as the distance from the center of the body increased 

in the span wise direction Normalised Stanton number reach a maximum value. It was 

found that the heat transfer in the region of the top and bottom edges of the bluff body is 

enhanced due to the convection effect. The entropy contours were found densily 

populated around the body especially for the fluid friction contribution, because the 

viscous dissipation is considerably high around the body. Irreversibity increased 

gradually as the heating progresses but becomes steady after some time due to steady 

heating cycle. The heat transfer to irreversibility ratio (Q/I) decreases rapidly as the 

heating progresses. 

 

To the best of the author’s knowledge, the study of entropy generation over a 

solid sphere is not available in the literature. Hence in the present study, the entropy 

generation for the laminar flow about a sphere is investigated for uniform wall 

temperature and uniform heat flux boundary conditions. 

 



 

 

CHAPTER III 

GOVERNING EQUATIONS 

3.1 Introduction 

 In this chapter, the governing equations that describe the fluid flow and heat 

transfer as well as the entropy generation for the flow over a sphere are presented. This 

includes the detailed derivation of these equations starting from the Navier Stokes 

equations as well as the energy equation for spherical polar coordinates. Transformation 

of the governing equations to the orthogonal curvilinear coordinates, non-

dimensionalization and order of magnitude analysis is carried on to simplify the 

equations [46], and entropy generation equation are presented in Appendix-A. 

 The major assumptions employed in the derivation of the governing equations and 

entropy generation equations are: 

1. Laminar, axisymmetric, steady flow and steady heat transfer 

2. Viscous dissipation, thermal radiation and buoyancy effects are neglected in 

energy equation 

3. Fluid is Newtonian with constant properties 

4. Reynolds number is large enough to allow the use of boundary layer theory but 

small enough so as not to induce turbulence 

5. Body forces are negligible 
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6. No chemical reactions 

7. Surface active impurities and turbulence are absent 

8. The flow outside the boundary layer is potential flow around a sphere 

9. Eckert number is small enough to keep the flow incompressible 

 

A schematic of the flow patterns is shown in the figure: 3.1. 

 

3.2 Governing Equations: 

 In this work, the orthogonal curvilinear coordinate systems is used as shown in 

the Fig: 3.2, where the x-axis is measured along the surface of the sphere starting from 

the stagnation point and extends in the meridional direction till the rear stagnation point. 

The z-axis passes through the center of the sphere, where its zero starts from the surface 

of the sphere. The detailed transformation of the governing equations to its orthogonal 

curvilinear coordinates is presented in Antar [46]. 
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Fig 3-1a: Schematic diagram showing the boundary layer over a sphere (ideal case), for 
forced flow 

 

 

 
Fig 3-1b: Schematic of the flow over a sphere for forced flow 
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Fig 3-2: Coordinate System 
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3.2.1 Governing Boundary Layer Equations: 
The dimensionless parameters for the governing equations are as 

follows: 
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Based on the assumptions stated in section 3.1, the governing 

equations in the orthogonal curvilinear coordinate system in dimensionless 

form as given by [6, 46, and 48] are: 
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Continuity equation: 
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Momentum conservation in meridional direction 

θ
∂
∂

∂
∂

∂
∂

∂
∂ sin

Re82
Re

2

2*
* TGr

Z
U

X
UU

Z
UW

X
UU ±+=+  (3.3) 

 

Momentum conservation in the azimuthal direction: 
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Energy equation for forced flow: 
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3.2.2 Boundary conditions: 
 Examining the boundary layer equations presented in the last section leads to the 

determination of the required number of boundary conditions needed to make the 

problem investigated well-posed and amenable to numerical solution. The second 

derivative with respect to X is absent from the momentum equation and only the first 

derivative of U is present. Therefore, the boundary condition at one end is required in the 

meridional direction, namely at the front stagnation point. The derivatives with respect to 
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Z are second order, that is, two boundary conditions should be used along the radial 

direction. These two boundary conditions can be determined at two locations, namely one 

at the surface of the sphere where the value of U is zero due to no slip condition on the 

sphere surface and the other one is at the edge of the boundary layer where the value of U 

can be taken equal to the value of potential flow around a sphere. Only the first derivative 

of W with respect to Z is present. Hence only one boundary condition is required and can 

be determined at the surface of the sphere where the value of W is zero (no fluid suction 

or blowing).  

 

 Similarly by investigating the energy equation, it is clear that the first derivative 

of temperature with respect to X is present and hence only one boundary condition in the 

meridional direction is required and two boundary conditions in Z-direction. 

 

 Meridional as well as radial potential velocity components which are applied at 

the edge of the boundary layer can be obtained from the theoretical potential flow around 

a stationary sphere [49]. Considering the sphere radius as ‘a’, stream function as ψ  and 

the potential function as ϕ  we have: 
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Meridional and radial velocity components for the potential flow are related to the 

previous two equations by the following relations: 
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using the non-dimensional parameters defined in (3.1), we get the following 

dimensionless form of the potential flow velocity components: 
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Similarly the dimensionless boundary conditions can be written as: 

for Z = 0, X = 0 (Stagnation point):   U = W= V = 0, T = 0   

for Z = ∞ , X ≥ 0 (far away from the Sphere) : U = U* , W = W*, V = T = 0  

for Z >0 and X = 0 (Stagnation line):  W = W* , U = V = 0     (3.11) 

for Z = 0 , X > 0 (Sphere surface) :  U = W = 0, V = 0 and T=1 (UWT)  

and 
aq
ktT = (UHF)     
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 Now having the governing equations and boundary conditions in dimensionless 

form, the problem is well posed and amenable to numerical solution. 

 

3.3 Deriving Entropy Generation Equation: 

The entropy generation is a result of both heat transfer and viscous dissipation. 

Viscous dissipation should be considered for the cases where it is not negligible. It is 

some times useful in thermodynamic design to learn which effect is dominant in overall 

entropy generation. Hence in the present study both the heat transfer and viscous entropy 

generation terms will be considered. The entropy generation per unit volume as given by 

Bejan [15] for the case with both heat transfer and viscous dissipation is expressed as: 
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The above equation after non-dimensionalising is given as (the details derivation 

is shown in Appendix-A): 
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3.3.1 Constant wall temperature case: 
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Using the other non-dimensional parameters defined in the (3.1) , we get: 
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After substituting the above non-dimensional terms we can write the entropy 

generation equation for the case of constant wall temperature as: 
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3.3.2 Constant Heat Flux Case: 
 

The non-dimensional temperature is given by: 
k

aqTtei
aq
ktT == ..,   (3.17) 

After non-dimensionalising the entropy generation equation with the above listed terms 
we get,  
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Where mEc  is the modified Eckert number as given by Haddad et al. [17]  

 And 
wp

m tC
U
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∞=  ,   
k
C pµ

=Pr        (3.19) 

avg genS S dxdz=∫∫          (3.20) 



 

 

CHAPTER IV 

NUMERICAL REPRESENTATION OF THE GOVERNING 

EQUATIONS 

4.1 Introduction: 

 The governing equations developed in the previous chapter are nonlinear second 

order equations. Since there is no analytical solution for this type of equations, 

approximate methods of solution are used to solve them. The method used in this work is 

the finite difference approximation. In this method governing equations are first 

transformed to finite difference equations by dividing the domain of solution to a grid of 

points in the form of a mesh and the derivatives are expressed along each mesh point, 

referred to as a node. Therefore the differential governing equations can be written for a 

set of nodes of the grid converting them to algebraic equations that are linearized and 

then solved by an appropriate technique for matrix inversion. In this chapter, the finite 

difference representation of the governing equations as well as their boundary conditions 

are presented. 

4.2 Numerical Grid: 

 Figure-4.1 shows the numerical grid which is used in solving the governing 

equations. The grid consists of two sets of perpendicular lines which represent the  
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Fig 4.1: Numerical Grid 
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meridional direction (circles) and the radial direction (straight lines). The intersections of 

these lines constitute the spatial mesh points (nodes) where the solutions of the governing 

equations are obtained. The circles are concentric and start from the surface of the sphere 

with constant Z values and extend until the edge of the boundary layer is reached. The 

straight lines pass through the center of the sphere and each of them is a constant X-line 

(at a constant angle). 

 The spatial grid consists of (n+1) points in the radial direction where the first one 

being on the sphere (Z=0) and the last one is located outside the boundary layer edge. On 

the other hand, the grid has (m+1) meridional stations starting from X = 0 (at the front 

stagnation line) and extending until the angle of flow separation. The index i represents 

the radial value of the mesh points (Z direction) starting with i = 1 at the surface of the 

sphere (Z=0) till i = n+1 in the free stream while the index j represents the meridional 

value of the mesh points (X-direction) starting from j=1 at the front stagnation line (X=0) 

till the point of separation where j = m+1. Therefore, the finite-difference representation 

of the spacial mesh points will be as follows: 

( ) ZiZ i ∆−= 1   where i = 1, 2, 3,……., n+1    (4.1) 

( ) XjX j ∆−= 1  where j = 1, 2, 3,……., m+1 

 The order by which the numerical solution is obtained starts by solving the 

meridional momentum equation for Ui,j+1 , then the continuity equation has to be solved 

for Wi,j+1. Therefore, the term found in the meridional momentum equation will be 

represented by Wi,j (i.e. from the previous meridional step), while in the continuity 

equation U will be expressed as Ui,j+1 since it would have been already obtained from the 

solution of the preceding momentum equation. Both the U and W in the energy equation 
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are represented at the (i,j+1) points since the flow field is assumed to be steady with 

constant physical properties, and energy equation is the last to solve in the pure forced 

convection case ( after solving the momentum and continuity equation and hence the 

flow field components are all known). However in the mixed convection case, the energy 

equation is solved for a particular value of Grashof number to get the unknown values of 

T at all points of meridional station. Now using the computed values of T, the meridional 

momentum equation is solved to get the U velocity. Now the continuity equation is 

solved to get the W component of velocity. This procedure is repeated till the separation 

point is reached. 

