
GENETIC ALGORITHM BASED

TEST DATA GENERATOR

by

Irman Hermadi

A Thesis Presented to the

DEANSHIP OF GRADUATE STUDIES

In Partial Fulfillment of the Requirements

for the degree of

MASTER OF SCIENCE

IN

INFORMATION & COMPUTER SCIENCE DEPARTMENT

KING FAHD UNIVERSITY

OF PETROLEUM & MINERALS

Dhahran, Saudi Arabia

May 2004

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN 31261, SAUDI ARABIA

DEANSHIP OF GRADUATE STUDIES

This thesis, written by Irman Hermadi under the direction of his thesis advisor and

approved by his thesis committee, has been presented to and accepted by the Dean of

Graduate Studies, in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE.

Thesis Committee

Dr. Moataz A. Ahmed (Advisor)

Dr. Muhammad Alsuwaiyel (Member)

Dr. Jarallah Alghamdi (Member)

Dr. Kanaan Faisal
(Department Chairman)

Dr. Mohammad Al-Ohali
(Dean of Graduate Studies)

Date

iii

DEDICATION

This thesis is lovingly dedicated to my parents:

Mrs. Hj. Hatianah Rustandi, for all I am started in her arms.

&

H. Didi Rustandi, for his fervent love for my education.

iv

ACKNOWLEDGEMENTS

All thanks are due to Allah first and foremost for His countless blessing.

Acknowledgment is due to King Fahd University of Petroleum & Minerals for supporting

this research.

My unrestrained appreciation goes to my advisor, Dr. Moataz A. Ahmed, for all the help

and support he has given me throughout the course of this work and on several other

occasions. I simply cannot imagine how things would have proceeded without his help,

support, and patience. I also wish to thank my thesis committee members, Dr. Muhammad

Alsuwaiyel and Dr. Jarallah Alghamdi, for their help, support, and contributions.

I also acknowledge my many colleagues and friends as I had a pleasant, enjoyable and

fruitful company with them.

Finally, I wish to express my gratitude to my family members for being patient with me

and offering words of encouragements to spur my spirit at moments of depression.

v

TABLE OF CONTENTS

Page

DEDICATION ... iii

ACKNOWLEDGEMENTS ..iv

TABLE OF CONTENTS ...v

LIST OF TABLES ... viii

LIST OF FIGURES..x

THESIS ABSTRACT... xiii

ملخص الرسالة ...xiv

CHAPTER 1 INTRODUCTION..1

1.1. Software Testing..1

1.2. The Research Problem...2

1.3. Main Contributions..4

1.4. Organization of Thesis ..5

CHAPTER 2 SOFTWARE TESTING...6

2.1. Introduction ...6

2.2. Software Testing Techniques ..6

2.2.1. Static Analysis ..7

2.2.2. Dynamic Testing ..9

2.3. Test Data Generation...15

2.4. Automated Software Testing as a Search Problem ...17

2.5. Genetic Algorithms Based Test Data Generator ...18

CHAPTER 3 CRITICAL SURVEY OF GENETIC ALGORITHM BASED TEST DATA

GENERATORS..23

3.1. Introduction ...23

3.2. GA Based Test Data Generator Attributes ..23

3.3. GA Based Approaches to Test Data Generator...32

3.4. Conclusion on Existing GA Based Test Data Generators58

vi

CHAPTER 4 PROPOSED APPROACH ...60

4.1. Introduction ...60

4.2. The Problem ..60

4.3. Research Approach..62

4.3.1. Terminology ...62

4.3.2. Fitness Function Design ...66

4.4. Proposed Fitness Function Candidates..76

4.4.1. Fitness Function Candidates Roadmap ..78

4.4.2. Reduced Possible Fitness Function Candidates ...79

CHAPTER 5 EXPERIMENTS AND RESULTS ..80

5.1. Introduction ...80

5.2. Experiments Design...80

5.2.1. SUTs Preparation..82

5.2.2. GA Parameters Setup ...84

5.2.3. Things to Record ..85

5.3. Design and Implementation Issues..87

5.3.1. Generation and Selection of Target Paths ..87

5.3.2. Instrumentation of SUTs ..87

5.4. Graphs and Measurements ..87

5.4.1. GA and Fitness Function Parameters Setup ...88

5.4.2. Experiments..90

5.4.3. Binary Search (ns) ..90

5.4.4. Insertion Sort (is)..92

5.4.5. Triangle (tr) ..93

5.4.6. Minimaxi-f (mm-f)..94

5.4.7. Minimaxi-i (mm-i) ..95

5.4.8. Bubble Sort (bs)..100

5.4.9. Minimaxi-Tri (mm-t) ..102

5.5. Analysis of Results ..106

5.5.1. The Existence of Infeasible Paths...107

vii

5.5.2. Neighborhood Influence...109

5.5.3. Path Traversal Technique ...113

5.5.4. Weighting ...117

5.5.5. Rewarding...121

5.5.6. Predicate Type ..125

5.5.7. Path Length...125

5.5.8. Composite Analysis..125

5.5.9. Comparison with Other Works...130

5.5.10. Conclusion on Observations...134

CHAPTER 6 CONCLUSION ..136

6.1. Introduction ...136

6.2. Summary of Contributions ..136

6.3. Limitations and Further Works ...137

REFERENCES...139

APPENDIX A SOFTWARE UNDER TESTS (SUTs)..146

APPENDIX B CONTROL LOGIC GRAPHS (CLGs)..166

VITA...170

viii

LIST OF TABLES

Page

Table 1: Equivalent branch function ..34

Table 2: Attributes of Pei’s approach...35

Table 3: Attributes of Roper’s approach ..37

Table 4: Attributes of Jones’s approach ...39

Table 5: Attributes of Pargas’s approach ...42

Table 6: Korel’s fitness function ..44

Table 7: Attributes of Michael’s work ...45

Table 8: Predicate functions ...48

Table 9: Attributes of Bueno’s work ..49

Table 10: Attributes of Lin’s work...52

Table 11: Attributes of Wegener’s work ..55

Table 12: Attributes of Ghazi’s work...57

Table 13: Korel’s distance function ...63

Table 14: Possible fitness function combinations ..77

Table 15: Distance and violation computations roadmap ..78

Table 16: Final fitness computation roadmap ..79

Table 17: Fitness function candidates ..81

Table 18: GA parameters setup ..84

Table 19: GA’s and fitness function’s parameters possible values....................................88

Table 20: Effectiveness of parameter-value combinations ..89

Table 21: Experiment treatments..90

Table 22: The effect of neighborhood influence to PF and LG109

Table 23: The effect of path traversal technique to PF and LG114

Table 24: The effect of weighting to PF and LG..118

Table 25: The effect of rewarding to PF and LG ...121

Table 26: Path traversal and influence pair for composite analysis127

ix

Table 27: Comparison between Lin’s work and ours...131

Table 28: Comparison between Pei’s work and ours ...131

Table 29: The results of our work using candidate index 30 over 20 runs for minimum-

maximum..132

Table 30: The results of our work after 20 runs for triangle classifier.............................134

x

LIST OF FIGURES

Page

Figure 1: Basic GA Steps ...19

Figure 2: Path-wise vs. Predicate-wise traversal method...27

Figure 3: Example of control dependence graph..41

Figure 4: Illustration of recombination process in differential GA....................................44

Figure 5: CFG for a minimaxi SUT ...64

Figure 6: G2G achievement of binary search on the average of 10 runs91

Figure 7: G2G achievement of insertion sort on the average of 10 runs............................92

Figure 8: G2G achievement of triangle classifier on the average of 10 runs93

Figure 9: G2G achievement of minimaxi-f on the average over 20 runs...........................95

Figure 10: G2G achievement of minimaxi-i on the average over 20 runs96

Figure 11: Phi graph of mm-i for a particular run ..97

Figure 12: Best fitness graph of mm-i for a particular run ...97

Figure 13: Phi average (over 20 runs) graph of mm-i ..98

Figure 14: Phi average (over 20 runs, each has 100 generations) graph for each candidate

of mm-i..99

Figure 15: Best fitness average (over 20 runs) graph of mm-i ...99

Figure 16: Best fitness average (over 100 generations) graph for each candidate of mm-i

..100

Figure 17: G2G achievement of bubble sort on the average of 10 runs...........................101

Figure 18: G2G achievement of mt on the average over 20 runs.....................................102

Figure 19: Phi graph of mt for a particular run ..103

Figure 20: Best fitness graph of mt for a particular run ...103

Figure 21: Phi average (over 20 runs) graph of mt ..104

Figure 22: Phi average (over 100 generations) graph for each candidate of mt...............105

Figure 23: Best fitness average (over 20 runs) graph of mt ...105

Figure 24: Best fitness average (over 100 generations) graph for each candidate of mt..106

xi

Figure 25: The effect of infeasible path to effectiveness ...108

Figure 26: The effect of infeasible path to efficiency ..108

Figure 27: The effect of neighborhood influence to effectiveness for mm-f110

Figure 28: The effect of neighborhood influence to efficiency for mm-f.........................111

Figure 29: The effect of neighborhood influence to effectiveness for mm-i111

Figure 30: The effect of neighborhood influence to efficiency for mm-i.........................112

Figure 31: The effect of neighborhood influence to effectiveness for mt112

Figure 32: The effect of neighborhood influence to efficiency for mt113

Figure 33: The effect of path traversal method to effectiveness for mm-f114

Figure 34: The effect of path traversal method to efficiency for mm-f115

Figure 35: The effect of path traversal method to effectiveness for mm-i115

Figure 36: The effect of path traversal method to efficiency for mm-i116

Figure 37: The effect of path traversal method to effectiveness for mt............................116

Figure 38: The effect of path traversal method to efficiency for mt117

Figure 39: The effect of weighting to effectiveness for mm-f ..118

Figure 40: The effect of weighting to efficiency for mm-f ...119

Figure 41: The effect of weighting to effectiveness for mm-i ..119

Figure 42: The effect of weighting to efficiency for mm-i ...120

Figure 43: The effect of weighting to effectiveness for mt ..120

Figure 44: The effect of weighting to efficiency for mt ...121

Figure 45: The effect of rewarding to effectiveness for mm-f..122

Figure 46: The effect of rewarding to efficiency for mm-f...122

Figure 47: The effect of rewarding to effectiveness for mm-i..123

Figure 48: The effect of rewarding to efficiency for mm-i...123

Figure 49: The effect of rewarding to effectiveness for mt ..124

Figure 50: The effect of rewarding to efficiency for mt ...124

Figure 51: Composite analysis of effectiveness for mm-f ..127

Figure 52: Composite analysis of efficiency for mm-f ...128

Figure 53: Composite analysis of effectiveness for mm-i ..128

Figure 54: Composite analysis of efficiency for mm-i ...129

xii

Figure 55: Composite analysis of effectiveness for mt ..129

Figure 56: Composite analysis of efficiency for mt ...130

Figure 57: Source code of minimum-maximum ..147

Figure 58: CFG of minimum-maximum ..148

Figure 59: Selected target paths of minimum-maximum...149

Figure 60: Source code of triangle classifier..150

Figure 61: CFG of triangle classifier..151

Figure 62: Selected target paths of triangle classifier ..152

Figure 63: Source code of bubble sort..153

Figure 64: CFG of bubble sort..154

Figure 65: Selected target paths of bubble sort ..155

Figure 66: Source code of insertion sort...156

Figure 67: CFG of insertion sort ..157

Figure 68: Selected target paths of insertion sort ...157

Figure 69: Source code of binary search ..158

Figure 70: CFG of binary search ..159

Figure 71: Selected target paths of binary search...159

Figure 72: Source code of mmTriangle..161

Figure 73: CFG of mmTriangle..161

Figure 74: Selected target paths of mmTriangle ..165

xiii

THESIS ABSTRACT

NAME: Irman Hermadi

TITLE: GENETIC ALGORITHM BASED TEST DATA GENERATOR

MAJOR FIELD: COMPUTER SCIENCE

DATE OF DEGREE: MAY 2004

Software testing is meant to increase confidence in the correctness of software. It is a

laborious and time-consuming work; and spends almost a half of development resources.

Generally, the testing goal is to reveal as many faults as possible, with a limitation on the

number of test data to be used. The challenge, in this case, is in being able to minimize the

number of test data while maximizing coverage. Obviously, automating the test data

generation process is expected to significantly reduce the overall development cost. There

are evidences that Genetic Algorithm (GA) has been successfully used in developing test

data generators. However, there is no common ground for assessing and comparing these

GA based test data generators. In this thesis, based on our critical survey, we present and

use a set of attributes for assessing and comparing these generators. Our critical survey

has revealed that existing GA-based test data generators suffer from some problems. This

thesis presents our attempt to overcome one of these problems; that is the ability to deal

with multiple target paths at one time. We have designed a GA based test data generator

that is able to overcome this problem. Moreover, we have implemented a set of variations

of the generator. Experimental results show that our test data generator is more powerful

than others.

xiv

 ملخص الرسالة

 عرمان هيرمادي: الاســــــم

 مولد معطيات الاختبار المبني على الخوارزمية الجينية: العنـــــوان

 علوم الحاسب الآلي: صص ــــالتخ

 2005مايو : رج ــتاريخ التخ

فهي عملية شاقة ومضيعة للوقت؛ قد تستنفذ تقريباً نصف . بار البرامج زيادة الثقة بصحة تلك البرامجيقصد من اخت

بصورة عامة، إن هدف من الاختبار هو الكشف على أكبر قدر ممكن من الأخطاء مع . موارد عملية التطوير

نقاص عدد المعطيات مع زيادة والتحدي في هذه الحالة هو المقدرة على ا. استخدام عدد محدود من المعطيات

فمن الواضح أن نتوقع عند ميكنة توليد معطيات الاختبار انخفاض التكلفة الإجمالية لتطوير . توسيع تغطية الاختبار

فهناك مؤشرات تبين نجاح استخدام الخوارزميات الجينية في توليد معطيات . البرمجيات بصورة ملحوظة

 .الاختبار

 على دراسات نقدية، استعرضنا واستخدمنا مجموعة من الصفات لتقييم ومقارنة مولدات في هذا البحث وبناءاً

لقد أوضحت دراستنا النقدية أن المولدات الموجودة حالياً والمبنية على الخوارزمية الجينية تعاني . معطيات الاختبار

لات وهي القدرة على التعامل هذا البحث يستعرض محاولاتنا للتغلب على إحدى تلك المعض. من بعض المشكلات

لقد صممنا مولد معطيات الاختبار المبني على الخوارزمية الجينية له القدرة . مع عدة مسارات الهدف في آن واحد

فلقد أظهرت . وعلاوةً على ذلك، قمنا باجراء عدة تطبيقات مختلفة لهذا المولد. على التغلب على تلك المعضلة

 .ا أقوى من باقي المولدات الموجودةالنتائج المخبرية أن مولدن

1

CHAPTER 1

INTRODUCTION

1.1. Software Testing

Software needs to be tested properly and thoroughly, such that any misbehavior

during the runtime can be detected and fixed in advance, before its delivery. However,

well-tested software is not guaranteed to be error-free or bug-free. Most of the problems

reported by users are identified as execution of untested code. This is because either the

order in which statements were executed in actual use differed from that during testing, a

combination of untested input values are given, extreme inputs, or the user’s environment

was never tested [45].

Software testing is laborious and time-consuming work; it spends almost 50% of software

system development resources [3][37][45]. Generally, the goal of software testing is to

design a set of minimal number of test cases such that it reveals as many faults as

possible. Testing, itself, is defined as the process of executing a program with the intent of

finding errors. Hence, a pair of input and its expected output, which is called a test case, is

said to be successful if it succeeds to uncover errors, and not vice versa. In other words, a

good test case is one that has a high probability of detecting an as-yet undiscovered error

2

[45]. An input datum for a tested program, which is subset of a test case, is called test

datum.

1.2. The Research Problem

As mentioned earlier, software testing is a lengthy and time-consuming work [38].

Absolutely, an automated software testing can significantly reduce the cost of developing

software. Other benefits include: the test preparation can be done in advance, the test runs

would be considerably fast, and the testing execution can be performed during night-shift

and remotely [45]. The last but not the least is that the confidence of the testing result can

be increased [1].

However, software-testing automation is not a straightforward process. For years, many

researchers have proposed different methods to generate test data automatically, i.e.

different methods for developing test data/case generators [5].

Commonly, searching for an input datum in a pool (domain/set) of possible input data is

dealt with as an optimization problem [19]. In the early age of automation of software

testing, most of the test data generators were using gradient descent algorithms. However,

these algorithms were inefficient, and time-consuming, and could not escape from local

optima in the search space of the domain of possible input data [25]. These issues

necessitate the need to investigate the suitability of meta-heuristic search algorithms, e.g.

simulated annealing, genetic algorithms, and ant colony optimization as a better

3

alternative for developing test data generators. However, up to our knowledge, so far,

researchers have been only interested in using genetic algorithm to generate test data [43].

Wegener et al. have showed the suitability of using evolutionary algorithms in software

testing [43]. Using evolutionary computations, researchers have done some work in

developing genetic algorithms (GA)-based test data generators [6][43]. However, in trying

to identify strengths and weaknesses of the various techniques available for developing

test-data generators available, we found that there is no well-defined set of quality

attributes that can be used to compare such various techniques.

Moreover, as discussed in Chapter 3, one of our observations over existing GA based test

data generators is that they can generate only one test datum at a time. Accordingly, in

trying to generate a set of test data (i.e., more than one test datum) to satisfy particular

criteria (called test adequacy criteria, e.g. branch coverage) under consideration, the test-

data generator should be used more than one time (one run for each required test datum).

This practice, however, does not take advantage of the fact that some of the required test

data can be readily available as by-products when trying to find other test data. This,

hence, makes those existing test-data generators inefficient in trying to generate multiple

test data. A detailed critical survey and review of existing approaches is demonstrated in

Chapter 3.

Our motivation to investigate these problems derives from the benefits aforementioned.

4

1.3. Main Contributions

The main contributions of this thesis work are the following:

 Proposing a set of attributes for assessing and comparing GA-based test data

generators;

 Comparing the available GA-based test data generators in light of the proposed set

of attributes;

 Proposing a GA-based test-data generator that is capable of to generating multiple

test data to cover multiple target paths1 at one run;

 Implementing and comparing a number of variations of the proposed generator2;

 Conducting experiments to demonstrate the strength of the proposed approach

using Matlab.

1 The path coverage criterion is concerned with the execution of (selected) paths in the program. We adopt

the path coverage criteria since it achieves the utmost coverage [7][22][33][39]. Chapter 2 discusses the

different test adequacy criteria in details, and provides justifications for adopting path coverage as an

effective criterion.

2 Each variation has a different form of the fitness function we propose. Chapter 2 gives all the necessary

background on Genetic Algorithms and the role of the fitness function.

5

1.4. Organization of Thesis

The rest of the thesis is organized as follows. Chapter 2 gives a succinct background

of software testing and genetic algorithms. Chapter 3 presents our scheme, composed of a

set of attributes, for comparing and evaluating GA-based test data generators. It also

presents an extensive critical literature survey of related works with a comparison based

on our evaluation scheme. Chapter 4 describes the design details of the proposed fitness

function along with its different variations. Chapter 5 discusses the experiments setup,

results, and analysis. Chapter 6 concludes the thesis work and discusses further work.

6

CHAPTER 2

SOFTWARE TESTING

2.1. Introduction

This chapter discusses software testing techniques and different test adequacy

criteria. The chapter also gives the necessary background on how Genetic Algorithms

work.

2.2. Software Testing Techniques

Generally, software-testing techniques are classified into two categories: static

analysis and dynamic testing [18][33][38]. In static analysis, a code reviewer reads the

program source code, statement by statement, and visually follows the logical program

flow by feeding an input. This type of testing is highly dependent on the reviewer’s

experience. Static analysis uses the program requirements and design documents for

visual review. In contrast, dynamic testing techniques execute the program under test on

test input data and observe its output. Usually, the term testing refers to just dynamic

testing.

The following subsections give a brief background on these two testing categories.

7

2.2.1. Static Analysis

For years, the majority of the programmers assumed that the programs are written

solely for machine execution and are not intended to be read by human, and that the only

way to test a program is by executing it on a machine. This manner began to change in the

early 1970s, because of the Weinberg’s work on “The Psychology of Computer

Programming” [46]. Weinberg provided a convinced argument for why programs should

be read by people and indicated that this could be an effective error-detection process.

Experience has shown that static analysis, a.k.a. non-computer-based or human testing,

methods are quite effective in finding errors [33]. Static analysis methods are meant to be

applied during the period that is between the code completion and the beginning of the

execution-based testing.

Typical static analysis methods are code inspections, code walkthroughs, desk checking,

and code reviews [33]. Code inspections and walkthroughs are the two primary static

analysis methods and they have a lot in common. Inspections and walkthroughs involve

the reading or visual inspection of a program by a team of people. Both methods involve

some preparatory works by the participants. The climax is a meeting of the minds, i.e.

brainstorming, in a conference-like gathering held by the participants. The objective of the

meeting is to find errors, but not to find solutions to the errors, i.e. to test but not to debug.

8

2.2.1.1. Code Inspections

Code inspection is a set of procedures and error-detection techniques for group code

reading. Most discussions of code inspections focus on the procedures, forms to be filled

out, and so on.

During the inspection session, two activities are conducted: code narration and code

examination. Code is read statement by statement and analyzed with respect to a checklist

of historically common programming errors (e.g. data-reference, data-declaration,

computation, comparison, control-flow, input/output, interface).

2.2.1.2. Code Walkthroughs

The initial procedure is identical to that of the inspection process. The difference,

however, is in that rather than simply reading the program or using error checklists, one of

the participants designated as a tester comes to the meeting with a small set of paper test

cases that represent sets of input and expected output for the tested program or module.

During the meeting, each test case is mentally executed, i.e. the test data are walked

through the logic of the program. The state of the program, i.e. the values of the variables,

is monitored on paper or a blackboard.

Definitely, the test cases must be simple in nature and few in number, because people

execute programs at a much slower rate than a machine. Thus, the test cases themselves

do not play a critical role; rather, they serve as a vehicle for getting started and for

questioning the programmer about his or her logic and assumptions. In most

9

walkthroughs, more errors are found during the process of questioning the programmer

than are found directly by the test cases themselves.

2.2.1.3. Desk Checking

Desk checking can be seen as a one-person inspection or walkthrough; a person reads

a program, checks it with respect to an error list, and/or walks test data through it.

There are three main reasons that desk checking, for most people, is relatively

unproductive: completely undisciplined process, the principle that people are generally

ineffective in testing their programs, and no competition like in the teamwork.

2.2.1.4. Code Reviews (Peer Ratings)

Code review is a technique for evaluating anonymous programs in terms of their

overall quality, maintainability, extensibility, usability, and clarity. The purpose of the

review is to provide programmer assessment. A group of programmers is given some

selected programs to rate based on a certain scale written in the review forms.

2.2.2. Dynamic Testing

Dynamic testing techniques execute the program under test on test input data and

observe its output. Usually, the term testing refers to dynamic testing. There are two types

of dynamic testing: black-box and white-box. White-box testing is concerned with the

degree to which test cases exercise or cover the logical flow of the program [33]. Black-

10

box testing, on the other hand, tests the functionalities of software regardless of its

internal structure, a.k.a. functional or specification–based testing.

The following subsections give a brief background on these two types of dynamic testing.

