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Effective control and monitoring of a process requires sufficient information on the
state of the process, which is uniquely specified by the process state variables. In
practice, online measurements of all of the variables of a process are rarely available,
and in such cases, reliable information on the immeasurable state variables is obtained
by using the state estimator. This work presents the design, implementation and
application of linear state estimators, which can infer the column composition from the
temperature measurements or other process states in a reactive distillation process.

The accuracy of the developed estimators is checked by comparing the estimated
states to the actual states as predicted by the process model of a reactive distillation
system. The robustness and reliability of the linear state estimators are demonstrated
against erroneous initial conditions, the measurement noise and plant-model mismatch.
The estimator-based control system is developed and implemented on a reactive
distillation process. The control performance of the system that relies on the estimator is
examined and compared to that of the system which takes direct measurement from the
process model using online perfect analyzer. It is found that a robust linear state
estimator can be successfully designed and implemented on the feedback control of

reactive distillation system.

Keywords: Reactive distillation; Linear model; State estimator; Process control
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CHAPTER 1

1 Introduction

1.1 Background

The combination of reaction and distillation is an old idea that has received
renewed attention recently. The importance and application of reactive distillation has
captured the imagination of many because of the demonstrated potential for capital
productivity improvements, increased reaction conversion, elimination of difficult
separation, selectivity improvements, and reduced energy use through direct utilization of
reaction heat. Therefore, reactive distillation technology has shown a significant growth
in both patents and journal papers [1-5]. However, the reactive systems where the
reactant and product volatilities differ considerably are ideally suited for reactive
distillation [6].

The rising demand for saving energy and the increasing product quality
requirements necessitate a better and more effective control system. However, the control
of reactive distillation system is challenging because of its complex dynamics resulting
from its integrated functionality of reaction and separation. Al-Arfaj and Luyben [3]
discussed many control schemes for an ideal reactive distillation. They concluded that an
internal composition control is important to have an effective control of the system. In
their study, they assumed that the internal compositions are available for the control

system by an accurate composition analyzer.



Although composition analyzers, like online chromatography have been used in
the process industries for a long time, they usually suffer from many shortcomings. An
online analyzer is expensive to acquire and requires a high investment. The reliability of
online chromatography is not very good. Perhaps, the most important setback in the
application of an online analyzer to measure process compositions in chemical process
control is that it possesses a very large time delay and thereby lowers the achievable
control performance [7]. Thus, it is of a major interest to develop an effective state
estimator whenever a composition measurement is required in the control system.

Most of the early work on reactive distillation focused on its design and process
modeling [6, 8-13]. A limited number of papers have been published on control of the
reactive distillation [3]. In the same vein, many research papers have discussed the
application of the state estimators in the control of conventional distillation column [14-
20]. However, the application of the state estimators in the control of reactive distillation
has not been reported in the open literature. Considering the numerous advantages of
reactive distillation, and the effective application of the state estimation method to the
conventional distillation system, this thesis work is aimed at developing the state
estimators, which can infer the column compositions from the temperature measurement
and other state of the process. The robustness and reliability of the developed state
estimators are tested under a wide range of operating conditions. The developed state

estimator is implemented in the feedback control system for reactive distillation process.



1.2 Previous Work

1.2.1 Reactive Distillation Control

Reactive distillation is the coupling of both physical separation and chemical
reaction in one unit operation. It has been employed in industry for many decades, and its
area of application has grown significantly. A reactive distillation column is usually split
into three sections: reactive section, stripping section and rectifying section. In the
reactive section, the reactants are converted into products, and where, by means of
distillation, the products are separated out of reactive zone. The tasks of the rectifying
and stripping sections depend on the boiling points of the reactant and product.

Several researchers have worked extensively on the conceptual design, steady
state multiplicity and process optimization of reactive distillation [1, 6, 8]. However, only
a few papers have appeared that discuss the closed-loop of reactive distillation column.
No research has appeared in the open literature that utilizes the state estimators in the
feedback control of distillation column.

Roat et al. [21] presented an industrial approach to the modeling and control of
reactive distillation column systems. They proposed a control structure that uses two
conventional proportional-integral (PI) temperature controllers to maintain two trays
temperature in the two-product reactive distillation column by adjusting the two fresh
feed streams. Sneesby et al. [22] proposed a two-point control scheme for ethyl tert-butyl
ether (ETBE) reactive distillation column in which both product purity and conversion
are controlled. They implemented conventional PI controller to control a temperature in
the stripping section by manipulating the reboiler heat input and to the control conversion

by manipulating the reflux flowrate.



Al-Arfaj and Luyben [3] studied the control of reactive distillation column that
produced two products from a single reactive column by feeding exactly stoichiometric
amount of the two fresh feed streams. They explored six alternatives control structures,
all of which included the measurement of composition of one of the reactants inside the
reactive section of the column. This composition is then used to adjust the appropriate
fresh feed stream. They reported that unless an excess of one of the reactants in the
column is incorporated in the design, the inventory of one of the reactants needs to be
detected so that a feedback trim can balance the reactants feed stoichiometry. Therefore,
the use of the compositional analyzer in the reactive zone was advocated.

Luyben [23] presented a quantitative comparison of the steady-state economics
and the dynamic controllability of two alternative reactive distillation systems. He found
out that even though there is a significant steady state penalty in using the two-column
process, but the use of online analyzer is eliminated. Although, the one-column is more
efficient than the two-column, but its operation depends on having a reliable composition
measurement.

Al-Arfaj and Luyben [24] further investigated the control structures for tert-butyl
ether (ETBE) reactive distillation column using the two different process configurations:
a design with two fresh reactant feed streams and a design with a single reactant feed.
They presented an optimum design for the double-feed case. In their study, several
control structures were investigated, and their effectiveness in the ETBE case was
compared with those in their previous study. Their results showed that the double-feed

system requires internal composition control to balance the feeds stoichiometry, along



with the temperature control to maintain the product purity. They extended their work to
more control structure alternatives for the methyl acetate reactive distillation [4].

Al-Arfaj and Luyben [25] has also demonstrated that ethylene glycol reactive
distillation columns can be controlled effectively by a simple PI control scheme. Their
proposed control structure achieves the stoichiometric balancing of the reactants and
maintains the product purity within reasonable bounds. In their work, only simple
conventional PI loops are used, no composition analyzer is required and the structure
shows that it can handle large disturbances. They reported that the structure can be
generally applicable to other systems that are similar to the ethylene glycol system in
stoichiometry, kinetics, vapor-liquid equilibrium (VLE), and design.

Estrada-Villagrana et al. [26] employed a dynamic model to study the control of
MTBE reactive distillation. The control structures were constructed to control reflux
drum level, the base level and MTBE purity in the bottoms. The distillate and the reflux
flowrate were considered as possible manipulating variables to control the drum level.
The bottoms flowrate controls the base level. A temperature in the stripping zone was
selected to be controlled by the reboiler heat input to ensure MTBE purity at the bottoms.
Even though the reactive columns are known to be highly nonlinear, they demonstrated
the use of the linearized control analysis tools in the controllability of reactive distillation.

Vora et al. [27] presented the control of reactive distillation for the production of
ethyl acetate. Utilizing the index two DAE model (i.e. Dynamic Algebraic Equation
model), they analyzed the system from a steady-state and a dynamic point of view. Based
on their results, they found that the process has two time scales caused by the liquid

hydraulics. Motivated by this finding, a modified slow dynamics model was developed.



The nonlinear controllers were designed based on the two-time scale model. Those
controllers performed well when the product purity setpoint was increased by 25%.

Wang et al. [5] further investigated the effect of interaction multiplicity on the
control system design for a MTBE reactive distillation column. They found out that
despite the presence of steady state multiplicities in the column, a linear control is still
possible because a controlled and manipulated variable-pairing scheme that exhibits a
sufficiently large range of near relations can be found.

Al-Arfaj and Luyben [28], in their recent study, presented a plantwide flowsheet
that contains reactive distillation column for the production of tert-amyl methyl ether
(TAME). The flowsheet consists of one reactor, one reactive column, two conventional
columns and two recycles. They discussed the importance of the plantwide control and
the role of reactive distillation. The reactive distillation column was found to be the
central part of the whole flowsheet in terms of both the steady-state design and the
dynamic controllability.

Engell and Fernholz [29] investigated the general aspect of controlling the
reactive separation processes, and gave the example of the control of a semi-batch
reactive distillation process. Utilizing a neural network model, the authors demonstrated
that that more complicated controller structures, sophisticated controller design methods,
and alternative, model-based nonlinear controllers are needed for reactive distillation
processes when compared to conventional processes. The necessity of an accurate
process model in control system design was also emphasized.

Huang et al. [30] explored a vapor-liquid-liquid equilibrium behavior of n-butyl

propionate and presented a systematic procedure for the design and temperature control



of the heterogeneous reactive distillation. The authors showed that a reactive distillation
exhibits unique temperature sensitivities. As a result, a Nonsquare Relative Gain (NRG)
was used to identify the temperature-control trays, which resulted in an almost one-way
decoupled system. Motivated by this, a decentralized PI controller was used at the
regulatory level. Because maintaining constant tray temperatures does not imply the same
quality specification in a kinetically controlled distillation column, the authors
demonstrated that feed forward temperature compensation is necessary to maintain the
desired product composition. The proposed design method for butyl propionate reactive
distillation can be easily adapted to butyl acetate reactive distillation because of their
similarities in VLLE and process characteristics.

Luyben et al. [31] studied the design and control of two alternative processes for
the production of butyl acetate from methyl acetate. The two process configurations are a
conventional reactor/separator and a reactive distillation. The authors showed that despite
both processes are capable of producing high purity butyl acetate and methanol without
the use of an extractive agent, the reactive distillation process is more economical.
Developing a plantwide control structure for each of the process, the authors showed that
an effective control can be achieved by using conventional PI controllers.

Noeres et al. [32] investigated the benefits of using dynamic models of different
complexity and size for process design, optimal operation and control of catalytic
distillation processes. They studied the heterogeneously catalyzed reactive distillation of
methyl acetate as a case study. An experimentally validated rate-based model was
developed for process design and scale up issues. However, for optimization and control

purposes, the authors used a simplified model as the rigorous rate-based model, as



claimed, was not suitable for these tasks because of its complexity. A closed-loop
optimization of the system was performed based on the developed linear control
structure. The authors demonstrated that the linear controller performed well over a wide
range of operating conditions. Because the developed linear controllers were not able to
drive the process in arbitrary regions of operation, the use of nonlinear model-based

controllers was suggested to be considered in future work.

1.2.2 State Estimators and their Applications

In most of the chemical, biochemical and petrochemical processes, effective
monitoring and control is often difficult because of the absence of frequent and delay-free
measurements of important process variables and the presence of unknown disturbances
in the process, which cannot be modeled. As a result, the state estimator has been
recognized as a tool that can be designed to estimate the values of these process variables
from the available measurements. State estimators/observers can play a key role in the
process control and monitoring wherein an early detection of hazardous conditions is
needed for a safe operation. Several works have been done over a decade in the
application of the state estimation method in the control of both batch and continuous
distillation systems. Summarized below is the literature on the application of state
estimator in conventional distillation system.

Lang and Gilles [14] presented a full-order nonlinear observer for distillation
columns. The temperatures are measured at different points of the column and compared
to the observer’s output temperatures. Their results showed that it is possible to estimate
temperature and concentration profiles for both binary and multicomponent distillation

units by the nonlinear observer. The performance of the observer was tested through



numerical simulation and it was found to be very robust toward model errors, wrong
parameters or uncertain inputs.

Quintero-Marmol et al. [15] applied an Extended Luenberger Observers (ELO) to
predict compositions in multicomponent batch distillation from temperature
measurements. A general design procedure of an observer for a batch distillation column
was presented. Even though, the linear observer in theory needs only Nc-1 measurements
to be observable where Nc is the number of components in the mixture, it was found out
that nonlinear observer needed at least Nc measurements to be effective. They presented
two different observers: one using full order model and the other using reduced order
model. They concluded that full order, though more complex to obtain, performed
consistently better than the reduced order-model. But the reduced order is easier to
implement.

Ruokang et al. [33] presented a strategy for fault detection and diagnosis in a
closed-loop nonlinear distillation system. An extended Kalman filter was applied inside
the control loop to recover information from noisy measurement signal and provide
estimates of the state variables and unknown parameters of the process. The state
estimates produced by an extended Kalman filter are the input for the controller.
Meanwhile, Mejdell et al. [19] implemented a static partial least-square regression
estimator for product compositions on a high-purity pilot-plant distillation column. The
estimator was found to be static and its application is straight forward. An experimentally
based estimator, with logarithmically transformed temperatures and compositions, was

reported to give excellent performance over a wide range of operating points.
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Roberto et al. [17] developed a nonlinear extended Kalman filter (EKF) estimator,
which predicts the composition of the outlet streams of a binary distillation column from
the temperature measurements. The performance of the estimator was evaluated by
comparison with data obtained from the several transient experiments performed in a
pilot plant. The EKF estimator was reported to be robust with respect to the model errors,
which affect its response. They extended their work to the multicomponent distillation
column where they reported that when moving from the binary distillation system to the
multicomponent system, the need for an accurate description of the vapor-liquid
equilibrium is more stringent [18].

Oisiovici et al. [20] developed a discrete extended Kalman filter for binary and
multicomponent distillation systems. They developed it to provide reliable and real-time
column composition profiles from few temperature measurements. Unlike off-line design
of Extended Luenberger Observer (ELO) proposed by Quintero-Marmol and Luyben
[15], the gains of EKF are calculated and updated online. They reported that EKF has the
ability to incorporate the effects of noise from both measurement and modeling.

In a more recent work, Bahar et al. [34] recently developed an inferential control
methodology, which utilizes an artificial neural network (ANN) estimator for a model
predictive controller for an industrial multicomponent distillation column. The selection
of the temperature measurement points for the inferential control is done by the help of
singular value decomposition analysis together with the column dynamics information. A
moving window ANN estimator is designed to estimate the product compositions from
the tray temperature measurements. The composition predictions are further corrected

with the actual composition data in 30-min intervals. A multi input multi output (MIMO)
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model predictive controller (MPC) is used with the developed ANN estimator for the
dual composition control of the column. The performance of the developed control
system utilizing ANN estimator is tested considering setpoint tracking and disturbance

rejection performances for the unconstrained and constrained cases.

1.3 Scope and Objectives

Lack of appropriate, inexpensive online sensors, high costs of measurement
methods, and time consuming offline measurement analysis are some of the reasons that
make continuous measurement of the important state variables of a process difficult.
Even when online measuring devices are available, in some cases, measurements cannot
be obtained frequently without time-delay. The challenge in obtaining such important
state variables for control purposes is to design a state estimator, which is robust against a
noisy measurement, erroneous initial conditions and model uncertainties.

The present work describes the development, implementation and application of
the linear state estimators in control of reactive distillation. Internal compositions which
are needed in control system are estimated by the use of the state estimators instead of
measuring them by an analyzer. The reliability of these estimators is examined and their
impacts on the performance of the control system of reactive distillation are studied. The
performance of the feedback control system using the state estimator is compared to that
when a composition analyzer is used. The specific objectives of this work are:

1. Developing the linear and nonlinear process models in the state-space form that
describes the reactive distillation system.
2. Investigating the impact of disturbance magnitudes and directions in the dynamic

behavior of a reactive distillation.
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3. Performing a closed-loop assessment of various control structures for reactive
distillation using linear and nonlinear process models.

4. Developing the linear state estimators for composition estimation in reactive
distillation system.

5. Implementing a linear state estimator in a feedback control of reactive distillation
and investigating the reliability and robustness of the estimator-based system
against the plant-model mismatch, erroneous initial conditions and measurement

CITors.

1.4 The Significance of this Work

Reactive distillation has commercially gained a separate status as a promising
multifunctional reactor and separator in most of the world leading chemical industries.
Locally, reactive distillation technology is used in more than one Saudi Basic Industries
Cooperation (SABIC) affiliate. Controlling these processes at the desired conditions is an
essential requirement for a better operation at a higher profitability. An effective way of
controlling this process requires the knowledge of the internal composition of one of the
reactants. This is hard to implement because of the online analyzer unreliability. This
research develops a technique to provide the online controller with this information by

the use of a state estimator and eliminate the use of the unreliable composition analyzer.
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CHAPTER 2

2 Linearized State Space Formulation for Nonlinear
Generic Reactive Distillation

2.1 Introduction

The growing application of reactive distillation processes has necessitated a better
understanding of its process dynamics and control. Reactive distillation columns are
generally being modeled by a set of highly nonlinear first order differential equations
[1-4]. However, many model-based controllers use linear models. Linear models are
easier to understand and analyze than nonlinear models. Nonlinear systems often have the
same general phase-plane behavior as the model linearized about the steady state
condition when the system is close to that particular condition. Therefore, it is important
to derive a suitable linearized dynamic model that when used in model-based control
applications could yield an effective and robust control system.

Few papers have emerged on the development of a linear model for a typical
distillation column. Marquardt and Amrhein [5] developed a linear distillation model for
multivariable controller design of binary distillation columns. Their modeling idea draws
on the wave propagation phenomena characterizing distillation column dynamics. The
process nonlinearities were nicely averaged by using a 5™ order linear model. Luyben [6]
derived a simple but effective method to determine suitable linear transfer functions for
highly nonlinear distillation columns. He presented an effective design procedure which

uses Astrom’s method (relay feedback) to get critical gains and frequencies for each
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diagonal element of the plant transfer matrix. He concluded by emphasizing the
effectiveness of the method in handling highly nonlinear column efficiently.

The use of linear transfer function becomes practically inapplicable when the
knowledge of internal state variables is required because the method is based on input-
output model which gives no information about the internal variables. Recent
publications on control of reactive distillation columns have emphasized the need to have
the knowledge of internal composition profiles in order to design an effective control for
reactive distillation [7-11]. Unless an excess of one of the reactants is incorporated in the
process design, some detection of the inventory of one of the reactants in the column is
required so that a feedback trim can balance the reactants feed stoichiometry [7]. In such
situations, the application of state space technique will be most suitable. Linear state
space model can be easily transformed into linear transfer function model without loss of
any system information.

The linearization of a nonlinear reactive distillation is challenging because of the
reaction and separation combined in a single column. Complexity in its dynamics arises
from the interaction of the reaction kinetics and distillation concept of vapor-liquid
equilibrium in the system. A linearized state space model of reactive distillation system
will help in investigating the stability, controllability and observability analysis of the
system. Therefore, the objective of this present work is to develop a linearized state space

model for a generic reactive distillation column.
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2.2 Reactive Distillation System

Among several chemical systems, two-reactant-two-product reactions have
received a wide application in reactive distillation technology [12]. In this work, we
considered an ideal two-reactant-two-product reactive distillation column proposed by
Al-Arfaj and Luyben [7] as shown in Figure 2.1. It consists of a reactive section in the
middle with nonreactive rectifying and stripping sections at the top and bottoms
respectively. The elementary, reversible and exothermic liquid-phase reaction occurring
in the reactive zone is given as
A+B < C+D (2.1)

The task of the rectifying section is to recover reactant B from the product stream
C. In the stripping section, the reactant A is stripped from the product stream D. In the
reactive section the products are separated in situ, driving the equilibrium to the right and
preventing any undesired side reactions between the reactants A (or B) with the product
C (or D). Therefore, reactants A and B are intermediate boilers while product C is the
lightest and product D is the heaviest. This ensures that high concentration of the
reactants A and B is maintained in the reactive zone, which is typical for reactive
distillation application. The reactive section contains Ngx trays. The rectifying section
contains Ny trays, and the stripping section below the reactive section contains Ng trays.

The column is numbered from the reboiler to the condenser.
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Figure 2.1 (a) Reactive distillation column, (b) a reactive tray.
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2.2.1 Nonlinear Process Model

A rigorous dynamic model for a typical reactive distillation column consists of a
large number of nonlinear differential equations and demands much information about
the system (compositions, vapor and liquid flowrates, liquid hold up in all stages at every
instant, tray hydraulics, energy balances, and vapor-liquid equilibrium data). However,
the system at hand is an ideal generic reactive distillation with simple vapor-liquid
equilibrium, reaction kinetics, and physical properties. The model assumptions are
summarized as follows:

1. Ideal vapor-liquid equilibrium.

2. Saturated liquid feed and reflux flowrate

3. The energy equations are neglected by assuming constant molar overflow except in the

reactive zone where the vapor flowrate increases because of the heat of reaction which

vaporizes some liquid on each tray.