4.3 Finite difference representation of the derivatives: 

 The finite difference representation of the various derivatives present in the 

governing equations can be written as follows: 
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4.4 Finite difference representations of governing equations: 

4.4.1 Finite difference representation of meridional momentum equation: 
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Rearranging equation (4.6): 
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Now the  meridional momentum equation can be written as: 

For i = 1: C1U0 + A1U1 + B1U2 = D1   

For I = 2: C2U1 + A2U2 + B2U3 = D2      (4.7) 

For I = 3: C3U2 + A3U3 + B3U4 = D3 

For I = n: CnUn-1 + AnUn + BnUn+1 = Dn 

These equations can be expressed in matrix form as: 
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where Dn =  Dn – Bn Un+1 
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4.4.2 Finite difference representation of continuity equation: 

0
1

Re
2

Re =
+

+++
Z

W
Xd

dR
R
U

Z
W

X
U

∂
∂

∂
∂

       (4.9) 

 

0
)1(4

)(Re)(

)1(2
)(Re

2
Re

2

2/1

1,1,1

2/1

1,1,11,1,1

2/1

,,11,1,1

=
+

∆+
+

+
+

+
∆

−
+

∆
−−+

⇒

+

+++

+

++++++

+

++++

i

jiji

i

jijijiji

i

jijijiji

Z
jCotUU

Z
WW

Z
WW

X
UUUU

θ
   (4.10) 

Rearranging: 

( )
)1(4

)(Re
2

1
1

1
2

Re1
1

1
2

Re

2/1

1,1,1

2/1

,,11,1,1

2/1
1,1

2/1
1,

+

+++

+

++++

+
++

+
+

+
∆+

−
∆

−−+
−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆

+
+

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆

−
+

i

jiji

i

jijijiji

i
ji

i
ji

Z
jCotUU

X
UUUU

ZZ
W

ZZ
W

θ
  (4.11) 

 

let: A(i) = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆

−
+ + ZZi

1
1

1
2

Re

2/1

       (4.12) 

B(i) = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆

+
+ + ZZi

1
1

1
2

Re

2/1

 

D(i) = 
( )

)1(4
)(Re

2 2/1

1,1,1

2/1

,,11,1,1

+

+++

+

++++

+
∆+

−
∆

−−+
−

i

jiji

i

jijijiji

Z
jCotUU

X
UUUU θ

 

Equations can be represented for a given j as: 

for i = 1: A1W1 + B1W2 = D1 (W1 = 0 for sphere surface)   (4.13) 

for i = 2: A2W2 + B2W3 = D2  

for i = n-1: An-1Wn-1 + Bn-1Wn = Dn-1  

for i = n: AnWn + BnWn+1 = Dn  
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4.4.3 Finite Difference representation of energy equation: 
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for a given j , let: 
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Hence the equation (4.16) can be written as: 

B(i) Ti+1,j+1 + A(i) Ti,j+1 +C(i) Ti-1,j+1 = D(i)      (4.18) 

For i = 1: B1T2 +A1T1 + C1T0 = D1 
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For i = 2: B2T3 +A2T2 + C2T1 = D2 

For i = 3: BnTn+1 +AnTn + CnTn-1 = Dn 

Equation (4.18) can be written in matrix form as: 
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D1 = 1 (UWT) 

Or,  D1 = 
Z

T
∆

∆
−1  (UHF), since 

2 2 1
2wT T TNu Z Z

−= = =∆ ∆− ∆ ∆
 

4.5 Finite difference representation of boundary conditions: 

 

The boundary conditions in finite difference form are: 

for i = 1 and j = 1,  01,11,11,11,1 ==== TWVU  

for i ≥ 1 and j =1: Ui,1 = Vi,1 =0 , Ti,1 =0, Wi,1 = 
[ ]

− +
+ −

1 1
1 1 3( )i Z∆

  

for i = n+1 , and j>1: Un+1,j = 1 1
2 1

13+
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(
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n Z)
j

∆
∆θ       (4.20) 

   Tn+1,j = 0, Vn+1,j = 0      

for i = 1, and j >1 : U1,j = 0 , W1,j = 0 ,V1,j = sin[(j-1)∆θ],  
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        T1,j = 1 (UWT) and 
Z

T
Tw

∆
∆

−= 1  (UHF) 

 
 

4.6 Finite difference representation of the entropy generation equation: 

 

4.6.1 Uniform wall temperature case: 

 
 As soon as the temperature and velocity gradients are available in the domain, the 

entropy generation is calculated.  

 

The non dimensional temperature for the case of constant wall temperature as given 

earlier is: 

wt
tT =   

 

The entropy equation for the case of uniform wall temperature case from equation (3.20) 

and using finite difference terms of equation (4.2), is given as: 
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4.6.2 Uniform heat flux case: 

 
The non-dimensional temperature for the case of constant heat flux as given earlier is:  

k
aqTtei

aq
ktT == ..,  

 

The entropy generation equation is given by: 
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CHAPTER V 

SOLUTION METHODOLOGY  

5.1 Introduction: 

 This chapter is aimed at presenting the detailed method of solution for the 

problem under investigation where the finite difference form of the derived governing 

equations written at each node. 

 Wide range of controlling parameters like Reynolds number, Grashof number and 

Eckert number are used to study there effect on the velocity, temperature and entropy 

generation variation. As soon as the velocity and temperature gradients are obtained, 

entropy generation is calculated. 

 The numerical scheme in the whole domain is obtained by marching in the 

meridional(X) direction starting from the front stagnation point where the velocity and 

temperature profiles are assumed to be known. The solution then proceeds in this 

direction step by step till the point of flow separation is reached. At each meridional 

station, system of equations are solved to obtain  U, W and then T along this line starting 

from the surface of the sphere up to the edge of the boundary layer, which is obtained by 

comparing the value and tangent of meridional velocity component with its free stream 

value. Upon obtaining the required velocity and temperature profiles, the entropy 

generation is calculated.  
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The average entropy generation at each meridional station is calculated which is 

the local average. Then the solution is advanced to the next meridional station. The 

process is repeated till the separation point is reached. Total average is the average of 

entropy generation for the whole domain from the front stagnation line till the separation 

point. 

 

5.2 Numerical Grid: 

 The numerical grid parameters are selected to be variable and have small values 

in the meridional direction especially at the points where high gradients are expected as 

in the case of the flow near the separation point. Along each meridional station, the grid 

size is assumed constant (∆Z = 0.001) where a minimum number of mesh points was 

given and the convergence criterion was tested at the outer point, if the convergence 

criterion was met, the solution proceeds to the next meridional step, otherwise the 

number of steps is increased by 2 and the solution is repeated along this meridional step. 

This process is repeated till the criterion which is presented in the next section is met. 

The solution proceeds in the marching X direction with equal grid size ( 10) until the 

point of separation is reached then the program adjusts itself and return one meridional 

step back to reduce the X-direction grid size to ( 0.10) in order to accurately determine the 

point of flow separation. 
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5.3 Criteria for Convergence: 

 Two criteria are supposed to be met during the solution, the first is at each 

meridional step to determine the boundary layer thickness whereas the other is to 

determine the point of external flow separation. 

 

 For the flow around a solid sphere, a minimum number of mesh points in the Z-

direction for a certain meridional step was chosen to be 20 ( n=20). Upon calculating the 

meridional velocity component along this line, the tangent of the velocity at the upper 

most point was calculated and the slope of the velocity ( ZU ∂∂ / ) is calculated at the 

uppermost point (n+1). Then the slope of the potential flow around a sphere is calculated 

at the same point and the two values are compared. If both slopes are matched within a 

certain arbitrarily specified tolerance (a value of 0.005 was chosen in the present work) 

the solution is supposed to be convergent and this would determine the edge of the 

boundary layer. Otherwise, the number of radial steps (n) is increased by two and the 

procedure is repeated until the matching criterion is met. 

 

Fluid particles over the sphere accelerate in the region 900 ≤≤θ  and decelerate 

in the region where 90>θ , hence the pressure decreases in the accelerated region and 

then increases in the decelerated region [46]. Since the external pressure is imposed at the 

boundary layer, the transformation of the pressure into kinetic energy takes place in the 

accelerated region and a great deal of the kinetic energy of the particles adjacent to the 

wall is consumed to move against the friction forces. In the decelerated region, the 

remainder of the kinetic energy is too small to keep those fluid particles moving in the 
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region of high pressure, so, they would be eventually arrested and the external pressure 

would force them to move in the opposite direction separating from the surface of the 

sphere and the point of flow separation can be detected by the condition that the velocity 

gradient at the wall vanished or ( 0/ =∂∂ ZU ). Therefore the flow separation would be 

accompanied by a vanishing velocity gradient; a large boundary layer thickness due to 

the increase in the number of radial steps is required to satisfy the matching criterion at 

the edge of the boundary layer and a larger value to the radial velocity components 

because of the increasing outward direction of the flow. 

 

 A computer code is developed such that a constant meridional step is followed in 

the marching X-direction until flow separation occurs where zero or negative unexpected 

value of U can be obtained. Then a finer mesh is used in X-direction (i.e. for ∆X) and the 

point of separation is obtained. 

 

5.4 Solution procedure: 

 
 The governing finite difference equations obtained in Chapter IV are governed by 

some controlling parameters, namely, Reynolds number, Grashof number, Prandtl 

number and Eckert number. So these controlling parameters should be fixed each time 

the program is run. The solution starts by selecting appropriate values for these 

parameters. For forced convection problem the solution proceeds as follows: 
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1. The program starts in the marching X-direction, the variables at the first 

meridional station (j = 1, i.e. at the front stagnation line) are known where 

boundary layer thickness is assumed zero. Hence U, W, and T are known and 

specified at this first station (U = 0, T = 1, and W is obtained from the potential 

flow distribution). So the code starts to obtain the solutions at the line j = 2 

assuming a number of radial grid points of 20. 

2. In the forced convection regime, the finite difference equations arranged in a form 

of a matrix for U values are solved first and then followed by solving the 

continuity equation to get W values. 

3. The matching criterion at the uppermost point is checked. If the criterion is not 

met, the number ‘n’ is increased by 2 and the solution is repeated again. 

4. Steps 2 and 3 are repeated till the convergence criterion is met. Then the energy 

equation is solved and the temperature distribution along this line (X = constant) 

is obtained. 

5. The obtained values are reported and prepared to be the initial values of the next 

meridional step. 

6. The local average entropy generation at each meridional station is calculated and 

reported. 

7. The solution then proceeds in the marching X-direction repeating the same 

previous steps ( 2 through 5) until the separation point is reached where finer 

mesh is used ( smaller increments in X-direction) and the angle of separation is 

estimated as explained previously in section 5.3. 
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8. After obtaining the velocity and temperature profiles, the entropy generation can 

now be calculated for the given controlling parameters. The local entropy 

generation is first calculated at each meridional station.  

9. Then the total average entropy generation is calculated by integrating over the 

whole domain from the stagnation line till the separation point. 

 

In the mixed convection regime, the solution methodology is as follows: 

1. The program starts in the marching X-direction, the variables at the first 

meridional station (j = 1, i.e. at the front stagnation line) are known where 

boundary layer thickness is assumed zero. Hence U, W, and T are known and 

specified at this first station (U = 0, T = 1, and W is obtained from the potential 

flow distribution). So the code starts to obtain the solutions at the line j = 2 

assuming a number of radial grid points of 20. 

2. In the mixed convection regime, the finite difference equations arranged in a form 

of a matrix for energy equation to get T values. 

3. After obtaining the T values, the meridional momentum equation is solved to get 

the U values.  

4. After getting the values of U, the continuity equation is solved to obtain the W 

velocity component. 

5. The convergence criterion is checked as described previously for forced 

convection regime, and then the obtained values are reported and prepared to be 

the initial values of the next meridional step. 

6. The local entropy generation at each meridional station is calculated and reported. 
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7. The solution then proceeds in the marching X-direction repeating the same 

previous steps ( 2 through 6) until the separation point is reached where finer 

mesh is used ( smaller increments in X-direction) and the angle of separation is 

estimated as explained previously in section 5.3. 

8. After obtaining the velocity and temperature profiles, the entropy generation can 

now be calculated for the given controlling parameters. The local average entropy 

generation is first calculated at each meridional station.  

9. Then the total average entropy generation is calculated by integrating over the 

whole domain from the stagnation line till the separation point. 

 



 

 

CHAPTER VI 

RESULTS AND DISCUSSIONS FOR THE FORCED 

CONVECTION  

6.1 Introduction: 

 In this chapter, the results of solving the governing equations and computing the 

local and average entropy generation are presented for the forced convection case. These 

clarify the effect of the controlling parameters like Reynolds number, Grashof number 

and Eckert number on the flow field and entropy generation. 