2.2.2.1. White Box Testing

White-box testing is more widely applied [33]. It is also called logic-coverage testing

or structural testing, because it sees the structure of the program [47]. The objective of

white box testing is to exercise of the different logic structures and flows in the program

[33].

Adequacy of logic-coverage testing can be judged using different criteria [47]: statement,

decision (a.k.a. branch), condition, decision/condition, multiple-condition, and path-

coverage; ordered from the weakest to the strongest [15] [22] [24] [33].

Statement coverage criterion requires every statement in the program to be executed at

least once. Unfortunately, this is a weak criterion because while it exercises every

statement at least once, it does not guarantee exercising the same statement in different

flows, if any. For example, in a program segment consists of a statement S1, followed by

a selection statement IF (A>1) THEN S2 followed by another statement S3, one is not

required to generate input test datum that exercises the FALSE branch in order to satisfy

statement coverage criterion. In this case, the test case checks for the correctness of the

sequence S1-S2-S3, but not for the correctness of the sequence S1-S3; which is possible

to have a problem.

11

A stronger logic-coverage criterion is known as decision coverage or branch coverage

[13]. This criterion states that one must write enough test cases such that each decision,

i.e. IF statement, has a TRUE and FALSE outcome at least once. In other words, each

branch direction must be traversed at least once. Decision coverage can be shown,

usually, to satisfy statement coverage. Since every statement is on some sub-path

emanating either from a branch statement or from the entry point of the program, every

statement would have been executed if every branch is executed. The following example

shows why branch coverage criterion is stronger than the statement one, as in an selection

statement IF (A>1) THEN X=S2, in order to fulfil branch coverage criterion one must

generate, at least, two test input data that satisfy both TRUE and FALSE branches

regardless any statements that follow both branches, while in statement coverage criterion

the tester needs only to generate input test data that leads to TRUE branch only, since no

statement follows the FALSE one.

The problem with branch coverage is that it does not check for all the different sequences.

For example, in a two serial selection statements: IF C1 THEN S1 ELSE S2, followed by

IF C2 THEN S3 ELSE S4, the branch coverage will just test S1-S3 and S2-S4 sequences

OR S1-S4 and S2-S3 sequences. In fact, all those sequences must be checked in order to

reveal any potentially infeasible combinations of sequences.

A criterion that has larger coverage than decision coverage is condition coverage. In this

case, one writes enough test cases such that each condition in a decision takes on all

possible outcomes at least once.

12

Although the condition coverage criterion appears, at first glance, to satisfy the decision

coverage criterion, it does not always do so. If the decision IF (A AND B) is being tested,

the condition coverage criterion would require one to write two test cases – A is TRUE, B

is FALSE, and A is FALSE, B is TRUE – but this would not cause the THEN clause of

the IF statement to execute.

As with decision coverage, condition coverage does not always lead to the execution of

each sequence. A criterion that combines these two criteria is decision/condition

coverage. It requires sufficient test cases such that each condition in a decision takes on

all possible outcomes at least once, each decision takes on all possible outcomes at least

once, and each point of entry is invoked at least once.

A weakness with decision/condition coverage is that although it may appear to check the

effect of all outcomes of all conditions, it frequently does not because certain conditions

mask other conditions, e.g. in IF (A AND B), the outcome of statement will be FALSE if

A is FALSE without considering B’s value at all. Nevertheless, errors in logical

expressions are not necessarily made visible by the condition coverage and

decision/condition coverage criteria, since these criteria do not test all possible

combinations of condition outcomes in each decision. A criterion that covers this problem

is multiple condition coverage. This criterion requires one to write sufficient test cases

such that all possible combinations of condition outcomes in each decision, and all points

of entry, are invoked at least once.

13

The utmost coverage is achieved by path coverage, since it covers all the previous-

mentioned testing coverage criteria [24][47]. Path coverage criterion is concerned with the

execution of (selected) paths (i.e., sequences) in the program. Since in a program with

loops the execution of every path is usually infeasible, complete path testing is not

considered in such cases as a feasible testing goal.

2.2.2.2. Black Box Testing

Black-box testing, a.k.a. functional or specification-based testing, tests the

functionalities of software against its specification, regardless of its structure. There are

four types of black-box testing: equivalence partitioning, boundary-value analysis, cause-

effect graphing, and error guessing [33].

Equivalence partitioning partitions the input domain of a program into a finite number of

equivalence classes such that one can reasonably assume (but, of course, not be sure

absolutely) that a test of a representative value of each class is equivalent to a test of any

other value within the corresponding class. That is, if one test case in an equivalence class

detects an error, all other test cases in the equivalence class would be expected to find the

same error. Conversely, if a test case did not detect an error, we would expect that no

other test cases in the equivalence class would find an error. This is with the exception

that a subset of the equivalence class falls within another equivalence class, since

equivalence classes may overlap one another. The equivalence partitioning concept

maybe applied to white-box testing as well.

14

Boundary conditions are those situations directly on, above, and beneath the edges of

input equivalence classes and output equivalence classes. Experience shows that test cases

that explore boundary conditions have a higher payoff than test cases that do not [33].

One weakness of boundary-value analysis and equivalence partitioning is that they do not

explore combinations of input data as decision/condition coverage does in white-box

testing. A cause-effect graphing came to tackle this problem [33]. It is a formal language

into which a natural-language specification is translated, which also points out

incompleteness and ambiguities in the specification. The graph is actually a digital-logic

circuit (a combinatorial logic network), but rather than using standard electronics

notation, a somewhat simpler notation is used. The idea is pretty similar with

decision/condition coverage in the white box testing, while boundary-value analysis and

equivalence partitioning are similar with condition coverage criterion in white box testing.

Thus, using similar analogy in white box testing, cause-effect graphing outperforms

boundary-value analysis and equivalence partitioning.

Error guessing is largely an intuitive and ad-hoc process, whose procedure is difficult to

formalize. This technique needs an expertise that is able to smell out errors. The basic

idea is to enumerate a list of possible errors or error-prone situations and then write test

cases based on the list.

15

2.3. Test Data Generation

In this thesis, we focus on white-box testing as it is more widely applied [43]. The

first step in applying a white-box testing is to select a test adequacy criterion, e.g.

statement or branch coverage. The next step, then, is to find a set of test data that satisfies

the selected adequacy criterion, which is called adequate test data. In testing a program,

adequate test data generation is the process of identifying a set of test data, which satisfies

given testing criterion [20][34][41]. Generating adequate test data manually is labour

intensive and time-consuming process. This problem has motivated researchers to create

test data generators that can examine a program’s structure and generate adequate test data

automatically [14]. How to generate test data automatically? How to evaluate them?

These are the major questions that researches in the area of automated software testing are

trying to find answers for [20][33][41][42][45].

It is not a trivial task to judge whether a finite set of input test data is adequate or not. The

goal is to uncover as many faults as possible with a potent set of a constrained number of

tests. Obviously, a test series that has the potential to uncover many faults is better than

one that can only uncover few.

A number of automatic test data generation techniques have been developed [45]. Pargas

[35] classifies these techniques into random test data generator, structural or path-oriented

test data generator, goal-oriented test data generator, and intelligent test data generator.

The first three types are also common with the classifications of test data generators done

by Edvardsson [10] and Korel [20]. Test data generator is a system (program) that

16

generates the input data for a target program such that these input data satisfy a particular

testing objective (i.e., adequacy criterion).

Random test data generators select random inputs for the test data from some distribution

[8][20]. Structural test data generators typically use the program’s control flow graph,

select a particular path, and use a technique such as symbolic evaluation to generate test

data for that path [29][37][36][20]. Goal-oriented test data generators select inputs to

execute the selected goal, such as statement, irrespective of the path taken [20]. Intelligent

test data generators often rely on sophisticated analysis of the code, to guide the search for

new test data [26][35][37][36].

In general, the process of automatic structural test data generation, for path coverage,

consists of three major steps: (1) construction of control logic graph (see Appendix B),

e.g. control flow graph (CFG) or control dependence graph (CDG); (2) path selection; and

(3) test data generation that involves dynamic execution of the target program.

The target program must be instrumented in order to monitor the assessment of testing

objective when the program is executed with given input data. In most test data generator,

the instrumentation is considered to be pre-process stage before the generator can actually

be used [10]. This instrumentation process is the process of inserting probes (tags) at the

beginning of every block of code of interest, i.e. at the beginning/ending of each function

and after the true and false outcomes of each condition. For example in path coverage,

these tags are used to monitor and provide the test data generator with a feedback on the

traversed path within the program while it is executed with trial test data.

17

As discussed in the next section, search techniques play important role in generating

proper test data using the feedback the test data generator gets from the target program.

2.4. Automated Software Testing as a Search Problem

Searching for an input datum in a pool (domain/set) of possible input data that

conforms to the test adequacy criteria, e.g. forcing traversing a specific path, is a search

problem.

In the early age of automation of software testing, most of the test data generators were

using gradient descent algorithms [20]. The essence of this type of methods is a kind of

hill-climbing, so they are quite inefficient, time-consuming, and could not escape from

local optima in the search space of the domain of possible input data.

Accordingly, meta-heuristic search algorithms proposed a potential better alternative for

developing test data generators [10][43]. Efficient existing meta-heuristic search

algorithms include Simulated Annealing (SA), Taboo Search (TS), Genetic Algorithm

(GA), Ant Colony Optimization (ACO), and Particle Swarm Optimization (PSO). Each of

these search algorithms has its own advantages and disadvantages over the others. They

are strongly problem domain dependent, because they use domain-dependent

“knowledge” or heuristics related to domain of the problem under consideration.

Among these algorithms, Wegener et al. have shown the suitability of using evolutionary

algorithms (e.g., Genetic Algorithms) in software testing [44].

18

2.5. Genetic Algorithms Based Test Data Generator

Genetic Algorithms (GAs) were invented by John Holland in the 1960s and were

developed by Holland and his students and colleagues at the University of Michigan in the

1960s and the 1970s [31]. In contrast with evolution strategies and evolutionary

programming, Holland’s original goal was not to design algorithms to solve specific

problems, but rather to formally study the phenomenon of adaptation as it occurs in nature

and to develop ways in which the mechanisms of natural adaptation might be imported

into computer systems [17].

GAs have been very interesting area of study in many disciplines since it was published

for the first time. Researches are growing rapidly regarding either the behaviour or the

application of GA for a particular purpose since then. Some applications of GA are

optimization, automatic programming, machine learning, economics, immune systems,

ecology, population genetics, evolution and learning, and social systems [31].

Among the features owned by GA, that other normal optimization and search procedures

do not have, direct manipulation of solution representation to a problem, search from a

population (not a single point), search via sampling (a blind search), and search using

stochastic operators (non-deterministic rules) [9].

19

Figure 1 shows the steps for basic GA.

Step 0: Define a genetic representation of the problem.
Step 1: Create an initial population P(0) = x1, …, xn. Set t = 0.
Step 2: Compute the average fitness f’(t). Assign each individual the normalized fitness

value.
Step 3: Assign each xi a survival probability p(xi ,t) proportional to its normalized fitness.

Using this distribution, select N vectors or parents from P(i). This gives the set of
the selected parents.

Step 4: Pair all parents at random using their survival probability forming N/2 pairs.
Apply crossover with a certain probability to each pair and other genetic operators
such as mutation, forming a new population P(t+1).

Step 5: Set t = t + 1, return to Step 2.

Figure 1: Basic GA Steps

In order to use GA for solving an optimization problem, we need to know how to

represent the problem as well as its solution in a chromosome expression, i.e. sort of a

sequence of binary digits that resembles the chromosome-like sequence, which GA can

understand and manipulate [12][40]. GA works on this encoded problem and delivers the

interpreted result as the problem solution; hence, the user should provide the semantic of

the encoded problem. The most widely used representation is binary string. However,

recently, in a more advanced GA, representation can be extended into higher numbering

system, up to more complicated data structure [24][31]. Investigation for more advanced

representations is still going, e.g. character, integer, float, grouped, messy, record, etc

[31].

A fitness value of an individual is the measure of its strength to survive in the next

generation [16][17][40]. It reflects the chance an individual has to be present directly in

the next generation or to be selected for mating with other individuals in the current

20

generation to produce children for next generation. Fitness value is calculated based on

the syntax and semantic of individual representation, mostly it is a normalized value of its

objective value such that it can be minimized or maximized accordingly.

A complete iteration (one run) from Step 2 to Step 4 is called a generation. The stopping

criteria comprise a desired number of generations, and a measure of convergence or

saturation.

Actually, there are two approaches for implementing GA as a problem solver [25]. First,

classical Genetic Algorithms, which operate on binary strings, which require a

modification of the original problem into an appropriate form (suitable for GA). This

would include a mapping between potential solutions and binary representation, taking

care of decoders or repair algorithms, etc. Second, GA would leave the problem

unchanged, modifying an individual representation of a potential solution (using “natural”

data structures), and applying appropriate “genetic” operators.

A good operator is the one that could guide the search faster, reduce the search time, and

reduce the search space significantly. Many advanced GA’s operators have been explored,

while some researchers are trying to create parameter-less GA, where user does not need

to select/adjust the operators [43].

Two major operators are used in almost every implementation of GA: Crossover and

Mutation operators. Simple crossover operator means single point or uniform crossover,

while simple mutation means native mutation as specified in [12]. For example, given two

binary-string individuals x1 = {1 0 1 0 1} and x2 = {0 1 0 1 0} with single-point crossover

21

and mutation rates are 0.9 and 0.1, respectively. In the crossover stage, GA generates a

random number between 0 and 1, if the number happens to be 0.5, which is actually less

than 0.9, then these two individual will be crossed to each other at a specified point,

which is randomly selected in between them, assume the selected point is 3. Hence, the

new individuals are x1 = {1 0 1 1 0} and x2 = {0 1 0 0 1}, while in uniform crossover, both

bit-sequences are shuffled between these two individuals, i.e. x1 = {1 1 1 1 1} and x2 = {0

0 0 0 0}. In case of mutation after crossing-over, GA randomly generates a random

number between 0 and 1 for each individual, if it happens to be less than 0.1 then any bits,

which its position is again selected randomly, within an individual will be flipped, i.e.

from 0 to 1 or vice versa. Based on experiences, typically, mutation rate is set between 0

and 0.1, while crossover rate is between 0.6 and 1 [9][12][19][22][23][25]. Actually, these

two operator rates control the population in terms of exploration and exploitation of the

search space. In order to choose the most suitable rate, trial and error approach is still the

most widely used method among researchers.

During the selection stage, GA will most probably select individuals that have

performances above the current population average to appear in the upcoming

intermediate generation, since the upcoming final generation would result form the

crossover and mutation stages. Due to this fact, whoever has less strength will vanish as

GA evolves from generation to generation. The upcoming (final) population definitely

may contain copies of previous individuals (i.e., parents), as well as some new individuals

that are totally different from their ancestors. The variation level of new individuals

introduced into this new population depends on the crossover and mutation rates. Higher

22

crossover rate will completely mix the characteristics of both parents into its offspring,

while higher mutation rate will certainly produce offspring that has different traits with its

parents, i.e. the offspring introduces new traits that do not exist in its parents at all.

Why GA works? This is a very interesting question to anyone who either knows or does

not know GA before. GA works based on the number of schemata (sometimes called

higher–order structures, hyper planes, or similarity templates) being processed from

generation to generation. A short, low-order, and above-average schema is called a

building block, since it is going to be reproduced more and more exponentially in

subsequent generations [12].

Interested readers in theoretical background and/or application of GA are encouraged to

consult distinguished references [12][9][25][31].

Many research papers showed that GA has a promising future in developing test data

generators [36][37][39][40]; moreover, some papers have showed that GA outperforms

both simulated annealing and taboo search [43].

23

CHAPTER 3

CRITICAL SURVEY OF GENETIC ALGORITHM BASED

TEST DATA GENERATORS

3.1. Introduction

In this chapter, we present a set of attributes we propose for comparing the strengths

and drawbacks of the different GA-based test data generators. Then, we discuss related

work in light of this set of attributes. We conclude the chapter with a summary of the

outcome of our critical survey.

3.2. GA Based Test Data Generator Attributes

Judging a test data generator should not only be based on its effectiveness and

efficiency, but also on the underlying characteristics that affect its effectiveness and

efficiency. Hence, throughout surveying existing related work on GA-based test data

generators, we identified some attributes that can be used for comparing and assessing the

strengths and weaknesses of GA-based test data generators. We expect this set of

attributes to help in enhancing existing test data generators as well as guiding researchers

trying to develop new test data generators using GA. Our proposed attributes are

discussed in the sequel.

24

1) Testing Objective

In all related work, the objectives of testing come before anything else described; in

order to be able to evaluate testing achievement.

The testing objective highly affects the way the testing process is conducted and the kind

of measures to be used to assess the process [33]. For example, in structural software

testing, if we choose statement coverage then we need to know how to monitor whether

the program execution with a particular test data has reached certain statement within the

program or not. Therefore choosing this testing objective, i.e. statement coverage, has

enforced the tester to monitor executed statements within the program.

2) Fitness Function

In most of the meta-heuristic search techniques, especially GA, the testing objective

is converted into an objective function, which is furthermore converted into a fitness

function that is to be optimized to find a solution for the problem under consideration. The

way in which heuristics of the test data generation problem is incorporated into the fitness

function contributes significantly to the performance of the test data generator [2][4][32].

Based on our survey, we observed several (sub) attributes of the fitness function: building

blocks, normalization, balancing/weighting, adjustment, traversal method, and

neighborhood influence. The followings are the descriptions for these (sub) attributes.

25

1) Building Blocks

A building block is a constituent of the fitness function. The constituents of a fitness

function affect its effectiveness/efficiency in directing the search toward the desired goal.

For example, in statement coverage, the number of covered statements by a test data can

give information about the closeness of this test data to a target test data. The more

building blocks the fitness function considers, the more effective/efficient it is in finding

the target test data.

2) Normalization

This attribute is meant to tell whether the values of building blocks of the fitness

function are normalized across the individuals of the population. Normalization would

allow more meaningful comparisons between the different individuals’ fitness functions.

3) Balancing/Weighting

Balancing/Weighting is used to differentiate between the contributions of the

different building blocks to the overall fitness value. For example, a fitness function might

consist of two building blocks: A and B. Heuristics might suggest that A should have

double the weight of B.

4) Adjustment

Adjustment applies to any building block of a fitness function and/or to the overall

fitness function, according to the selected criterion defined by the test generator designer.

26

The adjustment operations can be addition, multiplication, or whatever necessary actions

(e.g. multiplication of any building blocks with a chosen number) the designer considers

required to refine the fitness function.

5) Traversal Method

This attribute is only meaningful for test data generators that adopt the path-coverage

criteria for their testing objectives. The traversal method is the way of measuring the

“closeness” between the path exercised by an individual, i.e. a generated input data, and a

target path. Our survey reveals that two ways for calculating such “closeness” exist: path-

wise and branch-wise (a.k.a. statement-wise). In the path-wise traversal method, the

fitness function does not consider matched (sub) paths after the first deviation. While, in

the branch-wise one, the fitness function considers subsequent matched (sub) paths after

any number of deviations. For example, in Figure 2, assume that the darker line (left side)

represents the target path while the lighter one (right side) is the path that traversed by an

individual trying to satisfy the target path. Using the path-wise traversal method, the

common flow (or nodes) between the two paths will be just the first branch. The rest,

starting immediately afterward, would be considered as mismatch. On the other hand,

using the branch-wise method, the common flow (or nodes) will also include those

branches starting with the one that is being pointed to by the lower arrow.

27

Figure 2: Path-wise vs. Predicate-wise traversal method

The path-wise approach considers all nodes from the first unmatched node found to the

rest of the path as violations in comparing the target path with the individual’s traversed

path. Thus, the number of violations V equals to the number of nodes from the first

unmatched node up to the end of the target path. For example, consider a traversed path

TR1 = {1 -5 2 2 3 -2 4 0 5 6} and a target path TG1 = {1 0 2 1 3 1 4 0 5 1}; where a

negative value means TBD, a positive value means TBD, and a zero value means TBD….

If we rewrite the path in term of traversed-target pair then it will be TR1-TG1 = {(-5, 0), (2,

1), (-2, 1), (0, 0), (6, 1)}, hence V = 3, since in staring from the third pair (-2, 1) the

traversed path is not in the same direction (different signs) anymore with the target one.

28

(-2, 1), (0, 0), and (6, 1) are considered to be violations in this case (i.e., V=3) with regard

to the path-wise approach.

Predicate-wise approach is a more relaxed approach in considering the number of

violations V within the fitness value, since it allows shuffling as many as unmatched sub-

paths within the matched sub-paths. The calculation of the number of violations V

considers all matched predicates even after encountering unmatched sub-paths. Hence, the

distance D equals to the summation of all PVs of matched nodes. For example,

considering the same TR1-TG1 = {(-5, 0), (2, 1), (-2, 1), (0, 0), (6, 1)} from the previous

path-wise traversing example, V = 1, since it only has one unmatched node, i.e. the third

pair (-2, 1).

6) Neighborhood Influence

This attribute is meaningful for GA-based test generators that are trying to generate

multiple test data at a time. It reflects whether a fitness function considers the pressure of

competition among individuals to satisfy targets. There are two types of fitness value of

an individual: its own fitness value and its fitness value that is influenced by the targets

and/or other individuals competing to cover similar targets.

Furthermore, there are three types of influence that affect the influenced fitness: targets

influence, other individuals influence, and both targets and individuals influence at a time.

29

3) GA Type

This attribute reflects the type of GA being used. Possible types include, but not

limited to: simple GAs, modified GAs, hybrid GAs (GA combined with other heuristic

search techniques), and parallelized GAs. For more details on these GA types, the reader

is advised to refer to [9][12][25][31].

4) GA’s Operators

Selecting the GA operators (i.e. crossover and mutation operators) and their

probabilities highly affects the GA performance [31]. This attribute examines the

operators employed in the different test generators surveyed.

5) Individual Representation

This attribute examines the different types of representation being employed by the

test generators surveyed. Possibilities include: binary string, character string, integer,

float, grouped, messy, and record [23][24][25][31].

6) Input Parameters Domain

Input parameters domain highly affects the individual’s representation in GA. Hence,

it influences the GA operators’ performance in exploring and exploiting the search space.

30

7) Stopping Criteria

The stopping criteria indicate how the generator decides to stop its search effort.

That could be based on the number of generations, number of satisfied targets, etc.

8) Program Size

This attribute reflects the category of programs, as far as the size is concerned, which

have been used to validate the test generator under discussion. In general, rough

categorization can be used: small, medium, or large. However, in discussing the different

generators surveyed, we mention the actual programs that were used.

9) Program Development Paradigm

This attribute indicates as whether a test generator is meant to test procedural-

oriented programs, or object-oriented programs. There is a distinction; for example, in

testing object-oriented program, the test data generated might need to be able to create an

object.

10) Implementation Issues

This attributes is related to the implementation details of the test generator. It reflects

the implementation programming language, platform, its usability, reusability, and

portability, etc.

31

11) Multiple Targets

A test data generator can either try to satisfy one target or multiple targets at a time.

As we pointed out in Chapter 1, a test data generator that considers finding multiple

targets at once is expected to be more efficient.

12) Handling Infeasible Paths

In path coverage criteria, the very existence of infeasible target paths, logically, is

suspected to affect or, more precisely, hinder the search for correct test data, unless there

is evidence that proves the opposite [7].

Actually, smarter test data generator can identify and isolate those targets with high

possibility of being infeasible targets such that they do not hamper the search. However, a

potential infeasible target is to not an infeasible one until the analytical examination

confirms [7][22].