4. Constant relative volatilities. The volatilities of the components are in such that
aplagl{aia; (2.2)

5. Fixed heat of reaction and vaporization and saturated liquid feed and reflux.

The reactive distillation model is based on dynamic mass balance, while the
energy equations are neglected by assuming constant molar overflow except in the
reactive zone. Therefore, the nonlinear state space model can be described as follows:

Reboiler: (i = 1)

dx, ; .
d_';J = [L2 (ij _le)+vs(xlj - ylj)]/ Ml’ JZIZNC (2'3)
M, |\ g (2.4)

dt 2 S



Stripping section: (2 <i < N +1)

dx;, .
d_tl = [Li+1(xi+1,j =X )+ (Vi — yi,j)]/ M,,j=1:Nc
% =L, -L

dt

Reactive section: (nf 1 <i < nf 2),F, = 0,exceptat i =nf 1,nf 2
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(2.5)

(2.6)

(2.8)

dx;; 1.
TtJ: [Li+l(xi+l,j - Xi,j)+vi—l(yi—l,j - Xi,j)+vi (Xi,j - yi,j)"’ R, +F (Zij - Xij)]/ M, J=1:Nc (2.7)
dz:i =L,-L+RA/AH, +F

Rectifying section: (nf2+1<i<Ns+Ng, )

dx;, .
d_'[J = [Li+1(xi+1,j - Xi,j) +Vn(yi—1,j - yi,j)]/ Mi ’ le :Ne
Condenser:
ax,
% = B/n(ymT - XN,j)]/M N
t

My =V, -R-D

dt

Tray 1 vapor flowrate in reactive zone is given as:

ﬂ, i—Ns—1
V.=V +— R
i S AH ; Ns+1+k

v

while the vapor flowrate in rectifying section is expressed as:

Nrx

V.=V, +——Y'R
n S AH ; Ns+1+k

Liquid flowrate is calculated from a linearized form of the Francis Weir formula:

L =L+ MimMi
B

(2.9)

(2.10)

2.11)

(2.12)

(2.13)

(2.14)
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where £ is hydraulic time constant. Net reaction rate of component j on tray i is:

R = Mi(kF,iXA,iXB,i —Kg; xc,ixD,i) (2.15)
The forward and backward specific reaction rates (kmol.s™.kmol™) on tray i:

ke, =a.e ™' (2.16)
kg; =age ™' "

where a;anda, are the pre-exponential factors, E; and E_are the activation energies,

and Tjis the absolute temperature on tray i. Liquid-vapor equilibrium equations are:

Ne
Yii :ajxij/z ay Xi (2.17)
k=1
Nc
Ti =By /TAL _ln(alp/z o X )] (2.18)
k=1

Thus, nonlinear state space models would be of the form:

% = £ (X(0),U(t),d(t);0) (2.19)

Y =h(X(t)) (2.20)
where X is a vector of state variables, which are liquid mole fractions and holdup in all
of the stages (including the reboiler and condenser);

X = (X010 XX X0 X2 oo Xy 25 Xe 35 X 30Xy 30 Xoas X g Xy s My ML M T (2.21)
“U” is a vector of input variables, which are vapor boilup (Vs) from the reboiler and
reflux rate (R) from condenser;U =[V¢,R]". “d” is a vector of measurable disturbance
variables, which are the fresh feed flowrates of reactant A and B with their feed

compositions; d =[zaj,zbj, Fas FB]T. “Y” is a vector of measurable outputs, which can

either be column temperatures or the products compositions;Y = [y1 ....yq]T . 0 is the system
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constant parameters, which are component relative volatilities, reaction kinetics data and
the column pressure. Note that the linearized model formulation considers the
configuration where the reflux and steam flowrate are only available as manipulative

variables. In general, other control configurations could be easily incorporated.

2.2.2 Linear State Space Model Formulation

The linearization of the nonlinear equations 2.19 and 2.20 is carried out by using
the Taylor series expansion. This implies that these sets of nonlinear equations are
approximated by a truncated Taylor series approximation around the steady state
operating conditions. Although, the Taylor series-based linearization method is a well
established technique, however, the most challenging aspect of its application is the
formation of the resulting Jacobian matrices of the multivariable states for a coupled and

highly nonlinear dynamic model [13]. If the general form of equations 2.19 and 2.20 is

given as:
£ (X15 Xy pees Xy 5 Ups Uy s U, 0,0, d L 6) [0, (X5 Xy ey Xsyy ) |
£y (X5 Xy 500s Xspy s Uy, Uy senn U, dy L d e, d g, 6) h, (X X5 500 X5y )

f(x)=|" Y =| (2.22)
| Fon (X0 Xg 0 Xy U Uy UL, dyd, e, dg L 6) N (X, X555 X5y ) |

then, the linearization version of the nonlinear functions is obtained by taking the first
two terms of the Taylor series.

of

2k -x)+ 2 -0)+ o -d) (2:23)

F(X)= F(X,U,0)+<(x - X

Y(X):h(X)+a—X(X—X) (2.24)
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In equation 2.23, the derivative of f(X) is a derivative of SN X1 vector with respect to

5N x1 state vector , P x1 input vector and M x 1 disturbance vector.

This results in:
: o CCAY s \th : afi
1. 5N x5N Jacobian matrix “A” whose (1, J)* element is Fv
X .
J

2. 5N x P input matrix “B” with a—' coefficient as its elements
u.
J

3. 5N x M disturbance matrix “E” with (i, j)" element as 8TI
i

. .., oh, . .
4. q x 5N output matrix “C” with — coefficient as its element.

OX j

The steady state condition corresponds to f(X_,L_J, ) =0and h(Y) =0, and all the
matrices elements are evaluated at steady state values. The deviation variables arise
naturally out of the Taylor series expansion, and therefore, the linearized state space

model in terms of deviation variable is:

9 Ax +Bu +Ed (2.25)
dt
Y =cx (2.26)

Formulation detail and entries of matrices A, B, C and E for a generic reactive distillation

are given in the Appendix.

2.3 Steady State Design Data.

The formulation of a linearized model only requires the knowledge of the steady
state design data, including the holdups and stationary concentration profiles.
Considering the phenomena of steady state multiplicities of most reactive distillation
systems as reported in the literature [14, 15], it is important to ensure that a unique and

stable steady state conditions based on the desired specifications are obtained.
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The kinetic, physical, and vapor-liquid equilibrium parameters for single-column

reactive distillation were obtained from Luyben [16] and are summarized in Table 2.1. It

is found that the design presented by Luyben [16] is stable only when the system is

operated under closed-loop. Therefore, we modified this steady state design to ensure that

the system is both open-loop and closed-loop stable. The procedure to obtain the

modified design is the following:

1.

The desired purity and conversion is kept the same (95%). The flowrate of the
fresh reactants A and B entering into the column is fixed at 0.0126 kmol/s.

The initial holdups in all the trays are assumed to be 1 kmol and 10 s of holdup
time is assumed in both the reboiler and condenser.

A dual composition control suggested by Al-Arfaj and Luyben [7] is
implemented to obtain the desired manipulated variables. Composition of product
C in the distillate is controlled by manipulating the reflux flowrate, while the
vapor boilup is manipulated to control the bottoms composition of component D.
The controllers automatically manipulated both the reflux flowrate and vapor
boilup to the values that correspond to the desired conversion and purity.

The resulted steady state parameters are used as initial conditions to check for
open-loop stability. The open-loop dynamic simulation had to be run for
significantly long time to ensure open-loop stability. Table 2.2 shows the results
of steady state conditions for which the system is open-loop and closed-loop

stable.



Table 2.1 Kinetic and physical properties
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activation energy forward 30000

(cal\mol) backward 40000

Specific reaction rate at steady state forward 0.008

condition (kmols'kmol™) backward 0.004
heat of reaction (cal/mol) -10 000 vapor pressure
heat of vaporization (cal/mol) 6944 component |  Avp Bvp
ac 8 A 12.34 3862
a, 4 B 11.45 3862

relative

volatilities ag 2 C 13.04 3862
ag 1 D 10.96 3862




Table 2.2 Optimum steady state conditions

variables steady state values

Column pressure (bar) 9
specifications | stripping section 7
reactive section 6
rectifying section 7

flowrates Vs (kmol/s) 0.0285

R (kmol/s) 0.0331

D (kmol/s) 0.0126

B (kmol/s) 0.0126

Xis A 0.0467

B 0.0033

C 0.9501

D 0.0000

Kbot A 0.0009

B 0.0445

C 0.0000

D 0.9545

27
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2.4 Model Linearity

A linear system is one that satisfies both homogeneity and additivity property. For
zero-state response, the model linearity can be assessed by

X, (t,) =0

OY H)+dDY,, t>t 2.27
O U, (t)+D,U, (1), t>t, YO+ @Y, 12 2.27)

where ®, and @, are constants.

Before the applicability of a linearized model is assessed, it is important to
demonstrate that this principle of superposition is satisfied. The linearity of the proposed
model was tested by exciting the system with the various magnitudes of input step
changes. For illustration purposes, £2% and +4% step changes in feed flowrate of
reactant B are introduced into the system as disturbances. Figure 2.2 shows the steady
state composition profiles in deviation forms under various magnitudes of step input
changes in feed flowrate of reactant B. The uniformity in the deviations of the
compositions in both directions is a clear indication of model linearity. The model
linearity of the system is equally observed in the column temperature profiles as shown in
Figure 2.3. The dynamic composition profile of the reactant A on the tray nfl, the
reactant B on the tray nf2, the product C in the distillate and the product D in the bottoms

with £2% & +4% change in F; are presented in the Figure 2.4. The output changes are

symmetric, with the same speed of response. The behaviors of these responses are clear

indicative of a linear system.

2.5 System Stability

Systems are generally designed to either process some signals or perform some

tasks. Thus, if a system is unstable, it will grow unbounded, saturate and disintegrate
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when a signal, no matter how small, is applied. Therefore, stability is a basic requirement
for all systems. We demonstrated one among many advantages of a linear system by
investigating the model stability near the steady state conditions through the eigenvalues
of its Jacobian matrix.

Because our system response is typical of zero-state, its stability can easily be
verified using bounded-input-bound-output (BIBO) stability criteria. A multivariable
process is open-loop stable if and only if all the eigenvalues of matrix A have negative
real parts [17]. Table 2.3 shows the eigenvalues of matrix A for a linearized reactive
distillation system with 20 trays, reboiler and condenser. As shown in Table 2.3, the
system is stable because all the eigenvalues have negative real parts. This is inline with

the dynamic stability test discussed earlier.

2.6 Conclusion

A linearized state space model for a generic reactive distillation has been
formulated. The development of the model only requires information about the steady
state design data, including the holdup in all the stages and the stationary composition
profiles in the column. A detailed algorithm of the system sensitivity matrices is
presented. The model obtained in this fashion is based on deviation variables. The
developed approximate model is used to investigate the stability of the multivariable
reactive distillation system. The linearity of the model is attested by the uniform and

symmetric nature of the output responses to different magnitudes of the step inputs.
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Figure 2.2 Steady state composition profile (in deviation form) of the reactant A on the

tray nfl, the reactant B on the tray nf2, the product C in the distillate and the

product D in the bottoms with +2% & +4% change in Fg
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Figure 2.3 Steady state temperature profiles after £2% & +4% changes are made inFy:

(a) column temperature profiles in deviation form. (b) column temperature

profiles.
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Figure 2.4 Dynamic composition profile of the reactant A on the tray nfl, the reactant B

on the tray nf2, the product C in the distillate and the product D in the bottoms

with £2% & +4% change in F .
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Table 2.3 Eigenvalues of matrix A (SN X 5N), N=22, column configuration (Ns/Nrx/Ng):

7/6/7 column stages, 1 reboiler and 1 condenser.

-0.5221 -0.1592 +0.00981 | -0.0747 + 0.00831 | -0.0323 +0.01871 | -0.0097
-0.4483 -0.1592 - 0.0098i -0.0747 + 0.00831 | -0.0458 -0.0074
-0.3935 -0.1571 -0.0728 -0.0267 +0.0174i | -0.0001
-0.3894 -0.1506 -0.0685 +0.0011i | -0.0267 - 0.0174i -0.0005
-0.3564 -0.1267 + 0.05561 | -0.0685 - 0.00111 -0.0398 -0.0011 + 0.00031
-0.3170 -0.1267 - 0.05561 -0.0588 +0.00751 | -0.0365 +0.00171 | -0.0011 - 0.00031
-0.3016 -0.1086 + 0.04291 | -0.0588 - 0.00751 -0.0365 - 0.00171 -0.0046 + 0.00171
-0.2898 -0.1086 + 0.04291 | -0.0595 + 0.0027i | -0.0365 -0.0046 - 0.00171
-0.2502 -0.1308 -0.0595 - 0.00271 -0.0226 + 0.01521 | -0.0013
-0.2347 + .04961 -0.1285 -0.0554 +0.01081 | -0.0226 - 0.01521 -0.0053
-0.2347 - 0.04961 -0.1210 + 0.01301 | -0.0554 - 0.01081 -0.0289 -0.0035
-0.2369 +0.02851 | -0.1210 - 0.01301 -0.0515+0.01431 | -0.0166+0.01191 | -0.0034
-0.2369 -0.02851 -0.1222 +0.00291 | -0.0515 - 0.0143 -0.0166 - 0.01191 -0.0025
-0.2016 + 0.05621 | -0.1222 - 0.00291 -0.0471 +0.01671 | -0.0249 -0.0025
-0.2016 +0.05621 | -0.1027 -0.0471 - 0.01671 -0.0214 -0.0046
-0.2064 -0.0935 +0.02151 | -0.0547 -0.0153 +0.00631 | -0.1667
-0.1792 + 0.06951 | -0.0935 - 0.02151 -0.0426 +0.01871 | -0.0153 - 0.00631 -0.1667
-0.1792 - 0.06951 -0.0973 -0.0426 - 0.01871 -0.0181 -0.1667
-0.1941 -0.0868 +0.01171 | -0.0530 -0.0169 -0.1667
-0.1562 +0.0633i -0.0868 - 0.01171 -0.0370 +0.01931 | -0.0134 -0.1667
-0.1562 - 0.0633 -0.0836 -0.0370 - 0.0193i -0.0093 +0.00501 | -0.1667
-0.1619 -0.0791 -0.0323 +0.01871 | -0.0093 - 0.00501 -0.1667
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CHAPTER 3

3 Dynamic Comparison of Linear and Nonlinear Models
for Generic Reactive Distillation System

3.1 Introduction

An understanding of the dynamic behavior of reactive distillation system is
important from both process design and control perspectives. Moreover, the primary
objective of process control is the design of effective and robust control systems that will
keep the process conditions close to its desired steady state value. Even though the
reactive distillation system is highly nonlinear, the influence of effective regulatory
control is to ensure that the deviations from this steady state will be small, in which case
the behavior will be essentially indistinguishable from that of linear system.

Nonlinear reactive distillation systems are notoriously difficult to analyze and
solve, partially because they exist is such an infinite variety of forms, preventing any
cohesive theory for analysis. Thus, it is very important to have an approximate linear
model that will give good account of the process behavior near the desired operating
conditions if we are to be able to use the powerful linear mathematical techniques in the
system analysis and control. Nonlinearity in reactive distillation model arises because of
complex processing configurations, which involves the interaction of the reaction kinetics
and distillation concept of vapor-liquid equilibrium. Moreover, the desire for high
conversion, selectivity and product purity increases the process nonlinearity. Luyben [1]
pointed out that the response of distillation system becomes highly nonlinear as the purity

level increases more than 98%.
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Although simplified modeling of distillation columns for design of linear
multivariable controllers has a long tradition [2-4], there is still no consensus on what
constitute an adequate linear model of reactive distillation, on the physical effects to be
retained, and on a recommended approximation method that will not lead to a false
conclusion. These questions can only be addressed by a quantitative comparison of an
approximate linear model to that of nonlinear rigorous model.

In the previous chapter, a linearized state space model for reactive distillation was
formulated. The present work compares the performance of a linearized dynamic model
of reactive distillation system with that of a nonlinear model with the sole aim to come up
with some conditions and general guidelines under which a linear process model could be
applied in model-based-control applications of reactive distillation. The effect of model
stability on the performance of the approximate model is explored. The open-loop
performance of both linear and nonlinear models in presence of an internal composition
inventory control is demonstrated. An error index is developed to quantitatively analyze

the accuracy of a linear process model.

3.2 Error Index

In order to quantitatively assess the performance and accuracy of a linear process
model as compare to a nonlinear process model, an error index is defined in term of an
Average Relative Error (ARE). The numerical values obtained from nonlinear model are
considered as the real values for the system, while the values obtained from the linear
model are taken as the approximate values. In this sense, an Average Relative Error is

given as:
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real appr

ARE =12abs(7k+)x1oo 3.1)
NI

Yk

re

7. is the real value from the nonlinear model at point k, 7, *™

"is the approximate value

from the linear model at the same point k. n is the number of data points.

3.3 Steady State Design Data

An availability of stable steady state values at the desired operating conditions is a
fundamental prerequisite to developing a successful linear model. In the present study,
two steady state designs are used to examine the system sensitivity to input disturbances
(see Section 3.4). They are termed as a low-conversion and a high-conversion steady
state designs. A high conversion is the steady-state conditions presented in Chapter 2 and
is taken as the base design throughout this study. A low-conversion design is considered
here to justify the consistency of a linearized model as long as the deviation in process
variables due to a disturbance is within the region of the base steady states around which
the model is linearized. Table 3.1 shows the summary of the of two steady state

conditions for open-loop reactive distillation system.



Table 3.1 Base steady state conditions for a high and low-conversion region.

Variables high-conversion | low-conversion
region region
flowrates | Vs (kmol/s) 0.0285 0.0281
R (kmol/s) 0.0331 0.0328
D (kmol/s) 0.0126 0.0119
B (kmol/s) 0.0126 0.0133
Xdis A 0.0467 0.0345
B 0.0033 0.0008
C 0.9501 0.9647
D 0.0000 0.0000
Xbot A 0.0009 0.0519
B 0.0445 0.0822
C 0.0000 0.0000
D 0.9545 0.8658
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3.4 Steady State Sensitivity

The performance of a linear model is based on the sensitivity of the steady state
values to disturbances. The deviation from the steady states when disturbance is
introduced into the system must be small enough and also be within the region of the
steady states used in developing an approximate model. Thus, linearization may lead to
an inaccurate or a false conclusion if the original model exhibits a drastic deviation from
the base steady state region. This would also be true if the nonlinear process model is
unstable under certain disturbances.

Figure 3.1a shows the composition profiles of the column comparing the linear
and nonlinear models when component B fresh feed flowrate (Fp) is increased by 2%.
The linear and nonlinear models show a consistent deviation within the vicinity of the
base steady state composition profiles. As more of the B is fed into the column, the two
models predict the shifting of reactant A profile in the middle of the column downward
and of reactant B profile upward. The shifting down of product D profile in the stripping
section showed by the two models indicates an increase in impurity in the bottoms as a
result of excess of reactant B.

Figure 3.1b shows the steady state temperature profile of the linear and nonlinear
models with 2% disturbance in Fg. There is a consistent deviation from the base steady
state temperature profile, which indicates that a linear model predicts the original
nonlinear model well within the desired steady state region. Note that both the two
models show that the temperature in the stripping section is reduced as a result of more
reactant B in the bottoms, and temperature in the rectifying section is increased because

of the reactant B, which is lost to the overhead.
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Figure 3.2a compares the composition profile for both of the linear and nonlinear
models when fresh feed flowrate of reactant A (F,) is increased by 2%. A linear model
predicts the composition profiles in the vicinity of the base composition profile as it was
developed around that profile. In contrast, a nonlinear model shows a significant
deviation in composition profile from the base steady state values. When there is an
excess of reactant A, the light reactant, there must be an increase in the heat duty to strip
out an unreacted A from product D. Because the heat duty is kept constant in this steady
state analysis, this resulted in reactant A flooding the stripping section as predicted by
nonlinear model. Figure 3.2b shows the temperature profiles of both models under the
same conditions, i.e., ¥2% in Fa. The linear model shows a slight deviation around the
base steady state, whereas the nonlinear model shows a significant change in the
temperature profile along the column. The sharp drop in temperatures predicted by
nonlinear model especially in the stripping section indicates excess of unreacted reactant
A in the zone.

The nonlinear model behavior indicates that the system is open-loop pseudostable
when Fj4 is increased by 2%. The system drifts to another low conversion state. It is
expected that the linear model will not predict the drift since this is a nonlinear
characteristics of the system. However, to verify the linear model applicability when the
system is open-loop stable under a given disturbance, the low conversion state is taken as
a new base (see Table 3.1) and the model is linearized around that design, then similar
disturbance is introduced. Figure 3.3 shows the composition profiles at low conversion

steady state region. Since the system of that state is stable under the same disturbance
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(+2%F,), both linear and nonlinear models show a good matching and consistent
deviations from the low conversion base steady state profiles. This indicates that a linear
model will give good predictions of a nonlinear model when the base steady state design
is open-loop stable under a given disturbance. In contrast, it may lead to a false
predictions whenever the disturbance from the base design is either significant or results

in a drift to another steady state region.

3.5 Robustness of a Linear Model

Assessing the robustness of a linear model under various magnitudes of
disturbances is very important before its applicability can be considered. In this Section,
the performance of an open-loop dynamic linear model is compared to that of a rigorous
dynamic nonlinear model. Two dynamic scenarios are investigated:

1- Open-loop (OL): where only the pressure as well as the base and reflux drum level
inventories are controlled while Fa, Fg, Z., Zp, Vs and R are fixed.

2- Open-loop with internal composition control (OL+IC): in addition to level control
loops, reactant A inventory is controlled through an the internal composition
controller by manipulating the feed flowrate F4.

The process variables considered as sources of disturbances are: feed flowrate of
reactant B (Fp), feed composition of reactant A (Z,) and vapor boilup (Vs). The two
models are excited by a step change of magnitudes 1%, 2%, 5% and 10%. The changes in
Z, are the percentage amount of reactant B in reactant A fresh feed. The average relative
error of all the disturbances studied under various magnitudes is summarized in Table
3.2-3.5. However, the system responses of the two models when Fgp is changed are

presented in detail.



