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PREFACE

Wavelet analysis has been one of the major research areas in science and engineering
in the last 15 years. More and more, mathematicians and scientists are joining this exciting
arca. Wavelet analysis has had a great impact on areas such as approximation theory,
harmonic analysis, differential and integral equations, and scientific computation. It has
shown great potential in applications to information technology such as data compression,
image processing, and computer graphics.

The work is organized as follows. Chapter 1 gives general introduction to wavelets,
basic idea of Fourier transforms, and continuous and discrete wavelet transform. In Chap-
ter 2, the idea of multiresolution analysis and construction of wavelets are presented. This
chapter includes decomposition and reconstruction algorithms for wavelets. Finally, Chap-
ter 3 presents different apporoches of using wavelets to solve ordinary differential equa-

tions. Some work that we have done during our research is disscussed.



Chapter 1
WAVELET TRANSFORM

1.1 Introduction

Wavelet theory involves representing general functions in terms of simpler building blocks
at different scales and positions. The fundamental idea behind wavelets is to analyze ac-
cording to scale. Wavelets are mathematical tools that cut up data or functions or operators
into different frequency components, and then study each component with a resolution
matching to its scale.

Everywhere around us there are signals that can be analyzed. For example, there are
human speech, engine vibrations, medical images, financial data, music, and many other
type of signals. Wavelet analysis is a new and promising set of tools and techniques for
analyzing these signals.

In the history of mathematics, wavelet analysis shows many different origins. Much
of the work was performed in the 1930s [19]. Before 1930, the main branch of mathematics
leading to wavelets began with Joseph Fourier with his theory of frequency analysis. He

asserted in 1807 that any 27-periodic function f(x) could be represented by the sum

f(z) :ao—i-Z(akcoskx—i-bksink:x) (1.1)
k=1

which is called Fourier series. The coefficients a;, and by are calculated by

1 2
ag = %/0 f(z)dz, (1.2)
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27
ap = %/ f(z)cos(kx)dx, k=1,2,---, (1.3)
0
27
by = %/o f(z)sin(kx)de k=1,2,--- (1.4)

Fourier’s statement played an essential role in the evolution of the ideas mathematicians

had about the functions. He opened up the door to a new functional universe.

The first mention of wavelets appeared in an appendix to the thesis of A. Haar (1909).

Haar asked himself this question in his thesis: Does there exist another orthonormal system

hi, ho, ..h,, of functions defined on [0, 1] such that, for any continuous function f defined

on [0,1], the series

< fyho > hot+ < f,hy > hy +

converges to f uniformly on [0, 1] ? Here the inner product < , > is defined as

< fig>= / £(2)g(x)dz (1.6)

where g(z) is the complex conjugate of g(z).

In 1909, Haar discovered the simplest solution and at the same time opened a route

leading to wavelets.

) as
1, 0<z< %,

h(z) -1, 1<z <1, (1.7)
0, otherwise,

ho(z) = 2020(2 2 — k),
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wheren = 2/ +k, 7 > 0,0 < k < 2/, j, k, n are integers. To complete the set, let

ho(z) = 1 on[0,1). Then the sequence

is an orthonormal basis for L2[0, 1]. h(x) defined in (1.7) is known as the Haar wavelet. One
property of the Haar wavelet is that it has compact support, which means that it vanishes
outside a finite interval. Unfortunately, Haar wavelets are not continuously differentiable

which somewhat limits their applications [7], [11].

1.2 Fourier Analysis

Fourier’s representation of functions as a superposition of sines and cosines has become
very important for both the analytic and numerical solution of differential equations and
for the analysis and treatment of communication signals [13].

Let L?(0,27) denote the space of all measurable functions defined on the interval

(0, 27) with the following condition:

/2W|f(x)|2dx < .
0

This collection is often called the space of 27-periodic square integrable functions. Any

function f in L?(0, 27) can be represented in the form

o0

fz) = Z cne™, (1.8)

—00

where the constants c,, are called Fourier coefficients of f, and can be calculated by

2w
Cp = %/0 f(z)e "™ dz. (1.9)
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The Fourier transform is used to analyze the frequency content of a signal in the
time domain. It transforms a function in the time domain into a function in the frequency
domain. The signal can then be analyzed for its frequency content. An inverse Fourier
transform takes the data from the frequency domain into the time domain.

A function f is considered to be a square-integrable function if

| @k <o

—00

The function space L?(R) is the space of all square integrable functions defined on R.

—00

v = {1+ [ 1 dr< oo}

with the L2- norm defined by

1= | [ 1] < o

Elements of L?(R) are called square integrable functions. Many functions in physics and
engineering are square integrable.

Definition 1.1 Let f, g € L?(R) then, the inner product is defined by
<fg>= [ f@gls (1.10)
where g(x) is the complex conjugate of g(z). It is clear that

<fif>=|fI3

Definition 1.2 The Fourier transform of a function f € L?(R) defined by

<Fﬁ@»=fmo=/ff@wiWMa (L11)
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x s called the time variable and w is called frequency variable. The Fourier transformation
(F) takes L*(R) onto itself.

Definition 1.3 The inverse Fourier transform (F~!) of g(w) is defined by

(Fig)(e) = 5(0) = 5 | " o)™ dw, (1.12)

2r J_o
As we said Fourier analysis is a mathematical technique for transforming our view of

the signal from time domain to frequency domain.

Theorem 1.1 (Parseval’s Formula) [7], [13] Suppose f,g € L*(R). Then we have

1 .
< f,g>=—<f,0>. (1.13)
2

For many signals, Fourier analysis is extremely useful because the signal’s frequency
content is of great importance. So why do we need other techniques, like wavelet analysis?

The Fourier transform of a signal does not contain any local information and it just
enables us to investigate problems either in the time domain or in the frequency domain,
but not simultaneously in both domains. These are the major weaknesses of the Fourier
transform analysis.

In transforming to the frequency domain, time information is lost. When looking at a
Fourier transform of a signal, it is impossible to tell when a particular event took place. If
the signal properties do not change much over time, that is, if it is what is called a stationary
signal, the weaknesses of the Fourier transform isn’t very important. However, most inter-
esting signals contain numerous non-stationary characteristics. These characteristics are
often the most important part of the signal, and Fourier analysis is not suited to detecting

them.
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In an effort to correct the weaknesses of Fourier transform, Dennis Gabor (1946)
introduced the windowed Fourier transform to measure localized frequency components of
sound wave. He adapted the Fourier transform to analyze only a small section of the signal
at a time, a technique called windowing the signal. Windowed Fourier Transform maps
a signal into a two-dimensional function of time and frequency. The Windowed Fourier
transform can be used to give information about signals simultaneously in the time domain
and in the frequency domain. Gabor first introduced the windowed Fourier transform by
using a Gaussian distribution function as a window function. His major idea was to use
a time-localization window function g(x — t) for extracting local information from the
Fourier transform of a signal, where parameter ¢ is used to translate the window in order to
cover the whole time domain. The idea is to use this window function in order to localize

the Fourier transform, then shift the window to another position, and so on. See Figure 1.1.