6.2 Range of different controlling parameters: 

 The different controlling parameters like Reynolds number, Grashof number and 

Eckert number considered in this study are presented and their range is justified in this 

section.  

Range of Reynolds number: The range of Re considered here is 103 < Re < 105. The 

value of Re in this range is large enough to justify the use the boundary layer 

approximation but small enough to keep the flow laminar. The transition from laminar to 

turbulent for fluid flow over a sphere starts from Re = 5103× and flow become fully 

turbulent for 5105Re ×= [49].  
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As seen from the Fig-6.1, at Re = 5103×  the coefficient of drag over the sphere decreases 

abruptly which marks the start of flow transition.  

 

Range of Grashof number: The range of Grashof number selected in this study is -109 < 

Gr < 109 . This range is selected to represent cases of aiding and opposing flow and to 

keep the flow laminar [6].  

 

Range of modified Eckert number: 10-7 < Ecm < 10-1 . The Eckert number is the ratio of 

kinetic energy to enthalpy change across a layer. It’s a measure of importance of viscous 

dissipation. A large Eckert number implies a large kinetic energy available to be 

converted to heat through viscous dissipation; for a smaller Re, more energy will be 

dissipated.  The heat generated by dissipation is relatively important if the temperature 

difference in the flow field is small to begin with.  Eckert number is important in 

studying the aerodynamic heating in supersonic boundary layers, or high speed gas 

bearings. 

This range of Ecm is selected to keep the flow incompressible [17]. As the Eckert 

number is increased, the Mach number of the flow increases, and at Ma ≥ 0.3 the flow 

becomes compressible. Table 6.1 gives the different values of Eckert number resulting 

from different combination of Temperature (T)  and Mach number (M). As seen from this 

table, we can say that the range of Ecm considered in this study, that is 10-7< Ecm < 10-1, 

to keep the flow incompressible is justified. And for Ecm > 10-1 the flow becomes 

compressible. 
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Fig.6.1: Transition of flow over a sphere from laminar to turbulent [49] 
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Table-6.1: Values of Ecm for different combinations of Mach number and Temperatures 

(for air):  

M T (K) ∆T Ec = M2 R T/Cv ∆T 
0.3 400 100 0.144705882 
0.3 500 200 0.090441176 
0.3 600 300 0.072352941 
0.3 800 500 0.057882353 
0.3 1300 1000 0.047029412 
0.2 400 100 0.064313725 
0.2 500 200 0.040196078 
0.2 600 300 0.032156863 
0.2 800 500 0.02572549 
0.2 1300 1000 0.020901961 
0.1 400 100 0.016078431 
0.1 500 200 0.01004902 
0.1 600 300 0.008039216 
0.1 800 500 0.006431373 
0.1 1300 1000 0.00522549 
0.05 400 100 0.004019608 
0.05 500 200 0.002512255 
0.05 600 300 0.002009804 
0.05 800 500 0.001607843 
0.05 1300 1000 0.001306373 

 

6.3 Results for uniform wall temperature (Forced convection case): 

6.3.1 Meridional velocity profiles: 

 Figure 6.2 shows examples of the meridional velocity profiles at three selected 

meridional locations (θ = 30o, 60o and 90o) along the radial distance (Z). It starts with 

zero value at the surface of the sphere (Z=0), which is the no slip condition, till it matches 

the free stream velocity thus representing the edge of the boundary layer surrounding the 

sphere. The figure also shows the increase in the boundary layer thickness as the fluid 
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moves further over the sphere surface in the meridional direction illustrating the 

boundary layer development. 

Figure 6.3 shows the effect of Re on the boundary layer thickness. The higher  the 

value of Re, the thinner is the boundary layer. This is attributed to high velocity gradients 

at higher Re requiring less boundary layer thickness (less distance) for the velocity to 

drop from its free stream value at the edge of the boundary layer to its zero value at the 

surface of the sphere. It is worth mentioning that as the Reynolds number increases, the 

rate of transfer of momentum increases too leading to higher velocity gradients and hence 

less boundary layer thickness. 

 

Figure 6.4a shows the variation of the meridional velocity with θ at different Z-

locations for Re=104. The figure clearly shows that the meridional U- velocity is zero at 

the stagnation point and is higher at some angles and decreases as it approaches the 

separation point. It also shows that the velocity at the surface of sphere has a zero value, 

which shows the no slip condition. 

 

For the sake of validation of the present code, a comparison between this study 

and previous studies is shown figures 6.4b and 6.4c. Figure 6.4b shows the velocity 

profile for θ = 600 and Re = 104. Figure 6.4c shows the wall shear stress in meridional 

direction for a given Reynolds number for the present study and compared with the one 

by Schlichting [49]. It can be clearly seen that the code used in present study is in good 

agreement with the previous published results. 
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Fig 6-2: Meridional Velocity Profile at different meridional locations for a given 
Reynolds number 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.02 0.04 0.06 0.08 0.1 0.12

Z

U

Re = 104

600

900

5000

103

 
Fig 6-3: Effect of Reynolds number on Meridional velocity profiles at two different 

meridional stations 
 

 



 

 

60

 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 20 40 60 80 100 120

θ

U

Re = 104
Z = 3 × 10-2

10-2

5 × 10-3

2 × 10-3

 

Fig 6-4a: Meridional Velocity profile over the sphere surface at different radial locations 
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Fig 6-4b: Comparing the U-velocity of present work with that of previous work 
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Fig 6-5: Wall shear stress in meridional direction for a given Reynolds number 
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6.3.2 Radial Velocity Profiles: 

 Figure 6.5 presents the developing radial velocity component, W, corresponding 

to different meridional stations (angles) θ = 30o, 60o, 90o, 105o for a given Reynolds 

number (Re = 10000). It is clear that all these profiles are starting with zero value at the 

surface of the sphere (no fluid is crossing the boundaries, i.e. no suction or blowing).  

Profiles are negative for meridional angles < 90o while they have positive values for θ > 

90o. This behavior shows that the radial component of velocity is pushing the boundary 

layer fluid toward the sphere’s surface in the accelerated region of the flow. Where as in 

the adverse region (θ > 90o ), the tendency changes to blowing of the fluid and hence the 

radial component of velocity assists increasing the boundary layer thickness till the 

maximum thickness is reached at the point where the flow separates. 

 

6.3.3 Temperature Profile: 

Figure 6.7 presents the temperature profile for some selected values of meridional 

stations. This figure shows the variation of the temperature profiles as the boundary layer 

increases along the surface of the sphere until the maximum boundary layer thickness is 

encountered near the point of flow separation. As expected, the wall of the sphere is at 

the maximum dimensionless temperature which is equal to one, and as we move away 

from the sphere, the temperature decreases. 
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Fig 6-6: Radial velocity profile at different meridional locations 
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Fig 6-7: Temperature profile at different meridional locations for a given Reynolds 
number 
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6.3.4 Local entropy generation profiles: 

 As given by Bejan [45] the range of entropy generation number is very large, thus 

logarithmic scale is used in presenting the results.  

 Figure 6.8 shows the variation of heat transfer entropy generation with the radial 

distance at different meridional stations (angles), θ = 30o, 60o, 90o, 105o for a given 

Reynolds number (Re = 104) and modified Eckert number (Ecm = 10-2). This figure shows 

that as we move away from the surface of the sphere (i.e. increasing the value of Z), the 

entropy generated due to heat transfer increases. However, the rate of entropy generation 

is higher near the surface than far away, this is due to increase in temperature gradients as 

one move towards the surface. This rate approaches zero as we move away from the 

sphere, since the temperature gradient is zero outside the thermal boundary layer. Further 

more, the entropy generation is higher at the edge of the boundary layer than at the 

surface because as we move away from the sphere surface the temperature is decreasing 

but this temperature term (1/T2) is multiplied to the entropy generation term as seen in 

equation (3.20), due to which the entropy generation is higher as temperature decreases.  

Figure 6.9 shows the same variation but for different Reynolds number. As we can see 

from the numerical values of the heat transfer entropy generation for different Re , we 

notice that the entropy generation has higher values for higher Reynolds number because 

of higher temperature gradients at higher velocity, that is, more heat transfer as the 

Reynolds number is increased for a given Ecm.  

Figure 6.10 presents the heat transfer entropy generation over the sphere surface 

for different radial locations and for given Reynolds and Eckert number. It can be seen 

that the entropy generation due to heat transfer increases from a minimum value at the   
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Fig 6-8: Variation of heat transfer entropy generation with radial distance for different 
meridional stations 
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Fig 6-9: Variation of heat transfer entropy generation with radial distance for different 
Reynolds number at a given Eckert number 
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Fig 6-10: Variation of heat transfer entropy generation over the surface of the sphere at 
different radial locations  
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front stagnation point till it reaches maximum and then decreases near the separation 

point. As it approaches the separation point the meridional temperature gradient 

decreases and hence giving less heat transfer and less entropy generation. 

 

Figure 6.11 gives the variation of fluid friction entropy generation with the radial 

distance (Z) at some selected angles for given Reynolds and Eckert numbers. This figure 

shows that entropy generation due to fluid friction is less in magnitude at smaller angles 

and increases with the angle and then again decreases near the separation angle. As the 

velocity away from the sphere is higher, resulting in an increase in the fluid friction 

entropy generation. This can be attributed to the higher kinetic energy of the fluid 

particles away from the sphere surface. Also it can be seen that meridional locations far 

away from stagnation point has comparatively less fluid friction at the sphere surface. 

 

 Figure 6.12 depicts the effect of Reynolds number on the fluid friction entropy 

generation at a given meridional location. Higher Reynolds number indicates higher 

velocity gradients and kinetic energies which result in higher fluid friction and hence 

higher entropy generation. 

 

 Figure 6.13 presents the change of fluid friction entropy generation with Eckert 

number for two meridional locations along radial direction for a given Reynolds number. 

As the Eckert number is decreased, fluid friction entropy generation decreases 

exponentially, this is obvious from the entropy equation (3.20) as Eckert number term is 

multiplied to the fluid friction term. 



 

 

68

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

Z

SF

30 deg
60 deg
105 deg

θs = 107.00

Re = 104

Ecm = 10-2

θ = 300

   = 600 

   =1050

 

Fig 6-11: Variation of fluid friction entropy generation with radial distance for different 
meridional stations 
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Fig 6-12: Variation of fluid friction entropy generation with radial distance for different 
Reynolds number at a given meridional location  
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Fig 6-13: Variation of fluid friction entropy generation with radial distance for different 
Eckert number and meridional locations for a given Reynolds number 
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   Fig 6.14 shows the variation of dimensionless total entropy generation for 

different Reynolds number (1000, 5000 and 10000) at two different meridional stations. 

The boundary layer thickness for higher Re is smaller resulting in higher values of 

velocity and temperature gradients that increase total entropy generation as compared 

with low Reynolds number. Also at the surface of the sphere due to high temperature and 

velocity gradients, the entropy generation rate is high and as we move further away from 

the surface, the gradients decrease and entropy generation rate decreases. 

 

 Figure 6.15 shows the variation of entropy generation over the sphere (from front 

stagnation point until separation angle) at different radial (Z) locations for a given 

Reynolds number, Re = 104. Similar to heat transfer entropy generation profile over the 

sphere, the total entropy generation is showing the same behavior, that is, increases as we 

move from the front stagnation point and again decreases near the separation point. This 

similarity of total entropy generation profile to heat transfer part is because the fluid 

friction entropy generation is significant only in high speed or super sonic flows and 

compressible flows. In most of the convective processes where heat transfer is the main 

phenomenon, fluid friction or viscous entropy generation is of less importance, this can 

be seen clearly from Figure 6.16 in which the fluid friction part is having magnitude of 

102 less compared to heat transfer part.  