46

Table 3.2 The Average Relative Error (ARE) of open-loop model (OL), without internal

controller
SYSTEM Open Model (OL)
VARIABLE Fp %mol of B in feed A

Magnitude
Variable 1% 2% 5% | 10% | 1% 2% 5% 10%
. XiA 4.09 | 851 |23.82|67.64|15.55|29.73 | 44.69 | 72.10
§ XiB 246 | 6.62 | 15.16 | 45.21 | 9.64 | 12.93 | 16.14 | 39.63
g Xic 224 | 6.21 | 14.71 | 20.09 | 8.62 | 18.33 | 23.33 | 33.29
2 Xip 1.42 | 477 | 1097 | 18.38 | 6.51 | 12.17 | 26.72 | 58.81
5 T 0.05 | 0.21 | 0.54 | 098 | 0.29 | 0.72 | 0.84 1.34
D 0.02 | 006 | 0.67 | 2.60 | 0.02 | 026 | 424 | 11.87
B 0.02 | 0.06 | 0.68 | 279 | 0.02 | 0.26 | 3.88 | 9.78
§ Xpotp | 0.03 | 0.07 | 102 | 428 | 0.10 | 0.65 | 536 | 14.64
) ?:3‘ Xaisc | 001 [ 002 [ 027 [ 1.13 | 020 | 0.44 | 135 | 3.55
£ | 7| Xana | 337 [ 1055 11874 [ 23.89 1421 23.24[32.09 | 3630
c>‘€s Xnpp | 182 | 531 | 6.07 | 1033 | 6.13 | 11.94 | 9.82 | 22.82
s D 0.03 | 0.09 | 0.62 | 2.58 | 0.02 | 0.24 | 3.90 | 11.38
E B 0.03 | 0.09 | 0.61 | 242 | 0.02 | 0.24 | 3.79 9.38

=

- .:é Xbotp | 0.05 | 0.14 | 091 | 3.85 | 0.16 | 0.65 | 4.82 | 13.77
g Xgisc | 0.01 | 0.02 | 021 | 1.01 | 022 | 045 | 1.30 | 3.356
Xafia | 231 | 7.30 | 16.41 | 17.76 | 10.29 | 27.23 | 30.84 | 35.75
X2 | 1.20 | 3.66 | 8.98 | 15.98 | 4306 | 9.66 | 10.81 | 22.31
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Table 3.3 The Average Relative Error (ARE) for open-loop model (OL), without internal

controller
SYSTEM Open Model (OL)
VARIABLE Vs
Magnitude
m 1% | 2% | 5% | 10%
o Xia 14.88 23.99 36.34 71.55
g Xip | 1148 | 1541 | 23.83 | 38.82
g Xic 17.63 31.48 50.86 62.13
2 Xip 11.13 14.74 21.97 23.78
5 T 0.55 0.88 1.01 1.98
D 0.06 0.67 3.01 6.85
B 0.06 0.68 2.96 7.35
§ Xporp | 012 0.43 1.32 1.87
) %‘ Xasc | 0.02 0.21 3.18 | 11.67
_ié DX a4 | 17.21 | 2312 | 33.12 | 59.34
§ Xupp | 843 9.78 13.87 | 25.24
s D 0.07 0.67 2.96 6.58
E B 0.07 0.69 2.65 8.27
=
= 2| Xoap | 011 0.45 1.29 1.44
3
Qa Xasc | 0.02 026 | 324 | 1044
Xora | 1580 | 21.08 | 32.23 | 58.68
X | 711 925 | 14.15 | 24.95




Table 3.4 The Average Relative Error (ARE) for open-loop model with internal

composition controller (OL+IC)

SYSTEM Open Model with Internal Controller (OL +IC)
VARIABLE Fs %mol B in feed A
Magnitude
Variable 1% 2% 5% 10% | 1% 2% | 5% 10%
o Xia 022 062 |323 | 7.33 |0.12 0.44 |243 |5.29
§ X;g |0.18 | 064 |3.00 | 835 |0.12 0.44 |2.17 |6.02
:g Xic 020 | 075 |3.78 |11.46 |0.17 0.61 |3.07 |8.88
2 Xip |0.19 |054 |291 |10.60 |0.10 032 | 142 |6.67
& T 0.04 |0.05 |0.07 | 0.26 |0.05 0.06 |0.13 |0.41
Fa 0.03 |[0.12 |0.66 |223 |0.004 |0.01 |0.06 |0.27
D 0.03 | 0.11 |0.61 |2.05 |0.01 0.05 032 |1.20
Q B 0.002 | 0.01 [0.04 |0.15 |0.02 0.06 |0.38 |1.43
% Xpotp | 0.01 |0.06 |0.30 |0.95 |0.02 0.08 050 |1.92
E Xgisc | 0.01 1003 [0.19 |0.63 |0.01 0.02 |0.11 |0.42
_c% Xaria | 0.01 |0.07 | 039 |1.34 |0.001 |0.01 |0.04 |0.20
E Xopp [0.09 033 | 1.82 596 |0.02 0.07 045 | 1.6l
§ Fa 0.02 |0.09 |048 |1.67 |0.01 0.02 |0.13 |0.51
= D 0.02 |0.08 |046 |1.61 |0.01 0.04 024 |092
E o B 0.002 | 0.006 | 0.04 |0.13 |0.02 0.06 |036 |1.40
§ Xpotp | 0.01 |0.04 |0.25 |0.87 |0.02 0.07 | 042 |1.68
A Xgisc | 0.005(0.02 |0.10 |0.37 |0.002 |0.01 [0.07 |0.26
Xafia | 0.01 |0.05 028 |1.01 |0.003 |0.01 |0.08 |0.37
Xapp | 006 | 025 | 1.36 | 4.54 |0.01 0.05 |0.28 |1.03




Table 3.5 The Average Relative Error (ARE) for open-loop model with internal

composition controller (OL+IC)

SYSTEM Open Model with Internal Controller
(OL +IC)
VARIABLE Vs
T Magnitude
m_ 1% 2% 5% | 10%
. Xia | 269 8.99 34.75 | 55.65
g Xig | 238 6.12 20.83 | 37.56
g Xic | 320 10.83 | 43.06 | 59.55
2 Xip | 235 1027 |17.82]21.69
= T 0.08 0.28 071 | 121
Fa 0.26 0.92 1.30 | 0.37
D 0.18 0.59 1.48 | 4.10
g B 0.07 0.34 025 |5.62
A Xpp 006|012 | 117 | 121
5 Xasc | 0.09 0.34 221 | 10.44
% wn
e Xoria | 0.15 0.55 0.80 | 0.93
§ Xops | 0.92 3.14 3.76 | 1.64
E Fa 0.18 0.64 132 [ 1.35
e
s D 0.15 0.48 1.48 |3.93
E . B 0.04 0.20 025 [5.22
El Xpop |0.06 0.16 1.04 | 1.18
g Xgisc | 0.05 0.20 1.76 | 9.19
Xoria | 0.11 0.40 0.84 [0.92
Xopp | 0.64 2.22 391 |3.98
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3.5.1 Open-loop Model (OL)

In this scenario, the inventory loops incorporated into the system are: the pressure
(controlled by the heat removal from the condenser), the reflux drum level (controlled by
the distillate flowrate) and the base level (controlled by the bottoms flowrate). Figure 3.4-
3.6 show the steady state composition and temperature profiles of the linear and nonlinear
models with 1%, 5% and 10% change in Fg. These results showed that the prediction of
linear model becomes poor as the magnitude of the disturbance is increased. Note that
both temperature and composition profiles along the length of the column show that the
difference between the linear and nonlinear models is most significant at feed trays. This
gives an indication of higher nonlinearity effect in feed trays than any other parts of the
column. There are many reasons that could be responsible for this behavior. First, higher
concentration of reactants in these trays indicates places with higher reaction rates than
any other parts of reactive zone. Second, these trays serve as possible entrance of
disturbances into the column. Third, these trays are the locations in the column with high
interactive effect of reaction kinetics and separation.

Figure 3.7 shows the dynamic response of the bottoms flowrate (B) for both
linear and nonlinear models to an increase with different magnitudes in Fg. This is shown
as an illustration of the output performance of the linear model as compared to that of
rigorous model. The two models show an increase in the bottoms flowrate (B) with
increase in reactant B due to the excess of unreacted B that goes down to the bottoms of
the column. Figure 3.8 compares the dynamic performance of the composition of product

D for the linear model to that of nonlinear model at different magnitude of increase in Fg.
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The two models show a decrease in the concentration of D due to increase in
concentration of reactant B in the bottoms.

In all of the dynamic comparisons that are carried out between the two models,
the linear model shows a good performance at small magnitude of disturbance and the
deviation between linear and nonlinear models increases with an increase in the
magnitude of disturbances (see Table 3.2 an 3.3). The details of linear model accuracy

are discussed in Section 3.6.

3.5.2 Open-loop Model with Internal Composition Controller (OL+IC)

Several papers have reported the use of an internal composition measurement in
the closed-loop control of reactive distillation with multiple feeds to maintain the feeds
stoichiometry [5-8]. The inclusion of an internal composition controller (to balance the
reactants feed stoichiometry) is used to demonstrate the enhancement of open-loop
performance of both linear and nonlinear models. The concentration of reactant A in the
first tray of reactive zone (numbered from the bottoms) is controlled by manipulating the
fresh feed flowrate of reactant A (FA). The P-only controller is used because the objective
of this internal controller is to maintain reactant A inventory and not to fix the
composition at that stage.

Figure 3.9-3.11 show the steady state composition profiles for both linear and
nonlinear models when an internal composition controller is included. The sources of
disturbance are 1%, 2%, 5% and 10% increase in feed Fg. The linear model demonstrates
a better performance and approximation of nonlinear model when compares with the

same results shown in Figure 3.4-3.6, where no internal composition controller is used.
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Figure 3.12 compares the dynamic response of the internal composition controller
(Xnf1,4 and Fa) for both linear and nonlinear models. The disturbances are various
magnitudes of positive step changes in Fg. The increase in the amount of reactant B fed
into the column reduces the internal composition of reactant A. Controllers based on the
two models respond adequately by increasing the feed flowrate Fo to counteract the
gradual buildup of reactant B in reactive zone. The response time of the two models is
comparable at lower magnitudes of disturbance. However, as the magnitude of
disturbance increases linear model responds slower and predicted higher amount of Fu
than that of the nonlinear model. The deviation between the two models increases with
increase in disturbance magnitude.

Figure 3.13 shows the dynamic response of bottoms flowrate (B) for both linear
and nonlinear models to different magnitude of changes in Fg, while the dynamic
performance of the composition of product D for a linear model is compared to that of
nonlinear model at different magnitude of changes in Fg as shown in Figure 14. The
linear system response when an internal composition controller is included shows a good

approximation of rigorous nonlinear model.
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3.6 Accuracy of a Linear Model

In this Section, the accuracy of a linear model with and without internal
composition controller is quantified using the error index defined in Section 3.2. The
quantification of model error based on various magnitudes of disturbance in feed flowrate
Fp, feed composition of reactant A (reactant B in F») and change in vapor boilup (Vs) are
studied. Three major categories were used to classify the Average Relative Error (ARE)
of the system.

1. Bulk steady state: in this category, the ARE of a given variable is averaged out over
the number of stages. For example, the bulk steady state temperature is the sum of
temperature in all the stages divided by the total number of stages.

2. Individual steady state: this is the ARE of a given variable at steady state.

3. Individual dynamic variable: this is the average ARE of a given variable over the time
required to reach steady state.

Table 3.2 and 3.3 present the summary of the average relative error of the system
without internal composition inventory. However, the ARE of the bulk steady state
composition profiles with disturbance in Fp is shown in Figure 3.15. The results indicate
that an approximation of the rigorous model with the linearized model without internal
composition controller could be acceptable when the magnitude change in feed flowrate
is below 6%. Similar conclusion could be reached when the ARE of the system are
quantified based on individual dynamic and steady state of the system variables (see
Figure 3.16). The ARE of the bulk composition in the OC+IC scenario is around 10%
when Fp is increased by 10% while it is ranging between 20-40% if the internal

composition is not included. The ARE of the system is significantly reduced when the
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internal controller is included in the open-loop system (see Figure 3.16 and 3.17), which

suggest that the performance of linear system is acceptable with disturbance magnitude

more than 10% if the ARE tolerance is less than 20%. The details of average relative

error for the OL+IC scenario are presented in Table 3.3 and 3.4.

Figure 3.17 compares the impact of disturbance from different system variables

(i.e. Fg, Z, and Vs) on the performance of the linearized model using their average

relative error (ARE). We have used the bulk steady state temperature profiles for this

comparison because it represents the cumulative effect of system dynamics. Introduction
of disturbance from the feed composition (reactant B in F,) is shown to have higher ARE
than from feed flowrate (Fg). This suggests that disturbance in feed composition affect
the internal composition and increases the system nonlinearity more than that made by
disturbing the system from feed flowrate. Exciting the system by changing the vapor
boilup shows the highest trend of error because it impacts both the reaction kinetics and
the separation capacity of the system, and thus, the system nonlinearity.

The critical performance comparison of the open-loop linear model with and without
the internal composition controller reveals the following important points:

1. The performance of a linear model is improved with the inclusion of an internal
composition controller, which suggests the degree of nonlinearity in a nonlinear
model is reduced when the stoichiometry balance of the feed flowrates entering the
reactive zone is maintained. The average relative error of a linear model when
compared to a nonlinear model is reduced even at higher magnitude of disturbance

when the internal composition controller is included. (see Table 3.2-3.4).
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2. The settling time of a linear model with an internal controller is shorter than that
without an internal controller, which is an indication of better system stability.

3. For implementation purposes, it is recommended to use the linearized model
whenever the ratio of disturbance magnitude to the tolerable model error is not
greater than 1 and that the system is open-loop stable under that magnitude of change.
For example, if the tolerable model error is 20% then the linearized model could be
used for disturbance magnitude up to 20%.

4. Tt is expected that the closed-loop performance (with either single-end or dual-end
quality control) based on a linearized model will be reasonably close to the nonlinear

model.
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3.7 Conclusion

In this study, we have compared the open-loop performance of a linearized
dynamic model of generic reactive distillation system with that of a nonlinear model. An
approximate linear model nicely averages the process nonlinearities when the magnitude
of input change is small and becomes inadequate as the deviation from the base steady
states increases with an increase in the magnitude of disturbance. The effect of various
step input changes on the performance of an approximate model is explored. The linear
model could be used to approximate the behavior of the system if the magnitude of the
disturbance is less than 6% when there is no internal composition controller. When the
internal composition controller is included, the linearized model could be used to
approximate the nonlinear model up to a disturbance magnitude equals to the tolerable
model error provided that the system is open-loop stable. If the system shifts from the
base steady state to another under the influence of a disturbance, then linearizing around
the base steady state will result in a model that provides false conclusion. The
performance and robustness of a linear model is enhanced with the inclusion of an

internal composition inventory control in the open-loop model of the system.
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CHAPTER 4

4 Impact of Disturbance Magnitudes and Directions on
the Dynamic Behavior of Reactive Distillation

4.1 Introduction

Although reactive distillation might be an attractive alternative to the
conventional multiunit processes, it can be effective for only a fairly small class of
chemical systems because of some inherent limitations. Reactive distillation is
particularly possible when reactants and products possess relative volatility such that a
high concentrations of reactants and low concentrations of products are maintained in the
reaction zone. The reaction rates must be comparable to those in the reactor at
temperature suitable for distillation. The potential advantages of reactive distillation
could be negated by improper choice of reactant to be run in excess in the reactive zone
whenever it is needed to avoid substoichiometric balance. Thus, it is possible to decrease
conversion by increasing the amount of catalyst under certain circumstances [1].
Increased separation capability could decrease process performance [2].

Successful commercialization of reactive distillation technology requires careful
attention to the modeling aspects, including column dynamics, even at the conceptual
design stage [3]. The design and operation issues for reactive distillation systems are
considerably more complex than those involved for either conventional reactors or

conventional distillation columns. The introduction of an in situ separation function
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within the reaction zone leads to complex interactions between thermodynamic vapor-
liquid equilibrium, intra-catalyst dilution (for heterogeneously catalyzed processes) and
chemical kinetics.

Another area of concerns in the study of reactive distillation system is the impact
of disturbance magnitudes and directions in dynamic behavior of both open-loop and
closed-loop model of reactive distillation. In a typical reactive distillation column, the
regions of intense mass transfer are in the middle of the column where the reactive zone
is usually located, while the ends of column are essentially used for purification. These
regions are more sensitive to disturbance directions as compared to the ends of columns.
The effectiveness of disturbance suppression in a multivariable control system can
depend strongly on the direction of disturbance [4].

This work investigates the dynamic behavior of high-purity/high-conversion
generic reactive distillation system. The effect of disturbance magnitudes and directions
on the stability of both open-loop and closed-loop system of reactive distillation is
quantitatively explored. The open-loop performance of the system is explored with and
without the inclusion of internal composition inventory controller. The impact of certain
inventory control loops on the dynamic stability of the system is studied. This
investigation is essential to gain a better understanding of this generic class of reactive
distillation and to examine the applicability of the developed process models in an

advanced process control of the system.
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4.2 Dynamic Scenarios

Considering the same reactive distillation process shown in Figure 2.1, the effect
of disturbances is studied to investigate the system dynamic performance. The dynamics
of the system under these changes were studied for three scenarios:

1- Open-loop (OL): Under this scenario, two cases are investigated:

I. Open-loop dynamics I (OL-I): reflux rate is fixed by changing reflux ratio and
reflux drum level is controlled by distillate flowrate.

II. Open-loop dynamics II (OL-II): reflux ratio is fixed by changing the reflux rate
and reflux drum level is controlled by distillate flowrate.

2- only the level control loops are closed while Fa, Fg, Z, and Z, Vs and R could be
sources of disturbance.

3- Open-loop with internal composition control (OL+IC): in addition to level control
loops, the internal composition is controlled by feed flowrate. This reduces the
number of disturbance by assigning one of the feed flowrates to control the
composition

4- Single-end control (CL): in addition to OL+IC loops, a composition loop is closed by
manipulating either Vs or R to control one of the product compositions which, in turn
reduces the disturbance variables by one more.

The main process variables that are considered as sources of disturbances are:

1- Feed flowrates (Fa kmol/s, Fg kmol/s)
2- Vapor boilup (Vs kmol/s)
The effect of feed compositions (Z, and Zp) disturbance and reflux flowrate (R

kmol/s) disturbance were studied and will be discussed briefly as they are somewhat
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similar to those of flowrates and vapor boilup disturbances. The kinetic and physical
properties as well as the steady state operating conditions for the system is the same as
presented in the Chapter 2.

This study considers the model configuration where vapor boilup and reflux
flowrate could be the manipulated variables if the system is operated in closed-loop
mode. In order to investigate the dynamic behavior of the system, three magnitudes (2%,
5%, and 10%) in both positive and negative directions are studied for each of the process

disturbance variables.

4.3 Open-loop Model (OL)

4.3.1 Feed Flowrates

Figure 4.1 shows the responses of the system to different step changes in both
magnitudes and directions of feed flowrate of reactant B (Fp). In this case, the reflux rate,
vapor boilup, feed flowrate of reactant A and feed compositions are kept constant at their
steady state values. Figure 4.1a shows the impact of this disturbance in the kinetic region
of reactive distillation. Excess of reactant B, the heavier reactant, in the reactive zones
slightly increases the rate of product formation. This is primarily due to fact that reactant
B will concentrate more in the liquid phase and will react with the available reactant A
whenever it is available in excess.

On the other hand, reducing Fg (see Figure 4.1) has a severe impact on the
dynamic behavior of the system, and consequently its stability. Reducing Fg by 2%
causes the total product formation rate to drift to another steady state. Further decrease in

feed flowrate Fp will result in an unstable operation as the bottoms flowrate will increase
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unbounded (Figure 4.1) and consequently the distillate flowrate drops to zero. The impact
of excess of reactant B concentration in the column is reflected by an increase in bottoms
rate in similar proportions to the magnitude of disturbance as shown in Figure 4.1b.
Increasing Fp has the advantage of increasing the conversion and enhancing the system
stability, yet it decreases products purity as shown in Figure 4.1c as well as reducing
reactant A concentration in the reactive zone as shown in Figure 4.1d.

Figure 4.2 shows the responses of the system when reactant A flowrate (Fa) is
changed. Figure 4.2a shows a sharp drop in total product formation rate when Fj is
increased. Increasing the flowrate of reactant A in the column seems to have the same
effect as decreasing the flowrate of the reactant B (Fp), i.e. drift to new steady state. The
rapid buildup of reactant A concentration in the reactive zone decreases the system
stability because an excess of a more volatile reactant A will demand an increase in heat
duty of the system (which is fixed in this scenario) in order to strip out any unreacted A
from product D. On the other hand, decreasing the feed flowrate of reactant A decreases
the total product formation rate in reactive zone without drifting or destabilizing the
system.

Drifting the system either to another state or to completely unstable conditions when
Fao is increased or when Fp is decreased is closely associated to the resulted
substoichiometric balance of the reactants in the reactive zone. This is further studied by
investigating the reaction kinetics on reactive trays by £2% change in Fo and Fp as
disturbances. Figure 4.3 shows the effect of disturbances on reaction rate in some
selected reactive trays. The trays in reactive zone are numbered from bottoms to the top.

Both decreasing the feed Fg and increasing the feed F, in the column results in
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Figure 4.1 Dynamic responses of the system to different magnitude changes in feed Fg.
(a) total reaction rate; (b) bottoms flowrate; (c) composition of product D in the

bottoms; (d) internal composition of reactant A in tray nfl.
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Figure 4.2 Dynamic responses of the system to different magnitude changes in feed Fa.
(a) total reaction rate; (b) bottoms flowrate; (c) composition of product D in the

bottoms; (d) internal composition of reactant A in tray nfl.
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insufficient concentration of reactant B, and consequently decreases the rate of products
formation in the reactive zone. The effect becomes most significant in the first reactive
tray (nfl) where the product formation rate is the highest at the base steady state before
introducing any disturbances. The highest steady state reaction rate is in tray nfl of
reactive zone which is reasonable as that is where we have the highest concentration of
reactant A, the limiting reactant in liquid phase. The effect of reactant B deficiency is the
rapid accumulation of concentration of reactant A in the stripping section, which will
require more heat to vaporize it. Since in this scenario (OL) the separation capacity is
fixed by keeping both the reflux rate and vapor boilup constant, decreasing the feed Fg or
increasing the feed Fo will result in flooding the stripping section with an unreacted
excess A, which in turn destabilizes the system or shift it to another state. Figure 4.5
shows how the temperature distribution in the column is affected with disturbance
directions in feed streams.

In general, increase in Fg has similar effects as decrease in F5. One would expect
the other way around is true, i.e. decrease in Fp or increase the feed Fa, would have the
same effect, but it is not. Reducing the feed flowrate of reactant B more than 2% is
intolerable as it makes the system unstable, while increasing Fa up to 10% merely drift
the system to another stable steady state. The reason behind that is as follows: when Fj, is
increased at fixed vapor boilup, more reactant A will leave the bottoms of the column as
excess reactant. On the other hand, when Fg is reduced, less than the required amount of
reactant B will be available, which upsets the reaction kinetics and thus destabilizes the

system.
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In order to assess the open-loop dynamics of the system when the reflux ratio is fixed,
Figure 4.4a compares the total reaction rate responses of OL-I in the reactive zone to
those of the OL-II when a 10% increase in feed flowrates is introduced. As can be seen,
there is no much difference in the responses of OL-I and OL-II. On the other hand, Figure
4.4b shows the effect of negative disturbances in feed flowrate of reactant B (Fg) for the
OL-I and OL-II cases. Introducing a negative disturbance in Fg has a more severe impact
on the dynamics of the system, and consequently its stability when reflux rate is fixed
(OL-I) than when reflux ratio is kept constant.