" (%)

g(x+1to)

v

Figure 1.1. The windowed Fourier transform.

In the windowed Fourier transform, the function f(x) is multiplied with the window
function g(z) and the Fourier coefficients of the product f(z)g(z) are computed. Then, the

procedure is repeated for translated versions of the windows, g(z — to), g(x — 2to),- - - .
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Definition 1.4 The Windowed Fourier Transform of a function f with respect to a window

function g denoted by G(f)(w, t) is defined by

GU(w.t) = Fywt) = [ f@lgle — e da (1.14)

where f,g € L*(R).
Clearly, the windowed Fourier transform of a given function f depends on both time
t and frequency w. For more detail see [13].

Definition 1.5 The inversion formula for the Windowed Fourier transform (G™!) is given

by

Gt (fg(w,t)> = fla)= |1|g||2 / Z / Z F,(w, )g(x — D dtduw.

With the Windowed Fourier Transform, the input signal f(x) is chopped up into
sections, and each section is analyzed for its frequency content separately.

The Windowed Fourier Transform provides some information about both when and at
what frequencies a signal event occurs. The drawback of the Windowed Fourier Transform
is that once you choose a size for the window, that window is the same for all frequencies.

For more details [13], [19].

1.3 Continuous Wavelet Transforms

Unlike Fourier analysis, in which we analyze signals using sines and cosines, now we use
wavelet functions. One of the main reasons for the discovery of wavelets and wavelet

transforms is that the Fourier transform analysis does not contain the local information of
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signals. Wavelet analysis is a new method for solving difficult problems in mathematics,
physics, and engineering [7], [11], [13].
Definition 1.6 A wavelet is a function ¢y € L?(R) which satisfies the condition
o ln 2
(6|
Cy = / H d¢ < oo, (1.15)

—0o0

where () is the Fourier transform of ().

The condition (1.15) is called the wavelet admissibility condition and it is required
for finding the inverse of the continuous wavelet transform.

Based on the idea of wavelets as a family of functions constructed from translation
and dilation of a single function ¢/ called the mother wavelet, we define family of wavelets
by

Lm0 aberazo (1.16)

T

where a is called a scaling parameter which measures the degree of compression or scale,

¢a,b($) =

and b is translation parameter which determines the time location for the wavelet.
Remark 1.1

1. Scaling a wavelet simply means stretching (or compressing) it. If |a| < 1, the wavelet
Y,p(x) is the compressed version of the mother wavelet ¢)(x) and corresponds mainly to
higher frequencies. However, at a large scale, the wavelet ¢, () is stretched version of
the mother wavelet ¢)(x) and corresponds lower frequencies.

2. As the scale a decreases, the resolution in the time domain increases (the time resolu-
tion becomes finer) while that in the frequency domain increases (the frequency resolution

becomes coarser).
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3. Since ¢(x) € L*(R), then ¥, ,(z) € L*(R) for all a, b, because

1 [ —b|?
L I =
— [ W@k = . (1.17)
4. The Fourier transform of ¢, , ()
~ o0 —b . A
wwmozz%i[ (e = e ). (1L18)

We sketch a typical mother wavelet in the Figure 1.2 (a). Different values of the
parameter b represent the time localization center, and each 1, , () is localized around the
center v = b. As a scale parameter a varies, wavelet ¢, , () covers different frequency
ranges. Large values of |a| (Ja| > 1) result in very wide windows and correspond to small
frequencies Figure 1.2 (b). However, small values of |a| (Ja| < 1) result in very narrow
windows and correspond to high frequencies as shown in Figure 1.2 (¢).

Definition 1.7 Let ¢) be a wavelet. The continuous wavelet transform T, of f € L*(R)

with respect to the wavelet ¢ is defined on L?(R) by

(Tuf)a,b) = <ﬁ¢m>=/mfmwqux

1 > xr—0b
= T dx, 1.19
T s (1.19)

where a € R\{0},b € R.
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P(x)

€Y
A
Yo Pap
With a>1 Witha<1
b<0 b>0
N N IS
(b) (©

Figure 1.2. Typical mother wavelet.

Example 1.1 The Haar wavelet is one of the most fundamental examples that illustrates

major features of the general wavelet theory. It is defined by

[— N

0<zr<
Yr)=4¢ -1, $<z< (1.20)
(0)

therwise.

The Haar wavelet has compact support [0,1] and satisfies

/Z¢@mx—a

and
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This wavelet is well localized in the time domain, but it is discontinuous at = = 0, %, 1. The

Fourier transform of the Haar wavelet is calculated as follows:

3 1
V(E) = / e_@das—/ e % dy

0 3

1

The v (x) and ’YL(S )‘ are sketched in Figure 1.3 and Figure 1.4 respectively.

057

. , .
' t + t
-0.5 0 0.5 1 15

05T

-1

Figure 1.3. The Haar wavelet ¢(x).
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-25 125 5 e <

Figure 1.4. The Fourier Transform of Haar wavelet ’@7}’ .

The following theorem is useful to generate new wavelets.
Theorem 1.2 If v/ is a wavelet and ¢ a bounded integrable function, then the convolution
function ¢ x ¢ is a wavelet [13], [26].

Proof. Since,

/_Z|¢*g0(x)\2d:c - '/ Wz — 1)e(y)dy dx

/ (/" 1wt >Hw>m@im
¥
I (]

(/_: Sl \/W\/Wdy>2d:c

NA Wx—>Fw<ww/waﬂw)m
< [ty [ [ 1w — i)l el dady

= (Kw!(ﬂﬁotlm\(ﬂdw<w,
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we have, ¢* ¢ € L*(R). Moreover,

G GG

Core Z § dﬁ:_é g ¢
AEGIRESE) G
_ é e < sup 9(6) 4 e <o

Therefore, the convolution function ¥x ¢ is a wavelet. B

Example 1.2 The convolution of the Haar wavelet with the following function

() = 1, 0<z<1
P)=9 0 otherwise

generate a wavelet as shown in Figure 1.5.

