
 

 

 

 

CHAPTER 1 

 

HISTORICAL BACKGROUND 

 

1.1 Introduction 

During the 1960s, a method to solve an important class of non-linear partial 

differential equation was introduced in the field of mathematical physics [1,2,5,6,7.34]. 

This method is now commonly known as the inverse scattering transform method. This 

transformation is capable of producing an exact solution for non-linear differential 

equations. One of the main successes of this transformation is the relationship found 

between the Schrödinger equation: 

2

02

( . ) ( ) ( , ) ( ) ( , )w x t u x w x t t w x t
x

λ∂
− + =

∂
,                            (1.1)          

 and the Korteweg-de Vries equation: 

0

6 0
( ,0) ( ).
t x xxxu uu u

u x u x
− + =

=
                                                     (1.2) 

In fact, the basic idea behind this transformation is to view the initial solution of 

the non-linear partial differential equation as the potential u  of the Schrödinger 

equation for a fixed time. Then, we study the scattering data (Reflection coefficient, 

Transmission coefficient and the Bound States) and, as the time evolves, the potential 

0 ( )x
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( , )u x t  and the scattering data both evolve with time. These evolution equations are 

independent of the potential, and as a result of that, we study the scattering data instead of 

studying the potential itself. These evolution equations are given by separated linear 

differential equations. However, by solving a linear integral equation which is known as 

Gel’fand and Levitan equation, we can recover the potential u  from the scattering 

data at a later time. This is exactly the inverse scattering problem. Moreover, for some 

kinds of potentials, the inverse scattering problem reduces to solve separable integral 

equations [5,6,32]. 

0 ( )x

 

1.2 The Discovery of the Solitary Wave 

The discovery of the solitary wave has passed through different stages and in 

order to introduce some of these stages, we need the following technical definition about 

the dispersive waves. 

Definition 1.1 

If waves of different wavelengths propagate at different speeds, then we say that 

the waves are dispersive. Figure 1-1 below shows the propagation of dispersive waves. 

 

Figure 1-1  Propagation of Dispersive Waves. 
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Moreover, dispersive waves depend not only on the wave maker but also the media in 

which they propagate. In fact, we can send dispersive waves through most materials in 

nature. Water is an excellent example of a dispersive medium [2,5,32].     

Example 1.1 Consider the Klein-Gorden equation 

               ( , ) ( , ) ( , ) 0x t x t x txxttθ θ θ− + = ,                                           (1.3)          

and assume the above equation has the following wave solution  

                                           ( , ) cos wx t A k x t
k

θ = −
 


 ,                                                (1.4)          

where w  is called the frequency, is called the wave number and k 1
k

λ =  is called the 

wavelength. By substituting the above solution into the differential equation we obtain 

               ( ) ( ) ( )2 2cos cos cos 0Aw kx wt Ak kx wt A kx wt+ − + −− −  =

                                        ( ) ( )2 2 1 cos 0w k kx wt− + + − = .                                         (1.5)          

Hence, the differential equation has a nontrivial solution if and only if  

                                                    − 2 2 1 0w k+ + =         

                                                      ⇒ = .                                                        (1.6)          2 2 1w k +

Equation (1.6) is called a dispersion relation and the phase shift (the observable velocity) 

is 
w
k

 which is given by:  

                                             2
2

1
1 1

w
k k

λ= ± + = ± + ,                                             (1.7)          

and from this relation (1.7), we can conclude the following points: 

(i) Waves of different wavelengths propagate at different speeds. 
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(ii) Dispersive waves with a fixed wavelength propagate in two directions since 

the phase shift has positive and negative signs. 

(iii) The larger the wave length, the higher the propagation speed.  

Example 1.2 Consider the linearized Korteweg-de Vries Equation  

                               
3 1

( , ) ( , ) ( , )
2 6

0x t x t x tx xxxtθ θ θ+ + = ,                                       (1.8)          

with the following wave solution  

                                         ( )( , ) cosx t A kx wtθ = − .                                                     (1.9)          

By direct substitution, we can easily obtain the following dispersive relation  

                                                   33 1
2 6

k= −w k ,                                                       (1.10)          

and the observable velocity is  

                                                 23 1
2 6

w k
k

= − .                                                            (1.11)          

By careful analysis for the above relation, we can conclude that the wave is dispersive 

and the waves with a fixed wave lengths propagate only in one direction since there is 

only one given sign for a given  .k

   

John Scott Russell discovered the solitary wave during 1838 in front of a boat on 

Edinburgh - Glasgow canal and he summarized his observations in the following 

statement: 

   “A large solitary elevation, a rounded, smooth and well defined heap of water, which 

continued its course along the channel apparently without change of form or diminution 

of spead.... 
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Its height gradually diminished, and after a chase of one or two miles I lost it in the 

windings of the channel. Such, in the month of August 1834, was my first chance of 

interview with that singular and beautiful phenomenon” [5,6]. 

Some time later, he conducted extensive experiments in the laboratory and as a result of 

that he managed to find the relationship [5]:    

    ( )c g h a= + ,                                                   (1.12) 

between the velocity “c”, amplitude “a”, depth of the canal “h” and the earth acceleration 

due to the gravity “g”. Figure 1-2 is a simple sketch for a solitary wave. 

 

 

 

Figure 1-2 A Solitary Wave. 

 

 

From those experiments, he made several observations  

 Taller solitary wave travels faster than the smaller one (see figure 1-3a and figure 

1-3b). 
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Figure 1-3a Two Solitons Before the Collision. 

 

 

Figure 1-3b Two Solitons After Collision. 
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 Raising the weight from the bottom of the water, dispersive waves were generated 

[5,6] (see figure 1-4).  

 

Figure 1-4 Dispersive Waves. 

 Initial depression becomes a train of oscillatory waves whose length increases and 

amplitude decreases with time (see figure 1-4 and figure 1-5). 

 

Figure 1-5 A Train of Oscillatory Waves. 

  Later, both Boussinssq and Lord Rayleigh made some other observations and one 

of these observations is that a solitary wave has a length much greater than the depth of 

the water [2]. They independently showed that the solitary wave can be described by the 

sech2 profile and the wave length above the mean level “h” is given by 
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                                                  2( , )  sech ,x cta
b
−u x t  =  

 
                                    (1.13) 

where 

                                                     
( )2

2 4
3

h h a
a

b
+

= .                                                  (1.14)                         

This phenomenon took almost another 50 years before both Korteweg and de-

Veries developed the theory and derived a partial differential equation which governs the 

two-dimensional motion of weakly nonlinear long waves:                                          

                                                     u u6t x xxxu u 0− + = ,                                             (1.15) 

which has sech2 shaped solitary wave. The equation (1.15) is known as the Korteweg-de 

Vries or KdV equation [2,5,6].  

 

1.3  Solitary Wave 

For certain initial conditions (potentials), the KdV equation admits some solutions 

that are termed as solitons [7,8,23,34,37]. In fact, a soliton solution is the simplest type of 

solution for the KdV equation which can be obtained by looking for a solution of the 

form  and this method is given in appendix (I). Moreover, both Kruskal and 

Zabusky [36,37] found that the KdV equation has special permanent wave solution which 

is the solitary wave 

(u x vt− )

                             2 2 2
0( , ) 2 sech ( 4 )x t k k x k t xζ = − − ,                             (1.16) 

where and k 0x  are two constants. Also, it is obvious, that the velocity is related to the 

amplitude and proportional by a factor of 2. This solution is a disturbance ( see figure 1-

2) that moves with a constant speed in the direction of positive x-axis and exhibits some 
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features of nonlinear waves [5,14]. One of these features is that the velocity and the 

amplitude for the disturbance are related. Later we will show that the disturbance for the 

KdV equation is given by the relationship [1,2]    

                             u x t .                             (1.17) 2 2 2
0( , ) 2 sech ( 4 )k k x k t x= − −

Moreover, by looking closely at this solution, we notice that the larger amplitude pulse 

moves faster and is narrower in width.  

 

1.4  Some General Properties of Solitons 

In this section, we present some features of the solitons. In order to do so, we start 

by the following definition: 

Definition 1.2 

 An evolution equation is a partial differential equation for an unknown function u x  

of the form                                         

( , )t

( , ) ( )u x t f u
t

∂
=

∂
,                                             (1.18)                   

where ( )f u  is an expression involving only u  and its derivatives with respect to x . If 

the expression ( )f u  is nonlinear, equation (1.18) is called a nonlinear evolution 

equation.  

So far, there is no precise definition for solitons in the literature but they are 

solutions that satisfy nonlinear equations and usually they have the following 

characteristics: 

i. Solitons are waves dying out at infinity and they have profiles, which 

are unaltered after colliding with other solitons [1,2]. 
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ii. They evolve with time and therefore they satisfy certain evolution 

equations [1]. 

iii. They are stable solutions and they do not disperse apart when they 

collide with other solitons [5]. 

iv. In collision with other solitons, there is nonlinear interaction. 

However, they retain their original shape shortly afterwards, only 

slightly displaced [3, 32]. 

v. Soliton with larger amplitude pulse moves faster and is narrower in 

width than the smaller soliton. 

To demonstrate the interaction of these waves, Zabusky and Kruskal [36,37] suggested 

the following: assume that two waves are given and well separated from each other at 

time  and the smaller wave is to the right. After sometime, the two waves will 

overlap and interact and sometime later they will retain there original shapes and 

velocities with a phase shift (see figure 1-6a, Figure1-6b and Figure.1.7). 

0t =

 

 

 

Figure1-6a Before Interaction.   
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Figure 1-6b After Interaction.   

 

 

Figure1-7 Interaction Between Two Solitons.  
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CHAPTER 2 

 

 SCHRODINGER AND KDV EQUATIONS 

 

2.1  Inverse Scattering Transform    

  A remarkable method, which was discovered by Gardner, Greene, Kruskal and 

Miura [8,9] (abbr. GGKM) to solve nonlinear partial differential equations, has been 

developed quite rapidly during the past thirty years or so. This method is known as the 

inverse scattering transform method, which can be used to produce stable solutions that 

are known as solitons [18,35]. 

The philosophy behind the inverse scattering transform comes from associating 

the initial solution of the nonlinear partial differential equation to a linear eigenvalue 

equation whose eigenvalues are constants. Moreover, the initial solution for the nonlinear 

partial differential equation is known as the potential in the eigenvalue equation. The idea 

simply, is to map the potential to the scattering data of the eigenvalue equation and the 
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evolution of these data can be easily computed by using certain evolution equations 

[18,19,25]. Finally, the inverse scattering techniques are applied to get the solution for 

the nonlinear differential equation at any time. Moreover, we will see that the nonlinear 

differential equation has a unique solution [13,33] for potential that decays sufficiently 

rapidly as x → ∞ . 

Definition 2.1 

A function   on C ∞ ( , )u x t ℜ   (where t  is regarded as a smoothly varying 

parameter) is said to decay sufficiently rapidly if u x  and all its x-derivatives go to 

zero as  

( , )t

x → ∞ . 

 

2.2  Sturm-Liouville Problem 

The differential equation  

                            [ ]
2

2 ( ) 0               ,d y u x y a x b
dx

λ+ − = < <                                 (2.1) 

with the boundary conditions imposed at x a= and  x b=  ( either or both of which may 

be at infinity ) appears quite often in applied mathematics [19]. Equation (2.1) has been 

extensively studied during the last three decades and it is known as Schrödinger equation, 

in the context of quantum theory. Moreover, the function u x  is known as the potential 

for the Schrödinger equation. For a given potential u x  the above equation (2.1) gives 

specific solutions  (eigenfunctions) depending on

( )

( )

( )y x λ . The dependence of the 

solution upon the parameter λ , and the dependence of the parameter upon the boundary 

conditions, is known (SL) problem [1,19]. 
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Example 2.1  

One of the simplest examples of (SL) problem is to set u x( ) 0= . 

2

2 0d y y
dx

λ+ = , 

with the following boundary conditions: 

(0)  ( )  0y y b= = . 

Solution: 

It is clear that 0λ ≤  is not an eigenvalue. However, when 0λ > , then the solution 

of the (SL) problem is given by  

( ) ( )( ) cos siny x A x B xλ λ= + . 

First applying the boundary condition (0)  0y =  we set 0A = . Thus 

( )( ) sin .y x B xλ=  

Applying the second condition ( )  0y b =  the above equation yields,   

( )( ) sin 0 y b B bλ= =  

Since  gives a trivial solution, we set B0B = 0≠  and choose  

( )
2

            1, 2,3,...nb n where n
b
πλ π λ  = ⇒ = =  

 

In the light of above, the corresponding eigenfunctions are  

( ) sin             1, 2,3,...   n
ny x B x n
b
π = = 

 
 

In fact, there are relatively few functions u x  for which the (SL) problem may be 

solved in terms of standard transcendental functions [5,6,19, 35]. 

( )
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Example 2.2 

Another example is to set the potential   u x  2( ) 2sech ( ).x= −

Solution: 

The corresponding (SL) problem is  

2
2

2 2sech ( ) 0,                .d y x y x
dx

λ + + = − ∞ < < +∞   

Let s . This transformation map tanh( )= x ( ),−∞ ∞  for x  to [ ]1,1−  for    s

2

2 2 2

(1 ),

(1 ) 2 (1 ) .
x s

xx ss s

y y s

y y s s s y

= −

= − − −
 

In the transformed variables, the (SL) problem takes the form  

( )2
21 2  0,             1 1.

1
d dys y
ds ds s

λ   − + + = − <   −   
s <  

Comparing the above equation with the generalized Legender equation  

( )
2

2
21 ( 1)

1
d d m

d d
ψξ ψ

ξ ξ ξ
  

− + + −   −   
 0= . 

It is easy to find that  

2( 1) 2;       ;        0,        0 .m mλ+ = = − ≥ < ≤  

11      1.λ∴ = ⇒ = −  

It is clear that this is the only eigenvalue and the corresponding eigenfunction can be 

found from the Legender polynomials as follows:  

1
2 2

1( ) ( 1) ( )dy x s p s
ds

= −
1 1

2 22 2( 1) ( ) 1) sech(ds s s
ds

= − = − = ).x  

1 1;      ( ) sech( ).y x xλ∴ = − =  
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Example 2.3   

If we chose our initial distribution u x , we get two eigenvalues for the 

(SL) problem 

2( ) 6sech ( )x= −

Solution: 

In this case, the corresponding (SL) problem is  

2
2

2 6sech ( ) 0;                   .d y x y x
dx

λ + + = − ∞ < < +∞   

Using the transformation,  we map tanh( )s = x ( ),−∞ ∞  for x to [ ]1,1−  for    s

2

2 2 2

(1 ),

(1 ) 2 (1 ) .
x s

xx ss s

y y s

y y s s s y

= −

= − − −
 

In the light of above, (SL) problem takes the form 

( )2
21 6  0;            1 1.