13) Validity/Soundness

This attribute is to show whether the test data generator does generate the test data

that exercises the program in the way the generator claims it would. For example,

considering the path-coverage criteria, the data must traverse the given target path.

32

14) Efficiency

This attribute reflects the amount of resources (e.g. time, memory) that the test data

generator consumes in generating the right test data.

15) Program Type

Mainly, GA-based test data generators have been applied to two types of target

program: real time and non-real time. The target program type highly affects the objective

of testing. For example, in real time systems, testing usually focuses on time constraints;

while in non-real time systems, the focus is usually path coverage.

3.3. GA Based Approaches to Test Data Generator

In this section, we present a summary discussion of some existing works based on our

set of identified attributes.

Due to lack of information and/or applicability, there are five attributes that we have not

been able to discuss with regard to the existing generators: multiple targets, handling

infeasible target, validity/soundness, efficiency, and program type. Bueno’s generator is

the only generator that is able to handle the infeasible targets [7]. Alander’s generator is

the only one that handles real-time system [1]. None has worked on satisfying multiple

targets at once.

33

The Work by Pei et al. [36] in 1994

Pei et al. observed that most of the test data generators, which developed in their era,

were using symbolic evaluation. Using the symbolic evaluation method, the generator

establishes predicate equations under static condition and solves them to derive test data.

The symbolic evaluation method is hard to be put into practical use, since the complexity

of solving the set of predicate equations is exponential. Recent methods, then, were using

actual program execution and minimization search methods, which lack efficacy and

efficiency (see Section 2.4). These drawbacks had inspired Pei et al. to develop a path-

coverage test data generator that employs genetic algorithm.

In their work, Pei et al. proposed two different fitness functions, shown in Equation 1,

which is simple but less sensitive, and Equation 2, which is complicated but more

sensitive, as follow:

⎭
⎬
⎫

⎩
⎨
⎧ −

×+×−=
2

)1(510 nnnCf Equation 1

nFFFF +++= ...21 Equation 2

In Equation 1, C is a big adjustment number; n is the number of matching branches (or

nodes) between traversed sub paths and target sub paths. The third term is a scaling factor

that depends on the magnitude of n.

The second fitness function (Equation 2) is the sum of the branch function (Fi) on the

path. Suppose all the branch predicates are of the form E1 op E2, where E1 and E2 are

arithmetic expressions, and op is one of the logical operations {<, ≤, >, ≥, =, ≠}. Each

34

branch predicate can be transformed to the equivalent function of the form shown in Table

1.

Table 1: Equivalent branch function

Branch predicate Branch function Condition

E1 > E2 F = E1 – E2 E1 – E2 > 0
E1 ≥ E2 F = 0 E1 – E2 < 0
E1 < E2 F = E2 – E1 E2 – E1 > 0
E1 ≤ E2 F = 0 E2 – E1 < 0
E1 = E2 F = ABS(E1 – E2) ABS(E1 – E2) > 0
E1 ≠ E2 F = 0 ABS(E1 – E2) < 0

Pei et al. construct CFG for the program under test, generate a finite number of selected

target paths that are susceptible of error prone, and feed these target paths one by one into

their GA-based test data generator manually. The generator runs as many as the number

of target paths, since it can only accept one target path at a time.

The test data generation process is divided into three steps: (reduced) CFG construction,

target paths generation and selection, and test program execution and data generation.

Pei et al. tested their generator using a minimum-maximum program, whose output is the

minimum and maximum numbers in an array of integer numbers. They found out that 8

out of 21 selected target paths are infeasible and showed that their approach could find all

feasible target paths. Discussion of the approach based on our attributes is given in Table

2.

35

Table 2: Attributes of Pei’s approach

No Attributes Approach
1 Testing Objective Path coverage
2 Fitness Function Two different fitness functions.

First fitness function f has the form shown in Equation
1.
Building block: Number of matching nodes between
target path and traversed path
Normalization: No
Balancing/Weighting: No
Adjustment: Using a certain large number and a scaling
factor to adjust the overall fitness value
Traversal Method: Branch-wise
Neighborhood Influence: Not Applicable (N/A)

Second fitness function F is the summation of its
branch functions along its target path has the form as
shown in Equation 2.
Building block: Branch predicate value
Normalization: No
Balancing/Weighting: No
Adjustment: No
Traversal Method: Branch-wise
Neighborhood Influence: N/A

3 GA Type Simple GA

4 GA's Operators
Simple GA operators, crossover rate is between 0.6 and
0.7, and mutation rate is 0.001

5 Individual
Representation

Binary strings

6 Input Parameters
Domain

Positive integer numbers

7 Stopping Criteria Number of generations
8 Program Size Minimum-maximum program
9 Program

Development
Paradigm

Has been validated against a functional oriented
program

10
Implementation
Issues

Implemented using C

36

The Work by Roper et al. [37] in 1995

Roper et al. developed a test data generator, using C++, that has an aim to traverse all

the branches within a target program, which developed in C. Their generator takes a

program and instruments it automatically with probes to provide feedback on the branch

coverage achieved.

Roper et al. translated the concepts of GA to the problem of test data generation. Firstly,

population is considered as a set of test data that can be used in executing a program. An

initial population is randomly generated according to the format and type of data used by

the program. Then GA takes this initial population and evolves it towards a solution. The

evolution stops when it reaches the required branch coverage.

Secondly, each individual in the population is an element in the test data set, and the

fitness of an individual corresponds to its coverage. For example, in a program with two

sets of branches (say an IF-THEN-ELSE statement inside a WHILE loop), a group of

data item which covers all four branches would have a fitness level of 1.0, whereas one

which covers only two would have a fitness level of 0.5 and so on. The population is

evaluated by running the program with each individual and assessing their fitness values.

We discuss Roper et al. approach based on our proposed attributes in Table 3.

37

Table 3: Attributes of Roper’s approach

No Attributes Approach
1 Testing Objective Branch coverage
2 Fitness Function Building block: Number of matched branches

Normalization: No
Balancing/Weighting: N/A
Adjustment: No
Traversal Method: Branch-wise
Neighborhood Influence: N/A

3 GA Type Simple GA
4 GA's Operators Simple GA operators, mutation rates are 0.3 at the

chromosome level and 0.05 at the gene level, and
crossover rate is 0.4

5 Individual
Representation

String of characters

6 Input Parameters
Domain

ASCII characters

7 Stopping Criteria The required branch coverage level or number of
generations, whichever comes first

8 Program Size Two small programs: a three-nested-selections program
and a four-characters-matching program having four
sequential selections

9 Program
Development
Paradigm

Has been tested against two functional oriented
programs

10 Implementation
Issues

Implemented using C++ with automatic
instrumentation

38

The Work by Jones et al. [19] in 1996

Jones et al. developed a GA-based test data generator to achieve branch coverage.

The individual representation is a sequence of binary strings. This sequence of binary

strings is converted to a decimal number prior to the program execution.

Jones et al. use an unrolled CFG to represent one, two, or more iterations for each loop,

thus the CFG is acyclic. The unrolled CFG is called control flow tree. A program is

instrumented so that as it executes with a test case, it records the branches it reaches and

the fitness of that test case. As each branch is executed, the test data generator

automatically moves to the next branch in a breadth-first search of the control flow tree. A

summary evaluation of the approach is given in Table 4.

39

Table 4: Attributes of Jones’s approach

No Attributes Approach
1 Testing Objective Branch coverage
2 Fitness Function They propose two fitness functions as follow.

First fitness function applies weighted hamming
distance of branch predicate value.
Building block: Branch predicate expression
Normalization: No
Balancing/Weighting: More significant bit has more
weight.
Adjustment: No
Traversal Method: Branch-wise
Neighborhood Influence: N/A

The second fitness function is using reciprocal of
branch predicate value.
Building block: Branch predicate expression
Normalization: No
Balancing/Weighting: N/A
Adjustment: Overall fitness value is reciprocal of its
branch predicate value.
Traversal Method: Branch-wise
Neighborhood Influence: N/A

In case of conditional loops, the number of iterations is
considered. The reciprocal approach is more efficient
on occasions when the two operands that are connected
by an operator are numeric variables.
In the case of compound predicates, the fitness for each
predicate may be determined separately, and an overall
fitness is calculated by multiplication for conjoined
predicates and addition for disjoined predicates.

3 GA Type Simple GA
4 GA's Operators The employed GA utilizes three types of crossover (i.e.

single, double, and uniform) and simple mutation.
5 Individual

Representation
Binary strings

6 Input Parameters
Domain

Numbers

7 Stopping Criteria No information
8 Program Size Six small programs evaluate the approach, i.e.

quadratic equation solver, triangle classifier, remainder

40

calculation, linear search, binary search, and generic
quicksort.

9 Program
Development
Paradigm

Has been validated against six functional oriented
programs

10 Implementation
Issues

They wrote both the test data generator and all the
tested programs in Ada83.

The Work by Alander et al. [1] in 1997

The approach proposed by Alander et al. comes under the heading of automated

dynamic stress testing. The idea is to produce test cases in order to find problematic

situations like processing time extremes. In addition to stress testing, they also try the

possibilities to test real time software using GA by identifying the situation where the

software has the slowest reaction time.

Alander et al. faced a problem in using GA for stress testing: the selection of fitness

function in non-functional requirements testing, e.g. response time is somewhat non-

deterministic, since the same inputs do not always result in the same response time; even

though the testing is conducted in the real environment where the program is expected to

work on.

Alander et al. attempted to identify peak load conditions under which the system fails by

applying stress testing. The system is subjected to peak loads for key operational

parameters: transaction volume, user load, file activity, error rates, or their combinations.

41

There is no detail description of the experiment in their research paper, e.g. individual

representation, calculation of fitness function. Thus, we do not discuss the approach in a

tabular form.

The Work by Pargas et al. [35] in 1999

The work done by Pargas et al. is an improvement to Jones et al.’s work [35]. The

approach they presented also uses branch information to evaluate the fitness function,

except it uses control dependence graph for the fitness evaluation, which they claimed that

it can give more precise fitness evaluation than Jones et al.’s and Michael et al.’s [35]

approaches. Too see this, consider the control dependence graph shown in Figure 3.

Figure 3: Example of control dependence graph

Suppose that there were two test cases, t1 and t2, such that the path through the control-

dependence graph for t1 is 1, 2, 4, and for t2 is 1, 7. Furthermore, suppose that node 5 is

the target of the search. Under the approach presented by Pargas et al., t1 would be given a

higher fitness than t2 because it has predicate 1T in common with the predicate path of

target node 5. But, under the Jones et al.’s approach, t1 and t2 would be given the same

42

low fitness because neither test case executes the target or one of its siblings in the

control-dependence graph; the fact that t1 is closer to the target than t2 is not incorporated

into the fitness calculation.

Pargas et al. presented the analysis of their system in term of time and space complexity

and compared their approach with random test data generator. They parallelized the work

to make it faster. They also, claim that the approach can provide path coverage with minor

modifications. Discussion of the approach based on our attributes is presented in Table 5.

Table 5: Attributes of Pargas’s approach

No Attributes Approach
1 Testing Objective The approach complies with both statement and branch

coverage. Moreover, they argue that the approach can
accommodate path and definition-use coverage with
minor modifications.

2 Fitness Function Building block: Number of common branch predicates
in the CDG of a program
Normalization: No
Balancing/Weighting: N/A
Adjustment: No
Traversal Method: Branch-wise
Neighborhood Influence: N/A

3 GA Type Simple GA
4 GA's Operators Employed GA in the approach utilizes single point

crossover with rate 0.9 & simple mutation with rate
0.1.

5 Individual
Representation

String of characters

6 Input Parameters
Domain

Numbers

7 Stopping Criteria Number of generations or coverage level
8 Program Size It was tested with six small programs tests the

developed generator, i.e. bubble sort, bisection method,
triangle classifiers, four balls bouncing, array elements
classification, and middle value. However, they claim

43

in their report that the approach can handle larger
programs with multiple procedures, i.e. higher
scalability

9 Program
Development
Paradigm

Functional oriented programs

10 Implementation
Issues

The proposed approach makes use of the available tool
named Aristotle to generate a program map, i.e. a
CDG, and an instrumented version of the program.
The approach parallelizes execution of the
instrumented program on a single test data among as
many available as processors that improves overall
execution time almost linearly.
In this case, the proposed approach also employs
automatic load balancing to prevent processors from
being locked in time-consuming loops.
The generator (named TGen), which runs on UNIX,
stops when it has exceeded given time limit or number
of maximum attempts.

The Work by Michael et al. [25][26][27][28][29][30] in 1997, 1998, 2001

Michael et al. implemented Korel’s function minimization [26] approach in their GA-

based test data generator. They have built a test data generator called GADGET (Genetic

Algorithm Data Generation Tool), which has the capability to instrument a program

automatically with no limitation in the programming language, but it has restriction that it

can only accept scalar input. GADGET has the condition-decision coverage as its

adequacy criteria.

Korel’s fitness function is shown in Table 6. It is a summation of the branch functions.

44

Table 6: Korel’s fitness function

Decision Type Example Fitness Function
If d ≥ c

Inequality If (c >= d) …
⎩
⎨
⎧ −

=
0

)(
cd

xf
Otherwise

Equality If (c == d) … cdxf −=)(
If c = FALSE

True/False Value If (c) …
⎩
⎨
⎧

=
0
1000

)(xf
Otherwise

GADGET uses simple GA as well as differential GA. The difference between Differential

GA and the Simple GA is in the recombination process [26]. In the Differential GA, each

input parameter Ii in the child I is calculated by

)(iiii CBAI −+= α Equation 3

Where α is a parameter to adjust the search movement in the space, i.e.

conservative/exploitative (0 < α ≤ 1) or extreme/explorative (α > 1). For example, see the

following figure with α = 0.4

Figure 4: Illustration of recombination process in differential GA

45

Let I be a new offspring. Then I2 = 3.0 + 0.4 * (1.0 – 3.0) = 2.2.

Michael et al’s result shows that, in general, the simple GA outperforms the differential

one. For the first time in the history of automated test data generation, GADGET is tested

with a big program named b737, which is part of an autopilot system (real-world control

software). They reported that the performance of random test generation deteriorates for

larger programs. An evaluation of their approach is given in Table 7.

Table 7: Attributes of Michael’s work

No Attributes Approach
1 Testing Objective Branch coverage
2 Fitness Function Building block: Branch predicate expression

Normalization: No
Balancing/Weighting: N/A
Adjustment: No
Traversal Method: Branch-wise
Neighborhood Influence: N/A

3 GA Type Simple GA and differential GA
4 GA's Operators Simple GA operators and differential crossover
5 Individual

Representation
Binary strings

6 Input Parameters
Domain

Numbers

7 Stopping Criteria Number of generations or branch coverage level
8 Program Size They have tested the approach with 9 small programs

as well as one big program b737, which is a C program
that is part of an autopilot system.

9 Program
Development
Paradigm

Has been validated against small and big programs to
show its scalability

10 Implementation
Issues

The tool name is GADGET and developed in C

46

The Work by Bueno and Jino [7] in 2000

Bueno et al. proposed an approach that utilizes control and data flow dynamic

information. The proposed approach is meant to fulfill path coverage testing. In addition,

it also tackles the identification of potentially infeasible program paths by monitoring the

progress of the search for required test data.

Bueno et al. proposed the fitness function, Ft, to evaluate each individual.

⎟
⎠
⎞

⎜
⎝
⎛−=

MEP
EPNCFt

Equation 4

NC is the value of the path similarity computed considering the number of coincident

branches between the executed path and the target one, from the entry node up to the node

where the executed path is different from the intended one. This value can vary from 1 to

the number of branches in the target path.

EP is the absolute value of the predicate function (see Table 8) associated to the branch

where there is a deviation from the target path. The value reflects the error that causes the

executed path to deviate from the intended one.

MEP is the predicate function maximum value among the candidate solutions that

executed the same branch of the intended path.

The fitness value echoes the fact that the larger number of correctly executed branches,

the closer is the individual to the desired path. From several individuals with the same

number of correct branches, the most fitting are those with smaller EP. This value

47

indicates the error that causes the deviation and measures how distant is the candidate

solution from executing the correct branch.

Observe that the value of (EP/MEP) is a measure of the candidate solution error with

respect to all the solutions that executed the right path up to the same deviation predicate.

The value is used as a solution penalty. Thus, the search dynamics is characterized by the

coexistence of two objectives: maximizing the number of correctly executed branches and

minimizing the predicate function of the covered predicates.

The predicate function EP is attained by dynamic data flow analysis [20][21], which is

based on Korel’s function. Each simple predicate E1 op E2 is transformed into the form

EP rel 0, where rel is one of the followings: <, ≤, =, and ≠. For example, a predicate a > c

is transformed to c – a < 0. EP is actually a function (directly or indirectly) of program

input variables. Thus, changes on these variables have the potential of influencing the

function’s value. Moreover, it is possible to manipulate input variables to minimize a

given value of predicate EP.

Table 8 summarizes EP calculation: the first column depicts possible predicate types

considering the various relational operators, second column contains predicate functions,

and rel is the appropriate operator for EP rel 0. LG(E1) refers to positive Boolean

predicates and LG(!E1) to negative Boolean predicates. k2 is given as a penalty to

violations of Boolean predicates, which they set to 100, while k1 is meant to avoid

division by zero when E1 = E2, which they set to 0.3.

48

Table 8: Predicate functions

Predicate Predicate Function rel
E1 > E2 EP = E2 – E1 <
E1 ≥ E2 EP = E2 – E1 ≤
E1 < E2 EP = E1 – E2 <
E1 ≤ E2 EP = E1 – E2 ≤
E1 = E2 EP = |E1 – E2| =
E1 ≠ E2

121
1

kEE
EP

+−
=

 1
1
k

≠

LG(E1) EP = k2 if E1 = 0
EP = 0 if E1 ≠ 0

LG(!E1) EP = 0 if E1 = 0
EP = k2 if E1 ≠ 0

In the case of character comparisons, they calculate EP using the ASCII values associated

to the characters. While in string comparisons, they sum up all the absolute values of the

differences between the ASCII values associated to the characters in each position of the

string.

Compound predicates that involve logical AND operator are treated as the summation of

its EP functions and the lowest value of them for compounded conditions with logical OR

operator.

In addition to the fitness function, they also consider the identification of potentially

infeasible paths by monitoring the progress of the best fitness found. The approach

considers a continual population’s best fitness improvement as an indication of feasible

path is covered. On the other hand, attempts to generate test data for infeasible paths

result, invariably, in a persistent lack of progress because of infeasible predicate.

49

The experimental results show the approach validity and its benefit. Discussion of the

approach based on our attributes is depicted in Table 9.

Table 9: Attributes of Bueno’s work

No Attributes Approach
1 Testing Objective Path coverage
2 Fitness Function Building block: Number of matched branches and

branch predicate value
Normalization: Of the two building blocks, only the
predicate value is normalized to the maximum
predicate value among candidate solutions that
executed the same branches of the target path
Balancing/Weighting: No
Adjustment: No
Traversal Method: Path-wise
Neighborhood Influence: N/A

3 GA Type The approach utilizes proportional selection scheme
and elitism inside the GA

4 GA's Operators Simple GA operators
5 Individual

Representation
Binary strings

6 Input Parameters
Domain

Numbers

7 Stopping Criteria Number of generations and path coverage level
8 Program Size Six small programs exercise the proposed test data

generator: floatcomp, quotient, strcomp, find, tritype,
and expint

9 Program
Development
Paradigm

Functional oriented programs

10 Implementation
Issues

They run each test program 10 times to reduce random
variations. Moreover, they apply two execution modes:
one with initialized population and the other with
initial random population.

50

The Work by Lin and Yeh [22] in 2000

Lin et al.’s work is an extension to the work done by Jones et al. In their work, the

level of coverage had been increased from branch testing to path testing and the ordinary

(weighted) hamming distance has been extended such that it can handle different ordering

of the target paths that have the same branch nodes.

They extend the hamming distance from the first order to the nth order (n>1) to measure

the distance between two paths, which named Extended Hamming Distance (EHD). The

rationale here is that, in path testing, two different paths may contain the same branches

but in different sequences, where the simple hamming distance is no longer suitable. They

name the fitness function SIMILARITY, since it calculates the similar items with respect

to their ordering within the two different paths, e.g. branches, between the current

executed path and the target path. The greater SIMILARITY leads to the better fitness.

The higher order SIMILARITY is more significant than its lower order counterpart is.

The highest-ordered SIMILARITY between two paths is therefore the most significant

one.

The test data generator consists of four basic steps: CFG construction, target path

selection, test data generation and execution, and test result evaluation. The first

generation of test data is generated at random. Then the generated test data are fed to the

program for execution. One test data will be exercised in one and only one selected path.

The survivors of test cases to the next generation are chosen according to the fitness

function. After all test data in the present generation are fed, the new generation of test

51

data is generated by the operators of reproduction, crossover, and mutation. The system

will automatically generate the next generation of test data until one of the test data covers

the target path or it has exceeded the specified maximum number of generations. The

objective of each run of the test data generator is to satisfy only a single target path, so the

generator must run at least as many as number of target paths.

Lin et al. have used triangle classifier as their tested program. They reported that the

quality of generated test data is higher than the ones that produced by random testing,

because the test data generator can direct the generation of test data to the desirable range

fast. Table 10 presents a summary of our evaluation based on our attributes.

52

Table 10: Attributes of Lin’s work

No Attributes Approach
1 Testing Objective Path coverage (extension of Jones’s work [19])
2 Fitness Function Building block: Branch predicate expression

Normalization: Normalized EHD
Balancing/Weighting: Proposed approach is assigning
different weights for each level of the hamming
distances that compose normalized EHD.
Adjustment: No
Traversal Method: Path-wise
Neighborhood Influence: N/A

3 GA Type Simple GA
4 GA's Operators The simple GA used in the approach puts into practice

two-point crossover with probability 0.9 and a simple
mutation with rate set to the reciprocal of the length of
the individual bit string

5 Individual
Representation

48-bit length string

6 Input Parameters
Domain

Integer number

7 Stopping Criteria Number of generations and path coverage level
8 Program Size A simple triangle classifier program
9 Program

Development
Paradigm

Has been validated against small functional oriented

10 Implementation
Issues

Implemented using C

The Work by Wegener et al. [44] in 2002

Wegener et al. developed fully automatic GA-based test data generator for structural

testing, specifically statement and branch coverage, of real-world embedded software

systems.

53

The proposed fitness function consists of two major building blocks: approximation level,

and normalized predicate local distance. Overall fitness value is the summation of the

approximation level value and the local distance value.

The approximation level indicates the number of continuously matched branching nodes

between the traversed path by an individual and a target path (or they call it as partial

aim).

The local distance is calculated for the individual by means of the branching conditions in

the branching node in which the target node is missed. The local distance of a branching

node that contains multiple conditions is a combination of the local distances of each

condition. The report does not describe the normalization of local distance.

For a node of the type A OR B, the local distance is the minimum value between single

predicate A and B. In the case of A AND B, the local distance is the sum of each single

predicate A and B.

An individual with a fitness value 0 means that it satisfies the partial aim. Although their

tool works on only one partial aim after the other, it takes into consideration the execution

of a test datum that usually leads to passing several partial aims. Thus, the test soon

focuses on those partial aims that are difficult to reach. The stopping criteria used are full

statement/branch coverage and number of generations, depends on which one is satisfied

first.

They have developed a tool environment to automate test case design for different

structural testing methods, which consists of the following six components.