Example 1.3 By convolution of the Haar wavelet with ¢(x) = e, we get an infinitely

differentiable (or smooth ) wavelet , as shown in Figure 1.6.

v 7))

A

I\Jll—'

v

I\Jll—‘
N | w

N|r—\

Figure 1.5. The convolution of the Haar wavelet with
().
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0 *7)(x)

0.2

Figure 1.6. The convolution of Haar wavelet with
—z2
plr) =e™.

Definition 1.8 The £ moment of a wavelet 1 is defined by

my = /OO 2*o(z)da. (1.21)
A wavelet 1) has n vanishing moments if
/Oo e*p(x)de =0 for k=0,1,...,n. (1.22)
Or, equivalently,
[dkjggf)]go =0 for £=0,1,...,n. (1.23)

Since the wavelet transform is expressed as the inner product of f with 1, ,, it is
linear. The following properties can be proved by using the properties of the inner product.
Let ) and ¢ be wavelets and let f and g be functions of L?(R). Then the following

relations hold [13], [26] :
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(Isometry) The wavelet transform T f is an isometry, that s,

1Ty f) (@ D)l o = (11l 2 (1.24)

(Translation)
Ty(Sef)(a,b) = Ty f(a.b— c) (1.25)
where S. is the translation operator defined by
Sef(x) = f(z — o).

(Dilation)

b
), ¢>0, (1.26)

a
-, -
c C

1
Tlﬁ(Dcf)(aa b) = %Td}f(
where c is a positive number and D, is a dilation operator defined by
1 =z
Def(@) = f(5).

(Antilinearity)

(Tlaw+8e) f)(a,b) = a(Ty f)(a,b) + B(T, f)(a,b), (1.27)
where o and 3 € R.

(Symmetry)

(Tye)(a8) = () (5, — ) a £ 0. (1.28)

(Parity)
Tpy(Pf)(a,b) = (Tyf)(a, —b), (1.29)

where P is the parity operator defined by Pf(z) = f(—x).
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T5c¢(f)(a7 b) = (T¢f>(a7 b+ ac), (130)
Tp.ol(f)(a,5) = \%wa(ac, b) (1.31)

Theorem 1.3 (Parseval’s Formula for Wavelet Transforms) [7], [13]. Let 1) be a wavelet.

Then, for any functions f, g € L?(R), the following formula holds:

o

1 [da [ B
<to>=g [ G [ @nenToabo, (1.32)

where

dw < o0.

. 2
o [l
< =
P / | w
Proof. By Parseval’s Formula for Fourier transform Theorem 1.1, we have

(Tyf)(a,b) = < fi,, >
< fitay

1
2
1

= 3 / V]ale® ) (aw)dw, (1.33)

7

and

(Tpg)(a,b) = < g,y >

r 1 x—b

= 71‘ dl’
ég()m“ =)
1

;
:——/g e~ (an) . (1.34)
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Then, by using (1.33) and (1.34) we have

dbda

7 7(T¢f)(a, b)m7

—00

7 70 (T f)(a, b)(Tyg)(a, b) 2l

dbda

a?

2 dt
el

(t)

1 N
B C¢%<f’g>zcw<f,g>.l

By takin g = f, we have

! i ib(w—mn)
— [ 7 db
[27? / €

18
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Corollary 1.4 If f € L?(R), then

dbd
ol I —Cw/lf )2 dl‘—//|T¢f oty 0. (1.35)

—00 —00

This means that except for the factor Cy,, the wavelet transform is an isometry.
Theorem 1.5 (Inversion Formula) [7], [13], [26]. If f € L*(R), then f can be recon-
structed by the formula

dbd
(z) Cw//wa )(a,0)0,,(2) “, (1.36)

—00 —00

where (T3 f)(a, b) is a wavelet transform of f and C), is admissibility condition.

Proof. For any g € L?(R), we have from Theorem 1.3

Co < frgom 7 7 (T )b Tog) 0, 5) o
/ / (T ) a.b) 7 Iw)s(a)ir | T3

—00 —O0

Co < fg>= 7 U 7 <T¢f><a,b>wa,b<x>d2§“) o)

- //wa )0 (1) g () >

or 7
<C¢f—//wa )(a, )b, (x )dbd“ >=0, forall g € L2(R).
Therefore, o
Cot = [ [ @)ty g =0

—00 —00

or
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r=a [ [@neniumTsre

—00 —O0

1.4 Discrete Wavelet Transform

In many applications [1-5], [15], [18-21], [25], [27], data are represented by a finite number
of values, so it is useful to consider a discrete version of the continuous wavelet transform

(1.19), by assuming that a and b take only integer values. For a wavelet ¢» we can define
V() = ag ¥ (age — kbo), (1.37)

where j and k € Z and ag > 1 and by > 0 are fixed constants. Then Wavelet transform

defined by (1.19) becomes

(Tu )G k) = < fidula) >

= a? (x)p(adz — kbo)dz. (1.38)

There are two questions:
Q1) Does the sequence {< [, ; () >}ijeZ characterize the function f ?

Q2) Is it possible to express any f(x) as the superposition

fla)y=Y" 3" < f(a) >1,(2)? (1.39)

k=—o00 j=—00

The answer is positive if the wavelets ¢, (x) form a complete orthonormal system in

L?(R). For computational efficiency, ag = 2 and by = 1 are commonly used, then

b, (@) = 25920 — k) (1.40)
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Definition 1.9 (Riesz Basis) [13], [17]. A sequence of vectors {¢,},_, , .. in a Hilbert
space H is called a Riesz basis if for every f € H there exists a unique sequence {cn}n:1727,,. €
I2, such that, f = Zf;l cn®,,, and there exist two positive constants A and B, where

0 < A < B < o0, independent of f € H, such that

) oo

2 2 2

AN el < IFIP < B leal®
n=1 n=1

Definition 1.10 A wavelet is a function ¢/ € L?(R) such that the family of functions v,

defined by

Viple) = 2792w — k), (1.41)
where j and k are arbitrary integers, is an orthonormal basis in the Hilbert space L?(R).

This definition means the following:

Orthonormal family of {9, }, that is,

< wj,lw wm,n >= /; ¢],k(x){pm,n<x)dx = 5j,m5k,n (142)

where j, k, m,n are integer , 9, ,, and dj, ,, are Kronecker delta.

2. If f € L*(R) then it can be written as

F@) =YY" < fihy > t,(x), (1.43)

JEZ keZ

where Z denotes the set of integers.

3. The factor 2//2 is included so that the L? norm will be the same for all j, k that is, ¢;

are normalized |[¢); || = [[¢|| = 1.