1
d dys y
ds ds s

λ   − + + = − <   −   
s <  

Comparing the above equation with the generalized Legender equation  

( )
2

2
21 ( 1)

1
d d m

d d
ψξ ψ

ξ ξ ξ
  

− + + −   −   
 0,=  

we get:  

2( 1) 6;       ;        0,        0 .m mλ+ = = − ≥ < ≤  

2
1 22   1   &    2 4λ λ λ= ⇒ = − = − ⇒ = −2  

In order to find the corresponding eigenfunctions, we use the associated Legender 

polynomials 
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1
1 2

1
2 2

1 1

1
2 32

1 1
2 22 2

( ) ( )

( ) ( 1) ( )

1( 1) ( (3 1))
2

         3 ( 1) 3 (1 ) ( )
         3 sech(x)tanh(x).

y x P s

dy x s p s
ds
ds s
ds

s s i s s
i

=

= −

= − −

= − = −
=

                         

2
2 2

2
2

2 22

2

2

2

( ) ( )

( ) ( 1) ( )

        ( 1) (3 )

         3( 1)
         3sech (x).

y x P s
dy x s p s
ds
ds s
ds

s

=

= −

= −

= −

= −

 

2
1 1 2 2 1,     ( ) 3 sec h( ) tanh( )    &   4,      ( ) 3sec h ( ).y x i x x y x xλ λ∴ = − = = − =  

Remark: As a result of these examples, we can conclude that the (SL) problem will 

generally has N-eigenvalues and N-eigenfunctions if the initial potential would be of this 

form                   u x  2( ) ( 1)sech (x).n n= − +

 

2.3  Analysis for the Scattering Data 

In this section, we discuss the scattering data in some details. We start with 

eigenvalues and we will show that the eigenvalues are constants. Then, we talk about the 

normalizing constants, reflection coefficient and transmission coefficient.  

 

2.3.1 The Eigenvalues  

We now turn attention to developing our working definitions and analysis by 

introducing the following theorem. This theorem will give us a remarkable result. 

Theorem 2.1 

If  is a solution of u u( , )u x t 6 0  ,    0t x xxxu u x t− + = − ∞ < < ∞ > ;  

and if 

0( , 0) ( )u x t u x= =

λ  is an eigenvalue of 
2

02

( . ) ( ) ( , ) ( )w x t u x w x t t w
x

λ∂
− + =

∂
( , )x t 0 ( ) 0w, ±∞ = , 

, then ( )x ±∞ = 0w λ  is a constant independent of time. 
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Proof: 

Define tψ = 2( 2 ) ,x xw u w u wλ+ − +  then 

2
x

ψψ ψ =  ( )xw w w
x w
∂

−
∂

 

2 t x t
2

( 2 2( 2 ) ) ( 2( 2 ) ) =  xx x x x xx x x xw w u w u w u w u w w w u w u ww
w

λ λ+ + − − + − + − + 
 
 

 

2 2
t x t= 2 2( 2 ) ( 2( 2 ) )xx x x x xx x xww u w u w u w w u w w w w u w u wλ λ+ + − − + − + − + x  

2 2 2
t x t= 2 2( 2 ) 2( 2 )xx x x x xx x x xww u w u w u w w u w w w w u w w u wλ λ+ + − − + − − + + x  

2 2 2
t x t= 2 2( 2 )( )xx x x x x x x xxww u w u w u w w w w u w w u w w wλ+ + − − + − + − x . 

xψ ψxw w∴ −  

2 2 2
t x t  = 2 2( 2 )( ).xx x x x x x x xx xww u w u w u w w w w u w w u w w wλ+ + − − + − + −

 

( )xψ ψ xw w
x
∂

−
∂

 

( )2 2 2
t x t 2 2( 2 )(xx x x x x x x xx xww u w u w u w w w w u w w u w w w

x
λ∂

= + + − − + − + −
∂

)

)

 

2 2
xxt x xt xx t x xt 2 2 2xxx x xx x x x xxww w w w w w w u w ww u u w u ww= + − − + + − −  

22 2 ( ) 2( 2 )( 2xx x x xx x x xx xxx x xxu ww u w w w u w w ww w wλ+ − − − + + −  

2 2 4 2( 2 )(xx )xxx x xx xxx x xx
ww w u u ww u ww w

t w
λ∂  = + − − + − ∂  

w  

2 2 2 2 ( ) 4 ( ) 2( 2 ) xx
xxx x

ww u w u u w u u w
t x

λ λ λ∂ ∂  = − + − − − +  ∂ ∂  w

).

,

 

2 ( 6t t xxx xw u u uuλ= − + −  

Since   

  6 0t xxx xu u uu+ − =
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then 

( )2
xψ ψ 0.t xw w w

x
λ ∂

+ − =
∂

 

Integrating both sides over the real line we get  

[ ]2 0.t x xw dx w wλ ψ ψ
∞

∞

−∞
−∞

= − − =∫  

Since the eigenfunctions are square integrable, then  

2 0 0t tw dxλ λ
∞

−∞

,= ⇒ =∫  

                                                             0.d
dt
λ

∴ =                                                          (2.2) 

Therefore, the eigenvalues λ  are independent of time and this completes the proof. 

 

     2.3.2     Normalization Constant 

Second, we study the evolution of the normalization constant c t for the 

eigenfunction 

( ) n

( )n xφ . By definition; the normalizing constant is defined as:  

1

2( ) ( , ) .n nc t x t dxφ
−∞

−∞

 
=  

 
∫  

In order to study the evolution of the normalizing constant, we differentiate both sides 

with respect to the time  

1
2( )  ( ) 2 2 .t t

dc t d x dx dx dx
dt dt

φ φφ
∞ ∞ ∞−

−∞ −∞ −∞

 
= = = 

 
∫ ∫ ∫ φφ  

By substituting the evolution equation into the integrand, we get      

1( )  2 t
dc t dx

dt
φφ

∞−

−∞

= ∫  
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               ( )( )32 2 2 4x xu u kφ φ λ φ φ
∞

−∞

= − + +∫  dx

dx

2dx

t

).

               ( )( )2 3 22 2 2 4x xu u kλ φ φ φ φ
∞

−∞

= + − −∫

               ( ) ( )( )2 32 4 4  8xx x x xu dx kφ λφ φ λφφ φ φ
∞ ∞

−∞ −∞

= − + − − −∫ ∫

               2 2 2 2 3 12 2 2 2 8 ( )x u k cφ λφ λφ φ
∞ −

−∞
 = + + − − 

            3 18 (k c t−= −

The solution for the above equation gives us the equation of evolution for the normalizing 

constant. 

       c t
38( )  (0) ,nk t

n nAe c A= ⇒ =   

                                c t                                           (2.3) 
38( ) (0) .nk t

n nc e=

                

     2.3.3     Transmission and Reflection Coefficients 

Since 0λ >  gives rise to unbound state [5,6,35,37], then we have  

   
w
ψ

 =  Function of time only 

                                2 2 t x xw u w ( u )w .
w

λ+ − + =   
 

0 2 0 2 1jkx jkx jkx
t

jkx jkxx
x

b e ( ) ik ( e be )lim .
w e be

λψ −

−→∞
=∞

 + − + − + ∴ =   +   
 

Whence, in order that these exponential functions to vanish, we must equate the 

coefficients of e and  For the seek of simplicity, we may first rewrite the above 

expression as    

ikx .ikxe −

 20



                                ( ) ( )4 4ikx ikx
t

kx ikx
x

b ikb e ik e )
e be

λ λ −

−

=∞

 − +
=  + 

 

                   ( ) ( ) 0
ikx ikx

ikx ikx
ikx ikx

Ae Be A C e B D e
Ce De

α α α
−

− +
⇒ − + − + 

.== =  

Since  e  and   e  are linearly independent then ikx ikx−

( ) 0 4 0 4B D ik ikα λ α α λ− = ⇒ − = ⇒ = . 

In order that the second term to vanish, the coefficient must equal to zero 

( ) ( ) [ ]( ) 30 4 4 0 8t tA C b ikb ik b b ik bα λ λ− = ⇒ − − = ⇒ = .  

                                 ( ) ( ) ( )80 ik tb k ,t b k , e∴ =         for all    t .                               (2.4) 0>

Similarly  

       
w
ψ

= Function of time only 

                   2 2 t x x

x

w u w ( u )w
w

λ

=−∞

+ − + 
  

=  

                   3 3

0 4

4 4

0

ikx ikx
t

ikx
x

t

t

a e ( ikae )
ae

a ik ik .
a
a .

λ− −

−
=−∞

 + − −
=  

 

== +

∴ =

 

                                       0a( k ,t ) a( k , ),∴ =      for all t .                                      (2.5) 0>

and the relationship between the reflection coefficient and the transmission coefficient is 

given by the relation                 

                                                       2 2 1T R+ = .                                                          (2.6) 
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Finally, from the above theorem, we can state the following theorem which summarizes 

our analysis for the scattering data. 

 Theorem 2.2 

If  C (  0m ), 0R( k , ),  T (  are given as above then 0k , )

3

3

0 4
0 8
0

m m mC ( t ) C ( ) exp( k t )
R ( k ,t ) R ( k , ) exp( ik t )
T ( k ,t ) T ( k , )

 =


=
 =

 

where C ( 0 0 4m mx
) lim ( x , ) exp( k x ),mφ

→∞
=  0R( k , )

) u( x ).

and T (  are obtained from the 

initial data for the KdV equation u(

0k , )

0x ,t = =  
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CHAPTER 3 
 
 
 

INVERSE SCATTERING TRANSFORM 
 
 
 
3.1  Inverse Scattering Transform for KdV Equation 

 

The scattering data w x  can be found by solving the scattering problem [19]. 

However, the inverse scattering transform is used to find the potential u x  from the 

scattering data [5]. In fact, during 1955 a certain procedure was established by both 

Gel’fand and Levitan to recover the potential u x by solving a linear integral equation 

[12,28,34]: 

( , )t

( , )t

( , )t

                                              ( , ) 2 ( , , )K x x t
x

u x t ∂
= −

∂
,                                   (3.1) 

where   is the solution for the Gel’fand and Levitan equation   ( , , )K x x t

                      K ,                (3.2) 0
x

( x , y ,t ) B ( x y ,t ) B ( x y ,t )K ( x , z ,t )dz
∞

+ + + + =∫

where B ( x y ,t )+  is called the integral kernel defined by  
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                         2

1

1( , ) ( ) exp( ) ( , ) exp( )) .
2

N

m m
m

B t c t k R k t ik dξ ξ
π

∞

= −∞

= − +∑ ∫ kξ                  (3.3) 

 Using the theorem (2.2) from the previous chapter, we can rewrite ( , )B tξ  as:  

             2 2 3

1

1( , ) (0)exp(8 ) ( ,0)exp( (8 ))
2

N

m m m
m

B t c k t k R k i k t kξ ξ
π

∞

= −∞

= − +∑ ∫ dkξ+

m

,      (3.4) 

where the terms inside the kernel are defined as [35] : 

 2
mk λ= −  where m 1,2,3,...,N.=  

 m mx
C ( t ) lim ( x ,t ) exp( k x ).mψ

→∞
=  

  2 2 1+ =T R  .

 

The beauty of the inverse scattering transform is to solve a nonlinear partial 

differential equation by solving two linear equations. In fact, this mentioned point is a 

remarkable discovery in the field of mathematics and the nonlinear wave research. To be 

more precise, with the above equations, the KdV equation can be easily solved by solving 

two linear equations. One of these equations is the eigenvalue problem for a time 

independent Schrödinger equation (1.1) while the second is the above Gel’fand and 

Levitan equation (3.2). To end this section, we will summarize what we are trying to do 

in the coming three sections. In section 3.2, we will give a simple sketch for the method 

of inverse scattering transform. In section 3.3, we will derive the kernel for the n-

bounded states with vanishing reflection coefficient. Finally, some examples will be 

provided to show how this method is used to solve the KdV equation.    
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3.2  Sketch for the Inverse Scattering Transform 
 
 

 Sketch for the Inverse Scattering Transform (IST) 
 

Gel’fand and Levitan equation 

0
x

K ( x , y ,t ) B ( x y ,t ) B ( x y ,t )K ( x , z ,t )dz .
∞

+ + + + =∫  

 

                                                                B ( ,t )ζ  

 

 

 

 

 

 

 

( )xx 0

2

Solve  0
  using special functions. Find
   0
     0

m m m

m m

u ( x )

k , ( x ),R ( k ,
C ( ),C ( t ),R ( k ,t )

ψ λ

λ ψ

+ − + =

= − ),

ψ

                                    
Solve the Gel'fand-Lavitan 
equation by seperation of 
varibles to get     K ( x , y ,t )

 

 

 

 

 

0u ( x )                                                                                                                     u(  x ,t )

Standard KdV equation
 6 0t x xxxu uu u− + =
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3.3  The Kernel for N-bound States with Vanishing Reflection 
Coefficient 

 
When the initial solution is reflectionless, then the integral part inside the 

Gel’fand-Levitan equation will disappear from the equation. As a result of that, we try to 

look for a solution which is separable 

                                                                                     (3.5) 
1

( : , ) ( , ) ( ).
N

n n
n

K x y t k x t g y
=

= ∑

By substituting the above assumption into Gel’fand-Levitan equation, we get   

( : , ) ( ; ) ( : , ) ( ; ) 0
x

K x y t B x y t K x s t B s y t ds
∞

+ + + + =∫ ,     

             (3.6) 
1 1 1 1

( , ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) 0.
N N N N

n n n n n n n n
n n n nx

k x t g y f x t g y k x t g s f s t g y ds
∞

= = = =

 
+ +  

 
∑ ∑ ∑ ∑∫ =

=

=

=

By comparing the coefficients of , we obtain the following system   ( )ng y

1 1
1

( , ) ( , ) ( , ) ( ) ( , ) 0
N

n n n
nx

k x t f x t k x t g s f s t ds
∞

=

+ + ∑∫  

1( )2
1 1

1

( , ) ( , ) ( ) ( , ) 0n

N
k k s

n n
nx

k x t f x t c t k x t e ds
∞

− +

=

+ + ∑∫  

1( )2
1 1

1

( , ) ( , ) ( ) ( , ) 0n

N
k k s

n n
n x

k x t f x t c t k x t e ds
∞

− +

=

+ + ∑ ∫  

1( )
2

1 1
1 1

( , ) ( , ) ( ) ( , ) 0
n

xk k sN

n n
n n

ek x t f x t c t k x t
k k

− +

= ∞

 
+ +  + 

∑ =  

1( )
2

1 1
1 1

( , ) ( , ) ( ) ( , ) 0.
nk k xN

n n
n n

ek x t f x t c t k x t
k k

− +

=

+ +
+∑ =                                                   (3.7) 

whence, we can in general write the general formula  

( )
2

1

( , ) ( , ) ( ) ( , ) 0          where  1 m N.
m nk k xN

m n m n
n m n

ek x t f x t c t k x t
k k

− +

=

+ + =
+∑ ≤ ≤               (3.8) 

The above equation can be written in matrix notation as  
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0  Mk f+ =                                                                                                         (3.9) 

where  and k f are column vectors with entries given by 

1

2

:

n

k
k

k

k

 
 

=
 
 
 
 


 ,             

1

2

 = :

n

f
f

f

f

 
 
 
 
 
 
 
 

, 

 where M is an matrix with entries given by  N N×

( )
2 ( )

i jk k x

ij ij i
i j

eM c t
k k

δ
− +

= +
+

, 

where ijδ is the Kronecker delta which is given by  

1          
0          ij

if i j
if i j

δ
=

=  ≠
. 