54

1. Parser to analyze the program.

2. Graphical User Interface to enter the specification of the input domain of the program.

3. Instrumenter to capture the program structures executed by the generated test data.

4. Test driver generator to generate a test bed running the program with the generated

test data.

5. Test controller that includes the identification and administration of the partial aims

for the test and which guarantees an efficient test by defining a processing order and

storage of initial values for the partial aims.

6. Toolbox of evolutionary algorithms to generate the test data.

Their report does not discuss as whether multiple targets can be covered at one time.

However, the approach, more precisely, the test control, evaluates all individuals

generated with respect to all unachieved targets. Thus, other targets found by chance are

identified, and individuals with good fitness values for one or more targets are noted and

stored for seeding the next subsequent testing of uncovered targets.

The approach instruments the test program automatically and assumes the targets are

given.

They reported that full coverage of some programs is achieved, but not for all. According

to their report, they are investigating whether infeasible statements/branches or the

number of generations are some of the reasons for not being able to achieve full coverage

in some programs. They compared the results with the test data that are generated using

random testing, which apparently result in much lower coverage. We discuss their

approach based on our attributes in Table 11.

55

Table 11: Attributes of Wegener’s work

No Attributes Approach
1 Testing Objective Statement and branch coverage
2 Fitness Function Building block: Approximation level and normalized

predicate local distance (see Error! Reference source
not found.)
Normalization: Only the local distance value is mapped
into the value between 0 and 1.
Balancing/Weighting: No
Adjustment: No
Traversal Method: Path-wise
Neighborhood Influence: N/A

3 GA Type The approach exploits initialized population and multi-
population GA with maximal number of generation
200. Migration between sub-populations is every 20
generations in a complete net structure (5% migration
rate). Competition between sub-populations is every 5
generations (division pressure of 3)

4 GA's Operators The GA used in the approach applies discrete
recombination with rate of 1 and multiple strategies,
i.e. different mutation range for each sub-population,
which leads to different search strategies: from a
globally oriented search. This allows more exploration,
when employing a large mutation range to a very fine
search; and more exploitation, when employing a small
mutation range

5 Individual
Representation

Integer numbers

6 Input Parameters
Domain

Numbers and characters

7 Stopping Criteria Number of generations and path coverage level
8 Program Size Five small programs: asin, atof, classiftria, powi, and

incbet
9 Program

Development
Paradigm

Functional oriented programs

10 Implementation
Issues

Implemented using Matlab. The proposed approach
makes use of available tool Genetic Algorithm Toolbox
for Use with Matlab (GEATbx) that can support real,
integer, and binary coding representation of individuals

56

The Work by Ghazi and Ahmed [11] in 2003

The proposed approach is meant to test component-based software in order to achieve

pair-wise coverage, that is to generate minimum number of test data that have maximum

coverage of pair-wise configurations. Pair-wise testing, which is of type black box testing,

is a specification based testing criterion. It requires that for each pair of components, each

pair of instances of these components are covered by at least one test configuration. A test

configuration is a combination of instances of different components. Pair-wise testing is

also applicable to testing single component software. In this case, a test configuration

maybe looked at as a combination of values of the component’s input parameters.

The fitness function is calculated as the number of distinct pair-wise configurations

covered by an individual divided by the total number of possible pair-wise configurations.

A summary discussion of the approach is presented in Table 12.

57

Table 12: Attributes of Ghazi’s work

No Attributes Approach
1 Testing Objective Pair-wise coverage
2 Fitness Function Building block: Number of test data configurations

Normalization: A fitness value is relative to the number
of entire test data configurations required.
Balancing/Weighting: N/A
Adjustment: N/A
Traversal Method: N/A
Neighborhood Influence: N/A

3 GA Type Not clear
4 GA's Operators Not clear
5 Individual

Representation
Not clear

6 Input Parameters
Domain

Not clear

7 Stopping Criteria Not clear
8 Program Size Since the tester only needs the interface of the test

programs hence the size of the test program is not
important, i.e. not required in black box testing type.
However, the number of components (or input
parameters, in case of a single component testing) can
give some information about the scalability of the
approach. In their case, they tested their generator with
four components, each of which has 3 possible values

9 Program
Development
Paradigm

Not clear

10 Implementation
Issues

They reported that the approach have been tested on
“Placing A Telephone Call” problem that achieves
90% coverage with 9 configurations per individual and
100% coverage with 11 configurations per individual

58

3.4. Conclusion on Existing GA Based Test Data Generators

Our critical survey of the state-of-the-art in GA based test data generators, using our

set of attributes, discloses some drawbacks related to the existing approaches. The

following are some issues we were able to identify:

1. Testing objective: Most of the test generators, we surveyed, were developed to satisfy

statement and/or branch coverage. Only small number of them was working on path

coverage and stress testing. To the best of our knowledge, path coverage criterion has

the largest coverage among other type of structural coverage testing criteria [33].

Related works in path coverage testing, e.g. Lin’s work [22], have the limitation of

handling single target path at a time.

2. Instrumentation and target generation: Manual instrumentation and target

generation reduce the scalability of the test data generator. Only some existing works

instrument the test programs automatically, e.g. works done by Roper et al., Pargas et

al., and Michael et al.

3. Program size: The scalability of the test program is still low for all the works.

However, only one of the approaches exercises its test data generator using real world

embedded system [30].

4. Program development: Although trends in the recent and coming years are moving

toward object-oriented development, to the best of our knowledge, none of the

approaches works on testing object-oriented programs.

5. Multiple targets: There were no attempts to satisfy multiple targets at a time.

59

6. Handling infeasible target: Of all the works, only Bueno’s approach [7] is capable of

identifying potentially infeasible targets. Unless the tester analyze the target paths

intensively, Bueno’s heuristic still could not decide that the target is infeasible

7. Validity/Soundness: None of the works has shown rigorous analysis (either

experimentally or analytically) of the validity or soundness of their approach, to

provide confidence that it really does what it claims.

8. Comparisons: Most of the related works compare their approaches to random testing

as opposed to other approaches. Therefore, one would not be able to tell which

generator is better as far as effectiveness and efficiency are concerned.

9. Program type: Most of the test programs are non real-time software. Only Alander’s

approach works on testing real-time system [1].

An appropriate handling of these issues would significantly enhance the performance of

GA-based test data generators. We present our attempt at addressing some of these issues

in the next chapter. We mainly focus on trying to satisfy multiple target paths at a time.

60

CHAPTER 4

PROPOSED APPROACH

4.1. Introduction

This chapter describes details of our proposed approach, to test data generation using

GA; more precisely, it describes our fitness function. Our approach follows from our

effort to deal with one of the problems resulting from our critical survey in Chapter 3; that

is the multi-target paths satisfaction at one time.

4.2. The Problem

As has been demonstrated in Chapter 3, many GA-based test data generators adopted

statement or branch coverage as their objectives. However, by nature, path coverage

criterion covers statement and branch coverage criteria, which makes it the utmost

coverage [33]. Thus, an effective software structural testing should have path coverage as

its objective.

As Chapter 3 concluded, none of the works on satisfying path coverage consider

satisfying multiple target paths at a time, i.e. achieving a set of required target paths in a

single run of GA. Clearly, satisfying multiple paths at a time would require incorporating

these paths within the fitness calculation. The rationale behind considering multiple paths

61

at a time is based on the observations that in trying to satisfy a single path, other paths

might be satisfied as a by-product. Based on this observation, trying to satisfy multiple

paths at a time is expected to greatly increase the efficacy and efficiency of the test data

generator, i.e. attaining more coverage with less resources than a single-path test generator

would need to cover the same number of paths (over multiple runs).

An essential characteristic of GA based structural testing is that the fitness function is

constructed based on the test program. A well-constructed fitness function may

significantly boost the possibility of finding a solution and reaching higher coverage [2].

Based on our previous critical survey of existing approaches, we have identified several

crucial attributes of a fitness function that may be used in guiding the design of a good

fitness function in term of search effectiveness and efficiency: building blocks,

normalization, balancing/weighting, adjustment or rewarding, path traversal method, and

neighborhood influence.

Guided by our fitness function, we have developed a GA based test data generator for

multi-path coverage at one run. The outcome of our wok is the following:

• Developing a test data generator that satisfies the path coverage testing criterion.

• Generating test data that satisfies multiple target paths at a time.

• Designing and implementing several fitness function candidates that consider good

building blocks design, normalization, weighting, rewarding, path traversal technique,

and neighborhood influence.

• Performing performance comparison between our work and others.

62

4.3. Research Approach

This section presents our approach to develop our fitness function. The section starts

with presenting some terminologies, followed by demonstrating the different fitness

function candidates we developed.

4.3.1. Terminology

The following terms used in demonstrating our fitness function candidates:

1) A chromosome Ci represents the ith individual within a population C (i.e., a set of

chromosomes), for the program or software under test (hereafter SUT). Each

individual represents input datum.

2) A predicate value, PV, is the distance value of a predicate (i.e., condition) according to

Korel’s distance function (see Table 13 below) [20]. It is either greater than zero (> 0)

meaning a FALSE branch is traversed, or less than or equal to zero (≤ 0) meaning a

TRUE branch is taken. In the case of compound predicates, the distance PV is simply

the summation of its primitive distances for conjoined predicates and the minimum of

its primitive distances for disjoined predicates (as shown in Table 13, equations no. 7

and 8).

63

Table 13: Korel’s distance function

No Predicate Distance if path taken is different
1 A = B ABS(A – B)
2 A ≠ B K
3 A < B (A – B) + k
4 A ≤ B (A – B)
5 A > B (B – A) + k
6 A ≥ B (B – A)
7 X OR Y MIN(Distance(X), Distance(Y))
8 X AND Y Distance(X) + Distance(Y)

Where, k is the smallest step for the input data of the program, i.e. the resolution of the

number that a programming language can represent or manipulate, in spite of the

machine representation. For example, in most programming languages the “integer

type” has k = 1.

3) A path Pi is the path traversed by Ci. Each path, P, is represented by the sequence of

branching nodes/predicates (hence called nodes), i.e. a statement where the program is

heading to different branches logically, traversed by P, along with their associated PV

pairs. For example, see Figure 5, a path P1 that would go through the nodes B1, B2,

and B3, with PVs = -5, 1, and 0, respectively is represented as P1 = {1 -5 2 1 3 0},

which means {1 T 2 F 3 T} or {1 TRUE 2 FALSE 3 TRUE}. For simplicity, target

paths are treated little differently, since there is concept of distance. The PV of a

condition, with respect to a target path, is represented either by zero (1) or by one (0),

to represent FALSE and TRUE, respectively. For example, we represent a target path

T1 = {1 T 2 F 3 T} as T1 = {1 0 2 1 3 0}.

64

Figure 5: CFG for a minimaxi SUT

4) The length of a path, lPi = 2
iP

, represents the number of nodes traversed. The division

by two is taking place due to the fact that each node is represented by a pair of values:

the node number, and the corresponding PV.

5) For a path Pi, the xth pair of node index and its PV can be accessed through Pi.((2*x)-1)

and Pi.(2*x) respectively; where 1 ≤ x ≤ lPi.

6) A target path TGi is the ith path in the set of target paths TG. For each target path, the

tester should suggest (find) an appropriate test datum that is expected exercise that

target path3.

7) A traversed path TRi is the path traversed by executing chromosome Ci. The TR set is

the set of traversed paths by the population.

3 Appendix A gives an example of target sets for some test programs.

65

8) A sub-path SPi is a sub-sequence of a path Pi.

9) A matched sub-path between a TRi and a TGj is a common sub-sequence between the

two paths.

10) An unmatched sub-path between a TRi and a TGj is an uncommon sub-sequence

between the two paths.

11) Matched node between two paths is a node whose number and value in both paths are

the same, i.e. Pi.((2*x)-1) = Pj.((2*x)-1); where {(1 ≤ x ≤ lPi) AND (1 ≤ x ≤ lPj)}4.

12) Unmatched node-branch is a matched node where its branch value has different signs

in the corresponding paths (see Equation 5).

)

() ()
() ({ }

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⊕=

<

=

otherwise ; 0

 AND 0

OR 0
 if ;

2.2.2

2
2.

. kjkikij.

kij.
kj

kij TRPVTGSign

Sign
TRabs

pD
Equation 5

Equation 5 presents the distance D calculation in the node level. TGi.2k and TRPVj.2k

are the distances, in position k, of target path i and traversed path j, respectively.

Function Signij.2k is meant to check whether the TGi.2k and TRj.2k predicate values have

the same sign; it is formally described below.

kjkikij TRTGSign 2.2.2. *= Equation 6

4 For the sake of calculation simplicity, the node positions in both target and traversed path must match.

This imposes a limitation in the sense that matched subpaths that have unmatched node positions can not be

captured as a contribution to the fitness value. Future work will address this issue.

66

TRPVj.2k in Equation 7 is a function to convert TRj.2k predicate value into 0 or 1.

⎩
⎨
⎧ <

=
otherwise ; 1

0 if ; 0 2.
2.

kj
kj

TR
TRPV

Equation 7

13) An unmatched node is a node where whose number and value in the corresponding

paths are not the same.

4.3.2. Fitness Function Design

This section discusses the decisions made with regard to the fitness function design.

4.3.2.1. Building Blocks

The basic building blocks of our proposed fitness function candidates are based on

comparing traversed paths to target paths in terms of distance D and violation V. D tells

how far the traversed path from the target path in term of predicate values for the

“unmatched node-branches”. V tells how many unmatched nodes exist between the target

path and the traversed one.

The objective is to minimize the distance D and violation V. Equation 8 shows the

building blocks of the proposed fitness function.

ijijij VDIF +=
Equation 8

where,

i = index of target path

j = index of chromosome’s traversed path

67

IF = Intermediate Fitness that look at the fitness of a chromosome with respect to one

target path. It is considered as a building block for the overall chromosome fitness where

the fitness with respect to all target paths is considered.

D = Distance (or PV). In case of the predicate-wise traversal method, D is equal to the

sum of all the PVs of unmatched node-branches.

V = Violation (number of unmatched nodes). Path violation V with respect to predicate-

wise traversal technique is defined as the number of unmatched nodes between the actual

traversed path and the target path along both paths from the beginning to the end.

4.3.2.2. Distance and Violation Calculation

We calculate the predicate value using Korel’s distance function [20] as shown in

Table 13. The distance equals to zero if the node-branch of both the target path and the

traversed path are matching.

For example, consider Figure 5, assuming: B1 is “index ≤ length”, B2 is “max <

number(index)”, and B3 is “min > number(index)”. Given, situation for (current)

chromosome number 2 as follow: index = 1, length = 2, max = 10, min = 5, number(1) =

2, and a target path TG1 = {1 1 2 0 3 1} or TG1 = {1 T 2 F 3 T}. Which path is

taken/traversed by this chromosome number 2, TR2? Based on Equation 8, the distance

between TG1 and TR2, i.e. D12, is equal to the summation of all distances, i.e. distance B1

(DB1), distance B2 (DB2), and distance B3 (DB3). According to Korel’s distance function

(see Table 13) and assuming that k is equal to 1; therefore, DB1 = index – length, DB2 =

(max – number(1)) + 1, and DB3 = (number(1) – min) + 1. These result in the following:

68

DB1 = 1–2 = -1, DB2 = (10–2)+1 = 9, and DB3 = (2–5)+1 = -2; where if we convert to

distance they will be DB1 = 0, DB2 = 0, and DB3 = 0, since TR2 took the same path with

TG1 {T F T} . In case we have another target path (TG2) that has path {T F F}, thus, D22

= 0 + 0 + ABS(-2), and V22 = 1, since B3 had been violated.

In the next subsections, we present the details of our approach for calculating the distance

D and violation V in a more formal way. We first start by introducing the absolute

measures distance and number of violations; then we present our approach for

normalizing such measure.

4.3.2.3. Plain Distance and Violation

Plain (i.e., absolute) distance measure is equal to the summation of all predicate

values of unmatched node-branches. On the other hand, plain violations equals to the

number of unmatched nodes that is determined by the path traversal approaches in the

previous chapter sub section 5), i.e. either path-wise or predicate-wise. Obviously, both

the plain distance and violation values are not bounded.

The followings are the plain distance function pDij (Equation 9) between a target path TGi

and a traversed path TRj along with its supporting functions under predicate-wise path

traversal method.

∑
=

×=
ijlC

k
kijkijij pDmCpD

1
..

Equation 9

69

Equation 9 describes the calculation of distance D in the path level, i.e. the summation of

all absolute predicate values between target path TGi and traversed path TRj.

() ()()
⎩
⎨
⎧ =

= −−

otherwise

TRTGif
mC kjki

kij
;0

;1 12.12.
.

Equation 10

mCi.j.k has the role to match the node sequence between two paths.

⎪⎩

⎪
⎨
⎧ ≤

=
otherwise ;

 if ;

j

jii
ij lTR

lTRlTGlTG
lC

Equation 11

The length counter lCij in Equation 11 is to count the minimum number of conditions

encountered in target path TGi and traversed path TRi.

Equation 12 and Equation 13, below, calculate the plain violation pVij considering all

target paths; and pcVij that both considers all paths as well as is influenced by other

chromosomes in the population.

()

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

=

∑

∑

=

=

otherwise ; *

0 if ; *

1
.

1
.

j

lC

k
kijij

lC

k
ijjkij

ij

mDpVlX

lXmDpV

pV
ij

ij

Equation 12

70

()

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

=

∑

∑

=

=

otherwise ; *

0 if ; *

1
.

1
.

mcDpVlX

lXmcDpV

pcV
ij

ij

lC

k
kijij

ij

lC

k
kij

ij

Equation 13

Equation 14 describes the calculation of plain violation pVij in the node level, indicated by

position index k, which is needed by Equation 12.

)

()
()
() (()

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⊕=

<

≠

=

−−

otherwise ; 0

 AND 0

OR 0

OR

 if ; 1

2.2.2

2

)12.(12

.
kjkikij.

kij.

kj)ki.(

kij TRPVTGSign

Sign

TRTG

pV

Equation 14

Equation 15 computes the number of comparisons required between a target path i and a

traversed path j.

⎪⎩

⎪
⎨
⎧

−

≤
=

otherwise ;

 if ; 0

ji

ji
ij lTRlTG

lTRlTG
lX

Equation 15

While Equation 16 is meant to find the maximum distance between a traversed path j and

all existing target paths, Equation 17 calculates the maximum distance between all

existing traversed paths and all existing target paths.

()ijpDimDj Over MAX=
Equation 16

71

()ijpDijmcD Over MAX=
Equation 17

Using the path-wise path traversal approach, plain distance pDij and violation pVij are

calculated in a similar manner to that of the predicate-wise approach until the first

unmatched node-branch is reached. The following are the calculation for pDij (Equation

18), pVij (Equation 19) and pcVij (Equation 20).

()

;0

1;1 where; .
1

.

⎪⎩

⎪
⎨

⎧
=≤≤

= ∑
=

otherwise

matchiflCxpD
pD xijfirstij

x

k
kij

ij
Equation 18

()
()

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

=

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

⎟
⎠

⎞
⎜
⎝

⎛
+

≤≤

=

=

∑

∑

=

=

otherwise

matchif

mDpVlX

lCx

lXmDpV

pV xijfirst

j

x

k
kijij

ij

x

k
ijjkij

ij

;0

1;

otherwise ; *

1 where

0 if ; *

.

1
.

1
.

Equation 19

()
()

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

=

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

⎟
⎠

⎞
⎜
⎝

⎛
+

≤≤

=

=

∑

∑

=

=

otherwise

matchif

mcDpVlX

lCx

lXmcDpV

pcV xijfirst

x

k
kijij

ij

ij

x

k
kij

ij

;0

1;

otherwise ; *

1 where

0 if ; *

.

1
.

1
.

Equation 20

72

)
()
() () (()[]

⎪
⎩

⎪
⎨

⎧

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⊕=<

=

=
−−

otherwise

TRPVTGANDSignORSign
ANDTRTG

if
match xjxixijxij

xjxi

xijfirst

;0

00
;1

....

)12.()12.(

.
Equation 21

4.3.2.4. Normalized Distance and Violation

Distance D is normalized by either mDj as shown in Equation 22, which considers all

target paths, or by mcD as shown in Equation 23, which considers all target paths as well

as other chromosomes.

j

ij
ij mD

pD
nD =

Equation 22

mcD
pD

ncD ij
ij =

Equation 23

On the other hand, violation pVij normalized by its length, i.e. TGi, as shown in Equation

24.

i

ij
ij TG

pV
nV =

Equation 24

4.3.2.5. Neighborhood Influence

Since we try to satisfy multiple targets at the same time, the fitness of a chromosome

should consider all target paths. Accordingly, we allow two distance normalization

73

schemes: based on the target paths (we refer to it as Op) only; and based on both target

paths and other chromosomes (we refer to it as Oc).

4.3.2.6. Weighting

We use weights to allow differentiation between the contribution of the different

building blocks of the fitness function, that is the distance D and the violation V to the

overall fitness (see Equation 8).

() ()ijijijijij VWDWIF ∗−+∗=)1(Equation 25

where,

W is a weight that reflects how much the distance D should contribute to the overall

fitness value; it also, indirectly, represents the contribution of the violation V to the fitness

value. It ranges from zero to one; 0 means no contribution and 1 means full contribution.

Setting the weight to 0.5 would mean that both distance and violation are having the same

level of contribution to the fitness value.

We allow two ways for selecting the weights: Static Weighting and Dynamic Weighting.

In static weighting, the weight is determined by the user; in the range from zero to one.

Dynamic weighting allows the calculation of the weights during the runtime; where each

generation may assign different weights to the distance-violation pair. Dynamic weighting

is a weight assignment using a normalized value that changes from generation to

74

generation unattended. Dynamic weighting has two schemas: distance-based and

violation-based weight assignments.

Distance-based weight dWij is a normalized distance value, which is the chromosome’s

distance divided by the maximum distance of all chromosomes in one generation.

Actually, dWij is meant to normalize total building block values relative to the actual

normalized distance in the current generation.

)(ijj

ij
ij pDMAXOver

pD
dW = Equation 26

Assigning normalized violation value, i.e. pVij, divided by its length, i.e. lTGi, to the

weight is the basic idea of dynamic violation-based weight assignment. The pVij

normalizes fitness value relative to the actual normalized violation in the current

generation.

i

ij
ij lTG

pV
vW =

Equation 27

4.3.2.7. Rewarding

For each target path, the chromosome that has the least distance in trying to satisfy

this target path among any other chromosomes in the population is a winner with regard

to that target path, i.e. the one that will get a reward; that is its fitness will be positively

affected. The rationale, here, is to give such a chromosome a better chance of survival to

the next generation since it is the closest to some target paths.

75

Reward of a target path TGi is given by deducting certain value, Ri, from the intermediate

fitness value IFix of xth chromosome that has the smallest distance with TGi. (see Equation

29). Reward is given as a deduction from the intermediate fitness function since the

objective is to minimize the overall fitness value of a chromosome.

)(Over MIN where; ijixiixix IFiIFRIFIF =−=
Equation 28

Reward Ri given with respect to the target path TGi. Ri is normalized to the summation of

all IFs of traversed paths that are trying to satisfy TGi.

∑
=

−= TR

j
ij

ijj
i

IF

IFMINOver
R

1

)(
1 Equation 29

4.3.2.8. Final Fitness Calculation

In order to get the overall fitness value we have to sum up and normalize the whole

intermediate fitness values for each chromosome.

