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THESIS ABSTRACT 

NAME: Irman Hermadi 

TITLE: GENETIC ALGORITHM BASED TEST DATA GENERATOR 

MAJOR FIELD: COMPUTER SCIENCE 

DATE OF DEGREE: MAY 2004 

Software testing is meant to increase confidence in the correctness of software. It is a 

laborious and time-consuming work; and spends almost a half of development resources. 

Generally, the testing goal is to reveal as many faults as possible, with a limitation on the 

number of test data to be used. The challenge, in this case, is in being able to minimize the 

number of test data while maximizing coverage. Obviously, automating the test data 

generation process is expected to significantly reduce the overall development cost. There 

are evidences that Genetic Algorithm (GA) has been successfully used in developing test 

data generators. However, there is no common ground for assessing and comparing these 

GA based test data generators. In this thesis, based on our critical survey, we present and 

use a set of attributes for assessing and comparing these generators. Our critical survey 

has revealed that existing GA-based test data generators suffer from some problems. This 

thesis presents our attempt to overcome one of these problems; that is the ability to deal 

with multiple target paths at one time. We have designed a GA based test data generator 

that is able to overcome this problem. Moreover, we have implemented a set of variations 

of the generator. Experimental results show that our test data generator is more powerful 

than others. 
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 ملخص الرسالة

  عرمان هيرمادي:   الاســــــم

  مولد معطيات الاختبار المبني على الخوارزمية الجينية:   العنـــــوان

  علوم الحاسب الآلي:  صص ــــالتخ

  2005مايو :  رج ــتاريخ التخ

  

فهي عملية شاقة ومضيعة للوقت؛ قد تستنفذ تقريباً نصف . بار البرامج زيادة الثقة بصحة تلك البرامجيقصد من اخت

بصورة عامة، إن هدف من الاختبار هو الكشف على أكبر قدر ممكن من الأخطاء مع .  موارد عملية التطوير

نقاص عدد المعطيات مع زيادة والتحدي في هذه الحالة هو المقدرة على ا. استخدام عدد محدود من المعطيات

فمن الواضح أن نتوقع عند ميكنة توليد معطيات الاختبار انخفاض التكلفة الإجمالية لتطوير . توسيع تغطية الاختبار

فهناك مؤشرات تبين نجاح استخدام الخوارزميات الجينية في توليد معطيات .  البرمجيات بصورة ملحوظة

  .الاختبار

 على دراسات نقدية، استعرضنا واستخدمنا مجموعة من الصفات لتقييم ومقارنة مولدات في هذا البحث وبناءاً

لقد أوضحت دراستنا النقدية أن المولدات الموجودة حالياً والمبنية على الخوارزمية الجينية تعاني . معطيات الاختبار

لات وهي القدرة على التعامل هذا البحث يستعرض محاولاتنا للتغلب على إحدى تلك المعض.  من بعض المشكلات

لقد صممنا مولد معطيات الاختبار المبني على الخوارزمية الجينية له القدرة .  مع عدة مسارات الهدف في آن واحد

فلقد أظهرت . وعلاوةً على ذلك، قمنا باجراء عدة تطبيقات مختلفة لهذا المولد. على التغلب على تلك المعضلة

 .ا أقوى من باقي المولدات الموجودةالنتائج المخبرية أن مولدن
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CHAPTER 1  

INTRODUCTION 

1.1. Software Testing 

Software needs to be tested properly and thoroughly, such that any misbehavior 

during the runtime can be detected and fixed in advance, before its delivery. However, 

well-tested software is not guaranteed to be error-free or bug-free. Most of the problems 

reported by users are identified as execution of untested code. This is because either the 

order in which statements were executed in actual use differed from that during testing, a 

combination of untested input values are given, extreme inputs, or the user’s environment 

was never tested [45]. 

Software testing is laborious and time-consuming work; it spends almost 50% of software 

system development resources [3][37][45]. Generally, the goal of software testing is to 

design a set of minimal number of test cases such that it reveals as many faults as 

possible. Testing, itself, is defined as the process of executing a program with the intent of 

finding errors. Hence, a pair of input and its expected output, which is called a test case, is 

said to be successful if it succeeds to uncover errors, and not vice versa. In other words, a 

good test case is one that has a high probability of detecting an as-yet undiscovered error 
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[45]. An input datum for a tested program, which is subset of a test case, is called test 

datum. 

1.2. The Research Problem 

As mentioned earlier, software testing is a lengthy and time-consuming work [38]. 

Absolutely, an automated software testing can significantly reduce the cost of developing 

software. Other benefits include: the test preparation can be done in advance, the test runs 

would be considerably fast, and the testing execution can be performed during night-shift 

and remotely [45]. The last but not the least is that the confidence of the testing result can 

be increased [1]. 

However, software-testing automation is not a straightforward process. For years, many 

researchers have proposed different methods to generate test data automatically, i.e. 

different methods for developing test data/case generators [5]. 

Commonly, searching for an input datum in a pool (domain/set) of possible input data is 

dealt with as an optimization problem [19]. In the early age of automation of software 

testing, most of the test data generators were using gradient descent algorithms. However, 

these algorithms were inefficient, and time-consuming, and could not escape from local 

optima in the search space of the domain of possible input data [25]. These issues 

necessitate the need to investigate the suitability of meta-heuristic search algorithms, e.g. 

simulated annealing, genetic algorithms, and ant colony optimization as a better 
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alternative for developing test data generators. However, up to our knowledge, so far, 

researchers have been only interested in using genetic algorithm to generate test data [43]. 

Wegener et al. have showed the suitability of using evolutionary algorithms in software 

testing [43]. Using evolutionary computations, researchers have done some work in 

developing genetic algorithms (GA)-based test data generators [6][43]. However, in trying 

to identify strengths and weaknesses of the various techniques available for developing 

test-data generators available, we found that there is no well-defined set of quality 

attributes that can be used to compare such various techniques. 

Moreover, as discussed in Chapter 3, one of our observations over existing GA based test 

data generators is that they can generate only one test datum at a time. Accordingly, in 

trying to generate a set of test data (i.e., more than one test datum) to satisfy particular 

criteria (called test adequacy criteria, e.g. branch coverage) under consideration, the test-

data generator should be used more than one time (one run for each required test datum). 

This practice, however, does not take advantage of the fact that some of the required test 

data can be readily available as by-products when trying to find other test data. This, 

hence, makes those existing test-data generators inefficient in trying to generate multiple 

test data. A detailed critical survey and review of existing approaches is demonstrated in 

Chapter 3. 

Our motivation to investigate these problems derives from the benefits aforementioned. 
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1.3. Main Contributions 

The main contributions of this thesis work are the following: 

 Proposing a set of attributes for assessing and comparing GA-based test data 

generators; 

 Comparing the available GA-based test data generators in light of the proposed set 

of attributes; 

 Proposing a GA-based test-data generator that is capable of to generating multiple 

test data to cover multiple target paths1 at one run; 

 Implementing and comparing a number of variations of the proposed generator2; 

 Conducting experiments to demonstrate the strength of the proposed approach 

using Matlab. 

 
1 The path coverage criterion is concerned with the execution of (selected) paths in the program. We adopt 

the path coverage criteria since it achieves the utmost coverage [7][22][33][39]. Chapter 2 discusses the 

different test adequacy criteria in details, and provides justifications for adopting path coverage as an 

effective criterion. 

2 Each variation has a different form of the fitness function we propose. Chapter 2 gives all the necessary 

background on Genetic Algorithms and the role of the fitness function. 
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1.4. Organization of Thesis 

The rest of the thesis is organized as follows. Chapter 2 gives a succinct background 

of software testing and genetic algorithms. Chapter 3 presents our scheme, composed of a 

set of attributes, for comparing and evaluating GA-based test data generators.  It also 

presents an extensive critical literature survey of related works with a comparison based 

on our evaluation scheme. Chapter 4 describes the design details of the proposed fitness 

function along with its different variations. Chapter 5 discusses the experiments setup, 

results, and analysis. Chapter 6 concludes the thesis work and discusses further work. 
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CHAPTER 2  

SOFTWARE TESTING 

2.1. Introduction 

This chapter discusses software testing techniques and different test adequacy 

criteria. The chapter also gives the necessary background on how Genetic Algorithms 

work. 

2.2. Software Testing Techniques 

Generally, software-testing techniques are classified into two categories: static 

analysis and dynamic testing [18][33][38]. In static analysis, a code reviewer reads the 

program source code, statement by statement, and visually follows the logical program 

flow by feeding an input. This type of testing is highly dependent on the reviewer’s 

experience. Static analysis uses the program requirements and design documents for 

visual review. In contrast, dynamic testing techniques execute the program under test on 

test input data and observe its output. Usually, the term testing refers to just dynamic 

testing. 

The following subsections give a brief background on these two testing categories. 
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2.2.1. Static Analysis 

For years, the majority of the programmers assumed that the programs are written 

solely for machine execution and are not intended to be read by human, and that the only 

way to test a program is by executing it on a machine. This manner began to change in the 

early 1970s, because of the Weinberg’s work on “The Psychology of Computer 

Programming” [46]. Weinberg provided a convinced argument for why programs should 

be read by people and indicated that this could be an effective error-detection process. 

Experience has shown that static analysis, a.k.a. non-computer-based or human testing, 

methods are quite effective in finding errors [33]. Static analysis methods are meant to be 

applied during the period that is between the code completion and the beginning of the 

execution-based testing. 

Typical static analysis methods are code inspections, code walkthroughs, desk checking, 

and code reviews [33]. Code inspections and walkthroughs are the two primary static 

analysis methods and they have a lot in common. Inspections and walkthroughs involve 

the reading or visual inspection of a program by a team of people. Both methods involve 

some preparatory works by the participants. The climax is a meeting of the minds, i.e. 

brainstorming, in a conference-like gathering held by the participants. The objective of the 

meeting is to find errors, but not to find solutions to the errors, i.e. to test but not to debug. 
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2.2.1.1. Code Inspections 

Code inspection is a set of procedures and error-detection techniques for group code 

reading. Most discussions of code inspections focus on the procedures, forms to be filled 

out, and so on. 

During the inspection session, two activities are conducted: code narration and code 

examination. Code is read statement by statement and analyzed with respect to a checklist 

of historically common programming errors (e.g. data-reference, data-declaration, 

computation, comparison, control-flow, input/output, interface). 

2.2.1.2. Code Walkthroughs 

The initial procedure is identical to that of the inspection process. The difference, 

however, is in that rather than simply reading the program or using error checklists, one of 

the participants designated as a tester comes to the meeting with a small set of paper test 

cases that represent sets of input and expected output for the tested program or module. 

During the meeting, each test case is mentally executed, i.e. the test data are walked 

through the logic of the program. The state of the program, i.e. the values of the variables, 

is monitored on paper or a blackboard. 

Definitely, the test cases must be simple in nature and few in number, because people 

execute programs at a much slower rate than a machine. Thus, the test cases themselves 

do not play a critical role; rather, they serve as a vehicle for getting started and for 

questioning the programmer about his or her logic and assumptions. In most 
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walkthroughs, more errors are found during the process of questioning the programmer 

than are found directly by the test cases themselves. 

2.2.1.3. Desk Checking 

Desk checking can be seen as a one-person inspection or walkthrough; a person reads 

a program, checks it with respect to an error list, and/or walks test data through it. 

There are three main reasons that desk checking, for most people, is relatively 

unproductive: completely undisciplined process, the principle that people are generally 

ineffective in testing their programs, and no competition like in the teamwork. 

2.2.1.4. Code Reviews (Peer Ratings) 

Code review is a technique for evaluating anonymous programs in terms of their 

overall quality, maintainability, extensibility, usability, and clarity. The purpose of the 

review is to provide programmer assessment. A group of programmers is given some 

selected programs to rate based on a certain scale written in the review forms. 

2.2.2. Dynamic Testing 

Dynamic testing techniques execute the program under test on test input data and 

observe its output. Usually, the term testing refers to dynamic testing. There are two types 

of dynamic testing: black-box and white-box. White-box testing is concerned with the 

degree to which test cases exercise or cover the logical flow of the program [33]. Black-
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box testing, on the other hand, tests the functionalities of software regardless of its 

internal structure, a.k.a. functional or specification–based testing. 

The following subsections give a brief background on these two types of dynamic testing. 

2.2.2.1. White Box Testing 

White-box testing is more widely applied [33]. It is also called logic-coverage testing 

or structural testing, because it sees the structure of the program [47]. The objective of 

white box testing is to exercise of the different logic structures and flows in the program 

[33]. 

Adequacy of logic-coverage testing can be judged using different criteria [47]: statement, 

decision (a.k.a. branch), condition, decision/condition, multiple-condition, and path-

coverage; ordered from the weakest to the strongest [15] [22] [24] [33]. 

Statement coverage criterion requires every statement in the program to be executed at 

least once. Unfortunately, this is a weak criterion because while it exercises every 

statement at least once, it does not guarantee exercising the same statement in different 

flows, if any. For example, in a program segment consists of a statement S1, followed by 

a selection statement IF (A>1) THEN S2 followed by another statement S3, one is not 

required to generate input test datum that exercises the FALSE branch in order to satisfy 

statement coverage criterion.  In this case, the test case checks for the correctness of the 

sequence S1-S2-S3, but not for the correctness of the sequence S1-S3; which is possible 

to have a problem. 
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A stronger logic-coverage criterion is known as decision coverage or branch coverage 

[13]. This criterion states that one must write enough test cases such that each decision, 

i.e. IF statement, has a TRUE and FALSE outcome at least once. In other words, each 

branch direction must be traversed at least once. Decision coverage can be shown, 

usually, to satisfy statement coverage. Since every statement is on some sub-path 

emanating either from a branch statement or from the entry point of the program, every 

statement would have been executed if every branch is executed. The following example 

shows why branch coverage criterion is stronger than the statement one, as in an selection 

statement IF (A>1) THEN X=S2, in order to fulfil branch coverage criterion one must 

generate, at least, two test input data that satisfy both TRUE and FALSE branches 

regardless any statements that follow both branches, while in statement coverage criterion 

the tester needs only to generate input test data that leads to TRUE branch only, since no 

statement follows the FALSE one. 

The problem with branch coverage is that it does not check for all the different sequences. 

For example, in a two serial selection statements: IF C1 THEN S1 ELSE S2, followed by 

IF C2 THEN S3 ELSE S4, the branch coverage will just test S1-S3 and S2-S4 sequences 

OR S1-S4 and S2-S3 sequences. In fact, all those sequences must be checked in order to 

reveal any potentially infeasible combinations of sequences. 

A criterion that has larger coverage than decision coverage is condition coverage. In this 

case, one writes enough test cases such that each condition in a decision takes on all 

possible outcomes at least once. 
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Although the condition coverage criterion appears, at first glance, to satisfy the decision 

coverage criterion, it does not always do so. If the decision IF (A AND B) is being tested, 

the condition coverage criterion would require one to write two test cases – A is TRUE, B 

is FALSE, and A is FALSE, B is TRUE – but this would not cause the THEN clause of 

the IF statement to execute. 

As with decision coverage, condition coverage does not always lead to the execution of 

each sequence. A criterion that combines these two criteria is decision/condition 

coverage. It requires sufficient test cases such that each condition in a decision takes on 

all possible outcomes at least once, each decision takes on all possible outcomes at least 

once, and each point of entry is invoked at least once. 

A weakness with decision/condition coverage is that although it may appear to check the 

effect of all outcomes of all conditions, it frequently does not because certain conditions 

mask other conditions, e.g. in IF (A AND B), the outcome of statement will be FALSE if 

A is FALSE without considering B’s value at all. Nevertheless, errors in logical 

expressions are not necessarily made visible by the condition coverage and 

decision/condition coverage criteria, since these criteria do not test all possible 

combinations of condition outcomes in each decision. A criterion that covers this problem 

is multiple condition coverage. This criterion requires one to write sufficient test cases 

such that all possible combinations of condition outcomes in each decision, and all points 

of entry, are invoked at least once. 
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The utmost coverage is achieved by path coverage, since it covers all the previous-

mentioned testing coverage criteria [24][47]. Path coverage criterion is concerned with the 

execution of (selected) paths (i.e., sequences) in the program. Since in a program with 

loops the execution of every path is usually infeasible, complete path testing is not 

considered in such cases as a feasible testing goal. 

2.2.2.2. Black Box Testing 

Black-box testing, a.k.a. functional or specification-based testing, tests the 

functionalities of software against its specification, regardless of its structure. There are 

four types of black-box testing: equivalence partitioning, boundary-value analysis, cause-

effect graphing, and error guessing [33]. 

Equivalence partitioning partitions the input domain of a program into a finite number of 

equivalence classes such that one can reasonably assume (but, of course, not be sure 

absolutely) that a test of a representative value of each class is equivalent to a test of any 

other value within the corresponding class. That is, if one test case in an equivalence class 

detects an error, all other test cases in the equivalence class would be expected to find the 

same error. Conversely, if a test case did not detect an error, we would expect that no 

other test cases in the equivalence class would find an error. This is with the exception 

that a subset of the equivalence class falls within another equivalence class, since 

equivalence classes may overlap one another. The equivalence partitioning concept 

maybe applied to white-box testing as well. 
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Boundary conditions are those situations directly on, above, and beneath the edges of 

input equivalence classes and output equivalence classes. Experience shows that test cases 

that explore boundary conditions have a higher payoff than test cases that do not [33]. 

One weakness of boundary-value analysis and equivalence partitioning is that they do not 

explore combinations of input data as decision/condition coverage does in white-box 

testing. A cause-effect graphing came to tackle this problem [33]. It is a formal language 

into which a natural-language specification is translated, which also points out 

incompleteness and ambiguities in the specification. The graph is actually a digital-logic 

circuit (a combinatorial logic network), but rather than using standard electronics 

notation, a somewhat simpler notation is used. The idea is pretty similar with 

decision/condition coverage in the white box testing, while boundary-value analysis and 

equivalence partitioning are similar with condition coverage criterion in white box testing. 

Thus, using similar analogy in white box testing, cause-effect graphing outperforms 

boundary-value analysis and equivalence partitioning. 

Error guessing is largely an intuitive and ad-hoc process, whose procedure is difficult to 

formalize. This technique needs an expertise that is able to smell out errors. The basic 

idea is to enumerate a list of possible errors or error-prone situations and then write test 

cases based on the list. 
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2.3. Test Data Generation 

In this thesis, we focus on white-box testing as it is more widely applied [43]. The 

first step in applying a white-box testing is to select a test adequacy criterion, e.g. 

statement or branch coverage. The next step, then, is to find a set of test data that satisfies 

the selected adequacy criterion, which is called adequate test data. In testing a program, 

adequate test data generation is the process of identifying a set of test data, which satisfies 

given testing criterion [20][34][41]. Generating adequate test data manually is labour 

intensive and time-consuming process. This problem has motivated researchers to create 

test data generators that can examine a program’s structure and generate adequate test data 

automatically [14]. How to generate test data automatically? How to evaluate them? 

These are the major questions that researches in the area of automated software testing are 

trying to find answers for [20][33][41][42][45]. 

It is not a trivial task to judge whether a finite set of input test data is adequate or not. The 

goal is to uncover as many faults as possible with a potent set of a constrained number of 

tests. Obviously, a test series that has the potential to uncover many faults is better than 

one that can only uncover few. 

A number of automatic test data generation techniques have been developed [45]. Pargas 

[35] classifies these techniques into random test data generator, structural or path-oriented 

test data generator, goal-oriented test data generator, and intelligent test data generator. 

The first three types are also common with the classifications of test data generators done 

by Edvardsson [10] and Korel [20]. Test data generator is a system (program) that 
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generates the input data for a target program such that these input data satisfy a particular 

testing objective (i.e., adequacy criterion). 

Random test data generators select random inputs for the test data from some distribution 

[8][20]. Structural test data generators typically use the program’s control flow graph, 

select a particular path, and use a technique such as symbolic evaluation to generate test 

data for that path [29][37][36][20]. Goal-oriented test data generators select inputs to 

execute the selected goal, such as statement, irrespective of the path taken [20]. Intelligent 

test data generators often rely on sophisticated analysis of the code, to guide the search for 

new test data [26][35][37][36]. 