Now solving the matrix equation (3.9), we obtain  

1 k M f−= − ,

1−

                                                                                                      (3.10) 

whence, the kernel can be written as 

1

1
( : , ) ( , ) ( ) .

N
T

n n
n

K x x t k x t g x M fg g M f−

=

= = − = −∑                                  (3.11) 

Since  

( )
( )2 2 2( ) ( ( ) ) 0 ( ) ( )

i j
i j ji

k k x
k k x k xk x

ij ij i i i
i j

eM c t c t e c t e
x x k k

δ
− +

− + −−∂ ∂
= + = − = −

∂ ∂ +
.e  

                                    ( ) ( , ) (ij i j ).M f x t g x
x
∂

= −
∂

                                         (3.12) 

then equation (3.12) and equation (3.11) give us the final form of the kernel 

1 1

1
( : , ) ( , ) ( ) ( )

N

n n
n

K x x t k x t g x M fg M M
x

− −

=

∂
= = − =

∂∑ .ij                             (3.13) 
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3.4  Applications with Vanishing Reflection Coefficient 

In this section, we are going to apply the inverse scattering transformation which 

was described in section 3.2 to show how it works. 

3.4.1 One Soliton Solution. 

Consider the initial value problem        

     u u , 6 0t x xxxu u− + =

with the initial solution 

 u x  2
0( ,0) ( )= 2sech (x).u x= −

Solution: 

Step 1 Finding the eigenvalues and eigenfunctions 

2
2

2 2 ( ) 0             ( ) = 0.d sech x
dx

ψ λ ψ ψ + + = ± ∞   

Let  s  this transformation map tan( )= x ( ),−∞ ∞  for x  to [ ]1,1−  for .   s

2(1 ),x s sψ ψ= −  

2 2 2(1 ) 2 (1 )xx ss ss s sψ ψ ψ= − − − . 

Therefore, the (SL) problem becomes  

( )2
21 2  0                 1 1.

1
d ds s
ds ds s

ψ λ ψ   − + + = − <   −   
<  

Comparing this equation with the generalized Legender equation  

( )
2

2
21 ( 1)

1
d d m

d d
ψξ ψ

ξ ξ ξ
  

− + + −   −   
 0= , 

we get   

  2( 1) 2;       ;        0,       0< m .mλ+ = = − ≥ ≤  
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                                                  11      1.λ∴ = ⇒ = −                                                     (1) 

It is clear that this is the only eigenvalue and the corresponding eigenfunction can be 

found from the Legender polynomials as follow:  

1
2 2

1( ) ( 1) ( )dx s p
ds

sψ = −  

   
1 1

2 22 2( 1) ( ) ( 1) ( ).ds s s sech
ds

= − = −       x

                                              1 1    ( ) ( ).x sech xλ ψ∴ = − =                                              (2) 

Step 2 Normalization of the eigenfunction 

2 2 2
1( ) ( ) ( ) ( ) 2.x dx sech x dx sech x dx tanh xψ

∞ ∞ ∞
∞

−∞
−∞ −∞ −∞

= = =∫ ∫ ∫ =  

Therefore, the normalized eigenfunction is 

                                                    1
2( ) ( ).

2
x sech xψ =                                                     (3) 

Step 3 Determination of c(0) and c(t) 

By using the definition  

( )11 1(0) lim ( )exp( )
x

c xψ
→∞

= k x  

2         = lim ( )exp( )
2x

sech x x
→∞

 
  
 

 

                      2.=                                                                                                            (4) 

Therefore, the evolution equation for the normalization constant is given by 

2
1 1 1( ) (0)exp(4 )c t c k t= 2 exp(4 ).t=                                                                    (5) 
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Step 4 Determination of integration kernel   

2 2 3

1

1( , ) (0)exp(8 ) ( ,0)exp( (8 ))
2

N

m m m
m

B t c k t k R k i k t kξ ξ
π

∞

= −∞

= − +∑ ∫
1

2 2

1

( , ) (0)exp(8 )m m m
m

B t c k t k

dkξ+

 ξ ξ
=

= −∑  

           2exp(8 )t ξ= −  

           2exp(8 )exp( ).t ξ= −                                                                                    (6) 

Step 5 Writing Gel’fand and Levitan equation  

( , , ) ( , ) ( , ) ( , , ) 0
x

K x y t B x y t B y z t K x z t dz
∞

+ + + + =∫  

[ ]( , ; ) 2exp(8 )exp( ) 2exp(8 )exp( ) ( , , ) 0
x

K x y t t x y t z y K x z t dz
∞

+ − − + − −∫ =  

[ ]

( , ; ) 2exp(8 )exp( ) exp( )

                                             2exp(8 )exp( )exp( ) ( , , ) 0.
x

K x y t t x y

t z y K x z t dz
∞

+ − − +

− − =∫
         (7) 

We solve the above equation by separation of variables by assuming 

                                             ( , ; ) ( , ) exp( ).K x y t f x t y= −                                               (8) 

Putting (8) into equation (7), we get 

[ [

( , ) exp( ) 2exp(8 )exp( )exp( )

                             + 2exp(8 )exp( )exp( ) ( , ) exp( ) 0.
x

]

f x t y t x y

t z y f x t z dz
∞

− + − −

− − −∫ =
         (9) 

Comparing coefficients of exp( )y− in equation (9) gives  

[ [( , ) 2exp(8 )exp( ) 2exp(8 )exp( ) ( , ) exp( ) 0
x

]f x t t x t z f x t z dz
∞

+ − + − −∫

[( , ) 2exp(8 ) 2 ( , ) exp(8 ) exp( 2 ) 0
x

f x t t x f x t t z dz
∞

⇒ + − + − =∫

=

=

 

( , ) 2exp(8 ) ( , ) exp(8 2 ) 0f x t t x f x t t x⇒ + − + −  
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2exp(8 )( , )
1 exp(8 2 )

t xf x t
t x

− −
⇒ =

+ −
 

2exp(4 )exp(4 ) exp( 4 )( , )
1 exp(8 2 ) exp( 4 )

t x t x tf x t
t x x t

 − − −
⇒ =  + − − 

 

2( , ) exp(4 )
exp( 4 ) exp(4 )

f x t t
x t t

⇒ = −
− + − x

 

4 4
( 4 ) ( 4 )

2( , ) e e ( 4 ).
e e

t t
x t x tf x t sech x t− − −= − = − −

+
 

                                    4( , ) e ( 4 ).tf x t sech x t= − −                                                (10) 

By substituting equation (10) into equation (8) we obtain the kernel 

4( , ; ) ( , ) exp( ) e ( 4 ).t yK x y t f x t y sech x t−= − = − −  

Therefore  

                                                                                    (11) 4( , ; ) e ( 4 ).t xK x x t sech x t−= − −

Step 6 Solution  

            ( , ) 2 ( , , )K x x t
x
∂

= −
∂

u x t  

            ( )4( , ) 2 e ( 4 )t xt sech x t
x

−∂
= − − −

∂
u x  

            
4

4 4 2 8

2 2( , ) 2 2
e e

t x

x t t x x t

et
x e x

−

− − −

 ∂ − ∂ − = − = −   ∂ + ∂ +   1
u x  

           
( )

22 8

2 ( 4 ) ( 4 )2 8

4 2( , ) 2 2 .
e ee 1

x t

x t x tx t

et
−

− − −−

 
  = − = −    + + 

u x  

We get the exact solution 

2( , ) 2 ( 4 ).u x t sech x t= − −  
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3.4.2 Two Soliton Solution 

Consider the initial value problem  

 u u  6t x xxxu u− + = 0,

with the following initial solution 

2
0( ,0) ( ) 6 ( ).u x u x sech x= = −  

Solution: 

Step 1 Finding the eigenvalues and eigenfunctions 

2
2

2 6 ( ) 0;               ( ) = 0.d sech x
dx

ψ λ ψ ψ + + = ± ∞   

Using the transformation s , this transformation map tan( )= x ( ),−∞ ∞  for x  to [ ]1,1−  

for .  s

 2(1 ),x s sψ ψ= −  

2 2 2(1 ) 2 (1 ) .xx ss ss s sψ ψ ψ= − − −  

Therefore, the (SL) problem becomes  

( )2
21 6  0;               1 1.

1
d ds s
ds ds s

ψ λ ψ   − + + = − <   −   
<  

Comparing this equation with the generalized Legender equation  

( )
2

2
21 ( 1)

1
d d m

d d
ψξ ψ

ξ ξ ξ
  

− + + −   −   
 0.=  

We get 

2( 1) 6;       ;        0,       0< m .mλ+ = = − ≥ ≤  

2
1 2 22      1 & 2 4.λ λ λ∴ = ⇒ = − = − ⇒ = −  
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These are the only two eigenvalues for the (SL) problem and in order to find the 

corresponding eigenfunctions, we use the associated Legender polynomials: 

  

1
1 2

1
2 2

1 1

1
2 32

1 1
2 22 2

( ) ( )

( ) ( 1) ( )

1        ( 1) ( (3 1))
2

        3 ( 1) 3 (1 ) ( )
        3 ( ) tanh( ).

x P s

dx s p s
ds
ds s
ds

s s i s s
isech x x

ψ

ψ

=

= −

= − −

= − = −
=

                  

2
2 2

2
2

2 22

2

2

2

( ) ( )

( ) ( 1) ( )

        ( 1) (3 )

         3( 1)
         3 ( ).

x P s
dx s p
ds
ds s
ds

s
sech x

s

ψ

ψ

=

= −

= −

= −

= −

 

2
1 1 2 2 1,     ( ) 3 ( ) tanh( )    &     4,     ( ) 3 ( ).x isech x x x sech xλ ψ λ ψ∴ = − = = − =  

Step 2 Normalization of the eigenfunctions 

2 2 2 2
1( ) 3 ( ) tanh( ) 9 ( ) tanh ( ) 6x dx isech x x dx sech x x dxψ

∞ ∞ ∞

−∞ −∞ −∞

= = =∫ ∫ ∫ . 

22 2 4
2 ( ) 3 ( ) 9 ( ) 12x dx sech x dx sech x dxψ

∞ ∞ ∞

−∞ −∞ −∞

= − = =∫ ∫ ∫ . 

Therefore, the normalized eigenfunctions are 

1
3( ) ( ) tanh( ).
2

x sech x xψ =  

2
2

3( ) ( ).
2

x sech xψ =  

Step 3 Determination of c(0) and c(t) 

By using the definition           ( )11 1(0) lim ( )exp( )
x

ψ
→∞

=c x  k x

                    3lim ( ) tanh( )exp( )
2x

sech x x x
→∞

 
=   

 
6.=  

( )22 2(0) lim ( )exp( )
x

c xψ
→∞

= k x  
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                                23lim ( )exp(2 )
2x

sech x x
→∞

 
  
 

= 2 3= . 

Whence, the evolution equation is given by 

3
1 1 1( ) (0)exp(4 )c t c k t=   

        6 exp(4 ).t=  

3
2 2 2( ) (0)exp(4 )c t c k t=  

        2 3 exp(32 ).t=  

Step 4 Determination of integration 

2 2 3

1

1( , ) (0)exp(8 ) ( ,0)exp( (8 ))
2

N

m m m
m

B t c k t k R k i k t kξ ξ
π

∞

= −∞

= − +∑ ∫ dkξ+

m

 

2
2 2

1

( , ) (0) exp(8 )m m
m

B t c k t kξ ξ
=

= −∑   

           6exp(8 ) 12exp(64 2 )t tξ ξ= − + −  

           6exp(8 )exp( ) 12exp(64 )exp( 2 ).t tξ ξ= − + −  

Step 5 Writing Gel’fand and Levitan equation  

( , , ) ( , ) ( , ) ( , , ) 0
x

K x y t B x y t B y z t K x z t dz
∞

+ + + + =∫  

( , ; ) 6exp(8 )exp( ) 12exp(64 )exp( 2 2 )K x y t t x y t x y+ − − + − − +  

[ ]                           + 6exp(8 )exp( ) 12exp(64 )exp( 2 2 ) ( , , ) 0
x

t z y t z y K x z t dz
∞

− − + − − =∫  

( , ; ) 6exp(8 )exp( )exp( ) 12exp(64 )exp( 2 )exp( 2 )K x y t t x y t x y+ − − + − −

=

 

[ ]           6exp(8 )exp( )exp( ) 12exp(64 )exp( 2 )exp( 2 ) ( , , ) 0.
x

t z y t z y K x z t dz
∞

+ − − + − −∫  

We solve the above equation by separation of variables by assuming  
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1 2( , ; ) ( , ) exp( ) ( , ) exp( 2 ).K x y t f x t y f x t y= − + −                                              (16) 

Putting the assumption into Gel’fand and Levitan equation, we get 

 [

][ ]

1 2

1 2

( , ) exp( ) ( , ) exp( 2 ) 6exp(8 )exp( )exp( )

12exp(64 )exp( 2 )exp( 2 ) 6exp(8 )exp( )exp( )

12exp(64 )exp( 2 )exp( 2 ) ( , ) exp( ) ( , ) exp( 2 ) 0.
x

f x t y f x t y t x y

t x y t z y

t z y f x t z f x t z dz

∞

− + − + − −

− + − − +

− − − + −

∫+ − (17) 

=

Comparing coefficients of exp( )y−  and exp( 2 )y−  in equation (17) gives  

[ ][1 1 2( , ) 6exp(8 )exp( )  6exp(8 )exp( ) ( , ) exp( ) ( , ) exp( 2 ) 0
x

f x t t x t z f x t z f x t z dz
∞

⇒ + − + − − + −∫ ] =

=

2 =

 