The following is the final fitness, Fj, calculation for chromosome j considering all target

paths.

TG
pF

F j
j =

Equation 30

∑
=

=
||

1

TG

i
ijj IFpF

Equation 31

76

The following is the final fitness, Fj, calculation for chromosome j considering all target

paths and all chromosomes.

|| TG
cF

F j
j =

Equation 32

∑
=

=
||

1

TG

i
ijj NIFcF

Equation 33

The following normalized version is used if all the IFs of chromosome j are calculated

using normalized distance and violation.

∑
=

= ||

1

TR

k
ik

ij
ij

IF

IF
NIF

Equation 34

4.4. Proposed Fitness Function Candidates

Based on the above discussion on the different decisions that can be made with regard

to the fitness function design, Table 14, below, lists the possible variation points along

with their corresponding values. For the sake of easier reference, abbreviations of the

possible values are shown under the “Code” column in the table.

77

Table 14: Possible fitness function combinations

No Attributes Values Code
1 Path traversal approach Path-wise

Predicate-wise
Ph
Pr

2 Neighborhood influence Other paths
Other paths & chromosomes

Op
Oc

3 Distance & violation normalization Plain (not normalized)
Normalized

P
N

4 Weighting scheme No weight
Static
Distance-based (dynamic)
Violation-based (dynamic)

Wn
Ws
Wd
Wv

5 Rewarding No reward
Reward

Rn
Rw

6 Final fitness normalization Plain (not normalized)
Normalized

P
N

Therefore, there will be 128 (=2*2*2*4*2*2) possible fitness function candidates for all

the combination of these attributes. For example, one candidate might take the following

attributes: predicate-wise, relative to other paths, normalized distance-and-violation,

distance-based weighting, no rewarding and normalized final fitness. Hence, the selected

final fitness function will be the following (nDij and nVij are calculated as prescribed in

the Equation 22 and Equation 24).

() ()(){ }
TG

nVdWnDdW
F

TG

i

lC

i
ijijijij

j

ij

∑ ∑
= = ⎭

⎬
⎫

⎩
⎨
⎧

∗−+∗
= 1 1

1

Equation 35

78

4.4.1. Fitness Function Candidates Roadmap

The fitness functions roadmap is meant to give a comprehensive picture of the

proposed fitness function candidates and their relationships. The roadmap contains tables

for distance and violation computation, weighting, rewarding, and final fitness

computation.

4.4.1.1. Distance and Violation Computation

The following equations apply to both distance D and violation V calculation at the

path level.

Table 15: Distance and violation computations roadmap

No Measure Path Traversal
(PT)

Normalization Neighborhood
Influence (NI)

Equation To
Use

1 P Equation 18
2 Op Equation 22
3

Ph
N

Oc Equation 23
4 P Equation 9
5 Op Equation 22
6

Distance
(D)

Pr
N

Oc Equation 23
7 Op Equation 19
8

P
Oc Equation 20

9

Ph

N Equation 24
10 Op Equation 12
11

P
Oc Equation 13

12

Violation
(V)

Pr

N Equation 24

4.4.1.2. Weighting

In case of weighting scheme is applied, we use Equation 25 instead of Equation 8 for

calculating intermediate fitness value IF.

79

4.4.1.3. Rewarding

If we apply rewarding then we deduct the reward R from an intermediate fitness value

IF of a selected individual as shown in Equation 28.

4.4.1.4. Final Fitness Computation

The final fitness is calculated using one of the following equations that depend on

neighborhood influence and normalization attributes.

Table 16: Final fitness computation roadmap

No Neighborhood Normalization Equation To Use
1 P Equation 31
2

Op
N Equation 30

3 P Equation 33
4

Oc
N Equation 32

4.4.2. Reduced Possible Fitness Function Candidates

Based on our intuition, we expect that normalized values would be more rational than

the plain ones. Accordingly, to reduce the number of possible fitness function candidates

to be investigated, we limit the scope to those properties in which that the possible values

are normalized. In this case, we exclude the plain possible values in attribute 3 and 6 in

Table 14. This way, we end up having 32 (=2*2*4*2) possible fitness function candidates.

80

CHAPTER 5

EXPERIMENTS AND RESULTS

5.1. Introduction

In this chapter, we present and assess the performance (i.e., strengths and

weaknesses) of all proposed fitness functions (i.e., candidates) using several tests. The

chapter also discusses the implementation of our GA-based test data generator, including

its design, setup, and implementation issues. Finally, we present experimental results and

analysis.

5.2. Experiments Design

We have conducted 7 different experiments using Matlab; each experiment considers

different software under test (SUT). Each experiment is comprised of sets of runs; one set

for each fitness function, where average performance over each set is reported. The 32

candidate fitness functions are distinguished from each other by their attributes settings

(i.e., the values set for the variation points that were discussed in the previous chapter) as

shown in the following Table 17.

81

Table 17: Fitness function candidates

No PT NI R W Candidate Codes
1 Wn Ph-Op-Rn-Wn
2 Ws Ph-Op-Rn-Ws
3 Wd Ph-Op-Rn-Wd
4

Rn

Wv Ph-Op-Rn-Wv
5 Wn Ph-Op-Rw-Wn
6 Ws Ph-Op-Rw-Ws
7 Wd Ph-Op-Rw-Wd
8

Op

Rw

Wv Ph-Op-Rw-Wv
9 Wn Ph-Oc-Rn-Wn

10 Ws Ph-Oc-Rn-Ws
11 Wd Ph-Oc-Rn-Wd
12

Rn

Wv Ph-Oc-Rn-Wv
13 Wn Ph-Oc-Rw-Wn
14 Ws Ph-Oc-Rw-Ws
15 Wd Ph-Oc-Rw-Wd
16

Ph

Oc

Rw

Wv Ph-Oc-Rw-Wv
17 Wn Pr-Op-Rn-Wn
18 Ws Pr-Op-Rn-Ws
19 Wd Pr-Op-Rn-Wd
20

Rn

Wv Pr-Op-Rn-Wv
21 Wn Pr-Op-Rw-Wn
22 Ws Pr-Op-Rw-Ws
23 Wd Pr-Op-Rw-Wd
24

Op

Rw

Wv Pr-Op-Rw-Wv
25 Wn Pr-Oc-Rn-Wn
26 Ws Pr-Oc-Rn-Ws
27 Wd Pr-Oc-Rn-Wd
28

Rn

Wv Pr-Oc-Rn-Wv
29 Wn Pr-Oc-Rw-Wn
30 Ws Pr-Oc-Rw-Ws
31 Wd Pr-Oc-Rw-Wd
32

Pr

Oc

Rw

Wv Pr-Oc-Rw-Wv

The explanation for each column is described in Table 14 (Chapter 4). Each of the 32

candidates is exercised at least ten times (i.e., runs) for each SUT.

82

As discussed below, we mainly assess the performance via three measures: generation-to-

generation (G2G) achievement, the best fitness, and cluster convergence (phi).

G2G achievement graph is used to analyze the effectiveness and efficiency of each fitness

function candidate, while cluster convergence graph is used to analyze the exploration and

exploitation behavior of each fitness function candidate. The best fitness graph is to meant

analyze the best candidate solution behavior over generations5. Having these graphs will

help us in comparing the different candidates. More details about these types of graph can

be found in [40].

5.2.1. SUTs Preparation

We have selected six test programs as SUTs for experimentations. Each SUT poses

special characteristics which we would like to investigate the performance of our

candidate fitness functions against. We briefly discuss these SUTs below. For each SUT,

we instrument the original program without changing its semantic. Then, we construct the

corresponding CFG and generate a list of selected target paths from it. We developed our

test data generator using Matlab. We also developed an instrumented version of the

considered SUTs in Matlab. The instrumented source code for each SUT, along with the

corresponding CFG and selected target paths are presented in the Appendix A.

5 It is worth noting here that the best fitness function graph can go below zero due to the application of the

rewarding scheme in some candidates.

83

 Minimum-maximum (mm): Given an array of numbers, mm is a program to find the

minimum and maximum numbers within the array. The program has two sequential

selection statements inside a loop in which all the conditions (predicates) are

simple/primitive. During our experiment, we allowed the length of the array to be

variable, and restricted the content of the array to integer numbers.

 Triangle classifier (tc): Given three numbers, tc, is a program to classify whether these

numbers form a triangle or not. If they are, then the program determines whether the

triangle is scalene, isosceles, or equilateral. Triangle classifier has three nested

selection statements in which all the decisions are compound predicates.

 Bubble sort (bs): Given an array of numbers, bs, is a program to sort these numbers in

an increasing order. The program has two loops that are nested and one selection that

is nested inside the inner loop. The outer loop contains compound predicate.

 Insertion sort (is): Given an array of numbers, is, is a program to sort these numbers in

an increasing order. The program has two loops that are nested and one selection that

is nested inside the inner loop. The inner loop contains compound predicates.

 Binary search (ns): Given an array of numbers and a key, ns, is a program to find a

key among these numbers. The program has a single loop that contains a single

selection.

 Minimum-maximum and triangle classifier (mt): Given three numbers, this combined

program outputs both the minimum-maximum and the triangle classification as well.

84

This program is formed from mm and tc to allow much more complexity when

investigating the performance of our candidate fitness functions.

5.2.2. GA Parameters Setup

In using GA, the values of GA parameters must be set up before hand. The

followings are the values for all GA parameters that we use (see Table 18). Selection of

these values was subject to trial-and-error practice. Initially, GA parameters are set to the

values that are mostly used and considered promising in the previous related works.

Gradually, based on the feedback from one experiment, parameters are refined in

subsequent experiments.

Table 18: GA parameters setup

No Parameter Value
1 Population Size 30
2 No Of Generations 100
3 Generation Gap 0.8
4 Selection Method Roulette Wheel
5 Crossover Method Single Point
6 Crossover Probability 0.5 or 0.9
7 Mutation Probability 0.1 or 0.3
8 Chromosome Type SUT-based
9 Chromosome Size Variable
10 Allele Base 10
11 Allele Range ±1000

These parameters, however, slightly vary from one experiment to another based on the

corresponding SUT. In other words, the same treatment was not (could not be) applied

across all SUTs. The gain from these variations is that they give an idea on how to setup

85

the parameters when dealing with other test programs that have similar characteristics

with the SUTs we have used for experimentations.

It is worth noting here that the parameters setting is not only dependent on the

characteristics of the SUT, but also on the fitness function candidate adopted as well as

the number of target paths being considered. For example, a more complicated test

program with a larger number of target paths is expected to require a larger population

size and a larger number of generations to find effective test data.

5.2.3. Things to Record

The following pieces of information are very important to record per generation in

order to assess the experiment outcomes. During our experimentations, we write this

information for each fitness function candidate to a text file.

Fitness function candidate index: To identify the fitness function candidate that is being

used.

Initial and remaining target paths in each generation: To measure the path coverage

achieved.

The best chromosomes along with their fitness values in each generation: To analyze the

behavior of the fitness function employed.

The successful chromosomes along with their covered target paths in each generation:

These are the generated test data that cover some target paths, which have not been

covered yet.

86

Generation-to-generation coverage: This measure is meant to assess the strength and

efficiency of the fitness function, and the difficulty of the target paths, as well. This

consists of a pair of generation number and its number of satisfied target paths in a run of

a specific fitness function candidate.

Cluster convergence coefficient (a.k.a. phi) in each generation: To measure the speed of

convergence of the population generated from generation to generation. The value of this

metric is calculated as the best fitness divided by the average fitness of the current

generation in case of minimization. On the other hand, it is calculated as the average

fitness divided by the best fitness in case of maximization. Phi is approaching one as the

population converges to a single value.

Experiment duration: To note the duration of each experiment conducted. The more

complex the problem in term of the program complexity and the number of selected target

paths to satisfy, the longer time duration it takes; assuming the same population size and

number of generations. However, we do not record this data, since they are only used to

demonstrate the SUT complexity, which is a characteristic of the SUT as opposed to the

fitness function candidate; moreover, this data vary from one machine to another and from

one environment to another.

87

5.3. Design and Implementation Issues

During the implementation of and experimentation with our approach, there were

several issues to take care of in order to get the expected results. These issues are reported

as follow.

5.3.1. Generation and Selection of Target Paths

One issue with regard to satisfying multiple targets at a time is that the target paths

may have different lengths. Moreover, in the case of looping, it is desirable to cover, at

least, no iterations, one iteration, and two iterations; which in turn causes variable

chromosome length.

5.3.2. Instrumentation of SUTs

A tag to monitor the traversed path (in response to executing a particular test datum)

and to record the distance, i.e. the predicate value, is inserted right before and after any

condition-decision. This tagging process is done manually for each test program.

Actually, the tag is like a function call that returns the branch number and its distance

when it is invoked.

5.4. Graphs and Measurements

For each SUT, at least the G2G achievement graph is presented and analyzed in this

chapter. In case of SUTs that have infeasible paths, two more graphs are added: the best

88

fitness and phi. The best fitness and phi graphs would not be meaningful if the number of

generations is less than 10. Therefore, in our experiments, we do not plot these graphs for

SUTs that contain only feasible paths, since most of those paths were found within the

first 5 generations.

5.4.1. GA and Fitness Function Parameters Setup

Based on initial trial-and-error results, we selected the rates to be: either 0.1 or 0.3 for

static weight, either 0.5 or 0.9 for crossover, and either 0.1 or 0.3 for mutation. The logic

behind the selection of the static weight is that the predicate distance contributes much

less than the violation. As for the crossover and mutation rate, we are trying to maintain a

balance between the exploration and exploitation of the search space. The following table

shows all these parameter values that we have tested.

Table 19: GA’s and fitness function’s parameters possible values

No Static Weight Crossover Rate Mutation Rate Condition
1 0.1 0.1-0.5-0.1
2 0.5 0.3 0.1-0.5-0.3
3 0.1 0.1-0.9-0.1
4

0.1
0.9 0.3 0.1-0.9-0.3

5 0.1 0.3-0.5-0.1
6 0.5 0.3 0.3-0.5-0.3
7 0.1 0.3-0.9-0.1
8

0.3
0.9 0.3 0.3-0.9-0.3

The last column (i.e. Condition) summarizes the sequence of fitness functions’ and GA’s

rates, i.e. static weight followed by crossover and mutation rates. For example, 0.1-0.5-0.1

89

means the values for static weight, crossover rate, and mutation rate are 0.1, 0.5, and 0.1,

respectively.

As a pre-experiment to find the best combination to use, we applied all the parameter

values combinations shown in Table 19 to all 32 fitness function candidates using the

minimum-maximum (mm-i) as a test program with infeasible paths included in the set of

target paths. We used the number of successes, i.e. the number of fitness function

candidates that found all the required feasible target paths, to assess the effectiveness of

the each. Table 20 presents the result corresponding to each parameter-value combination.

Table 20: Effectiveness of parameter-value combinations

No Combination No of successes
1 0.1-0.5-0.1 15
2 0.1-0.5-0.3 19
3 0.1-0.9-0.1 15
4 0.1-0.9-0.3 19
5 0.3-0.5-0.1 16
6 0.3-0.5-0.3 17
7 0.3-0.9-0.1 16
8 0.3-0.9-0.3 17

Two of these combinations have the same number of successes: 0.1-0.5-0.3 and 0.1-0.9-

0.3. Accordingly, we just arbitrarily selected one of them, that is 0.1-0.9-0.3. The rationale

behind this selection is the higher exploration and exploitation abilities that are due to the

higher crossover and mutation rates, respectively.

90

Table 21 below lists all the conducted experiments, where each experiment is composed

of 10 runs per fitness function candidate; except for no 4, 5, and 7; which are composed of

20 runs each to allow more confidence.

Table 21: Experiment treatments

No SUT No of Target No of Infeasible Paths
1 Binary Search (ns) 7 0
2 Insertion Sort (is) 4 0
3 Triangle (tr) 4 0
4 Minimaxi-f (mm-f) 13 0
5 Minimaxi-i (mm-i) 21 8
6 Bubble Sort (bs) 14 11
7 Minmax-Tri (mt) 84 20

Experiments 4 and 5 are meant to observe the effect of infeasible paths on the behavior of

the different fitness function candidates.

5.4.2. Experiments

In this section, we discuss all the experimental results. We organize the discussion as

per experiment, i.e. per SUT.

5.4.3. Binary Search (ns)

Almost all (6.96 out of 7 on the average) the feasible target paths were found by all

the candidates during this experiment. All target paths were found during the first 2 (or

1.25 on the average) generations. These results were based on the average of 10 runs.

Moreover, in some runs, all the feasible target paths were found in the first (i.e., initial)

91

generation. Clearly, this behavior was due to the exploration achieved by the random

population developed in initial generations. Accordingly, we could not show the fitness

and phi behaviors for fitness functions corresponding to those runs, i.e. those graphs

would not be meaningful.

The following figure (see Figure 6) shows the effectiveness and efficiency all candidates

over 10 runs. Effectiveness is indicated by the number of paths found (PF) for a SUT that

has only feasible target paths (PFF), on the average; that is PFF-Avg. Efficiency, on the

other hand, is indicated by the last generation (LG) for a SUT that has only all feasible

target paths (LGF), on the average, where all paths were found; that is LGF-Avg.

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Candidate index

PF
 o

r L
G

PFF-Avg LGF-Avg

Figure 6: G2G achievement of binary search on the average of 10 runs

92

As shown in Figure 6, the difference between the candidates performance was

insignificant. No candidate can be claimed as an absolute best or as an absolute worst.

5.4.4. Insertion Sort (is)

During this experiment, as an average of 10 runs, almost all (3.7 out of 4 on the

average) feasible target paths were found within 2.5 (or 1.475 on the average) generations.

In some runs, all the feasible target paths were found in the first (initial) generation. The

same explanation with binary search is applicable.

Figure 7 shows the effectiveness (indicated by PFF-Avg) and efficiency (indicated by

LGF-Avg) of all candidates over 10 runs.

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Candidate index

PF
 o

r L
G

PFF-Avg LGF-Avg

Figure 7: G2G achievement of insertion sort on the average of 10 runs

93

As shown in Figure 7, the difference between the candidates performance was

insignificant. No candidate can be claimed as an absolute best or as an absolute worst.

5.4.5. Triangle (tr)

In the triangle classification SUT, all candidates found all (4 out of 4 on the average)

feasible target paths were found within not more than 10 (or 7.6 on the average)

generations; according to a 10 run-experiment.

Figure 8 summarizes the effectiveness (indicated by PFF-Avg) and efficiency (indicated

by LGF-Avg) of all candidates over 10 runs.

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Candidate index

PF
 o

r L
G

PFF-Avg LGF-Avg

Figure 8: G2G achievement of triangle classifier on the average of 10 runs

94

As shown in Figure 8, the two most efficient candidates are candidates with indices 2 and

27, which represent Ph-Op-Rn-Ws, and Pr-Oc-Rn-Wd, respectively; that is the candidate

that is applying path-wise traversal technique, no reward, and static weight, and the other

candidate that is having predicate-wise traversal technique, no reward, and distance-based

weight, respectively.

5.4.6. Minimaxi-f (mm-f)

With regard to the minimaxi-f SUT, almost all (12.6 out of 13 on the average)

feasible target paths were found within not more than 14 (or 9.7 on the average)

generations over 20 run-experiment.

Figure 9 summarizes the effectiveness (indicated by PFF-Avg) and efficiency (indicated

by LGF-Avg) of all candidates over 20 runs.

As shown in Figure 9, the difference between the candidates performance was

insignificant. No candidate can be claimed as an absolute best or as an absolute worst.

95

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Candidate index

PF
 o

r L
G

PF-Avg LG-Avg

Figure 9: G2G achievement of minimaxi-f on the average over 20 runs

5.4.7. Minimaxi-i (mm-i)

In this experiment, all candidates were able to find almost all (12.52 out of 13 on the

average) feasible target paths were found within not more than 36 (or 15.56 on the

average) generations; in a 20-run experiment. However, if we observe the phi graph (see

Figure 11 of these candidates for the 17th run (arbitrarily chosen), we will be able to see

that some candidates are really doing more exploitation (stable line) of the search space

while others are doing more exploration (fluctuated line). Moreover, the best fitness graph

(see Figure 12) shows that, for the 17th run some of the best individuals of some

candidates are indeed affected by other individuals in the population (fluctuated line), i.e.

not only affected by the target paths. Fluctuated lines in this case show that the fitness of

96

the “best” individual may drop from one generation to another due to: the competition

with other individuals, and/or the removal of the covered-already target paths from the set

of targets.

Figure 10, below, summarizes the effectiveness (indicated by PFF-Avg) and efficiency

(indicated by LGF-Avg) of all candidates over 20 runs.

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Candidate index

PF
 o

r L
G

PF-Avg LG-Avg

Figure 10: G2G achievement of minimaxi-i on the average over 20 runs

97

-2.00E+00

-1.50E+00

-1.00E+00

-5.00E-01

0.00E+00

5.00E-01

1.00E+00

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

Generation index

Ph
i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
19 20 21 22 23 24 25 26 27 28 29 30 31 32

Figure 11: Phi graph of mm-i for a particular run

-2.00E-01

-1.00E-01

0.00E+00

1.00E-01

2.00E-01

3.00E-01

4.00E-01

5.00E-01

6.00E-01

7.00E-01

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

Generation index

Fi
tn

es
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
19 20 21 22 23 24 25 26 27 28 29 30 31 32

Figure 12: Best fitness graph of mm-i for a particular run

98

-1.2

-0.7

-0.2

0.3

0.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Fitness index

Ph
i

AVG STDEV

Figure 13: Phi average (over 20 runs) graph of mm-i

Figure 13 describes the phi average and standard deviation over 20 runs for each

candidate. On the average (over 20 runs, where each run has 100 generations), candidates

that apply rewarding (indicated by negative phi; see Figure 13) scheme seem to allow

more exploration within generations of a run (see Figure 14; more fluctuation more

exploration).

99

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Run index

Ph
i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Figure 14: Phi average (over 20 runs, each has 100 generations) graph for each candidate of mm-i

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Candidate index

Fi
tn

es
s

AVG STDEV

Figure 15: Best fitness average (over 20 runs) graph of mm-i

100

Figure 15 depicts the best fitness average over 20 runs for each candidate. Candidates that

employ rewarding scheme (see Figure 14; indicated by negative value) explore more (see

Figure 16; indicated by more number of negative fluctuated lines) search space than the

ones without rewarding.

Negative fitness values are due to rewarding scheme only, since covered target paths are

excluded immediately from the current targets and the generator recalculates all the

fitness values afterward.

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Run index

Fi
tn

es
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Figure 16: Best fitness average (over 100 generations) graph for each candidate of mm-i

5.4.8. Bubble Sort (bs)

In bubble sort, almost all (2.98 out of 3 on the average) feasible target paths were

found within not more than 2 (or 1.06 on the average) generations by all candidates in 10-

101

run experiments. In this case, we could not really see the contribution of each candidate

towards finding the target paths, since most of the target paths were found by chance in

the first two generations. Obviously, this behavior was due to the exploration achieved by

the random population developed in initial generations. Accordingly, we could not show

the fitness and phi behaviors of the fitness functions corresponding to those experiments.

The following figure summarizes the effectiveness (indicated by PFF-Avg) and efficiency

(indicated by LGF-Avg) of all candidates over 10 runs.