In general, the process of automatic structural test data generation, for path coverage, 

consists of three major steps: (1) construction of control logic graph (see Appendix B), 

e.g. control flow graph (CFG) or control dependence graph (CDG); (2) path selection; and 

(3) test data generation that involves dynamic execution of the target program. 

The target program must be instrumented in order to monitor the assessment of testing 

objective when the program is executed with given input data. In most test data generator, 

the instrumentation is considered to be pre-process stage before the generator can actually 

be used [10]. This instrumentation process is the process of inserting probes (tags) at the 

beginning of every block of code of interest, i.e. at the beginning/ending of each function 

and after the true and false outcomes of each condition. For example in path coverage, 

these tags are used to monitor and provide the test data generator with a feedback on the 

traversed path within the program while it is executed with trial test data. 
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As discussed in the next section, search techniques play important role in generating 

proper test data using the feedback the test data generator gets from the target program. 

2.4. Automated Software Testing as a Search Problem 

Searching for an input datum in a pool (domain/set) of possible input data that 

conforms to the test adequacy criteria, e.g. forcing traversing a specific path, is a search 

problem. 

In the early age of automation of software testing, most of the test data generators were 

using gradient descent algorithms [20]. The essence of this type of methods is a kind of 

hill-climbing, so they are quite inefficient, time-consuming, and could not escape from 

local optima in the search space of the domain of possible input data. 

Accordingly, meta-heuristic search algorithms proposed a potential better alternative for 

developing test data generators [10][43]. Efficient existing meta-heuristic search 

algorithms include Simulated Annealing (SA), Taboo Search (TS), Genetic Algorithm 

(GA), Ant Colony Optimization (ACO), and Particle Swarm Optimization (PSO). Each of 

these search algorithms has its own advantages and disadvantages over the others.  They 

are strongly problem domain dependent, because they use domain-dependent 

“knowledge” or heuristics related to domain of the problem under consideration. 

Among these algorithms, Wegener et al. have shown the suitability of using evolutionary 

algorithms (e.g., Genetic Algorithms) in software testing [44]. 
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2.5. Genetic Algorithms Based Test Data Generator 

Genetic Algorithms (GAs) were invented by John Holland in the 1960s and were 

developed by Holland and his students and colleagues at the University of Michigan in the 

1960s and the 1970s [31]. In contrast with evolution strategies and evolutionary 

programming, Holland’s original goal was not to design algorithms to solve specific 

problems, but rather to formally study the phenomenon of adaptation as it occurs in nature 

and to develop ways in which the mechanisms of natural adaptation might be imported 

into computer systems [17]. 

GAs have been very interesting area of study in many disciplines since it was published 

for the first time. Researches are growing rapidly regarding either the behaviour or the 

application of GA for a particular purpose since then. Some applications of GA are 

optimization, automatic programming, machine learning, economics, immune systems, 

ecology, population genetics, evolution and learning, and social systems [31]. 

Among the features owned by GA, that other normal optimization and search procedures 

do not have, direct manipulation of solution representation to a problem, search from a 

population (not a single point), search via sampling (a blind search), and search using 

stochastic operators (non-deterministic rules) [9]. 
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Figure 1 shows the steps for basic GA. 

Step 0: Define a genetic representation of the problem. 
Step 1: Create an initial population P(0) = x1, …, xn. Set t = 0. 
Step 2: Compute the average fitness f’(t). Assign each individual the normalized fitness 

value. 
Step 3: Assign each xi a survival probability p(xi ,t) proportional to its normalized fitness. 

Using this distribution, select N vectors or parents from P(i). This gives the set of 
the selected parents. 

Step 4: Pair all parents at random using their survival probability forming N/2 pairs. 
Apply crossover with a certain probability to each pair and other genetic operators 
such as mutation, forming a new population P(t+1). 

Step 5: Set t = t + 1, return to Step 2. 

Figure 1: Basic GA Steps 

In order to use GA for solving an optimization problem, we need to know how to 

represent the problem as well as its solution in a chromosome expression, i.e. sort of a 

sequence of binary digits that resembles the chromosome-like sequence, which GA can 

understand and manipulate [12][40]. GA works on this encoded problem and delivers the 

interpreted result as the problem solution; hence, the user should provide the semantic of 

the encoded problem. The most widely used representation is binary string. However, 

recently, in a more advanced GA, representation can be extended into higher numbering 

system, up to more complicated data structure [24][31]. Investigation for more advanced 

representations is still going, e.g. character, integer, float, grouped, messy, record, etc 

[31]. 

A fitness value of an individual is the measure of its strength to survive in the next 

generation [16][17][40]. It reflects the chance an individual has to be present directly in 

the next generation or to be selected for mating with other individuals in the current 
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generation to produce children for next generation. Fitness value is calculated based on 

the syntax and semantic of individual representation, mostly it is a normalized value of its 

objective value such that it can be minimized or maximized accordingly. 

A complete iteration (one run) from Step 2 to Step 4 is called a generation. The stopping 

criteria comprise a desired number of generations, and a measure of convergence or 

saturation. 

Actually, there are two approaches for implementing GA as a problem solver [25]. First, 

classical Genetic Algorithms, which operate on binary strings, which require a 

modification of the original problem into an appropriate form (suitable for GA). This 

would include a mapping between potential solutions and binary representation, taking 

care of decoders or repair algorithms, etc. Second, GA would leave the problem 

unchanged, modifying an individual representation of a potential solution (using “natural” 

data structures), and applying appropriate “genetic” operators. 

A good operator is the one that could guide the search faster, reduce the search time, and 

reduce the search space significantly. Many advanced GA’s operators have been explored, 

while some researchers are trying to create parameter-less GA, where user does not need 

to select/adjust the operators [43]. 

Two major operators are used in almost every implementation of GA: Crossover and 

Mutation operators. Simple crossover operator means single point or uniform crossover, 

while simple mutation means native mutation as specified in [12]. For example, given two 

binary-string individuals x1 = {1 0 1 0 1} and x2 = {0 1 0 1 0} with single-point crossover 



21 

 

and mutation rates are 0.9 and 0.1, respectively. In the crossover stage, GA generates a 

random number between 0 and 1, if the number happens to be 0.5, which is actually less 

than 0.9, then these two individual will be crossed to each other at a specified point, 

which is randomly selected in between them, assume the selected point is 3. Hence, the 

new individuals are x1 = {1 0 1 1 0} and x2 = {0 1 0 0 1}, while in uniform crossover, both 

bit-sequences are shuffled between these two individuals, i.e. x1 = {1 1 1 1 1} and x2 = {0 

0 0 0 0}. In case of mutation after crossing-over, GA randomly generates a random 

number between 0 and 1 for each individual, if it happens to be less than 0.1 then any bits, 

which its position is again selected randomly, within an individual will be flipped, i.e. 

from 0 to 1 or vice versa. Based on experiences, typically, mutation rate is set between 0 

and 0.1, while crossover rate is between 0.6 and 1 [9][12][19][22][23][25]. Actually, these 

two operator rates control the population in terms of exploration and exploitation of the 

search space. In order to choose the most suitable rate, trial and error approach is still the 

most widely used method among researchers. 

During the selection stage, GA will most probably select individuals that have 

performances above the current population average to appear in the upcoming 

intermediate generation, since the upcoming final generation would result form the 

crossover and mutation stages. Due to this fact, whoever has less strength will vanish as 

GA evolves from generation to generation. The upcoming (final) population definitely 

may contain copies of previous individuals (i.e., parents), as well as some new individuals 

that are totally different from their ancestors. The variation level of new individuals 

introduced into this new population depends on the crossover and mutation rates. Higher 
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crossover rate will completely mix the characteristics of both parents into its offspring, 

while higher mutation rate will certainly produce offspring that has different traits with its 

parents, i.e. the offspring introduces new traits that do not exist in its parents at all. 

Why GA works? This is a very interesting question to anyone who either knows or does 

not know GA before. GA works based on the number of schemata (sometimes called 

higher–order structures, hyper planes, or similarity templates) being processed from 

generation to generation. A short, low-order, and above-average schema is called a 

building block, since it is going to be reproduced more and more exponentially in 

subsequent generations [12]. 

Interested readers in theoretical background and/or application of GA are encouraged to 

consult distinguished references [12][9][25][31]. 

Many research papers showed that GA has a promising future in developing test data 

generators [36][37][39][40]; moreover, some papers have showed that GA outperforms 

both simulated annealing and taboo search [43]. 
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CHAPTER 3  

CRITICAL SURVEY OF GENETIC ALGORITHM BASED 

TEST DATA GENERATORS 

3.1. Introduction 

In this chapter, we present a set of attributes we propose for comparing the strengths 

and drawbacks of the different GA-based test data generators. Then, we discuss related 

work in light of this set of attributes. We conclude the chapter with a summary of the 

outcome of our critical survey. 

3.2. GA Based Test Data Generator Attributes 

Judging a test data generator should not only be based on its effectiveness and 

efficiency, but also on the underlying characteristics that affect its effectiveness and 

efficiency. Hence, throughout surveying existing related work on GA-based test data 

generators, we identified some attributes that can be used for comparing and assessing the 

strengths and weaknesses of GA-based test data generators. We expect this set of 

attributes to help in enhancing existing test data generators as well as guiding researchers 

trying to develop new test data generators using GA. Our proposed attributes are 

discussed in the sequel. 
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1) Testing Objective 

In all related work, the objectives of testing come before anything else described; in 

order to be able to evaluate testing achievement. 

The testing objective highly affects the way the testing process is conducted and the kind 

of measures to be used to assess the process [33]. For example, in structural software 

testing, if we choose statement coverage then we need to know how to monitor whether 

the program execution with a particular test data has reached certain statement within the 

program or not. Therefore choosing this testing objective, i.e. statement coverage, has 

enforced the tester to monitor executed statements within the program. 

2) Fitness Function 

In most of the meta-heuristic search techniques, especially GA, the testing objective 

is converted into an objective function, which is furthermore converted into a fitness 

function that is to be optimized to find a solution for the problem under consideration. The 

way in which heuristics of the test data generation problem is incorporated into the fitness 

function contributes significantly to the performance of the test data generator [2][4][32]. 

Based on our survey, we observed several (sub) attributes of the fitness function: building 

blocks, normalization, balancing/weighting, adjustment, traversal method, and 

neighborhood influence. The followings are the descriptions for these (sub) attributes. 
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1) Building Blocks 

A building block is a constituent of the fitness function. The constituents of a fitness 

function affect its effectiveness/efficiency in directing the search toward the desired goal. 

For example, in statement coverage, the number of covered statements by a test data can 

give information about the closeness of this test data to a target test data. The more 

building blocks the fitness function considers, the more effective/efficient it is in finding 

the target test data. 

2) Normalization 

This attribute is meant to tell whether the values of building blocks of the fitness 

function are normalized across the individuals of the population. Normalization would 

allow more meaningful comparisons between the different individuals’ fitness functions. 

3) Balancing/Weighting 

Balancing/Weighting is used to differentiate between the contributions of the 

different building blocks to the overall fitness value. For example, a fitness function might 

consist of two building blocks: A and B. Heuristics might suggest that A should have 

double the weight of B. 

4) Adjustment 

Adjustment applies to any building block of a fitness function and/or to the overall 

fitness function, according to the selected criterion defined by the test generator designer. 
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The adjustment operations can be addition, multiplication, or whatever necessary actions 

(e.g. multiplication of any building blocks with a chosen number) the designer considers 

required to refine the fitness function. 

5) Traversal Method 

This attribute is only meaningful for test data generators that adopt the path-coverage 

criteria for their testing objectives. The traversal method is the way of measuring the 

“closeness” between the path exercised by an individual, i.e. a generated input data, and a 

target path. Our survey reveals that two ways for calculating such “closeness” exist:  path-

wise and branch-wise (a.k.a. statement-wise). In the path-wise traversal method, the 

fitness function does not consider matched (sub) paths after the first deviation. While, in 

the branch-wise one, the fitness function considers subsequent matched (sub) paths after 

any number of deviations. For example, in Figure 2, assume that the darker line (left side) 

represents the target path while the lighter one (right side) is the path that traversed by an 

individual trying to satisfy the target path. Using the path-wise traversal method, the 

common flow (or nodes) between the two paths will be just the first branch. The rest, 

starting immediately afterward, would be considered as mismatch. On the other hand, 

using the branch-wise method, the common flow (or nodes) will also include those 

branches starting with the one that is being pointed to by the lower arrow. 
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Figure 2: Path-wise vs. Predicate-wise traversal method 

The path-wise approach considers all nodes from the first unmatched node found to the 

rest of the path as violations in comparing the target path with the individual’s traversed 

path. Thus, the number of violations V equals to the number of nodes from the first 

unmatched node up to the end of the target path. For example, consider a traversed path 

TR1 = {1 -5 2 2 3 -2 4 0 5 6} and a target path TG1 = {1 0 2 1 3 1 4 0 5 1}; where a 

negative value means TBD, a positive value means TBD, and a zero value means TBD…. 

If we rewrite the path in term of traversed-target pair then it will be TR1-TG1 = {(-5, 0), (2, 

1), (-2, 1), (0, 0), (6, 1)}, hence V = 3, since in staring from the third pair (-2, 1) the 

traversed path is not in the same direction (different signs) anymore with the target one.  
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(-2, 1), (0, 0), and (6, 1) are considered to be violations in this case (i.e., V=3) with regard 

to the path-wise approach. 

Predicate-wise approach is a more relaxed approach in considering the number of 

violations V within the fitness value, since it allows shuffling as many as unmatched sub-

paths within the matched sub-paths. The calculation of the number of violations V 

considers all matched predicates even after encountering unmatched sub-paths. Hence, the 

distance D equals to the summation of all PVs of matched nodes. For example, 

considering the same TR1-TG1 = {(-5, 0), (2, 1), (-2, 1), (0, 0), (6, 1)} from the previous 

path-wise traversing example, V = 1, since it only has one unmatched node, i.e. the third 

pair (-2, 1). 

6) Neighborhood Influence 

This attribute is meaningful for GA-based test generators that are trying to generate 

multiple test data at a time. It reflects whether a fitness function considers the pressure of 

competition among individuals to satisfy targets. There are two types of fitness value of 

an individual: its own fitness value and its fitness value that is influenced by the targets 

and/or other individuals competing to cover similar targets. 

Furthermore, there are three types of influence that affect the influenced fitness: targets 

influence, other individuals influence, and both targets and individuals influence at a time. 
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3) GA Type 

This attribute reflects the type of GA being used. Possible types include, but not 

limited to: simple GAs, modified GAs, hybrid GAs (GA combined with other heuristic 

search techniques), and parallelized GAs. For more details on these GA types, the reader 

is advised to refer to [9][12][25][31]. 

4) GA’s Operators 

Selecting the GA operators (i.e. crossover and mutation operators) and their 

probabilities highly affects the GA performance [31]. This attribute examines the 

operators employed in the different test generators surveyed. 

5) Individual Representation 

This attribute examines the different types of representation being employed by the 

test generators surveyed. Possibilities include: binary string, character string, integer, 

float, grouped, messy, and record [23][24][25][31]. 

6) Input Parameters Domain 

Input parameters domain highly affects the individual’s representation in GA. Hence, 

it influences the GA operators’ performance in exploring and exploiting the search space. 
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7) Stopping Criteria 

The stopping criteria indicate how the generator decides to stop its search effort.  

That could be based on the number of generations, number of satisfied targets, etc. 

8) Program Size 

This attribute reflects the category of programs, as far as the size is concerned, which 

have been used to validate the test generator under discussion. In general, rough 

categorization can be used: small, medium, or large. However, in discussing the different 

generators surveyed, we mention the actual programs that were used. 

9) Program Development Paradigm 

This attribute indicates as whether a test generator is meant to test procedural-

oriented programs, or object-oriented programs. There is a distinction; for example, in 

testing object-oriented program, the test data generated might need to be able to create an 

object. 

10) Implementation Issues 

This attributes is related to the implementation details of the test generator. It reflects 

the implementation programming language, platform, its usability, reusability, and 

portability, etc. 
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11) Multiple Targets 

A test data generator can either try to satisfy one target or multiple targets at a time. 

As we pointed out in Chapter 1, a test data generator that considers finding multiple 

targets at once is expected to be more efficient. 

12) Handling Infeasible Paths 

In path coverage criteria, the very existence of infeasible target paths, logically, is 

suspected to affect or, more precisely, hinder the search for correct test data, unless there 

is evidence that proves the opposite [7]. 

Actually, smarter test data generator can identify and isolate those targets with high 

possibility of being infeasible targets such that they do not hamper the search. However, a 

potential infeasible target is to not an infeasible one until the analytical examination 

confirms [7][22]. 

13) Validity/Soundness 

This attribute is to show whether the test data generator does generate the test data 

that exercises the program in the way the generator claims it would. For example, 

considering the path-coverage criteria, the data must traverse the given target path. 
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14) Efficiency 

This attribute reflects the amount of resources (e.g. time, memory) that the test data 

generator consumes in generating the right test data. 

15) Program Type 

Mainly, GA-based test data generators have been applied to two types of target 

program: real time and non-real time. The target program type highly affects the objective 

of testing. For example, in real time systems, testing usually focuses on time constraints; 

while in non-real time systems, the focus is usually path coverage. 

3.3. GA Based Approaches to Test Data Generator 

In this section, we present a summary discussion of some existing works based on our 

set of identified attributes. 

Due to lack of information and/or applicability, there are five attributes that we have not 

been able to discuss with regard to the existing generators: multiple targets, handling 

infeasible target, validity/soundness, efficiency, and program type. Bueno’s generator is 

the only generator that is able to handle the infeasible targets [7]. Alander’s generator is 

the only one that handles real-time system [1]. None has worked on satisfying multiple 

targets at once. 
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The Work by Pei et al. [36] in 1994 

Pei et al. observed that most of the test data generators, which developed in their era, 

were using symbolic evaluation. Using the symbolic evaluation method, the generator 

establishes predicate equations under static condition and solves them to derive test data. 

The symbolic evaluation method is hard to be put into practical use, since the complexity 

of solving the set of predicate equations is exponential. Recent methods, then, were using 

actual program execution and minimization search methods, which lack efficacy and 

efficiency (see Section 2.4). These drawbacks had inspired Pei et al. to develop a path-

coverage test data generator that employs genetic algorithm. 

In their work, Pei et al. proposed two different fitness functions, shown in Equation 1, 

which is simple but less sensitive, and Equation 2, which is complicated but more 

sensitive, as follow: 
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In Equation 1, C is a big adjustment number; n is the number of matching branches (or 

nodes) between traversed sub paths and target sub paths. The third term is a scaling factor 

that depends on the magnitude of n. 

The second fitness function (Equation 2) is the sum of the branch function (Fi) on the 

path. Suppose all the branch predicates are of the form E1 op E2, where E1 and E2 are 

arithmetic expressions, and op is one of the logical operations {<, ≤, >, ≥, =, ≠}. Each 
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branch predicate can be transformed to the equivalent function of the form shown in Table 

1. 

Table 1: Equivalent branch function 

Branch predicate Branch function Condition 

E1 > E2 F = E1 – E2 E1 – E2 > 0 
E1 ≥ E2 F = 0 E1 – E2 < 0 
E1 < E2 F = E2 – E1 E2 – E1 > 0 
E1 ≤ E2 F = 0 E2 – E1 < 0 
E1 = E2 F = ABS(E1 – E2) ABS(E1 – E2) > 0 
E1 ≠ E2 F = 0 ABS(E1 – E2) < 0 

 

Pei et al. construct CFG for the program under test, generate a finite number of selected 

target paths that are susceptible of error prone, and feed these target paths one by one into 

their GA-based test data generator manually. The generator runs as many as the number 

of target paths, since it can only accept one target path at a time. 

The test data generation process is divided into three steps: (reduced) CFG construction, 

target paths generation and selection, and test program execution and data generation. 