1 1 2( , ) exp(8 )exp( ) 6exp(8 ) ( , )  exp( 2 ) 6exp(8 ) ( , )  exp( 3 ) 0
x x

f x t t x t f x t z dz t f x t z dz
∞ ∞

⇒ + − + − + −∫ ∫  

1 1( , ) exp(8 ) 3exp(8 2 ) ( , ) 2exp(8 3 ) ( , ) 0f x t t x t x f x t t x f x t⇒ + − + + + +  

[ ] [ ]1 21 3exp(8 2 ) ( , ) 2exp(8 3 ) ( , ) 6exp(8 ).t x f x t t x f x t t x+ − + − = − −                             (a) 

The second equation is  

[ ]

[ ]

2

1 2

( , ) 12exp(64 )exp( 2 ) 12exp(64 )exp( 2 )

                                                                            ( , ) exp( ) ( , ) exp( 2 ) 0
x

f x t t x t z

f x t z f x t z dz

∞

+ − + −

− + −

∫
=

 

2 1

2

( , ) 12exp(64 2 ) 12 ( , ) exp(64 ) exp( 3 )

                                                                                 12 ( , ) exp(64 ) exp( 4 ) 0

x

x

f x t t x f x t t z dz

f x t t z dz

∞

∞

+ − + −

+ − =

∫

∫

 

2 1 2( , ) 12exp(64 2 ) 4 ( , ) exp(64 3 ) 3 ( , ) exp(64 4 ) 0f x t t x f x t t x f x t t x+ − + − + − =  

[ ] [ ]1 24exp(64 3 ) ( , ) 1 3exp(64 4 ) ( , ) 12exp(64 2 ).t x f x t t x f x t t x− + + − = − −                   (b) 

from (a) and (b) , we have following the system:  

8 2 8 3 8
1 2

64 3 64 4 64 2
1 2

1 3e ( , ) 2e ( , ) 6e

4e ( , ) 1 3e ( , ) 12e

t x t x t x

t x t x t x

f x t f x t

f x t f x t

− −

− −

   + + = −   


   + + = −   

−

−
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The above system of algebraic equations can be solved by using Cramer’s rule 

1 2
1 2( , ) ,            ( , ) .f fD D

f x t f x t
D D

= =  

where 

( )( ) ( )(
8 2 8 3

8 2 64 4 64 3 8 3
64 3 64 4

64 4 8 2 72 6 72 6

1 3e 2e
 = 1 3e 1 3e 4e 2e

4e 1 3e

                                             1 3e 3e 9e 8e
                                            

t x t x
t x t x t x t x

t x t x

t x t x t x t x

D
− −

− − −
− −

− − − −

+
= + + −

+

= + + + −
64 4 8 2 72 61 3e 3e e .t x t x t x

)−

D − − −∴ = + + +

 

( )( ) ( )(1

8 8 3
8 64 4 64 2 8

64 2 64 4

8 72 5 72 5

6e 2e
6e 1 3e 12e 2e

12e 1 3e

                                                6e 18e 24e
                                                

t x t x
t x t x t x t x

f t x t x

t x t x t x

D

D

− −
− − −

− −

− − −

−
= = − + − −

− +

= − − +

∴
1

8 72 56e 6e .t x t x
f

− −= − +

)3−

 

( )( ) ( )(2

8 2 8
8 2 64 2 64 3 8

64 3 64 2

64 2 72 4 72 4

1 3e 6e
1 3e 12e 4e 6e

4e 12e

                                                12e 36e 24e
                                               

t x t x
t x t x t x t x

f t x t x

t x t x t x

D
− −

− − −
− −

− − −

+ −
= = + − −

−

= − − +

2

64 2 72 4 12e 12e .t x t x
fD − −∴ = − −

)−−

−

 

Substituting the above results into equation (16) we obtain 

1 2( , ; ) ( , ) exp( ) ( , ) exp( 2 )K x y t f x t y f x t y= − +  

8 72 5 64 2 72 4

64 4 8 2 72 6

6e 6e e 12e 12e e
( , ; ) .

1 3e 3e e

t x t x y t x t x y

t x t x t xK x y t
− − − − − −

− − −

  − + + − −  =
+ + +

2  

Therefore  

8 72 5 64 2 72 4

64 4 8 2 72 6

6e 6e e 12e 12e e
( , ; )

1 3e 3e e

t x t x x t x t x x

t x t x t xK x x t
− − − − −

− − −

  − + + − −  =
+ + +

2−  

                              
8 2 72 6 64 4 72 6

64 4 8 2 72 6

6e 6e 12e 12e
1 3e 3e e

t x t x t x t x

t x t x t x

− − − −

− − −

  − + + − −  =
+ + +

  

( )8 2 72 6 64 4

64 4 8 2 72 6

6 e e 2e
( , ; )

1 3e 3e e

t x t x t x

t x t x t xK x x t
− − −

− −

− + +
=

+ + + −  
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Step 6 Solution  

( , ) 2 ( , , )u x t K x x t
x
∂

= −
∂

 

( )8 2 72 6 64 4

64 4 8 2 72 6

6 e e 2e
( , ) 2

1 3e 3e e

t x t x t x

t x t x t xu x t
x

− − −

− − −

 − + +∂  = −
 ∂ + + + 

 

( )264 4 8 2 72 6
( , ) 12

1 3e 3e et x t x t x

Nu x t
− − −

= −
+ + +

 

( )( )
( )(

8 2 72 6 64 4 64 4 8 2 72 6

8 2 72 6 64 4 64 4 8 2 72 6

2e 6e 8e 1 3e 3e e

    e e 2e 12e 6e 6e .

t x t x t x t x t x t x

t x t x t x t x t x t x

N − − − − −

− − − − − −

= − − − + + +

− + + − − − )

−

 

The above expression can be simplified and written as[ 35]  

( )2

3 4cosh(2 8 ) cosh(4 64 )( , ) 12
3cosh( 28 ) cosh(3 36 )

x t xu x t t
x t x

+ − + −
= −

− + − t
. 

Figure 3-1 below shows the movement of the two soliton solution through different 

values of time.    

 
Figure 3-1 Two Soliton Solution for the KdV Equation at Different Values of Time. 
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3.4.3 Three Soliton Solution 

Consider the initial value problem  

 u u , 6t x xxxu u− + = 0

with the following initial solution 

2
0( ,0) ( ) 12 ( ).u x u x sech x= = −  

Solution: 

Step 1 Finding  eigenvalues and eigenfunctions. 

2
2

2 12 ( ) 0             ( ) = 0d sech x
dx

ψ λ ψ ψ + + = ± ∞   

Using the transformation, s tan( )x= , the  transformation map ( ),−∞ ∞  for x  to [ ]1,1−  

for s ,  2(1 ),x s sψ ψ= −  

2 2 2(1 ) 2 (1 ) .xx ss ss s sψ ψ ψ= − − −  

Thus, the (SL) problem becomes  

( )2
21 12  0;            1 1. 

1
d ds s
ds ds s

ψ λ ψ   − + + = − <   −   
<  

Comparing this equation with the generalized Legender equation  

( )
2

2
21 ( 1)

1
d d m

d d
ψξ ψ

ξ ξ ξ
  

− + + −   −   
 0.=  

We get 

2( 1) 12;       ;        0,       0< m .mλ+ = = − ≥ ≤  

2 2
1 2 2 3 33      1,  & 2 4,  &  3 9.λ λ λ λ λ∴ = ⇒ = − = − ⇒ = − = − ⇒ = −  

These are the only three eigenvalues for the (SL) problem and in order to find the 

corresponding eigenfunctions, we use the associated Legender polynomials: 
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1
1 3

1 1
2 22 2

1 3

1
2 2 22

( ) ( )

1( ) ( 1) ( ) ( 1) ( (5 3 ))
2

3 3         ( 1) (5 1) ( )(4 5 ( )).
2 2

x P s

d d 3x s p s s s
ds ds

s s sech x sech

z

x

ψ

ψ

=

= − = − −

= − − = −

             

   

2
2 3

2 2
2 2

2 32

2 2

( ) ( )

5 1( ) ( 1) ( ) ( 1) ( )
2

         3( 1)(5 ) 15 ( ) ( ).

x P s

d dx s p s s
ds ds

s s sech x tanh x

s

ψ

ψ

=

−
= − = −

= − =

 

3
3 3

3 3
2 22

3 33

3
2 32

( ) ( )

( ) ( 1) ( ) ( 1) (5 )

          15( 1) 15 ( ).

x P s

d dx s p s s
ds ds

s sech x

s

ψ

ψ

=

= − = −

= − =

 

Thus, the three eigenfunctions: 

2
1

3( ) ( )(4 5 ( )).
2

x sech x sech xψ = −  

2
2 ( ) 15 ( ) ( ).x sech x tanh xψ =  

3
3 ( ) 15 ( ).x sech xψ =  

Step 2 Normalization of eigenfunctions  

2
2 2

1
3( ) ( )(4 5 ( )) 12.
2

x dx sech x sech x dxψ
∞ ∞

−∞ −∞

= −∫ ∫ =  

22 2
2 ( ) 15sec ( ) tanh( ) 60x dx h x x dxψ

∞ ∞

−∞ −∞

= =∫ ∫ . 

22 3
2 ( ) 15 ( ) 240.x dx sech x dxψ

∞ ∞

−∞ −∞

= =∫ ∫  
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Therefore, the normalized eigenfunctions are 

2
1

3( ) ( )(4 5 ( )).
4

x sech x sech xψ = −  

2
2

15( ) ( ) ( ).
2

x sech x tanh xψ =  

3
3

15( ) ( ).
4

x sech xψ =  

Step 3 Determination of c(0) and c(t)   

( )11 1(0) lim ( )exp( )
x

c xψ
→∞

= k x  

23        = lim ( )(4 5 ( )) exp( )
4x

sech x sech x x
→∞

 
−  

 
2 3.=  

( )22 2(0) lim ( )exp( )
x

c xψ
→∞

= k x  

         215lim ( ) ( )exp(2 )
2x

sech x tanh x x
→∞

 
  
 

= 2 15.=  

( )33 3(0) lim ( )exp( )
x

c xψ
→∞

= k x  

        315lim ( )exp(3 )
4x

sech x x
→∞

 
=   

 
 =4  15.

Using the definition, the evolution equations for the normalization constants are  

3
1 1 1( ) (0)exp(4 )c t c k t= 2 3 exp(4 ).t=  

3
2 2 2( ) (0)exp(4 )c t c k t= 2 15 exp(32 )t= .  

            c t 3
3 3 3( ) (0)exp(4 )c k t= 4 15 exp(108 ).t=  
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Step 4 Determination of integration kernel  

2 2 3

1

1( , ) (0)exp(8 ) ( ,0)exp( (8 ))
2

N

m m m
m

B t c k t k R k i k t kξ ξ
π

∞

= −∞

= − +∑ ∫ dkξ+

m

 

3
2 3

1

( , ) (0) exp(8 )m m
m

B t c k t kξ ξ
=

= −∑  

           12exp(8 ) 60exp(64 2 ) 240exp(216 3 )t t tξ ξ ξ= − + − + −  

8 64 2 210 3           12 60 240 .t t te e e e e eξ ξ ξ− −= + + −  

Step 5 Finding Gel’fand and Levitan equation  

( , , ) ( , ) ( , ) ( , , ) 0
x

K x y t B x y t B y z t K x z t dz
∞

+ + + + =∫  

8 64 2 2 210 3 3

8 64 2 2 210 3 3

( , ; ) 12 60 240

                12 60 240 ( , , ) 0

t x y t x y t x y

t z y t z y t z y

x

K x y t e e e e e e e e e

e e e e e e e e e K x z t dz

− − − − − −

∞
− − − − − −

+ + + +

 + + + ∫ =

3y−

 

We solve the above equation by separation of variables by assuming  

                                         (18) 2
1 2 3( , ; ) ( , ) ( , ) ( , ) .y yK x y t f x t e f x t e f x t e− −= + +

Using the above assumption into Gel’fand and Levitan equation, we get 

2 3 8 64 2 2
1 2 3

210 3 3 8 64 2 2 210 3 3

1

( , ) ( , ) ( , ) 12 60

                 240 12 60 240

                                                ( ,

y y y t x y t x y

t x y t z y t z y t z y

x

f x t e f x t e f x t e e e e e e e

e e e e e e e e e e e e

f x

− − − − − − −

∞
− − − − − − − −

+ + + +

 + + + + + ∫
2 3

2 3) ( , ) ( , ) 0.z z zt e f x t e f x t e dz− − − + + = 

y

             

First comparing coefficients of e − , and , and then integrating by part we 

obtain the following system 

2 ye − 3ye −

[ ]3
2

1

exp ( )
( , ) ( ) ( , ) exp( )

( )
m n

m n n
n m n

k k x
mf x t c t f x t k x

k k=

− +
+

+∑ = −      where      m  1, 2,3.=

Using Cramer’s rule the solution for the above system becomes,   
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1
1( , )f x t ∆

=
∆

                                                                                              (19) 

2
2 ( , )f x t ∆

=
∆

                                                                                             (20) 

3
3( , )f x t ∆

=
∆

                                                                                              (21) 

where  

1 exp(5 ) 5exp(216 ) exp(280 5 ) 5exp(64 ).x t x t x t x∆ = − − + − − +  

2 exp(4 ) 2exp(216 2 ) 2exp(8 2 ) exp(224 4 )x t x t x t x∆ = − − + + − − . 

3 exp(3 ) 3exp(64 ) 3exp(8 ) 5exp(72 3 )x t x t x t x∆ = + − + + − + . 

exp(6 ) 10exp(216 ) 15exp(64 2 ) 6exp(280 4 )x t t x t∆ = + + + + − x  

                   6exp(8 4 ) 15exp(224 2 ) 10exp(72 2 ) exp(288 6 ).t x t x t x t x+ + + − + + + −  

Substituting equations (19), (20) and (21) into equation (18) and then using equation 

(3.1), we obtain the following solution  

1

2

( , )( , )
( , )

U x tu x t
U x t

= −  

where  U x  and  U x  are given by, 1( , )t 2 ( , )t

1( , ) 3024 24cosh(10 280 ) 240cosh(8 224 ) 360cosh(6 72 )U x t x t x t x t= + − + − + −  

                        720cosh(6 216 ) 960cosh(4 208 ) 600cosh( 152 )x t x t x+ − + − + − t  

                        1200cosh(2 8 ) 3240cosh(2 56 )x t x+ − + t− . 