4. The wavelet ¢, ; = 1) is called the basic wavelet or mother wavelet.
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Definition 1.11 Wavelet coefficients of a function f € L*(R), denoted by c¢; ;. are defined

as the inner product of f with ¢, ,

%k=<ﬁwﬂaxi/ F(@)h, (@) de (1.44)

The series

ZZ < f7 wj,k > wj,k(x)v

JEZ k€eZ
is called the wavelet series of f € L?(R). The expression

F@)= 3" < fiby > v;(2),

JEZ keZ

is called the wavelet representation of f.
It may be observed that the wavelet coefficient c; . is the wavelet transform of f with

respect to 1 at the point (277, k277) :

ik = (Tpf)(277, k277).



Chapter 2
MULTIRESOLUTION ANALYSIS AND
THE CONSTRUCTION OF WAVELET

The objective of this chapter is to construct a wavelet system, which is a complete

orthonormal set in L?(R).

2.1 Multiresolution Analysis (MRA)

The idea of multiresolution analysis is to represent a function (or signal) f as a limit of
successive approximations, each of which is a finer version of the function f. The basic
principle of the multiresolution analysis (MRA) deals with the decomposition of the whole
function space into individual subspaces V,, C V,,.1 [7], [13], [17] and [22].

Definition 2.1 (Multiresolution Analysis). A multiresolution analysis (MRA) of L%(R) is
defined as a sequence of closed subspaces V; of L?(R), j € Z, that satisfy the following

properties:

1.  Monotonicity

V; C Viyy, foralljeZ, 2.1

2. Dilation property

flz) eV, e f(2x) € V4 forall j € Z, (2.2)

23
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3. Intersection property

Vv = {0}, 2.3)

JET

4. Density property

|J Vj is dense in L*(R), (2.4)

JEL
5. Existence of scaling function. There exists a function ¢ € V), such that

{¢(x —n) : n € Z} is an orthonormal basis for Vj.
Vo = {Z ard(z — k) : {ag}rez € lZ(Z)} . (2.5)
keZ

Density property means that for any f € L?(R), there exists a sequence {f,} -,
such that each f,, € UZ V; and {f,,},2 | converges to f in L*(R), that s, ||f, — f|| — 0 as
JE€
n — oo.
The function ¢ is called the scaling function or father wavelet of the given MRA.
Sometimes condition (2.5) is relaxed by assuming that {¢(z — n) : n € Z} is a Riesz
basis for Vj. In this case, we have a multiresolution analysis with a Riesz basis. Dilation

condition (2.2) implies that f (z) € V; & f(2™x) € Vj,, for all j,m € Z. In particular

f(z) e Vo & f(272) € V. Let
bix(x) = 2202 — k), (2.6)

The orthonormality of the set {¢(x —n) : n € Z} implies that for each j € Z, {¢, (), k €

Z} is an orthonormal set, because changing variables shows that for j, k, m € Z,

< Qjtr Pjm >=< Qo> Pom >
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Then {¢,,(x), k € Z} is an orthonormal basis for V. It follows that for each j € Z,
V= {Zak%(x) {agtvez € 12(2)} : (2.7)
keZ
Define the orthogonal projection operator P; from L?*(R) onto V; by
Pi()@) =) < frdjn > &), (2.8)
keZ

then the conditions (2.3) and (2.4) give that

lim P;(f) = f (2.9)
and
lim P;(f) =0

The projection P;(f) can be considered as an approximation of f at the scale 277.
Therefore, the successive approximations of a given function f are defined as the orthog-
onal projections P;( f) onto the space V;. We can choose j € Z such that P;(f) is a good
approximation of f [7], [11], [26].

Theorem 2.1 Suppose ¢ € L2(R) such that ¢ is bounded,

&5‘ is continuous at 0. Also,
suppose that for each j € Z, {¢j7k ke Z} is an orthonormal set. Let V; defined by (2.7).

Then, the following two conditions are equivalent:
6(0) #0,
U V; is dense in L*(R).

JEZ

Moreover, when either is the case,

@(O)’ = 1. The proof can be found in [11].
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Example 2.1 Let V; be the space of all function in L?(R) which are constant on intervals

of the form I;;, = [277k, 277 (k + 1)], k € Z.
V;={f € L*(R) : f = constant on I, 4, Vk € Z}.

Then, {V;,j € Z} is an MRA.
Obviously, V,,, C V,,11, because any function that is constant on intervals of length
27 is automatically constant on intervals of half that length. The space V; contains all

functions f(z) in L?(R) that are constant on k < x < k + 1. The function f(2x) in V] is

k+1

then constant on % < z < *~. A sample function in spaces V_y, V and V; are shown in

the Figure 2.1.

A

I o A > I I o B >

051152 253 354 455 556 657 758 X 0051152253354 455556 657 758 X

@ (b)

I o A

v

0051152253 354455556657 758 X

©

Figure 2.1. A sample function in spaces V_1, V and V.

We can take the scaling function to be ¢ = x| ;), Where x| ;] denotes the characteris-
tic function of [0, 1]. This MRA is related to the Haar basis. Figure 2.2 shows the projection

of some function f on the Haar spaces V[ and V;.
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(b) (©)

Figure 2.2. The projection of some function f on the Haar spaces
Vo and V.

Theorem 2.2 If ¢ € L*(R), then the system {¢, ;, = ¢(x — k) : k € Z}, is an orthonormal

system if and only if

~ 2
Z ’¢(w + 27?1{)’ =1forae w e R.

kEZ

Proof. The Fourier transform of ¢, = ¢(x — k) is gAbOJC(w) = e (). By using

Parseval’s formula for Fourier transform (Theorem 1.1), we have

< Dom Pom >=< Po.0s Pom—n >= < Po,00 Pom—n >

1 , . 2
- L @—Z<m—n>w ‘gb(w)‘ dw
2

w(k+1)
— 2 / —i(m—n)w

k—foo

Z /'27T
: bt 2mh)| | emitmmng
= 5 kz_w\asw )| | e i

2

b d

~

o(p + 27k) ‘ e~ im=nlngy,
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Thus, it follows from the completeness of {e~"* n € Z} in L*(0, 27) that

< Do Pom >= Onm
if and only if

BN 2
Z ‘gb(u—i—Zwk)‘ =1 forae. p€ R. W

k=—o0

Theorem 2.3 For any two functions ¢,1» € L*(R), the sets of functions {¢,,, = ¢(z —

n),n € Z} and {1, = ¥(x —m), m € Z} are biorthogonal, that is,
< Pops Yo >=0 foralln,meZ,

if and only if

o0

Z d(w + 2k)(w + 2rk) = 0 almost everywhere w € R.

k=—o00

Proof. Applying similar argument to those stated in the proof of Theorem 2.2 to obtain