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Candidate index

PF
 o

r L
G

PFF-Avg LGF-Avg

Figure 17: G2G achievement of bubble sort on the average of 10 runs

102

5.4.9. Minimaxi-Tri (mm-t)

Minimaxi-tri is the most challenging SUT among the set we used in our experiments;

this is because it is a combination of mm and tr, and it has a large number of infeasible

target paths. In these experiments, almost all (19.3 out of 20 on the average) feasible

target paths were found within 30 (or 19.4 on the average) generations in 20-run

experiments by most candidates. However, if we observe phi graphs (see Figure 19) of

these candidates for a particular run (9th run; arbitrarily chosen), we will be able to see

that some candidates exploit the search space much more than others do.

The following figure summarizes the effectiveness (indicated by PFF-Avg) and efficiency

(indicated by LGF-Avg) of all candidates over 20 runs.

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Candidate index

PF
 o

r L
G

PF-Avg LG-Avg

Figure 18: G2G achievement of mt on the average over 20 runs

103

-1.60E+00

-1.10E+00

-6.00E-01

-1.00E-01

4.00E-01

9.00E-01

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

Generation index

Ph
i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
19 20 21 22 23 24 25 26 27 28 29 30 31 32

Figure 19: Phi graph of mt for a particular run

-2.00E-01

-1.00E-01

0.00E+00

1.00E-01

2.00E-01

3.00E-01

4.00E-01

5.00E-01

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

Generation index

Fi
tn

es
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
19 20 21 22 23 24 25 26 27 28 29 30 31 32

Figure 20: Best fitness graph of mt for a particular run

104

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Fitness index

Ph
i

AVG STDEV

Figure 21: Phi average (over 20 runs) graph of mt

Most of the candidates (based on 20 runs, with 100 generations each) that employ

rewarding scheme (indicated by negative phi) have higher level of exploration, since they

have higher standard deviation (see Figure 21) and fluctuated phi average as can be seen

on Figure 22.

105

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Run index

Ph
i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
19 20 21 22 23 24 25 26 27 28 29 30 31 32

Figure 22: Phi average (over 100 generations) graph for each candidate of mt

-0.04

0.01

0.06

0.11

0.16

0.21

0.26

0.31

0.36

0.41

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Fitness index

Fi
tn

es
s

AVG STDEV

Figure 23: Best fitness average (over 20 runs) graph of mt

106

-0.7

-0.5

-0.3

-0.1

0.1

0.3

0.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Run index

Fi
tn

es
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
19 20 21 22 23 24 25 26 27 28 29 30 31 32

Figure 24: Best fitness average (over 100 generations) graph for each candidate of mt

Figure 23 plots the best fitness average over 20 runs for each candidate. The candidates

that utilize rewarding scheme (see Figure 23; indicated by negative value) do exploration

more (see Figure 24) than the ones without rewarding.

5.5. Analysis of Results

In this section we discuss the results in light of the effect of the existence of infeasible

paths, path traversal techniques, neighborhood influence, rewarding, and group/cluster

attributes view.

107

5.5.1. The Existence of Infeasible Paths

SUTs no 4 and 5, that is minimaxi (mm) program with feasible path only (mm-f), and

with both feasible and infeasible path (mm-i), from Table 21 are used to measure the

effect of infeasible path existence. The results are depicted in Figure 25 and Figure 26 that

describe the effectiveness (PF) and efficiency (LG), respectively.

In the absence of infeasible paths (i.e., mm-f), on the average (over the 32 candidates, with

20 runs each), the number of PF, (Figure 25) is 12.57 out of 13; with a standard deviation

0.48. Average LG is 9.7, with a standard deviation of 4.05. On the other hand, with the

presence of infeasible paths (i.e., mm-i; Figure 26), an average of 12.52 out of 13 feasible

paths were found with a standard deviation of 0.5. Average LG is 13.56 with a standard

deviation of 9.9. Therefore, the existence of infeasible paths are not hindering GA-based

test data generator in finding the entire given feasible target paths; this assertion is

concluded due to the observation that average PF of feasible vs. infeasible paths is 12.57

vs. 12.52. The major difference is that the maximum LG is higher if infeasible paths are

present, that is 9.7 vs. 13.56 with a higher standard deviation.

108

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Fitness index

N
o

of
 P

at
hs

Feasible Infeasible

Figure 25: The effect of infeasible path to effectiveness

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Fitness index

N
o

of
 G

en
er

at
io

ns

Feasible Infeasible

Figure 26: The effect of infeasible path to efficiency

109

5.5.2. Neighborhood Influence

Considering the mm-f, mm-i, and mt SUTs, we have summarized that the effect of

neighborhood influence to the effectiveness and efficiency of the test data generator for all

candidates are summarized in Table 22. On the average, the presence of neighborhood

influence has a positive impact on performance of the corresponding candidates.

Note that -Avg2 suffix indicates average of average. For example, PF-Avg2 means that

the average of PF of candidates that are categorized as having (or not having)

neighborhood influence, which are also the average of PF over several runs, i.e. 10 runs

for mm-f, 20 runs for both mm-i and mt.

Table 22: The effect of neighborhood influence to PF and LG

Neighborhood Influence
Absent Present

No

SUT
 PF-Avg2 LG-Avg2 PF-Avg2 LG-Avg2

1 mm-f 12.48 10.35 12.66 9.04
2 mm-i 12.42 16.12 12.61 10.99
3 mt 19.27 18.98 19.34 19.83

The average of PF and LG from Table 22 shows that candidates utilizing neighborhood

influence are more effective (indicated by higher PF) than otherwise, but not more

efficient (indicated by comparing the LGs). The following figures depict more

comparisons between the competing candidates (see Figure 27 to Figure 32 for test

programs: mm-f, mm-i, and mt). Figure 27 up to Figure 32 compare the performance of the

candidates that share all variation points’ settings, and they only differ on whether or not

they allow neighborhood influence. Figure 27 and Figure 28 show the effect of

110

neighborhood influence to effectiveness and efficiency of mm-f. Figure 29 and Figure 30

show the effect of neighborhood influence to effectiveness and efficiency of mm-i. Figure

31 and Figure 32 show the effect of neighborhood influence to effectiveness and

efficiency of mm-t.

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

1/9 2/10 3/11 4/12 5/13 6/14 7/15 8/16 17/25 18/26 19/27 20/28 21/29 22/30 23/31 24/32

Fitness index

N
o

of
 P

at
hs

Op Oc

Figure 27: The effect of neighborhood influence to effectiveness for mm-f

111

0

2

4

6

8

10

12

14

1/9 2/10 3/11 4/12 5/13 6/14 7/15 8/16 17/25 18/26 19/27 20/28 21/29 22/30 23/31 24/32

Fitness index

N
o

of
 G

en
er

at
io

ns

Op Oc

Figure 28: The effect of neighborhood influence to efficiency for mm-f

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

1/9 2/10 3/11 4/12 5/13 6/14 7/15 8/16 17/25 18/26 19/27 20/28 21/29 22/30 23/31 24/32

Fitness index

N
o

of
 P

at
hs

Op Oc

Figure 29: The effect of neighborhood influence to effectiveness for mm-i

112

0

5

10

15

20

25

30

35

40

1/9 2/10 3/11 4/12 5/13 6/14 7/15 8/16 17/25 18/26 19/27 20/28 21/29 22/30 23/31 24/32

Fitness index

N
o

of
 G

en
er

at
io

ns

Op Oc

Figure 30: The effect of neighborhood influence to efficiency for mm-i

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

1/9 2/10 3/11 4/12 5/13 6/14 7/15 8/16 17/25 18/26 19/27 20/28 21/29 22/30 23/31 24/32

Fitness index

N
o

of
 P

at
hs

Op Oc

Figure 31: The effect of neighborhood influence to effectiveness for mt

113

0

5

10

15

20

25

30

1/9 2/10 3/11 4/12 5/13 6/14 7/15 8/16 17/25 18/26 19/27 20/28 21/29 22/30 23/31 24/32

Fitness index

N
o

of
 G

en
er

at
io

ns

Op Oc

Figure 32: The effect of neighborhood influence to efficiency for mt

In general, neighborhood influence has increased the effectiveness of the fitness function

candidates.

5.5.3. Path Traversal Technique

As we can see fromTable 23, on the average, there is no significant difference in

performance, in term of effectiveness and efficiency, between the candidates applying the

path-wise vs. the predicate-wise traversal technique.

However, the following figures depict more comparisons between the competing

candidates (see Figure 33 to Figure 38 for test programs: mm-f, mm-i, and mt) both in term

of effectiveness and efficiency. Figure 33 up to Figure 38 describe the fitness function

114

candidates that are applying path-wise (or predicate-wise) traversal techniques. Figure 33

and Figure 34 show the effect of path traversal technique to effectiveness and efficiency

of mm-f. Figure 35 and Figure 36 show the effect of path traversal technique to

effectiveness and efficiency of mm-i. Figure 37 and Figure 38 show the effect of path

traversal technique to effectiveness and efficiency of mm-t.

Table 23: The effect of path traversal technique to PF and LG

Path Traversal Technique
Path-wise Predicate-wise

No

SUT
 PF-Avg2 LG-Avg2 PF-Avg2 LG-Avg2

1 mm-f 12.54 9.67 12.59 9.72
2 mm-i 12.53 13.23 12.51 13.88
3 Mt 19.30 19.55 19.30 19.26

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

1/17 2/18 3/19 4/20 5/21 6/22 7/23 8/24 9/25 10/26 11/27 12/28 13/29 14/30 15/31 16/32

Fitness index

N
o

of
 P

at
hs

Ph Pr

Figure 33: The effect of path traversal method to effectiveness for mm-f

115

0

2

4

6

8

10

12

14

1/17 2/18 3/19 4/20 5/21 6/22 7/23 8/24 9/25 10/26 11/27 12/28 13/29 14/30 15/31 16/32

Fitness index

N
o

of
 G

en
er

at
io

ns

Ph Pr

Figure 34: The effect of path traversal method to efficiency for mm-f

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

1/17 2/18 3/19 4/20 5/21 6/22 7/23 8/24 9/25 10/26 11/27 12/28 13/29 14/30 15/31 16/32

Fitness index

N
o

of
 P

at
hs

Ph Pr

Figure 35: The effect of path traversal method to effectiveness for mm-i

116

0

5

10

15

20

25

30

35

40

1/17 2/18 3/19 4/20 5/21 6/22 7/23 8/24 9/25 10/26 11/27 12/28 13/29 14/30 15/31 16/32

Fitness index

N
o

of
 G

en
er

at
io

ns

Ph Pr

Figure 36: The effect of path traversal method to efficiency for mm-i

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

1/17 2/18 3/19 4/20 5/21 6/22 7/23 8/24 9/25 10/26 11/27 12/28 13/29 14/30 15/31 16/32

Fitness index

N
o

of
 P

at
hs

Ph Pr

Figure 37: The effect of path traversal method to effectiveness for mt

117

0

5

10

15

20

25

30

1/17 2/18 3/19 4/20 5/21 6/22 7/23 8/24 9/25 10/26 11/27 12/28 13/29 14/30 15/31 16/32

Fitness index

N
o

of
 G

en
er

at
io

ns

Ph Pr

Figure 38: The effect of path traversal method to efficiency for mt

Neither path-wise nor predicate-wise traversal technique performs better than each other.

5.5.4. Weighting

On the average, distance-based weighting (Wd) outperforms other weighting schemas

both in term of PF and LG (see Table 24). Moreover, no weighting (Wn) is the second

best after Wd.

Not all the time that Wd performs better than the others, therefore we elaborate more on

the behavior in Figure 43 and Figure 44 (test program mt). We, also, elaborate on the

behavior with respect to mm-f and mm-i in Figure 39, Figure 40, Figure 41, and Figure 42.

118

Table 24: The effect of weighting to PF and LG

Weighting Scheme
Wn Ws Wd Wv

No

SUT
 PF-

Avg2
LG-
Avg2

PF-
Avg2

LG-
Avg2

PF-
Avg2

LG-
Avg2

PF-
Avg2

LG-
Avg2

1 mm-f 12.63 10.73 12.49 10.17 12.72 8.87 12.43 9.01
2 mm-i 12.59 13.68 12.43 15.16 12.70 9.71 12.34 15.68
3 mt 19.28 18.19 19.30 19.25 19.36 21.10 19.27 19.08

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

1/2/3/4 5/6/7/8 9/10/11/12 13/14/15/16 17/18/19/20 21/22/23/24 25/26/27/28 29/30/31/32

Fitness index

N
o

of
 P

at
hs

Wn Ws Wd Wv

Figure 39: The effect of weighting to effectiveness for mm-f

119

0

2

4

6

8

10

12

14

1/2/3/4 5/6/7/8 9/10/11/12 13/14/15/16 17/18/19/20 21/22/23/24 25/26/27/28 29/30/31/32

Fitness index

N
o

of
 G

en
er

at
io

ns

Wn Ws Wd Wv

Figure 40: The effect of weighting to efficiency for mm-f

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

1/2/3/4 5/6/7/8 9/10/11/12 13/14/15/16 17/18/19/20 21/22/23/24 25/26/27/28 29/30/31/32

Fitness index

N
o

of
 P

at
hs

Wn Ws Wd Wv

Figure 41: The effect of weighting to effectiveness for mm-i

120

0

5

10

15

20

25

30

35

40

1/2/3/4 5/6/7/8 9/10/11/12 13/14/15/16 17/18/19/20 21/22/23/24 25/26/27/28 29/30/31/32

Fitness index

N
o

of
 G

en
er

at
io

ns

Wn Ws Wd Wv

Figure 42: The effect of weighting to efficiency for mm-i

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

1/2/3/4 5/6/7/8 9/10/11/12 13/14/15/16 17/18/19/20 21/22/23/24 25/26/27/28 29/30/31/32

Fitness index

N
o

of
 P

at
hs

Wn Ws Wd Wv

Figure 43: The effect of weighting to effectiveness for mt

121

0

5

10

15

20

25

30

1/2/3/4 5/6/7/8 9/10/11/12 13/14/15/16 17/18/19/20 21/22/23/24 25/26/27/28 29/30/31/32

Fitness index

N
o

of
 G

en
er

at
io

ns

Wn Ws Wd Wv

Figure 44: The effect of weighting to efficiency for mt

5.5.5. Rewarding

As shown in Table 25, rewarding does not really give significant enhancement in

term of effectiveness. However, in term of efficiency, on the average, giving reward is

better than its counterpart. More representative visualizations of the effect of rewarding

are presented from Figure 45 up to Figure 50.

Table 25: The effect of rewarding to PF and LG

Reward
Absent Present

No

SUT
 PF-Avg2 LG-Avg2 PF-Avg2 LG-Avg2

1 mm-f 12.53 9.64 12.61 9.75
2 mm-i 12.50 15.07 12.53 12.04
3 mt 19.29 20.45 19.31 18.36

122

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

1/5 2/6 3/7 4/8 9/13 10/14 11/15 12/16 17/21 18/22 19/23 20/24 25/29 26/30 27/31 28/32

Fitness index

N
o

of
 P

at
hs

Rn Rw

Figure 45: The effect of rewarding to effectiveness for mm-f

0

2

4

6

8

10

12

14

1/5 2/6 3/7 4/8 9/13 10/14 11/15 12/16 17/21 18/22 19/23 20/24 25/29 26/30 27/31 28/32

Fitness index

N
o

of
 G

en
er

at
io

ns

Rn Rw

Figure 46: The effect of rewarding to efficiency for mm-f

123

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

1/5 2/6 3/7 4/8 9/13 10/14 11/15 12/16 17/21 18/22 19/23 20/24 25/29 26/30 27/31 28/32

Fitness index

N
o

of
 P

at
hs

Rn Rw

Figure 47: The effect of rewarding to effectiveness for mm-i

0

5

10

15

20

25

30

35

40

1/5 2/6 3/7 4/8 9/13 10/14 11/15 12/16 17/21 18/22 19/23 20/24 25/29 26/30 27/31 28/32

Fitness index

N
o

of
 G

en
er

at
io

ns

Rn Rw

Figure 48: The effect of rewarding to efficiency for mm-i

124

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

1/5 2/6 3/7 4/8 9/13 10/14 11/15 12/16 17/21 18/22 19/23 20/24 25/29 26/30 27/31 28/32

Fitness index

N
o

of
 P

at
hs

Rn Rw

Figure 49: The effect of rewarding to effectiveness for mt

0

5

10

15

20

25

30

1/5 2/6 3/7 4/8 9/13 10/14 11/15 12/16 17/21 18/22 19/23 20/24 25/29 26/30 27/31 28/32

Fitness index

N
o

of
 G

en
er

at
io

ns

Rn Rw

Figure 50: The effect of rewarding to efficiency for mt

125

5.5.6. Predicate Type

The compound predicate in a selection statement, e.g. (((A == B) & (B ~= C)) | ((B

== C) & (C ~= A)) | ((C == A) & (A ~= B))), is expected to have an influence on the

search progress. Our experiments confirmed this expectation. In our experiments, SUTs

that contain compound predicates are tr and mt. In tr, the LG (on the average of 10 runs)

is 7.6 generations in order to find 4 feasible target paths, while others require less LG with

the same or higher number of target paths, e.g., ns (LG = 1.25 with 7 feasible target paths)

and is (LG = 1.475 with 4 number of target paths). In mt, almost all (19.3 out of 20)

feasible target paths were found within 20 generations (19.4 on the average). Please

consult Appendix A for more detail about the predicates used in each test programs.

5.5.7. Path Length

Based on our experiments, the shorter target paths were covered in the earlier

generations. However, a few short paths were covered in the middle generations.

5.5.8. Composite Analysis

As it might be clear from the previous sections, we could not really tell which

attributes contribute significantly in efficiently finding all the required feasible target

paths. Therefore, we needed a composite analysis, i.e. analyzing the result by fixing two

or more attributes (variation points) at a time as opposed to only single one; hoping we

can find a distinguishing pair of attributes.

126

The following shows our observations on the candidates’ performance with regard to test

programs which have infeasible target paths and are considered to be more complex than

the others:

 mm-f: The best candidates are fitness function no 13 and 16, in term of PF and LG,

respectively (refer to Figure 9).

 mm-i: The best candidates are fitness function no 15 and 3, in term of PF and LG,

respectively (refer to Figure 10).

 mt: The best candidates are fitness function no 9 and 14, in term of PF, and 6 in term

of LG (refer to Figure 18).

In term of PF, the common attributes are path-wise traversal technique (Ph) and

neighborhood influence (Oc), although rewarding also gives a significant contribution in

some experiments. And, in term of LG, the common attributes are path-wise traversal

technique and without neighborhood influence (Op).

Thus, based on these two combined attributes, i.e. path traversal method tight together

with neighborhood influence, we summarize the PF & LG in Table 26, and plot the bar

charts for those three test programs in Figure 51 to Figure 55.

Based on the average of composite analysis (Table 26), the PhOc pair combination

performs better than the others. However, PhOc pair combination does not outperform the

others all the time, thus, for a closer look at the behavior of these attributes, we present

three graphs for the three SUTs (Figure 51 to Figure 56): mm-f, mm-i, and mt. In Figure

51 and Figure 52, PrOc pair combination outperforms the others. In Figure 53 and Figure

127

54, PhOc pair combination outperforms the others, on the average, in terms of both PF

and LG. However, in Figure 55 and Figure 56, PhOc pair combination outperforms the

others in term of PF, and PrOp pair combination outperforms the others in term of LG.

Table 26: Path traversal and influence pair for composite analysis

Combination of path traversal and neighborhood influence
No

SUT PhOp PhOc PrOp PrOc

 PF-
Avg2

LG-
Avg2

PF-
Avg2

LG-
Avg2

PF-
Avg2

LG-
Avg2

PF-
Avg2

LG-
Avg2

1 mm-f 12.46 10.17 12.63 9.17 12.49 10.53 12.70 8.91
2 mm-i 12.41 15.94 12.64 10.53 12.44 16.29 12.58 11.46
3 mt 19.25 19.52 19.35 19.58 19.28 18.44 19.33 20.09

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

1/9/17/25 2/10/18/26 3/11/19/27 4/12/20/28 5/13/21/29 6/14/22/30 7/15/23/31 8/16/24/32

Fitness index

N
o

of
 P

at
hs

PhOp PhOc PrOp PrOc

Figure 51: Composite analysis of effectiveness for mm-f

128

0

2

4

6

8

10

12

14

1/9/17/25 2/10/18/26 3/11/19/27 4/12/20/28 5/13/21/29 6/14/22/30 7/15/23/31 8/16/24/32

Fitness index

N
o

of
 G

en
er

at
io

ns

PhOp PhOc PrOp PrOc

Figure 52: Composite analysis of efficiency for mm-f

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

1/9/17/25 2/10/18/26 3/11/19/27 4/12/20/28 5/13/21/29 6/14/22/30 7/15/23/31 8/16/24/32

Fitness index

N
o

of
 P

at
hs

PhOp PhOc PrOp PrOc

Figure 53: Composite analysis of effectiveness for mm-i

129

0

5

10

15

20

25

30

35

40

1/9/17/25 2/10/18/26 3/11/19/27 4/12/20/28 5/13/21/29 6/14/22/30 7/15/23/31 8/16/24/32

Fitness index

N
o

of
 G

en
er

at
io

ns

PhOp PhOc PrOp PrOc

Figure 54: Composite analysis of efficiency for mm-i

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

1/9/17/25 2/10/18/26 3/11/19/27 4/12/20/28 5/13/21/29 6/14/22/30 7/15/23/31 8/16/24/32

Fitness index

N
o

of
 P

at
hs

PhOp PhOc PrOp PrOc

Figure 55: Composite analysis of effectiveness for mt

130

0

5

10

15

20

25

30

1/9/17/25 2/10/18/26 3/11/19/27 4/12/20/28 5/13/21/29 6/14/22/30 7/15/23/31 8/16/24/32

Fitness index

N
o

of
 G

en
er

at
io

ns

PhOp PhOc PrOp PrOc

Figure 56: Composite analysis of efficiency for mt

5.5.9. Comparison with Other Works

In tr SUT (i.e., “the name of the program”), the target path that leads to equilateral

triangle is the most difficult path to cover by random testing [22], since the path is

covered if and only if the three input parameters are positive and equal. The probability of

randomly covering this path is 2-30 (that is (215*1*1)/(215*215*215) where each positive

integer is 15 bits). Thus, based on the theory of probability, it would take random testing

230 test cases to reach the target. Using our test generator6, it takes only 180 test cases (6

6 In the set of comparisons presented in this section, we use fitness function number 30; that is considered to

be the most optimal and representative candidate, i.e. in terms of effectiveness and efficiency, for

comparator to these selected previous works, i.e. Pei’s and Lin’s works.

131

generations with 30 individuals, i.e. test cases, each) on the average to find the required

target path, as well as other target paths (see Table 27).

Table 27: Comparison between Lin’s work and ours

 Our approach Lin’s work
No Target Path Found in gen

(avg of 3 runs)
No of test
data

Found in gen No of test
data

1 1-2-4-6-8 4 120 10 10100
2 All paths in

Lin’s work
4 120 10 10100

In Pei’s work [36], there are 21 target paths, where 8 of them are infeasible, in testing a

minimum-maximum (mm) program. Among the feasible target paths, the last three paths

are the most difficult ones to cover as reported in his work. Thus, we use these target

paths for comparison (Table 28)

Table 28: Comparison between Pei’s work and ours

Our approach Pei94 No Target
Path Population Results out

of gen#
Population Results out of gen#

30 3 100 15-gen (1429 runs) 1 0-1-3-5-6-
1-2-5-6-7 50 68-gen (3042 runs)

30 2 500 2-gen (1385 runs) 2 0-1-3-5-6-
1-3-4-6-7 50 79-gen (3512 runs)

3 0-1-3-5-6-
1-3-5-6-7

30 8 1000 14-gen (14986 runs)

4 All three
paths

30 7

132

The results on the Table 28 show that Pei’s test generator obtains the three target paths

within 15, 2, and 14 generations on the average, respectively. While with our test

generator, the average of three runs shows that the respective target paths were found

within 3, 2, and 8 generations with smaller population sizes. Please note that since Pei’s

approach works on a single target path at a time. For more fairness, we conducted an

experiment having one target path at a time. We have also conducted another experiment

having all three target paths at one time. The results are shown in Table 28. Row no 4 of

the table shows our generator was able to find all of them within 7 generations on the

average.