2 ( , ) cosh(6 144 ) 6cosh(4 136 ) 15cosh(2 80 ) 10cosh(72 )U x t x t x t x t t= − + − + − + . 
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CHAPTER 4 
 
 
 

VARIABLE COEFFICIENT KDV EQUATION 

 
4.1 Introduction 
 

As we know from the last three chapters, the KdV equation is used to study the 

propagation of non-linear disperse waves in homogenous media. However, the variable-

coefficient KdV equation may arise to describe the disperse waves if the boundaries are 

non-uniform or the medium are inhomogeneous [4,10,15,16,17]. In this chapter, we will 

study the shallow water nonlinear waves moving over an uneven bottom. In fact, this 

physical problem can be modeled by variable- coefficient KdV equation [16,17]. In fact, 

a study was conducted by Johnson [17] to study some numerical solutions for variable- 

coefficient KdV equation. However, the inverse scattering transform can be constructed 

only for certain types of variable coefficient KdV equations [16,17]. We find that if the 

following compatibility condition 

[ ]

[ ][ ]

3
1 2 1 2

3

1 2 1 2

2 2

                                               2 2 0

/
/ / a ( t )( t ) f ( t ) f ( t ) ( t ) f ( t ) f ( t )

a ( t )
f ( t ) f ( t ) f ( t ) f ( t )

α α − − − 

− − − =
            (4.1) 

is satisfied. Then, the variable coefficient KdV equation 

3 3 1 2
3 1 0
2 4t x xxx x( t )u a ( t )uu a ( t )u f ( t ) xu f ( t )uα − + + + =                             (4.2) 

is integrable by the method of inverse scattering transform [4]. 
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4.2   Inverse Scattering Transform for Variable-Coefficient KdV 

Equation     

        In order to study and construct the inverse scattering transform for the variable 

coefficient KdV equation in shallow water waves, we first need to find the equation that 

describes the shallow water waves and then the compatibility condition which is given by 

equation (4.1). In fact, there is more than one form that describes the shallow water 

waves. However, the variable –coefficient KdV equation for the shallow water disperse 

waves over an uneven bottom has been derived by Johnson [16,17] in the form      

                     
7 1

4 23 1 0
2 6X d ( X )uu d ( X )uξ ξξξσ σ

−
+ +u                               (4.3) ,=

where 

X                 is the far field horizontal space variable with ,X xε=  

x                  is a dimensionless horizontal space variable,  

(d X )σ        is the local depth with  (0) 1d = . Also, whereas   

ξ                  is a variable related to X and time through the equation 

                                   
1

2

0

x

d dx tξ ,= −∫  then 

1
4d u
−

           :is the free surface displacement. 

In order to find the compatibility condition, we have to first transform the variable 

coefficient KdV equation into the standard form. For this purpose, we introduce the 

transformation 

U = −u and
1

92
83 ( )

2
y d X .σ ξ

− =  
 

 

 44



to obtain     

 u U ,  X X= −

1
92

83 ( )
2

dy d X
d

σ
ξ

− =  
 

,    
1

92
83 ( )

2 y
u U U y d X U

y
σ

ξ ξ ξ

−∂ ∂ ∂ ∂  = − = − = − ∂ ∂ ∂ ∂  
,  

First, rewriting equation (4.2) in the form 

1
2 97

84

3
2 271

82

3 3
2 2

1 3 9                                               0
6 2 8

X y

X
yyy y

U d ( X ) d ( X )UU

d ( X )d ( X ) d ( X )U yU
d ( X )

σ σ

σσ σ
σ

−−

−

 − + − 
 

  .− = 
 

 

and then simplifying terms we obtain  

1 1
2 223 23

8 83 3 1 3 9 0
2 2 4 2 8

X
X y yyy y

d ( X )U d ( X )UU d ( X )U yU
d ( X )

σσ σ
σ

− −   − + −   
   

= .       (4.4)                   

At this stage we compare equations (4.4) and (4.2) to easily identify that 

1

1
2 23

8
2 3

91                    
8

30                   
2

Xd ( X )( X ) , f ( X ) ,
d ( X )

f ( t ) , a ( t ) d ( X ).

σα
σ

σ
−

= = −

 = =  
 

 

Now substituting the above functions into equation (4.1), the compatibility condition 

takes the form 

                                                   24H ( X ) H ( X ) ,
dX

0+ =                                              (4.5) 

where                                          Xd ( X )H ( X )
d ( X )

σ
σ

= .                                                 (4.5) 

Thus the solution of equation (4.5) becomes 

                                                      
1

1
4

H ( X )
X c

=
+

.                                                   (4.6)              

In the light of above, we first write equation (4.5) as,  
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1

1
4

H ( X )
X c

=
+

 

1

1 4
4 4

Xd ( X )
d ( X ) X c

σ
σ

=
+

 

and then integrate to get 

                                         ( )
1
4

2     4d ( X ) c X cσ = + 1 .                                                 (4.7) 

to get the local depth, since d ( 0X )σ > , therefore it gives  

                                                                  c  2 0>

Further, since c  and c  are two integration constants, we can choose  1 2

1
4

2 4
cc σ =  

 
 

Thus, the equation for the local depth becomes 

( ) ( )
1 1

1 14 4
14 4

2 1 1 4 4
4 4
c cd ( X ) c X c X c cXσ σσ σ   = + = + = +   

   
c

)

. 

with equation (4.7 ) taking the form 

                                                       (
1
41d ( X ) cXσ σ= + .                           

Moreover, the inverse scattering transform can be applied to equation (4.2) if the water 

bottom takes the following form 

                                                       ( )
1
41d ( X ) cXσ σ= + .                                          (4.8) 

Substituting the above equation into equation (4.4) gives,  

( ) ( ) ( )

1 1
23 232 2

32 32
3 3 1 3 91 1
2 2 4 2 32 1X y yyy y

cU cX UU cX U yU
cX
σσ σ

σ

− −   − + + + −    +   
0.=  (4.9) 
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The inverse scattering transform for the above equation (4.9) has been provided by Dai 

[4] and these equations take the following forms: 

( ) ( ) ( )

( ) ( )

1
2 23

32

1
232

32

9 3 1
32 1 2

3 3                                             1 0
4 2

X y z

v

kK K yK zK k X K
k X

KKcX v ,
y y

σ σ
σ

σ

−

−

 − + + + + +  

∂ ∂ 

yyy zzzK+

− + +   ∂ ∂   
=

                 (4.10) 

( ) ( )
1

92
32

3 3 1
8 2yy zz
kK K v k X y z Kσ σ

− − 
 − = + + −   

 
,


                                              (4.11) 

( ) ( ) ( )
1
2 23

329 3 1 0
32 1 2X y z yyy zzz

kF F yF zF k X F F
k X
σ σ
σ

− − + + + + × + +  
,=              (4.12) 

and 

( ) ( )
1

92
32

3 3 1
8 2yy zz
kF F k X y z Kσ σ

− − − = + − 
 

,

=

                                                          (4.13) 

where  and  are related through the Gel’fand Levitan equation     K ( y , z ,X ) F( y , z ,X )

0
y

F( y , z , X ) K ( y , x , X ) K ( y ,s , X ) F( s , z , X )ds .
+∞

+ + ∫                    (4.14) 

After solving the Gel’fand Levitan equation and finding the kernel, the solution for the 

variable KdV equation becomes  

                                             2 d( y ,X ) K ( y , y ,X ).
dy

= −v                                      (4.15) 

In the coming two sections, we will illustrate how to apply the inverse scattering 

transform for the variable-coefficient KdV equation (4.9) we obtained in this chapter. In 

fact, we will consider two cases. The first case of these deals with the solution for an 
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increasing local depth, while the second will be the solution for the decreasing local 

depth. 

 

4.3  Solution for the Increasing Local Depth 

At this stage, we solve the initial value problem by solving a series of linear 

equations. This series can be illustrated through the following diagram:  

 

(4.10)Equation                               0K ( y , z , )                                         0F( y , z , )  

 

 

(4.14)Equation  K ( y , z ,X )  F( y , z ,X )  

 

To find the solution for equation (4.11), we assume   

1 1 2h ( X ) y h ( X )ξ = − ,   

2 1 2h ( X ) z h ( X )ξ = − , 

and 

3 1 2F( y , z , X ) h ( X )G( , )ξ ξ= ,                                                                     (4.16) 

where and are arbitrary functions to be determined. By 

substituting the above equations into equation (4.11), we obtain, 

1h ( X ), 2h ( X ) 3h ( X )

( ) ( ) ( )
1 1 2 2

1
923 32

1 1 2
3 2 1

8 3
kh ( X ) G G k X G .ξ ξ ξ ξ

σ σ ξ ξ
− − = + − 

 
                            (4.17)  

The above equation can be compared to give, 
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( )
1 1

33 6
32

1

3 2 1
8 3

k k
h ( X ) k X .

k
σ

σ
−   = +   

  
                                                     (4.18) 

( )
1 1 2 2 1 2G G Gξ ξ ξ ξ ξ ξ− = − .                                                                                   (4.19) 

To solve equation (4.19), we use the method of separation of variables by substituting  

1 2 1 1 2 2G( , ) g ( ) g ( ).ξ ξ ξ= ξ                                                                               (4.20)                       

With this substitution, equation (4.19) gives  

( )1 1 1 1 1 0''g ( ) g ( ) ,ξ ξ λ ξ− − =                                                                            (4.21) 

( )2 2 2 2 2 0''g ( ) g ( ) ,ξ ξ λ ξ− − =                                                                          (4.22) 

where λ  is a separation constant and can be chosen 0λ = . Solving above equations we 

set the general solution [4] 

1 1 11 1 12 1g ( ) a Ai ( ) a Bi ( )ξ ξ= + ξ                                                                       (4.23) 

2 2 21 2 22 2g ( ) a Ai ( ) a Bi ( )ξ ξ ξ= +                                                                     (4.24) 

where , ,  and a  are arbitrary constants. Also, the 11a 12a 21a 22 Ai ( )∗ and Bi ( )∗  are the 

Airy functions of the first and second kinds respectively. In order to find the solution for 

equation (4.16), we will consider two cases.  

Case (i) If we let a a  and a a12 22 0= = 11 21 1= =  then, the solution takes the following form  

3 1 2 3 1 2F( y , z , X ) h ( X )G( , ) h ( X ) Ai ( ) Ai ( ).ξ ξ ξ= = ξ

2

                             (4.25) 

By substituting this solution into equation (8) we get  

1 1 2 2 1 2 2 1

3 1 2 3 1 2                              0

' '

' '

R ( X ) Ai ( ) Ai ( ) R ( X ) Ai ( ) Ai ( ) R ( X ) Ai ( ) Ai ( )
R ( X ) Ai ( ) Ai ( ) R ( X ) Ai ( ) Ai ( ) ,

ξ ξ ξ ξ ξ

ξ ξ ξ ξ

+ +

+ +

ξ

=
 (4.26) 

where  

( ) ( )
1
2 23 332

1 3 3 3 1
9 32 1

32 1 2
' kR ( X ) h ( X ) h ( X ) k X h ( X ) h ( X ),

k X
σ σ
σ

− = − + + +  
   (4.27) 
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( )
1
2 23 332

2 3 2 2 1
32 1
2

'R ( X ) h ( X ) h ( X ) k X h ( X ) h ( X ) ,σ
−

 
  = − + +   

 
                     (4.28) 

and 

( ) ( )
1
2 23 432

3 3 1 1 1
9 3 1

32 1 2
' kR ( X ) h ( X ) h ( X ) h ( X ) k X h ( X )

k X
σ σ
σ

−
   = − + +   +   

,(4.29) 

In driving the above equation, use has been made of  

           1 2''' 'Ai ( ) Ai ( ) Ai ( ), , .ϑ ϑ ϑξ ξ ξ ϑ= + =  

In fact, it can be shown that [4]  

1 0R ( X ) =  , 2 0R ( X ) =  and 3 0R ( X ) =  

( )
3

8
2 2 2 41h ( X ) a k X a h ( X ),σ

−
= + =      ( )

15
32

3 1 1 51h ( X ) a k X a h ( X )σ
−

= + =  

1 5 1 2 4 1 2 4F( y , z , X ) a h ( X ) Ai ( h ( X ) y a h ( X )) Ai ( h ( X ) z a h ( X )).= − −  (4.30) 

To obtain the kernel for the variable KdV equation we substitute equation (4.30) into the 

Gel’fand Levitan equation (4.14) 

      1 5 1 2 4 1 2 4

2
1 5 1 2 41

y

a h ( X ) Ai ( h ( X ) y a h ( X )) Ai ( h ( X ) z a h ( X ))K ( y , z , X )
a h ( X ) Ai ( h ( X )s a h ( X ))ds

∞

− − −
=

+ −∫
.   (4.31) 

In this situation, we have to examine the convergence of the above integral. In fact, the 

Airy function has the following asymptotic properties [4] 

3
221 3

34 21 1       ( arg )   as 
2

Ai ( ) e O( )
ξ

ξ πξ ξ ξ π ξ
−− − 

= + < 
 

→ ∞ . 

1 1 3 3
2 4 2 22 2      ( arg )   as 

3 4 3
Ai ( ) sin( ) O( )πξ π ξ ξ ξ ξ π ξ

−
− − 

− = − + + < → 
 

∞ .  
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With these asymptotic properties, it can be shown [4] that the above integral is zero at 

. Therefore, the solution becomes, −∞

 
( )

( ) }

2 21 5
1 2 42

1

2
1 2 4 1 2 4

2 1

                       

'a h ( X )dv ( y , X ) ln Ai ( h ( X ) y a h ( X ))
dy h ( X )

h ( X ) y a h ( X ) Ai ( h ( X ) y a h ( X )) .

 = − + − 

− − − 

          (4.32) 

Also, the bounded solution for the free surface displacement is given by [4] 

( )

}

1 32 224 2
12

2

4 1
3

                   

'dd ( X )u d ( X ) ln c d ( X ) Ai ( ( ,X ))
d

( ,X ) Ai ( ( ,X ))

σ σ σ η ξ
ξ

η ξ η ξ

− − = − + 

− 

       (4.33) 

where 

1
3 33
2 2

2
9
16
k( ,X ) d ( X ) a d ( X ),ση ξ σ ξ σ

−
− = − 

 
 

1 1
3 6

1 1
3 2

8 3
kc a σ

− −

   =    
   

.

i

 

To generate another solution, we let 

5 1 4 1 4
1

N

i i
i

F( y , z , X ) a h ( X )Ai ( h ( X ) y a h ( X )) Ai ( h ( X ) z a h ( X )).
=

= −∑ −  

2

22 dv ( y ,X ) ln
dy

= − ∆ ,                                                                                   (4.34) 

where 

1 5 1 2 4 1 2 4ij i i i
y

det a h ( X ) Ai ( h ( X )s a h ( X )) Ai ( h ( X )s a h ( X ))ds .δ
∞

∆ = + − −∫  
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4.4 Solution for the Decreasing Local Dept 

Here, we will to find the solution for the variable KdV equation for decreasing 

local depth. In fact, we will to move parallel to the case of increasing local depth.   