1 ~ ~
< Domr Yom >=< P00 Vom-n >= Gy < G090, Vom-n >

= o [ b))

—0o0

2m(k+1)

_ 1] & / e—i(m_")wgb(w){b(w)dw

2
k=—oco 2rk

27
1 . .. ————
= o [ e Y (w + 2mk)ip(w + 2mk)duw

2m
0 k=—00

Thus,
< @g s Yom >=0 foralln,m e Z,

if and only if

oo

Z d(w + 2rk)h(w + 2rk) = 0 almost everywhere. B

k=—o0
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If we only assume that {gbm =¢(x —n),n € Z} is a Riesz basis for 4, we can find
a function v € V; such that {v(x —n),n € Z} is an orthonormal basis for V4. This is an
easy consequence of the following theorem and corollary [17].
Theorem 2.4 Suppose ¢ € L?(R) is such that the set of translates {¢(z — n), n € Z} form

a Riesz basis of the closed subspace of L?(R) that they spans; that is,

2

<BY el (2.10)

2 nez

where the constants A and B satisfy 0 < A < B < oo and are independent of {¢, },cz €

12(Z). Let

N
d(w + 27m)) ) 2.11)

og(w) = (Z
nez

Then v/A < o4(w) < /B for almost every w € R.
Corollary 2.5 Suppose ¢ € L?*(R) is such that the set of translates {¢(x — n),n € Z} form

a Riesz basis of the Vj. Then {~(x — n),n € Z} is an orthonormal basis of V{, with

F(w) = (2.12)

and o4(w) is given by (2.11).

Proof. From the Theorem 2.4, % is bounded with

1 1 1
0< < < fora.e w € R,

VB T og(w) T /A

4(w) and, hence, 7 belong to L*(R). Since o4(w) is 2m-periodic we can find two sequences

{an}nez and {b, }nez € 1*(Z) such that

L _ > age™ (2.13)

op(w)
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and
= bue ™ (2.14)
nez
for almost everywhere w € [—7, ). Thus,
H(w) = d(w) Y ane”™ (2.15)
nez
and
w) = §(w) Y bue” ™. (2.16)
nez

Taking inverse Fourier transforms for (2.15) and (2.16) gives

= Z an¢(x - n)

and

nez
with convergence in L?(R). Thus,

v(z) € span{p(x —n),n € Z}

and

¢(z) € span{y(x —n),n € Z}.

Furthermore, From the definition of §(w) (2.12) and the 27-periodicity of o4 (w) we obtain

‘é(w + 27n) ’

oo(w+2mn)[° oy < )2

S Fw +2m)f = 3

neL ne”L

Z‘gb w+27m)‘ =1

neL

Then, by Theorem 2.2 the system {v(x — n),n € Z} is an orthonormal basis of Vj.
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2.2 Construction of Wavelets from a Multiresolution Analysis

We now pass to the construction of orthonormal wavelets from an MRA. The real impor-
tance of a multiresolution analysis lies in the simple fact that it enables us to construct an
orthonormal basis for L2(R) [7], [11], [13], [17]. In order to prove this statement, we first
assume that {V,,,} is a multiresolution analysis. Since Vj C Vi, we define W} as the or-
thogonal complement of V4 in Vj; that is, V; = Vo @ W,. Since V,,, C V41, we define

W, as the orthogonal complement of V,,, in V,,,; for every m € Z so that we have
Viner = Vi EB W,, foreachm € Z.
Since V,,, — {0} as m — —o0, we see that

Vi1 = Vi P Wi = é W, forallm € Z.

l=—00

Since |J Vj is dense in L?(R), we may take the limit as m — oo to obtain
jez

L*(R) = é W, (2.17)

l=—00

To find an orthonormal wavelet, therefore, all we need to do is to find a function
Y € Wy such that {¢)(z — k) : k € Z} is an orthonormal basis for W,. In fact, if this is
the case, then {v; () = 2//2¢)(2/x — k) : k € Z} is an orthonormal basis for IW; for all
J € Z due to the condition (2.2) in the definition of multiresolution analysis and definition
of W;. Hence
{0, p(x) =222z — k) k, j €L}
is an orthonormal basis for L?(R), which shows that 1 is an orthonormal wavelet on R.

Consider V1 = V@ W, and observe that ¢y, = ¢ € Vi C V1. By (2.5) we can express
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this function in terms of the basis

{¢1,n(a:) =202z —n):ne Z}
to obtain

$(x) = V2 and(2z — n) (2.18)

nez
where a,, =< ¢, ¢y, >= V2 [, ¢ $(2x — n)dz; the convergence in (2.18) is in L?(R) and
S Jan)? < .
nez

Taking Fourier transforms of (2.18), we obtain

~ 1 —iwn ~ W
p(w) = E%ane 2 ¢(§)
= HGm(3), 2.19)
where
5 _ i —twn
m(w) = ﬂ;ane (2.20)

is a 27 -periodic function. The function m(w) is called low pass filter associated with the
scaling function ¢.

Lemma 2.6 The low pass filter satisfies the following property
lm(w))® + [m(w + ) =1 ae weR. (2.21)

Proof. By using the relation (2.19) and substitute in the Theorem 2.2 we get

2

1= i ‘é(fwmnk)f: i ‘&(%ﬂk)mm(%ﬂk)

k=—00
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This is true for any w and hence, replacing w by 2w gives

1= i ‘a;(wﬂk)f\m(wﬂk)\?.

k=—o0

We now sum the above formula separately over the even integers and over the odd integers

and using the 27 periodic property of the function 7 and the Theorem 2.2 to obtain

1=y ’g%(w+27rk)‘2\m(w+2ﬂk)’2
+ > ‘ﬁ(w+(2k+1)ﬂ>‘2|m(w+(2k+1)7r))|2
k=—00

= io: ’gAb(w+27rk)‘2|m(w)|2+ i ‘&(w+27rk:—l—ﬂ)‘2|m(w+7r)|2

k=—o00 k=—o0

— rhu(w)? i \&s<w+2wk)\2+|m<w+w>12 i ‘és(wmwkﬂ)f

k=—00 k=—oc0

= () 1+ [m(w+7))*.1m

Lemma 2.7 The function <Ab can be represented by the infinite product

ow) = [Trin(55). (2.22)
k=1

Proof. By using (2.19)

which is, by the (k — 1) iteration, we get

S(w) = r(F)m(7) - rin(5)0(57)

k
= oz T (50). (2.23)
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Since ¢(0) = 1 and ¢(w) is continuous, we obtain

Taking the limit of (2.23) gives

o0

o) = (0) [Trin(5p) = [T i) m

Lemma 2.8 If ¢ is a scaling function for an MRA {V;}._,, and 7 is the associated low-pass

jez
filter, then
Vo={f: f(w) = l(w)o(w) } (224)
for some 27-periodic function [ € L?[—7, 7) and
Wo={f : f(w) = T s(wyi(5 +m)d(3)} (2.29)

for some 27 —periodic function s € L?[—7, 7).