Pei et al. tested their generator using a minimum-maximum program, whose output is the 

minimum and maximum numbers in an array of integer numbers. They found out that 8 

out of 21 selected target paths are infeasible and showed that their approach could find all 

feasible target paths. Discussion of the approach based on our attributes is given in Table 

2. 
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Table 2: Attributes of Pei’s approach 

No Attributes Approach 
1 Testing Objective Path coverage 
2 Fitness Function Two different fitness functions. 

First fitness function f has the form shown in Equation 
1. 
Building block: Number of matching nodes between 
target path and traversed path 
Normalization: No 
Balancing/Weighting: No 
Adjustment: Using a certain large number and a scaling 
factor to adjust the overall fitness value 
Traversal Method: Branch-wise 
Neighborhood Influence: Not Applicable (N/A) 
 
Second fitness function F is the summation of its 
branch functions along its target path has the form as 
shown in Equation 2. 
Building block: Branch predicate value 
Normalization: No 
Balancing/Weighting: No 
Adjustment: No 
Traversal Method: Branch-wise 
Neighborhood Influence: N/A 

3 GA Type Simple GA 

4 GA's Operators 
Simple GA operators, crossover rate is between 0.6 and 
0.7, and mutation rate is 0.001 

5 Individual 
Representation 

Binary strings 

6 Input Parameters 
Domain 

Positive integer numbers 

7 Stopping Criteria Number of generations 
8 Program Size Minimum-maximum program 
9 Program 

Development 
Paradigm 

Has been validated against a functional oriented 
program 

10 
Implementation 
Issues 

Implemented using C 
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The Work by Roper et al. [37] in 1995 

Roper et al. developed a test data generator, using C++, that has an aim to traverse all 

the branches within a target program, which developed in C. Their generator takes a 

program and instruments it automatically with probes to provide feedback on the branch 

coverage achieved. 

Roper et al. translated the concepts of GA to the problem of test data generation. Firstly, 

population is considered as a set of test data that can be used in executing a program. An 

initial population is randomly generated according to the format and type of data used by 

the program. Then GA takes this initial population and evolves it towards a solution. The 

evolution stops when it reaches the required branch coverage. 

Secondly, each individual in the population is an element in the test data set, and the 

fitness of an individual corresponds to its coverage. For example, in a program with two 

sets of branches (say an IF-THEN-ELSE statement inside a WHILE loop), a group of 

data item which covers all four branches would have a fitness level of 1.0, whereas one 

which covers only two would have a fitness level of 0.5 and so on. The population is 

evaluated by running the program with each individual and assessing their fitness values.  

We discuss Roper et al. approach based on our proposed attributes in Table 3. 
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Table 3: Attributes of Roper’s approach 

No Attributes Approach 
1 Testing Objective Branch coverage 
2 Fitness Function Building block: Number of matched branches 

Normalization: No 
Balancing/Weighting: N/A 
Adjustment: No 
Traversal Method: Branch-wise 
Neighborhood Influence: N/A 

3 GA Type Simple GA 
4 GA's Operators Simple GA operators, mutation rates are 0.3 at the 

chromosome level and 0.05 at the gene level, and 
crossover rate is 0.4 

5 Individual 
Representation 

String of characters 

6 Input Parameters 
Domain 

ASCII characters 

7 Stopping Criteria The required branch coverage level or number of 
generations, whichever comes first 

8 Program Size Two small programs: a three-nested-selections program 
and a four-characters-matching program having four 
sequential selections 

9 Program 
Development 
Paradigm 

Has been tested against two functional oriented 
programs 

10 Implementation 
Issues 

Implemented using C++ with automatic 
instrumentation 
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The Work by Jones et al. [19] in 1996 

Jones et al. developed a GA-based test data generator to achieve branch coverage. 

The individual representation is a sequence of binary strings. This sequence of binary 

strings is converted to a decimal number prior to the program execution. 

Jones et al. use an unrolled CFG to represent one, two, or more iterations for each loop, 

thus the CFG is acyclic. The unrolled CFG is called control flow tree. A program is 

instrumented so that as it executes with a test case, it records the branches it reaches and 

the fitness of that test case. As each branch is executed, the test data generator 

automatically moves to the next branch in a breadth-first search of the control flow tree. A 

summary evaluation of the approach is given in Table 4. 
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Table 4: Attributes of Jones’s approach 

No Attributes Approach 
1 Testing Objective Branch coverage 
2 Fitness Function They propose two fitness functions as follow. 

First fitness function applies weighted hamming 
distance of branch predicate value. 
Building block: Branch predicate expression 
Normalization: No 
Balancing/Weighting: More significant bit has more 
weight. 
Adjustment: No 
Traversal Method: Branch-wise 
Neighborhood Influence: N/A 
 
The second fitness function is using reciprocal of 
branch predicate value. 
Building block: Branch predicate expression 
Normalization: No 
Balancing/Weighting: N/A 
Adjustment: Overall fitness value is reciprocal of its 
branch predicate value. 
Traversal Method: Branch-wise 
Neighborhood Influence: N/A 
 
In case of conditional loops, the number of iterations is 
considered. The reciprocal approach is more efficient 
on occasions when the two operands that are connected 
by an operator are numeric variables. 
In the case of compound predicates, the fitness for each 
predicate may be determined separately, and an overall 
fitness is calculated by multiplication for conjoined 
predicates and addition for disjoined predicates. 

3 GA Type Simple GA 
4 GA's Operators The employed GA utilizes three types of crossover (i.e. 

single, double, and uniform) and simple mutation. 
5 Individual 

Representation 
Binary strings 

6 Input Parameters 
Domain 

Numbers 

7 Stopping Criteria No information 
8 Program Size Six small programs evaluate the approach, i.e. 

quadratic equation solver, triangle classifier, remainder 



40 

 

calculation, linear search, binary search, and generic 
quicksort. 

9 Program 
Development 
Paradigm 

Has been validated against six functional oriented 
programs 

10 Implementation 
Issues 

They wrote both the test data generator and all the 
tested programs in Ada83. 

 

The Work by Alander et al. [1] in 1997 

The approach proposed by Alander et al. comes under the heading of automated 

dynamic stress testing. The idea is to produce test cases in order to find problematic 

situations like processing time extremes. In addition to stress testing, they also try the 

possibilities to test real time software using GA by identifying the situation where the 

software has the slowest reaction time. 

Alander et al. faced a problem in using GA for stress testing: the selection of fitness 

function in non-functional requirements testing, e.g. response time is somewhat non-

deterministic, since the same inputs do not always result in the same response time; even 

though the testing is conducted in the real environment where the program is expected to 

work on. 

Alander et al. attempted to identify peak load conditions under which the system fails by 

applying stress testing. The system is subjected to peak loads for key operational 

parameters: transaction volume, user load, file activity, error rates, or their combinations. 
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There is no detail description of the experiment in their research paper, e.g. individual 

representation, calculation of fitness function. Thus, we do not discuss the approach in a 

tabular form. 

The Work by Pargas et al. [35] in 1999 

The work done by Pargas et al. is an improvement to Jones et al.’s work [35]. The 

approach they presented also uses branch information to evaluate the fitness function, 

except it uses control dependence graph for the fitness evaluation, which they claimed that 

it can give more precise fitness evaluation than Jones et al.’s and Michael et al.’s [35] 

approaches. Too see this, consider the control dependence graph shown in Figure 3. 

 

Figure 3: Example of control dependence graph 

Suppose that there were two test cases, t1 and t2, such that the path through the control-

dependence graph for t1 is 1, 2, 4, and for t2 is 1, 7. Furthermore, suppose that node 5 is 

the target of the search. Under the approach presented by Pargas et al., t1 would be given a 

higher fitness than t2 because it has predicate 1T in common with the predicate path of 

target node 5. But, under the Jones et al.’s approach, t1 and t2 would be given the same 
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low fitness because neither test case executes the target or one of its siblings in the 

control-dependence graph; the fact that t1 is closer to the target than t2 is not incorporated 

into the fitness calculation. 

Pargas et al. presented the analysis of their system in term of time and space complexity 

and compared their approach with random test data generator. They parallelized the work 

to make it faster. They also, claim that the approach can provide path coverage with minor 

modifications. Discussion of the approach based on our attributes is presented in Table 5. 

Table 5: Attributes of Pargas’s approach 

No Attributes Approach 
1 Testing Objective The approach complies with both statement and branch 

coverage. Moreover, they argue that the approach can 
accommodate path and definition-use coverage with 
minor modifications. 

2 Fitness Function Building block: Number of common branch predicates 
in the CDG of a program 
Normalization: No 
Balancing/Weighting: N/A 
Adjustment: No 
Traversal Method: Branch-wise 
Neighborhood Influence: N/A 

3 GA Type Simple GA 
4 GA's Operators Employed GA in the approach utilizes single point 

crossover with rate 0.9 & simple mutation with rate 
0.1. 

5 Individual 
Representation 

String of characters 

6 Input Parameters 
Domain 

Numbers 

7 Stopping Criteria Number of generations or coverage level 
8 Program Size It was tested with six small programs tests the 

developed generator, i.e. bubble sort, bisection method, 
triangle classifiers, four balls bouncing, array elements 
classification, and middle value. However, they claim 
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in their report that the approach can handle larger 
programs with multiple procedures, i.e. higher 
scalability 

9 Program 
Development 
Paradigm 

Functional oriented programs 

10 Implementation 
Issues 

The proposed approach makes use of the available tool 
named Aristotle to generate a program map, i.e. a 
CDG, and an instrumented version of the program. 
The approach parallelizes execution of the 
instrumented program on a single test data among as 
many available as processors that improves overall 
execution time almost linearly. 
In this case, the proposed approach also employs 
automatic load balancing to prevent processors from 
being locked in time-consuming loops. 
The generator (named TGen), which runs on UNIX, 
stops when it has exceeded given time limit or number 
of maximum attempts. 

 

The Work by Michael et al. [25][26][27][28][29][30] in 1997, 1998, 2001 

Michael et al. implemented Korel’s function minimization [26] approach in their GA-

based test data generator. They have built a test data generator called GADGET (Genetic 

Algorithm Data Generation Tool), which has the capability to instrument a program 

automatically with no limitation in the programming language, but it has restriction that it 

can only accept scalar input. GADGET has the condition-decision coverage as its 

adequacy criteria. 

Korel’s fitness function is shown in Table 6. It is a summation of the branch functions. 
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Table 6: Korel’s fitness function 

Decision Type Example Fitness Function 
If d ≥ c 

Inequality If (c >= d) … 
⎩
⎨
⎧ −

=
0

)(
cd

xf  
Otherwise 

Equality If (c == d) … cdxf −=)(  
If c = FALSE 

True/False Value If (c) … 
⎩
⎨
⎧

=
0
1000

)(xf  
Otherwise 

 

GADGET uses simple GA as well as differential GA. The difference between Differential 

GA and the Simple GA is in the recombination process [26]. In the Differential GA, each 

input parameter Ii in the child I is calculated by 

)( iiii CBAI −+= α  Equation 3 

Where α is a parameter to adjust the search movement in the space, i.e. 

conservative/exploitative (0 < α ≤ 1) or extreme/explorative (α > 1). For example, see the 

following figure with α = 0.4 

 

Figure 4: Illustration of recombination process in differential GA 
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Let I be a new offspring. Then I2 = 3.0 + 0.4 * (1.0 – 3.0) = 2.2. 

Michael et al’s result shows that, in general, the simple GA outperforms the differential 

one. For the first time in the history of automated test data generation, GADGET is tested 

with a big program named b737, which is part of an autopilot system (real-world control 

software). They reported that the performance of random test generation deteriorates for 

larger programs. An evaluation of their approach is given in Table 7. 

Table 7: Attributes of Michael’s work 

No Attributes Approach 
1 Testing Objective Branch coverage 
2 Fitness Function Building block: Branch predicate expression 

Normalization: No 
Balancing/Weighting: N/A 
Adjustment: No 
Traversal Method: Branch-wise 
Neighborhood Influence: N/A 

3 GA Type Simple GA and differential GA 
4 GA's Operators Simple GA operators and differential crossover 
5 Individual 

Representation 
Binary strings 

6 Input Parameters 
Domain 

Numbers 

7 Stopping Criteria Number of generations or branch coverage level 
8 Program Size They have tested the approach with 9 small programs 

as well as one big program b737, which is a C program 
that is part of an autopilot system. 

9 Program 
Development 
Paradigm 

Has been validated against small and big programs to 
show its scalability 

10 Implementation 
Issues 

The tool name is GADGET and developed in C 
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The Work by Bueno and Jino [7] in 2000 

Bueno et al. proposed an approach that utilizes control and data flow dynamic 

information. The proposed approach is meant to fulfill path coverage testing. In addition, 

it also tackles the identification of potentially infeasible program paths by monitoring the 

progress of the search for required test data. 

Bueno et al. proposed the fitness function, Ft, to evaluate each individual. 

⎟
⎠
⎞

⎜
⎝
⎛−=

MEP
EPNCFt

 
Equation 4 

NC is the value of the path similarity computed considering the number of coincident 

branches between the executed path and the target one, from the entry node up to the node 

where the executed path is different from the intended one. This value can vary from 1 to 

the number of branches in the target path. 

EP is the absolute value of the predicate function (see Table 8) associated to the branch 

where there is a deviation from the target path. The value reflects the error that causes the 

executed path to deviate from the intended one. 

MEP is the predicate function maximum value among the candidate solutions that 

executed the same branch of the intended path. 

The fitness value echoes the fact that the larger number of correctly executed branches, 

the closer is the individual to the desired path. From several individuals with the same 

number of correct branches, the most fitting are those with smaller EP. This value 
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indicates the error that causes the deviation and measures how distant is the candidate 

solution from executing the correct branch. 

Observe that the value of (EP/MEP) is a measure of the candidate solution error with 

respect to all the solutions that executed the right path up to the same deviation predicate. 

The value is used as a solution penalty. Thus, the search dynamics is characterized by the 

coexistence of two objectives: maximizing the number of correctly executed branches and 

minimizing the predicate function of the covered predicates. 

The predicate function EP is attained by dynamic data flow analysis [20][21], which is 

based on Korel’s function. Each simple predicate E1 op E2 is transformed into the form 

EP rel 0, where rel is one of the followings: <, ≤, =, and ≠. For example, a predicate a > c 

is transformed to c – a < 0. EP is actually a function (directly or indirectly) of program 

input variables. Thus, changes on these variables have the potential of influencing the 

function’s value. Moreover, it is possible to manipulate input variables to minimize a 

given value of predicate EP. 

Table 8 summarizes EP calculation: the first column depicts possible predicate types 

considering the various relational operators, second column contains predicate functions, 

and rel is the appropriate operator for EP rel 0. LG(E1) refers to positive Boolean 

predicates and LG(!E1) to negative Boolean predicates. k2 is given as a penalty to 

violations of Boolean predicates, which they set to 100, while k1 is meant to avoid 

division by zero when E1 = E2, which they set to 0.3. 
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Table 8: Predicate functions 

Predicate Predicate Function rel 
E1 > E2 EP = E2 – E1 < 
E1 ≥ E2 EP = E2 – E1 ≤ 
E1 < E2 EP = E1 – E2 < 
E1 ≤ E2 EP = E1 – E2 ≤ 
E1 = E2 EP = |E1 – E2| = 
E1 ≠ E2  

121
1

kEE
EP

+−
=

 1
1
k

≠
 

LG(E1) EP = k2 if E1 = 0 
EP = 0 if E1 ≠ 0 

 

LG(!E1) EP = 0 if E1 = 0 
EP = k2 if E1 ≠ 0 

 

 

In the case of character comparisons, they calculate EP using the ASCII values associated 

to the characters. While in string comparisons, they sum up all the absolute values of the 

differences between the ASCII values associated to the characters in each position of the 

string. 

Compound predicates that involve logical AND operator are treated as the summation of 

its EP functions and the lowest value of them for compounded conditions with logical OR 

operator. 

In addition to the fitness function, they also consider the identification of potentially 

infeasible paths by monitoring the progress of the best fitness found. The approach 

considers a continual population’s best fitness improvement as an indication of feasible 

path is covered. On the other hand, attempts to generate test data for infeasible paths 

result, invariably, in a persistent lack of progress because of infeasible predicate. 
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The experimental results show the approach validity and its benefit. Discussion of the 

approach based on our attributes is depicted in Table 9. 

Table 9: Attributes of Bueno’s work 

No Attributes Approach 
1 Testing Objective Path coverage 
2 Fitness Function Building block: Number of matched branches and 

branch predicate value 
Normalization: Of the two building blocks, only the 
predicate value is normalized to the maximum 
predicate value among candidate solutions that 
executed the same branches of the target path 
Balancing/Weighting: No 
Adjustment: No 
Traversal Method: Path-wise 
Neighborhood Influence: N/A 

3 GA Type The approach utilizes proportional selection scheme 
and elitism inside the GA 

4 GA's Operators Simple GA operators 
5 Individual 

Representation 
Binary strings 

6 Input Parameters 
Domain 

Numbers 

7 Stopping Criteria Number of generations and path coverage level 
8 Program Size Six small programs exercise the proposed test data 

generator: floatcomp, quotient, strcomp, find, tritype, 
and expint 

9 Program 
Development 
Paradigm 

Functional oriented programs 

10 Implementation 
Issues 

They run each test program 10 times to reduce random 
variations. Moreover, they apply two execution modes: 
one with initialized population and the other with 
initial random population. 
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The Work by Lin and Yeh [22] in 2000 

Lin et al.’s work is an extension to the work done by Jones et al. In their work, the 

level of coverage had been increased from branch testing to path testing and the ordinary 

(weighted) hamming distance has been extended such that it can handle different ordering 

of the target paths that have the same branch nodes. 

They extend the hamming distance from the first order to the nth order (n>1) to measure 

the distance between two paths, which named Extended Hamming Distance (EHD). The 

rationale here is that, in path testing, two different paths may contain the same branches 

but in different sequences, where the simple hamming distance is no longer suitable. They 

name the fitness function SIMILARITY, since it calculates the similar items with respect 

to their ordering within the two different paths, e.g. branches, between the current 

executed path and the target path. The greater SIMILARITY leads to the better fitness. 

The higher order SIMILARITY is more significant than its lower order counterpart is. 

The highest-ordered SIMILARITY between two paths is therefore the most significant 

one. 

The test data generator consists of four basic steps: CFG construction, target path 

selection, test data generation and execution, and test result evaluation. The first 

generation of test data is generated at random. Then the generated test data are fed to the 

program for execution. One test data will be exercised in one and only one selected path. 

The survivors of test cases to the next generation are chosen according to the fitness 

function. After all test data in the present generation are fed, the new generation of test 
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data is generated by the operators of reproduction, crossover, and mutation. The system 

will automatically generate the next generation of test data until one of the test data covers 

the target path or it has exceeded the specified maximum number of generations. The 

objective of each run of the test data generator is to satisfy only a single target path, so the 

generator must run at least as many as number of target paths. 

Lin et al. have used triangle classifier as their tested program. They reported that the 

quality of generated test data is higher than the ones that produced by random testing, 

because the test data generator can direct the generation of test data to the desirable range 

fast. Table 10 presents a summary of our evaluation based on our attributes. 
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Table 10: Attributes of Lin’s work 

No Attributes Approach 
1 Testing Objective Path coverage (extension of Jones’s work [19]) 
2 Fitness Function Building block: Branch predicate expression 

Normalization: Normalized EHD 
Balancing/Weighting: Proposed approach is assigning 
different weights for each level of the hamming 
distances that compose normalized EHD. 
Adjustment: No 
Traversal Method: Path-wise 
Neighborhood Influence: N/A 

3 GA Type Simple GA 
4 GA's Operators The simple GA used in the approach puts into practice 

two-point crossover with probability 0.9 and a simple 
mutation with rate set to the reciprocal of the length of 
the individual bit string 

5 Individual 
Representation 

48-bit length string 

6 Input Parameters 
Domain 

Integer number 

7 Stopping Criteria Number of generations and path coverage level 
8 Program Size A simple triangle classifier program 
9 Program 

Development 
Paradigm 

Has been validated against small functional oriented 

10 Implementation 
Issues 

Implemented using C 

 

The Work by Wegener et al. [44] in 2002 

Wegener et al. developed fully automatic GA-based test data generator for structural 

testing, specifically statement and branch coverage, of real-world embedded software 

systems. 
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The proposed fitness function consists of two major building blocks: approximation level, 

and normalized predicate local distance. Overall fitness value is the summation of the 

approximation level value and the local distance value. 