Case (ii) By taking the following choice 12 21 0a a= =  and a a11 22 1= =  we obtain the 

following solution     

         3 1 2 3 1 2F( y , z , X ) h ( X )G( , ) h ( X ) Ai ( ) Bi ( ).ξ ξ ξ= = ξ                                 (4.35)  

Substituting the above solution into equation (4.9) we notice that and h (  are 

given by,  

3h ( X ) 2 X )

( )
15

32
3 1 1 51h ( X ) a k X a h ( X ).σ

−
= + =                                                            (4.36) 

( )
3

8
2 2 2 41h ( X ) a k X a h ( X ).σ

−
= + =                                                             (4.37) 

Using equations (4.36), (4.37) give the following solution, 

1 5 1 2 4 1 2 4F( y , z , X ) a h ( X ) Ai ( h ( X ) y a h ( X )) Bi ( h ( X ) z a h ( X )),= − −  

Substituting into the Gel’fand Levitan equation (4.14) gives the kernel as, 

1 5 1 2 4 1 2 4

1 5 1 2 4 1 2 41
y

a h ( X ) Ai ( h ( X ) y a h ( X )) Bi ( h ( X ) z a h ( X ))K ( y , z , X )
a h ( X ) Ai ( h ( X )s a h ( X )) Bi ( h ( X )s a h ( X ))ds

∞

− − −
=

+ − −∫
. (4.38) 

As before we examine the convergence of the above integral. In fact, the Airy function 

has the asymptotic properties [4], 

3
221 1 3

32 4 2 11       ( arg )   as 
13

Bi ( ) e O( )
ξ

ξ π ξ ξ ξ π ξ
− −− − 

= + < 
 

→ ∞ , 

1 1 3 3
2 4 2 22 2      ( arg )   as 

3 4 3
Bi ( ) cos( ) O( )πξ π ξ ξ ξ ξ π ξ

−
− − 

− = + + < → 
 

∞ .  
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These asymptotic equations show that the above integral is divergent if  and 

convergent if . Since, the Gel’fand Levitan equation (4.38) is valid only for a 

decreasing local depth and one solution is given by, 

1 0h ( X ) >

1 0h ( X ) <

2

1 5 1 2 4 1 2 422 1
y

dv ( y ,X ) ln a h ( X ) Ai ( h ( X )s a h ( X )) Bi ( h ( X )s a h ( X ))ds
dy

∞ 
= − + − − 

  
∫

    

  
1 2 42

1 5
2

1

2 1
h ( X ) y a h ( X )a h ( X )dv ( y , X ) ln Ai ( ) Bi ( )d

dy h ( X )
.ω ω ω

−

−∞

 
= − − 

  
∫              (4.39) 

In order to evaluate the integral inside the solution, we use integration by parts and the 

following identities:    

  ''Ai ( ) Ai ( )ω ω ω=  and  ''Bi ( ) Bi ( )ω ω ω= , 

' 'Ai ( ) Bi ( )d Ai ( ) Bi ( ) Ai ( ) Bi ( )ω ω ω ω ω ω ω ω= −∫ . 

Keeping in mind the asymptotic properties of Airy functions,  

1 1 3 3
2 4 2 22 2      ( arg )   as 

3 4 3
'Ai ( ) cos( ) O( )πξ π ξ ξ ξ ξ π ξ

−
− 

− = − + + < → ∞ 
 

. 

1 1 3 3
2 4 2 22 2      ( arg )   as 

3 4 3
'Bi ( ) sin( ) O( )πξ π ξ ξ ξ ξ π ξ

−
− 

− = − + + < → ∞ 
 

. 

It can be shown [4] that the above integral is zero at −∞  and therefore, the solution takes 

the following form 

( ) }

2
1 5

1 2 4 1 2 42
1

1 2 4 1 2 4 1 2 4

2 1

               

' 'a h ( X )dv ( y ,X ) ln Ai ( h ( X ) y a h ( X )) Bi ( h ( X ) y a h ( X ))
dy h ( X )

h ( X ) y a h ( X ) Ai ( h ( X ) y a h ( X )) Bi ( h ( X ) y a h ( X )) .


= + − − 



− − − − 

 

By using the original variables, the bounded solution for the free surface displacement is  
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]}

1 32
24 2

2 1 12

1 1 1

4 1
3

                                                           

' 'dd ( X )u d ( X ) ln c d ( X ) Ai ( ( ,X )) Bi ( ( ,X ))
d

( ,X ) Ai ( ( ,X )) Bi ( ( ,X )) ,

σ σ σ η ξ η
ξ

η ξ η ξ η ξ

− −
= − + 


−

ξ
(4.40) 

where 

1
3 33
2 2

1 2
9
16
k( ,X ) d ( X ) a d ( X )ση ξ σ ξ σ

− = − − 
 

,  

and 

1 1
3 6

2 1
3 2

8 3
kc a σ

− −

   = −   
   

.

i

 

To generate another, solution, we let 

5 1 2 4 1 2 4
1

N

i i
i

F( y , z , X ) a h ( X )Ai ( h ( X ) y a h ( X )) Bi ( h ( X ) z a h ( X )).
=

= −∑ −  

where  and a  are arbitrary constants. In fact, it can be shown [4] that another 

bounded solution for the variable coefficient KdV equation can obtained by substituting 

the above equation into the Gel’fand Levitan equation   

1ia 2i

2

2

dv ( y ,X ) ln
dy

= ∆ ,                                                                                       (4.41) 

where 

1 5 1 2 4 1 2 4ij i i i
y

det a h ( X ) Ai ( h ( X )s a h ( X )) Bi ( h ( X )s a h ( X ))dsδ
∞

∆ = + − −∫ . 

Finally, there is another choice for the constants 11 22 0a a= = , to get a bounded solution 

for the variable KdV equation. In fact, the above mentioned choice leads to the same 

solution. However, other choices for the constants lead to a divergent integral and as a 

result of that we do not get a bounded solution. 
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4.5  Transforming Variable-Coefficient KdV into Standard KdV 

Equation 

We find that variable-coefficient KdV equation is directly intergable by the 

method of inverse scattering transform if the compactable condition is satisfied. In fact, 

we find that the local depth has the following function  

                                        ( )
1
41d ( X ) cXσ σ= + .                                           (4.42)  

According to Dai [4], we can transform the variable coefficient KdV equation into 

standard KdV equation by introducing the following transformations:  

 

93 9
164 43 2 3( ) ( ) (1 )

2 3 8
U d X d X k X k 2

3
σ σ θ σ σξ θ

−
− = − = + −

 

 ,                       (4.43) 

925
1641 4( ) (1 )

6 27
d s ds k X

k
ψ σ

σ
σ

−−

= = +∫ ,                                                       (4.44) 

99
164 ( ) (1 )d X k Xφ ξ σ ξ σ
−−

= = + .                                                                      (4.45) 

Substituting these equations (4.43) - (4.45) into the variable- coefficient KdV equation 

(4.3), we obtain the standard KdV equation 

6ψ φ φφφ 0θ θθ θ− + = ,                                                                                         (4.46) 

which has the solitary solution given by  

0
1 1 sech ( )
2 2

c c cθ φ ψ φ= − − −
 


 .                                                                 (4.47) 

Now using the original variables in equations (4.43) - (4.45), we can write the solution as:   
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9 9
16 16

9
2 16 16

0

3 1(1 ) (1 ) c
8 3

1 4                   sech (1 ) (1 ) ) .
2 27

U k X k k X

cc k X k X
k

σ σξ σ

ξ σ σ φ
σ

− −

−

= + + +

 9− 
+ + + −     

         (4.48) 

As a remark, it is important to indicate that whereas the solution does not represent one 

soliton solution, it becomes unbounded as ξ → ∞ . 
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CHAPTER 5 
 
 
 

INTERACTION OF TWO SOLITONS 
 
 
 
5.1  Introduction 
   
                   In this chapter, we will study and discuss the relation and interaction between 

the solitons which are obtained as the solution for the KdV equation in the previous 

chapters. In fact, the main idea is to decompose the N-solitons solution into a linear sum 

even though the KdV equation is nonlinear and the superposition principle fails to hold. 

In practice it can be done by looking through some decomposition from literature 

[24,26,27]. Once the decomposition is introduced, we shall find out that the solitons 

exchange identities [24] and emit dual ghost particles [27,29] during the interaction. We 

shall conclude this chapter by an example in support of work.   

 

5.2  Decay Eigenvalues 

As we know from chapter two that for certain choice of the initial condition, the 

KdV equation has a discrete energy spectrum. With the above mentioned statement, 

consider the non-linear partial differential equation KdV  

6 0 ,        0  t x xxxu uu u x t− + = − ∞ < < ∞ >                                                     (5.1) 

subject to the initial condition 

0( , 0) ( )u x t u x= =                                                                                              (5.2) 
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and assume that the solution is reflection-less .Therefore, if the solution is reflection-less 

then the initial data has only a discrete energy spectrum { }1 2 ... 0nλ λ λ< < < < which can 

be obtained by solving the time-independent Schrödinger equation   

[ ]
2

02 ( ) 0.d u x
dx

ψ λ ψ+ − =                                                                                     (5.3) 

As a result of that, we obtain the eigenfunctions { }1 2, ,..., nψ ψ ψ  corresponding to the 

discrete eigenvalues. The eigenfunctions can be normalized and the normalizing 

constants can be calculated through the definition  

n( , ) 1,                 c lim ( , ).nk x
n x nx t dx e x tψ

∞

→∞
−∞

= =∫ ψ                                              (5.4) 

Thus, the initial data is used to produce N-soliton solution [7,12,31,34] for the KdV 

equation through the determinant formula, which was obtained before by the inverse 

scattering method 

( )((
2

2( , ) 2 log detu x t I A
x
∂

= − +
∂

)) ,                                                                  (5.5) 

where, is a square matrix of dimension and with entries defined as:  A N

( ) ( )2 24m n m nk k x k k tm n
mn

m n

c ca e
k k

+ − +
=

+
,                                                                         (5.6) 

and the parameter  is defined through the relation  0nk > 2
n kλ n= − . Since ( )mn=A a  is 

symmetric and positive definite, these properties allow us to diagonalize the matrix 

( mn )A a=  so that: 

  
1

21

( , ) 0 . . 0
0 ( , ) :
: 0
0 (n

x t
x t

P A P D

, )x t

µ
µ

µ

−

 

= =
 
  
 


 ,                                          (5.7) 
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where  

1. { }1 2( , ), ( , ),..., ( , )nx t x t x tµ µ µ is the ordered set of real positive eigenvalues of .A  

and 

2. B  is the orthogonal matrix which consists of the orthonormal basis of the 

eigenvlues of  .A

By using the above representation, we can write the solution for the KdV equation in 

term of the eigenvalues, 

                ( ) ( )( )1det detI A P I A P −+ = +  

                                     ( )1det I PAP −= + ( )det I D= + (
1

1 ( , )
N

n
n

).x tµ
=

= +∏                 (5.8) 

Since the above derivation allows us to decompose the solution into sum of separated 

solitons, the solution for the KdV equation becomes,  

( )( )( )
2

2( , ) 2 log detu x t I A
x
∂

= − +
∂

 

             ( )
2

2
1

2 log 1 ( , )
N

n
n

x t
x

µ
=

 ∂  
= − +  ∂   

∏ [ ]
2

2
1

2 log 1 ( ,
N

n
n

)x t
x

µ
=

∂  
= − + ∂  

∑  

                     [ ]
2

2
1 1

2 log 1 ( , ) ( ,
N N

n n
n n

)x t u x
x

µ
= =

∂
= − + =

∂∑ ∑ t , 

therefor 

1
( , ) ( , ).

N

n
n

u x t u x t
=

= ∑                                                                                           (5.9)   
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5.3  Decay of Two Solitons 

The easiest way to see the interaction of N-solitons for KdV equation is to look for 

the interaction of two solitons. In this section, we define and discuss the decay functions 

for two solitons in terms of u  and u  that can be then generalized for N solitons. 1 2

Definition 5.2.1 

Let  { }1 2( , ), ( , ),..., ( , )nx t x t x tµ µ µ  be the set of real positive eigenvalues of A , then we 

define           u x     as decay decomposition, where 
1

( , ) ( , )
N

n
n

t u x t
=

= ∑

                     [
2

2( , ) 2 log 1 ( , )n t x t
x

µ∂
= − +

∂
]n

n

u x    as decay function. 

Definition 5.2.2 

We define the n-th soliton particle of  u x  as  ( , )t

2( ) 2sec ( )             n=1,2,3,...,N.n n n ns v h k v= −  

where   v x  is the nth moving frame. 4n k= −

Since we are going to talk about the decay function of two solitons, the matrix A  

associated with two solitons becomes, 

1 1 1 1 2 2

1 1 2 2 2 2

2
21 1 2

1 1 2
2

21 2 2

1 2 2

2
,

2

k v k v k v

k v k v k v

c c ce e
k k k

A
c c ce e

k k k

+

+

 
 +=
 
  + 

                                                             (5.10) 

The two eigenvalues associated with A  are  

[ ]( )2
1

1( , ) ( ) ( ) 4det( ) ,
2

x t Tr A Tr A Aµ = + −                                                        (5.11) 

[ ]( )2
2

1( , ) ( ) ( ) 4det( ) .
2

x t Tr A Tr A Aµ = − −                                                        (5.12) 
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Definition 5.2.3 

The ghost matrix of gA is defined by 

  
1 1

1 2 2

2
2 (1 1 2

1 1 2
2

( ) 21 2 2

1 2 2

2

2

g g

g g

k v k k v

g
k k v k v

c c ce e
k k k

A
c c ce e

k k k

+

+

 
 + =
 
  + 

2 )

, 

where   

  2 2
1 1 2 24  and g g gk t k k k k k= − = + + 2 .v x  

Definition 5.2.4 

Let 1γ  and 2γ  to be the eigenvalues of gA corresponding to u and u  respectively. Then, 

the ghost and anti-ghost particles are defined respectively as, 

1 2

2

12( ) 2 log ( )g g
g

g v v
v

γ∂  = −  ∂
 

2

22( ) 2 log ( )g g
g

g v v
v

γ∂  = −  ∂
. 

Remarks 

 gv  represents the moving frames for ghost particles  and g g . 

 The velocity 24 gk  for the ghost particles exceeds the velocity of the solitons 

particles. 