Proof. If g € 1}, then

g(x) =) dig(a — k) with ) |dif* < o0,

keZ keZ

taking the Fourier transform we get

g(w) = d(w) Y de™ ™ = U(w)d(w)

where [(w) = 3 dre~*v is a 27— periodic function in L?[—7, 7).
keZ

Conversely, if | € L*[—m, w) and is 27— periodic function. Then [ can be written as

l(w) = che’ikw wherez la]? < oo

keZ keZ

Then the function f defined by
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or f(x) = ez ck®(x — k), which belongs to V. We have to prove that f is a function in

L?(R). Due to the orthonormality of {¢(z — k) : k € Z} we have

[ Jfw)| aw - /!l

dw

= / 1) dw =
0

This establishes the characterization of Vj.
Since f € W, it follows from V; = Vo @ W, that f € V; and is orthogonal to

Vo.Thus, f can be written as

f(l”):ZCngbln \/_ch¢ aj_n)

neL nez

taking the Fourier transform we get,

flu) = 55X ear 50

nEZ
- mﬂ%)&(%), (2.26)

where m;(5) = \/Li Y nez Cn€ 3" is a 27- periodic function belonging to L2[—, 7). Since

f is orthogonal to Vj then
1 A A
< f(z),p(x —n) >= o < fw),e"™p(w) >=0 foralln € Z.
T

Then we have,

o0

f(w)emw(%(w)dw =0, VneZ
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and hence,
o 2m(k+1) oo 27
Z / flw)e™ d(w)dw = Z /f(w + 27k)e™ p(w + 2mk)dw
k=—co 27k k=—o00 ]
27 0o
- / < Z flw + 2mk)p(w + 27rk)) e dw = 0,

0 k=—00

thus, it follows from the completeness of {e"*, n € Z} in L?(0, 27) that

> flw+2mk)d(w + 27k) = 0. (2.27)
k=—o00

By substituting (2.26) and (2.19) into (2.27) we obtain

3 mf(% + wk)(%(% + 7k)(w + 27k)

= Y g5+ 7RI + TR + h)i(5 + k)

k=—o00

> 2

=0,

= Y mf(% - wk)m(% + 7k) }Eb(% + k)

k=—00

which is, by splitting the sum into even and odd integers k£ and then using the 27- periodic

property of functions 7 and 772 we obtain

oo T 2

w —w . |~w
0 = Y vyl +2mk)i(g +27rk)‘¢(§+27rk)

2

Due to orthonormality of the system {¢(x — k), k € Z} we get

mf(%)m(%>.1 +ring (= + w)m(% +7).1=0.
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By replacing w by 2w we get

my(w)m(w) + my(w + m)m(w+7) =0 (2.28)

or equivalently,

‘ ip(w)  i(w + )

—iglw+m) (W) ':0'

This can be interpreted as the linear independence of two vectors

{ g (w) ]and [m(erﬂ)]_

—m f (w + )
Hence, there exists a function A(w) such that

~

my(w) = AMw)m(w+ m) almost everywhrere. (2.29)

Since both 772 s (w) and 7 (w) are 27- periodic functions, so is A(w). Further, substi-

tuting (2.29) into (2.28) gives

Aw)m(w + m)m(w) + Mw + m)m(w)m(w + 7) = 0,

or
AMw)+ AMw+7) =0 forae we [—m, 7).

Thus, there exist a 27-periodic function s € L?[—m, 1) defined by

Mw) = e™s(2w). (2.30)

Substituting (2.30) in (2.29) gives

3

my(w) = e™s(2w)m(w + 7). (2.31)
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Finally, substituting (2.31) in (2.26) we get

A ~ w., ~, W
flw) = 1 (5)0(5)
= 2 s(w)i (% + W)&(%) (2.32)
This completes the proof. B
Note, similarly, we have
20j jw LW W
Wi =A{f: f(Zw) = e=s(w)in(5 +m)é(3) }, (2.33)
for some 27-periodic function s € L?[—, 7).
If we define ¢ by
~ w W ~ W
blw) = (5 +m)o(5) 2.34)

that is, s = 1 in (2.32) we claim that we have found an orthonormal wavelet we are looking
for. In fact, all orthonormal wavelets in W, can be characterized as follows:

Proposition 2.9 If ¢ is a scaling function for an MRA {V;}._,, and 7 is the associated

Sy

low-pass filter, then a function 1) € W, is an orthonormal wavelet for L?(R) if and only if

d(w) = o)z +m)d(3) (3.39)

a.e.on R, for some 27-periodic function v such that
lv(w)| =1 a.e on[—m, 7).

Proof. It is clear that ) € W,. Now for any g € W, by our characterization of W, there

is a 2r-periodic s € L*[—m, ) such that

i) = sl +mg) = s Fuwyn(s +molg)
s(w)

= d(w) = s(w)s(w)(w).

v(w)
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Since s7 € L2[—m, ), we can write s(w)v(w) = 3, , cre ™*, where 3, |cx|* < 0.

Then

§(w) = 3" e i (w).

keZ

or

g(x) = chw(a: — k),

keZ
which proves that {¢)(x — k), k € Z} generates Wj. The orthonormality of {¢)(x — k), k €

Z} can be proved by showing that ﬁ) satisfies the equality in Theorem 2.2.