The approximation level indicates the number of continuously matched branching nodes 

between the traversed path by an individual and a target path (or they call it as partial 

aim). 

The local distance is calculated for the individual by means of the branching conditions in 

the branching node in which the target node is missed. The local distance of a branching 

node that contains multiple conditions is a combination of the local distances of each 

condition. The report does not describe the normalization of local distance. 

For a node of the type A OR B, the local distance is the minimum value between single 

predicate A and B. In the case of A AND B, the local distance is the sum of each single 

predicate A and B. 

An individual with a fitness value 0 means that it satisfies the partial aim. Although their 

tool works on only one partial aim after the other, it takes into consideration the execution 

of a test datum that usually leads to passing several partial aims. Thus, the test soon 

focuses on those partial aims that are difficult to reach. The stopping criteria used are full 

statement/branch coverage and number of generations, depends on which one is satisfied 

first. 

They have developed a tool environment to automate test case design for different 

structural testing methods, which consists of the following six components. 
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1. Parser to analyze the program. 

2. Graphical User Interface to enter the specification of the input domain of the program. 

3. Instrumenter to capture the program structures executed by the generated test data. 

4. Test driver generator to generate a test bed running the program with the generated 

test data. 

5. Test controller that includes the identification and administration of the partial aims 

for the test and which guarantees an efficient test by defining a processing order and 

storage of initial values for the partial aims. 

6. Toolbox of evolutionary algorithms to generate the test data. 

Their report does not discuss as whether multiple targets can be covered at one time. 

However, the approach, more precisely, the test control, evaluates all individuals 

generated with respect to all unachieved targets. Thus, other targets found by chance are 

identified, and individuals with good fitness values for one or more targets are noted and 

stored for seeding the next subsequent testing of uncovered targets. 

The approach instruments the test program automatically and assumes the targets are 

given. 

They reported that full coverage of some programs is achieved, but not for all. According 

to their report, they are investigating whether infeasible statements/branches or the 

number of generations are some of the reasons for not being able to achieve full coverage 

in some programs. They compared the results with the test data that are generated using 

random testing, which apparently result in much lower coverage. We discuss their 

approach based on our attributes in Table 11. 
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Table 11: Attributes of Wegener’s work 

No Attributes Approach 
1 Testing Objective Statement and branch coverage 
2 Fitness Function Building block: Approximation level and normalized 

predicate local distance (see Error! Reference source 
not found.) 
Normalization: Only the local distance value is mapped 
into the value between 0 and 1. 
Balancing/Weighting: No 
Adjustment: No 
Traversal Method: Path-wise 
Neighborhood Influence: N/A 

3 GA Type The approach exploits initialized population and multi-
population GA with maximal number of generation 
200. Migration between sub-populations is every 20 
generations in a complete net structure (5% migration 
rate). Competition between sub-populations is every 5 
generations (division pressure of 3) 

4 GA's Operators The GA used in the approach applies discrete 
recombination with rate of 1 and multiple strategies, 
i.e. different mutation range for each sub-population, 
which leads to different search strategies: from a 
globally oriented search. This allows more exploration, 
when employing a large mutation range to a very fine 
search; and more exploitation, when employing a small 
mutation range 

5 Individual 
Representation 

Integer numbers 

6 Input Parameters 
Domain 

Numbers and characters 

7 Stopping Criteria Number of generations and path coverage level 
8 Program Size Five small programs: asin, atof, classiftria, powi, and 

incbet 
9 Program 

Development 
Paradigm 

Functional oriented programs 

10 Implementation 
Issues 

Implemented using Matlab. The proposed approach 
makes use of available tool Genetic Algorithm Toolbox 
for Use with Matlab (GEATbx) that can support real, 
integer, and binary coding representation of individuals 
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The Work by Ghazi and Ahmed [11] in 2003 

The proposed approach is meant to test component-based software in order to achieve 

pair-wise coverage, that is to generate minimum number of test data that have maximum 

coverage of pair-wise configurations. Pair-wise testing, which is of type black box testing, 

is a specification based testing criterion. It requires that for each pair of components, each 

pair of instances of these components are covered by at least one test configuration. A test 

configuration is a combination of instances of different components. Pair-wise testing is 

also applicable to testing single component software. In this case, a test configuration 

maybe looked at as a combination of values of the component’s input parameters. 

The fitness function is calculated as the number of distinct pair-wise configurations 

covered by an individual divided by the total number of possible pair-wise configurations. 

A summary discussion of the approach is presented in Table 12. 
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Table 12: Attributes of Ghazi’s work 

No Attributes Approach 
1 Testing Objective Pair-wise coverage 
2 Fitness Function Building block: Number of test data configurations 

Normalization: A fitness value is relative to the number 
of entire test data configurations required. 
Balancing/Weighting: N/A 
Adjustment: N/A 
Traversal Method: N/A 
Neighborhood Influence: N/A 

3 GA Type Not clear 
4 GA's Operators Not clear 
5 Individual 

Representation 
Not clear 

6 Input Parameters 
Domain 

Not clear 

7 Stopping Criteria Not clear 
8 Program Size Since the tester only needs the interface of the test 

programs hence the size of the test program is not 
important, i.e. not required in black box testing type. 
However, the number of components (or input 
parameters, in case of a single component testing) can 
give some information about the scalability of the 
approach.  In their case, they tested their generator with 
four components, each of which has 3 possible values 

9 Program 
Development 
Paradigm 

Not clear 

10 Implementation 
Issues 

They reported that the approach have been tested on 
“Placing A Telephone Call” problem that achieves 
90% coverage with 9 configurations per individual and 
100% coverage with 11 configurations per individual 
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3.4. Conclusion on Existing GA Based Test Data Generators 

Our critical survey of the state-of-the-art in GA based test data generators, using our 

set of attributes, discloses some drawbacks related to the existing approaches. The 

following are some issues we were able to identify: 

1. Testing objective: Most of the test generators, we surveyed, were developed to satisfy 

statement and/or branch coverage. Only small number of them was working on path 

coverage and stress testing. To the best of our knowledge, path coverage criterion has 

the largest coverage among other type of structural coverage testing criteria [33]. 

Related works in path coverage testing, e.g. Lin’s work [22], have the limitation of 

handling single target path at a time. 

2. Instrumentation and target generation: Manual instrumentation and target 

generation reduce the scalability of the test data generator. Only some existing works 

instrument the test programs automatically, e.g. works done by Roper et al., Pargas et 

al., and Michael et al.  

3. Program size: The scalability of the test program is still low for all the works. 

However, only one of the approaches exercises its test data generator using real world 

embedded system [30]. 

4. Program development: Although trends in the recent and coming years are moving 

toward object-oriented development, to the best of our knowledge, none of the 

approaches works on testing object-oriented programs. 

5. Multiple targets: There were no attempts to satisfy multiple targets at a time. 
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6. Handling infeasible target: Of all the works, only Bueno’s approach [7] is capable of 

identifying potentially infeasible targets. Unless the tester analyze the target paths 

intensively, Bueno’s heuristic still could not decide that the target is infeasible 

7. Validity/Soundness: None of the works has shown rigorous analysis (either 

experimentally or analytically) of the validity or soundness of their approach, to 

provide confidence that it really does what it claims. 

8. Comparisons: Most of the related works compare their approaches to random testing 

as opposed to other approaches. Therefore, one would not be able to tell which 

generator is better as far as effectiveness and efficiency are concerned. 

9. Program type: Most of the test programs are non real-time software. Only Alander’s 

approach works on testing real-time system [1]. 

An appropriate handling of these issues would significantly enhance the performance of 

GA-based test data generators. We present our attempt at addressing some of these issues 

in the next chapter. We mainly focus on trying to satisfy multiple target paths at a time. 
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CHAPTER 4  

PROPOSED APPROACH 

4.1. Introduction 

This chapter describes details of our proposed approach, to test data generation using 

GA; more precisely, it describes our fitness function. Our approach follows from our 

effort to deal with one of the problems resulting from our critical survey in Chapter 3; that 

is the multi-target paths satisfaction at one time. 

4.2. The Problem 

As has been demonstrated in Chapter 3, many GA-based test data generators adopted 

statement or branch coverage as their objectives. However, by nature, path coverage 

criterion covers statement and branch coverage criteria, which makes it the utmost 

coverage [33]. Thus, an effective software structural testing should have path coverage as 

its objective. 

As Chapter 3 concluded, none of the works on satisfying path coverage consider 

satisfying multiple target paths at a time, i.e. achieving a set of required target paths in a 

single run of GA. Clearly, satisfying multiple paths at a time would require incorporating 

these paths within the fitness calculation. The rationale behind considering multiple paths 
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at a time is based on the observations that in trying to satisfy a single path, other paths 

might be satisfied as a by-product. Based on this observation, trying to satisfy multiple 

paths at a time is expected to greatly increase the efficacy and efficiency of the test data 

generator, i.e. attaining more coverage with less resources than a single-path test generator 

would need to cover the same number of paths (over multiple runs). 

An essential characteristic of GA based structural testing is that the fitness function is 

constructed based on the test program. A well-constructed fitness function may 

significantly boost the possibility of finding a solution and reaching higher coverage [2]. 

Based on our previous critical survey of existing approaches, we have identified several 

crucial attributes of a fitness function that may be used in guiding the design of a good 

fitness function in term of search effectiveness and efficiency: building blocks, 

normalization, balancing/weighting, adjustment or rewarding, path traversal method, and 

neighborhood influence. 

Guided by our fitness function, we have developed a GA based test data generator for 

multi-path coverage at one run. The outcome of our wok is the following: 

• Developing a test data generator that satisfies the path coverage testing criterion. 

• Generating test data that satisfies multiple target paths at a time. 

• Designing and implementing several fitness function candidates that consider good 

building blocks design, normalization, weighting, rewarding, path traversal technique, 

and neighborhood influence. 

• Performing performance comparison between our work and others. 
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4.3. Research Approach 

This section presents our approach to develop our fitness function. The section starts 

with presenting some terminologies, followed by demonstrating the different fitness 

function candidates we developed. 

4.3.1. Terminology 

The following terms used in demonstrating our fitness function candidates: 

1) A chromosome Ci represents the ith individual within a population C (i.e., a set of 

chromosomes), for the program or software under test (hereafter SUT). Each 

individual represents input datum. 

2) A predicate value, PV, is the distance value of a predicate (i.e., condition) according to 

Korel’s distance function (see Table 13 below) [20]. It is either greater than zero (> 0) 

meaning a FALSE branch is traversed, or less than or equal to zero (≤ 0) meaning a 

TRUE branch is taken. In the case of compound predicates, the distance PV is simply 

the summation of its primitive distances for conjoined predicates and the minimum of 

its primitive distances for disjoined predicates (as shown in Table 13, equations no. 7 

and 8). 
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Table 13: Korel’s distance function 

No Predicate Distance if path taken is different 
1 A = B ABS(A – B) 
2 A ≠ B K 
3 A < B (A – B) + k 
4 A ≤ B (A – B) 
5 A > B (B – A) + k 
6 A ≥ B (B – A) 
7 X OR Y MIN(Distance(X), Distance(Y)) 
8 X AND Y Distance(X) + Distance(Y) 

 

Where, k is the smallest step for the input data of the program, i.e. the resolution of the 

number that a programming language can represent or manipulate, in spite of the 

machine representation. For example, in most programming languages the “integer 

type” has k = 1. 

3) A path Pi is the path traversed by Ci. Each path, P, is represented by the sequence of 

branching nodes/predicates (hence called nodes), i.e. a statement where the program is 

heading to different branches logically, traversed by P, along with their associated PV 

pairs. For example, see Figure 5, a path P1 that would go through the nodes B1, B2, 

and B3, with PVs = -5, 1, and 0, respectively is represented as P1 = {1 -5 2 1 3 0}, 

which means {1 T 2 F 3 T} or {1 TRUE 2 FALSE 3 TRUE}. For simplicity, target 

paths are treated little differently, since there is concept of distance. The PV of a 

condition, with respect to a target path, is represented either by zero (1) or by one (0), 

to represent FALSE and TRUE, respectively. For example, we represent a target path 

T1 = {1 T 2 F 3 T} as T1 = {1 0 2 1 3 0}. 
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Figure 5: CFG for a minimaxi SUT 

4) The length of a path, lPi = 2
iP

, represents the number of nodes traversed. The division 

by two is taking place due to the fact that each node is represented by a pair of values: 

the node number, and the corresponding PV. 

5) For a path Pi, the xth pair of node index and its PV can be accessed through Pi.((2*x)-1) 

and Pi.(2*x) respectively; where 1 ≤ x ≤ lPi. 

6) A target path TGi is the ith path in the set of target paths TG. For each target path, the 

tester should suggest (find) an appropriate test datum that is expected exercise that 

target path3. 

7) A traversed path TRi is the path traversed by executing chromosome Ci. The TR set is 

the set of traversed paths by the population. 
                                                 
3 Appendix A gives an example of target sets for some test programs. 
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8) A sub-path SPi is a sub-sequence of a path Pi. 

9) A matched sub-path between a TRi and a TGj is a common sub-sequence between the 

two paths. 

10) An unmatched sub-path between a TRi and a TGj is an uncommon sub-sequence 

between the two paths. 

11) Matched node between two paths is a node whose number and value in both paths are 

the same, i.e. Pi.((2*x)-1) = Pj.((2*x)-1); where {(1 ≤ x ≤ lPi) AND (1 ≤ x ≤ lPj)}4. 

12) Unmatched node-branch is a matched node where its branch value has different signs 

in the corresponding paths (see Equation 5). 
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Equation 5 presents the distance D calculation in the node level. TGi.2k and TRPVj.2k 

are the distances, in position k, of target path i and traversed path j, respectively. 

Function Signij.2k is meant to check whether the TGi.2k and TRj.2k predicate values have 

the same sign; it is formally described below. 

kjkikij TRTGSign 2.2.2. *=  Equation 6 

 
4 For the sake of calculation simplicity, the node positions in both target and traversed path must match. 

This imposes a limitation in the sense that matched subpaths that have unmatched node positions can not be 

captured as a contribution to the fitness value. Future work will address this issue. 
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TRPVj.2k in Equation 7 is a function to convert TRj.2k predicate value into 0 or 1. 
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Equation 7 

13) An unmatched node is a node where whose number and value in the corresponding 

paths are not the same. 

4.3.2. Fitness Function Design 

This section discusses the decisions made with regard to the fitness function design. 

4.3.2.1. Building Blocks 

The basic building blocks of our proposed fitness function candidates are based on 

comparing traversed paths to target paths in terms of distance D and violation V. D tells 

how far the traversed path from the target path in term of predicate values for the 

“unmatched node-branches”. V tells how many unmatched nodes exist between the target 

path and the traversed one. 

The objective is to minimize the distance D and violation V. Equation 8 shows the 

building blocks of the proposed fitness function. 

ijijij VDIF +=  
Equation 8 

where, 

i = index of target path 

j = index of chromosome’s traversed path 
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IF = Intermediate Fitness that look at the fitness of a chromosome with respect to one 

target path. It is considered as a building block for the overall chromosome fitness where 

the fitness with respect to all target paths is considered. 

D = Distance (or PV). In case of the predicate-wise traversal method, D is equal to the 

sum of all the PVs of unmatched node-branches. 

V = Violation (number of unmatched nodes). Path violation V with respect to predicate-

wise traversal technique is defined as the number of unmatched nodes between the actual 

traversed path and the target path along both paths from the beginning to the end. 

4.3.2.2. Distance and Violation Calculation 

We calculate the predicate value using Korel’s distance function [20] as shown in 

Table 13. The distance equals to zero if the node-branch of both the target path and the 

traversed path are matching. 

For example, consider Figure 5, assuming: B1 is “index ≤ length”, B2 is “max < 

number(index)”, and B3 is “min > number(index)”. Given, situation for (current) 

chromosome number 2 as follow: index = 1, length = 2, max = 10, min = 5, number(1) = 

2, and a target path TG1 = {1 1 2 0 3 1} or TG1 = {1 T 2 F 3 T}. Which path is 

taken/traversed by this chromosome number 2, TR2? Based on Equation 8, the distance 

between TG1 and TR2, i.e. D12, is equal to the summation of all distances, i.e. distance B1 

(DB1), distance B2 (DB2), and distance B3 (DB3). According to Korel’s distance function 

(see Table 13) and assuming that k is equal to 1; therefore, DB1 = index – length, DB2 = 

(max – number(1)) + 1, and DB3 = (number(1) – min) + 1. These result in the following: 
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DB1 = 1–2 = -1, DB2 = (10–2)+1 = 9, and DB3 = (2–5)+1 = -2; where if we convert to 

distance they will be DB1 = 0, DB2 = 0, and DB3 = 0, since TR2 took the same path with 

TG1 {T F T} . In case we have another target path (TG2) that has path {T F F}, thus, D22 

= 0 + 0 + ABS(-2), and V22 = 1, since B3 had been violated. 

In the next subsections, we present the details of our approach for calculating the distance 

D and violation V in a more formal way. We first start by introducing the absolute 

measures distance and number of violations; then we present our approach for 

normalizing such measure. 

4.3.2.3. Plain Distance and Violation 

Plain (i.e., absolute) distance measure is equal to the summation of all predicate 

values of unmatched node-branches. On the other hand, plain violations equals to the 

number of unmatched nodes that is determined by the path traversal approaches in the 

previous chapter sub section 5), i.e. either path-wise or predicate-wise. Obviously, both 

the plain distance and violation values are not bounded. 

The followings are the plain distance function pDij (Equation 9) between a target path TGi 

and a traversed path TRj along with its supporting functions under predicate-wise path 

traversal method. 

∑
=

×=
ijlC

k
kijkijij pDmCpD

1
..  

Equation 9 
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Equation 9 describes the calculation of distance D in the path level, i.e. the summation of 

all absolute predicate values between target path TGi and traversed path TRj. 

( ) ( )( )
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⎨
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Equation 10 

 

mCi.j.k has the role to match the node sequence between two paths. 
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The length counter lCij in Equation 11 is to count the minimum number of conditions 

encountered in target path TGi and traversed path TRi. 

Equation 12 and Equation 13, below, calculate the plain violation pVij considering all 

target paths; and pcVij that both considers all paths as well as is influenced by other 

chromosomes in the population. 
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Equation 14 describes the calculation of plain violation pVij in the node level, indicated by 

position index k, which is needed by Equation 12. 
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Equation 15 computes the number of comparisons required between a target path i and a 

traversed path j. 
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While Equation 16 is meant to find the maximum distance between a traversed path j and 

all existing target paths, Equation 17 calculates the maximum distance between all 

existing traversed paths and all existing target paths. 

( )ijpDimDj Over  MAX=  
Equation 16 
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( )ijpDijmcD Over  MAX=  
Equation 17 

 

Using the path-wise path traversal approach, plain distance pDij and violation pVij are 

calculated in a similar manner to that of the predicate-wise approach until the first 

unmatched node-branch is reached. The following are the calculation for pDij (Equation 

18), pVij (Equation 19) and pcVij (Equation 20). 
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4.3.2.4. Normalized Distance and Violation 

Distance D is normalized by either mDj as shown in Equation 22, which considers all 

target paths, or by mcD as shown in Equation 23, which considers all target paths as well 

as other chromosomes. 

j

ij
ij mD

pD
nD =

 
Equation 22 

 

mcD
pD

ncD ij
ij =

 
Equation 23 

 
 

On the other hand, violation pVij normalized by its length, i.e. TGi, as shown in Equation 

24. 

i

ij
ij TG

pV
nV =

 
Equation 24 

4.3.2.5. Neighborhood Influence 

Since we try to satisfy multiple targets at the same time, the fitness of a chromosome 

should consider all target paths. Accordingly, we allow two distance normalization 
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schemes: based on the target paths (we refer to it as Op) only; and based on both target 

paths and other chromosomes (we refer to it as Oc). 