Generally, open-loop dynamics of reactive distillation will give a better
performance when the reflux ratio is fixed instead of reflux rate. However, if fixing the
reflux rate is preferable or needed, the inclusion of internal inventory composition
controller and/or single-end controller (composition or temperature) as discussed in the

next sections are expected to resolve most of the instability problems.
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4.3.2 Feed Composition

In the steady state design, the feed composition of Fa is 100% A and similarly
100% B for Fg_ In order to study the effect of feed composition, two cases are studied, in
which feed composition is changed by introducing some impurities from the other
reactant, i.e. impurity of reactant A in Fg and impurity of reactant B in F5. Below are the
two feed compositions considered:

1. 2%, 5% and 10% of reactant B in feed F»
2. 2%, 5% and 10% of reactant A in feed Fg

Figure 4.6 shows the effect of change in feed compositions on the net reaction
rate in the reactive zone. In general, introducing reactant B in F, is expected to be
tolerable similar to increasing Fp since both of these changes will result in more of
reactant B in the system, but as they differ in the point where this increase is introduced,
the dynamic behavior is different. The reaction rate decreases because of the reduction of
reactant A in the reaction zone as a result of decrease in the amount of fresh reactant A
entering the column.

In general, introducing reactant B in Fa is found to be tolerable similar to
increasing Fg since both of these changes will result in more of reactant B in the system,
but as they differ in the point where this increase is introduced, the dynamic behavior is
different. The reaction rate decreases because of the reduction of reactant A in the
reaction zone as a result of decrease in the amount of fresh reactant A entering the
column. On the other hand, introducing reactant A in feed Fp is intolerable because of the

same reason that makes a decrease in Fp intolerable, namely the excess of reactant A in
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the column while fixing separation capacity. The disturbance in feed compositions affects
the system dynamics and increases its nonlinearity more than disturbance in feed

flowrates.

4.3.3 Vapor Boilup

Figure 4.7 shows the dynamic responses of total product formation rate, bottoms
flowrate and some compositions to different magnitude of changes in the vapor boilup
from the reboiler. A small decrease in vapor boilup from its base steady state value makes
the system unstable. This might be largely due to the interference effect of fractionation
on the system’s reaction kinetics. Reducing the heat duty of the reboiler, while the reflux
rate and the feed inputs remain constant adversely affect the separation capacity of the
column. Thus, less heat is available to vaporize unreacted A to the vapor phase. This in
turn decreases the concentration of reactant A in the reflux rate and causes
substoichiometric balance of the two reactants in reactive zone.

Increase in the amount of vapor flowrate at fixed reflux rate will increase the
distillate flowrate and slightly decrease the bottoms product. In addition, the total reaction
rate slightly decreases because the column fractionation capacity is affected, and more
heat is available to enrich volatile components in vapor phase. This invariably increases
bottoms product purity and leads to a gradual depletion of reactant A in the reactive zone
as more of light reactant is being stripped out from the reactive zone. Thus, more of
reactant A is lost in the overhead and the liquid concentration of reactant A is reduced.
This suggests that increased separation capacity could decrease process performance (i.e.

conversion and product purity).
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It is observed that decreasing the vapor boilup has the same effect on the open-
loop dynamics of the system as increasing the reflux flowrate at constant feed conditions
as shown in Figure 4.8. Increasing the reflux rate with constant vapor boilup forces the
bottoms flowrate to grow unbounded because it returns more volatile reactant A back into
the reactive zone than needed. This will necessitate increase in energy consumption of the

system.

4.4 Open-loop Model with Internal Controller (OL)

In a typical distillation column where the feed streams are considered to be set by
upstream unit, and operating pressure is assumed fixed by heat removal from the
condenser, the inventories that must be controlled are essentially the liquid level in the
reflux drum and the base of the column. The investigation on the open-loop dynamics in
the previous section has revealed the impact of stoichiometric imbalance of the reactants
entering the column. Thus, the inclusion of internal composition inventory control is
necessary to improve the system dynamics.

In this study, the concentration of reactant A on the first tray of reactive section is
controlled by manipulating the fresh feed of component A using a Proportional-only
controller. The P-only composition controller is used not necessarily to keep the internal
composition of reactant A at constant value but to manipulate the fresh feed flowrate of
reactant A to balance the feeds stoichiometry. The effect of disturbance in feed flowrate
of reactant B, feed composition, vapor boilup and reflux rate have been investigated in
this Section but only the results for changes in feed flowrate of reactant B and vapor

boilup are shown.
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4.4.1 Feed Flowrates

The responses of the system to different magnitudes of disturbances in feed Fg are
shown in Figure 4.9. The system is found to be open-loop stable when the flowrate of
reactant B is increased or decreased. By comparing the results shown in Figure 4.9 to
those shown in Figure 4.1, the clear improvement in the system dynamics is the result of
including the internal composition controller which enforces the stoichiometric balance in
the reactive zone. Similar results are obtained when disturbance in feed composition is
introduced.

Figure 4.10 summaries the steady state composition distributions in the column
with different magnitudes of disturbance in feed flowrate of reactant B when the internal
composition controller is included. As more of B is fed into the column, the internal
composition of the reactant A is decreased and the controller responds appropriately by
increasing Fa to balance the increase in Fg. The same argument is valid when Fjp is
reduced as well. Note that the system responses take a longer time to reach steady state
when Fg is reduced as compare to when it is increased with equal magnitude. This
indicates how the performance of any control structure on reactive distillation is

dependent on the magnitude and direction of the disturbance.
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4.4.2 Vapor Boilup

Figure 4.11 shows the responses of the bottoms flowrate the total reaction rate
when the vapor boilup is increased up to 10% and when decreased by 2%. Similar to OL
scenario, the results show that the inclusion of internal composition inventory is
insufficient to handle the decrease in vapor boilup below its optimum condition. The
inclusion of internal composition controller does not address the problem of disturbing
the separation capacity of the column when either the vapor boilup or reflux rate is
changed. Therefore, it is expected that this scenario would be similar to the OL scenario
for this class of disturbances.

In general, comparing the open-loop model with and without internal composition
controller shows that disturbances in feed streams are better handled in presence of
internal composition inventory controller because the controller acts to maintain the feeds
stoichiometry. In addition, the settling time is generally far shorter when internal

composition controller is included as compared to that without it.
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4.5 Single-end Control (CL)

The introduction of internal composition inventory controller improves the
performance of open-loop reactive distillation system under disturbances in feed flowrate
and composition in both directions. However, controlling the internal composition alone
is shown in the earlier section to be inadequate to sustain the system stability whenever
there is decrease in vapor boilup or increase in reflux rate. Steady state rating analysis [5]
suggests that a simple single-end control structure could be developed for the system
because keeping the reflux ratio of the system and not reflux rate constant enhance a
better performance [6]. The composition of C in the distillate is controlled at 95% by
manipulating the reflux rate. With the inclusion of this control loop, we are able to
increase or decrease the vapor boilup to study its impact on both system stability and
dynamic behavior.

Figure 4.12 shows the responses of the system when the vapor boilup is changed
by £10%. In this scenario, the system dynamics is improved to tolerate changes in vapor
boilup as the overhead controller will adjust the reflux rate to maintain the required
separation capacity. Changing the vapor boilup in either direction changes both the reflux
and distillate flowrate in order to maintain the required separation capacity (i.e.
maintaining the same reflux ratio). It is interesting to note that the total reaction rate does
not change significantly from its base steady values of 0.01210 kmol/s when the vapor
boilup is increased by 10%. (i.e., from 0.01210 kmol/s to 0.01211 kmol/s, which is about
0.08% increase in total reaction rate). On the other hand, decreasing the vapor boilup by
the same magnitude of 10%, leads to a significant reduction in total reaction rate from

0.0121 kmol/s to 0.0112 kmol/s (i.e. 7.5% decrease in total reaction rate). This clearly
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demonstrates that a negative change in vapor boilup has more impact on the system
behavior and influence the performance of the controller more than a positive change in
vapor boilup. Examining closely the response of the product compositions, it can be
easily noticed that the controller response is slower and has a longer settling time with a
negative change than a positive change in vapor boilup. The impurity in the bottoms
product is very significant with a negative change in vapor boilup due to the presence of
more unreacted component B.

In general, the presence of single-end controller makes the system generally
stable, but the effect of the disturbance magnitudes and directions as demonstrated in this
work has a significant influence on the performance of the controller. Therefore this
factor must be recognized and be considered in the designs and implementation of

closed-loop reactive distillation system.
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Input Direction OL OL+IC CL
Fa + Trigger the system sharply to N/A N/A
another steady state
- Stable
Fp + Stable Stable Stable
- OL-I: trigger the system to Stable Stable
another state with small
disturbance and unstable
with high disturbance,
OL-II: stable
Vs + Stable Stable Stable
- OL-I: Unstable, OL-II: stable Unstable Stable
R + OL-I: Unstable, OL-II: stable Unstable
- Stable Stable Stable
Change in Z, OL-I: Trigger the system Stable Stable
sharply to another steady
state and unstable at high
disturbance , OL-II: Stable
Change in Z, Stable Stable Stable

Note: OL = Open-loop

OL+IC = Open-loop with Internal Controller
CL  =Closed-loop

N/A = Not a disturbance variable in this scenario
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4.6 Conclusion

The effects of disturbance magnitudes and directions on the dynamic behavior of a
high-purity\high-conversion reactive distillation have been investigated. Table 4.1
summarizes the dynamic responses of the system under the three scenarios and for the
various disturbances that are investigated. This study demonstrates that open-loop
reactive distillation system gives a better performance when operated with fixing reflux
ratio instead of reflux rate. Excess of less volatile reactant in two-reactant-two-product
generic reactive distillation has been found to enhance open-loop stability, but decreases
the products purity. On the other hand, excess of more volatile reactant triggers the
system to another steady state. Change in the manipulated variables (i.e. vapor boilup and
reflux rate) in some directions in open-loop system is intolerable due to their effect on
both the reaction kinetics and fractionation capacity of the column.

The performance of the open-loop system is improved significantly with the
inclusion of an internal composition inventory control to balance the reactants feed
stoichiometry. However, this has been shown to be insufficient when there is a change in
either vapor boilup or reflux flowrate in certain directions due to the disturbance this
makes to the separation capacity of the system. A single-end control along with internal
composition controller is found to be the minimum required to ensure the systems

stability.
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CHAPTER 5

5 Performance Assessment of Different Control
Structure for Generic Reactive Distillation Using
Linear and Nonlinear Process Models

5.1 Introduction

The main goal of process control is the design and implementation of effective
control systems that will maintain the process conditions close to its desired steady-state
value. Even though a reactive distillation system is inherently nonlinear, the essence of
effective regulatory control is to ensure that deviations from base the steady state will be
small, in which case the behavior will be essentially indistinguishable from that of a
linear system. It is in this sense that the linear model-based controls could be applicable.

The present availability of computer software and hardware, which has made it
possible to utilize a rigorous dynamic model in process control, will tend to pose a
question as to why do we need an approximate linear model? The use of a linear model
can enhance our understanding on the process observability and controllability. Without
proper understanding, it is almost impossible to design a good control structure. The use
of a linear model significantly reduces the speed of computation, which becomes very
critical when a plant model, for instance, is needed for online control. Simple models are
desirable in computer-based control for optimization and advanced regulatory control
application, where online implementation limits the use of complex models. For proper

control of reactive distillation, an internal composition needs to be obtained [1-3].
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Most of the established estimation techniques (i.e., Kalman filter and Luenberger
observer) that could be applied to obtain the internal composition use a linear model.
Therefore, the use of a linear model in model-based control is needed and will
significantly reduce the complexity involved in the design and implementation stages as
compared to when a rigorous nonlinear model is used. Even nonlinear estimators such as
an extended Kalman filter and an extended Luenberger observer use a linear model
approximation in their design procedure. [4, 5]

The present work compares the performance of different control structures when
implemented on a linearized process model to that when they are implemented on a
nonlinear model for a generic reactive distillation. The idea is to investigate how good of
a control can be achieved if a control structure is designed based on an approximate
process model. This is an important assessment step before using the linearized model in
model-based control applications. In this work, three control structures are implemented
to assess the closed-loop performance of a linear process model compared to that of a
rigorous nonlinear model. The control structures are dual-end composition control,
single-end composition control and inferential composition control using temperature
measurement. All of the control structures use a composition analyzer in the reactive
zone to detect the inventory of one of the reactants so that a fresh feed can be

manipulated to balance the feeds stoichiometry.

5.2 The Process

In this chapter, we considered the same reactive distillation system discussed in
Chapter 2. An equal stoichiometric amount of fresh feed flowrate of 0.0126 kmol/s is

used for both reactants A and B. The conversion and purity are fixed at 95%. The initial
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holdup in each tray is 1 kmol. The column has seven stripping trays, six reactive trays

and seven rectifying trays. The operating pressure is 9 bar.

5.3 Control Structures

The operation of a multivariable process like reactive distillation column has to
satisfy several control objectives. Typical objectives are to ensure the stability of the
process, to produce specified products, and to optimize the operation economically.
Because the various objectives may be of quite different importance and normally require
different control actions, it is usually desirable to explore a wide variety of control
structures in order to meet different objectives.

Three control structures are explored to compare and assess the closed-loop
performance of a linearized model with that of a nonlinear model. All structures are
single-input-single-output (SISO) structures with PI controllers except in level controls
where P-only controllers are used. For each controller, a relay feedback test [6] is
employed to obtain the ultimate gain and frequency. The controllers are tuned using the
Tyreus-Luyben tuning method [7]. The design of inventory controllers is carried out first.
The pressure is controlled by heat removal from the condenser. The assignment of
manipulated variables for level controllers is based on the principle of choosing the
stream with the most direct impact [8]. The base level is controlled by manipulating the
bottoms flowrate, while the reflux drum level could either be controlled by manipulating
either the distillate flowrate or the reflux flowrate. All of the valves are designed to be
half open at the initial steady state. Two measurement lags of 30 s each are used in all

composition or temperature loops.
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All of the three control structures considered use a composition analyzer in the

reactive zone as proposed by Al-Arfaj and Luyben[1] to detect the inventory of one of the

reactants so that fresh feed can be manipulated to maitain the feeds stoichiometry. The

concentration of reactant A on the first tray of the reactive zone (numbered from the

bottoms) is controlled by manipulating the reactant A fresh feed flowrate. Three types of

disturbances are investigated as follows:

1.

Change in feed flowrate of component B (Fg): in this disturbance, Fg is increased by
10% and 20% and decreased by 20%. This disturbance is applied to all of the control
structures.

Feed composition of reactant B: the reactant B feed is 100% mol of B. This feed
composition disturbance will introduce reactant A in the feed composition of reactant
B (Zy). Two magnitudes are used: AZy= 5% (where the feed of reactant B becomes
95% mol of B and 5% mol of A). AZy= 10% (where the feed of reactant B becomes
90% mol B and 10% mol A). This disturbance is applied to all control structures.
Setpoint changes: in this disturbance, the composition setpoint of the composition
controller is changed from 95% mol of D in the bottoms to 92% and 98%. This is
applied to the first two control structures (see sections 4.1 and 4.2). For the third

control structure (section 4.3), temperature setpoint changes of + 2 K are tested.

5.3.1 Control Structure |

Figure 5.1 shows a dual-end composition control structure. The reflux drum level

is controlled by manipulating the distillate flowrate. The purity of both products is

maintained at 95%. In the distillate products, the composition of component C in the
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distillate is controlled by manipulating the reflux flowrate from the condenser, while the
bottoms composition of component D is controlled by manipulating the vapor boilup.

Various magnitudes of disturbance in the feed flowrate and feed composition are
studied to assess the closed-loop performance of this control structure based on linear and
nonlinear models. Figure 5.2 shows the response of the system for -20%, +10% and
+20% changes in the feed flowrate of reactant B (Fg). Two curves are shown in each of
the plots comparing the closed-loop performance of this control structure when a linear
model is used to that when a rigorous nonlinear model is applied. The results show that
this control structure is able to reject the load disturbance effectively with the two
models. While the responses of controlled variables in both models show an excellent
agreement, the responses of manipulated variables in linear model show a slight variation
from that of a nonlinear model in an attempt to satisfy the same control objectives. This
variation is seen to increase with an increase in the magnitude of the disturbance.

Under open-loop operation where only level inventories are controlled, the
process will drift from the base steady state to a lower conversion state when Fg is
decreased with small magnitude and will be unstable at higher magnitude of the
disturbance [9]. The linearized model will not predict this drift because it is a nonlinear
feature of the process. Even though the drift will not take place in the closed-loop
scenario because the controllers will adjust the manipulating variables to maintain
product purity, the process dynamics during transit region will not be properly described
in the linear model. The open-loop stability of the nonlinear model must be investigated

before the linearized model is used in model-based control applications. The use of a
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linear model is inappropriate if the system is open-loop pseudo stable (drifts to another
steady-state region) or unstable under disturbance.

Figure 5.3 compares the closed-loop performance of a linear model to that of a
nonlinear model when 5% and 10% impurities of A are introduced in the feed
composition of Fg. Under open-loop operation, introducing reactant A impurities in the
reactant B feed allows the process to drift sharply to another state at lower impurity
magnitudes and destabilizes the process completely at higher magnitudes of impurity [9].
Even though the composition controllers are able to meet the control objective of
rejecting the feed composition disturbance, the response of a linear model is seen to be
slower than that of a nonlinear model, thus making the time to reach the desired steady
state longer than that when the controller is designed based on a linear model. The
performance of this structure deteriorates with an increase in the magnitude of the
disturbance when a linear model is used. Again, this shows the inapplicability of the use
of linear models in control system design when the process is open-loop pseudostable or
unstable under certain disturbances where the linear process model could not describe the
nonlinear process behavior.

Figure 5.4 shows the responses of composition controllers with setpoint changes
in the composition of component D in the bottoms product for both closed-loop linear
and nonlinear models. The results show that setpoint changes by decreasing the bottoms
purity from 95% to 92% or increasing the purity from 95% to 98% can be handled. The
composition controllers appear to be effective and robust with both linear and nonlinear

models. The results shown in Figures 5.2-5.4 point toward an interesting observation.
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The control system when controllers are designed based on a linear process model can
achieve the control objectives but would typically underestimate some or all of the input
characteristics (the magnitude, the rate, and the speed of change of manipulated
variables) when the process is open-loop pseudo stable or unstable under the influence of
disturbance. Even though the controlled variable will eventually settle to the required
level, the manipulated variable may differ not only in the transit region but also in the
amount required to get the controlled variable to the required level. If the resulting
manipulated variables from the two models are comparable, then this underestimation in
the input characteristics could be overcome by properly designing the control valves to be
more aggressive than what would otherwise be designed based on the closed-loop

performance of linear models.

5.3.2 Control Structure II

Although a dual-end composition control structure might have the advantage of
energy savings, the additional expenses and the risk associated with designing and
operating a more complex control system may not be justified in some systems where a
single-end control system is feasible. The single-end composition control loop is a simple
SISO system, so it can be easily tuned and give a faster response because of the reduced
effect of loop interaction.

To further assess the impact of open-loop stability on the extendibility of control
systems designed based on linear models, various control arrangements of the reflux
drum level are investigated when the distillate product is not controlled. Three level

control schemes are considered as follows:
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III. Scheme I: the reflux ratio is fixed, and the reflux drum level is controlled by the

reflux flowrate.
IV. Scheme II: the reflux ratio is fixed, and the reflux drum level is controlled by the

distillate flowrate.
V. Scheme III: the reflux flowrate is fixed, and the reflux drum level is controlled by the

distillate flowrate.
As discussed in section 4.1, a reduction on Fg by 20% destabilizes the system under the
open-loop operation when both the reflux flowrate and vapor boilup are kept constant.
Scheme 3 is mimicking that open-loop scenario because the reflux flowrate is kept
constant, while the other two schemes are not because the reflux flowrate will vary to fix
the reflux ratio. Therefore, it is expected that the linear process model will be useful for
schemes 1 and 2 but will not be appropriate to use for scheme 3 because the open-loop
instability.

Figure 5.5 shows the closed-loop response based on the two process models for
the three schemes when a 20% reduction in Fg is introduced. The result in Figure 5.5
indicates that the process performance under schemes 1 and 2 are essentially similar and
the control responses of both linear and nonlinear models are close and comparable.
Therefore, which of the flowrates is used to control the drum level when the reflux ratio
is fixed is not critical. This result also indicates that fixing the reflux ratio is more
suitable when single-end control is used because it filters the disturbance impact on the
system.
When the reflux flowrate is fixed (Scheme 3) instead of the reflux ratio, a

different behavior is observed. Fixing the reflux flowrate will not filter the disturbance
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impact to the system and thus could destabilize the system if the process is operated at a
critical region of stability. Similar to the observation in section 5.3.1 about the impact of
open-loop stability on the closed-loop performance based on linear models, it is shown in
Figure 5.5 that the response of the linear system when the reflux flowrate is kept constant
is not matching the nonlinear response in the transit region. The prediction of the
manipulated variable behavior from the linear model completely misses the trajectory
suggested by the nonlinear model. The reason for this behavior is the fact that the system
drifts to another state at this disturbance and the nonlinear model will calculate the
required input to get the product purity to the required level from the new state. Because
the linear model cannot predict the drift, the trajectory suggested by the linear model does
not take this into consideration, which resulted in this inappropriate prediction of the
transit behavior. In such a case, we cannot use the linear model as a basis for developing
the control system of the process. On the other hand, when the change in Fp is made in
the positive direction, the system is open-loop stable even with the fixed reflux flowrate
configuration, and consequently it is expected that the performance based on the linear
model will be similar to that based on the nonlinear model. A comparison of the
performance based on the two models for this disturbance is shown in Figure 5.6, which
is in line with our expectations.

The scheme 1 configuration is considered in detail to compare the closed-loop
performance based on a linear model to that based on a nonlinear model for the single-
end composition control structure. Figure 5.7 shows the single-end composition control
structure based on the scheme 1 configuration. The composition of component D in the

bottoms product is controlled by adjusting the vapor boilup. Figure 5.8 shows the
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performance of this control structure when Fp is increased by 10% and 20% and reduced
by 20%. The responses from both controlled and manipulated variables when an
approximate linear model is used are in agreement with those when a rigorous nonlinear
model is used. The results demonstrated that changes in throughput can be handled using
a linear model. The response of the distillate product composition of component C
exhibits some variation from that of a nonlinear model because it is not controlled, and
this difference increases greatly with an increase in the disturbance magnitudes. This is
expected because the two models are not identical.