 

 Variation of entropy generation with Eckert number is presented in Figure 6.17 

for two different Reynolds numbers (Re = 2 × 104, 104). It can be seen that for Ecm < 10-3,  
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Fig 6-14: Comparing total entropy generation profile along radial direction for different 
Reynolds number 
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Fig 6-15: Variation of entropy generation over the sphere surface at different radial (Z) 
locations for a given Reynolds number 
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Fig 6-16: Comparing heat transfer, fluid friction and total entropy generation at a 
particular meridional location  
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Fig 6-17: Comparing entropy generation profile for different Eckert number 
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the fluid friction entropy generation is negligible, which result in very less variation in 

total entropy generation. Hence for flows with very low Reynolds number, which result 

in low velocities and hence low Eckert number, fluid friction entropy generation can be 

neglected. 

6.3.5 Local and overall average entropy generation profiles:  

 Local and average entropy generation equations are given in (3.20) and (3.21). It 

is seen from figure 6.18 that high fluid friction at certain meridional locations (600< θ 

<1000) over the sphere causes the local average fluid friction entropy generation to be 

remarkable. This is mainly due to fluid particles over the sphere accelerate in the region 

0900 ≤≤θ  and decelerate in the region where 090>θ , hence the pressure decreases in 

the accelerated region and then increases in the decelerated region. Since the external 

pressure is imposed at the boundary layer, the transformation of the pressure into kinetic 

energy takes place in the accelerated region and a great deal of the kinetic energy of the 

particles adjacent to the wall is consumed to move against the friction forces. This can 

also be related to the velocity gradients, which are high in accelerating region of flow and 

less in decelerating region of fluid flow. The heat transfer entropy generation is having a 

dominant effect in total entropy generation as can be seen from the graph.  

 

Figure 6.19 also shows the same pattern of local average entropy generation over 

the sphere surface for three different Reynolds numbers. We can notice that at higher Re, 

entropy generation is higher due to small viscous and thermal boundary layer at higher 

Reynolds number, which results in higher velocity and temperature gradients and hence 

high heat transfer rates, but at the expense of high entropy generation. 
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Fig 6-18: Variation of local average entropy generation over the sphere surface for given 
Reynolds and Eckert numbers 
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Fig 6-19: Comparing local average entropy generation profiles for different Reynolds 
numbers 
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Figure 6.20 shows the variation of average fluid friction entropy generation over 

the sphere for different Eckert number and a particular Reynolds number (Re = 104). 

Again the high velocity gradients at some region in the boundary layer, where 

acceleration of fluid particles take place, result in high fluid friction and hence increases 

the average fluid friction entropy generation in these region over the sphere. 

 

Effect of Reynolds number on overall average entropy generation profile is shown 

in figure 6.21. This figure also presents a comparison between heat transfer, fluid friction 

and over all entropy generation for a wide range of Reynolds number (102 < Re < 105). 

This wide range is shown in order to compare with the results presented in the literature 

([33] through [37]). As expected from the literature survey, the average entropy 

generation is decreasing from Re = 100 to Re = 1000, which is the range of Re reported 

in the literature. But the range of Reynolds number greater than 1000 has not been 

presented in the previous studies. We see that as the Reynolds number is increased 

further Re = 1000, Savg shows a constant line and then increases at higher rate for Re > 

104. Hence high Reynolds number results in high heat transfer rates which is the desired 

phenomena in thermal systems like heat exchangers but at the loss of some useful power 

in form of entropy generation. 

  

Figure 6.22 shows the effect of Reynolds number on average entropy generation 

profile for different Eckert number. We can see that high Eckert number results in 
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Fig 6-20: Variation of local average fluid friction entropy generation over the sphere for 
different Eckert numbers and a given Reynolds number 
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Fig 6-21: Effect of Reynolds number on overall average entropy generation  
 

 

Fig 6-22: Effect of Reynolds number on overall average entropy generation for different 
Eckert numbers 
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high Savg,o and as the Eckert number is decreased, the variation of Savg,o is negligible. And 

hence with this graph we can find the best combination of Reynolds number and Eckert 

number for which the Savg,o is minimum.  

  

 Figure 6.23 presents the effect of Eckert number on the overall average fluid 

friction entropy generation for different Reynolds numbers. We can notice that the Eckert 

number plays a considerable role on the magnitude of fluid friction entropy generation 

and further increase of Ecm>0.1 causes the flow to be compressible. Figure 6.24 shows 

the effect of Eckert number on overall average Entropy generation for different Reynolds 

numbers. As seen from the previous result, fluid friction entropy generation has 

significant effect on total entropy generation only when Eckert number is considerably 

high. This figure also shows that for Ecm = 0.1, Savg,o increases steadily and with further 

increase in Ecm , Savg,o increasing exponentially, but makes the flow compressible as the 

mach number is greater than 0.3 for Ecm > 0.1.  
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Fig 6-23: Effect of Eckert number on average fluid friction entropy generation for 
different Reynolds numbers 
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Fig 6-24: Effect of Eckert number on overall average entropy generation for different 
Reynolds numbers 
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6.3.6 Bejan number and Irreversibility Ratio:  

 Paoletti et al.[51] defined Bejan number as the ratio of heat transfer entropy 

generation to the over all entropy generation, that is  

 

GenerationEntropyTotal
GenerationEntropyTransferHeat

Be =  

 And its range is  10 ≤≤ Be   

2
1>>Be   : Irreversibility due to Heat transfer dominates 

2
1<<Be   : Irreversibility due to Fluid Friction dominates 

2
1≅Be   : Irreversibility due to Heat transfer equals to Irreversibility due to Fluid Friction 

 

Bejan [45] defined the Irreversibility Distribution Ratio as: 

GenerationEntropyTransferHeat
GenerationEntropyFrictionFluidIR =  

 

:1>IR  Fluid friction entropy generation dominates 

:1<IR  Heat transfer entropy generation dominates 

:1=IR  Heat transfer and fluid friction entropy generation are equal 

 

 Bejan number and irreversibility ratio are measures of the relative effect of the 

heat transfer and fluid friction entropy generation on the total entropy generation.  
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 Figure 6.25 shows the effect of Eckert number on the irreversibility ratio. As can 

be seen from equation (3.20), the Ecm term is multiplied with the fluid friction term, 

hence an increase in Eckert number increases fluid friction part and physically it means 

that as the fluid velocity is increased, the fluid friction increases and hence the entropy 

generation due to the fluid friction or due to velocity gradients also increase. Figure 6.26 

is just a cross plot of Figure 6.25, which shows that the increase in Reynolds number has 

less effect on the irreversibility ratio when compared with increase in Eckert number. 

 

 Figure 6.27 shows the effect of Eckert number on Bejan number for different 

values of Reynolds number. As can be seen from the graph, Bejan number decreases after 

certain value of Eckert number which is 10-3, hence the fluid friction has significant 

effect on the total entropy generation at high Eckert numbers. And for Ecm < 10-3, the 

Bejan number is constant at a value of one, indicating that the heat transfer entropy 

generation is the only part contributing to the total entropy generation and fluid friction 

entropy generation is negligible which is confirming with our discussion in previous 

results. Figure 6.28 is a cross plot of the results shown in figure 6.27; it confirms that the 

increase in Reynolds number has little effect on Bejan number at low Ecm.  
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Fig 6-25: Effect of Eckert number on irreversibility ratio for different Reynolds number 
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Fig 6-26: Effect of Reynolds number on irreversibility ratio for different Eckert number 
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Fig 6.27: Effect of Eckert number on Bejan number for different Reynolds numbers 

 
 

 
Fig 6-28: Effect of Reynolds number on Bejan number for different Eckert numbers 
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6.4: Results for uniform heat flux (Forced convection case): 

6.4.1 Meridional and radial velocity profiles: 

 

Figure 6.29 shows examples of the meridional velocity profiles at four selected 

meridional locations (θ = 300, 600, 900, 1050) along the radial distance (Z). It starts with 

zero value at the surface of the sphere (Z=0) representing the no slip condition till it 

matches the free stream velocity at the edge of the boundary layer surrounding the 

sphere. This figure shows the increase in the boundary layer thickness as the fluid moves 

over the sphere surface in the meridional direction illustrating the boundary layer 

development.  

 

Figure 6.30 shows the developing radial velocity component, W, corresponding to 

different meridional stations (angles), θ = 300, 600, 900, 1050 for a given Reynolds 

number (Re = 104). Similar to the case for uniform wall temperature, these profiles are 

also starting with zero value at the surface of the sphere (representing no fluid is crossing 

the boundaries, i.e. no suction or blowing).  Profiles are negative for meridional angles < 

90o while they have positive values for θ > 900. This behavior shows that the radial 

component of velocity is pushing the boundary layer fluid toward the sphere’s surface in  
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Fig 6.29: Meridional velocity profile at different meridional locations and for a given 
Reynolds number 
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Fig 6.30: Radial velocity profile at different meridional locations  
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the accelerated region of the flow. On the other hand, in the W-profile in the adverse 

region (θ > 900) the tendency changes to blowing of the fluid, the radial component of 

velocities assist increasing the boundary layer thickness till the maximum thickness is 

reached at the point where the flow separation takes place. 

 

6.4.2 Temperature Profile: 

 
Figure 6.31 shows the wall temperature profile on the sphere surface for the case 

of uniform heat flux. As can be seen, the wall temperature is increasing as we move from 

front stagnation point towards the separation point. Hence as the fluid separates form the 

sphere at separation point, there is no cooling of the sphere by the free stream due to 

which the wall temperature attains a highest value. 

 

Figure 6.32 shows the temperature profile at some selected values of the 

meridional stations, namely θ = 300, 600, 900, 1050 and for two particular values of 

Reynolds number (Re = 103 and 104). This figure shows the variation of the temperature 

profiles as the hydrodynamic boundary layer thickness increases along the surface of the 

sphere until the maximum boundary layer thickness is encountered near the point of flow 

separation. The non-dimensional wall temperature of the sphere has the maximum value, 

and as we move away from the sphere, the fluid temperature decreases and finally attains 

the free stream temperature. 

 
 

 



 

 

87

0.E+00

1.E-02

2.E-02

3.E-02

4.E-02

5.E-02

6.E-02

7.E-02

8.E-02

9.E-02

1.E-01

0 20 40 60 80 100 120

θ

Tw

Re = 1000

5000

10000

 

Fig 6-31: Sphere wall temperature profile for different Reynolds numbers 
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Fig 6-32: Temperature profile at different meridional locations for two different Reynolds 
numbers 
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6.4.3 Local entropy generation profiles: 

  

As stated in previous section for uniform wall temperature case, the range of 

entropy generation number is very large, thus logarithmic scale is used in presenting the 

results [47]. 

 

Figure 6.33 shows the variation of dimensionless heat transfer entropy generation 

with radial distance for different meridional stations (angles), θ = 200, 300, 600, 900, 1050, 

for given Reynolds number (Re = 104) and modified Eckert number (Ecm = 10-2). This 

figure shows that as we move away from the surface of the sphere, the entropy generation 

rate due to heat transfer increases, due to the decrease in temperature gradients near the 

edge of the boundary layer away from the sphere surface. 