In fact, the relationship we presented above between the two matrices A  and gA  and 

their corresponding eigenvalues is well defined and the following lemma assure that 

relationship. 
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Lemma 6.2.1 

Let  
2 2 2

1 2 1 2k k k= +k k   then 

2
8)  .k t

gi A e A=  

2
8)  k t

n nii eµ γ=  for 1,2n = . 

Proof: 

To prove the first part, it suffices to show that every coefficient of the matrix A  has 
2

8k te  

as a common factor when rewritten in term of gv  

2

2 2 2 2

2 2 2 2
1 1 2 2

( 4 )

( 4 4 ) 4 ( )

4 ( ) 4

       

       .

n n n n

n g g n n g n g n

n nn g n g

k v k x k t

k v k t k t k v K k k t

K k k k k k tk v k v k t

e e

e e e

e e e e

−

+ − −

+ + −

=

= =

= =

 

To prove the second part, we use the result we obtained in the first part. 

2
8)  k t

n nii eµ γ=  for  1, 2.n =  

 

5.4  Asymptotic Relations for the Decay of Two Solitons 

In this section, we present the main theorem that describes the asymptotic 

behaviors for two solitons. We try to support the theorem by presenting some graphs that 

clarify the idea behind the theorem.  

Theorem 6.3.1 

The following asymptotic relations hold for u  and u :  1 2

i) 
u s

1 1 1 1

1 2 2 2

~ ( )                       
~ ( ) ( )         g

u s v as t
v g v as t

δ
δ

+ →
+ + → +

−∞
∞

 

in the sense that  
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1 2
1 1 1 1 1 2 2 2 1lim ( ),          lim ( ),   and  lim ( ),

g
gv fixed v fixed v fixed

t t t

u s v u s v u g vδ δ
→−∞ →∞ →∞

= + = + =  

with the relative phase shifts 1δ  and 2δ  defined as,  

1 1 2 2

2 2
2 21 2

1 2

,                 .
2 2

k kc ce e
k k

δ δ= =  

ii) 
2 2 2 2

2 1 1 1

~ ( )                        .

~ ( ) ( )            .g

u s v as t

u s v g v as t

δ

δ

+ + ∆ → −∞

+ + ∆ + → +∞
 

in the sense that  

2 1
2 2 2 2 2 1 1 1 2lim ( ),      lim ( ),  and  lim ( ),

g
gv fixed v fixed v fixed

t t t

u s v u s v u g vδ δ
→−∞ →∞ →∞

= + + ∆ = + + ∆ =  

with  defined as, ∆

2

2
2 1 2

2
1 2

( ) .
( )

k k ke
k k

∆ −
=

+
 

Proof 

In order to prove the theorem, we are going to look for the particles through three 

different frames (i.e. v ,v  and 1 2 gv ). 

The first frame 1.v  

Here we move with the velocity of v to see what is going on with the particles. Since we 

have  

1

1 1 2 2

2 2
2 21 2

1 2

( ) ,
2 2

k v k vc cTr A e e
k k

= +  

[ ]
1 1 2 2

2 2 2 2
2 21 2 1 2

2
1 2 1 2

det( )
4

k v k vc c c cA e
k k k k

+
 
 = −
 + 
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[ ]

( )1 1 2 21 1 2 2

22 2
22 22 2 1 2 1 2

1 2 2
1 2 1 2 1 21 2

1 1 .
4 4

k v k vk v k v c c k kc c e e
k k k k k kk k

++
   −
 = − =    ++   

 

then 

1 1

1 1
t - t -

2
21

 fixed  fixed
1

lim ( ) ,                lim det( ) 0.
2

k v

v v

cTr A e A
k

→ ∞ → ∞

= =                                                (5.13) 

( ) [ ]( ) 1 1

1 1
t - t -

2
2 21

1 fixed  fixed
1

1lim 1 lim 1 ( ) ( ) 4det( ) 1 .
2 2

k v

v v

cTr A Tr A A e
k

µ
→ ∞ → ∞

 + = + + − = +  
            (5.14) 

The decay function is  

[ ]
1 1
t - t -

2

1 12 fixed  fixed
lim ( , ) lim 2 log 1 ( , )

v v
u x t x t

x
µ

→ ∞ → ∞

 ∂
= − + 

∂ 
 

                      1 1

2 2
21

2
1

2 log 1
2

k vc e
x k

 ∂
= − + ∂  

                                                    

                     
1 1

1 1

22
1 1

1 1 122
21

1

8 (

1
2

k v

k v

k c e s v
c e
k

).δ−
= =

 
+ 

 

+                                                     (5.15) 

where            

 1 1 1 1 1 1 1

2 2
2 21 1

1 1

  i.e. .
2 2

k k vc c
k k

δ δ += = 2 ( )k vee e  

The second frame 2v . 

Here we move the velocity of v instead of v to see what is going on with the particles. 

Since we have 

2 1

2 2

2 2
t t

2
22

 fixed  fixed
2

lim ( ) ,                     lim det( ) 0,
2

k v

v v

cTr A e A
k

→∞ →∞

= =  

then 
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( ) [ ]( ) 2 2

2 2
t t

2
2 22

1 fixed  fixed
2

1lim 1 lim 1 ( ) ( ) 4det( ) 1 .
2 2

k v

v v

cTr A Tr A A e
k

µ
→∞ →∞

 + = + + − = +  
           (5.16) 

The decay function is  

[ ]
2 2

t t

2

1 12 fixed  fixed
lim ( , ) lim 2 log 1 ( , )

v v
u x t x t

x
µ

→∞ →∞

 ∂
= − + 

∂ 
     

                   2 2

2 2
22

2
2

2 log 1
2

k vc e
x k

 ∂
= − + ∂  

 

                  2 2

2 2

22
2 2

2 2 222
22

2

8 (

1
2

k v

k v

k c e s v
c e
k

),δ−
= =

 
+ 

 

+                                                        (5.17) 

where             

   2 2 2 2 2 2 2

2 2
2 22 2

2 2

  i.e. .
2 2

k k vc c
k k

δ δ += = 2 ( )k vee e  

The third frame gv . 

Here we move with the velocity of gv to see what is going on with the particles. 

[ ]
2

t - t -

2 2
8

1 12 2 fixed  fixed
lim ( , ) lim 2 log 1 ( , ) 2 log 1 0.
g g

k t

v v
u x t x t e

x x
µ γ

→ ∞ → ∞

 ∂ ∂  = − + = − + =    ∂ ∂ 
1  

[ ]
t t

2

1 12 fixed  fixed
lim ( , ) lim 2 log 1 ( , )
g gv v

u x t x t
x

µ
→∞ →∞

 ∂
= − + ∂ 

2

t

2
8

12 fixed
lim 2 log 1
g

k t

v
e

x
γ

→∞

 ∂  = − +   ∂ 
 

                      ( ) ( )2 2

t

2
4 4

12 fixed
lim 2 log log
g

k t k t

v
e e

x
γ

→∞

− ∂  = − + +   ∂ 
 

                      ( )
t

2

12 fixed
lim 2 log
gv x

γ
→∞

 ∂
= − ∂ 

 

                      .g=  
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(ii) To prove the second part, we are going to consider again the three different frames 

(i.e. v , v  and 1 2 gv ). 

The first frame 2.v  

Here we to move with the velocity of the v  to see what is going on with the particles. 

Since we have         2 2  

2

2
1 t−2

1 1 2 2 28(k v k v k k= − ) ,

then, we can rewrite   Tr  and   as:   ( )A det( )A

1 1 2 2

2 2
2 21 2

1 2

( )
2 2

k v k vc cTr A e e
k k

= +         

         2 2 2 2
1 2 1 1 2 2 2 1 2 1

2 2
8 ( ) 2 2 8 ( )1 2

1 2

.
2 2

k k k t k v k v k k k tc ce e e
k k

− 
= +

 
− − 

                                             (5.18) 

[ ]
1 1 2 2

2 2 2 2
2 21 2 1 2

2
1 2 1 2

det( )
4

k v k vc c c cA e
k k k k

+
 
 = −
 + 

              

          ( )2 2
1 2 21 2 1

22 2
28 ( ) 1 2 1 2

1 2 1 2

.
4

k k vk k k t c c k ke
k k k k

+−  −
=  + 

e                                                      (5.19) 

[ ]
2 2

2 2
t - t -

22
22 1 2

2 fixed  fixed
2 1 2

det( ) det( )lim       &        lim 0.
( ) 2 ( )

k v

v v

A c k k Ae
Tr A k k k Tr A→ ∞ → ∞

 −
= = + 

                        (5.20) 

Whence, the second eigenvalue of A behaves as  

( ) [ ]( )
2 2
t - t -

2
1 fixed  fixed

1lim 1 lim 1 ( ) ( ) 4det( )
2v v

Tr A Tr A Aµ
→ ∞ → ∞

 + = + − −  
 

                  

[ ]
2
t -
 fixed

2

4det( )
1 ( )lim 1
2 4det( )1 1

( )

v

A
Tr A

A
Tr A

→ ∞

  
  
  = +  
  + −

    
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[ ]
2
t -
 fixed

2

4det( )
( )lim 1
4det( )1 1

( )

v

A
Tr A

A
Tr A

→ ∞

 
 
 = + 
 + −
  

2 2

22
22 1 2

2 1 2

.
2

k vc k k e
k k k

 −
=  + 

                  (5.21)                 

 and the decay function is  

[ ]
2 2
t - t -

2

2 22 fixed  fixed
lim ( , ) lim 2 log 1 ( , )

v v
u x t x t

x
µ

→ ∞ → ∞

 ∂
= − + 

∂ 
 

                   2 2

22 2
22 1 2

2
2 1 2

2 log 1
2

k vc k k e
x k k k

  ∂ −
 = − +  ∂ +   

 

                   .2 2 2( )s v δ= + + ∆  

where  

2

2
2 1 2

1 2

k k ke
k k

∆  −
=  + 

               &             2 2

2
2 2

2

.
2

k c
k

δ =e  

The second frame 1v . 

Here we move with the velocity of the v instead of v to see what is going on with the 

particles but this is exactly similar to the proof of the second part in the first frame which 

is given by,  

1 2

            
2

t

2 1 1 1 fixed
lim ( , ) ( )

v
u x t s v δ

→∞

= + + ∆ , 

where               2

2
2 1 2

1 2

k k k
k k

∆  −
=  + 

e               and                2 1

2
2 1

12
k c

k
δ =e . 

The third frame  gv . 

Here we are going to move with the velocity of the gv  to see what is going on the 

particle. 
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[ ]
t - t -

2

1 22 fixed  fixed
lim ( , ) lim 2 log 1 ( , )
g gv v

u x t x t
x

µ
→ ∞ → ∞

 ∂
= − + ∂ 

       

                    
22

8
222 log 1 k te

x
γ∂  = − + =  ∂

0.                                                           (5.22) 

In the other hand  as   t → ∞

[ ]
t t

2

2 22 fixed  fixed
lim ( , ) lim 2 log 1 ( , )
g gv v

u x t x t
x

µ
→∞ →∞

 ∂
= − + ∂ 

   

                   
2

t

2
8

22 fixed
lim 2 log 1
g

k t

v
e

x
γ

→∞

 ∂  = − +   ∂ 
       

                  ( ) ( )2 2

t

2
4 4

22 fixed
lim 2 log log
g

k t k t

v
e e

x
γ

→∞

− ∂  = − + +   ∂ 
      

                  ( )
t

2

22 fixed
lim 2 log
gv x

γ
→∞

 ∂
= − ∂ 

 

                  g= . 

This completes the proof of the above theorem. 

Example 5.1    The interaction of two solitons 

Let 1 21,   4λ λ= − = −  and 1 26,  2 3= =c c  be the scattering data for the two solitons 

which we obtained in chapter three. Therefore, the soliton matrix A  takes the following 

form 

1 1 1 1 2 2

1 1 2 2 2 2

2
21 1 2

1 1 2
2

21 2 2

1 2 2

2

2

k v k v k v

k v k v k v

c c ce e
k k k

A
c c ce e

k k k

+

+

 
 + =
 
  + 

 

where 

i. 
2
1

1

6 3
2 2
c
k

= = ,                1 2

1 2

6 2 2 2
3

c c
k k

= =
+

,             
2
2

2

12 3
2 4
c
k

= = . 
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ii.  ( )1 12 2 4 2k v x t x t= − = − 8 .

iii. ( ) ( )1 1 2 2 4 2 16 3 36k v k v x t x t x t+ = − + − = − .  

iv.  ( )2 22 4 16 4 6k v x t x t= − = − 4 .

2 8 3 36

3 36 4 64

3 2 2

2 2 3

x t x

x t x t

e e
A

e e

− −

− −

 
=   

 

t

−

 

2 8 4 64( ) 3 3 .x t x tTr A e e− −= +  

6 72 6 72 6 72( ) 9 8 .x t x t x tDet A e e e− −= − =  

The eigenvalues for the above matrix are: 

[ ]( )

( )

2
1

22 8 4 64 2 8 4 64 6 72

2 8 4 64 4 16 6 72 8 128

1( , ) ( ) ( ) 4det( )
2
1           3 3 3 3 4
2
1           3 3 9 14 9 .
2

x t x t x t x t x

x t x t x t x t x t

x t Tr A Tr A A

e e e e e

e e e e e

µ

− − − − −

− − − − −

= + −

  = + + + −   

= + + + +

t  

[ ]( )

( )

2
2

22 8 4 64 2 8 4 64 6 72

2 8 4 64 4 16 6 72 8 128

1( , ) ( ) ( ) 4det( )
2

1           3 3 3 3 4
2
1           3 3 9 14 9 .
2

x t x t x t x t x

x t x t x t x t x t

x t Tr A Tr A A

e e e e e

e e e e e

µ

− − − − −

− − − − −

= − −

  = + − + −   

= + − + +

t  

Using the above eigenvalues, the decay eigenfunctions become,  

 [ ]
2

2( , ) 2 log 1 ( , )              where  1, 2.n nt x t n
x

µ∂
= − + =

∂
u x  

To find the ghost matrix gA  

1 1

1 2 2

2
2 (1 1 2

1 1 2
2

( ) 21 2 2

1 2 2

2

2

g g

g g

k v k k v

g
k k v k v

c c ce e
k k k

A
c c ce e

k k k

+

+

 
 + =
 
  + 

2 )
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Since  2 2 2
1 1 2 2 1 2 4 6gk k k k k= + + = + + =

then 
2 3

3 4

3 2 2

2 2 3

g g

g g

v v

g v v

e e
A

e e

 
= 

 


44t

4

            where         .v x  24 1g gk t x= − = −

2( ) 3 3g gvTr A e e= + v   and   6 6 6( ) 9 8 .g g gv vDet A e e e= − = v  

Whence, the eigenvalues are given by  

[ ]( )

( )

2
1

22 4 2 4 6

2 4 4 6 8

1 ( ) ( ) 4det( )
2
1  3 3 3 3 4
2
1  3 3 9 18 9 .
2

g g g g

g g g g g

v v v v v

v v v v v

Tr A Tr A A

e e e e e

e e e e e

γ = + −

  = + + + −   

= + + − +

g  

and 

[ ]( )

( )

2
2

22 4 2 4 6

2 4 4 6 8

1 ( ) ( ) 4det( )
2

1  3 3 3 3 4
2
1  3 3 9 18 9 .
2

g g g g

g g g g g

v v v v v

v v v v v

Tr A Tr A A

e e e e e

e e e e e

γ = − −

  = + − + −   

= + − − +

g  

Using the above eigenvalues, the ghost particle is given by  

( )

2

12

2
2 4 4 6 8

2

( ) 2 log ( )

1         2 log 3 3 9 18 9 .
2

g g g g g

g g
g

v v v v v

g

g v v
v

e e e e e
v

γ∂  = −  ∂

∂  = − + + − + ∂  

 

and the anti-ghost particle is given by  

( )

2

22

2
2 4 4 6 8

2

( ) 2 log ( )

1         2 log 3 3 9 18 9
2

g g g g g

g g
g

v v v v v

g

g v v
v

e e e e e
v

γ∂  = −  ∂

∂  = − + − − + ∂  

 

and v x  is the ghost moving frame.  24 1g gk t x= − = − 44t
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Conclusions 

1. Figure 5-1 shows the interaction of two solitons through a series of time and 

match the results we get them in chapter two. 