Figure 5.9 shows that a single-end composition control structure could also
provide an effective regulatory control of the process when impurities of A are
introduced in the feed composition of the reactant B stream. The linear process model
demonstrates a better performance in feed composition disturbance rejection in a single-
end composition control structure than in the dual-end control (compare the results shown
in Figure 5.9 to those shown in Figure 5.3). Figure 5.10 compares the closed-loop
performance of the linear and nonlinear models based on changes in the setpoint of the
bottoms purity specification. The results demonstrate that a very high purity of the
bottoms product could be achieved with a single-end controller by changing the setpoint

from 95% to 98%.
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Figure 5.7 Single-end composition control structure.
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5.3.3 Control Structure III

Because the direct composition control structures discussed in the above Sections
inevitably require the use of an expensive and unreliable composition analyzer, it is
important to study how the linear model will behave when a simple temperature control
system is used. The temperature sensor is typically fast, inexpensive and reliable. It could
provide an indirect measurement of composition. Figure 5.11 shows a single-end
temperature control structure. The reflux drum level is controlled by adjusting the reflux
flowrate, while the reflux ratio is kept constant by changing the distillate flowrate.
Because the control objective of this structure is to maintain the product composition as
close as possible to its desired specification, the temperature measurement is placed on
the most sensitive tray in the stripping section. The temperature on tray 2 (numbering
from the bottoms) is measured and controlled by manipulating the vapor boilup.

Figure 5.12 compares the closed-loop performance of this control scheme using a
linear model to that using a rigorous nonlinear model with different magnitudes of
disturbance in the feed flowrate of reactant B. The results demonstrate that the
temperature control performs well by keeping the purity of the bottoms product as close
as possible to the desired value. The system responses under this control structure to feed
composition disturbances are shown in Figure 5.13. Even though the bottoms purity is
not maintained exactly at the desired level, this control structure is able to reject feed
composition disturbances by keeping the bottoms purity within reasonable bounds using
a linear process model. Note that there is a significant difference between the responses
of linear and nonlinear process models for component C in the distillate product because

it is not controlled. This signifies that the use of a linear model in a single-end control
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structure could be restricted to a chemical system where the purity of one component is
desirable. Alternatively, the process could be designed with higher uncontrolled product
purity to compensate for any inferior control performance.

The dynamic responses of the two models for +£2 K step changes in the
temperature are shown in Figure 5.14. These results demonstrate that the temperature
setpoint changes can be easily handled and the system responses of a linear model are
comparable to those of a nonlinear model. An increase in the temperature causes the
controller to increase the vapor boilup, and more heat is available to overpurify the
bottoms product. The distillate purity changes in the opposite direction as expected. On
the other hand, a decrease in the temperature results in a decrease in the amount of vapor
boilup. The effects are an increase in impurity in the bottoms and overpurification of the
distillate product.

All of the responses of a linear model using this structure show a good agreement
when compared to the responses of a nonlinear model under the same control structure.
The exception is in the distillate purity, where the difference in the responses of the two
models becomes increasingly significant with an increase in the disturbance magnitude

because that purity is not controlled.
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5.3.4 General Comparisons and Observations

Probably the most important finding of this work is the robustness and the
extendibility of the control system when designed based on a linear process model. It is
found that the linear process model could be used to develop a robust control system
provided that the control valves are conservatively designed to compensate for the
underestimation of the input characteristics by the linear model. That control system will
be valid only if it is applied in the operating region where the model is linearized around
and if the process is open-loop stable under disturbance. If the process shifts to another
operating region for whatever reasons, then the process model must be linearized around
the new operating region. This observation would be useful for the model-based control
applications.

Comparing the closed-loop performance of linear and nonlinear models in a
single-end (composition or temperature) control structure with that of a dual-end
composition control discussed in section 5.3.1 reveals that the use of a linear model in
single-end control structure gives a better agreement with the nonlinear model than when
the linear model is used in dual-end composition control. The responses of both
controlled and manipulated variables for the two models in single-end control structure
are in better agreement when compare to that in dual-end composition control. The
responses of the system with single-end control are also faster than the responses of the
system with dual-end composition control. This could be due to an increase of
nonlinearity in the system with a dual-end control structure which results from increased
loop interactions. The single-end control suffers the ability to precisely control the

uncontrolled end, but this could be compensated for by overdesigning the process (design
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at higher product purity). It is found that fixing the reflux ratio scheme in single-end

control structure provides better disturbance filtration and process dynamics.

5.4 Conclusion

In this chapter, we have compared the closed-loop performance of three control
structures when based on an approximate linear process model to that when based on a
nonlinear process model for a generic two-product reactive distillation. The control
structures examined are dual-end composition control, single-end composition control,
and single-end temperature control. All of the structures use a composition analyzer in
the reactive zone to detect the inventory of one of the reactants so that the fresh feed can
be manipulated to balance the feeds stoichiometry.

It is shown that an approximate linear model behaves reasonably well compared
to a nonlinear model in a closed-loop system when a disturbance in the process variables
is introduced provided that the system is open-loop stable under that disturbance. Most of
the responses of a closed-loop linear model using three alternative control structures
show good agreement when compared to the responses of a closed-loop nonlinear model
under the same process conditions. It is also shown that the performance of a linear
model is better in a single-end control system than in a dual-end control system. It is
generally recommended to fix the reflux ratio and not the reflux flowrate in the single-

end control schemes.
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CHAPTER 6

6 Design and Implementation of Linear State
Estimators in Reactive distillation

6.1 Introduction

The increasingly more aggressive global competition for the production of higher
quality products at lower costs has placed considerable pressure on the process engineers
to operate the existing plants more efficiently. Moreover, the effective control and
monitoring of a process requires sufficient information on the state of the process, which
is uniquely specified by the process state variables. In practice, online measurements of
all the variables of a process are rarely available, and in such cases, reliable information
on the immeasurable states is obtained by using the state estimator. The state observers/
estimators are dynamic models that are capable of inferring useful but inaccessible state
variables from the available measurements. They can also play a key role in the process
control and monitoring wherein an early detection of hazardous conditions is needed for a
safe operation [1].

Several estimation techniques are available in the literature. These include the
static partial least-square regression estimation [2], Kalman filtering [1, 3, 4], the state
estimation through optimization formulation [5], high gain observers [6], Luenberger
observer [7, 8], and a moving horizon state estimation [9]. Among these estimation
techniques, the Kalman filter and the Luenberger observer, which have been in use since

the early 60s have gained a wider application both in the academia and industry, though
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they have undergone several modifications over the years. Because, this work is the first
on the application of state estimation in reactive distillation system, it is reasonable to
start with these two techniques and assess their applicability in reactive distillation
control.

In Chapter 5, we have presented different control structures for a generic reactive
distillation using the linear and nonlinear process models. It is shown that an approximate
linear model behaves essentially similar to a nonlinear model in a closed-loop system
when the deviation of process variables resulting from the disturbance is within the
region of the base steady state [10]. However, a composition analyzer was assumed
available whenever a composition measurement is needed for control purposes.

This chapter focuses on developing and assessing the performance of the linear
state estimators based on the Kalman filter and the Luenberger observer design methods
for an ideal reactive distillation column. Internal compositions which are needed for
proper control of reactive distillation will be estimated via the state estimator instead of
measuring them by an analyzer. The design and implementation of linear observers are
considered in the present work in order to give us a better insight and understanding on
the feasibility of applying the state estimation techniques in the reactive distillation

control.

6.2 Reactive Distillation Models

The development of a reliable and computationally efficient state estimator
requires a mathematical model that is able to capture the main features of the system

dynamics. Following the previous work on the reactive distillation shown in Figure 2.1,



130

we considered here a reactive distillation model with constant liquid holdup in all the
stages, negligible energy balance, constant relative volatility, and an equimolar overflow
except in the reactive zone where the vapor and liquid flowrate changes because of heat
of the reaction. Mole balances on all of the components and the algebraic equations

describing the liquid and vapor flowrates in the reactive zone give the reactive distillation

models:

ax

TtJ: [Li+l(xi+l,j - Xi,j)+vi—] (yi—l,j =X ) +V, (Xi,j =Y )+ Ri,j +F (Zij =X )]/ M; (6.1)
ﬂ, i—Ns—1

I-i = Li—l _A—HV kZ::,RNs+1+k,j (6.2)
ﬂ, i—Ns—1

Vi =V +A—HV kZ;RNSJer,j (6.3)

The nonlinear model of reactive distillation can be put in more compact vector
form by decoupling all of the state variables in the models and represented it as nonlinear

state space models

PO fxwuw.de:o) (64)
Y = h(X (t),6) (6.5)
X = [X, 15 X 1o X 15 X120 X 2o Xeg 25 Xp 5 X 300Xy 30 X140 Xo g X ]| (6.6)

X is n-dimensional and it represents the liquid composition of all components in the
column. The p-dimensional U is a vector of manipulated variables, which in this study
are considered to be the vapor boilup and reflux flowrate. d is m-dimensional vector
included to depict system measurable disturbances which are feed flowrates and

compositions. 0 represents the model constant parameters, such as the relative volatilities,
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equilibrium constants and column pressure. Y is q-dimensional vector of the measured
output variables (i.e. stage temperature measurements).

For the linear estimator design purposes, the nonlinearity of the dynamic
equations must be removed. To accomplish this, the following fundamental assumptions
are introduced as remark I.

Remark I: A nominal solution of the nonlinear differential equation of reactive
distillation must exist. This solution must well approximate the actual behavior of the
system. The approximation is acceptable if the difference between the nominal and actual
solutions can be described by a system of linear differential equations. These equations
shall be termed “linear process modes”.

Linearizing the nonlinear process model of equation 6.4 and 6.5 using the Taylor

series expansion method around the desired steady state operating conditions to yield

)'((t) = AX(t)+ BU(t) + Ed(t) (6.7)
Y =CX(1) (6.8)
where the transition matrices A, B, C and E are evaluated at the desired steady state
operating conditions (see the appendix for detail). The base steady state operating
conditions considered in this work is given in Table 6.1. Taking into consideration the
assumption given in remark I, the linear process model of equations 6.7 and 6.8 is

assumed to be the plant model on which the design of estimators in this work is based.



Table 6.1 Optimum base steady state conditions.

variables steady state values
Column pressure (bar) 9
specifications | stripping section (Ng) 7
reactive section (Ngx) 6
rectifying section (Ng) 7
Equilibrium | Relative volatilities:
data A/B/C/D 4/2/8/1
Flowrates Feed rate of reactant A 0.0126
(kmol/s) Feed rate of reactant B 0.0126
Vapor boil up 0.0285
Reflux rate 0.0331
Distillate 0.0126
Bottoms 0.0126
Xp A 0.0467
B 0.0033
C 0.9501
D 0.0000
Xp A 0.0009
B 0.0445
C 0.0000
D 0.9545
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6.3 Observability, Location and Number of Measurements

6.3.1 Observability

The concept of the observability is very important and a necessity in the
estimators design. The state equation is said to be observable when there exist a set of
measurable outputs that contain information on all the state variables. Thus, it indicates
the possibility of estimating the state from the available output. The criteria for
determining observability for a linear system are well defined in the literature [7]. A
linear system is observable if the matrix

O =[C CA CA*...CA™] (6.9)

is full column rank (i.e. of rank n). O is termed the observability matrix.

6.3.2 Measurement Location

An appropriate location of the measurements in the reactive distillation column is
an important factor in the successful design and implementation of a state estimator, and
in the control of the system as a whole. In the control of distillation system for instance,
locating the temperature measurements far from the column ends is usually desirable
because the products may be of a high purity where the temperature variations will be
insignificant [2]. On the other hand, if the measurement is located too far from the end of
the column, the temperature will be strongly influenced by the composition of the feeds
and the product at the other column end [2]. The use of singular value decomposition
(SVD) to determine the best measurement location as reported in the literature suggests

the most sensitive trays are generally located approximately one-forth from each end of
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the column [11]. One major problem identified with this method is that it does not
consider the load disturbance effects [11]. As the measurement location moves farther
from the end of the column, the error in the overhead and bottoms compositions becomes
greater, even when the measured variables remain constant, under load disturbances [11].
Therefore, the use of evenly spaced multiple measurements could provide an acceptable

compromise and handle some of the interferences appropriately [2-4].

6.3.3 Number of Measurements

Intuitively, the more measurements there are, the more information and the
greater the accuracy of the estimators. However, it is both technically and economically
desirable to have small set of measurements. Yu and Luyben [12] established that a linear
system of conventional distillation column is observable as long as the number of
measurements is at least NC-1, where NC is the number of component. However, using
the number of measurements more than the minimum required could increase the
performance of the observer [12]. Unlike conventional distillation system, there are no
specific guidelines from the literature on the minimum number of measurements required
to make reactive distillation observable. Thus, it is part of this work to utilize the
characteristics of a linear process model of reactive distillation to determine the number
of measurements that will guarantee the observability of the system.

Figure 6.1 gives the simple and effective algorithm to determine the number of
measurements for a linear process model of reactive distillation that will make the whole
states observable. This algorithm examined the linear process model of reactive

distillation with constant number of components (NC = 4) but at varying total number of
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stages N (from 16 to 37). The desired steady state operating conditions for the column at
different number of stages were obtained using a steady state simulation program.

Using the desired steady state conditions to evaluate matrices A and C,
observability condition (Equation 6.9) was used routinely to determine the minimum
number of measurements that makes the system a full column rank. Table 6.2
summarizes the results obtained for different number of column stages. From these
results, it can be concluded that the observability of a linear process model of reactive
distillation depends strongly on the number of stages. Using only the temperature
measurement evenly spaced in the reactive distillation column, the relationship between

the number of measurement and the total number of stages is given by

Number of measurement :% (6.10)

This result perhaps has a strong antecedent from the literature on distillation
system. Luyben [13] suggested the tracking of the temperature front by using an average
of as many trays temperature. Whitehead and Parnis [14] used a weighted average of
many differential temperatures in a C, splitter. Mejdell and Skogestad [2] used
temperature measurements in all the column stages in the development of static partial
least-square regression estimator for product compositions on a high purity pilot-plant
distillation column. The use of multiple temperature measurements by the estimators
effectively counteracted the effect of pressure variations, measurement noise, off-key

components, and the nonlinearity in the column [2].



Table 6.2 Number of the measurement versus the rank of the system.

N Ns/Nrx/Nr q Rank /n
16 5/4/5 6 60/64
7 64/64
19 6/5/6 7 73/76
9 76/76
22 7/6/7 9 83/88
11 88/88
25 8/7/8 11 97/100
13 100/100
28 9/8/9 13 110/112
14 112/112
31 10/9/10 14 119/124
16 124/124
34 11/10/11 16 132/136
17 136/136
37 12/11/12 17 143/148
19 148/148
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Remark II: Using N/2 number of measurements is a sufficient condition to observe the

whole states (liquid compositions) of reactive distillation.
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6.4 State Estimator Structure

The linear estimators are developed by using a linearized state-space model
presented in section 6.2. The two different types of estimator design are considered: a
Luenberger observer (LO) and a Kalman filter (KF). The general structure of the two
estimators is essentially the same as presented in Figure 6.2. The main difference
between these techniques is the design method of the filter gains. The theory and
mathematical formulation of Luenberger observer and Kalman filter are detailed in the
literature [7, 15] and only the required equations as it is relevant to this work are

presented. The components of a linear state estimator are:

1. A linearized dynamic system: X.(t) = AX (1) + BU(t) + Ed(t) + w(t) (6.11)
2. Measurement devices: Z =CX(t)+v(t) (6.12)
3. Initial conditions: X(0)= X, +x,err (6.13)

X, 1s a vector of the actual initial condition of the system taking at the steady state. W is
a vector representing the plant noise, vV represents measurement error vector and X,err is

a vector of the initial condition error. Equation 6.12 implies that at each independent time
t there are  measurements available (i.e. Z is g-dimensional) that are linearly related to
the states and are corrupted by the additive noise. All of these components will be

combined into a state estimator of the form:

X(0) = X, + X err (6.14)

Y =CX(t) (6.15)
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X (t) = AX (t) + BU(t) + Ed(t) + K[Z(X (1)) =Y (X (1))] (6.16)
where K is the estimator gains matrix. The estimator has two inputs U and Z with

measurable disturbance d and its output yields the estimated state vector X .

6.4.1 Base Initial Condition Errors, Measurement and Plant Noise

The development of an estimator usually assumes that the real initial conditions of
the system are not known. Thus, a robust estimator should be able to start with
approximate initial conditions. In this work, the guess initial conditions for the state
estimator are defined as given in Equation 6.14. The initial condition errors are
considered as the deviation from the actual initial conditions of the system obtained by
solving the steady state model. The measurement noise V and the plant noise W are

assumed to be uncorrelated (i.e. white noise) random sequence with known statistical

properties.

E[w,]1=0, E[v,]=0 (6.17)
E[ww,"1=Q,J (6.18)
E[v,v, 1= R J, (6.19)
E[v,w; 1=0 (6.20)

where 9, is the Kronecter delta. Note that subscripts i and k refer to the particular

elements in the parameters vector or matrix.
In order to compare the performance of the two state estimators considered in this

study, the same base initial condition errors, measurement noise and plant noise are used
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in the design, implementation and simulation of the two state estimators. Figure 6.3 gives
the base initial condition errors and measurement noise for the estimators. The standard
deviation of the base plant noise (W) is 0.1%. Unless otherwise stated, these base initial
condition errors, measurement noise and plant noise are always present in all the

simulation carried out in this work.

6.4.2 Luenberger Observer (LO)

For a Luenberger observer, Equation 6.16 can be rewritten as

X (t) = (A= KC)X (t) + BU(t) + Ed(t) + KZ (6.21)
The error between the actual state and estimated state is define as
e(t) = X (t)— X(t) (6.22)
Differentiating e(t) and then substituting equation 6.10 and 6.20 into it, we obtain
e(t) = X (t)— X (6.23)
= AX (t)+ BU(t) + Ed(t) - (A— KC)X — BU(t) — Ed(t) - K(CX)
= (A-KC)X(t)— (A-KC)X
e(t) = (A— KC)e(t) (6.24)
The equation 6.23 governs the estimation error (€(t)). If all eigenvalues of matrix (A-

KC) can be assigned arbitrarily, then the rate of e(t) to approach zero, or equivalently,

for the estimated state to approach the actual state can be controlled. For example, if all
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eigenvalues of matrix (A-KC) have negative real parts smaller than —p, then all the

entries of the estimation error (e(t)) will approach zero at the rate faster than e™*.

6.4.2.1 Design Procedure for a Luenberger Observer

The design procedure to obtain the gain matrix of the Luenberger observer is presented as
follows:

(1) Using the algorithm presented in Figure 6.1, pick the number of measurements ()
such that the whole system’s states are observable.

(2) Design the gain matrix K by using the duality theorem [7]. The pair (A, C) is
observable if an only if (A", C") is controllable. If (A", C") is controllable, all
eigenvalues of (A"- C'l) can be assigned arbitrarily by selecting a constant gain matrix .
The transpose of (A"- C'1) is (A- 1'C). If K=1", then (A- I"C) is the same as (A- KC).
(3) Use Qunitero-Marmol method [8] to select suitable set of the eigenvalues for matrix
(A-KC). This is carried out by increasing the magnitudes of the slowest eigenvalues of
the system matrix A because the response of the estimator is expected to be faster than
that of the real system.

(4) Evaluate the values of the gains (K) that place the selected eigenvalues at desired

locations.

6.4.2.2 Tuning the Luenberger Observer

The design of the suitable observer gains is a major prerequisite for a successful
implementation of the Luenberger observer method. Selecting an inadequate set of the
eigenvalues could lead to the poor performance of the observer. To illustrate this, the

different sets of eigenvalues as shown in Figure 6.4 are used in the Luenberger observer
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design. The eigenvalues of system matrix A is taken as the first set of eigenvalues for the
state observer. In the second illustration, the magnitudes of the two slowest eigenvalues
of matrix A are increased while in the third example, the slowest seven eigenvalues of
matrix A are shifted. Figure 6.4B presents the performance of a Luenberger observer as a
function of these different sets of eigenvalues to estimate the bottoms mol fraction of
component D when the feed flowrate of reactant B is increased by 10%. Throughout this
work, the reactant A flowrate, column pressure, reflux flowrate, and vapor boil up are
kept constant, while the reflux drum and column base levels are controlled by
manipulating the distillate and bottoms flowrates respectively. When the first set of the
eigenvalues is used, it takes the observer estimate about 6 h to the approach the reference
state, whereas using the third set, the observer estimate approaches the reference state in
less than 20 min of the startup. Selecting higher magnitudes of the eigenvalues gives
higher gains and faster response, but greater noise susceptibility, and often, lower margin
of stability. Therefore, an appropriate selection of eigenvalues for the observer gains
design is a key factor in the application of a Luenberger observer and should be selected
carefully.

Remark III: Because the gains of a Luenberger observer is designed offline, set

the gains as high as the margin of stability will allow.
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6.4.3 Kalman Filter (KF)

The Kalman filter is an approximate optimal estimator of the state vector X at a
given time value, based on the predictions of a given model and the measurements
available up to that time. The detailed formulation of a Kalman filter is contained in [15].

Consider a continuous-time linear system derived previously and presented in the form

).((t) = AX(t)+ BU(t) + Ed(t) +v(t) (6.25)
Z =CX(t)+w(t) (6.26)
Analogously to the assumption made previously, we have included in this model the two
white, zero-mean, mutually uncorrelated noise signals v(t) and w(t) and they have the
same properties as discussed in section 6.4.1.

Again, we need to determine the estimator that best estimate the state of equation
6.25, while rejecting the influence of the noisy inputs and initial condition errors. As
before, the estimator design objective is to design the gain that will minimize an error
criterion as established by the equation 6.24.