 

Figure 6.34 shows the same variation but for a given value of θ = 1050 at different 

values of Reynolds number (Re = 103, 5 × 103 and 104). We can see from the numerical 

values of the heat transfer entropy generation for different Re, the entropy generation has 

higher values for higher Reynolds number because of higher heat transfer rates at higher 

velocities, that is, more heat transfer as the Reynolds number is increased for a given 

Ecm, which is a desired phenomenon in systems where maximum heat should be 

removed. 
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Fig 6-33: Variation of heat transfer entropy generation with radial distance at different 
meridional stations, UHF case 
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Fig 6-34: Variation of heat transfer entropy generation with radial distance for different 
Reynolds numbers 
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Figure 6.35 shows the variation of dimensionless fluid friction entropy generation 

with the radial distance for different  meridional stations, θ = 300, 600, 900, 1050. This 

figure shows that entropy generation due to fluid friction is less in magnitude at angles 

near front stagnation point and separation point. As the velocity away from the sphere is 

higher, but the velocity gradients are decreasing this results in a decrease in the fluid 

friction entropy generation. This can be attributed to the higher kinetic energy of the fluid 

particles away from the sphere surface. Also it can be seen that meridional locations far 

away from stagnation point has comparatively less fluid friction at the sphere surface. If 

we compare the fluid friction entropy generation due to Uniform wall temperature from 

figure 6.12 and Uniform Heat flux from figure 6.36, we can see that the magnitude of 

entropy generation due to fluid friction is very small in UHF case and hence negligible 

for the range of Reynolds number investigated. In addition, the magnitude of fluid 

friction entropy generation is of the order of 103 less when compared with heat transfer 

entropy generation; hence fluid friction entropy generation can be neglected in practical 

analysis for the case of uniform heat flux. 

 

Figures 6.37 and 6.38 represent the variation of total entropy generation at 

different meridional locations and for different Reynolds numbers, respectively. The 

entropy generation is increasing linearly along the radial direction till it reaches the edge 

of the boundary layer, and also we can notice that the smaller angles have higher entropy 

generation than larger angles because of the smaller thermal boundary layer thickness 

near the front stagnation point resulting in higher temperature gradients and hence higher 
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Fig 6-35: Variation of fluid friction entropy generation with the radial distance at 
different meridional stations 
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Fig 6-36: Variation of fluid friction entropy generation with the radial distance for 
different Reynolds numbers and at a given meridional location 
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thermal entropy generation rates. We can also notice from figure 6.38 that the entropy 

generation profile has the same trend for all the Reynolds numbers. And higher the 

Reynolds number, higher is the entropy generation for given Eckert number. 

 

 Figure 6.39 shows the variation of dimensionless entropy generation over the 

sphere surface at different radial (Z) locations for given Reynolds number and Eckert 

number. It is seen here that the entropy generation is decreasing as we move form front 

stagnation point to the separation point; this can be understood better if we see the 

temperature profile, which is increasing constantly. This makes entropy generation 

profile decreasing as the temperature (T) appears in the denominator of entropy term in 

equation (3.22). 

 

 Figure 6.40 compares heat transfer and total entropy generation at a particular 

meridional location (θ = 600) and Eckert number, and for two values of Reynolds number 

(Re = 5 × 103 and 104). Since the fluid friction entropy generation is negligibly small as 

seen from figure 6.36, it has been excluded in this graph. The curves of total and heat 

transfer entropy generation are overlapping; hence we can say that the major contribution 

to entropy generation is through heat transfer and the fluid friction is negligible in this 

case of uniform heat flux. 
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Fig 6-37: Variation of total entropy generation with the radial distance for different 

meridional locations  
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Fig 6-38: Comparing total entropy generation profile for different Reynolds numbers 
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Fig 6-39: Variation of entropy generation over the sphere surface at different radial (Z) 
locations for a given Reynolds number 
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Fig 6-40: Comparing heat transfer and total entropy generation at a particular meridional 
location and Eckert number 
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6.4.4 Average entropy generation profiles: 

  In this section, local and total average entropy generation is presented for 

different engineering parameters like Reynolds number and Eckert number. 

 
 The local average is the average of the values computed along the radial direction 

(Z) that starts from the sphere surface till the edge of boundary layer. Figure 6.41 shows 

the variation of local average heat transfer entropy generation for different Reynolds 

number (Re = 1000, 5000, 104, 105). The same trend is observed for all the Reynolds 

number values, that is, entropy generation rate is highest near the stagnation point and 

then it decreases as we move towards the separation point. The same trend is shown also 

for total entropy generation in figure 6.42 that presents the local average entropy 

generation profile for different Reynolds number (Re = 1000, 5000, 104, 20000, 105). It 

can also be seen that higher Reynolds number leads to higher entropy generation for a 

given Eckert number, due to small viscous and thermal boundary layer thickness at 

higher Reynolds number, which results in higher velocity and temperature gradients and 

hence higher heat transfer rates, but at the expense of higher entropy generation. 

 Figure 6.43 shows the local average entropy generation profile for different 

Eckert number (Ec = 100, 10-1, 10-3) for a given Reynolds number (Re = 103). Although 

Ec = 100 represents the compressible flow, as established in table 6.1, this result has been 

presented to show a general trend for different Eckert numbers. We can notice that 

change in Eckert number has very little effect on the dimensionless local average entropy 

generation because the total magnitude of fluid friction entropy generation itself is very 

small as indicated from earlier results. 
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Fig 6-41: Variation of local average heat transfer entropy generation for different 
Reynolds numbers 
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Fig 6-42: Variation of local average entropy generation for different Reynolds number 
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 Figure 6.44 shows the effect of Reynolds number (102 < Re < 105) on average 

entropy generation profile for different Eckert numbers. As seen in the earlier graph, the 

effect of Eckert number is very small for any Reynolds number, we notice here that as the 

Reynolds number is increased, the average entropy generation increases indicating that 

high Reynolds number result in high heat transfer rates but at the expense of higher losses 

in terms of entropy generation which in turn result in high irreversibility and power loss 

in thermal systems. Hence it can be concluded from this graph that in uniform heat flux 

case, low Reynolds number result in less entropy generation and vise versa.  

 

 Figures 6.45 and 6.46 show the effect of Eckert number on average fluid friction 

and total average entropy generation respectively. We can notice that the Eckert number 

plays a considerable role on the magnitude of fluid friction entropy generation since an 

increase in the Eckert number increases the fluid friction entropy generation linearly for 

any Reynolds number. Further increase of Ecm>0.1 causes the flow to be compressible. 

As seen in earlier results presented in figures 6.35 and 6.40, the fluid friction entropy 

generation has little contribution to the total entropy generation; hence figure 6.46 shows 

a constant line indicating that the fluid friction term has negligible effect on total entropy 

generation and hence can be neglected for the cases of uniform heat flux.  
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Fig 6-43: Comparing local average entropy generation profile for different Eckert 
numbers and a given Reynolds number 
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Fig 6-44: Effect of Reynolds number on average entropy generation profile for different 
Eckert numbers 
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Fig 6-45: Effect of Eckert number on average fluid friction entropy generation for 
different Reynolds number 
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Fig 6-46: Effect of Eckert number on average entropy generation profile for different 
Reynolds numbers 
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6.4.5 Bejan number and Irreversibility ratio:  

 

Figure 6.47 shows the effect of Eckert number on Irreversibility ratio. It can be 

seen from equation (3.22), that the Ecm term is multiplied by the fluid friction term, 

which results in the increase in fluid friction as Eckert number increases and accordingly 

this figure shows that as the fluid velocity is increased, the fluid friction increases and 

hence the entropy generation due to the fluid friction or due to velocity gradients also 

increases. Figure 6.48 is a cross plot of Figure 6.47, which shows that the increase in 

Reynolds number has less effect on Irreversibility ratio when compared with increase in 

Eckert number. 

 

Figure 6.49 shows the effect of Eckert number on Bejan number for different 

Reynolds number. As can be seen from the graph, Bejan number decreases after certain 

value of Eckert number which is 10-2, hence the fluid friction has significant effect on 

total entropy at high Eckert numbers. And for Ecm < 0.3, the Bejan number is constant 

indicating that the heat transfer entropy generation is only contributing to total entropy 

generation and fluid friction entropy generation is negligible which confirms our 

discussion in previous results. Figure 6.50 is a cross plot of Figure 6.49, indicating that 

increasing Reynolds number decreases the Bejan number however this decrease is small 

in magnitude at low Ecm. 
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Fig 6-47: Effect of Eckert number on irreversibility ratio for different Reynolds number 
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Fig 6-48: Effect of Reynolds number on irreversibility ratio for different Eckert number 
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Fig 6.49: Effect of Eckert number on Bejan number for different Reynolds number 
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Fig 6-50: Effect of Reynolds number on Bejan number for different Eckert number 
and UHF cases.  



 

 

CHAPTER VII 

RESULTS AND DISCUSSIONS FOR MIXED CONVECTION 

 

7.1 Introduction: 

 Whenever the free stream velocity is small and the temperature difference 

between the sphere surface and the surrounding fluid is large, the buoyancy effects may 

not be neglected as in the case for pure forced convection. Hence the study of laminar 

mixed convection around a sphere is of great importance. In this chapter, the results of 

solving the governing continuity, momentum and energy equations and computing local 

and average entropy generation are presented for mixed (forced and free) convection 

case. These clarify the effect of the controlling parameters like Reynolds number, 

Grashof number and Eckert number on flow field and entropy generation. The results for 

both the aiding (Gr > 0) and opposing flows (Gr< 0) for both uniform wall temperature 

and uniform Heat flux cases are presented and discussed in this chapter and compared 

with those for pure forced convection discussed in chapter VI.  

7.2 Uniform wall temperature Case (Mixed convection): 

 The range of Grashof number was between 100 and 108 for both aiding and 

opposing flows; where as the ranges of the other controlling parameters are same as given 

in section 6.2.  
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7.2.1: Meridional and radial velocity profiles: 

In order to show the effect of superimposed free convection (i.e. Gr ≠ 0) on the 

developing meridional velocity U, Fig. 7.1 presents, for Re = 104, the obtained 

meridional velocities at two different meridional stations, θ = 600 and 900 and for three  

selected Grashof numbers (Gr = 0, ±108 ). The aiding free convection tends to increase 

the fluid velocity as compared with the case of forced convection flow (Gr = 0), while an 

opposing free convection causes a decrease in the velocity component. It can be seen 

from the figure 7.2 that the effect of superimposed free convection is unremarkable at the 

front stagnation point, since the thermal boundary layer has not yet sufficiently 

developed. However as the flow moves towards the equator, such effect becomes 

increasingly remarkable. It is also worth mentioning that the velocity profile has a zero 

value at the sphere surface (i.e. Z = 0) and increases gradually till it reaches the edge of 

boundary layer where it approaches the free stream velocity. 

The radial velocity W is similarly influenced by a superimposed free convection. 