2. Figure 5-2 shows the movement of the bigger soliton through a series of time and 

splitting occurs in the fourth frame. 

3. Figure 5-3 shows the movement of the smaller soliton through a series of time and 

splitting occurs in the fourth frame. 

4.   ( ) ( ) 0g gg v g v+ = .  

5. Both ( ),  ( ) 0g gg v g v =  do not appear in solution due to their cancellation.  
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Figure 5-1 The Interaction of Two Soliton Solution for the KdV Equation. 

 

 

 

Figure 5-2 Two Soliton Solution Particle Collision for the KdV. 
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Figure 5-3 The Smaller Soliton for the KdV Equation. 

 

 

Figure 5-4 The Bigger Soliton for the KdV Equation. 
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5.5 Decomposition of solution for two solitons 

In this section, we try to decompose the decay function for two solitons into 

soliton and ghost particles. Also, we will show that the sum of the ghost particles result in 

their fissions. This can be done as follow: 

 

5.5.1 Decomposing the solution into soliton particles and ghost particles 

From the equation (5.9), we have 

2

1 1
1

n
i

u( x ,t ) u ( x ,t ) u ( x ,t ) u ( x ,t )
=

= = +∑  

             { } { }1 22 22 1 2 1Ln( ) Ln( )
x x

µ µ∂ ∂
+ − +

∂ ∂
= −  

 
( ) ( )

( )
( ) ( )

( )

2 2

1 1 1 2 2 2
2 2

1 2

1 1
2 2

1 1

" ' " 'µ µ µ µ µ µ

µ µ

  + − + −  = − −  
+ +    





 

( )
( )

( ) ( )
( )

( )

2 2

1 1 1 2 2 21 2
2 2 2

1 1 2 2

2 2
1 1 1 1

" ' " '" "µ µ µ µ µ µµ µ
µ µ µ µ

  − −  = − + − +  
+ + + +    

2





 

( )
( ) ( )

( ) ( )
( ) ( )

( )

2 2

2 2

2 22 28 8
1 1 1 2 2 2

1 2
2 2 2

8 81 21 2

2 2
1 11 1

k t " ' k t " '
" "

k t k t

e e

e e

γ γ γ γ γ γµ µ
µ µγ γ

  

2

  − −  


     = − + − +  
+ +  + +

  






 

( )
( )

( ) ( )
( )

( )2 2

2 2

1 1 1 2 2 21 2
2 2 2

8 81 21 2

2 2
1 11

" ' " '" "

k t k t
.

e e

γ γ γ γ γ γµ µ
µ µγ γ− −

  
− −  

= − + − +  
+ +  + +

  

2







                   (5.23) 

Conclusion: 

From (5.23), we notice that the decay function consists of two solitons particles and two 

ghost particles which agree with graphs obtained in section 5.4. 
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5.5.2 Asymptotic behavior with respect to ghost moving frame gV  

Case (i) Assume that gV  is fixed and t  and using (5.23), → −∞

( )
( )

( ) ( )
( )

( )2 2

2 2

1 1 1 2 2 21 2
2 2 2

8 81 21 2

           2 2
1 11

g

g

v fixed
t

" ' " '" "

v fixed k t k t
t

lim u( x ,t )

lim
e e

γ γ γ γ γ γµ µ
µ µγ γ

→−∞

− −
→−∞

   
− −   

= − + − +    
+ +    + +

   

2









 

0.=                                                                                                        (5.24) 

Case (ii) Assume that gV  is fixed and t . In the light of this (5.23) gives, → +∞

( )
( )

( ) ( )
( )

( )2 2

2 2

1 1 1 2 2 21 2
2 2 2

8 81 21 2

           2 2
1 11

g

g

v fixed
t

" ' " '" "

v fixed k t k t
t

lim u( x ,t )

lim
e e

γ γ γ γ γ γµ µ
µ µγ γ

→∞

− −
→∞

   
− −   

= − + − +    
+ +    + +

   

2









 

( )
( )

( )
( )

2 2

1 1 1 2 2 2
2 2

1 2

2 2
" ' " 'γ γ γ γ γ γ

γ γ

  − −  = − −  
    





 

1 22 22 2ln( ) ln( )
x x

γ γ∂ ∂  = − −  ∂ ∂  




 

1g( ) g ( ).2γ γ= +                                                                                  (5.25) 

 

Conclusions: 

1.  (5.24) indicates that there is no generation of ghost particles before soliton 

interaction.  

2. (5.25 ) indicates that the creation of the ghost particles happen as time goes t .  → +∞

3. The sum of the ghost particles results in their fissions. 
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5.5.3 The sum of the ghost particles and their fissions 

From (5.25), the sum of ghost particles is given by:  

1 2g( ) g ( )γ γ+ 1 22 22 2ln( ) ln( )
x x

γ γ∂ ∂  = − − 
  ∂ ∂  




 

{ }1 222 ln( ) ln( )
x

γ γ∂
= − +

∂
  

1 222 ln( )
x

γ γ∂
= −

∂
 

22 gln(det( A ))
x
∂

= −
∂

 

( )
( )1 2

2 2 2 2
21 2 1 2

2
1 2 1 2

2
2 2 2

gk k vc c c cln( e )
x k k k k

+  ∂
= − −   ∂ +   

 

0.=                                                                                            (5.26) 

Conclusion: 

(5.26) indicates that the sum of the ghost particles results in their fissions and as a result 

of that they disappear from the solution of the KdV equation (see figure 5-5). 

  

 

Figure 5-5 Ghost Particles and their Fissions. 
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APPENDIX (I) 
 
 

A SOLUTION FOR THE KDV EQUATION OF THE FORM   ( )z x ct−  
 
Consider the KdV equation  

( , ) 6 ( , ) ( , ) ( , ) 0.t x xxxu x t u x t u x t u x t− + =

)

                                                            (1) 

In order to find a solitary wave solution for the KdV equation, we may try to look for a 

solution of the form u x t( , ) ( ) (z x ct z ξ= − = . In the light of this, the standard KdV-

equation becomes,  

3

36dz dz d zc z
d d dξ ξ ξ

− + + = 0.                                                                                     (2)                     

From (2) we notice that it is in the form of total derivative. Therefore, we can integrate it 

directly to obtain  

2
2

23 d zcz z A
d ξ

− + + =                                                                                             (3) 

where  is a constant of integration. In order to obtain a first order differential of , we 

multiply the above equation by 

A z

dz
dξ

 to make it in the form of a total derivative 

2
2 13

2
dz dz dz dz dzcz z A
d d d d

.
dξ ξ ξ ξ

 
− + + = 

  ξ
                                                             (4) 

Integrating (4) we get 

 
2

2 3 1
2 2
c dzz z Az B

dξ
 −

+ + = + 
 

                                                                                         (5) 

where B  is a constant of integration. Since, we require z and all its derivatives to vanish 

as z , therefore, we must have → ±∞ 0 & 0.A B= =  
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Thus the above equation becomes, 

2
2 3 1 0

2 2
c dzz z

dξ
 −

+ + = 
 

,                                                                                    (6) 

which can be written as  

2
.

2
dzd

z c z
ξ =

−
                                                                                                  (7) 

Integrating using trigonometric substitution we get, 

21  sech ( ).
2

s c θ=  

In the light of above (7) becomes  

1

0 0

1

0

1

0

2 3

2

 sinh( )      1  sech ( ) tanh( ) cosh ( )
2
2      

dsdy
s c s

c d

c c

d
c

θξ

ξ θ

θ

θ

θ

θ

θ θ

θ θ θ

θ

=
−

−
=

−
=

∫ ∫

∫

∫

 

0 1
2 (
c 0 ).ξ ξ θ−

− = −θ                                                                                              (8) 

By substituting the original variables into equation (8), we obtain 

( )2
0 0

1 1( )  sech .
2 2

z c cξ ξ ξ θ= − 
−                                                                    (9) 

Since the constants can be chosen in a variety of ways therefore, by requiring the solution 

to attain its maximum at the origin, we obtain the simple firm 

( )21 1( )  sech .
2 2

z c cξ ξ=  

                                                                               (10) 

By substituting the original variables equation (10) can be written as  
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 (21 1( , )  sech
2 2

t c c x ct=  
)− u x                                                                     (11) 

which is given in Figure A. 

 

 

 

Figure A. The Profile of the Above Solution. 

 

 

Remarks 

1. Since the quantity c appears in the argument of the solution as a square root, 

therefore, this quantity must be chosen to be positive to meet the conditions (i.e. 

the function and its first two derivatives vanishes as ξ → ±∞  i.e. the solitary 

wave moves only in the direction of the positive x-axis) 

2. The amplitude is proportional to the velocity of the solitary wave. In other words, 

larger amplitude moves faster than the smaller amplitude solitary wave.  
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APPENDIX (II) 
 

NON-SOLITARY OSCILLATION IN KDV EQUATION 

As we have seen in chapter three through some examples that if the initial 

condition, , yields N discrete eigenvalues 0 ( )u x { }1 2, ,..., nλ λ λ  and the reflection 

coefficient is  then, standard KdV equation has only N-soliton solution. 

However, we will see in this appendix that the oscillatory part of the solution comes from 

the condition . In fact, the best example that illustrates this idea is the delta 

function potential which leads to both discrete as well as continuous spectrum. 

( , ) 0t =

( , ) 0≠

R k

R k t

Example Delta Function Potential 

Consider the following initial distribution for the potential 

( ,0) ( )u x A xδ= − , 

where the ( )xδ  is the Dirac’s delta function. 

Solution: 

We solve the direct scattering problem by substituting the initial condition into the 

equation 

2

2

( ) ( ) ( ) ( ),d w x A x w x w x
dx

δ λ− − =                                                                        (1) 

The above equation can be written as,  

( ( ))xxw A x .wλ δ= − +                                                                                           (2) 

By integrating both sides we obtain, 
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[ ]

( ( ))  

~ (0) as 0.

xx

x

w dx A x w dx

w Aw

ε ε

ε ε

ε

ε

λ δ

ε
− −

−

= − +

⇒ →

∫ ∫                                                                           (3)                         

To find the bound states ( 0λ < ) we let 2kλ = −  where is a positive real number   k

2

2

(0)
 0    xx

k
w k w for x

λ = −

∴ − = → ±∞

x
x

                                                                           (4) 

The above equation can be easily seen to yield  

                                 0.
( )

                                  0.

kx

kx

e as
w x

e as

− >= 
<

                                                         (5) 

Using jump condition for w at x 0x =  we get, 

[ ]0

0

1( ) ( ) (0) 2
2xw k k Aw A k A k

−
= − − = − = − ⇒ = ⇒ = A  

21 .
4

Aλ = −                                                                                                             (6) 

To find the normalization constant, we use the definition in (chapter two),   

0
2 2 -2 -2

- - 0 0

1 1 1(0)  
2

( ) 2kx kx kx

c A
w x e dx e dx e dx

∞ ∞ ∞

∞ ∞

= = = =
+∫ ∫ ∫ ∫

1  

1(0) .
2

c = A                                                                                                             (7) 

Note that the discrete spectrum will be empty if 0A <  and to find the unbound states, we 

put   where  is a positive real number       2(0) kλ = k

-

-

-

-

( ,0)              .
( )

( ,0)                       .

( ,0)              .
        

[1 ( ,0)]                .

ikx ikx

ikx

ikx ikx

ikx

e b k e as x
w x

a k e as x

e b k e as x
b k e as x

 + →= 
→ −∞

 + →= 
+ →

+∞

+∞

−∞

                                                     (8) 
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In order to find the reflection and transmission coefficients, we apply the continuity 

condition at the origin 

[ ]0 0 0
0

( ) ( )(1 )  (0) (1xw ik ikb e ik b e Aw A
−

= − + − − + = − = − + )b .  

0( ) ( )(1 ) (1 ).ik ikb e ik b A b− + − − + = − +  

( ,0)             &             ( ,0) 1 .
2 2

A Ab k a k
A ik A ik

= − = −
+ +

                                (9) 

Using the definition in chapter two, we obtain the evolution equation 

3

3

8
21) ( )  .                                ) ( , )  .

2 2

) ( , ) 1 .                     ) ( )  .
2 2

ik t

A t

Aei t A ii b k t
A ik

A Aiii a k t iv c t e
A ik

λ = − = −
+

= − = −
+

                     (10) 

Now substituting these equation into the kernel , we obtain  

2

1

1( , ) ( )exp( ) ( , ) exp( )
2

N

m m
m

B t c t k R k t ik dkξ ξ
π

∞

= −∞

= − +∑ ∫ ξ  

38

1 1
1( , ) ( ) exp( ) .

2 2

ik t ikAeB t C t k dk
A ik

ξ

ξ ξ
π

∞ +

−∞

= − −
+∫                                                  (11) 

Substituting the above kernel (11) into the Gel’fand and Levitan equation, 

( , , ) ( , ) ( , ) ( , , ) 0
x

K x y t B x y t B y z t K x z t dz
∞

+ + + + =∫                                     (12) 

Unfortunately, we cannot solve the above integral equation in term of well-known 

analytic function. However, we can approximate the solution numerically (see figure B).   
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Figure B. The Profile for Scattering by Delta Function. 
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