Table 28 shows that the number of generations needed to cover a certain path depends on

its level of difficulty; since Pei reported that 0-1-3-5-6-1-3-5-6-7 path is the most difficult

one [36].

Table 29 depicts the detailed results of the different runs of our test generator, over 20

runs; trying to cover the three most difficult target paths in Pei’s work either by a single

path or all paths at a time. This table is meant to show the consistency of the results.

Table 29: The results of our work using candidate index 30 over 20 runs for minimum-maximum

The last three and most difficult paths in Pei’s work
0-1-3-5-6-1-2-5-
6-7 path

0-1-3-5-6-1-3-
4-6-7 path

0-1-3-5-6-1-3-5-
6-7 path All paths Run

Pop
30

Pop
50

Pop
100

Pop
30

Pop
50

Pop
100

Pop
30

Pop
50

Pop
100

Pop
30

Pop
50

Pop
100

Avg 2.85 2.05 1.35 2.25 2.20 1.45 7.55 5.25 3.60 7.30 6.25 3.55
Std 1.95 0.83 0.49 1.25 1.20 0.60 10.11 2.02 1.54 3.45 3.63 1.93
Min 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 1.00 1.00 1.00 1.00
Max 8.00 3.00 2.00 5.00 5.00 3.00 47.00 9.00 7.00 17.00 14.00 8.00

133

On the average, the larger population sizes the smaller number of generations required to

find the target path(s).

In Lin’s work, the “equilateral” target path of a triangle classifier program was selected to

show the ability of searching for test cases for a specific path by using genetic algorithms

compared to random testing. Hence, we use the same target path to compare Lin’s work

with ours. Table 27 shows the comparison.

Lin’s test data generator was able to cover the target path after 10 generations, with a

1000 individuals each; that is a total of101007 test data on average. Our generator,

however, was able to cover the target path using only 120 test cases (that is four

generations, with 30 individuals each), on an average of four runs. Moreover, since Lin’s

approach works on a single target path at a time, we conducted an experiment having one

target path at a time.

Table 30, below, shows the results of our generator, based on 20 runs, in trying to cover

only the “equilateral” target path. The table also shows the results when trying to satisfy

all target paths at a time.

7 Lin’s generator found the required target path in the 11th generation in a 100th individual.

134

Table 30: The results of our work after 20 runs for triangle classifier

Target paths
1-2-4-6-8 path All paths Run Pop

30
Pop
50

Pop
100

Pop
30

Pop
50

Pop
100

Avg 6.35 5.35 3.45 5.90 5.50 3.80
Std 4.09 1.84 1.67 2.99 2.70 1.91
Min 2.00 2.00 1.00 3.00 2.00 1.00
Max 21.00 9.00 7.00 13.00 13.00 9.00

On the average, the larger the population sizes the smaller number of generations required

to find the target path(s), which also supported by smaller standard deviation.

5.5.10. Conclusion on Observations

In general, our candidate fitness functions showed to be effective and efficient in

handling the required feasible target paths, regardless of the existence of infeasible paths,

the path length, and the compound predicates complexity.

The existence of infeasible paths, if any, is not hindering the test data generator to find all

given feasible target paths rather it is helping in exploring the search space. In this case,

the candidates that employ rewarding scheme seemed to be more effective in exploring

the search space.

In general, predicate-wise candidates are slightly more effective than the path-wise ones,

while the path-wise candidates are more efficient than the predicate-wise ones.

On the average, the fitness functions that are utilizing neighborhood influence are more

effective than otherwise, but not more efficient due to more computation time.

135

Generally, candidates applying rewarding scheme are better than their counterparts.

Violation-based weighting is the second best after the static one.

Usually, many target paths are satisfied by individuals in the first generation. This is due

to the initial set of target paths that is relatively large, combined with the exploration

attained by the randomized selection of the initial population. Later on, the set of target

paths becomes smaller as previously satisfied target paths are removed form the set. For

example in bubble sort, almost all (2.98 out of 3) feasible target paths were found within

the first 2 generations, which means that these paths are easy to find randomly.

Increasing the number of target paths, especially the infeasible ones, increases the

computation time, since the complexity of the calculation of a candidate is proportional to

the number of target paths (for instance, refer to mt).

The type of the predicate influences the search progress: composed predicates (for

instance, refer to tr and mt) with the logical operator AND and predicates involving

equality relational operator are harder to solve and tend to generate a higher lack of

progress in the search.

Deeper predicates through the path are harder to satisfy. Longer paths have more

constraints to satisfy (for instance, refer to the target paths for mt).

136

CHAPTER 6

CONCLUSION

6.1. Introduction

This chapter presents a summary of our major contributions in this thesis work to the

software testing community. It also provides a few suggestions for future research

directions.

6.2. Summary of Contributions

The thesis research has resulted in the following contributions to knowledge and

tools:

1) Proposed a set of attributes for assessing and comparing GA-based test data

generators.

2) Presented an extensive critical survey and evaluation (in light of the proposed

attributes) of the state-of-the-art GA based test data generators.

3) Presented a GA-based test data generator that is capable of to generating multiple test

data to cover multiple target paths at one run.

4) Demonstrated the capabilities of the proposed approach through empirical validation

and compared a number of variations of the proposed generator. The variations of the

137

generator provide flexibilities in applying: traversal technique, weighting scheme, and

rewarding scheme.

5) Reported promising experimental results that show that our test data generator is more

effective and more efficient than existing generators; due to that fact that it allows

covering multiple target paths with less number of test data generated.

6.3. Limitations and Further Works

The following are the limitations of the work:

 Manual CFG construction takes more time to do and reduces the generator scalability.

 Manual target paths generation requires tester creativity (since it is a tricky job to trap

any potentially errors) and limits the scalability of generator.

 Manual program instrumentation. This process is a programming language dependent

work, which must be done carefully such that it is not changing the semantic of the

program. Hence, manual attempt needs extra work and time. Furthermore, it decreases

the generator scalability.

 With regard to predicate-wise traversal, our fitness function does not consider the

matched subpaths that have unmatched positions for a positive contribution to the

fitness value. It only considers those subpaths that have the same positions.

Future Works will try to address the above limitations. Moreover, we will also try to

investigate capabilities to allow automatic identification of potential infeasible program

paths. Testing object oriented software will be another objective of our future research.

138

Considering matching subpaths that do not have matched positions will be given a high

priority in our future work.

REFERENCES

[1] Alander, J.T., Mantere, T., and Turunen, P. Genetic Algorithm Based Software

Testing. http://citeseer.ist.psu.edu/40769.html. 1997.

[2] Baresel, A., Sthamer, H., and Schmidt, M. Fitness Function Design to improve

Evolutionary Structural Testing. In Proceedings of the Genetic and Evolutionary

Computation Conference, GECCO-2002, New York, USA, 9-13th July 2002.

[3] Beizer, B. Software Testing Techniques. Van Nostrand Reinhold, New York. 1982.

[4] Belanche, L.A. A Study in Function Optimization with the Breeder Genetic

Algorithm. LSI Research Report LSI-99-36-R. Universitat Polit`ecnica de

Catalunya, 1999.

[5] Berndt, D.J., Fisher, J., Johnson, L., Pinglikar, J., and Watkins, A. Breeding

Software Test Cases with Genetic Algorithms. In Proceedings of the Thirty-Sixth

Hawai`i International Conference on System Sciences (HICSS-36), Hawaii, January

2003.

[6] Berndt, D.J. and Watkins A. Investigating the Performance of Genetic Algorithm-

Based Software Test Case Generation. In Proceedings of the Eighth IEEE

International Symposium on High Assurance Systems Engineering (HASE'04), pp.

261-262, University of South Florida, March 25-26, 2004.

140

[7] Bueno, P.M.S. and Jino, M. Identification of Potentially Infeasible Program Paths

by Monitoring the Search for Test Data. In Proceedings of the Fifteenth IEEE

International Conference on Automated Software Engineering (ASE ‘00), pg 209-

218, Grenoble, France, 11-15 September 2000.

[8] Chu, H.D. An Evaluation Scheme of Software Testing Techniques.

http://citeseer.ist.psu.edu/68763.html. 1996.

[9] Davis, L. Handbook of Genetic Algorithms. NY: ITP. 1991.

[10] Edvardsson, J. A Survey on Automatic Test Data Generation. In Proceedings of the

Second Conference on Computer Science and Engineering in Linkoping, pp. 21-28.

ESCEL, October 1999.

[11] Ghazi, S.A. and Ahmed, M.A. Pair-wise Test Coverage Using Genetic Algorithms.

In Proceedings of the Congress on Evolutionary Computation 2003, Canberra,

Australia, December 8-12, 2003.

[12] Goldberg, D.E. Genetic Algorithms: in Search, Optimization & Machine Learning.

Addison Wesley, MA. 1989.

[13] Gupta, N., Mathur, A.P., and Soffa, M.L. Generating Test Data For Branch

Coverage. In Proceedings of the fifteenth IEEE International Conference on

Automated Software, Grenoble, France, September 11-15, 2000.

[14] Gupta, N., Mathur, A.P., and Soffa, M.L. Automated Test Data Generation Using

An Iterative Relaxation Method. In Foundations of Software Engineering, pp. 231-

244. 1998.

141

[15] Hamlet, D. Foundations of Software Testing: Dependability Theory. Portland State

University. 1994.

[16] Harman, M., Hu, L., Hierons, R., Baresel, A., and Sthamer, H. Improving

Evolutionary Testing by Flag Removal. In Proceedings of the Genetic and

Evolutionary Computation Conference, GECCO-2002, New York, USA, 9-13th

July 2002.

[17] Holland, J. Adaptation in Natural and Artificial Systems. MIT Press, MA. 1975.

[18] Huang, J.C. An Approach to Program Testing. ACM Computing Surveys, Volume 7,

No. 3, September 1975.

[19] Jones, B., Sthamer, H., and Eyres, D. Automatic Structural Testing Using Genetic

Algorithms. Software Engineering Journal 11(5), September 1996, pp. 299-306.

[20] Korel, B. Automated Software Test Data Generation. IEEE Transactions on

Software Engineering, Volume 16, No. 8, pp. 870-879, August, 1990.

[21] Korel, B. Automated Test Data Generation for Programs with Procedures. In

Proceedings of the 1996 International Symposium on Software Testing and

Analysis. ACM Press, pp. 209-215, 1996.

[22] Lin, J.C. and Yeh, P.L. Using Genetic Algorithms for Test Case Generation in Path

Testing. In Proceedings of the 9th Asian Test Symposium (ATS’00). Taipei, Taiwan,

December 4-6, 2000.

142

[23] McGraw, G., Michael, C., and Schatz, M. Generating Software Test Data by

Evolution. Technical report, Reliable Software Technologies, Sterling, VA.

February 9, 1998.

[24] McMinn, P. Improving Evolutionary Testing in the Presence of State Behaviour.

PhD Transfer Report, University of Sheffield. October 2002.

[25] Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs, 2nd

Extended Edition. NY: Springer-Verlag. 1994.

[26] Michael, C.C., McGraw, G.E., and Schatz, M.A. Generating Software Test Data by

Evolution. IEEE Transactions on Software Engineering, Volume 27, Number 12,

pp. 1085-1110, December, 2001.

[27] Michael, C.C. and McGraw, G.G. Opportunism and Diversity in Automated

Software Test Data Generation. Technical report, Reliable Software Technologies,

Sterling, VA. December 8, 1997.

[28] Michael, C.C., McGraw, G.E., Schatz, M.A., and Walton, C.C. Genetic Algorithms

for Dynamic Test Data Generation. Technical report, Reliable Software

Technologies, Sterling, VA. May 23, 1997.

[29] Michael, C.C., McGraw, G.E., Schatz, M.A., and Walton, C.C. Genetic algorithms

for dynamic test data generation. In Proceedings of the 12th IEEE International

Automated Software Engineering Conference (ASE 97), pp. 307-308, Tahoe, NV,

1997.

143

[30] Michael, C.C. and McGraw, G.E. Automated Software Test Data Generation for

Complex Programs. Technical report, Reliable Software Technologies, Sterling,

VA. 1998.

[31] Mitchell, M. An Introduction to Genetic Algorithms. Reading, MA: MIT. 1999.

[32] Munteanu, C., Lazarescu, V., and Radoi, C. A New Strategy in Optimization using

Genetic Algorithms. In Proceedings of IEEE Melecon '98, vol.1, pp. 415-419, 1998,

ISBN 0-7803-3879-0.

[33] Myers, G.J. The Art of Software Testing. John Wiley & Sons, New York. 1979.

[34] Offutt, A.J., Jin, Z., and Pan, J. The dynamic domain reduction procedure for test

data generation. Software Practice and Experience, Volume 29, No. 2, pp. 167-193.

1999.

[35] Pargas, R.P., Harrold, M.J., and Peck, R.R. Test-Data Generation Using Genetic

Algorithms. Journal of Software Testing, Verification and Reliability. 1999.

[36] Pei, M., Goodman, E.D., Gao, Z., and Zhong, K. Automated Software Test Data

Generation Using A Genetic Algorithm. Technical Report GARAGe of Michigan

State University, June 1994.

[37] Roper, M., Maclean, I., Brooks, A., Miller, J., and Wood, M. Genetic Algorithms

and the Automatic Generation of Test Data. http://citeseer.ist.psu.edu/135258.html.

1995.

[38] Sommerville, I. Software Engineering. 6th Ed. Addison-Wesley, USA. 2001.

144

[39] Sthamer, H.H., Wegener, J., and Baresel, A. Using Evolutionary Testing to improve

Efficiency and Quality in Software Testing. In Proceedings of the second Asia-

Pacific Conference on Software Testing Analysis & Review, Melbourne, Australia,

22-24th July 2002.

[40] Sthamer, H.H. The Automatic Generation of Software Test Data Using Genetic

Algorithms. PhD Dissertation, University of Glamorgan. November, 1995.

[41] Tracey, N.J., Clark, J., Mander, K., and McDermid, J. An Automated Framework

for Structural Test-Data Generation. In Proceedings 13th IEEE Conference in

Automated Software Engineering, Hawaii, October 1998.

[42] Tracey, N.J., Clark, J., and Mander, K. The Way Forward for Unifying Dynamic

Test Case Generation: The Optimisation-Based Approach. In IFIP International

Workshop on Dependable Computing and its Applications (DCIA 98),

Johannesburg, January 1998.

[43] Wegener, J., Baresel, A., and Sthamer, H. Suitability of Evolutionary Algorithms

for Evolutionary Testing. In Proceedings of the 26th Annual International

Computer Software and Applications Conference, Oxford, England, August 26-29,

2002.

[44] Wegener, J., Buhr, K., and Pohlheim, H. Automatic Test Data Generation for

Structural Testing of Embedded Software Systems by Evolutionary Testing. In

Proceedings of the Genetic and Evolutionary Computation Conference, GECCO-

2002, New York, USA, 9-13th July 2002.

145

[45] Whittaker, J.A. What Is Software Testing? And Why Is It So Hard? IEEE Software.

February, 2000.

[46] Weinberg, G.M. The Psychology of Computer Programming: Silver Anniversary

Edition. Dorset House Publishing Co., New York, USA. 1998.

[47] Zhu, H., Hall, P., and May, J. Software Unit Test Coverage and Adequacy. ACM

Computing Surveys, 29 (4): 366 – 427, December 1997.

APPENDIX A

SOFTWARE UNDER TESTS (SUTs)

147

A.1. Minimum-maximum (minimaxi.m)

function [traversedPath, miniMaxi] = minimaxi(num)

numLength = length(num);
mini = num(1);
maxi = num(1);
idx = 2;
traversedPath = []; % traversedPath contains branch# and its corresponding branchVal.

traversedPath = [traversedPath 1 fitnessMiniMaxi(1, [idx numLength])]; % instrument
while (idx <= numLength) % Branching #1

 traversedPath = [traversedPath 2 fitnessMiniMaxi(2, [maxi num(idx)])]; % instrument
 if maxi < num(idx) % Branching #2
 maxi = num(idx);
 end

 traversedPath = [traversedPath 3 fitnessMiniMaxi(3, [mini num(idx)])]; % instrument
 if mini > num(idx) % Branching #3
 mini = num(idx);
 end

 idx = idx+1;
 traversedPath = [traversedPath 1 fitnessMiniMaxi(1, [idx numLength])]; % instrument
end % while end

miniMaxi = [mini maxi];

Figure 57: Source code of minimum-maximum

148

Figure 58: CFG of minimum-maximum

149

PS = {
 % 1-7
 [1 1];
 % 1-2-3-5-7
 [1 0 2 0 3 0 1 1]; % Infeasible path
 % 1-2-3-6-7
 [1 0 2 0 3 1 1 1];
 % 1-2-4-5-7
 [1 0 2 1 3 0 1 1];
 % 1-2-4-6-7
 [1 0 2 1 3 1 1 1];
 % 1-2-3-5-2-3-5-7
 [1 0 2 0 3 0 1 0 2 0 3 0 1 1]; % Infeasible path
 % 1-2-3-5-2-3-6-7
 [1 0 2 0 3 0 1 0 2 0 3 1 1 1]; % Infeasible path
 % 1-2-3-5-2-4-5-7
 [1 0 2 0 3 0 1 0 2 1 3 0 1 1]; % Infeasible path
 % 1-2-3-5-2-4-6-7
 [1 0 2 0 3 0 1 0 2 1 3 1 1 1]; % Infeasible path
 % 1-2-3-6-2-3-5-7
 [1 0 2 0 3 1 1 0 2 0 3 0 1 1]; % Infeasible path
 % 1-2-3-6-2-3-6-7
 [1 0 2 0 3 1 1 0 2 0 3 1 1 1];
 % 1-2-3-6-2-4-5-7
 [1 0 2 0 3 1 1 0 2 1 3 0 1 1];
 % 1-2-3-6-2-4-6-7
 [1 0 2 0 3 1 1 0 2 1 3 1 1 1];
 % 1-2-4-5-2-3-5-7
 [1 0 2 1 3 0 1 0 2 0 3 0 1 1]; % Infeasible path
 % 0-1-3-4-6-1-2-5-6-7
 [1 0 2 1 3 0 1 0 2 0 3 1 1 1];
 % 0-1-3-4-6-1-3-4-6-7
 [1 0 2 1 3 0 1 0 2 1 3 0 1 1];
 % 0-1-3-4-6-1-3-5-6-7
 [1 0 2 1 3 0 1 0 2 1 3 1 1 1];
 % 0-1-3-5-6-1-2-4-6-7
 [1 0 2 1 3 1 1 0 2 0 3 0 1 1]; % Infeasible path
 % 0-1-3-5-6-1-2-5-6-7
 [1 0 2 1 3 1 1 0 2 0 3 1 1 1];
 % 0-1-3-5-6-1-3-4-6-7
 [1 0 2 1 3 1 1 0 2 1 3 0 1 1];
 % 0-1-3-5-6-1-3-5-6-7
 [1 0 2 1 3 1 1 0 2 1 3 1 1 1]
};

Figure 59: Selected target paths of minimum-maximum

150

A.2. Triangle Classifier (triangle.m)

function [traversedPath, type] = triangle(sideLengths)

traversedPath = [];
A = sideLengths(1); % First side
B = sideLengths(2); % Second side
C = sideLengths(3); % Third side

traversedPath = [traversedPath 1 fitnessTriangle(1, A, B, C)]; % instrument Branch # 1
if ((A+B > C) & (B+C > A) & (C+A > B)) % Branch # 1
 traversedPath = [traversedPath 2 fitnessTriangle(2, A, B, C)]; % instrument Branch # 2
 if ((A ~= B) & (B ~= C) & (C ~= A)) % Branch # 2
 type = 'Scalene';
 else
 traversedPath = [traversedPath 3 fitnessTriangle(3, A, B, C)]; % instrument Branch # 3
 if (((A == B) & (B ~= C)) | ((B == C) & (C ~= A)) | ((C == A) & (A ~= B))) % Branch #
3
 type = 'Isosceles';
 else
 type = 'Equilateral';
 end
 end
else
 type = 'Not a triangle';
end

Figure 60: Source code of triangle classifier

151

Figure 61: CFG of triangle classifier

152

PS = {
 % 1-7-8
 [1 1];
 % 1-2-3-8
 [1 0 2 0];
 % 1-2-4-6-8
 [1 0 2 1 3 1];
 % 1-2-4-5-8
 [1 0 2 1 3 0]
 };

Figure 62: Selected target paths of triangle classifier

153

A.3. Bubble Sort (bubble.m)

function [traversedPath, sortedArray] = bubble(anyArray)
%function sortedArray = bubble(anyArray)

sorted = 0; % 0 means false
i = 1; n = length(anyArray);
traversedPath = [];

traversedPath = [traversedPath 1 fitnessBubble(1, [i (n-1) ~sorted])]; % instrument Branch # 1
while ((i <= (n-1)) & ~sorted), % Branch # 1
 sorted = 1;

 j = n;
 traversedPath = [traversedPath 2 fitnessBubble(2, [j (i+1)])]; % instrument Branch # 2
 for j=n:-1:i+1 % Branch # 2

 traversedPath = [traversedPath 3 fitnessBubble(3, [anyArray(j) anyArray(j-1)])]; %
instrument Branch # 3
 if (anyArray(j) < anyArray(j-1)) % Branch # 3
 %exchange(anyArray(j), anyArray(j-1));
 temp = anyArray(j);
 anyArray(j) = anyArray(j-1);
 anyArray(j-1) = temp;
 sorted = 0;
 end

 traversedPath = [traversedPath 2 fitnessBubble(2, [(j-1) (i+1)])]; % instrument Branch # 2
 end

 i = i + 1;
 traversedPath = [traversedPath 1 fitnessBubble(1, [i (n-1) ~sorted])]; % instrument Branch #
1
end
sortedArray = anyArray;

Figure 63: Source code of bubble sort

154

Figure 64: CFG of bubble sort

155

PS = { ...
% 1-7
 [1 1];
% 1-2-6-7
 [1 0 2 1 1 1];