Hence the opposing free convection makes the velocity boundary layer develop faster 

than it would with an aiding free convection. This phenomenon may be attributed to the 

previously mentioned effect of free convection on the meridional velocity component. An 

aiding free convection causes an increase in the meridional velocity near the heated 

boundary and, due to continuity principle; this makes more fluid come to the sphere from 

region far away. Thus an aiding flow causes the radial velocity component W to have a 

larger (negative) value than does an opposing free convection as seen in the Fig- 7.3. 
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Fig 7-1: Variation of meridional velocity with radial distance for two different meridional 
stations  
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Fig 7-2: Variation of meridional velocity over the sphere surface 
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7.2.2: Temperature profile: 

 
Figure 7.4 presents the temperature profiles for aiding and opposing flows and for 

a particular meridional station (θ = 900). This figure shows the variation of the 

temperature profiles as the boundary layer increases along the surface of the sphere until 

the edge of boundary layer is encountered. As expected, the wall of the sphere is at the 

maximum dimensionless temperature, which is equal to one, and as we move away from 

the sphere, the temperature over the sphere decreases. And this phenomenon is the same 

for both aiding and opposing flows. Moreover the aiding flow tends to decrease the fluid 

temperature when compared to pure forced convection and an opposing flow tries to 

increase the fluid temperature over the sphere in comparison with pure forced convection 

(Gr = 0) case. 

 

7.2.3: Local entropy generation profiles: 

Figure 7.5 shows the variation of dimensionless local heat transfer entropy 

generation with radial distance for different Grashof numbers. Entropy generation 

profiles are directly related to gradients of temperature, meridional and radial velocity 

components in the domain. As discussed earlier the temperature profiles decreases as we 

move in Z-direction from sphere surface, which results in a decrease in the thermal 

boundary layer thickness and an increase in the temperature gradients near the surface 

due to the fact that the entropy generation rate is very high near the surface than far away. 
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Fig 7-3: Variation of radial velocity with radial distance at different radial locations  
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Fig 7-4: Temperature profile for different Grashof number at given meridional station 



 

 

112

Moreover the aiding free convection causes higher temperature gradients than the 

pure forced convection (Gr = 0) which result in high heat transfer and high heat transfer 

entropy generation while the opposing flow has an opposite effect. It can also be noted 

here that the superimposed free convection is not much noticeable near the stagnation 

point, but as we move away from the front stagnation point, the effect is increasingly 

remarkable. The same effect is observed in the figure 7.6, which shows the variation of 

local Heat transfer entropy generation with radial distance for different Reynolds 

numbers. Higher Reynolds number dominates the effect of Grashof number due to which, 

for Re = 104, the aiding and opposing free convection has very less effect on the variation 

of heat transfer entropy generation.  

 

 Figure 7.7 shows the variation of dimensionless heat transfer entropy generation 

for a given Reynolds number (Re = 104) and at a selected meridional angle (θ = 1050). As 

the Grashof number decreases, the effect of Re is dominant. 

Figure 7.8 shows the variation of local fluid friction entropy generation with 

radial distance at two different meridional stations (θ = 600,1050). This figure shows that 

entropy generation due to fluid friction is less in magnitude at smaller angles and 

increases with the angle and then again decreases near the separation point. As discussed 

earlier, the aiding free convection causes the meridional and radial velocity 
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Fig 7-5: Variation of local heat transfer entropy generation with radial distance for two 
selected meridional angles 
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Fig 7-6: Variation of local heat transfer entropy generation with radial distance for 
different Reynolds numbers 
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components to be higher, the velocity gradients are also higher near the surface resulting 

in an increase in the fluid friction entropy generation rate near the surface. This can be 

attributed to the higher kinetic energy of the fluid particles away from the sphere surface. 

Moreover the meridional locations closer to the point of external flow separation have 

comparatively less fluid friction at the sphere surface. The opposing flow causes the fluid 

velocity to decrease and hence decreasing the velocity gradients when compared with the 

pure forced convection. It can also be noted that the effect of aiding or opposing flow is 

more pronounced far away from the front stagnation point.  

 

 Figure 7.9 shows the variation of total entropy generation with radial distance at 

two meridional stations (θ = 600,1050) and given Reynolds number (Re = 104). The total 

entropy generation has the same behavior as the heat transfer entropy generation alone, 

because the fluid friction entropy generation is having magnitude of 102 lower when 

compared with heat transfer entropy term. This results in heat transfer entropy generation 

to be dominant and it is also clear from the figure 7.5, the aiding flow has the tendency to 

increase the velocity and temperature gradients by decreasing the thermal boundary layer 

thickness, and hence increases the total entropy generation. The opposing flow decreases 

the temperature and velocity gradients and hence decreases the total entropy generation. 

 Figure 7.10 shows the variation of total entropy generation with radial distance 

for seven different Grashof numbers and for given Reynolds. The behavior of the curve is 

similar to the case of Heat transfer entropy generation.  
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Fig 7-7: Variation of local heat transfer entropy generation for different Grashof numbers 
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Fig 7-8: Variation of local fluid friction entropy generation with radial distance at two 
different meridional stations  
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Fig 7-9: Variation of local entropy generation with radial distance and at two meridional 
stations 
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Fig 7-10: Variation of local entropy generation for different Grashof numbers 
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 Figure 7.11 is a cross plot of the figure 7.9, where total entropy generation is 

plotted for some selected values of dimensionless radial distance form the wall (Z) for 

some of the investigated values of Gr. The entropy generation increasing as the thermal 

boundary layer increases from the front stagnation point and again decreases as we move 

towards the separation point. 

 

 Figure 7.12 shows a comparison between dimensionless entropy generation due to 

heat transfer and due to fluid friction. Similar to the case of Gr = 0 in the previous 

chapter, the entropy generation due to heat transfer is of very high magnitude in 

comparison with fluid friction entropy generation, both for aiding free convection and 

opposing free convection. Hence for most of the practical analysis cases in which 

Reynolds number is low about Re = 104 or less, the fluid friction entropy generation can 

be neglected. Figure 7.13 shows the total entropy generation for different Eckert number, 

it is clear from the figure that Eckert number less than 10-2 has no effect on the total 

entropy generation.  
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Fig 7-11: Local entropy generation for different Grashof number over the surface of the 
sphere  
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Fig 7-12: Comparing heat transfer and fluid friction entropy generation for different 
Grashof number along radial direction 
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Fig 7-13: Comparing entropy generation profile for different Grashof number and Eckert 
number at a given Re (= 5000) and at θ = 1050 
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7.2.4: Local and overall average entropy generation profiles: 

It can be seen from the Figure 7.14 that higher fluid friction increases the fluid 

friction entropy generation. Since the fluid particles over the sphere accelerate in the 

region 0900 ≤≤θ  and decelerate in the region where 090>θ , hence the pressure 

decreases in the accelerated region and then increases in the decelerated region. Since the 

external pressure is imposed at the boundary layer, the transformation of the pressure into 

kinetic energy takes place in the accelerated region and a great deal of the kinetic energy 

of the particles adjacent to the wall is consumed to move against the friction forces. This 

can also be related to the velocity gradients, which are high in accelerating region of flow 

and less in decelerating region of fluid flow. The heat transfer entropy generation is 

having a dominant effect in total entropy generation as can be seen from the graph. 

Moreover, positive Grashof number, i.e. the aiding flow tends to increase the entropy 

generation than the opposing flows. 

 

Figure 7.15 shows the variation of local average entropy generation over the 

sphere surface for different values of Reynolds number (Re = 5×103, 104 and 2×104) and 

for some selected values of Grashof number. We can notice that at higher Re, entropy 

generation is higher due to small viscous and thermal boundary layer, which results in 

higher velocity and temperature gradients and hence higher heat transfer, but at the 

expense of higher entropy generation. Positive Grashof number tends to decrease the 

thermal boundary layer thickness and increase the temperature and velocity gradients 

resulting in higher entropy generation than for pure forced convection. 
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Fig 7-14: Variation of local average entropy generation over the sphere surface for a 
given Reynolds and Eckert number 
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Fig 7-15: Comparing local average entropy generation profile for different Reynolds 
numbers and Grashof numbers and for a given Eckert number 
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 Similarly, negative Grashof numbers tries to increase the boundary layer thickness and 

hence decrease the velocity and temperature gradients, thus decreasing the entropy 

generation. It can be noted that the higher Grashof numbers results in high Nusselt 

number and hence higher heat transfer rates which is desired phenomenon in many 

thermal systems but at the loss of some useful energy in the form of entropy generation.  

 

 Figure 7.16 shows the variation of local average entropy generation over the 

sphere for given Reynolds and Eckert number. The plot indicates that high Grashof 

number, in aiding or opposing directions, has a considerable effect. Further more, the 

aiding flow increases the entropy generation while an opposing flow tends to reduce it. 

 

Figure 7.17 shows the variation of local average entropy generation for a given 

Reynolds number. As seen in figure 7.15, here also the entropy generation profile is 

increasing as we move from the front stagnation point and again decreases near the 

separation point. Higher Eckert number results in higher fluid friction entropy generation 

and hence increase total entropy generation. As seen in previous figures, a positive 

Grashof number increases the entropy generation and a negative Grashof number 

decreases the total entropy generation, which is a desired phenomenon in most of the 

power systems, so as to save useful power or work, but at the same time with more heat 

transfer. 
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Fig 7-16: Variation of local average entropy generation for given Reynolds and Eckert 
number and different Grashof numbers  
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Fig 7-17: Variation of local average entropy generation over the sphere surface for a 
different Eckert number  

 

 

Fig 7-18: Effect of Reynolds number on overall average entropy generation profile for 
different Grashof numbers 
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Figure 7.18 shows the effect of Reynolds number on total entropy generation for the case 

of mixed convection. Here the graph is plotted with some selected values of Grashof 

number. At low Reynolds number and high Grashof number makes the flow turbulent, so 

the range of Reynolds number selected in this graph is 2×103 to 105. As the Reynolds 

number increases, the Grashof number has very less effect on the flow and temperature 

fields. This is clear from the graph, which shows that for low Reynolds number, and high 

Grashof number (aiding or opposing) the entropy generation change is remarkable and as 

the Reynolds number increases, the same magnitude of Grashof number has very little 

effect on the entropy generation change.  

 

7.2.5 Bejan number and Irreversibility Ratio:  
 

Figure 7.19 shows the effect of Reynolds number on Irreversibility ratio for 

different values of Grashof number. It can be seen from this figure that as the Reynolds 

number is increased, the irreversibility ratio increases and then it decreases at a particular 

Reynolds number and then increases steadily which indicates that the fluid friction 

entropy generation is more dominant in over all entropy generation for higher Reynolds 

numbers. 

Similarly Figure 7.20 shows the effect of Reynolds number on Bejan number for different 

Grashof number, it can be seen that as the Reynolds number is increased, Bejan number 

decreases and then increases slightly between Re = 10000 and Re = 20000, and then 

again decreases steadily. We can conclude with this result that as the Reynolds number is 

increased, the heat transfer entropy generation has little effect on the over all entropy 

generation.
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Fig 7-19: Effect of Reynolds number on irreversibility ratio for different Grashof 
numbers 
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Fig 7-20: Effect of Reynolds number on Bejan number for different Grashof numbers 
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7.3 Uniform heat flux Case (Mixed convection): 

 The ranges of controlling parameters are same as given in section 7.2.  
 