First, let @(t,t,) denote the state-transition matrix of the error system in equation 6.24,

the complete solution of equation 6.24 is given as
t

e(t) = d(t,t,)e(t,)+ j d(t,7)[v(r)—w(r)]dr (6.27)
ty

Finding the error covariance P from this expression:
P(t) = E[e(t)e’ (7)] (6.28)

By substituting equation 6.27 in equation 6.28 gives:
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P(t) = d(t,t, )P, @ (t,t,) + j O(t, 7)[Q+R]®" (t,7)dr (6.29)

t0
Taking the derivative of equation 6.29 with respect to t to determine the dynamics

of the error covariance P, and after simplification gives

I.D(t) = (A—KC)P(t)+ P(t)(A-KC)" +Q+R (6.30)
This resulting equation is popularly known as differential matrix Riccati equation for the
error covariance P(t) whose initial condition is P(tp)= Po. However, we have not yet
optimized the norm of the error over all possible gain K (t). To perform the optimization,
we will attempt to minimize the squared error at any time t. This squared error may be

expressed as
E[e’ (De(®)] =[P()] (6.31)
Therefore, the matrix gain K that minimizes the error criterion as expressed above is

given as

0 ,
6_K[P(t)] =-2P(t)C" +2K({t)R=0 (6.32)
which after further simplification gives the Kalman gain matrix K

K(t)=P@®)C'R™ (6.33)

Using this equation of the gain, the error covariance dynamics simplify as well to

|5(t) = AP(t)+P(t)AT —P(t)C'R'CP(1)+Q (6.34)
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6.4.3.1 Kalman filter design procedure

Consider that the first observation occurs at time t;, The Kalman filter design
algorithm can be described by the following steps:
(1) Initialize P, X (0)and Q at time t = tp, where P is a matrix of the estimate covariance
error and Q is the covariance matrix of the measurement error. In this work, an arbitrary
initial value to 10 is assumed for all of the elements of P, while Qis evaluated according
to equation 6.18.
(2) Project the estimate of the covariance estimate error by integrating the simplified

form of Riccati equation from tj to t;.

5(t) = AP(t)+ P(H)AT +Q (6.35)
(3) Compute the gain matrix K at time t;

K(t)=P(@t)C'R™ (6.36)
where R is the noise covariance matrix evaluated using equation 6.19 at time t;.

(4) Estimate the state vector at t; by integrating the equation 6.25 from tpto t;

(5) Update the covariance for the error in the state estimate vector at time t;
P(®) =[I -CKIP(t) (6.37)
(6) Progress in time and move to step 2.
Because of the simulation difficulty usually involved when a differential Riccati
equation is used, a Kalman filter algorithm utilizing a steady state Riccati equation is also

considered and the KF design procedure is modified as follows:
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(1) Initialize R and Q, where Q is the covariance matrix of the measurement error and R
is the covariance matrix of the process noise.

(2) Obtain the covariance matrix P by solving the steady state Riccati equation as
AP +PAT —PC'R'CP+Q =0 (6.38)
(3) Compute the gain matrix K

K=PC'R™' (6.39)

6.5 Results and Discussion

6.5.1 The Estimators Performance

The quality of the information to be derived from the estimators designed from
the two methods can be judged from the results presented in Figure 6.5. The forcing
function is a 10% increase in feed flowrate of reactant B. Note that the base initial
condition errors and the measurement noise (in Figure 6.3) were added to the actual
initial conditions and measurement data input into the state estimators. Following the
heuristics stated in Remark III, the third set of eigenvalues (see Figure 6.4A) was used to
design the estimator gains for Luenberger observer. The behavior of the two estimators is
generally excellent with respect to the states from the linear process model. The results
demonstrate that the estimators will be able to track asymptotically the reference states if
the system is well described by a linear process model.

When the responses of a Luenberger observer is compared with those obtained
with a Kalman filter observer, it can be easily noticed that a Luenberger observer seems

to track the reference state faster than a Kalman filter. This is expected because the
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design of the gains for a Luenberger observer is carried out offline where the desired
eigenvalues are suitably selected and the rate at which the estimation error is to approach
zero is controlled. On the other hand, the gain matrix of a Kalman filter observer is
calculated and updated online, thus making the response of the estimator a function of the
system dynamics and nature of the disturbance input. As it will be discussed in the next
sections, updating the gains online gives the Kalman filter the advantages of a better
handling of plant-model mismatch and measurement errors.

One major concern in the application of the state estimators is the complexity it
adds to the system and the target of any designer is to reduce the computational
complexity as much as possible. In our study, we found out that implementing a
Luenberger observer in the system is easier and require less computational time than a
Kalman filter. It takes a Luenberger observer-based system less than one-forth of the
time to simulate a Kalman-filter-based system under the same operating conditions.
However, it is worth noting that using a steady Riccati equation in a Kalman filter design
algorithm significantly reduces the computational time and at the same gives an
acceptable result as shown in Figure 6.6 and 6.7.

The major setback in the Luenberger observer is in the design of the observer law
(i.e. the gain matrix) for multivariable system such as the reactive distillation. Selecting
the desired set of eigenvalues that will make the Luenberger observer applicable over a
wide range of operating conditions is not a trivial task. It depends on many performance

criteria such as rise time, settling time and overshoot of the system [7].
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Remark IV: A Luenberger observer requires less computational resources than a
Kalman filter and the rate at which estimation error approaches zero can be set as a fast

as desired provided the accurate models and low-noise sensors are available.

6.5.2 Effect of the Initial Conditions Errors

In this section, the effect of the use of erroneous initial conditions on the
estimators responses is studied. Figure 6.8 A shows the three sets of initial condition
errors used. These initial condition errors are added into the actual initial conditions
(steady state values) of the system to serve as the initial estimator estimates. The first set

of initial condition errors are the same as the base initial condition errors ( X,err ) which

were used in the previous section. The magnitudes of this base initial condition errors are

increased by a factor of four (4 x,err) for the second illustration. The third set of the
initial estimator estimates assumes an extreme case of equal composition of all of the
components in all of the column stages (i.e. )2(0)2 0.25/0.25/0.25/0.25). Figure 6.8

shows the performance of the two estimators to different set of the initial conditions. This
result illustrates the capability of the estimators to start from the guessed or approximate
initial conditions. However, it does show that the closer the initial estimates provided to
the estimators to the actual initial conditions, the better the estimators performance. On
the other hand, providing the estimators with the erroneous initial conditions could

degrade their performance.
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Figure 6.8 Effect of initial condition errors on the performance of the state estimators
with a 10% Fp disturbance, [A] initial condition errors; [B] response from the
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6.5.3 Effect of the Measurement Noise

In order to demonstrate and assess the robustness of the two estimators to
measurement noise as often the case in practical situation, the standard deviation of the
base measurement noise is increased from 0.1% to 10%. Figure 6.9 shows the responses
of both the Luenberger observer and Kalman filter. It can be clearly seen that Luenberger
observer (Figure 6.9b) was unable to filter this high-frequency measurement noise when
compared to the Kalman filter performance as shown in Figure 6.9c. This is expected as
the Kalman observer filters the high frequency noise and was able to reduce the effect of
the measurement uncertainty significantly.

Remark IV: If the measurement is noisy as often the case in practical situation,

then Kalman filter observer is preferable.
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6.5.4 Plant-model Mismatch

Studies in this section examine how the state estimators behave in presence of
errors in estimator models. In the previous discussion, the state estimators were
developed assuming largely the availability of an accurate estimator model with 0.1%
standard deviation errors. The most common source of model errors is the complexity
involved in providing accurate vapor-liquid equilibrium relation in modeling real
distillation system [4]. As a result, we have considered the effect of the errors in the
components relative volatilities, which in practice, are usually known with some
uncertainty. Two set of the erroneous relative volatilities (i.e. a=4.2/2.2/82/1
anda =4.4/2.4/8.4/1), which are different from the actual relative volatility
(i.e.,a=4/2/8/1) are used in the estimators models. Figure 6.10 shows the bottoms
composition of reactant D, actual and as predicted by a Kalman filter and a Luenberger
observer when the erroneous relative volatilities are used. The Kalman filter (KF)
predictions are quite better than that of the Luenberger observer (LO), which indicates
that KF observer is more robust toward plant-model mismatch than LO. The result also
shows that an increase in the plant-model mismatch has a considerable effect on the
performance of the state estimators.

Remark V: Accurate models are a necessity for designing a good estimator.
However, with proper adaptation of error covariance, the Kalman filter can efficiently

cope with model uncertainties better than Luenberger observer.
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Figure 6.10 Effect of plant-model mismatch on the performance of the linear state

estimators with a 10% Fp disturbance. (----) KF estimated state profile; (— —)

LO estimated state profile; (—) actual state profile. (I)a=4.2/2.2/8.2/1;

()G =4.4/2.4/8.4/1.
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6.5.5 The Linear Estimators Using Measurement Data Predicted by the

Nonlinear Equation

In all of the previous sections, the performance of the linear estimators is assessed
by comparing the state estimates from the estimators to the states as predicted by the
linear process model with the assumption that both the plant noise and measurement error
could be described by Gaussian white noise. The linear output equation is employed to
model the noisy measurement data. We have used these assumptions in order to achieve
the first goal of the estimators that is, if a linear process model could describe accurately
the actual plant process, the desired states of the system can be estimated accurately using
the state estimators.

In a practical situation, the linearized process model will not be a perfect
representation of the actual plant and the applicability of the linear estimators into a
realistic system might be restricted (i.e. limited operating conditions and small magnitude
of disturbance input). In order to investigate the feasibility of applying the linear
estimators into a more practical system, the design of the two estimators is modified by
using the measurement data predicted by nonlinear process model as an input into linear
estimators. Therefore the measurement errors vector v will no longer be assumed to be
Gaussian white noise but will be determined by the difference between the actual output
data from the plant as predicted by nonlinear output equation and the linearized output
equation used in the design of the estimators. This is given by

v =h(X(t)) = CX (t) (6.27)
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where h(X(t)) is a nonlinear function of output temperature measurement (from

equation 6.5). By substituting equation 6.27 into equation 6.12, the new observation
equation will now be given as:

Z =h(X(t)) (6.28)
This simply means that the nonlinear output equation (i.e, the equation 6.28 which is the
same as the equation 6.5) will be used to simulate the measurement data that would have
been provided by the physical sensors in the real situation.

Figure 6.11 and 6.12 show the performance of the two estimators when the actual
output data as predicted by nonlinear output model is used. The system is excited by a
10% increase in fresh feed flowrate of reactant B. The result presented in Figure 10A
shows that the gains of Luenberger observer were tuned and updated by shifting the
fifteen slowest eigenvalues of matrix A. On the figures, the plot termed “a” is the actual
composition profiles as predicted by the nonlinear process model; “b” is the composition
profiles as predicted by the estimators using the nonlinear equation for output data; while
“c” is the composition as predicted by the observers using the linearized output equation
for the measurement data. Both of the observers more or less give the same response
when the measured temperatures are obtained from the nonlinear model.

Even though, the results give an indication of inadequate estimation from the
observers when the magnitude of the excitation function is large, the results demonstrate
a clear improvement in the performance of the observers toward estimating the actual
plant states as predicted by the nonlinear process model when the output data to the linear

estimators are modeled by nonlinear equation.



162

O O
X
<
« -0.01
o
[%)]
5 -0.02
< —A— base eigenvalues
3 —+— shifted eigenvalues
2.0.03 ! ! ! ! ! I I I
3 0.
0 2 4 6 8 10 12 14 16 18
[A] number of shiftable eigenvalues
0.4 ‘ 1
o
0.3 O

1
a
X" 0.5}
0 ‘ ‘ ‘ 0 : ‘ L
[B] 0 5 10 N 15 20 0 5 10 N 15 20

Figure 6.11 [A] The shifted eigenvalues for the Luenberger observer (LO) with a 10% Fg
disturbance, [B] Steady state composition profiles from LO as: (a) predicted by
nonlinear process model; (b) predicted by LO using nonlinear equation for

measurement; (c) predicted by LO using linearized equation for measurement.



163

o
< —
0.5 1205
=
0 ! . L O | | |
0 5 10 \ 15 20 0 5 10 N 15 20

Figure 6.12 Steady state composition profiles from Kalman filter (KF) as: (a) predicted
by nonlinear process model; (b) predicted by KF using nonlinear equation for

measurement; (C) predicted by KF using linearized equation for measurement.
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6.6 Conclusion

In this chapter, the design and application of a Luenberger observer and a Kalman
filter in the composition estimation of reactive distillation are explored. A linear process
model, which can approximate the actual plant model well, is ideally suited to designing
a linear estimator. It is found that using N/2 number of measurements is a sufficient
condition to observe the whole states (liquid compositions) of reactive distillation.
Though Luenberger observer requires less computational resources and the rate at which
estimation error approaches zero can be set as a fast as desired, the Kalman filter
demonstrates its ability to cope efficiently with erroneous initial conditions, corrupted
measurements and model uncertainty.

In general, the linear estimators can be applied to estimate the states of the
reactive distillation system using the actual output data from the process when: (1) the
process is being operated under a small region of operating conditions where the system
could be described by a linear process model, (2) accurate sensors are available where the
effect of measurement noise may be negligible, and (3) the magnitude of the disturbance

inputs is small.
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CHAPTER 7

7 The State Estimator-Based Control of Reactive
Distillation System

7.1 Introduction

Estimator-based control application has received considerable attention over the
past several years. Basically, this is the problem of controlling a process where imperfect
or limited information is available describing the states of the system that change
considerably during the interval in which control is required. Al-Arfaj and Luyben [1]
suggested that the state estimator could be a suitable alternative to an expensive and often
unreliable composition analyzer when there is need to measure the internal composition
of reactive distillation system for control purposes. In the same paper, Al-Arfaj and
Luyben [1] summarized the literature on control of reactive distillation system. Since
then, several other papers have appeared in the literature that discussed the closed-loop
reactive distillation.

The main focus in this chapter is to demonstrate that a state estimator can be
successfully designed and implemented in the feedback control of reactive distillation.
The function of the state estimator is to estimate the desired state compositions that are
required to be feedback into controller for necessary action. The control performance of
the system that relies on the state estimator is examined and compared to that of the

system which takes direct measurement from the process assuming the availability of

167
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perfect online analyzer. The effect of measurement errors, plant-model mismatch and

erroneous initial conditions on the estimator-based system is investigated.

7.2 The Process

The process under consideration is the same reactive distillation system, which has
been discussed in detail in the previous chapters. The reactive distillation column consists
of 22 stages including a partial reboiler and a total condenser. The main column is further
divided into three sections which are stripping section (7), reactive section (6) and
rectifying section (7). A full-order linear process model presented in the previous chapter

is considered to develop the state estimator-based system and is summarized in vector

form as
).((t) = AX(t)+ BU(t) + Ed(t) (7.1)
Y =CX(t) (7.2)

where the n-dimensional vector X are state variables (liquid mole fractions in all the

stages including partial reboiler and total condenser).

7.3 State Estimator Structure

The most important component of the control structure studied in this work is the
underlying state estimator. A Kalman filter (KF), which has been the most popular
estimation technique available in the literature is considered. We have equally shown (see
Chapter 7) that a Kalman filter estimator is more robust and reliable than a Luenberger
observer. The theory behind KF is well established and its applications have grown

significantly in the academics and industry [2-4]. In the previous work, we presented the
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design procedure to develop this state estimator (KF). Therefore, the relevant equations

describing the estimator are summarized as follows:

Y =h(X(t))
Z =CX(t)+v(t)

X(0) = X, + X err

>'Z(t) = AX (t)+ BU(t)+ Ed(t) + K[Z(X (1))=Y (X (1))]

The equations 7.1 to 7.6 can be combined to for the estimator-based system as

X

>e

Z

A

A —

KC A-KC|L

=[co]

>,

+[GO]v

(7.3)

(7.4)

(7.5)

(7.6)

(7.7)

(7.8)

The state estimator has three inputs, which areU , d and Z and its output yields

the estimated state vector X . The w and v are vectors of the plant and measurement noise,

and L and G are the matrices of their coefficients respectively. K is gain matrix of the

sate estimator evaluated using the Kalman filtering algorithms [5]. In order to design a

state estimator, it is necessary that the system is observable. Considerations based on

simulated studies suggest that using not less than N/2 temperature measurements

uniformly distributed in the column is a sufficient condition to observe all the

components liquid compositions of reactive distillation under study.



170

7.4 Control System Configuration

Al-Arfaj and Luyben [1] discussed many control schemes for the same system
under study. In their study, it was assumed that perfect analyzer is available to measure
the composition whenever it is needed for the control system. In this study, the control
configuration of interest is the estimator-based control system, where the developed
linear state estimator is implemented in the feedback control of reactive distillation
column to estimate the inaccessible states. As shown in Figure 7.1, the estimates from the
state estimator will serve as input to the controller and the decisions based on such
feedback information are then implemented on the process. For illustration purposes, we
considered the dual-end control structure shown in Figure 7.2 in which the purities of
both products are measured and controlled. In the distillate product, the composition of
component C is controlled by manipulating the reflux flowrate. In the bottoms, the
composition of component D is controlled by manipulating the vapor boilup. The reflux-
drum level is controlled by the distillate flowrate while the bottoms level is controlled by
manipulating the bottoms flowrate.

Al-Arfaj and Luyben [1] stated the necessity to detect an internal composition of
one of the reactants in two-reactant-two-product reactive distillation column so that
feedbacks trim can balance the feeds stoichiometry. Therefore, the concentration of
reactant A on the tray nfl is measured and controlled by manipulating the fresh feed
flowrate of component A. All of the composition controllers are PI except the internal
composition controller which is P-only because it is aimed to only maintain the feeds
stoichiometry. These loops are tuned by conducting relay-feedback tests to find ultimate

gains and frequencies and then using the Tyreus-Luyben settings [6].
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All of the control valves are designed to be half open at the initial steady state. Therefore,
all of the manipulated variables cannot increase more than twice their steady state values.
In order to assess the performance of the estimator-based control system, two
control configurations are developed and compared as follows:
(I) CS-Analyzer: In this control system, the desired states (liquid compositions) feed into
the controllers are assumed to be perfectly available at any desired time using online
analyzers. This control structure is considered in this work only to serve as a reference to
which the performance of the estimator-based control system is compared. The three

composition controllers’ equations in CS-Analyzer are of the form

Fa=falXyia) (7.9)
Vs = f, (Xpor0) (7.10)
R=f; (Xgsc) (7.11)

Therefore, equations 7.1, 7.2 and 7.9-7.11 make the closed-loop system with perfect
online analyzer available for composition measurements.

(II) CS-Estimator: This control structure is referred to as “the controller-estimator
configuration”. The states of the process are being estimated by the state estimator and
are provided into the controllers for necessary decisions (see Figure 7.1). Therefore,

equation 7.9-7.11 will be replaced the following equations:
Fa= fA()A(nfl,A) (7.12)
Vs = f, (Xporp) (7.13)

R= fR ()A(dis,c) (7.14)
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where the X is the estimated state that comes from the estimator described by equation

7.3-7.6. Note that the equations 7.7, 7.8 and 7.12 - 7.14 make the CS-Estimator system.

7.5 Results and Discussion

A constant liquid holdup of 1 kmol in all of the trays and 10 kmol in both the
partial reboiler and the total condenser are assumed throughout the simulation. Table 7.1
gives the summary of the steady state operating conditions of the system under study. In
this work, temperature measurements are evenly located on 11 stages out of the 22 stages.
The noise-contaminated temperature measurements from the process are available to the
state estimator at every 30 sec. The differential equations of the model were integrated
using Euler method with a step size of 1 sec. Because the process model used in the KF
algorithm is not perfect due to some simplifying assumptions that have been made, plant

noise (8, =1% ) was present in all the simulations. The base initial condition errors and

the measurement noise (J,, =10% ) used in the design and implementation of for the

state estimator are shown in Figure 7.3. The initial conditions error is the deviation of the

initial condition estimates for estimators from that of the real plant model.

7.5.1 Control Performance

In order to examine the performance of the estimator-based control system when
compare to that when the perfect analyzers are used in the feedback system, the following
sources of disturbance into the system are considered:

(1) £10%, £20%, step changes in feed flowrate of reactant B.
(2) A Pseudo Rectangular Random Sequence (PRRS) forcing function shown in

Figure 7.4.



Table 7.1 Base steady state conditions

variables steady state values
column pressure (bar) 9
specifications | stripping section (Ng) 7
reactive section (Nrx) 6
rectifying section (Ng) 7
equilibrium | Relative volatilities:
data A/B/C/D 4/2/8/1
flowrates Feed rate of reactant A 0.0126
(kmol/s) Feed rate of reactant B 0.0126
Vapor boil up 0.0285
Reflux rate 0.0331
Distillate 0.0126
Bottoms 0.0126
Xdis A 0.0467
B 0.0033
C 0.9500
D 0.0000
Koot A 0.0018
B 0.0482
C 0.0000
D 0.9500
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177

Figure 7.5 compares the control performance of the system that relies on the state
estimator (CS-Estimator) to that when perfect analyzer is assumed available (CS-
Analyzer). The disturbance is a 10% increase and a 10% decrease in feed flowrate of
reactant B. In this case, the composition of the component D in the bottoms, component
C in the distillate and component A in the tray nfl are being estimated (by the estimator)
and feedback into the controllers for necessary actions. The results generally demonstrate
that the controllers can successfully depend on the state estimates from the estimator for
decision makings. The estimator-based system is able to reject the disturbance and drive
the system to the desired operating specifications.

The control performance of the estimator-based system is seen to be relatively
poor a few moment after the start up when compare to the control performance using
direct measurement from the online analyzer. The reason for this is because of large
estimation errors at the start up as a result of the errors in the initial conditions,
measurement noise and plant-model uncertainties which will require some times to be
compensated out. Because the gain matrix of the KF is calculated and updated online the
response of the state estimator largely depends on system dynamics and the nature of
disturbance input (i.e. large estimated errors at the early stage when -10% Fg is
introduced). To further justify this and appreciate the use of the state estimator in the
control system of reactive distillation, the system is excited by the function shown in
Figure 7.4. The result of the CS-Estimator is compared to that of the CS-Analyzer in
Figure 7.6. It can be seen clearly that after the state estimator overcomes the large

estimation errors occurring at the early stage of the process, the response of the CS-
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Estimator system gives an excellent matching with that of CS-Analyzer, which indicates
good control performance.