% Target paths to repeat their sub-paths
% 1-2-3-4-6-7
 [1 0 2 0 3 0 2 1 1 1];
% 1-2-3-5-6-7
 [1 0 2 0 3 1 2 1 1 1];
% 1-2-3-4-3-5-6-7
 [1 0 2 0 3 0 2 0 3 1 2 1 1 1];
% 1-2-3-5-3-4-6-7
 [1 0 2 0 3 1 2 0 3 0 2 1 1 1];
% 1-2-3-4-3-4-6-7
 [1 0 2 0 3 0 2 0 3 0 2 1 1 1];
% 1-2-3-5-3-5-6-7
 [1 0 2 0 3 1 2 0 3 1 2 1 1 1];
% 1-2-3-4-3-5-3-5-6-7
 [1 0 2 0 3 0 2 0 3 1 2 0 3 1 2 1 1 1];
% 1-2-3-5-3-5-3-4-6-7
 [1 0 2 0 3 1 2 0 3 1 2 0 3 0 2 1 1 1];
% 1-2-3-4-3-4-3-5-6-7
 [1 0 2 0 3 0 2 0 3 0 2 0 3 1 2 1 1 1];
% 1-2-3-5-3-5-3-4-6-7
 [1 0 2 0 3 1 2 0 3 1 2 0 3 0 2 1 1 1];
% 1-2-3-4-3-5-3-4-6-7
 [1 0 2 0 3 0 2 0 3 1 2 0 3 0 2 1 1 1];
% 1-2-3-5-3-4-3-5-6-7
 [1 0 2 0 3 1 2 0 3 0 2 0 3 1 2 1 1 1];
};

Figure 65: Selected target paths of bubble sort

156

A.4. Insertion Sort (insertion.m)

function [traversedPath, sortedArray] = insertion(anyArray)
%function sortedArray = insertion(anyArray)

k = 1; % The smallest integer increment
traversedPath = [];
n = length(anyArray);

i = 2;
traversedPath = [traversedPath 1 fitnessInsertion(1, [i n])]; % instrument Branch # 1
for i=2:n % Branch # 1
 x = anyArray(i);
 j = i - 1;

 traversedPath = [traversedPath 2 fitnessInsertion(2, [j anyArray(j) x])]; % instrument Branch
2
 while ((j > 0) & (anyArray(j) > x)), % Branch # 2
 anyArray(j+1) = anyArray(j);
 j = j - 1;

 if (j > 0), % Added for instrumentation purpose only
 traversedPath = [traversedPath 2 fitnessInsertion(2, [j anyArray(j) x])]; % instrument
Branch # 2
 else
 traversedPath = [traversedPath 2 k]; % anyArray(j) is undefined, because j=0.
 end
 end
 anyArray(j+1) = x;

 traversedPath = [traversedPath 1 fitnessInsertion(1, [(i+1) n])]; % instrument Branch # 1
end
sortedArray = anyArray;

Figure 66: Source code of insertion sort

157

Figure 67: CFG of insertion sort

PS = {
 % 1 5
 [1 1];
 % 1 2 4 5
 [1 0 2 1 1 1];
 % 1 2 3 4 5
 [1 0 2 0 2 1 1 1];
 % 1 2 3 3 4 5
 [1 0 2 0 2 0 2 1 1 1];
 % 1 2 4 2 3 4 5
 [1 0 2 1 1 0 2 0 2 1 1 1];
 % 1 2 3 4 2 4 5
 [1 0 2 0 2 1 1 0 2 1 1 1];
 };

Figure 68: Selected target paths of insertion sort

158

A.5. Binary Search (binary.m)

function [traversedPath, itemIndex] = binary(itemNumbers)
%function itemIndex = binary(item, numbers)

item = itemNumbers(1);
numbers = itemNumbers(1,2:end);

lowerIdx = 1;
upperIdx = length(numbers);
traversedPath = [];

traversedPath = [traversedPath 1 fitnessBinary(1, [lowerIdx upperIdx])]; % instrument Branch
1
while (lowerIdx ~= upperIdx), % Branch # 1

 temp = lowerIdx + upperIdx; % additional statement
 if (mod(temp, 2) ~= 0), temp = temp - 1; end % additional statement
 idx = temp / 2;

 traversedPath = [traversedPath 2 fitnessBinary(2, [numbers(idx) item])]; % instrument
Branch # 2
 if (numbers(idx) < item), % Branch # 2
 lowerIdx = idx + 1;
 else
 upperIdx = idx;
 end

 traversedPath = [traversedPath 1 fitnessBinary(1, [lowerIdx upperIdx])]; % instrument
Branch # 1
end

if (item == numbers(lowerIdx)), % Additional code that returns -1 if the item is not found
 itemIndex = lowerIdx;
else
 itemIndex = -1;
end

Figure 69: Source code of binary search

159

Figure 70: CFG of binary search

PS = {
 % 1 5
 [1 1];
 % 1 2 3 5
 [1 0 2 0 1 1];
 % 1 2 4 5
 [1 0 2 1 1 1];
 % 1 2 3 2 3 5
 [1 0 2 0 1 0 2 0 1 1];
 % 1 2 4 2 4 5
 [1 0 2 1 1 0 2 1 1 1];
 % 1 2 3 2 4 5
 [1 0 2 0 1 0 2 1 1 1];
 % 1 2 4 2 3 5
 [1 0 2 1 1 0 2 0 1 1];
 };

Figure 71: Selected target paths of binary search

160

A.6. Minimum-Maximum and Triangle Classifier (mmTriangle.m)

function [traversedPath, minimaxi, type] = program6(num)

numLength = length(num);
mini = num(1);
maxi = num(1);
idx = 2;
traversedPath = []; % traversedPath contains branch# and its corresponding branchVal.

traversedPath = [traversedPath 1 fitnessMiniMaxi(1, [idx numLength])]; % instrument
while (idx <= numLength) % Branching #1

 traversedPath = [traversedPath 2 fitnessMiniMaxi(2, [maxi num(idx)])]; % instrument
 if maxi < num(idx) % Branching #2
 maxi = num(idx);
 end

 traversedPath = [traversedPath 3 fitnessMiniMaxi(3, [mini num(idx)])]; % instrument
 if mini > num(idx) % Branching #3
 mini = num(idx);
 end

 idx = idx+1;
 traversedPath = [traversedPath 1 fitnessMiniMaxi(1, [idx numLength])]; % instrument
end % while end

minimaxi = [mini maxi];
A = num(1); % First side
B = num(2); % Second side
C = num(3); % Third side

traversedPath = [traversedPath 4 fitnessTriangle(1, A, B, C)]; % instrument Branch # 4
if ((A+B > C) & (B+C > A) & (C+A > B)) % Branch # 4

 traversedPath = [traversedPath 5 fitnessTriangle(2, A, B, C)]; % instrument Branch # 5
 if ((A ~= B) & (B ~= C) & (C ~= A)) % Branch # 5
 type = 'Scalene';
 else

 traversedPath = [traversedPath 6 fitnessTriangle(3, A, B, C)]; % instrument Branch # 6
 if (((A == B) & (B ~= C)) | ((B == C) & (C ~= A)) | ((C == A) & (A ~= B))) % Branch #
6
 type = 'Isosceles';
 else
 type = 'Equilateral';

161

 end
 end
else
 type = 'Not a triangle';
end

Figure 72: Source code of mmTriangle

Figure 73: CFG of mmTriangle

162

PS = {
 % First combination: Tail => Equilateral
 % 0-7
 [1 1 4 0 5 1 6 1];
 % 0-1-2-4-6-7
 [1 0 2 0 3 0 1 1 4 0 5 1 6 1]; % Infeasible path
 % 0-1-2-5-6-7
 [1 0 2 0 3 1 1 1 4 0 5 1 6 1];
 % 0-1-3-4-6-7
 [1 0 2 1 3 0 1 1 4 0 5 1 6 1];
 % 0-1-3-5-6-7
 [1 0 2 1 3 1 1 1 4 0 5 1 6 1];
 % 0-1-2-4-6-1-2-4-6-7
 [1 0 2 0 3 0 1 0 2 0 3 0 1 1 4 0 5 1 6 1]; % Infeasible path
 % 0-1-2-4-6-1-2-5-6-7
 [1 0 2 0 3 0 1 0 2 0 3 1 1 1 4 0 5 1 6 1]; % Infeasible path
 % 0-1-2-4-6-1-3-4-6-7
 [1 0 2 0 3 0 1 0 2 1 3 0 1 1 4 0 5 1 6 1]; % Infeasible path
 % 0-1-2-4-6-1-3-5-6-7
 [1 0 2 0 3 0 1 0 2 1 3 1 1 1 4 0 5 1 6 1]; % Infeasible path
 % 0-1-2-5-6-1-2-4-6-7
 [1 0 2 0 3 1 1 0 2 0 3 0 1 1 4 0 5 1 6 1]; % Infeasible path
 % 0-1-2-5-6-1-2-5-6-7
 [1 0 2 0 3 1 1 0 2 0 3 1 1 1 4 0 5 1 6 1];
 % 0-1-2-5-6-1-3-4-6-7
 [1 0 2 0 3 1 1 0 2 1 3 0 1 1 4 0 5 1 6 1];
 % 0-1-2-5-6-1-3-5-6-7
 [1 0 2 0 3 1 1 0 2 1 3 1 1 1 4 0 5 1 6 1];
 % 0-1-3-4-6-1-2-4-6-7
 [1 0 2 1 3 0 1 0 2 0 3 0 1 1 4 0 5 1 6 1]; % Infeasible path
 % 0-1-3-4-6-1-2-5-6-7
 [1 0 2 1 3 0 1 0 2 0 3 1 1 1 4 0 5 1 6 1];
 % 0-1-3-4-6-1-3-4-6-7
 [1 0 2 1 3 0 1 0 2 1 3 0 1 1 4 0 5 1 6 1];
 % 0-1-3-4-6-1-3-5-6-7
 [1 0 2 1 3 0 1 0 2 1 3 1 1 1 4 0 5 1 6 1];
 % 0-1-3-5-6-1-2-4-6-7
 [1 0 2 1 3 1 1 0 2 0 3 0 1 1 4 0 5 1 6 1]; % Infeasible path
 % 0-1-3-5-6-1-2-5-6-7
 [1 0 2 1 3 1 1 0 2 0 3 1 1 1 4 0 5 1 6 1];
 % 0-1-3-5-6-1-3-4-6-7
 [1 0 2 1 3 1 1 0 2 1 3 0 1 1 4 0 5 1 6 1];
 % 0-1-3-5-6-1-3-5-6-7
 [1 0 2 1 3 1 1 0 2 1 3 1 1 1 4 0 5 1 6 1];

 % Second combination: Tail => Scalene
 % 0-7

163

 [1 1 4 0 5 0];
 % 0-1-2-4-6-7
 [1 0 2 0 3 0 1 1 4 0 5 0]; % Infeasible path
 % 0-1-2-5-6-7
 [1 0 2 0 3 1 1 1 4 0 5 0];
 % 0-1-3-4-6-7
 [1 0 2 1 3 0 1 1 4 0 5 0];
 % 0-1-3-5-6-7
 [1 0 2 1 3 1 1 1 4 0 5 0];
 % 0-1-2-4-6-1-2-4-6-7
 [1 0 2 0 3 0 1 0 2 0 3 0 1 1 4 0 5 0]; % Infeasible path
 % 0-1-2-4-6-1-2-5-6-7
 [1 0 2 0 3 0 1 0 2 0 3 1 1 1 4 0 5 0]; % Infeasible path
 % 0-1-2-4-6-1-3-4-6-7
 [1 0 2 0 3 0 1 0 2 1 3 0 1 1 4 0 5 0]; % Infeasible path
 % 0-1-2-4-6-1-3-5-6-7
 [1 0 2 0 3 0 1 0 2 1 3 1 1 1 4 0 5 0]; % Infeasible path
 % 0-1-2-5-6-1-2-4-6-7
 [1 0 2 0 3 1 1 0 2 0 3 0 1 1 4 0 5 0]; % Infeasible path
 % 0-1-2-5-6-1-2-5-6-7
 [1 0 2 0 3 1 1 0 2 0 3 1 1 1 4 0 5 0];
 % 0-1-2-5-6-1-3-4-6-7
 [1 0 2 0 3 1 1 0 2 1 3 0 1 1 4 0 5 0];
 % 0-1-2-5-6-1-3-5-6-7
 [1 0 2 0 3 1 1 0 2 1 3 1 1 1 4 0 5 0];
 % 0-1-3-4-6-1-2-4-6-7
 [1 0 2 1 3 0 1 0 2 0 3 0 1 1 4 0 5 0]; % Infeasible path
 % 0-1-3-4-6-1-2-5-6-7
 [1 0 2 1 3 0 1 0 2 0 3 1 1 1 4 0 5 0];
 % 0-1-3-4-6-1-3-4-6-7
 [1 0 2 1 3 0 1 0 2 1 3 0 1 1 4 0 5 0];
 % 0-1-3-4-6-1-3-5-6-7
 [1 0 2 1 3 0 1 0 2 1 3 1 1 1 4 0 5 0];
 % 0-1-3-5-6-1-2-4-6-7
 [1 0 2 1 3 1 1 0 2 0 3 0 1 1 4 0 5 0]; % Infeasible path
 % 0-1-3-5-6-1-2-5-6-7
 [1 0 2 1 3 1 1 0 2 0 3 1 1 1 4 0 5 0];
 % 0-1-3-5-6-1-3-4-6-7
 [1 0 2 1 3 1 1 0 2 1 3 0 1 1 4 0 5 0];
 % 0-1-3-5-6-1-3-5-6-7
 [1 0 2 1 3 1 1 0 2 1 3 1 1 1 4 0 5 0];

 % Third combination: Tail => Not Triangle
 % 0-7
 [1 1 4 1];
 % 0-1-2-4-6-7
 [1 0 2 0 3 0 1 1 4 1]; % Infeasible path

164

 % 0-1-2-5-6-7
 [1 0 2 0 3 1 1 1 4 1];
 % 0-1-3-4-6-7
 [1 0 2 1 3 0 1 1 4 1];
 % 0-1-3-5-6-7
 [1 0 2 1 3 1 1 1 4 1];
 % 0-1-2-4-6-1-2-4-6-7
 [1 0 2 0 3 0 1 0 2 0 3 0 1 1 4 1]; % Infeasible path
 % 0-1-2-4-6-1-2-5-6-7
 [1 0 2 0 3 0 1 0 2 0 3 1 1 1 4 1]; % Infeasible path
 % 0-1-2-4-6-1-3-4-6-7
 [1 0 2 0 3 0 1 0 2 1 3 0 1 1 4 1]; % Infeasible path
 % 0-1-2-4-6-1-3-5-6-7
 [1 0 2 0 3 0 1 0 2 1 3 1 1 1 4 1]; % Infeasible path
 % 0-1-2-5-6-1-2-4-6-7
 [1 0 2 0 3 1 1 0 2 0 3 0 1 1 4 1]; % Infeasible path
 % 0-1-2-5-6-1-2-5-6-7
 [1 0 2 0 3 1 1 0 2 0 3 1 1 1 4 1];
 % 0-1-2-5-6-1-3-4-6-7
 [1 0 2 0 3 1 1 0 2 1 3 0 1 1 4 1];
 % 0-1-2-5-6-1-3-5-6-7
 [1 0 2 0 3 1 1 0 2 1 3 1 1 1 4 1];
 % 0-1-3-4-6-1-2-4-6-7
 [1 0 2 1 3 0 1 0 2 0 3 0 1 1 4 1]; % Infeasible path
 % 0-1-3-4-6-1-2-5-6-7
 [1 0 2 1 3 0 1 0 2 0 3 1 1 1 4 1];
 % 0-1-3-4-6-1-3-4-6-7
 [1 0 2 1 3 0 1 0 2 1 3 0 1 1 4 1];
 % 0-1-3-4-6-1-3-5-6-7
 [1 0 2 1 3 0 1 0 2 1 3 1 1 1 4 1];
 % 0-1-3-5-6-1-2-4-6-7
 [1 0 2 1 3 1 1 0 2 0 3 0 1 1 4 1]; % Infeasible path
 % 0-1-3-5-6-1-2-5-6-7
 [1 0 2 1 3 1 1 0 2 0 3 1 1 1 4 1];
 % 0-1-3-5-6-1-3-4-6-7
 [1 0 2 1 3 1 1 0 2 1 3 0 1 1 4 1];
 % 0-1-3-5-6-1-3-5-6-7
 [1 0 2 1 3 1 1 0 2 1 3 1 1 1 4 1];

 % Forth combination: Tail => Isosceles
 % 0-7
 [1 1 4 0 5 1 6 0];
 % 0-1-2-4-6-7
 [1 0 2 0 3 0 1 1 4 0 5 1 6 0]; % Infeasible path
 % 0-1-2-5-6-7
 [1 0 2 0 3 1 1 1 4 0 5 1 6 0];
 % 0-1-3-4-6-7

165

 [1 0 2 1 3 0 1 1 4 0 5 1 6 0];
 % 0-1-3-5-6-7
 [1 0 2 1 3 1 1 1 4 0 5 1 6 0];
 % 0-1-2-4-6-1-2-4-6-7
 [1 0 2 0 3 0 1 0 2 0 3 0 1 1 4 0 5 1 6 0]; % Infeasible path
 % 0-1-2-4-6-1-2-5-6-7
 [1 0 2 0 3 0 1 0 2 0 3 1 1 1 4 0 5 1 6 0]; % Infeasible path
 % 0-1-2-4-6-1-3-4-6-7
 [1 0 2 0 3 0 1 0 2 1 3 0 1 1 4 0 5 1 6 0]; % Infeasible path
 % 0-1-2-4-6-1-3-5-6-7
 [1 0 2 0 3 0 1 0 2 1 3 1 1 1 4 0 5 1 6 0]; % Infeasible path
 % 0-1-2-5-6-1-2-4-6-7
 [1 0 2 0 3 1 1 0 2 0 3 0 1 1 4 0 5 1 6 0]; % Infeasible path
 % 0-1-2-5-6-1-2-5-6-7
 [1 0 2 0 3 1 1 0 2 0 3 1 1 1 4 0 5 1 6 0];
 % 0-1-2-5-6-1-3-4-6-7
 [1 0 2 0 3 1 1 0 2 1 3 0 1 1 4 0 5 1 6 0];
 % 0-1-2-5-6-1-3-5-6-7
 [1 0 2 0 3 1 1 0 2 1 3 1 1 1 4 0 5 1 6 0];
 % 0-1-3-4-6-1-2-4-6-7
 [1 0 2 1 3 0 1 0 2 0 3 0 1 1 4 0 5 1 6 0]; % Infeasible path
 % 0-1-3-4-6-1-2-5-6-7
 [1 0 2 1 3 0 1 0 2 0 3 1 1 1 4 0 5 1 6 0];
 % 0-1-3-4-6-1-3-4-6-7
 [1 0 2 1 3 0 1 0 2 1 3 0 1 1 4 0 5 1 6 0];
 % 0-1-3-4-6-1-3-5-6-7
 [1 0 2 1 3 0 1 0 2 1 3 1 1 1 4 0 5 1 6 0];
 % 0-1-3-5-6-1-2-4-6-7
 [1 0 2 1 3 1 1 0 2 0 3 0 1 1 4 0 5 1 6 0]; % Infeasible path
 % 0-1-3-5-6-1-2-5-6-7
 [1 0 2 1 3 1 1 0 2 0 3 1 1 1 4 0 5 1 6 0];
 % 0-1-3-5-6-1-3-4-6-7
 [1 0 2 1 3 1 1 0 2 1 3 0 1 1 4 0 5 1 6 0];
 % 0-1-3-5-6-1-3-5-6-7
 [1 0 2 1 3 1 1 0 2 1 3 1 1 1 4 0 5 1 6 0];
};

Figure 74: Selected target paths of mmTriangle

APPENDIX B

CONTROL LOGIC GRAPHS (CLGs)

167

B.1. Control Flow Graph (CFG)

A control flow graph of program P is a directed graph G = (N, A, s, e) where: N is set

of nodes, A is binary relation on N (a subset of N x N that referred to as a set of edges), s

and e are, respectively, unique entry and unique exit node (). A node in N

corresponds to the smallest single entry, single-exist executable part of a statement in P

that can not be further decomposed; such a part is referred to as an instruction. A single

instruction corresponds to an assignment statement, an input or output statement, or the

<expression> part of a selection statement, e.g. IF-THEN-ELSE, or a looping statement,

e.g. WHILE, in which case it is called a test instruction. An edge

Nes ∈,

Ann ji ∈),(

corresponds to a possible transfer of control from instruction ni to nj. An edge (ni, nj) is

called a branch if ni is a test instruction, e.g. selection. Each branch in the CFG can be

labeled by a predicate, referred to as a branch predicate, describing a condition under

which the branch will be traversed.

In a reduced CFG (hereafter CFG) of program, the edges of sequencing nodes are merged

as a short sub-path and different branches, which include in selection or looping statement

is taken as an independent sub-path separately. Each sub-path in the CFG can be labeled

by certain number. In fact, a path in a CFG is a sequence of this kind of sub-path and the

path is identified by the sequence of these labeled numbers.

An input variable of a program P is a variable that appears in an input statement or it is in

an input parameter of a function or procedure. Input variable may be of different types,

e.g. integer, real, or Boolean. Let),...,,(21 nxxxI = be a vector of input variables of

168

program P. The domain Dri of input variable xi is a set of all values which xi can hold. The

domain D of a program means a cross product, i.e. rnrr DDDD ×××= ...21 . A single point

x in the n-dimensional input space D, Dx∈ , is referred to as a program input.

A path Pk in a CFG is a sequence],...,,[10 kqkkk nnnP = of instructions, such that nk0 = s, nkq

= e, and for all i, 0 ≤ i < q, Ankinki ∈+)1,(. Suppose Pi is a path through a program P.

Then the path domain Di = D(Pi) for Pi is the subset of the input domain which causes Pi

to be executed. The path computation Ci = C(Pi) for Pi is the function which is computed

by the sequence of computations in Pi. A path is feasible if there exists a program input x

for which the path is traversed during the program execution, otherwise the path is

infeasible.

B.2. Control Dependence Graph (CDG)

Control dependence for a program is defined in terms of the program’s CFG and the

post-dominance relation that exists among the nodes in the CFG. Given such a CFG, and

nodes W and V in that graph, W is post-dominated by V if every directed path from W to

the exit (not including W or exit) contains V. For statements (nodes) X and Y in a CFG, Y

is control dependent on X if and only if (1) there exists a directed path P from X to Y with

all Z in P (excluding X and Y) post-dominated by Y and (2) X is not post-dominated by

Y. In a CDG, nodes represent statements, and edges represent the control dependencies

between statements – an edge (X, Y) in a CDG means that Y is control dependent on X.

169

An acyclic path in the CDG from the root of the graph to a node in the graph contains a

set of predicates that must be satisfied by an input that causes the statement associated

with the node to be executed; such a path is called a control-dependence predicate path.

Unstructured transfers of control, e.g. GOTO, CONTINUE, or BREAK, can cause the

occurrence of more than one control-dependence predicate path for statements following

the transfers. However, the number of control-dependence predicate paths is generally

small.

VITA

Irman Hermadi, who was born on 11 March 1975 in Bogor, Indonesia, obtained Bachelor

of Science (BS) degree with honors in Computer Science with Jurusan Ilmu Komputer

(Department of Computer Science) from Institut Pertanian Bogor (Bogor University of

Agriculture), Bogor, Indonesia in April 1999. Prior to attending King Fahd University of

Petroleum & Minerals (KFUPM), he worked as a full time lecturer from May 1999 to

January 2001 in the Jurusan Teknik Informatika (Department of Informatics Engineering)

in Sekolah Tinggi Teknologi Telkom (Telkom School of Engineering), Bandung,

Indonesia. In February 2001, Hermadi joined KFUPM as a Research Assistant to pursue

the master’s degree. The successful defense of this thesis in May 2004 marks his

acquisition of the Master of Science (MS) degree in Computer Science. Hermadi’s

research interests include soft computing, evolutionary computation, software testing, and

evolutionary structural software testing. He can be reached at irman_hermadi@yahoo.com

or irman_hermadi@hotmail.com.