7.3.1: Meridional and radial velocity profiles: 

 
In order to show the effect of superimposed free convection (i.e. Gr ≠ 0 ) on the 

meridional velocity U, Figure 7.21 presents, for Re = 104 and UHF, the obtained 

meridional velocities at two different meridional stations, θ = 600 and 900 and for selected 

Grashof numbers (Gr = 0 and Gr = 109, that represent aiding and opposing flows). It can 

be seen that the aiding free convection (positive Grashof number) tends to increase the 

fluid velocity as compared with the case of pure forced convection (Gr = 0), while an 

opposing free convection (negative Grashof number) causes a decrease in this velocity 

component similar to case of UWT seen in section 7.2. Figure 7.22 shows the variation of 

meridional velocity U, over the sphere at different radial locations. The effect of 

superimposed free convection is usually unremarkable at the front stagnation point, since 

the thermal boundary layer has not yet sufficiently developed. However as the flow 

moves further over the sphere, such an effect becomes increasingly remarkable. As 

expected, the velocity profile has a zero value at the sphere surface (i.e. Z = 0) which 

represents the no slip condition on the sphere surface and increases gradually till it 

reaches the edge of boundary layer where it approaches the free stream velocity. 
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Fig 7-21: Meridional velocity profile for two different meridional stations 

 
 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100 120

θ

U

Re = 104
Z = 3 × 10-2

 10-2

5 × 10-3 

2 × 10-3 

Gr = 109 (Aiding flow)
Gr = 0
Gr = 109 (Opposing flow)

 
Fig 7-22: Meridional velocity profile for different Grashof number over the sphere 

surface 
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The radial velocity W is similarly influenced as the meridional velocity U, by a 

superimposed free convection. Hence the opposing free convection makes the azimuthal 

velocity boundary layer develop faster than it would with an aiding free convection. An 

aiding free convection causes an increase in the meridional velocity near the heated 

boundary and, due to continuity principle; this makes more fluid come towards the sphere 

from region far away. Thus an aiding flow causes the radial velocity component W to 

have a larger (negative) value than does an opposing free convection as shown in the 

figure 7.23. 

 

7.3.2: Temperature profile: 

 
Figure 7.24 presents the temperature profile for selected values of Grashof 

number and a particular meridional station (θ = 900). This figure shows the variation of 

the temperature profiles as the boundary layer increases along the surface of the sphere 

until the edge of boundary layer is encountered. It can be noted that the aiding flow tends 

to decrease the fluid temperature when compared with pure forced convection and an 

opposing flow tends to increase the fluid temperature over the sphere in comparison with 

Gr = 0 case. 
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Fig 7-23: Radial velocity profile for different Grashof number at different radial locations 
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Fig 7-24: Temperature profile for different Grashof number at given meridional station 

 
 



 

 

131

7.3.3: Local and overall average entropy generation profiles: 

 

Figure 7.25 shows the variation of dimensionless local heat transfer entropy 

generation with radial distance for different Grashof numbers. The temperature profiles 

decrease as we move in Z-direction from sphere surface, resulting in a decrease in the 

thermal boundary layer and hence an increase in the temperature gradients near the 

sphere surface than far away. In addition, the aiding free convection results in higher 

temperature gradients compared with the pure forced convection (Gr = 0). The opposing 

flow has an opposite effect which results in low heat transfer and hence low entropy 

generation due to heat transfer.  It can be noted here that the superimposed free 

convection is not much noticeable near the stagnation point, but as we move away from 

the front stagnation point, the effect is increasingly remarkable. The same effect is seen in 

Fig 7.26, which shows the local Heat transfer entropy generation profile for different 

Reynolds and Grashof numbers along Z-direction. Higher Reynolds number dominates 

the effect of Grashof number because of which the aiding and opposing free convection 

has little effect on the heat transfer entropy generation.  

 

Figure 7.27 shows the variation of dimensionless heat transfer entropy generation 

along radial direction for few selected Grashof numbers and at a particular meridional 

location (θ = 900). It is clear from the graph that, lower values of Grashof number have 

less effect over the entropy generation since effect of Reynolds number is dominating. 
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Fig 7-25: Variation of local heat transfer entropy generation for different Grashof 
numbers 
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Fig 7-26: Variation of local heat transfer entropy generation for different Reynolds and 

Grashof numbers 
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Figure 7.28 shows the variation of local fluid friction entropy generation with 

radial distance at two selected meridional stations (θ = 600, 1050). This figure shows that 

entropy generation due to fluid friction is high on the sphere surface and decreases as we 

reach the edge of boundary layer, this is because the velocity gradients decrease as we 

move away from the sphere surface, hence decreasing the entropy generation. As 

discussed earlier, the aiding free convection causes the meridional and azimuthal velocity 

components to be higher; the velocity gradients are also higher resulting in an increase in 

the fluid friction entropy generation. This can be attributed to the higher kinetic energy of 

the fluid particles away from the sphere surface. Also it can be seen that meridional 

locations far away from stagnation point have comparatively less fluid friction at the 

sphere surface. The opposing flow causes the fluid velocity to decrease and hence 

decreasing the velocity gradients compared with the pure forced convection. It is also 

clear that the effect of aiding or opposing flow is more pronounced far away from the 

front stagnation point. 

 

Figure 7.29 shows the variation of total entropy generation and at two meridional 

stations (θ = 600, 1050) and a given Reynolds number (Re = 104). It can be seen that the 

total entropy generation has the same behavior as the heat transfer entropy generation 

alone, because the fluid friction is having the magnitude of 103 less when compared with 

heat transfer entropy term and hence has a negligible effect on total entropy generation. It 

is also clear from the figure 7.25, the aiding flow has the tendency to increase the velocity 

and temperature gradients by decreasing the thermal boundary layer thickness, and hence 

increasing the total entropy generation. 
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Fig 7-27: Variation of heat transfer entropy generation along radial direction for different 
Grashof numbers 
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Fig 7-28: Variation of local fluid friction entropy generation at two different meridional 
stations 
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The opposing flow (negative Grashof number) decreases the temperature and velocity 

gradients and hence decreases the total entropy generation.  

 

Figure 7.30 shows the total entropy generation profile along radial direction for 

different Grashof numbers. Similar to heat transfer entropy profile in figure 7.27, total 

entropy is also showing that the low Gr number value has less effect on the entropy 

generation. 

 

Figure 7.31 is a cross plot of the figure 7.29, where total entropy generation is 

plotted for some selected values of dimensionless radial distance form the wall (Z) for 

some of the investigated values of Gr. The entropy generation increases as the thermal 

boundary layer increases from the front stagnation point and again decreases as we move 

towards the separation point. 

  

Figure 7.32 shows the comparison between entropy generation due to heat 

transfer and fluid friction. Similar to the case in the previous chapter, the entropy 

generation due to heat transfer is of very high magnitude in comparison with fluid friction 

entropy generation, both for aiding free convection and opposing free convection. Hence 

for most of the practical analysis cases for Uniform heat flux, the fluid friction entropy 

generation can be neglected.  
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Fig 7-29: Variation of local entropy generation for different Grashof numbers 
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Fig 7-30: Variation of local entropy generation along radial direction for different 
Grashof numbers  
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7.3.4: Local and overall average entropy generation profiles: 

 

It can be seen from the Figure 7.33 that higher fluid friction at certain meridional 

locations over the sphere causes the Fluid friction entropy generation to be considerably 

high. This is mainly due to fluid particles over the sphere that accelerate in the region 

0900 ≤≤θ  and decelerate in the region where 090>θ , hence the pressure decreases in 

the accelerated region and then increases in the decelerated region. Since the external 

pressure is imposed at the boundary layer, the transformation of the pressure into kinetic 

energy takes place in the accelerated region and a great deal of the kinetic energy of the 

particles adjacent to the wall is consumed to move against the friction forces. This can 

also be related to the velocity gradients, which are high in accelerating region of flow and 

less in decelerating region of fluid flow. The heat transfer entropy generation is having a 

dominant effect in total entropy generation as can be seen from the graph. Moreover, it 

can be seen that the positive Grashof number, i.e. the aiding flow tends to increase the 

entropy generation than the opposing flows. 

 

Figure 7.34 shows the local average entropy generation over the sphere surface 

for different Reynolds number and some selected values of Grashof number. We can 

notice that at higher Re, entropy generation is higher due to small viscous and thermal 

boundary layer at higher Reynolds number, which results in higher velocity and 

temperature gradients and hence higher heat transfer, but at the expense of higher entropy 
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Fig 7-31: Variation of local average entropy generation for different Grashof number 
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Fig 7-32: Comparing heat transfer and fluid friction entropy generation for different 

Grashof numbers 
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Fig 7-33: Variation of local average entropy generation over the sphere surface for a 

given Reynolds and Eckert number 
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Fig 7-34: Comparing local average entropy generation profile for different Reynolds 

numbers and Grashof numbers for a given Eckert number 
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generation. Further more positive Grashof number tends to decrease the thermal 

boundary layer and increase the temperature and velocity gradients resulting in higher 

entropy generation. 

 

Figure 7.35 shows the local average entropy generation profile for different 

Grashof numbers. Similar to the previous graphs the entropy generation along the 

meridoinal direction over the sphere is decreasing and lower values of Grashof number 

has less effect on the entropy generation as compared to the higher values. 

 

Figure 7.36 shows the effect of Reynolds number on total entropy generation for 

the case of mixed convection for some selected values of Grashof number. As the 

Reynolds number increases, the Grashof number has minor effect on the flow and 

temperature fields. This is clear from the graph, which shows that for low Reynolds 

number, and high Grashof number (aiding or opposing) the Entropy generation change is 

remarkable and as the Reynolds number increases, the same magnitude of Grashof 

number has very little effect on the entropy generation change. We can also see that the 

minimum entropy generation for this case can also be found. Low Reynolds number 

(<1000) results in less entropy generation and Aiding flow further causes a decrease in 

entropy generation.  
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Fig 7-35: Variation of local average entropy generation for different Grashof numbers 
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Fig 7-36: Effect of Reynolds number on overall average entropy generation for different 
Grashof number 
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7.3.5 Bejan number and Irreversibility Ratio:  

 

Figure 7.37 shows the effect of Reynolds number on Irreversibility ratio for 

different Grashof number. It can be seen from this figure that as the Reynolds number 

increases, the irreversibility ratio is continuously increasing, although this increase is of 

very small in magnitude. 

 

Similarly, figure 7.38 shows the effect of Reynolds number on Bejan number for 

different Grashof number, it can be seen that as the Reynolds number is increased, Bejan 

number decreases steadily, although this decrease is of very small magnitude. 
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Fig 7-37: Effect of Reynolds number on irreversibility ratio for different Grashof 

numbers 
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Fig 7-38: Effect of Reynolds number on Bejan number for different Grashof numbers 

 



CHAPTER VIII 

CONCLUSIONS AND RECOMMENDATIONS 

8.1 Conclusions 

 A simple, linearized and non-iterative finite difference scheme has been 

developed and successfully used to solve the boundary layer equations governing the 

laminar flow around the sphere and the entropy generation was investigated for two 

boundary conditions, namely Uniform wall temperature and Uniform heat flux. The 

effect of controlling parameters like Reynolds number (Re), Grashof number (Gr) and 

Eckert number on the velocity components as well as the temperature within the 

boundary layer was investigated for both Forced and Mixed Convection. The entropy 

generation was calculated for both Forced and Mixed Convection and for the two 

boundary conditions mentioned earlier. In both the cases, the effects of various 

Controlling parameters like Reynolds number (Re), Grashof number (Gr) and Eckert 

number on entropy generation was investigated successfully. 
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From this work, the following conclusions can be drawn: 

1. Entropy generation due to fluid friction is not negligible in some cases and has 

considerable contribution to over all entropy generation in most of the heat 

transfer processes. 