4.3.2.6. Weighting 

We use weights to allow differentiation between the contribution of the different 

building blocks of the fitness function, that is the distance D and the violation V to the 

overall fitness (see Equation 8). 

( ) ( )ijijijijij VWDWIF ∗−+∗= )1(  Equation 25 

where, 

W is a weight that reflects how much the distance D should contribute to the overall 

fitness value; it also, indirectly, represents the contribution of the violation V to the fitness 

value. It ranges from zero to one; 0 means no contribution and 1 means full contribution. 

Setting the weight to 0.5 would mean that both distance and violation are having the same 

level of contribution to the fitness value. 

We allow two ways for selecting the weights: Static Weighting and Dynamic Weighting. 

In static weighting, the weight is determined by the user; in the range from zero to one. 

Dynamic weighting allows the calculation of the weights during the runtime; where each 

generation may assign different weights to the distance-violation pair. Dynamic weighting 

is a weight assignment using a normalized value that changes from generation to 
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generation unattended. Dynamic weighting has two schemas: distance-based and 

violation-based weight assignments. 

Distance-based weight dWij is a normalized distance value, which is the chromosome’s 

distance divided by the maximum distance of all chromosomes in one generation. 

Actually, dWij is meant to normalize total building block values relative to the actual 

normalized distance in the current generation. 

)( ijj

ij
ij pDMAXOver

pD
dW =  Equation 26 

 

Assigning normalized violation value, i.e. pVij, divided by its length, i.e. lTGi, to the 

weight is the basic idea of dynamic violation-based weight assignment. The pVij 

normalizes fitness value relative to the actual normalized violation in the current 

generation. 

i

ij
ij lTG

pV
vW =

 
Equation 27 

4.3.2.7. Rewarding 

For each target path, the chromosome that has the least distance in trying to satisfy 

this target path among any other chromosomes in the population is a winner with regard 

to that target path, i.e. the one that will get a reward; that is its fitness will be positively 

affected. The rationale, here, is to give such a chromosome a better chance of survival to 

the next generation since it is the closest to some target paths. 
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Reward of a target path TGi is given by deducting certain value, Ri, from the intermediate 

fitness value IFix of xth chromosome that has the smallest distance with TGi. (see Equation 

29). Reward is given as a deduction from the intermediate fitness function since the 

objective is to minimize the overall fitness value of a chromosome. 

)(Over  MIN    where; ijixiixix IFiIFRIFIF =−=  
Equation 28 

Reward Ri given with respect to the target path TGi. Ri is normalized to the summation of 

all IFs of traversed paths that are trying to satisfy TGi. 
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4.3.2.8. Final Fitness Calculation 

In order to get the overall fitness value we have to sum up and normalize the whole 

intermediate fitness values for each chromosome. 

The following is the final fitness, Fj, calculation for chromosome j considering all target 

paths. 

TG
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Equation 30 
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The following is the final fitness, Fj, calculation for chromosome j considering all target 

paths and all chromosomes. 

|| TG
cF
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Equation 32 
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Equation 33 

The following normalized version is used if all the IFs of chromosome j are calculated 

using normalized distance and violation. 
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Equation 34 

4.4. Proposed Fitness Function Candidates 

Based on the above discussion on the different decisions that can be made with regard 

to the fitness function design, Table 14, below, lists the possible variation points along 

with their corresponding values. For the sake of easier reference, abbreviations of the 

possible values are shown under the “Code” column in the table. 
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Table 14: Possible fitness function combinations 

No Attributes Values Code 
1 Path traversal approach Path-wise 

Predicate-wise 
Ph 
Pr 

2 Neighborhood influence Other paths 
Other paths & chromosomes 

Op 
Oc 

3 Distance & violation normalization Plain (not normalized) 
Normalized 

P 
N 

4 Weighting scheme No weight 
Static 
Distance-based (dynamic) 
Violation-based (dynamic) 

Wn 
Ws 
Wd 
Wv 

5 Rewarding No reward 
Reward 

Rn 
Rw 

6 Final fitness normalization Plain (not normalized) 
Normalized 

P 
N 

 

Therefore, there will be 128 (=2*2*2*4*2*2) possible fitness function candidates for all 

the combination of these attributes. For example, one candidate might take the following 

attributes: predicate-wise, relative to other paths, normalized distance-and-violation, 

distance-based weighting, no rewarding and normalized final fitness. Hence, the selected 

final fitness function will be the following (nDij and nVij are calculated as prescribed in 

the Equation 22 and Equation 24). 
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Equation 35 
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4.4.1. Fitness Function Candidates Roadmap 

The fitness functions roadmap is meant to give a comprehensive picture of the 

proposed fitness function candidates and their relationships. The roadmap contains tables 

for distance and violation computation, weighting, rewarding, and final fitness 

computation. 

4.4.1.1. Distance and Violation Computation 

The following equations apply to both distance D and violation V calculation at the 

path level. 

Table 15: Distance and violation computations roadmap 

No Measure Path Traversal 
(PT) 

Normalization Neighborhood 
Influence (NI) 

Equation To 
Use 

1 P  Equation 18 
2 Op Equation 22 
3 

Ph 
N 

Oc Equation 23 
4 P  Equation 9 
5 Op Equation 22 
6 

Distance 
(D) 

Pr 
N 

Oc Equation 23 
7 Op Equation 19 
8 

P 
Oc Equation 20 

9 

Ph 

N  Equation 24 
10 Op Equation 12 
11 

P 
Oc Equation 13 

12 

Violation 
(V) 

Pr 

N  Equation 24 

4.4.1.2. Weighting 

In case of weighting scheme is applied, we use Equation 25 instead of Equation 8 for 

calculating intermediate fitness value IF. 
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4.4.1.3. Rewarding 

If we apply rewarding then we deduct the reward R from an intermediate fitness value 

IF of a selected individual as shown in Equation 28. 

4.4.1.4. Final Fitness Computation 

The final fitness is calculated using one of the following equations that depend on 

neighborhood influence and normalization attributes. 

Table 16: Final fitness computation roadmap 

No Neighborhood Normalization Equation To Use 
1 P Equation 31 
2 

Op 
N Equation 30 

3 P Equation 33 
4 

Oc 
N Equation 32 

 

4.4.2. Reduced Possible Fitness Function Candidates 

Based on our intuition, we expect that normalized values would be more rational than 

the plain ones. Accordingly, to reduce the number of possible fitness function candidates 

to be investigated, we limit the scope to those properties in which that the possible values 

are normalized. In this case, we exclude the plain possible values in attribute 3 and 6 in 

Table 14. This way, we end up having 32 (=2*2*4*2) possible fitness function candidates. 
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CHAPTER 5  

EXPERIMENTS AND RESULTS 

5.1. Introduction 

In this chapter, we present and assess the performance (i.e., strengths and 

weaknesses) of all proposed fitness functions (i.e., candidates) using several tests. The 

chapter also discusses the implementation of our GA-based test data generator, including 

its design, setup, and implementation issues. Finally, we present experimental results and 

analysis. 

5.2. Experiments Design 

We have conducted 7 different experiments using Matlab; each experiment considers 

different software under test (SUT). Each experiment is comprised of sets of runs; one set 

for each fitness function, where average performance over each set is reported. The 32 

candidate fitness functions are distinguished from each other by their attributes settings 

(i.e., the values set for the variation points that were discussed in the previous chapter) as 

shown in the following Table 17. 
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Table 17: Fitness function candidates 

No PT NI R W Candidate Codes 
1 Wn Ph-Op-Rn-Wn 
2 Ws Ph-Op-Rn-Ws 
3 Wd Ph-Op-Rn-Wd 
4 

Rn 

Wv Ph-Op-Rn-Wv 
5 Wn Ph-Op-Rw-Wn 
6 Ws Ph-Op-Rw-Ws 
7 Wd Ph-Op-Rw-Wd 
8 

Op

Rw

Wv Ph-Op-Rw-Wv 
9 Wn Ph-Oc-Rn-Wn 

10 Ws Ph-Oc-Rn-Ws 
11 Wd Ph-Oc-Rn-Wd 
12 

Rn 

Wv Ph-Oc-Rn-Wv 
13 Wn Ph-Oc-Rw-Wn 
14 Ws Ph-Oc-Rw-Ws 
15 Wd Ph-Oc-Rw-Wd 
16 

Ph

Oc

Rw

Wv Ph-Oc-Rw-Wv 
17 Wn Pr-Op-Rn-Wn 
18 Ws Pr-Op-Rn-Ws 
19 Wd Pr-Op-Rn-Wd 
20 

Rn 

Wv Pr-Op-Rn-Wv 
21 Wn Pr-Op-Rw-Wn 
22 Ws Pr-Op-Rw-Ws 
23 Wd Pr-Op-Rw-Wd 
24 

Op

Rw

Wv Pr-Op-Rw-Wv 
25 Wn Pr-Oc-Rn-Wn 
26 Ws Pr-Oc-Rn-Ws 
27 Wd Pr-Oc-Rn-Wd 
28 

Rn 

Wv Pr-Oc-Rn-Wv 
29 Wn Pr-Oc-Rw-Wn 
30 Ws Pr-Oc-Rw-Ws 
31 Wd Pr-Oc-Rw-Wd 
32 

Pr 

Oc

Rw

Wv Pr-Oc-Rw-Wv 
 

The explanation for each column is described in Table 14 (Chapter 4). Each of the 32 

candidates is exercised at least ten times (i.e., runs) for each SUT. 
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As discussed below, we mainly assess the performance via three measures: generation-to-

generation (G2G) achievement, the best fitness, and cluster convergence (phi). 

G2G achievement graph is used to analyze the effectiveness and efficiency of each fitness 

function candidate, while cluster convergence graph is used to analyze the exploration and 

exploitation behavior of each fitness function candidate. The best fitness graph is to meant 

analyze the best candidate solution behavior over generations5. Having these graphs will 

help us in comparing the different candidates. More details about these types of graph can 

be found in [40]. 

5.2.1. SUTs Preparation 

We have selected six test programs as SUTs for experimentations. Each SUT poses 

special characteristics which we would like to investigate the performance of our 

candidate fitness functions against. We briefly discuss these SUTs below. For each SUT, 

we instrument the original program without changing its semantic. Then, we construct the 

corresponding CFG and generate a list of selected target paths from it. We developed our 

test data generator using Matlab. We also developed an instrumented version of the 

considered SUTs in Matlab. The instrumented source code for each SUT, along with the 

corresponding CFG and selected target paths are presented in the Appendix A. 

 
5 It is worth noting here that the best fitness function graph can go below zero due to the application of the 

rewarding scheme in some candidates. 
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 Minimum-maximum (mm): Given an array of numbers, mm is a program to find the 

minimum and maximum numbers within the array. The program has two sequential 

selection statements inside a loop in which all the conditions (predicates) are 

simple/primitive. During our experiment, we allowed the length of the array to be 

variable, and restricted the content of the array to integer numbers. 

 Triangle classifier (tc): Given three numbers, tc, is a program to classify whether these 

numbers form a triangle or not. If they are, then the program determines whether the 

triangle is scalene, isosceles, or equilateral. Triangle classifier has three nested 

selection statements in which all the decisions are compound predicates. 

 Bubble sort (bs): Given an array of numbers, bs, is a program to sort these numbers in 

an increasing order. The program has two loops that are nested and one selection that 

is nested inside the inner loop. The outer loop contains compound predicate. 

 Insertion sort (is): Given an array of numbers, is, is a program to sort these numbers in 

an increasing order. The program has two loops that are nested and one selection that 

is nested inside the inner loop. The inner loop contains compound predicates. 

 Binary search (ns): Given an array of numbers and a key, ns, is a program to find a 

key among these numbers. The program has a single loop that contains a single 

selection. 

 Minimum-maximum and triangle classifier (mt): Given three numbers, this combined 

program outputs both the minimum-maximum and the triangle classification as well. 
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This program is formed from mm and tc to allow much more complexity when 

investigating the performance of our candidate fitness functions. 

5.2.2. GA Parameters Setup 

In using GA, the values of GA parameters must be set up before hand. The 

followings are the values for all GA parameters that we use (see Table 18). Selection of 

these values was subject to trial-and-error practice. Initially, GA parameters are set to the 

values that are mostly used and considered promising in the previous related works. 

Gradually, based on the feedback from one experiment, parameters are refined in 

subsequent experiments. 

Table 18: GA parameters setup 

No Parameter Value 
1 Population Size 30 
2 No Of Generations 100 
3 Generation Gap 0.8 
4 Selection Method Roulette Wheel 
5 Crossover Method Single Point 
6 Crossover Probability 0.5 or 0.9 
7 Mutation Probability 0.1 or 0.3 
8 Chromosome Type SUT-based 
9 Chromosome Size Variable 
10 Allele Base 10 
11 Allele Range ±1000 

 

These parameters, however, slightly vary from one experiment to another based on the 

corresponding SUT. In other words, the same treatment was not (could not be) applied 

across all SUTs. The gain from these variations is that they give an idea on how to setup 
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the parameters when dealing with other test programs that have similar characteristics 

with the SUTs we have used for experimentations. 

It is worth noting here that the parameters setting is not only dependent on the 

characteristics of the SUT, but also on the fitness function candidate adopted as well as 

the number of target paths being considered. For example, a more complicated test 

program with a larger number of target paths is expected to require a larger population 

size and a larger number of generations to find effective test data. 

5.2.3. Things to Record 

The following pieces of information are very important to record per generation in 

order to assess the experiment outcomes. During our experimentations, we write this 

information for each fitness function candidate to a text file. 

Fitness function candidate index: To identify the fitness function candidate that is being 

used. 

Initial and remaining target paths in each generation: To measure the path coverage 

achieved. 

The best chromosomes along with their fitness values in each generation: To analyze the 

behavior of the fitness function employed. 

The successful chromosomes along with their covered target paths in each generation: 

These are the generated test data that cover some target paths, which have not been 

covered yet. 



86 

 

Generation-to-generation coverage: This measure is meant to assess the strength and 

efficiency of the fitness function, and the difficulty of the target paths, as well. This 

consists of a pair of generation number and its number of satisfied target paths in a run of 

a specific fitness function candidate. 

Cluster convergence coefficient (a.k.a. phi) in each generation: To measure the speed of 

convergence of the population generated from generation to generation. The value of this 

metric is calculated as the best fitness divided by the average fitness of the current 

generation in case of minimization. On the other hand, it is calculated as the average 

fitness divided by the best fitness in case of maximization. Phi is approaching one as the 

population converges to a single value. 

Experiment duration: To note the duration of each experiment conducted. The more 

complex the problem in term of the program complexity and the number of selected target 

paths to satisfy, the longer time duration it takes; assuming the same population size and 

number of generations. However, we do not record this data, since they are only used to 

demonstrate the SUT complexity, which is a characteristic of the SUT as opposed to the 

fitness function candidate; moreover, this data vary from one machine to another and from 

one environment to another. 
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5.3. Design and Implementation Issues 

During the implementation of and experimentation with our approach, there were 

several issues to take care of in order to get the expected results. These issues are reported 

as follow. 

5.3.1. Generation and Selection of Target Paths 

One issue with regard to satisfying multiple targets at a time is that the target paths 

may have different lengths. Moreover, in the case of looping, it is desirable to cover, at 

least, no iterations, one iteration, and two iterations; which in turn causes variable 

chromosome length. 

5.3.2. Instrumentation of SUTs 

A tag to monitor the traversed path (in response to executing a particular test datum) 

and to record the distance, i.e. the predicate value, is inserted right before and after any 

condition-decision. This tagging process is done manually for each test program. 

Actually, the tag is like a function call that returns the branch number and its distance 

when it is invoked. 

5.4. Graphs and Measurements 

For each SUT, at least the G2G achievement graph is presented and analyzed in this 

chapter. In case of SUTs that have infeasible paths, two more graphs are added: the best 
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fitness and phi. The best fitness and phi graphs would not be meaningful if the number of 

generations is less than 10. Therefore, in our experiments, we do not plot these graphs for 

SUTs that contain only feasible paths, since most of those paths were found within the 

first 5 generations. 

5.4.1. GA and Fitness Function Parameters Setup 

Based on initial trial-and-error results, we selected the rates to be: either 0.1 or 0.3 for 

static weight, either 0.5 or 0.9 for crossover, and either 0.1 or 0.3 for mutation. The logic 

behind the selection of the static weight is that the predicate distance contributes much 

less than the violation. As for the crossover and mutation rate, we are trying to maintain a 

balance between the exploration and exploitation of the search space. The following table 

shows all these parameter values that we have tested. 

Table 19: GA’s and fitness function’s parameters possible values 

No Static Weight Crossover Rate Mutation Rate Condition 
1 0.1 0.1-0.5-0.1 
2 0.5 0.3 0.1-0.5-0.3 
3 0.1 0.1-0.9-0.1 
4 

0.1 
0.9 0.3 0.1-0.9-0.3 

5 0.1 0.3-0.5-0.1 
6 0.5 0.3 0.3-0.5-0.3 
7 0.1 0.3-0.9-0.1 
8 

0.3 
0.9 0.3 0.3-0.9-0.3 

 

The last column (i.e. Condition) summarizes the sequence of fitness functions’ and GA’s 

rates, i.e. static weight followed by crossover and mutation rates. For example, 0.1-0.5-0.1 
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means the values for static weight, crossover rate, and mutation rate are 0.1, 0.5, and 0.1, 

respectively. 

As a pre-experiment to find the best combination to use, we applied all the parameter 

values combinations shown in Table 19 to all 32 fitness function candidates using the 

minimum-maximum (mm-i) as a test program with infeasible paths included in the set of 

target paths. We used the number of successes, i.e. the number of fitness function 

candidates that found all the required feasible target paths, to assess the effectiveness of 

the each. Table 20 presents the result corresponding to each parameter-value combination. 

Table 20: Effectiveness of parameter-value combinations 

No Combination No of successes 
1 0.1-0.5-0.1 15 
2 0.1-0.5-0.3 19 
3 0.1-0.9-0.1 15 
4 0.1-0.9-0.3 19 
5 0.3-0.5-0.1 16 
6 0.3-0.5-0.3 17 
7 0.3-0.9-0.1 16 
8 0.3-0.9-0.3 17 

 

Two of these combinations have the same number of successes: 0.1-0.5-0.3 and 0.1-0.9-

0.3. Accordingly, we just arbitrarily selected one of them, that is 0.1-0.9-0.3. The rationale 

behind this selection is the higher exploration and exploitation abilities that are due to the 

higher crossover and mutation rates, respectively. 
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Table 21 below lists all the conducted experiments, where each experiment is composed 

of 10 runs per fitness function candidate; except for no 4, 5, and 7; which are composed of 

20 runs each to allow more confidence. 

Table 21: Experiment treatments 

No SUT No of Target No of Infeasible Paths 
1 Binary Search (ns) 7 0 
2 Insertion Sort (is) 4 0 
3 Triangle (tr) 4 0 
4 Minimaxi-f (mm-f) 13 0 
5 Minimaxi-i (mm-i) 21 8 
6 Bubble Sort (bs) 14 11 
7 Minmax-Tri (mt) 84 20 

 

Experiments 4 and 5 are meant to observe the effect of infeasible paths on the behavior of 

the different fitness function candidates. 

5.4.2. Experiments 

In this section, we discuss all the experimental results. We organize the discussion as 

per experiment, i.e. per SUT. 

5.4.3. Binary Search (ns) 

Almost all (6.96 out of 7 on the average) the feasible target paths were found by all 

the candidates during this experiment. All target paths were found during the first 2 (or 

1.25 on the average) generations. These results were based on the average of 10 runs. 

Moreover, in some runs, all the feasible target paths were found in the first (i.e., initial) 
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generation. Clearly, this behavior was due to the exploration achieved by the random 

population developed in initial generations. Accordingly, we could not show the fitness 

and phi behaviors for fitness functions corresponding to those runs, i.e. those graphs 

would not be meaningful. 