2

~ 2 w2k ~
3 (¢(w + m;)‘ = Y| o(w + ok (V2R g2y
keZ keZ 2 2
2. 2
= Z m(Eﬁka—l—ﬂ)‘ ‘(b(g—l—wkz)‘
keZ 2 2
w 2. w 2
= 3 (G +2mk+ w)) ‘qzﬁ(a + 271']{5)’
keZ

2. 2
m(% + 27k + 27‘(‘)‘ ’gb(% + 27rk’—|—7r)’

2
kEZ

= m(% +w)‘2% ‘{b(% + 2rk)

‘ 2

2
* |

m(%)r Z ’&5(% + 27k + )
keZ

_ m(ﬂ)r

LW 2
m(—+7r)‘ 1+ |5

2

1=1,

where we have summed over the even and odd integers separately, and using the 27-
periodicity of m, Theorem 2.2 for ¢ and (2.21) for m. Now we have to show that all
orthonormal wavelets v in W, are described by (2.35). For an v» € Wy, by Lemma 2.8,

there must be a 27-periodic function v € L?[—n, 7) such that

bw) = eFo(wyi(g +m)o(5).
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If ¢ is an orthonormal wavelet, then the orthonormality of {¢)(x — k), k € Z} gives us

—|—7Tk:—|—7r

1 = Z‘¢w+2wk‘ =3 Jo(w)

kEZ kEZ

= Jo(w)[? (Z W% + mf (é(% s
+2

kEZ

~ bwl* (

‘gb + 7T/{7)

m(%)r ‘QAS(% + 27k + W)‘2>

LW 2

)| ) =,

where we have summed over the even and odd integers separately, and using the 27-
periodicity of 7, Theorem 2.2 for ¢ and (2.21) for /. Finally, if {¢(z — k), k € Z} is
an orthonormal basis for Wy, then {¢; . (z) = 2/%¢(2/z — k), k € Z} is an orthonormal
basis for W;. Hence, (2.17) shows that ¢ is an orthonormal wavelet for L*(R). B

This proposition completes the construction of a wavelet from an MRA. Let us for
simplicity consider the wavelet given by (2.34) (in terms of Proposition 2.9 this means

v(w) = 1). Since 1) belongs to V] it can be written as

= \/§Z dnp(2x —n).

neEL

In fact, there is a way of writing d,, in terms of «,’s that determined 7 (w). From (2.34),

(2.20) and (2.19) we obtain

bw) = (s +mo(5)
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IL(U)) — Zan iy (n+1) z7rn¢( )
nEZ
1 N
= 52(—1)”%6%2("“%(%)

Taking the inverse Fourier transform this gives us
\/_Z ) (22 + (n+ 1)),
neL
which is, by putting n = —(k + 1),

U@ = VY (DA k020 — k)

kEZ

= \/§Z d,o(2x —n),

neL

where the coefficients d,, are given by

dn = (_1)71—1@_”_1.

41

(2.36)

(2.37)

(2.38)

Thus, the representation (2.37) of a mother wavelet ) has the same structure as that

of the scaling function ¢ given by (2.18).

The mother wavelet ¢ associated with a given MRA is not unique. Let v(w) = e

for some N € Z. Substituting in the Proposition 2.9 we obtain

bw) = ei%v<w>m<%+w>&b<%>
= z zNwZ Qn —zn (%)
nEZ
_ Za w(n+1—2N)€i7rn$(g)
= 5 e 5
nez

= 5 D G,

—iNw
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Taking the inverse Fourier transform this gives us

Y(z) = V2> (=1)"ané(2z + (n + 1 — 2N)),

ne”L

which is, by putting n = —(k + 1 — 2N), we get

dy = (=1)"'aonn1, (2.39)
which defines another wavelet. Also if we put v(w) = —e~™ we get
dp = (—1)"a1_n. (2.40)

Any one of d,, in (2.38), (2.39) or (2.40) can be used to find a mother wavelet. If ¢ has a
compact support (the support of ¢ is contained in a finite interval), only the finite numbers

of av,, are not zero, then ¢ is represented by finite linear combination of {¢, ,, = \/§¢(2x —

n), € Z}.

2.3 Compactly Supported Wavelets

In this section we will present that for any non negative integer n there exists an orthonor-
mal wavelet 1) with compact support such that all the derivatives of i) up to order n exist
and are bounded. Daubechies (1988, 1992) first developed the theory and constructed or-
thonormal wavelets with compact support [8], [10], [11]. Wavelet with compact support
can be constructed to have a given number of derivatives and a given number of vanishing
moments. Daubechies wavelets are family of orthogonal wavelets indexed by N where N

is the number of vanishing wavelet moments.
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Daubechies has constructed, for an arbitrary integer N, an orthonormal basis for

L?(R) of the form
Viple) =270 2e — k), j.k €L
that satisfy the following properties:

1. The support of ) is contained in [-N + 1, N|. To emphasize this point, 1) is often

denoted by ¥ .

2. 1 has yN continuous derivatives, where v = (1 — %log2 3) = 0.20752, for large
N [17]. Hence, a OV compactly supported wavelet has a support whose measure is,

roughly, 5NV.

3. 9y has N vanishing moments

Or, equivalently,

d ) (¢)
dek

] =0 for k=0,1,...,N. (2.41)
£=0

In fact, we have the following theorem [10], [11], [26] :
Theorem 2.10 (Daubechies) There exists a constant K such that for each N = 2,3,--- |

there exists an MRA with the scaling function ¢ and associated wavelet ¢ such that

1. ¢andy € OV,



2.
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¢ and v are compactly supported such that supp ¢ and supp ) are contained in
[—K N, KN].
I p()de = [ wp(@)de = - = [% 2Vip(z)dz = 0.

We refer to [11] for a proof of the theorem.
We assume that the scaling function ¢ satisfies

$(x) = V2 and(2z —n) (2.42)

neL

where i, =< ¢, ¢, ,, >= V2 [}, ¢ d(2x—n)dz; the convergence is in L?(R) and Y la,|* <
neZ
Q.

If the scaling function ¢ has compact support, then only a finite number of «,, have

nonzero values. The associated low pass filter 7m(w),

m(w) = % > agen (2.43)

nez

is a trigonometric polynomial and it satisfies (2.21) with m(0) = 1 and m(7w) = 0. The
wavelet v is given by the formula (2.34) with ‘&(0) ) = 1. The Fourier transform ¢ of order
N is N times continuously differentiable and it satisfies the moment condition (2.41) that
is

5 (k)

Y (0)=0 for k=0,1,...,m. (2.44)

It follows that if ¢ and v € C™ then the low pass filter m has a zero at w = 7 of order

(m 4+ 1). This means that 772 must be of the form

—jw\ m+1
m(w)—<1+Te> i (w), (2.45)
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with L being a trigonometric polynomial. In addition to the orthogonality condition (2.21),

w¢€ assume

iw\ N
() = (”Te) L(w), (2.46)

where L is 27-periodic and L € CN~!. Writing

M) = i =t = () i () b

2
is a polynomial in cos w, that is,

~

where ‘L(w)

2

L(w)| = Q(cosw).

Since 1 — cosw = 2sin*(%), we can write
M(w) = (0082(%)>N Q1 — 281112(%)) = (1 —2)VP(z), (2.48)

where 2 = sin*(%) and P is a polynomial in z.