2. For the case of forced convection, the rate of entropy generation was higher at the 

sphere surface due to high temperature and velocity gradients at the wall. 

3. Average fluid friction entropy generation increased with increasing Eckert 

number for a given Reynolds number in both uniform wall temperature and 

uniform heat flux cases 

4. Average entropy generation for UWT was found to be decreasing with increasing 

Re until some particular value which was found to be about Re = 2000 and then 

increased and became almost constant with further increase in  Reynolds number, 

hence the minimum entropy generation was obtained for Re = 2000. For UHF 

case, average entropy generation was found to be increasing with increasing 

Reynolds number, indicating that less the Re, the less is the value of entropy 

generation. 

5. Average entropy generation increases with increasing Eckert number for a given 

Reynolds number, for both uniform wall temperature and uniform heat flux cases 

6. Irreversibility distribution ratio was calculated for each case and the effect of 

Reynolds number and Eckert number was studied 

7. It was found that the irreversibility ratio increased with increasing Eckert number 

for both UWT and UHF cases 
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8. Bejan number was found to be decreasing with increasing Eckert number for both 

UWT and UHF cases, indicating that the fluid friction entropy has considerable 

contribution to overall entropy generation as Eckert number is increased. 

9. For the case of mixed convection, similar trend was observed in the results as for 

the case of forced convection. Moreover the aiding flow tends to increase the 

entropy generation due to more heat transfer which is desired phenomena in some 

of the thermal devices where heat should be removed.  

10. Hence aiding flows are desired phenomena in systems where heat transfer is of 

prime importance and opposing flows are desired where entropy generation is to 

be kept at the minimum so as to reduce the irreversibility. 

 

8.2 Recommendations for future work 

It is recommended that the present work be extended to account for: 

1. Flow over multiple spheres. 

2. Flow with fluids of different properties. 

3. Unsteady flow. 

4. Turbulent flow. 

5. High temperature and pressure environments. 



Appendix 

Entropy Generation Equation 

A.1 Introduction 

 In this appendix, the derivation and transformation of entropy generation from 

spherical coordinates to orthogonal curvilinear coordinates is presented using the 

assumptions stated in Chapter III. Non-dimensional parameters are then introduced and 

the equations for the two cases, namely uniform wall temperature and uniform heat flux 

are derived to the final dimensionless form. An order of magnitude analysis is then 

carried out and the final entropy generation equations are reached. These equations are 

then compared with those of full entropy generation equations with out neglecting any 

term of less magnitude. And a conclusion is reached why we are not using the equations 

reached after performing order of magnitude analysis and instead using the whole entropy 

generation equation in our present study. 

A.2. Transforming entropy generation equation from spherical to orthogonal 

curvilinear coordinates: 

The entropy generation is a result of both heat transfer and viscous dissipation. 

Viscous dissipation should be considered for the cases where it is not negligible. Hence 

in the present study both the heat transfer and viscous entropy generation will be 

considered. The entropy generation per unit volume as given by Bejan for the case with 

both heat transfer and viscous dissipation is expressed as: 
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Because of the axisymmetry, 0=
∂
∂
φ

 and the velocity in the φ  direction is also zero, 

hence removing these terms in equation (A.1) we get: 
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Now transforming this equation in to curvilinear coordinate system, we can define the 

following: 
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A.3 Dimensionless form of the equation: 
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Now non-dimensionalising the above equation by using the following dimensionless 

parameters: 
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Substituting all the terms from (4) in equation (3), we get: 
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In the above equation, the temperature term, ‘t’ is kept as it is, and it will be later 

replaced according to the boundary condition. Considering the viscous term alone from 

here onwards, we have, 
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taking 2

2

a
U∞  term outside, and expanding the square brackets, we get, 
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A.4 Order of magnitude Analysis: 

 

Now performing the order of magnitude analysis using the following terms: 

Re >> 1  , 1<<δ  

)1(O
U
uU ≈=

∞

 , )(δO
U
wW ≈=

∞

 

)(δO
a
zZ ≈=   , ⎟

⎠
⎞

⎜
⎝
⎛≈=

Re
1

Re
2 O

a
xX  

( )ReO
X

≈
∂
∂   , ( )2

2

2

ReO
X

≈
∂
∂  

⎟
⎠
⎞

⎜
⎝
⎛≈

∂
∂

δ
1O

Z
  , ⎟

⎠
⎞

⎜
⎝
⎛≈

∂
∂

22

2 1
δ

O
Z

 

⎟
⎠
⎞

⎜
⎝
⎛≈ 2

1Re
δ

O  

 

 equation (A.7) becomes : 
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 Hence the resulting volumetric entropy generation equation with heat transfer and 

viscous terms is given by: 

 



 

 

154

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

+∂
∂−

+
+⎟

⎠
⎞

⎜
⎝
⎛

∂
∂+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂+⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂+⎟

⎠
⎞

⎜
⎝
⎛

∂
∂= ∞

•

ZZ
UU

Z
U

Z
U

X
U

Z
W

ta
U

X
t

aZa
t

t
ks gen

1
12

)1(

Re
42

Re
2

2

22

2

2

2

2

222

2

''' µ
 

          (A.9) 

 

 

In the above order of magnitude analysis of entropy generation equation, the terms in the 

heat transfer and viscous dissipation having magnitude of the order of δ  and less have 

been neglected. 

 

 

A.5 Uniform wall temperature case: 
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Using the other non-dimensional parameters defined in the equation (4), we get: 
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Substituting into (A.9) we get, 
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Now, trying to introduce dimensionless terms in viscous part of the equation (A.12),  
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taking a2/k on left hand side of equation, and introducing, 
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The above entropy generation equation in simplified form is expressed as: 
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where  mEc  is modified Eckert number as given by Haddad et al [26] .   

 

A.6 Uniform heat flux case: 
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Considering again equation (A.9), we have, 
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Using the dimensionless temperature for uniform heat flux case, 
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equation (A.9) can be rewritten as 
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Hence, the entropy generation equation per unit volume upon solving and introducing the 

dimensionless term as earlier will give:  
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 This as a result of selection of dimensionless parameters is similar to equation (A.13). 
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A.7. Writing the above entropy equation in finite difference form: 
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The simplified entropy generation equation (A.13) now can be written as: 
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Similarly the entropy generation equation (A.14) for the constant heat flux case can be 

written as: 
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A.8. The entropy equation with out performing order of magnitude analysis: 

 

In order to see the complete effect of all the velocity and temperature gradients, it 

is interesting to include all the terms with out performing order of magnitude analysis. In 

this section, the whole un-simplified entropy generation equation is compared with the 

simplied equation obtained in section A.7. 

 

The entropy equation with out performing order of magnitude analysis is given 

by: 
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this equation for uniform wall temperature case can be given as 
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writing the above equation in finite difference form using the terms in equation (A.15) we 

get: 
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similarly we can write for uniform heat flux case in non-dimensional form as: 
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In finite difference form the above equation can be written as: 
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The table which shows the comparison between the simplified and un-simplified 

entropy generation equations for Re = 104 are given in table A-1. As seen from the table, 

the percentage variation at some nodes is quite high, so the use of simplified equation is 

not justified. Hence in this study the whole entropy generation equation without 

simplifying is used. 
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Table A-1: Comparing Simplified and Un-Simplified entropy generation equation: 

 

    With out Order of Magnitude Analysis 
(OMA) With OMA     

30 DEG 60 DEG 30 DEG 60 DEG 
% variation 
for θ=300 

% variation 
for θ=600 

Z SGEN Z SGEN Z SGEN Z SGEN   
0 38881.01 0 51488.63 0 38881.01 0 51488.63 0 0

0.001 46684.28 0.001 62510.7 0.001 46684.27 0.001 62510.7 2.142E-05 0
0.002 54092.21 0.002 72920.88 0.002 54092.18 0.002 72920.88 5.546E-05 0
0.003 61085.87 0.003 82715.11 0.003 61085.79 0.003 82715.09 0.000131 2.418E-05
0.004 67664.85 0.004 91923.89 0.004 67664.7 0.004 91923.85 0.0002217 4.351E-05
0.005 73838.54 0.005 100599 0.005 73838.28 0.005 100598.9 0.0003521 9.94E-05
0.006 79621.91 0.006 108806.8 0.006 79621.47 0.006 108806.6 0.0005526 0.0001838
0.007 85033.24 0.007 116627.1 0.007 85032.49 0.007 116626.8 0.000882 0.0002572
0.008 90092.48 0.008 124152 0.008 90091.25 0.008 124151.5 0.0013653 0.0004027
0.009 94820.79 0.009 131485.5 0.009 94818.8 0.009 131484.5 0.0020987 0.0007605

0.01 99239.64 0.01 138742.6 0.01 99236.46 0.01 138741 0.0032044 0.0011532
0.011 103370.4 0.011 146047.1 0.011 103365.4 0.011 146044.3 0.004837 0.0019172
0.012 107234.4 0.012 153526 0.012 107226.5 0.012 153521 0.007367 0.0032568
0.013 110852.8 0.013 161300.4 0.013 110840.4 0.013 161291.9 0.011186 0.0052697
0.014 114247.4 0.014 169472.7 0.014 114227.9 0.014 169458.1 0.0170682 0.008615
0.015 117441.5 0.015 178106.3 0.015 117411.1 0.015 178081.4 0.0258852 0.0139804
0.016 120462.6 0.016 187201.9 0.016 120415.3 0.016 187159.4 0.0392653 0.0227028
0.017 123346 0.017 196666.8 0.017 123272.3 0.017 196594.3 0.0597506 0.0368644
0.018 126140.4 0.018 206282.2 0.018 126025.5 0.018 206158.7 0.091089 0.0598694
0.019 128917.4 0.019 215674.6 0.019 128738.1 0.019 215464.7 0.1390813 0.0973225

0.02 131786.3 0.02 224305.6 0.02 131505.9 0.02 223948.9 0.2127687 0.1590241
0.021 134917.4 0.021 231491.7 0.021 134478.2 0.021 230885.6 0.3255325 0.2618236
0.022 138580.8 0.022 236503.7 0.022 137890.7 0.022 235473.9 0.4979766 0.4354266
0.023 143208 0.023 238805.4 0.023 142120.3 0.023 2.37E+05 0.7595246 0.732898
0.024 149495.4 0.024 238557 0.024 147774.5 0.024 2.36E+05 1.1511391 1.2475425
0.025 158574.6 0.025 237550.4 0.025 155841.2 0.025 2.32E+05 1.7237313 2.1320107
0.026 172297.7 0.026 241002.6 0.026 167937.5 0.026 2.32E+05 2.53062 3.5797124
0.027 193715.8 0.027 260747.8 0.027 186729 0.027 246034.2 3.606727 5.6428472
0.028 227890.2 0.028 320990 0.028 216640.3 0.028 295861.2 4.936544 7.8285305
0.029 283283.3 0.029 468536 0.029 265075.4 0.029 425550.9 6.4274527 9.1743431

0.03 374177.2 0.03 790963.6 0.03 344542.5 0.03 717298 7.9199641 9.3133995
0.031 525004.9 0.031 1449159 0.031 476460.9 0.031 1322632 9.2463899 8.731064
0.032 778526.9 0.032 2736794 0.032 698364.5 0.032 2518801 10.296677 7.9652689
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