The following figure (see Figure 6) shows the effectiveness and efficiency all candidates 

over 10 runs. Effectiveness is indicated by the number of paths found (PF) for a SUT that 

has only feasible target paths (PFF), on the average; that is PFF-Avg. Efficiency, on the 

other hand, is indicated by the last generation (LG) for a SUT that has only all feasible 

target paths (LGF), on the average, where all paths were found; that is LGF-Avg. 
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Figure 6: G2G achievement of binary search on the average of 10 runs 
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As shown in Figure 6, the difference between the candidates performance was 

insignificant. No candidate can be claimed as an absolute best or as an absolute worst. 

5.4.4. Insertion Sort (is) 

During this experiment, as an average of 10 runs, almost all (3.7 out of 4 on the 

average) feasible target paths were found within 2.5 (or 1.475 on the average) generations. 

In some runs, all the feasible target paths were found in the first (initial) generation. The 

same explanation with binary search is applicable. 

Figure 7 shows the effectiveness (indicated by PFF-Avg) and efficiency (indicated by 

LGF-Avg) of all candidates over 10 runs. 
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Figure 7: G2G achievement of insertion sort on the average of 10 runs 
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As shown in Figure 7, the difference between the candidates performance was 

insignificant. No candidate can be claimed as an absolute best or as an absolute worst. 

5.4.5. Triangle (tr) 

In the triangle classification SUT, all candidates found all (4 out of 4 on the average) 

feasible target paths were found within not more than 10 (or 7.6 on the average) 

generations; according to a 10 run-experiment. 

Figure 8 summarizes the effectiveness (indicated by PFF-Avg) and efficiency (indicated 

by LGF-Avg) of all candidates over 10 runs. 
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Figure 8: G2G achievement of triangle classifier on the average of 10 runs 
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As shown in Figure 8, the two most efficient candidates are candidates with indices 2 and 

27, which represent Ph-Op-Rn-Ws, and Pr-Oc-Rn-Wd, respectively; that is the candidate 

that is applying path-wise traversal technique, no reward, and static weight, and the other 

candidate that is having predicate-wise traversal technique, no reward, and distance-based 

weight, respectively. 

5.4.6. Minimaxi-f (mm-f) 

With regard to the minimaxi-f SUT, almost all (12.6 out of 13 on the average) 

feasible target paths were found within not more than 14 (or 9.7 on the average) 

generations over 20 run-experiment. 

Figure 9 summarizes the effectiveness (indicated by PFF-Avg) and efficiency (indicated 

by LGF-Avg) of all candidates over 20 runs. 

As shown in Figure 9, the difference between the candidates performance was 

insignificant. No candidate can be claimed as an absolute best or as an absolute worst. 
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Figure 9: G2G achievement of minimaxi-f on the average over 20 runs 

5.4.7. Minimaxi-i (mm-i) 

In this experiment, all candidates were able to find almost all (12.52 out of 13 on the 

average) feasible target paths were found within not more than 36 (or 15.56 on the 

average) generations; in a 20-run experiment. However, if we observe the phi graph (see 

Figure 11 of these candidates for the 17th run (arbitrarily chosen), we will be able to see 

that some candidates are really doing more exploitation (stable line) of the search space 

while others are doing more exploration (fluctuated line). Moreover, the best fitness graph 

(see Figure 12) shows that, for the 17th run some of the best individuals of some 

candidates are indeed affected by other individuals in the population (fluctuated line), i.e. 

not only affected by the target paths. Fluctuated lines in this case show that the fitness of 
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the “best” individual may drop from one generation to another due to: the competition 

with other individuals, and/or the removal of the covered-already target paths from the set 

of targets. 

Figure 10, below, summarizes the effectiveness (indicated by PFF-Avg) and efficiency 

(indicated by LGF-Avg) of all candidates over 20 runs. 
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Figure 10: G2G achievement of minimaxi-i on the average over 20 runs 
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Figure 11: Phi graph of mm-i for a particular run 
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Figure 12: Best fitness graph of mm-i for a particular run 
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Figure 13: Phi average (over 20 runs) graph of mm-i 

 
Figure 13 describes the phi average and standard deviation over 20 runs for each 

candidate. On the average (over 20 runs, where each run has 100 generations), candidates 

that apply rewarding (indicated by negative phi; see Figure 13) scheme seem to allow 

more exploration within generations of a run (see Figure 14; more fluctuation more 

exploration). 
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Figure 14: Phi average (over 20 runs, each has 100 generations) graph for each candidate of mm-i 
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Figure 15: Best fitness average (over 20 runs) graph of mm-i 
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Figure 15 depicts the best fitness average over 20 runs for each candidate. Candidates that 

employ rewarding scheme (see Figure 14; indicated by negative value) explore more (see 

Figure 16; indicated by more number of negative fluctuated lines) search space than the 

ones without rewarding. 

Negative fitness values are due to rewarding scheme only, since covered target paths are 

excluded immediately from the current targets and the generator recalculates all the 

fitness values afterward. 
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Figure 16: Best fitness average (over 100 generations) graph for each candidate of mm-i 

5.4.8. Bubble Sort (bs) 

In bubble sort, almost all (2.98 out of 3 on the average) feasible target paths were 

found within not more than 2 (or 1.06 on the average) generations by all candidates in 10-
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run experiments. In this case, we could not really see the contribution of each candidate 

towards finding the target paths, since most of the target paths were found by chance in 

the first two generations. Obviously, this behavior was due to the exploration achieved by 

the random population developed in initial generations. Accordingly, we could not show 

the fitness and phi behaviors of the fitness functions corresponding to those experiments. 

The following figure summarizes the effectiveness (indicated by PFF-Avg) and efficiency 

(indicated by LGF-Avg) of all candidates over 10 runs. 
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Figure 17: G2G achievement of bubble sort on the average of 10 runs 
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5.4.9. Minimaxi-Tri (mm-t) 

Minimaxi-tri is the most challenging SUT among the set we used in our experiments; 

this is because it is a combination of mm and tr, and it has a large number of infeasible 

target paths. In these experiments, almost all (19.3 out of 20 on the average) feasible 

target paths were found within 30 (or 19.4 on the average) generations in 20-run 

experiments by most candidates. However, if we observe phi graphs (see Figure 19) of 

these candidates for a particular run (9th run; arbitrarily chosen), we will be able to see 

that some candidates exploit the search space much more than others do. 

The following figure summarizes the effectiveness (indicated by PFF-Avg) and efficiency 

(indicated by LGF-Avg) of all candidates over 20 runs. 
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Figure 18: G2G achievement of mt on the average over 20 runs 
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Figure 19: Phi graph of mt for a particular run 
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Figure 20: Best fitness graph of mt for a particular run 
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Figure 21: Phi average (over 20 runs) graph of mt 

Most of the candidates (based on 20 runs, with 100 generations each) that employ 

rewarding scheme (indicated by negative phi) have higher level of exploration, since they 

have higher standard deviation (see Figure 21) and fluctuated phi average as can be seen 

on Figure 22. 
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Figure 22: Phi average (over 100 generations) graph for each candidate of mt 
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Figure 23: Best fitness average (over 20 runs) graph of mt 
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Figure 24: Best fitness average (over 100 generations) graph for each candidate of mt 

Figure 23 plots the best fitness average over 20 runs for each candidate. The candidates 

that utilize rewarding scheme (see Figure 23; indicated by negative value) do exploration 

more (see Figure 24) than the ones without rewarding. 

5.5. Analysis of Results 

In this section we discuss the results in light of the effect of the existence of infeasible 

paths, path traversal techniques, neighborhood influence, rewarding, and group/cluster 

attributes view. 
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5.5.1. The Existence of Infeasible Paths 

SUTs no 4 and 5, that is minimaxi (mm) program with feasible path only (mm-f), and 

with both feasible and infeasible path (mm-i), from Table 21 are used to measure the 

effect of infeasible path existence. The results are depicted in Figure 25 and Figure 26 that 

describe the effectiveness (PF) and efficiency (LG), respectively. 

In the absence of infeasible paths (i.e., mm-f), on the average (over the 32 candidates, with 

20 runs each), the number of PF, (Figure 25) is 12.57 out of 13; with a standard deviation 

0.48. Average LG is 9.7, with a standard deviation of 4.05. On the other hand, with the 

presence of infeasible paths (i.e., mm-i; Figure 26), an average of 12.52 out of 13 feasible 

paths were found with a standard deviation of 0.5. Average LG is 13.56 with a standard 

deviation of 9.9. Therefore, the existence of infeasible paths are not hindering GA-based 

test data generator in finding the entire given feasible target paths; this assertion is 

concluded due to the observation that average PF of feasible vs. infeasible paths is 12.57 

vs. 12.52. The major difference is that the maximum LG is higher if infeasible paths are 

present, that is 9.7 vs. 13.56 with a higher standard deviation. 
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Figure 25: The effect of infeasible path to effectiveness 
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Figure 26: The effect of infeasible path to efficiency 
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5.5.2. Neighborhood Influence 

Considering the mm-f, mm-i, and mt SUTs, we have summarized that the effect of 

neighborhood influence to the effectiveness and efficiency of the test data generator for all 

candidates are summarized in Table 22. On the average, the presence of neighborhood 

influence has a positive impact on performance of the corresponding candidates. 

Note that -Avg2 suffix indicates average of average. For example, PF-Avg2 means that 

the average of PF of candidates that are categorized as having (or not having) 

neighborhood influence, which are also the average of PF over several runs, i.e. 10 runs 

for mm-f, 20 runs for both mm-i and mt. 

Table 22: The effect of neighborhood influence to PF and LG 

Neighborhood Influence 
Absent Present 

  
No 
  

  
SUT 
  PF-Avg2 LG-Avg2 PF-Avg2 LG-Avg2 

1 mm-f 12.48 10.35 12.66 9.04 
2 mm-i 12.42 16.12 12.61 10.99 
3 mt 19.27 18.98 19.34 19.83 

 
The average of PF and LG from Table 22 shows that candidates utilizing neighborhood 

influence are more effective (indicated by higher PF) than otherwise, but not more 

efficient (indicated by comparing the LGs). The following figures depict more 

comparisons between the competing candidates (see Figure 27 to Figure 32 for test 

programs: mm-f, mm-i, and mt). Figure 27 up to Figure 32 compare the performance of the 

candidates that share all variation points’ settings, and they only differ on whether or not 

they allow neighborhood influence. Figure 27 and Figure 28 show the effect of 
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neighborhood influence to effectiveness and efficiency of mm-f. Figure 29 and Figure 30 

show the effect of neighborhood influence to effectiveness and efficiency of mm-i. Figure 

31 and Figure 32 show the effect of neighborhood influence to effectiveness and 

efficiency of mm-t. 
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Figure 27: The effect of neighborhood influence to effectiveness for mm-f 
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Figure 28: The effect of neighborhood influence to efficiency for mm-f 
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Figure 29: The effect of neighborhood influence to effectiveness for mm-i 
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Figure 30: The effect of neighborhood influence to efficiency for mm-i 
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Figure 31: The effect of neighborhood influence to effectiveness for mt 
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Figure 32: The effect of neighborhood influence to efficiency for mt 

In general, neighborhood influence has increased the effectiveness of the fitness function 

candidates. 

5.5.3. Path Traversal Technique 

As we can see fromTable 23, on the average, there is no significant difference in 

performance, in term of effectiveness and efficiency, between the candidates applying the 

path-wise vs. the predicate-wise traversal technique. 

However, the following figures depict more comparisons between the competing 

candidates (see Figure 33 to Figure 38 for test programs: mm-f, mm-i, and mt) both in term 

of effectiveness and efficiency. Figure 33 up to Figure 38 describe the fitness function 
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candidates that are applying path-wise (or predicate-wise) traversal techniques. Figure 33 

and Figure 34 show the effect of path traversal technique to effectiveness and efficiency 

of mm-f. Figure 35 and Figure 36 show the effect of path traversal technique to 

effectiveness and efficiency of mm-i. Figure 37 and Figure 38 show the effect of path 

traversal technique to effectiveness and efficiency of mm-t. 

Table 23: The effect of path traversal technique to PF and LG 

Path Traversal Technique 
Path-wise Predicate-wise 

  
No 
  

  
SUT 
  PF-Avg2 LG-Avg2 PF-Avg2 LG-Avg2 

1 mm-f 12.54 9.67 12.59 9.72 
2 mm-i 12.53 13.23 12.51 13.88 
3 Mt 19.30 19.55 19.30 19.26 
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Figure 33: The effect of path traversal method to effectiveness for mm-f 
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Figure 34: The effect of path traversal method to efficiency for mm-f 

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

1/17 2/18 3/19 4/20 5/21 6/22 7/23 8/24 9/25 10/26 11/27 12/28 13/29 14/30 15/31 16/32

Fitness index

N
o 

of
 P

at
hs

Ph Pr  

Figure 35: The effect of path traversal method to effectiveness for mm-i 
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Figure 36: The effect of path traversal method to efficiency for mm-i 
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Figure 37: The effect of path traversal method to effectiveness for mt 
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Figure 38: The effect of path traversal method to efficiency for mt 

Neither path-wise nor predicate-wise traversal technique performs better than each other. 

5.5.4. Weighting 

On the average, distance-based weighting (Wd) outperforms other weighting schemas 

both in term of PF and LG (see Table 24). Moreover, no weighting (Wn) is the second 

best after Wd. 

Not all the time that Wd performs better than the others, therefore we elaborate more on 

the behavior in Figure 43 and Figure 44 (test program mt). We, also, elaborate on the 

behavior with respect to mm-f and mm-i in Figure 39, Figure 40, Figure 41, and Figure 42. 
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Table 24: The effect of weighting to PF and LG 

Weighting Scheme 
Wn Ws Wd Wv 

  
No 
  

  
SUT 
  PF-

Avg2 
LG-
Avg2 

PF-
Avg2 

LG-
Avg2 

PF-
Avg2 

LG-
Avg2 

PF-
Avg2 

LG-
Avg2 

1 mm-f 12.63 10.73 12.49 10.17 12.72 8.87 12.43 9.01 
2 mm-i 12.59 13.68 12.43 15.16 12.70 9.71 12.34 15.68 
3 mt 19.28 18.19 19.30 19.25 19.36 21.10 19.27 19.08 
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Figure 39: The effect of weighting to effectiveness for mm-f 
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Figure 40: The effect of weighting to efficiency for mm-f 
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Figure 41: The effect of weighting to effectiveness for mm-i 
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Figure 42: The effect of weighting to efficiency for mm-i 
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Figure 43: The effect of weighting to effectiveness for mt 
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Figure 44: The effect of weighting to efficiency for mt 

5.5.5. Rewarding 

As shown in Table 25, rewarding does not really give significant enhancement in 

term of effectiveness. However, in term of efficiency, on the average, giving reward is 

better than its counterpart. More representative visualizations of the effect of rewarding 

are presented from Figure 45 up to Figure 50. 

Table 25: The effect of rewarding to PF and LG 

Reward 
Absent Present 

  
No 
  

  
SUT 
  PF-Avg2 LG-Avg2 PF-Avg2 LG-Avg2 

1 mm-f 12.53 9.64 12.61 9.75 
2 mm-i 12.50 15.07 12.53 12.04 
3 mt 19.29 20.45 19.31 18.36 
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Figure 45: The effect of rewarding to effectiveness for mm-f 
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Figure 46: The effect of rewarding to efficiency for mm-f 
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Figure 47: The effect of rewarding to effectiveness for mm-i 
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Figure 48: The effect of rewarding to efficiency for mm-i 
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Figure 49: The effect of rewarding to effectiveness for mt 
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Figure 50: The effect of rewarding to efficiency for mt 

 



125 

 

5.5.6. Predicate Type 

The compound predicate in a selection statement, e.g. (((A == B) & (B ~= C)) | ((B 

== C) & (C ~= A)) | ((C == A) & (A ~= B))), is expected to have an influence on the 

search progress. Our experiments confirmed this expectation. In our experiments, SUTs 

that contain compound predicates are tr and mt. In tr, the LG (on the average of 10 runs) 

is 7.6 generations in order to find 4 feasible target paths, while others require less LG with 

the same or higher number of target paths, e.g., ns (LG = 1.25 with 7 feasible target paths) 

and is (LG = 1.475 with 4 number of target paths). In mt, almost all (19.3 out of 20) 

feasible target paths were found within 20 generations (19.4 on the average). Please 

consult Appendix A for more detail about the predicates used in each test programs. 

5.5.7. Path Length 

Based on our experiments, the shorter target paths were covered in the earlier 

generations. However, a few short paths were covered in the middle generations. 

5.5.8. Composite Analysis 

As it might be clear from the previous sections, we could not really tell which 

attributes contribute significantly in efficiently finding all the required feasible target 

paths. Therefore, we needed a composite analysis, i.e. analyzing the result by fixing two 

or more attributes (variation points) at a time as opposed to only single one; hoping we 

can find a distinguishing pair of attributes. 
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The following shows our observations on the candidates’ performance with regard to test 

programs which have infeasible target paths and are considered to be more complex than 

the others: 

 mm-f: The best candidates are fitness function no 13 and 16, in term of PF and LG, 

respectively (refer to  Figure 9). 

 mm-i: The best candidates are fitness function no 15 and 3, in term of PF and LG, 

respectively (refer to Figure 10). 

 mt: The best candidates are fitness function no 9 and 14, in term of PF, and 6 in term 

of LG (refer to Figure 18). 

In term of PF, the common attributes are path-wise traversal technique (Ph) and 

neighborhood influence (Oc), although rewarding also gives a significant contribution in 

some experiments. And, in term of LG, the common attributes are path-wise traversal 

technique and without neighborhood influence (Op). 

Thus, based on these two combined attributes, i.e. path traversal method tight together 

with neighborhood influence, we summarize the PF & LG in Table 26, and plot the bar 

charts for those three test programs in Figure 51 to Figure 55. 

Based on the average of composite analysis (Table 26), the PhOc pair combination 

performs better than the others. However, PhOc pair combination does not outperform the 

others all the time, thus, for a closer look at the behavior of these attributes, we present 

three graphs for the three SUTs (Figure 51 to Figure 56): mm-f, mm-i, and mt. In Figure 

51 and Figure 52, PrOc pair combination outperforms the others. In Figure 53 and Figure 



127 

54, PhOc pair combination outperforms the others, on the average, in terms of both PF 

and LG. However, in Figure 55 and Figure 56, PhOc pair combination outperforms the 

others in term of PF, and PrOp pair combination outperforms the others in term of LG. 

Table 26: Path traversal and influence pair for composite analysis 

Combination of path traversal and neighborhood influence   
No 

  
SUT PhOp PhOc PrOp PrOc 

    PF-
Avg2 

LG-
Avg2 

PF-
Avg2 

LG-
Avg2 

PF-
Avg2 

LG-
Avg2 

PF-
Avg2 

LG-
Avg2 

1 mm-f 12.46 10.17 12.63 9.17 12.49 10.53 12.70 8.91 
2 mm-i 12.41 15.94 12.64 10.53 12.44 16.29 12.58 11.46 
3 mt 19.25 19.52 19.35 19.58 19.28 18.44 19.33 20.09 
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Figure 51: Composite analysis of effectiveness for mm-f 
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Figure 52: Composite analysis of efficiency for mm-f 
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Figure 53: Composite analysis of effectiveness for mm-i 
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Figure 54: Composite analysis of efficiency for mm-i 
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Figure 55: Composite analysis of effectiveness for mt 
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Figure 56: Composite analysis of efficiency for mt 

5.5.9. Comparison with Other Works 

In tr SUT (i.e., “the name of the program”), the target path that leads to equilateral 

triangle is the most difficult path to cover by random testing [22], since the path is 

covered if and only if the three input parameters are positive and equal. The probability of 

randomly covering this path is 2-30 (that is (215*1*1)/(215*215*215) where each positive 

integer is 15 bits). Thus, based on the theory of probability, it would take random testing 

230 test cases to reach the target. Using our test generator6, it takes only 180 test cases (6 

                                                 
6 In the set of comparisons presented in this section, we use fitness function number 30; that is considered to 

be the most optimal and representative candidate, i.e. in terms of effectiveness and efficiency, for 

comparator to these selected previous works, i.e. Pei’s and Lin’s works. 
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generations with 30 individuals, i.e. test cases, each) on the average to find the required 

target path, as well as other target paths (see Table 27). 