It is interesting to note that the same trend of disturbance in the first 6 h (i.e.
+10% Fp in the first 3 h and -10% Fp in the next 3 h of the operation was repeated
between the time of 10 h to 16 h, but this time, the CS-Estimator responds adequately and
the system is effectively controlled. This is because at the later time, the estimator has
already overcome the effect of the initial estimate errors by updating the estimator gain
based on the information from the updated estimated error covariance. Even if online
analyzers are available and pose no problem in measuring the product composition at the
two ends of the column, realistically the internal composition will be difficult to obtain
using online analyzer and such a case could make the use of online estimator inevitable.
Figure 7.7 illustrates that CS-Estimator performs well when the state estimator is used to
estimate only the inaccessible internal composition for the internal composition
controller. In this case, the product composition controllers use online perfect analyzers
and the forcing function is a 20% increase and a 20% decrease in reactant B. The system
generally demonstrates a better performance than when all the controllers depend on the

state estimator.
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7.5.2 Effect of Erroneous Initial Conditions

Because the actual initial conditions of the system is often not known in real
situation, a state estimator must be designed to be able to converge to the actual column
state on time when it is initialized with guessed initial conditions. In practice, what matter
most are a few moments after a change is introduced into the system as the control
system will intervene to reject introduced disturbance. In order to investigate the impact
of erroneous initial conditions on the performance of the estimator and in turn, the control
system as a whole, two set of erroneous initial conditions are tested as shown in Figure
7.8a. The first set of initial condition errors are taken to be four times in magnitude of the

base initial condition errors (4 X,err ), while the second set assumed an extreme case of

equal composition of components in all stages (i.e. X (0)=0.25/0.25/0.25/0.25).

At first, the performance of the estimator in predicting the actual state is examined
by simulating the open-loop dynamics of the system. This is to demonstrate that even
though the estimator might be able to converge to the actual state at the long run using
the worst set of initial conditions, the estimator accuracy at the early stage of the start up
is important to the control system that relies on the state estimator. In the open-loop
dynamics, all of the composition controllers are on manual, while the level controllers are
automatic. In this test, the forcing function is a 10% increase in feed flowrate of reactant
B. Figure 7.8 shows the performance of the state estimator to different set of initial
conditions. Though, this result illustrates the capability of the state estimator to start from
a guess or approximate initial conditions, however, it does show that the closer the initial

estimates provided to the estimator, the better the performance.
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The same set of initial conditions is then used to simulate the CS-Estimator
system. Figure 7.9 shows the control performance of the CS-Estimator to different set of
initial conditions. The CS-Estimator behaves predictably well in disturbance rejection
when the first set of erroneous initial conditions are used. However, it can be seen clearly
that in spite of the fact that the estimator is able to converge to the actual state in the
open-loop dynamics case when equal composition of components is assumed at the initial
point, the CS-Estimator behaves poorly and unable to control the system. The system that
relies on such state estimator with worst initial conditions is unstable because the
controllers use extremely poor estimated states at the early stage and as such could not
control the system. Therefore, it is important to reduce the difference between the actual
data and the estimated data in the short time possible following a disturbance so that the
estimated data that the control system will use will be close to the actual plant data and
thus an effective control could be achieved. One of the ways to do this is to use
approximate initial conditions close enough to the true initial conditions of the actual

system for the state estimators.
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Figure 7.9 Effect of the erroneous initial conditions on the control performance:
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7.5.3 Effect of Measurement Error

In this Section, we are interested in assessing the effect of cyclical error in the
temperature measurements. Unlike measurement noise, which is a stochastic and
nondeterministic error of the sensors that cannot be predicted, cyclical errors are as a
result of sensors imperfections and/or abnormal performance due to inaccurate settings.
These types of errors are deterministic and repeatable. Figure 7.10 compares the control
performance of CS-Estimator to that of CS-Analyzer when +1 °C and -1 °C measurement
errors present in the sensors located in the reboiler, tray nfl and the top plate. The forcing
is a 10% increase in the feed flowrate of reactant B. The CS-Estimator performs
reasonably well in resisting the effect of the disturbance with an acceptable error in the
desired compositions.

Generally, the end effect of the sensors errors depends on the error type. This can
be best explained when considering how well the estimator is able to predict the actual
column temperature based on the noise contaminated temperature data supplied by the
sensors. This is illustrated in Figure 7.11, by comparing the tray nfl temperature
measured by the sensor (Tmeasured) and as predicted by the state estimator (Testimated) to the
actual temperature profile (Tacwal).- It can be seen that the high frequency noise was
effectively attenuated by the in built filter the state estimator, but the effect of the present
1°C bias in the measurement data was only reduced. Because the control systems are
designed to follow the feedback signal from the state estimator (including its estimated
errors) as well as possible, deterministic errors will carry through, at least in part, to the
control system and corrupt the response output. Therefore, much effort must be given to

using accurate sensors with minimal cyclical errors in building the estimator.
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disturbance. The base initial condition errors, J,, =10% and &, = 1% are used for
KF design. (—) CS-Analyzer; (----) CS-Estimator. (a) no error (b) +1 °C (c) -1

OC error located in 3 stages.



188

401 -
T estimate
4001 \ measured ﬁ
X
- 399+
l—C Tactual
398+
397+
0 1 2 3 4 5 6

time h

Figure 7.11 Temperature profile on tray nfl of the CS-Estimator system. The
measurement error of 1 °C present in the thermocouples located on the reboiler,

the tray nfl and the top plate. The base initial condition errors, o,, =10% and

o o = 1% are used for KF design. +10% Fg disturbance.
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7.5.4 Plant-Model mismatch

Though reactive distillation systems are generally known to have many
advantages over the conventional multi-unit reaction/separation/recycle systems, they
often possess complex dynamics and limited flexibility because of the interactive effect
of reaction on separation. For a state estimator that relies heavily on such system
dynamics, the effect of plant-model mismatch is essential to be investigated. Model
mismatch has considerable effects on the performance of a closed-loop distillation
system[7].

Uncertainties in relative volatility have significant effects on the design and
performance of reactive distillation [8]. Therefore inaccurate modeling of the reaction
kinetics and vapor-liquid equilibrium (VLE) relation can consequently affect the
performance of the state estimators [2, 3, 8, 9]. To illustrate this, we have considered the
effect of errors in the components relative volatilities, which in practice, are usually
known with some uncertainties. The relative volatilities of the components in the real
plant model are as given in Table 1. Two set of erroneous relative volatilities are tested as
follows:

(DHa=39/19/79/1, where the error of -0.1 is made in the component relative
volatilities.

(I)a =4.1/2.1/8.1/1, where the error of +0.1 is made in the component relative
volatilities.

Using these set of relative volatilities in the estimator model means that the
system dynamics has been altered by inaccurate vapor-liquid relationship parameters.

The resulting control performance of CS-Estimator under the effect of erroneous relative
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volatilities is shown in Figure 7.12. It can be seen clearly that inaccurate vapor-liquid
representation has a severe effects on the control performance of the CS-Estimator
system. Therefore an adequate representation of the VLE relations is very important and
a necessity to the successful application of the estimator in the control system of reactive

distillation.

7.6 Conclusion

This chapter demonstrates that a state estimator can be successfully designed and
implemented in the feedback control system of reactive distillation. The work of the state
estimator is to provide the state compositions that are required to be used by the
controller for necessary action. The control performance of the system that relies on the
state estimator is examined and compared to that of the system which takes direct
measurement from the process assuming the availability of perfect online analyzer. The
robustness of the estimator-based system is investigated against measurement errors,

model uncertainties and erroneous initial conditions.
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CHAPTER 8

8 Conclusions and Future Research Directions

8.1 Conclusions

The design and implementation of the linear state estimators and their
applications in reactive distillation control are explored in this thesis work. A state
estimator is required to infer the useful but inaccessible liquid composition in the reactive
distillation column from the available process variables. The state estimates from the
estimator are provided to the online controllers without the use of the unreliable
composition analyzers.

First, a comprehensive formulation of the linear and nonlinear process models is
presented for a generic two-reactant-two-product reactive distillation. The dynamic
behavior of a linear process model is assessed by comparing its performance to that of a
rigorous nonlinear process model. The impact of disturbance magnitudes and direction on
the system dynamics are studied. It is found that operating two-reactant-two-product
reactive distillation with excess of the heavy reactant enhances open-loop stability, but
decreases the products purity. On the other hand, excess of more volatile reactant drifts
the system to another state.

Second, the closed-loop performance of the three alternative control structures
when based on a linear process model is compared to that when based on a nonlinear

process model for a generic two-product reactive distillation. It is shown that an
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approximate linear model behaves essentially similar to a nonlinear model in a closed-
loop system when the deviation of process variables resulting from the disturbance is
within the region of the base steady state. It is found that the linear process model could
be used in the design of a robust control system when the control valves are designed to
handle the underestimation problem of the manipulated variables.

Third, two alternative state estimator design methods (i.e., a Kalman filter and a
Luenberger observer) are explored and the accuracy of the developed state estimators is
checked by comparing the state estimates with the actual states as predicted by the
process model of the reactive distillation system. The robustness and reliability of the
state estimators are demonstrated with respect to an erroneous initial condition, the
measurement noise and plant-model uncertainties.

Lastly, it is demonstrated that a state estimator can be successfully designed and
implemented in the feedback control system of reactive distillation. The work of the state
estimator is to provide the state compositions that are required to be feedback into the
controllers for the necessary actions. The control performance of the system that relies on
the state estimator is examined and compared to that of the system which takes direct
measurement from the process, assuming the availability of perfect online analyzer. The
robustness of the estimator-based system is investigated against the measurement errors,

model uncertainties and erroneous initial conditions.

8.2 Future Research Directions

New and challenging problems that have potential future research value are

identified throughout this thesis work and are summarized as follows:
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Developing more accurate but complex nonlinear process model for a
reactive distillation: In this work, we have used a simplified nonlinear process
model to describe an ideal reactive distillation. Because the results in this work
has shown us that the performance of a state estimator is a strong dependant of
the process model from which it is developed, there is need to formulate more
accurate nonlinear process models by removing some of the assumptions made in
this work. For instance, nonideal vapor-liquid equilibrium relation, tray efficiency
and energy balance equation should be considered in the modeling stage of a
reactive distillation.

Development of a nonlinear state estimator from a nonlinear process model:
The complexity nature of a typical reactive distillation process and the desire to
operate the system over a wide range of operating conditions will necessitate the
study of nonlinear state estimators and their applicability in the reactive
distillation control. The nonlinear state estimators can cope with the intrinsic
nonlinearities when the system is operated under a wide range of operating
conditions. Without doubt, the nonlinear estimators will severely increase the
complexity of the system and demand effective computational resources.

The applicability of the developed estimator-based control system to a
reactive distillation of a real chemical system: Future research work is required
to apply the developed state estimators in the composition estimation of reactive
distillation for a specific chemical system, such as the production of MTBE,
ETBE and TAME. In the real chemical systems, introducing the complex kinetics

relations of a specific chemical reaction and vapor-liquid equilibrium relation will



196

add complexity to the reactive distillation model and pose more challenge in the
design and implementation of a state estimator.

Development of an adaptive state estimator: Although it is demonstrated that a
Kalman filter is robust towards erroneous initial conditions, model uncertainties
and measurement errors, it however assumes that the errors statistical
characteristics are known. Thus future research is expected to focus on the design
of “adaptive extended Kalman filter estimator” to take care of more practical
situation of unknown errors statistics and disturbances.

Implementation of a state estimator on different types of control structures:
The developed estimators can be further tested by implementing them on other
control structures such as: a state feedback control where all of the estimated
states are used by the controllers, a single-end composition control structure, and

a cascade control system.



NOMENCLATURE

A = reactant component

A = matrix of state variables of the linearized process
B = matrix of inputs of the linearized process
B = reactant component

B = bottoms flowrate (kmol/s)

C = matrix of outputs of the linearized process
C = product component

CC = composition controller

d = disturbance variables vector

D = distillate flowrate (kmol/s)

E = matrix of the disturbance input

Fa= fresh feed flowrate of reactant A (kmol/s)
Fp= fresh feed flowrate of reactant B (kmol/s)
FC = Flow controller

FT = Flow transmitter

| = gain matrix

| = unit matrix

K = gain matrix

Kr = specific reaction rate of the forward reaction (kmol.s™.kmol™)

Kg = specific reaction rate of the reverse reaction (kmol.s”.kmol™)
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KF= Kalman filter
L =liquid flowrate (kmol/s)

LC = level controller
L, = liquid flowrate at the steady state

LO= Luenberger observer
M; = liquid holdup in all stages (kmol)

M, = liquid holdup at the steady state

Nc = total number of components

N = total number of stages including reboiler and reflux drum
n= total states variable (n=N x Nc)

Nr = number of stages in rectifying section

Nrx = number of stages in reactive section

Ns = number of stages in striping section

nfl= first tray of reactive section (entrance of feed Fa)

nf2= last tray of reactive section (entrance of feed Fp)

P= covariance matrix for estimation error

P = estimated covariance matrix

P = column pressure.

q = number of output measurements
Q = model error covariance matrix.
R =reflux flowrate (kmol/s)

R, = measurement error covariance matrix.

R; = rate of production on tray i (kmol /s)
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t = time (s)

T; = temperature in stage i including reboiler (K)
Tgev = temperature in deviation form

TR = total reaction rate (kmol/s)

U= input variables vector

V= measurement noise

V; = vapor flowrate from the reactive tray i (kmol/s)

Vs = vapor flowrate from reboiler (kmol/s)

W = plant noise

Xij = liquid mole fraction of component j on tray i
X = state vector of the variables.

X = state estimate vector.

Xpotp = composition of D in the bottom

Xdis,c = composition of C in the distillate

Xdev.a = composition of A in deviation form
Xdev.B = composition of B in deviation form
Xdev.c = composition of C in deviation form
Xdev.p = composition of D in deviation form
Xnfi,o = composition of A on tray nfl

Xar1,3 = composition of B on tray nf2

xij = liquid mole fraction of component j in tray i

Xo = initial state vector

X = liquid mole fraction in deviation form
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Xg(D) = composition of D in the bottoms
Xp(C) = composition of C in the distillate
Xaf1(A) = composition of A in tray nfl

X, = 1nitial conditions of the plant model
X,err =initial condition error vector

X**' = Vector of the controlled variables setpoint

Y = output vector

Py

Y = observation vector

Y = vector of the outputs

Y = output variables in deviation form

yij = vapor mole fraction of component j in tray i
Z = measured output vector

Z, = composition of fresh feed Fu

Zy, = composition of fresh feed Fp

Greek letters

a; = relative volatility of component j with respect to heavy component

a = approximate relative volatilities
AH,, = heat of vaporization (cal/mol)
A = heat of reaction (cal/mol)

o = standard deviation

0,, = of the measurement noise

0, = standard deviation of the plant noise
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0,; = the Kronecter delta

6 = lumped model parameters.

p hydraulic time constant

a; relative volatility of component j with respect to heavy component
AH,, heat of vaporization (cal/mol)

A heat of reaction (cal/mol)

0 system constant parameters.



202

APPENDICES

Appendix A

Entries of Matrices A

State vector:

.
X = [xl,l,xzﬁl...xN’l,xl,z,xz,z...xNﬁz,xm,x2,3,...xN,3,x1’4,x2,4,...xN’4,Ml, M,,..M N]

where the first subindex is the stage number and the second is the component number.
The stages are numbered from bottom to top.

The a; ; elements of matrix A are given by:

A-1. Reboiler:

—L, +V (1—dy ) v, v,
a, = = ANy = [ M )dyIIZ A one = [%A )dyll.’)

V, L (X3 = X11)
AN = [ M jdyl 14 ap, :M_zl A1 4n42 :W
a — _[Lz (X21 — X11)+VS (Xn — y11)] a _ B L2 +VS (l_dyl,ZZ)
1,4N+1 YE N+1,N+1 M,
Vi \Y |—
Aniione = ( M )dyl 23 Ay 3N+ =_( %Aljdyl,m AnyiNe = |\/|
a _ (Xzz _X12) a __[Lz(xzz ) v ( X2 = Yi )]
N+1,4N+2 — N+1,4N+1 —
YW M/
V, Vv —L, +V,(1-dy, ;)
ANy = ( jdyml AN N = _( %Al)dyl,sz a2N+1,2N+1 = - |i/| .
1

a _ _(V% ]dy a _ Lz a _ (X23 — X13)
2N+L3N+1 — 1,34 2N+L,2N+2 — IN+LAN+2 —
M, M, M, S



a _ [Lz (Xzs — X3 )+Vs (X13 —Yis )]
IN+LANAT — M 2
1
V, V
AsnpNa = ( M, dY, . Qnaona = S M, dy, s
a _ L, a _ (Xyy 14) a _
N3N T 3N, 4N+2 INLAN
i M,S
a _—2B
AN+1,4N+2 H
M,

A-2. Stripping Section (Tray i):

V \Y
:[ y Mi)dyi—l,ll A Nsict :( %Aijdyi—l,n
Vv i Vs dy,
A 3n4ict :( %Aijdyi_l’m a; = ( 1 _ 11)
Vs V
Qi oNsi = (%/I jdy| 13 i 3n+i =_[ %Aijdyi,m

a _ |_L|+1( |+11 - Xi,l )+Vs (yi—l,l - yi,l )J
4N+ T M _2

\Y V
AN i i1 :( y Mijdyi—l,ZI AN N1 :( y Midei—l,zz
V V
AN 3Ni-l :( %Aijd%l,m Ay = _( %Ai)dyi,ﬂ
V \/
AyyioNs = _( %Ai)dyi,n Aysisng = _( %Aijdyi’ﬂ

|_L|+1( |+1 2 Xi,z )+Vs (yi—1,2 - Yi,z )J
M 2

\Y \Y
Aol :( %Aijdyi—l,al AN 4N+ :( %Aijdyi—l,n

V V
Ay N4 3Ni-1 :( y Mijd)’i_l,u Aynsii = _( y Mi)dyi,Sl

a'N-¢-i,4N-¢-i -
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V
AN = _( %Aljdyl,m

- Lz +Vs (1 - dy1,44 )
Ml

IN+1,3N41

_ [Lz (X24 — Xy )+VS (X14 —Yu )]

M/
1

ANt AN =

B

\Y
8 oN+i-1 =( %Ai)dyi—l,m

Vg
| N+ — ( )dyl 12

a _ I—i+1
i+l
M;
(Xi+1 1 X 1)
Qi yntin =
Vv
ANi,2N+i-1 :( y M. dyi—1,23
i
a _ ( i+1 +V dyl 22)
N+i,N+H
Ivli
a _ I‘i+1
N+i,N+i+l —
Mi
B (Xi+l 2~ Xi,2)
aN-H AN+i+T T

Vi
2N+|2N+| 1 :( %A jdy| 1,33

Vi
2N+| LN+ = ( M )dyl 32



( i+1 +V dyl 33)

a'2N+i,2N+i -

B le (Xi+1,3 = Xis )+V5 (Yiois — yi,3)J

a'2N+i,4N+i - M )
i

V V
Aot z( %/lijdy”"“ AN i N+-1 z( %Aijd)ﬁmz
V V
B3N 41 3Ni-1 z( %/I i jdyi—1,44 ANy = _[ %Ai)dyi,m

Vi L,
Mi AN+isNG = (m jdy| 34 QoNyioN+is = Ml
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- (X3 —Xi3)
INHANHH —  wa
M;f

A3N i 2N Hi-1 =( %/l jdyu 1,43
QNN+ = _( jd)’u 0

a

>0

V ( I+ +V dyl ) L
A3N i aN+ :_( %Ai)dyi,@ Asnyisng = 1 2 Asn i i1~

M.

_ [Lm( Xia — Xi,4)+VS (yi—1,4 - yi,4)J

a'3N+i,4N+i - M 2
i

1

a'4N+i,4N+i =77

B
A-3. Reactive Section (tray i)

A-3.1. Feed tray for reactant A (i = nfl)

& oy i [\L/ﬁ; )dy.ln
Ay i 2nsic1 =(Y>4Qijdypha

Vs
2N+|2N+| ( M )dy| 1,33

i+1
3N+i,3N+i+1
IVli
a _ (Xi+1,4 o Xi,4)
3N+, 4N+i+1 —
M;p
1
a‘4N+i,4N+i+l -

B

By i Nt (//// jdy.ln
Ay iaNsic = f“ ijdyFLM
By si Nt CV ijdyihn

2N+| LN +i-1 ( i)dyi—l,%
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\Y \Y

A3 :( %Aijdyi—ml AN i Nicl :( %Aijdyi—mz
V V

AN 2Nl :( %Ai)dyil,% AN i 3N -1 :( %/l i ]dyi1,44

A-3.2. Reactive trays  (for i # nfl)
Subindex kK is referring to reactive tray i.

For k=1 to i-(Ns+2) . (k) =0 for all k, except when k =1 where 5(1) =1

B 5(k)v(i—k)(dyi—1,11 )+ AV (Yioy = %)+ AV (% = Yi)
ik =
, M .

a . 5(k)v(i—k)(dyi—l,l2 )+ sz(i—k)(yi—l,l - Xi,l) + sz(i—k)(xi,l - yi,l)
i,N+i-k —
’ M.

_ 5(k)v(i—k) (dYH,n )+ AV3 i (Vi = %) FAV3 0 (X = Yi)

A HN ik M.

B 5(k)v(i—k) (dyi—1,14 )"‘ AVA oY, =X ) +AVA (X = Yia)

ai,3N+i—k - M

AVM (i—k)[(yi—l,l =X )+ (X, =YDl
A ansik = M

a _ 5(k)v(i—k) (dyi—l,ZI )"‘ AVl(i—k) (ym,z - Xi,z) +AV l(i—k) (Xi,z - Yi,z)
N+ii-k —
’ M.