Table 27: Comparison between Lin’s work and ours 

  Our approach Lin’s work 
No Target Path Found in gen 

(avg of 3 runs) 
No of test 
data 

Found in gen No of test 
data 

1 1-2-4-6-8 4 120 10 10100 
2 All paths in 

Lin’s work 
4 120 10 10100 

 

In Pei’s work [36], there are 21 target paths, where 8 of them are infeasible, in testing a 

minimum-maximum (mm) program. Among the feasible target paths, the last three paths 

are the most difficult ones to cover as reported in his work. Thus, we use these target 

paths for comparison (Table 28) 

Table 28: Comparison between Pei’s work and ours 

Our approach Pei94 No Target 
Path Population Results out 

of gen# 
Population Results out of gen# 

30 3 100 15-gen (1429 runs) 1 0-1-3-5-6-
1-2-5-6-7   50 68-gen (3042 runs) 

30 2 500 2-gen (1385 runs) 2 0-1-3-5-6-
1-3-4-6-7   50 79-gen (3512 runs) 

3 0-1-3-5-6-
1-3-5-6-7 

30 8 1000 14-gen (14986 runs) 

4 All three 
paths 

30 7   
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The results on the Table 28 show that Pei’s test generator obtains the three target paths 

within 15, 2, and 14 generations on the average, respectively. While with our test 

generator, the average of three runs shows that the respective target paths were found 

within 3, 2, and 8 generations with smaller population sizes. Please note that since Pei’s 

approach works on a single target path at a time. For more fairness, we conducted an 

experiment having one target path at a time. We have also conducted another experiment 

having all three target paths at one time. The results are shown in Table 28. Row no 4 of 

the table shows our generator was able to find all of them within 7 generations on the 

average. 

Table 28 shows that the number of generations needed to cover a certain path depends on 

its level of difficulty; since Pei reported that 0-1-3-5-6-1-3-5-6-7 path is the most difficult 

one [36]. 

Table 29 depicts the detailed results of the different runs of our test generator, over 20 

runs; trying to cover the three most difficult target paths in Pei’s work either by a single 

path or all paths at a time. This table is meant to show the consistency of the results. 

Table 29: The results of our work using candidate index 30 over 20 runs for minimum-maximum 

The last three and most difficult paths in Pei’s work 
0-1-3-5-6-1-2-5-
6-7 path 

0-1-3-5-6-1-3-
4-6-7 path 

0-1-3-5-6-1-3-5-
6-7 path All paths Run 

Pop 
30 

Pop 
50 

Pop 
100 

Pop 
30 

Pop 
50 

Pop 
100 

Pop 
30 

Pop 
50 

Pop 
100 

Pop 
30 

Pop 
50 

Pop 
100 

Avg 2.85 2.05 1.35 2.25 2.20 1.45 7.55 5.25 3.60 7.30 6.25 3.55 
Std 1.95 0.83 0.49 1.25 1.20 0.60 10.11 2.02 1.54 3.45 3.63 1.93 
Min 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 1.00 1.00 1.00 1.00 
Max 8.00 3.00 2.00 5.00 5.00 3.00 47.00 9.00 7.00 17.00 14.00 8.00 



133 

 

                                                

On the average, the larger population sizes the smaller number of generations required to 

find the target path(s). 

In Lin’s work, the “equilateral” target path of a triangle classifier program was selected to 

show the ability of searching for test cases for a specific path by using genetic algorithms 

compared to random testing. Hence, we use the same target path to compare Lin’s work 

with ours. Table 27 shows the comparison. 

Lin’s test data generator was able to cover the target path after 10 generations, with a 

1000 individuals each; that is a total of101007 test data on average. Our generator, 

however, was able to cover the target path using only 120 test cases (that is four 

generations, with 30 individuals each), on an average of four runs. Moreover, since Lin’s 

approach works on a single target path at a time, we conducted an experiment having one 

target path at a time. 

Table 30, below, shows the results of our generator, based on 20 runs, in trying to cover 

only the “equilateral” target path. The table also shows the results when trying to satisfy 

all target paths at a time. 

 

 

 

 
7 Lin’s generator found the required target path in the 11th generation in a 100th individual. 
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Table 30: The results of our work after 20 runs for triangle classifier 

Target paths 
1-2-4-6-8 path All paths Run Pop 

30 
Pop 
50 

Pop 
100 

Pop 
30 

Pop 
50 

Pop 
100 

Avg 6.35 5.35 3.45 5.90 5.50 3.80 
Std 4.09 1.84 1.67 2.99 2.70 1.91 
Min 2.00 2.00 1.00 3.00 2.00 1.00 
Max 21.00 9.00 7.00 13.00 13.00 9.00 

 

On the average, the larger the population sizes the smaller number of generations required 

to find the target path(s), which also supported by smaller standard deviation. 

5.5.10. Conclusion on Observations 

In general, our candidate fitness functions showed to be effective and efficient in 

handling the required feasible target paths, regardless of the existence of infeasible paths, 

the path length, and the compound predicates complexity. 

The existence of infeasible paths, if any, is not hindering the test data generator to find all 

given feasible target paths rather it is helping in exploring the search space. In this case, 

the candidates that employ rewarding scheme seemed to be more effective in exploring 

the search space. 

In general, predicate-wise candidates are slightly more effective than the path-wise ones, 

while the path-wise candidates are more efficient than the predicate-wise ones. 

On the average, the fitness functions that are utilizing neighborhood influence are more 

effective than otherwise, but not more efficient due to more computation time. 
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Generally, candidates applying rewarding scheme are better than their counterparts. 

Violation-based weighting is the second best after the static one. 

Usually, many target paths are satisfied by individuals in the first generation. This is due 

to the initial set of target paths that is relatively large, combined with the exploration 

attained by the randomized selection of the initial population. Later on, the set of target 

paths becomes smaller as previously satisfied target paths are removed form the set. For 

example in bubble sort, almost all (2.98 out of 3) feasible target paths were found within 

the first 2 generations, which means that these paths are easy to find randomly. 

Increasing the number of target paths, especially the infeasible ones, increases the 

computation time, since the complexity of the calculation of a candidate is proportional to 

the number of target paths (for instance, refer to mt). 

The type of the predicate influences the search progress: composed predicates (for 

instance, refer to tr and mt) with the logical operator AND and predicates involving 

equality relational operator are harder to solve and tend to generate a higher lack of 

progress in the search. 

Deeper predicates through the path are harder to satisfy. Longer paths have more 

constraints to satisfy (for instance, refer to the target paths for mt). 
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CHAPTER 6  

CONCLUSION 

6.1. Introduction 

This chapter presents a summary of our major contributions in this thesis work to the 

software testing community. It also provides a few suggestions for future research 

directions.  

6.2. Summary of Contributions 

The thesis research has resulted in the following contributions to knowledge and 

tools: 

1) Proposed a set of attributes for assessing and comparing GA-based test data 

generators. 

2) Presented an extensive critical survey and evaluation (in light of the proposed 

attributes) of the state-of-the-art GA based test data generators. 

3) Presented a GA-based test data generator that is capable of to generating multiple test 

data to cover multiple target paths at one run. 

4) Demonstrated the capabilities of the proposed approach through empirical validation 

and compared a number of variations of the proposed generator. The variations of the 
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generator provide flexibilities in applying: traversal technique, weighting scheme, and 

rewarding scheme. 

5) Reported promising experimental results that show that our test data generator is more 

effective and more efficient than existing generators; due to that fact that it allows 

covering multiple target paths with less number of test data generated. 

6.3. Limitations and Further Works 

The following are the limitations of the work: 

 Manual CFG construction takes more time to do and reduces the generator scalability. 

 Manual target paths generation requires tester creativity (since it is a tricky job to trap 

any potentially errors) and limits the scalability of generator. 

 Manual program instrumentation. This process is a programming language dependent 

work, which must be done carefully such that it is not changing the semantic of the 

program. Hence, manual attempt needs extra work and time. Furthermore, it decreases 

the generator scalability. 

 With regard to predicate-wise traversal, our fitness function does not consider the 

matched subpaths that have unmatched positions for a positive contribution to the 

fitness value. It only considers those subpaths that have the same positions. 

Future Works will try to address the above limitations. Moreover, we will also try to 

investigate capabilities to allow automatic identification of potential infeasible program 

paths. Testing object oriented software will be another objective of our future research. 
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Considering matching subpaths that do not have matched positions will be given a high 

priority in our future work. 
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APPENDIX A 

SOFTWARE UNDER TESTS (SUTs) 
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A.1. Minimum-maximum (minimaxi.m) 

function [traversedPath, miniMaxi] = minimaxi(num) 
 
numLength = length(num); 
mini = num(1); 
maxi = num(1); 
idx = 2; 
traversedPath = []; % traversedPath contains branch# and its corresponding branchVal. 
 
traversedPath = [traversedPath 1 fitnessMiniMaxi(1, [idx numLength])]; % instrument 
while (idx <= numLength) % Branching #1 
    
    traversedPath = [traversedPath 2 fitnessMiniMaxi(2, [maxi num(idx)])]; % instrument 
    if maxi < num(idx) % Branching #2 
        maxi = num(idx); 
    end 
     
    traversedPath = [traversedPath 3 fitnessMiniMaxi(3, [mini num(idx)])]; % instrument 
    if mini > num(idx) % Branching #3 
        mini = num(idx); 
    end 
 
    idx = idx+1; 
    traversedPath = [traversedPath 1 fitnessMiniMaxi(1, [idx numLength])]; % instrument 
end % while end 
 
miniMaxi = [mini maxi]; 

Figure 57: Source code of minimum-maximum 
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Figure 58: CFG of minimum-maximum 
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PS = { 
    % 1-7 
    [1 1]; 
    % 1-2-3-5-7 
    [1 0 2 0 3 0 1 1]; % Infeasible path 
    % 1-2-3-6-7 
    [1 0 2 0 3 1 1 1]; 
    % 1-2-4-5-7 
    [1 0 2 1 3 0 1 1]; 
    % 1-2-4-6-7 
    [1 0 2 1 3 1 1 1]; 
    % 1-2-3-5-2-3-5-7 
    [1 0 2 0 3 0 1 0 2 0 3 0 1 1]; % Infeasible path 
    % 1-2-3-5-2-3-6-7 
    [1 0 2 0 3 0 1 0 2 0 3 1 1 1]; % Infeasible path 
    % 1-2-3-5-2-4-5-7 
    [1 0 2 0 3 0 1 0 2 1 3 0 1 1]; % Infeasible path 
    % 1-2-3-5-2-4-6-7 
    [1 0 2 0 3 0 1 0 2 1 3 1 1 1]; % Infeasible path 
    % 1-2-3-6-2-3-5-7 
    [1 0 2 0 3 1 1 0 2 0 3 0 1 1]; % Infeasible path 
    % 1-2-3-6-2-3-6-7 
    [1 0 2 0 3 1 1 0 2 0 3 1 1 1]; 
    % 1-2-3-6-2-4-5-7 
    [1 0 2 0 3 1 1 0 2 1 3 0 1 1]; 
    % 1-2-3-6-2-4-6-7 
    [1 0 2 0 3 1 1 0 2 1 3 1 1 1]; 
    % 1-2-4-5-2-3-5-7 
    [1 0 2 1 3 0 1 0 2 0 3 0 1 1]; % Infeasible path 
    % 0-1-3-4-6-1-2-5-6-7 
    [1 0 2 1 3 0 1 0 2 0 3 1 1 1]; 
    % 0-1-3-4-6-1-3-4-6-7 
    [1 0 2 1 3 0 1 0 2 1 3 0 1 1]; 
    % 0-1-3-4-6-1-3-5-6-7 
    [1 0 2 1 3 0 1 0 2 1 3 1 1 1]; 
    % 0-1-3-5-6-1-2-4-6-7 
    [1 0 2 1 3 1 1 0 2 0 3 0 1 1]; % Infeasible path 
    % 0-1-3-5-6-1-2-5-6-7 
    [1 0 2 1 3 1 1 0 2 0 3 1 1 1]; 
    % 0-1-3-5-6-1-3-4-6-7 
    [1 0 2 1 3 1 1 0 2 1 3 0 1 1]; 
    % 0-1-3-5-6-1-3-5-6-7 
    [1 0 2 1 3 1 1 0 2 1 3 1 1 1] 
}; 

Figure 59: Selected target paths of minimum-maximum 
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A.2. Triangle Classifier (triangle.m) 

function [traversedPath, type] = triangle(sideLengths) 
 
traversedPath = []; 
A = sideLengths(1); % First side 
B = sideLengths(2); % Second side 
C = sideLengths(3); % Third side 
 
traversedPath = [traversedPath 1 fitnessTriangle(1, A, B, C)]; % instrument Branch # 1 
if ((A+B > C) & (B+C > A) & (C+A > B)) % Branch # 1 
    traversedPath = [traversedPath 2 fitnessTriangle(2, A, B, C)]; % instrument Branch # 2 
    if ((A ~= B) & (B ~= C) & (C ~= A)) % Branch # 2 
        type = 'Scalene'; 
    else 
        traversedPath = [traversedPath 3 fitnessTriangle(3, A, B, C)]; % instrument Branch # 3 
        if (((A == B) & (B ~= C)) | ((B == C) & (C ~= A)) | ((C == A) & (A ~= B))) % Branch # 
3 
            type = 'Isosceles'; 
        else 
            type = 'Equilateral'; 
        end 
    end 
else 
    type = 'Not a triangle'; 
end 

Figure 60: Source code of triangle classifier 
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Figure 61: CFG of triangle classifier 
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PS = { 
      % 1-7-8 
      [1 1]; 
      % 1-2-3-8 
      [1 0 2 0]; 
      % 1-2-4-6-8 
      [1 0 2 1 3 1]; 
      % 1-2-4-5-8 
      [1 0 2 1 3 0] 
  }; 

Figure 62: Selected target paths of triangle classifier 
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A.3. Bubble Sort (bubble.m) 

function [traversedPath, sortedArray] = bubble(anyArray) 
%function sortedArray = bubble(anyArray) 
 
sorted = 0; % 0 means false 
i = 1; n = length(anyArray); 
traversedPath = []; 
 
traversedPath = [traversedPath 1 fitnessBubble(1, [i (n-1) ~sorted])]; % instrument Branch # 1 
while ((i <= (n-1)) & ~sorted), % Branch # 1 
    sorted = 1; 
     
    j = n; 
    traversedPath = [traversedPath 2 fitnessBubble(2, [j (i+1)])]; % instrument Branch # 2 
    for j=n:-1:i+1 % Branch # 2 
         
        traversedPath = [traversedPath 3 fitnessBubble(3, [anyArray(j) anyArray(j-1)])]; % 
instrument Branch # 3 
        if (anyArray(j) < anyArray(j-1)) % Branch # 3 
            %exchange(anyArray(j), anyArray(j-1)); 
            temp = anyArray(j); 
            anyArray(j) = anyArray(j-1); 
            anyArray(j-1) = temp; 
            sorted = 0; 
        end 
         
        traversedPath = [traversedPath 2 fitnessBubble(2, [(j-1) (i+1)])]; % instrument Branch # 2 
    end 
     
    i = i + 1; 
    traversedPath = [traversedPath 1 fitnessBubble(1, [i (n-1) ~sorted])]; % instrument Branch # 
1 
end 
sortedArray = anyArray; 

Figure 63: Source code of bubble sort 
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Figure 64: CFG of bubble sort 
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PS = { ... 
% 1-7 
  [1 1]; 
% 1-2-6-7 
  [1 0 2 1 1 1]; 
 
% Target paths to repeat their sub-paths 
% 1-2-3-4-6-7 
  [1 0 2 0 3 0 2 1 1 1]; 
% 1-2-3-5-6-7 
  [1 0 2 0 3 1 2 1 1 1]; 
% 1-2-3-4-3-5-6-7 
  [1 0 2 0 3 0 2 0 3 1 2 1 1 1]; 
% 1-2-3-5-3-4-6-7 
  [1 0 2 0 3 1 2 0 3 0 2 1 1 1]; 
% 1-2-3-4-3-4-6-7 
  [1 0 2 0 3 0 2 0 3 0 2 1 1 1]; 
% 1-2-3-5-3-5-6-7 
  [1 0 2 0 3 1 2 0 3 1 2 1 1 1]; 
% 1-2-3-4-3-5-3-5-6-7 
  [1 0 2 0 3 0 2 0 3 1 2 0 3 1 2 1 1 1]; 
% 1-2-3-5-3-5-3-4-6-7 
  [1 0 2 0 3 1 2 0 3 1 2 0 3 0 2 1 1 1]; 
% 1-2-3-4-3-4-3-5-6-7 
  [1 0 2 0 3 0 2 0 3 0 2 0 3 1 2 1 1 1]; 
% 1-2-3-5-3-5-3-4-6-7 
  [1 0 2 0 3 1 2 0 3 1 2 0 3 0 2 1 1 1]; 
% 1-2-3-4-3-5-3-4-6-7 
  [1 0 2 0 3 0 2 0 3 1 2 0 3 0 2 1 1 1]; 
% 1-2-3-5-3-4-3-5-6-7 
  [1 0 2 0 3 1 2 0 3 0 2 0 3 1 2 1 1 1]; 
}; 

Figure 65: Selected target paths of bubble sort 
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A.4. Insertion Sort (insertion.m) 

function [traversedPath, sortedArray] = insertion(anyArray) 
%function sortedArray = insertion(anyArray) 
 
k = 1; % The smallest integer increment 
traversedPath = []; 
n = length(anyArray); 
 
i = 2; 
traversedPath = [traversedPath 1 fitnessInsertion(1, [i n])]; % instrument Branch # 1 
for i=2:n % Branch # 1 
    x = anyArray(i); 
    j = i - 1; 
     
    traversedPath = [traversedPath 2 fitnessInsertion(2, [j anyArray(j) x])]; % instrument Branch 
# 2 
    while ((j > 0) & (anyArray(j) > x)), % Branch # 2 
        anyArray(j+1) = anyArray(j); 
        j = j - 1; 
         
        if (j > 0), % Added for instrumentation purpose only 
            traversedPath = [traversedPath 2 fitnessInsertion(2, [j anyArray(j) x])]; % instrument 
Branch # 2 
        else 
            traversedPath = [traversedPath 2 k]; % anyArray(j) is undefined, because j=0. 
        end 
    end 
    anyArray(j+1) = x; 
     
    traversedPath = [traversedPath 1 fitnessInsertion(1, [(i+1) n])]; % instrument Branch # 1 
end 
sortedArray = anyArray; 

Figure 66: Source code of insertion sort 
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Figure 67: CFG of insertion sort 

PS = { 
    % 1 5 
      [1 1]; 
    % 1 2 4 5 
      [1 0 2 1 1 1]; 
    % 1 2 3 4 5 
      [1 0 2 0 2 1 1 1]; 
    % 1 2 3 3 4 5 
      [1 0 2 0 2 0 2 1 1 1]; 
    % 1 2 4 2 3 4 5 
      [1 0 2 1 1 0 2 0 2 1 1 1]; 
    % 1 2 3 4 2 4 5 
      [1 0 2 0 2 1 1 0 2 1 1 1]; 
  }; 

Figure 68: Selected target paths of insertion sort 
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A.5. Binary Search (binary.m) 

function [traversedPath, itemIndex] = binary(itemNumbers) 
%function itemIndex = binary(item, numbers) 
 
item = itemNumbers(1); 
numbers = itemNumbers(1,2:end); 
 
lowerIdx = 1; 
upperIdx = length(numbers); 
traversedPath = []; 
 
traversedPath = [traversedPath 1 fitnessBinary(1, [lowerIdx upperIdx])]; % instrument Branch 
# 1 
while (lowerIdx ~= upperIdx), % Branch # 1 
     
    temp = lowerIdx + upperIdx; % additional statement 
    if (mod(temp, 2) ~= 0), temp = temp - 1; end % additional statement 
    idx = temp / 2; 
     
    traversedPath = [traversedPath 2 fitnessBinary(2, [numbers(idx) item])]; % instrument 
Branch # 2 
    if (numbers(idx) < item), % Branch # 2 
        lowerIdx = idx + 1; 
    else 
        upperIdx = idx; 
    end 
     
    traversedPath = [traversedPath 1 fitnessBinary(1, [lowerIdx upperIdx])]; % instrument 
Branch # 1 
end 
 
if (item == numbers(lowerIdx)), % Additional code that returns -1 if the item is not found 
    itemIndex = lowerIdx; 
else 
    itemIndex = -1; 
end 

Figure 69: Source code of binary search 
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Figure 70: CFG of binary search 

PS = { 
    % 1 5 
    [1 1]; 
    % 1 2 3 5 
    [1 0 2 0 1 1]; 
    % 1 2 4 5 
    [1 0 2 1 1 1]; 
    % 1 2 3 2 3 5 
    [1 0 2 0 1 0 2 0 1 1]; 
    % 1 2 4 2 4 5 
    [1 0 2 1 1 0 2 1 1 1]; 
    % 1 2 3 2 4 5 
    [1 0 2 0 1 0 2 1 1 1]; 
    % 1 2 4 2 3 5 
    [1 0 2 1 1 0 2 0 1 1]; 
  }; 

Figure 71: Selected target paths of binary search 
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A.6. Minimum-Maximum and Triangle Classifier (mmTriangle.m) 

function [traversedPath, minimaxi, type] = program6(num) 
 
numLength = length(num); 
mini = num(1); 
maxi = num(1); 
idx = 2; 
traversedPath = []; % traversedPath contains branch# and its corresponding branchVal. 
 
traversedPath = [traversedPath 1 fitnessMiniMaxi(1, [idx numLength])]; % instrument 
while (idx <= numLength) % Branching #1 
    
    traversedPath = [traversedPath 2 fitnessMiniMaxi(2, [maxi num(idx)])]; % instrument 
    if maxi < num(idx) % Branching #2 
        maxi = num(idx); 
    end 
     
    traversedPath = [traversedPath 3 fitnessMiniMaxi(3, [mini num(idx)])]; % instrument 
    if mini > num(idx) % Branching #3 
        mini = num(idx); 
    end 
 
    idx = idx+1; 
    traversedPath = [traversedPath 1 fitnessMiniMaxi(1, [idx numLength])]; % instrument 
end % while end 
 
minimaxi = [mini maxi]; 
A = num(1); % First side 
B = num(2); % Second side 
C = num(3); % Third side 
 
traversedPath = [traversedPath 4 fitnessTriangle(1, A, B, C)]; % instrument Branch # 4 
if ((A+B > C) & (B+C > A) & (C+A > B)) % Branch # 4 
     
    traversedPath = [traversedPath 5 fitnessTriangle(2, A, B, C)]; % instrument Branch # 5 
    if ((A ~= B) & (B ~= C) & (C ~= A)) % Branch # 5 
        type = 'Scalene'; 
    else 
         
        traversedPath = [traversedPath 6 fitnessTriangle(3, A, B, C)]; % instrument Branch # 6 
        if (((A == B) & (B ~= C)) | ((B == C) & (C ~= A)) | ((C == A) & (A ~= B))) % Branch # 
6 
            type = 'Isosceles'; 
        else 
            type = 'Equilateral'; 
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        end 
    end 
else 
    type = 'Not a triangle'; 
end 

Figure 72: Source code of mmTriangle 

 

Figure 73: CFG of mmTriangle 
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PS = { 
    % First combination: Tail => Equilateral 
    % 0-7 
    [1 1 4 0 5 1 6 1]; 
    % 0-1-2-4-6-7 
    [1 0 2 0 3 0 1 1 4 0 5 1 6 1]; % Infeasible path 
    % 0-1-2-5-6-7 
    [1 0 2 0 3 1 1 1 4 0 5 1 6 1]; 
    % 0-1-3-4-6-7 
    [1 0 2 1 3 0 1 1 4 0 5 1 6 1]; 
    % 0-1-3-5-6-7 
    [1 0 2 1 3 1 1 1 4 0 5 1 6 1]; 
    % 0-1-2-4-6-1-2-4-6-7 
    [1 0 2 0 3 0 1 0 2 0 3 0 1 1 4 0 5 1 6 1]; % Infeasible path 
    % 0-1-2-4-6-1-2-5-6-7 
    [1 0 2 0 3 0 1 0 2 0 3 1 1 1 4 0 5 1 6 1]; % Infeasible path 
    % 0-1-2-4-6-1-3-4-6-7 
    [1 0 2 0 3 0 1 0 2 1 3 0 1 1 4 0 5 1 6 1]; % Infeasible path 
    % 0-1-2-4-6-1-3-5-6-7 
    [1 0 2 0 3 0 1 0 2 1 3 1 1 1 4 0 5 1 6 1]; % Infeasible path 
    % 0-1-2-5-6-1-2-4-6-7 
    [1 0 2 0 3 1 1 0 2 0 3 0 1 1 4 0 5 1 6 1]; % Infeasible path 
    % 0-1-2-5-6-1-2-5-6-7 
    [1 0 2 0 3 1 1 0 2 0 3 1 1 1 4 0 5 1 6 1]; 
    % 0-1-2-5-6-1-3-4-6-7 
    [1 0 2 0 3 1 1 0 2 1 3 0 1 1 4 0 5 1 6 1]; 
    % 0-1-2-5-6-1-3-5-6-7 
    [1 0 2 0 3 1 1 0 2 1 3 1 1 1 4 0 5 1 6 1]; 
    % 0-1-3-4-6-1-2-4-6-7 
    [1 0 2 1 3 0 1 0 2 0 3 0 1 1 4 0 5 1 6 1]; % Infeasible path 
    % 0-1-3-4-6-1-2-5-6-7 
    [1 0 2 1 3 0 1 0 2 0 3 1 1 1 4 0 5 1 6 1]; 
    % 0-1-3-4-6-1-3-4-6-7 
    [1 0 2 1 3 0 1 0 2 1 3 0 1 1 4 0 5 1 6 1]; 
    % 0-1-3-4-6-1-3-5-6-7 
    [1 0 2 1 3 0 1 0 2 1 3 1 1 1 4 0 5 1 6 1]; 
    % 0-1-3-5-6-1-2-4-6-7 
    [1 0 2 1 3 1 1 0 2 0 3 0 1 1 4 0 5 1 6 1]; % Infeasible path 
    % 0-1-3-5-6-1-2-5-6-7 
    [1 0 2 1 3 1 1 0 2 0 3 1 1 1 4 0 5 1 6 1]; 
    % 0-1-3-5-6-1-3-4-6-7 
    [1 0 2 1 3 1 1 0 2 1 3 0 1 1 4 0 5 1 6 1]; 
    % 0-1-3-5-6-1-3-5-6-7 
    [1 0 2 1 3 1 1 0 2 1 3 1 1 1 4 0 5 1 6 1]; 
     
    % Second combination: Tail => Scalene 
    % 0-7 
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    [1 1 4 0 5 0]; 
    % 0-1-2-4-6-7 
    [1 0 2 0 3 0 1 1 4 0 5 0]; % Infeasible path 
    % 0-1-2-5-6-7 
    [1 0 2 0 3 1 1 1 4 0 5 0]; 
    % 0-1-3-4-6-7 
    [1 0 2 1 3 0 1 1 4 0 5 0]; 
    % 0-1-3-5-6-7 
    [1 0 2 1 3 1 1 1 4 0 5 0]; 
    % 0-1-2-4-6-1-2-4-6-7 
    [1 0 2 0 3 0 1 0 2 0 3 0 1 1 4 0 5 0]; % Infeasible path 
    % 0-1-2-4-6-1-2-5-6-7 
    [1 0 2 0 3 0 1 0 2 0 3 1 1 1 4 0 5 0]; % Infeasible path 
    % 0-1-2-4-6-1-3-4-6-7 
    [1 0 2 0 3 0 1 0 2 1 3 0 1 1 4 0 5 0]; % Infeasible path 
    % 0-1-2-4-6-1-3-5-6-7 
    [1 0 2 0 3 0 1 0 2 1 3 1 1 1 4 0 5 0]; % Infeasible path 
    % 0-1-2-5-6-1-2-4-6-7 
    [1 0 2 0 3 1 1 0 2 0 3 0 1 1 4 0 5 0]; % Infeasible path 
    % 0-1-2-5-6-1-2-5-6-7 
    [1 0 2 0 3 1 1 0 2 0 3 1 1 1 4 0 5 0]; 
    % 0-1-2-5-6-1-3-4-6-7 
    [1 0 2 0 3 1 1 0 2 1 3 0 1 1 4 0 5 0]; 
    % 0-1-2-5-6-1-3-5-6-7 
    [1 0 2 0 3 1 1 0 2 1 3 1 1 1 4 0 5 0]; 
    % 0-1-3-4-6-1-2-4-6-7 
    [1 0 2 1 3 0 1 0 2 0 3 0 1 1 4 0 5 0]; % Infeasible path 
    % 0-1-3-4-6-1-2-5-6-7 
    [1 0 2 1 3 0 1 0 2 0 3 1 1 1 4 0 5 0]; 
    % 0-1-3-4-6-1-3-4-6-7 
    [1 0 2 1 3 0 1 0 2 1 3 0 1 1 4 0 5 0]; 
    % 0-1-3-4-6-1-3-5-6-7 
    [1 0 2 1 3 0 1 0 2 1 3 1 1 1 4 0 5 0]; 
    % 0-1-3-5-6-1-2-4-6-7 
    [1 0 2 1 3 1 1 0 2 0 3 0 1 1 4 0 5 0]; % Infeasible path 
    % 0-1-3-5-6-1-2-5-6-7 
    [1 0 2 1 3 1 1 0 2 0 3 1 1 1 4 0 5 0]; 
    % 0-1-3-5-6-1-3-4-6-7 
    [1 0 2 1 3 1 1 0 2 1 3 0 1 1 4 0 5 0]; 
    % 0-1-3-5-6-1-3-5-6-7 
    [1 0 2 1 3 1 1 0 2 1 3 1 1 1 4 0 5 0]; 
     
    % Third combination: Tail => Not Triangle 
    % 0-7 
    [1 1 4 1]; 
    % 0-1-2-4-6-7 
    [1 0 2 0 3 0 1 1 4 1]; % Infeasible path 
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    % 0-1-2-5-6-7 
    [1 0 2 0 3 1 1 1 4 1]; 
    % 0-1-3-4-6-7 
    [1 0 2 1 3 0 1 1 4 1]; 
    % 0-1-3-5-6-7 
    [1 0 2 1 3 1 1 1 4 1]; 
    % 0-1-2-4-6-1-2-4-6-7 
    [1 0 2 0 3 0 1 0 2 0 3 0 1 1 4 1]; % Infeasible path 
    % 0-1-2-4-6-1-2-5-6-7 
    [1 0 2 0 3 0 1 0 2 0 3 1 1 1 4 1]; % Infeasible path 
    % 0-1-2-4-6-1-3-4-6-7 
    [1 0 2 0 3 0 1 0 2 1 3 0 1 1 4 1]; % Infeasible path 
    % 0-1-2-4-6-1-3-5-6-7 
    [1 0 2 0 3 0 1 0 2 1 3 1 1 1 4 1]; % Infeasible path 
    % 0-1-2-5-6-1-2-4-6-7 
    [1 0 2 0 3 1 1 0 2 0 3 0 1 1 4 1]; % Infeasible path 
    % 0-1-2-5-6-1-2-5-6-7 
    [1 0 2 0 3 1 1 0 2 0 3 1 1 1 4 1]; 
    % 0-1-2-5-6-1-3-4-6-7 
    [1 0 2 0 3 1 1 0 2 1 3 0 1 1 4 1]; 
    % 0-1-2-5-6-1-3-5-6-7 
    [1 0 2 0 3 1 1 0 2 1 3 1 1 1 4 1]; 
    % 0-1-3-4-6-1-2-4-6-7 
    [1 0 2 1 3 0 1 0 2 0 3 0 1 1 4 1]; % Infeasible path 
    % 0-1-3-4-6-1-2-5-6-7 
    [1 0 2 1 3 0 1 0 2 0 3 1 1 1 4 1]; 
    % 0-1-3-4-6-1-3-4-6-7 
    [1 0 2 1 3 0 1 0 2 1 3 0 1 1 4 1]; 
    % 0-1-3-4-6-1-3-5-6-7 
    [1 0 2 1 3 0 1 0 2 1 3 1 1 1 4 1]; 
    % 0-1-3-5-6-1-2-4-6-7 
    [1 0 2 1 3 1 1 0 2 0 3 0 1 1 4 1]; % Infeasible path 
    % 0-1-3-5-6-1-2-5-6-7 
    [1 0 2 1 3 1 1 0 2 0 3 1 1 1 4 1]; 
    % 0-1-3-5-6-1-3-4-6-7 
    [1 0 2 1 3 1 1 0 2 1 3 0 1 1 4 1]; 
    % 0-1-3-5-6-1-3-5-6-7 
    [1 0 2 1 3 1 1 0 2 1 3 1 1 1 4 1]; 
     
    % Forth combination: Tail => Isosceles 
    % 0-7 
    [1 1 4 0 5 1 6 0]; 
    % 0-1-2-4-6-7 
    [1 0 2 0 3 0 1 1 4 0 5 1 6 0]; % Infeasible path 
    % 0-1-2-5-6-7 
    [1 0 2 0 3 1 1 1 4 0 5 1 6 0]; 
    % 0-1-3-4-6-7 
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    [1 0 2 1 3 0 1 1 4 0 5 1 6 0]; 
    % 0-1-3-5-6-7 
    [1 0 2 1 3 1 1 1 4 0 5 1 6 0]; 
    % 0-1-2-4-6-1-2-4-6-7 
    [1 0 2 0 3 0 1 0 2 0 3 0 1 1 4 0 5 1 6 0]; % Infeasible path 
    % 0-1-2-4-6-1-2-5-6-7 
    [1 0 2 0 3 0 1 0 2 0 3 1 1 1 4 0 5 1 6 0]; % Infeasible path 
    % 0-1-2-4-6-1-3-4-6-7 
    [1 0 2 0 3 0 1 0 2 1 3 0 1 1 4 0 5 1 6 0]; % Infeasible path 
    % 0-1-2-4-6-1-3-5-6-7 
    [1 0 2 0 3 0 1 0 2 1 3 1 1 1 4 0 5 1 6 0]; % Infeasible path 
    % 0-1-2-5-6-1-2-4-6-7 
    [1 0 2 0 3 1 1 0 2 0 3 0 1 1 4 0 5 1 6 0]; % Infeasible path 
    % 0-1-2-5-6-1-2-5-6-7 
    [1 0 2 0 3 1 1 0 2 0 3 1 1 1 4 0 5 1 6 0]; 
    % 0-1-2-5-6-1-3-4-6-7 
    [1 0 2 0 3 1 1 0 2 1 3 0 1 1 4 0 5 1 6 0]; 
    % 0-1-2-5-6-1-3-5-6-7 
    [1 0 2 0 3 1 1 0 2 1 3 1 1 1 4 0 5 1 6 0]; 
    % 0-1-3-4-6-1-2-4-6-7 
    [1 0 2 1 3 0 1 0 2 0 3 0 1 1 4 0 5 1 6 0]; % Infeasible path 
    % 0-1-3-4-6-1-2-5-6-7 
    [1 0 2 1 3 0 1 0 2 0 3 1 1 1 4 0 5 1 6 0]; 
    % 0-1-3-4-6-1-3-4-6-7 
    [1 0 2 1 3 0 1 0 2 1 3 0 1 1 4 0 5 1 6 0]; 
    % 0-1-3-4-6-1-3-5-6-7 
    [1 0 2 1 3 0 1 0 2 1 3 1 1 1 4 0 5 1 6 0]; 
    % 0-1-3-5-6-1-2-4-6-7 
    [1 0 2 1 3 1 1 0 2 0 3 0 1 1 4 0 5 1 6 0]; % Infeasible path 
    % 0-1-3-5-6-1-2-5-6-7 
    [1 0 2 1 3 1 1 0 2 0 3 1 1 1 4 0 5 1 6 0]; 
    % 0-1-3-5-6-1-3-4-6-7 
    [1 0 2 1 3 1 1 0 2 1 3 0 1 1 4 0 5 1 6 0]; 
    % 0-1-3-5-6-1-3-5-6-7 
    [1 0 2 1 3 1 1 0 2 1 3 1 1 1 4 0 5 1 6 0]; 
}; 

Figure 74: Selected target paths of mmTriangle 

 



 

 

APPENDIX B 

CONTROL LOGIC GRAPHS (CLGs) 
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B.1. Control Flow Graph (CFG) 

A control flow graph of program P is a directed graph G = (N, A, s, e) where: N is set 

of nodes, A is binary relation on N (a subset of N x N that referred to as a set of edges), s 

and e are, respectively, unique entry and unique exit node ( ). A node in N 

corresponds to the smallest single entry, single-exist executable part of a statement in P 

that can not be further decomposed; such a part is referred to as an instruction. A single 

instruction corresponds to an assignment statement, an input or output statement, or the 

<expression> part of a selection statement, e.g. IF-THEN-ELSE, or a looping statement, 

e.g. WHILE, in which case it is called a test instruction. An edge 

Nes ∈,

Ann ji ∈),(  

corresponds to a possible transfer of control from instruction ni to nj. An edge (ni, nj) is 

called a branch if ni is a test instruction, e.g. selection. Each branch in the CFG can be 

labeled by a predicate, referred to as a branch predicate, describing a condition under 

which the branch will be traversed. 

In a reduced CFG (hereafter CFG) of program, the edges of sequencing nodes are merged 

as a short sub-path and different branches, which include in selection or looping statement 

is taken as an independent sub-path separately. Each sub-path in the CFG can be labeled 

by certain number. In fact, a path in a CFG is a sequence of this kind of sub-path and the 

path is identified by the sequence of these labeled numbers. 

An input variable of a program P is a variable that appears in an input statement or it is in 

an input parameter of a function or procedure. Input variable may be of different types, 

e.g. integer, real, or Boolean. Let ),...,,( 21 nxxxI =  be a vector of input variables of 
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program P. The domain Dri of input variable xi is a set of all values which xi can hold. The 

domain D of a program means a cross product, i.e. rnrr DDDD ×××= ...21 . A single point 

x in the n-dimensional input space D, Dx∈ , is referred to as a program input. 

A path Pk in a CFG is a sequence ],...,,[ 10 kqkkk nnnP =  of instructions, such that nk0 = s, nkq 

= e, and for all i, 0 ≤ i < q, Ankinki ∈+ )1,( . Suppose Pi is a path through a program P. 

Then the path domain Di = D(Pi) for Pi is the subset of the input domain which causes Pi 

to be executed. The path computation Ci = C(Pi) for Pi is the function which is computed 

by the sequence of computations in Pi. A path is feasible if there exists a program input x 

for which the path is traversed during the program execution, otherwise the path is 

infeasible. 

 

B.2. Control Dependence Graph (CDG) 

Control dependence for a program is defined in terms of the program’s CFG and the 

post-dominance relation that exists among the nodes in the CFG. Given such a CFG, and 

nodes W and V in that graph, W is post-dominated by V if every directed path from W to 

the exit (not including W or exit) contains V. For statements (nodes) X and Y in a CFG, Y 

is control dependent on X if and only if (1) there exists a directed path P from X to Y with 

all Z in P (excluding X and Y) post-dominated by Y and (2) X is not post-dominated by 

Y. In a CDG, nodes represent statements, and edges represent the control dependencies 

between statements – an edge (X, Y) in a CDG means that Y is control dependent on X. 
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An acyclic path in the CDG from the root of the graph to a node in the graph contains a 

set of predicates that must be satisfied by an input that causes the statement associated 

with the node to be executed; such a path is called a control-dependence predicate path. 

Unstructured transfers of control, e.g. GOTO, CONTINUE, or BREAK, can cause the 

occurrence of more than one control-dependence predicate path for statements following 

the transfers. However, the number of control-dependence predicate paths is generally 

small. 
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