_ 5(k)V(i_k) (dyi—1,22 )"’ sz(i—k)(yi—l,z - Xi,z) + AV2(i—k) (Xi,z - yi,z)

P> . =
N-+i,N+i-k
M

B 5(k)v(i—k) (dyi—1,23 )"’ AV3 o (Yiaa = Xi) +AV3 (X, — Vi)

an . =
N-+i,2N+i—k
M

B 5(k)v(i—k) (dyi—1,24 )+ AV A, o Yiga = Xi) +AV A (X = Vi)

a. . =
N+i,3N+i—k
M,

AVM i o [(Yi, = Xin) + (X5 = Vin)]
Aniantik = M

B 5(k)v(i—k) (in71,31 )+ AV (Yios = Xiz) F AV (X5 = Vis)

N4k —
M
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B 5(k)v(i—k) (dyi—1,32 )+ AV2 i o (Yios = Xi3) FAV 2, (X5 = Yis)

a'2N+i,N+i—k - M _
5(k)v(i—k) (dyi—1,33 )"‘ AV3 i o (Yias = Xi3) +AV3 i (X5 = Yis)
A)NsioN+ik = M

5(k)V(i_k) (dyi—1,34 )+ AV 4(i—k) (yi—l,S - Xi,3) +AV 4(i—k) (Xi,3 - yi,3)

AN 3Nk = M.

AVM (i—k)[(yi—1,3 = Xi3)+ (X5 = VYis)]
Ay)NsiaNTik — M.

B §(k)v(i—k) (dyi—1,41 )"’ AV (Yioe = %) AV (X, = Yis)
IN+H,ik M.

S(KWViiy (dyi—1,42 )+ AV26 0 Yiia =X ) TAV2 i (Xiy = Via)
ANk = M

5(k)v(i—k) (dyi—1,43 )+ AV3 i (Vi = %) AV (Xiy — Via)
AsNioN+iok = M.

5(k)v(i—k) (dyi—1,44 )+ AVA ;o Ying —X) TAVA (X y = Yig)
NNk = M

AVM o [(Yia = X)) + (Xi g = Yi)]
AN i aNvik =

M

i

A-3.3. Reactive trays (tray i)

F =0 exceptini=nfl where F =F,and z(j)=Z,;,andinthe i=nf2 where F, = F;,
2(j))=2,

—L,, =V, +V,(1=dy,,, )+ AV1,(x, - y;,) + stoich()ARL, - F,

Mi
AV2,x,, —(V.dy,,, +AV2,y,, )+ stoich(1)AR2,
ANy = : - :
) MI
. AV3,x,, —(Vdy, , +AV3,y,, )+ stoich(1)AR3,
i2N+i

M.



5 AV 4 X, — (Vidym +AV4y,, )+ stoich(1)AR4,
L3N+ T
’ M

a _ =il a _ (Xi+1,1 - Xi,l)
i+l — LAN+iI+1
M, | M, B

[Lm (Xi+1,1 - Xi,l )+Vi—1 (yi—l,l - Xi,l )+Vi—1 (Xi,l - yi,l )+ Fi (Z(l) - Xi,l )]

a'i,4N+i = M i2
AV X, — (Vidyw +AV1, yi52)+ stoich(2)ARI,
Ay, = M-
— L, =V, +Vi(1=dy, )+ AV2,(x,, - ¥;,) + Stoich(2)AR2, — F,
a'N+i,N+i = M
AV3 X, — (Vidyi,23 +AV3y,, )+ stoich(2)AR3,
AyLions =
M;
AV4,x,, —(V,dy, ,, + AV4,y, , )+ stoich(2)AR4,
a'N+i,3N+i = M
I—i+ (Xi+, - Xi, )
aN+i,N+i+l = M: aN+i,4N+i+1 :W
_ le (Xm,z - Xi,2)+vi—1 (yi—l,z - Xi,2)+vi—1 (Xi,z - yi,2)+ Fi (2(2) - Xi,z)J
aN+i,4N+i - M_z
AV1, x5 —(V,dy, 5, +AV1, Y, , )+ stoich(3)AR,
ANy = M-
AV2,x, - (Vidy,,, +AV2,y,, )+ stoich(3)AR2,
a'2N+i,N+i = M
- Li+1 _Vi—l +Vi (1 - dyL33 )+ AV3(i)(Xi,3 - yi,3) + StOiCh(3)AR3i - Fi
AynsioN+ = M-
AV4,x,, —(Vdy,,, +AV4,y,, )+ stoich(3)AR4,
a'2N+i,3N+i = M
Li+ (Xi+, - Xi, )
Ay NN+l = M_l AN i AN 4] :1|\3/|—_ﬂ3

B I.Li+1 (Xi+1,3 - Xi,3)+vi—1 (yi-l,s — X3 )+Vi (Xi,s —VYis )"’ F(z(3)— X, )J

a'2N+i,4N+i - MZ
i
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. AV X, — (Vi dy,,, +AVI, yi’4)+ stoich(4)ARI,
3N+,
’ M

5 AV 2 X 4 — (Vi dy,,, +AV2, yi,4)+ stoich(4)AR2,
3NN+
’ M

AV3X; 4 — (Vi dy, 5 +AV 3, yi,4)+ stoich(4)AR3,

Asnsion+ = M.
- L, =V, +V, (1 - dyi,44)+ AVA (X4 = Yig)+ stoich(4)AR4, — F,
A3NLisNG = M-
I—i+ (Xi+, - Xi, )
a‘3»N+i,3N+i+l = M .1 a3»N+i,4N+i+1 = ll\jl—ﬂ“

le (Xi+1,4 - Xi,4 )+Vi—1 (Yi71,4 - Xi,4 )+Vi—1 (Xi,4 - yi,4 )+ Fi (2(4) - Xi,4)J

a'3N+i,4N+i -

M-2
1 A 1 -A
AN i AN+ :_(E—’_HARmi) AN i AN+ :E AN :HARL
-1 -A -A
AgniNg :HARzi, AN i 2N+ :_AR3i AN i 3N :HAR‘H

A-4. Rectifying Section

A-4.1 Tray i: (i = nf2+1)

{Vildyil,lz +AV2(i—1)(yi—1,1 - yi,l)j
a'i,N+i—1 = M

(Vi—ldyi—l,m +AV3(i—1)(yi—l,1 - yi,l)j
ANt = M.

M.

(Vi—ldyi—l,ZI + AVl(i—l) (yi—1,2 —VYi2 )]
Asija =

~ [Vndy.m +AV3 (Vi — yi,z)]
a1\I+i,2N+i—1 - M

ii-1

{Vildyil,ll +AV1(i—1)(yi—1,1 - yi’l)j
M.

[Vi—ldyi—l,m +AV4(i—1) (yi—l,l - yi,l)j
A 3N =

M.

M.

_ [Vi—ldyi—l,ZZ + sz(i—l) (yi—1,2 - yi,z)
N+, N+-1 —

M.

_ [Vi—1dyi—1,z4 +AV4i—1 (yi-l,z o Yi,z)
N+, 3N+i-1 —

|
|
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M., M,

_ Vi—ldyi—1,31 + AVIH (yi—1,3 - yi,3) _ Vi—ldyi—l,32 +AV2H(YH,3 - Yi,3)
a‘2N+i,i—1 - a'2N+i N+i-1 —

M, M.

Vi—ldyi—1,33 + AV3i-1 (yi—1,3 - yi,3) Vi—ldyi—l,34 +AV4i—1 (yi—1,3 - yi,3)
a2N+i,2N+i—l = a2N+i INH-

[Vndyi—lAl +AV1n (yi—l,4 - Yi,4)j [Vndyi—mz + AV2n (yi—l,4 - yi,4)]
Ao = N+ N+l —

Mi Mi
_ Vnd¥—1,43 +AV3n (yi—1,4 _yi,4) . Vndy|—1,44 +AV4n (yi—l,4 - yi,4)
N = M N+,3NH- M.

A-4.2. Tray i: (i = nf2+2: N-1)

\Y/ \Y V
-1 :( " Mi)dyi—l,ll Aj Nio1 :( y Mijdyi—l,lz Q) HN+in1 :( %Ai)dyi—l,m
V \/ V
A 3n4i :( %Aijdyil,m Ao :( %Aijdyn,zl A i N1 :( y Mijdyil,zz
V V \Y
AnyioNGio = (A/l )dyi1,23 A4 3N4i1 :(%\Ai)dyil,m ANl :( %Ai)dyilﬁl
V, AV V
AN N+l — (A/I jd 1,32 AN i N :(%Aijdyil,n Ao 3N :(%Ai}mlm
V V
A3niiol :( dy| 141 BN N (A/I )dyu 1,42 AN 47 2N+ :[%/li)dy”’“
\Y
A4 3N+ :( %/li )dyil,44

A-4.3. Tray i: (i = nf2+1: N-1)
for k=1 to Nrx

ai,Ns+1+k = (yi—l,l - yi,l)AV1N5+1+k ai,N+Ns+1+k = (yi—l,l - yi,l)AV2N5+1+k
ai,2N+Ns+1+k = (yi—l,l - yi,l )AV3NS+1+k ai,3N+Ns+1+k = (yi—l,l - yi,l)AV4Ns+l+k
Qi 4NiNstI+k — (yi—l,l - yi,l )AVM Ns+1+k aN+i,Ns+1+k = (yi—l,z —VYi» )AVle+l+k

AN i NeNsH+k = (yi—l,z —VYia )AV2NS+1+k AN i ANANsHk — (yi—l,z —VYia )AV3NS+1+k



210

Ansisnenseirk = Yico = Yi)AV A Busianenssek = Vi = Vi JAVM

a2N+i,Ns+1+k = (yi—1,3 - yi,3 )AV1N5+1+k AN+ N+Ns+Hk — (yi—1,3 - yi,3 )AV2NS+1+k

Aonsionsnsik = Yios = Yis)AV3 e Qonsisnensask = Yis = Yia)AV 4o

a2N+i,4N+Ns+1+k = (yi—1,3 - yi,3 )AVM Ns+1+k a3N+i,Ns+1+k = (yi—1,4 - yi,4)AV1Ns+1+k

AN i N NsHIk = (yi—1,4 - yi,4)AV2Ns+l+k A3N4i 2N+ Ns+ Ik — (yi—1,4 —VYias YAV 3 ik

a3N+i,3N+Ns+1+k = (yi—1,4 —VYis4 )AV4 Ns+1+k a4N+i,4N+Ns+l+k = (yi—1,4 - yi,4 )AVM Ns+1+k
(L +V,dy,, )

a.. =

Vv,
ii M |N+| = ( M )dyl 12

V Li+
Q3N+ = _( %ﬂi)dyi,m Qi = M_l

lL|+l( |+11 -

Xi,l )+V (yi—l,l - Yi,1 )J
M

a'i,4N+i -

aua = . O

V I—i+
ANyigN+ = _( y Mijdyi,24 AN i Nl :ﬁ

Ayying = ( ™ :\_/IV dyl 22)

Xi » )+Vi—1(yi—1,2 —VYia )J
a'N+i,4N+| - M _2

V, V
2N+|| = [ M. jdywl a2N+i,N+i =_( y Mijdyi,SZ

\ Li+
A)NsisN+ = _( %Aijdyi,ﬂ Ay NN+l = M_l

|_L|+l( |+1 2

lL|+1( Xips — Xi,3)+vi—1(yi—1,3 —VYis )J
a2N+i,4N+| - M-2
A = (V jdy. 41 NN = (V jdy| 42
( i+1 +V dyl 44) |+l

a . .=
3IN+i,3N+i
M

INHL3N+iHL M
i i

V,
Aionsi = [%ﬂ jdy| 13

(Xi+1,1 - Xi,l)

M;f

a‘i,4N +i+l T

Vv,
N+|2N+| = (A jdy| 23

a _ (Xi+1,2 B Xi,2)
N+i, 4N+i+1 —
M S
_ ( i+1 +V dyl 33)
a2N+i,2N-¢-i - M

i
(Xi+1,3 - Xi,3)

M

a'2N+i,4N+i+1 -

V
AsnyioN+ = ( jdy| 43

(Xi+1,4 - Xi,4)

T M

a'3N+i,4N+i+1 -
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B [Lm (Xi+1,4 - Xi,4)+vi—1(yi—1,4 - Yi,4)J

a3N+i,4N+i - M P
i

A-5. Reflux drum (stage N):

for k=1 to Nrx

aN,Ns+1+k = (yN—l,l - XN,I)AV1N5+1+k AN N+Ns+k = (yN—l,l — XN )AV2NS+1+k
aN,2N+Ns+1+k = (yN—l,l - XN,l )AV3NS+1+k a'N,3N+Ns+1+k = (yN—l,l - XN,I)AV4N5+1+k
aN,4N+Ns+1+k = (yN—l,l — XN )AVM Ns+1+k aZN,Ns+1+k = (nyl,z - XN,z )AV1N5+1+k
azN,N+Ns+l+k = (yN—l,2 — XN )AV2Ns+l+k a2N,2N+Ns+1+k = (YN-Lz — XN )AV3Ns+l+k
a'2N,3N+Ns+1-¢—k = (yN—l,z - XN,2 )AV4N5+1+k a'2N,4N+Ns+1+k = (yN—l,z - XN,2 )AVM Ns+1+k
AN Ns+I+k — (yN—1,2 - XN,2 )AV1N5+1+k aZN,N+Ns+1+k = (yN—1,2 —Xna2 )AV2N5+1+k
a‘2N,2N+Ns+1+k = (yN—l,Z - XN,2 )AV3N5+1+k a‘2N,3N+Ns+1+k = (yN—l,Z - XN,2 )AV4N5+1+k
a2N,4N+Ns+1+k = (nyl,z - XN,2 )AVM Ns+1+k a4N,Ns+1+k = (yN—1,4 - XN,4)AV1NS+1+k
a4N,N+Ns+l+k = (yN—l,4 - XN,4)AV2NS+1+k a4N,2N+Ns+l+k = (yN—1,4 - XN,4 )AV3Ns+l+k
AN 3N+Ns+ 1ok = (yN—1,4 X4 )AR4NS+1+k QYN AN+NsHIk = (yN—1,4 X4 )AVM Ns-+1+k
a'5N,Ns+1+k = AVle+1+k a5N,N+Ns+1+k = AV2Ns+l+k

A
AN aN+NsHI+k — AV3NS+1+k Asn 3NNk — AV4Ns+l+k AsN AN+Ns+Ik — mARmNSJer

V V V
ay N :( %AN)dle,n ay an-i :( %AN]dyN“Z ay 3n-1 :( %AN)dle’”

\Y V (Y, — X
anan-1 =(V%/|deyN—l,l4 ayn =~ s ay sn :—l (yN L1 NI)J

My My
\Y \Y \Y
AN N- =( %AdeyN—l,ZI a,N aN-1 =( %AdeYN—l,zz aAyN 3N =( %AdeyN—l,B
V V., I.Vn (yN—l,z _XNZ)J
AN ang = M . dyN—1,24 dynon =T M AN sn = M 2
N N

V V V
Asn N-t :( %AN)dyN—I,M AN oN-i :( %AN)dyN—mz A 3N-1 :( %AN)dyN—I,B
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'S |_Vn (yN—l,B - XN3)J

\/
a AN-1 — ( / )dy ) a ’ = — a , —
3N,4N-1 M, N-1,34 3N,3N M, 3N,5N MI%I
\Y V \Y
AN = ( %/l . jdyN—lAl AN oNa = [ %/I " )dYN—mz AN 3N = ( %/I . deN—1,43
a :(V/ )dy a _ VN a :_|.Vn(yN—1,4 _XN4)J
AN,4N-1 M N-1,44 4N, 4N M, 4N,5N M ,%‘
1 -2D
Asn_1sn-1 = _E asp 5N M
N
. B, .,
’ Xi1 . o, P
G(n)(Avp,l - A(i))j
: B, . ,«a
ATi X2 = aaT' = — el 72 >
’ Xi 2 . a,P
G(I)(Avp,l - In( 1%(0))
. B, «a
ATiX3 = aaTl == T 2
’ X 3 . a,P
G(')(’*psl - %m))
T. Bv o . Nc
AT, = 88 == P14 > where G(1) = Zakxik
’ Xi,4 ; o, P k=1
G(')(AW - %mn
AK] . = oK, :ﬁeﬁ%ﬂ AT = dk, :ﬁeﬁ%n
’ dTi RT, ’ CITi R,T,
oK, .
Akéil = 2= Ak; iATiXI Akéiz = aKFI = Ak; iATixz
’ il , j , o i,2 , ,
Ak 5 = Kei _ AKL AT Ak, = ZKH = Ak{ AT,
i3 i,4

oK ...
Aky | = p 2L = Akg AT

il

oK,

Akg, = = Akg ;AT

i,3

oK.
Ak;i,z = 2 = :Akg,iATi,Xz

i2

oK.
Akém = 3 o

= Akg AT,

i,4



drR

ARIi = i :Mi(kFiXi2+Xi1Xi2Akéil
dXi,1 T e ’
AR2; = (;jRi = Mi(kFiXil + X1 X 2 AKE
X n C ’
AR3; = (;jRi = Mi(xilxi JAKE 5 —Kg X
X 3 S ’ S
AR4i :c?Ri :Mi(xilxizAkéM_kBiXH
Xi 4 S ’ S
ARm; = (;j% = (kF,i Xi i Xin — kB,iXi,3Xi,4)
AV, = N, :LARli
i,l AHv
AV3, = N, :LAR:*}i
oX;; AH,
AVM, :%ZLARmi
oM, AH,
dy . = oY, _ al(azxiz + a5 X5 +0{4Xi4)
o G(i)’
dyi,13 _ 2yil _ _al).(ilza3
Xi3 G(1)
i, —dv  — -, X,
o G0y
dyi,z3 _ Zyiz _ _az)fizza3
Xi3 G(1)
dyi,31 = ZYB = —053).(i32051
X G(i)
dy. .. = s _4% (alxil +a, X, +asxn)
o G(i)’

)

X
— X3 Xi,4AkBi,1

X
- xi’3Xi,4AkBi,2)

- Xi,3xi,4Akgi,3)
— X, 3% A )
avo, =N A ary
ox, AH,
AV4| = aVI :—ﬂ AR4|
OXi4 AH,
ayi 4 Xi o
in,lz =—1= - 12 2
o, G()
i —a X, a
dyi,14:ayl: 1.124
X, G(i)
dy,,, = oY, _ az(alx“ + a5 X3 +a4xi4)
o, G(i)’
dyi 24 = ayiz = —az)'(i22054
’ Xy G(i)
dy, ,, = s _ X4,
i,32 8Xi2 G(|)2
dy. ., = Vis — — X0y
i,34 ox., G(i)2
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dy,, = iy _ _a4).(i4;a1 dy, ,, = WNia _ _a4).(i420[2
’ oX;, G() ’ 0X;, G()
Nia _ —auX,0, Wiy a4(a1Xi1 T, X +a3xi3)
dy; 4 = = 2 dy; 4 = = 2
’ OXi5 G() ’ OXi4 G()
Appendix B
Entries of Matrix B
Input variable Vector:U = |V ,R,[
Dimension: (5N X 2)
B-1. Reboiler:
_ (X1,1 B yl,l) _ (XN—Z,I B XN—I,l) _ (XI,Z B Y1,2)
bll_— bN—IZ_— bN+11_—
’ M 1 , M N-1 , M 1
b _ (XN—2,2 B XN—LZ) b _ (X1,3 B yl,S) b _ (XN—2,3 B XN—I,S)
2IN-1,2 M, 2N+1,1 M, 3IN-1,2 M,
b _ (X1,4 B y1,4) b _ (XN—2,3 B XN—1,3) b -1 b -1
3IN+1,1 M, 4N-1,2 M, AN+1,1 SN2

B-2. Stripping Section :(2<i<Ns+1)
(yi—l,l B yi,l) b (Yi—l,z B Yi,z)

il M- N+l = M- b2N+i,l :M— b3N+i,l _M—

B-3. Reactive Section: (Ns+2 <i<Ns+ Nrx+1)

(yi—l,l - Xi,1)+ (X = Yiy) (Yi—l,z =X, )+ (Xiy = Vis)

bi,l = M- bN+i,l = : Iz/l
b _ (yi—l,S — X3 )+ (Xis = VYis) b _ (yi—1,4 - Xi,4)+ (Xig = VYi4)
2N+i,1 T M 3N+, T M.

B-4. Rectifying Section (NS + Nrx+2 <i < Ns+ Nrx+ Nr+1)



. (yi—l,l - yi,l) b _ (yi—l,z - Yi,z)
[ Mi N+i,1 — Mi
B-5. Condenser (N-stage)
41— X
bN’1 _ (yN 1,'1\/|i N,l) bZN’1 — (yN IIZVI

b4N1:(yN+_XNA) bsm:1

Appendix C

Entries of Matrix C

Output variables Vector:
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B :(y”}M—_y”) DN :W
_ XN,Z) b (nyl,s — AN 3)
3N M

C-1. If output variables are considered to be composition of C in distillate and D in the

bottom:Y =[x, ,,x,,] ,q=2

Dimension: (q x SN)

Cisng =1, while C; =0 for i#3N+1

Cosv =1, while C;; =0 fori=3N+1

C-2. For temperature as out variables:
Y=[T.T,,.T.. ", q=N-1

Dimension: (g < 5N)

C.; = ATl
Ci,N+i = AT2i
C|2N+| = T3|

CI BN+ T AT4



Entries of Matrix E

Disturbance vector: d = [Z

Appendix D

Z,,,Z

a,l>“a2»

Dimension : ( SN X 2Nc+2)

e - Fa
nf1,1 —
I\/lnfl
e _Fa
3N+nf1,4 M
nf1l

€ansnflaNeH = 1

e _Fe
nf 2,Nc+1 M
nf2
e __Fe
3N+nf2,Nc+4 —
M

nf2

€ansnf2oNc2 = 1

Fa
M

ENinfl2 =
nf 1

(Za,l - an1,1)

enf1,2Nc+1 =

e2 N+nf1,2Nc+1 —

e __Fe
N+nf2,Nc+2 —

Mnfz

(Z bl an 2.1 )
M

enf 2,2Nc+2 —
nf2

(Zb,s — X 2,3)
M

e2 N+nf2,2Nc+2 —
nf2
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T
a,S’Za,4’Zb,l’zb,Zﬂzb,Zv?ZbA? FA’ FB]

e __Fa
2N+nf1,3 — M
nfl
_ (za,z - anl,z)
eN+nf1,2Nc+1 - M
nf1l
_ (Za,4 — Xyt 1,4)
e3N+nf1,2Nc+1 - M
nfl
e _ P
2N+nf2,Nc+3 M
nf2
_ (Zb,z - an 2,2)
eN+nf2,2Nc+2 - M
nf2
e _ (Zb,4 = Xy 2,4)
3N+nf2,2Nc+2
M

nf2
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