We next use the formula

cos?( ) = sinQ(%) =z

and

~

(w+m)| = Q(—cosw)=Q(2x—1)

= Q1—-21—2))=P(1l—2x). (2.49)
This equality, together with (2.48) and (2.21) imply that P must satisfy the equality

(1—2)VP(z)+2"P(1 —z) = 1. (2.50)
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Since (1 — )™ and 2%V are relatively prime, then, by Bezout’s theorem (for more details
[11]), there is a unique polynomial Py(x) of degree < N — 1 that satisfies (2.50). An

explicit solution for Py(x) is given by

N-1
Py(z) = ( N _kl o ) z*, (2.51)
k=0
since
. 2
Py(z) = Q(1 = 2z) = Q(cosw) = |L(w)| , (2.52)
we can find L(w) from Py (z) by using the following lemma:
Lemma 2.11 (Riez-Spectral Factorization). If
A(w) = Z ay, cos® w, (2.53)
k=0

where a;, € Rand a; # 0, and if A(w) > 0 for real w with A(0) = 1, then there exists a

trigonometric polynomial
L(w) =) bye v (2.54)
k=0

with real coefficients b with L(0) = 1 such that

2

~

A(w) = L(w)L(—w) = | L(w)

is identically satisfied for w.

For a proof of the lemma see [11]. Note that the factorization of A(w) is not unique.
For a given N, then A(w) is a polynomial of degree (N — 1) in cosw and L(w) is a
polynomial of degree (N — 1) in e~™ . Then the low pass filter 772(w) in (2.46) is of degree
(2N — 1) in e~™. The support of the scaling function ¢, is [0, 2N — 1]. More details [2],

[3], [10], [11] and references given therein. Some Daubechies wavelet are drawn in the



following figures:

15 |

05

-05 F

-15 }

2.3 Compactly Supported Wavelets
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Figure 2.4. Daubechies wavelet 5.

TR

I "\/\/V

|
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Figure 2.6. Daubechies wavelet 1.

2.4 Decomposition and Reconstruction algorithms for wavelets

The multiresolution analysis (MRA) is well adapted to image analysis. The spaces V; that
appeared in the definition of an MRA can be interpreted as spaces where an approximation
to the image at the j** level is obtained. In addition, the detail in the approximation occur-
ring in V}, that is not in V_, is stored in the spaces WW;_; which satisfy V; = V;_; @ W, _;.
This leads to efficient decomposition and reconstruction algorithms [4], [7], [13], [26].
Chose an MRA with scaling ¢ and wavelet .

Definition 2.2 Define the approximation operators P}, j € Z from L*(R) onto V; by

Pif(z) = Z < [i 95 > &;1()

kEZ

and define the detail operator (); by

Qif(x) = Piaf(z)— Pif(z)
= Y < [y > (),

keZ
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where
¢;1(r) = 272p(2x — k),
Vin(w) = 27p(Fw — k).
Let f be a function defined on R. Since lim; .o, P;f(z) = f(z) in L*(R) norm, we

can choose j € Z such that P; f is a good approximation of f. Thus, we have

f@) = Pif(z) =Y cjndul), (2.55)

keZ

the coefficients
Cik =< [fiQ;1 >, I,k €L

Since we have the orthogonal direct sum decomposition
‘/j = ‘/j*1 @ I/I/jflv
we can also use the bases for V;_; and W_,; that is , we use

{¢j—17k }keZ U {¢j—17k}kez ’

then

Pif(z) = Z < f, i1 g > (bjfl,k(‘r)

kEZ

J/

-~

Pj_1f

Y < oty > (@), (2.56)

kEZ

J/

Q;—rlf

The decomposition formula starts with the coefficients relative to the first basis in
(2.55) and uses them to calculate the coefficients relative to the second basis in (2.56). The

reconstruction formula does the reverse.
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Recall that ¢ € V, C V4, so that

= ki p(r) = V2> arp(2r — k),

keZ keZ
where

ap = /OO o(r)p(2x — k)dz.

o0

Then for V; and V;_; we have
¢jn(T) = 212w — k) = 2j/2\/§z and(2 M — 2k —n)

ne”Z
= Z @11 240 (T)

neL

That is

J 1, k( Z an% open (T

nez
and similarly, ¢» € W, C V}; and hence

2) =Y didy (1) = V2 did(22 — k),

k€EZ kEZ

- Zdn i+1,2k4n ()

nez
or

] 1k § dn¢]2k+n

ne”L
where d}. is chosen as in (2.40)

dy, = (1) e,
so that the coefficient dj, do not require further computations.

What we want to do is to decompose the sequence

C' = {cjp =< f, 0, >k €L},

into sequences C’~! and ¢/~ 1.

50

(2.57)

(2.58)
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Now by using (2.57) we obtain

Ci—1p = <f, Pj1p >=< / Z nQ; okin >

neL

= ZOé_n < [, ®j2k4n >

nez

= g QpCjokin

nez
= Y @aiCin. (2.59)
This shows that the coefficients ¢;_;  of the lowest resolution V;_; can be obtained from
the coefficients c;;, of the V; and the low-pass filter coefficients .
The rest of the terms, which contain the “details” in passing fromV;_; to V;, are

contained in W;_;,

Qj1f(z) = Pif(x) = P f(x)
- Zqﬁ_17k¢j—1,k($)7
keZ

where

-1k =< [, ;1 > .

Using (2.58) we obtain

Gk = < fi; 1>

= </ Zdn¢j,2k+n >

ne”

= ZE< f7¢j,2k+n >

nez

= E dncj,2k+n

nel

= ) (—1) C_ns2rCin. (2.60)

neL
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Thus we have decomposed CV into sequences C/~! and ¢’ 1. The process can be continued

with C7~! to obtain the decomposition algorithm given in the Figure 2.7.

T A A oo
i - il . itz ... o Qiemtl ., oiem
Figure 2.7. Decomposition algorithm.
Reconstruction CV from the sequences ¢/~ 1, ¢/ 72, ----- ,¢~™ and C/~™. By in-

duction, it is enough to consider the reconstruction of C7 from ¢’~! and C7~. Since

Pif(z) = Pi1f(x) + Q-1 f(2)

By using (2.57) and (2.58) we obtain

ch,k%k = ch—l,k%'—l,k+Z%‘—Lk¢j_1,k

kEZ kEZ kEeZ
= E Ci—1,k <§ an¢j72k+n> + g qj—1,k (E dn j,2k+n)
kEZ neZ kEZ neZ
= E Cj1k (E Oén—2k¢j,n> + g qj-1.k (E 2k j7n)
keZ nez kEZ neL
= E (E Cj—1,k0n—2k + E Qj1,kdn2k> ¢j,n
neZ \kez keZ
E CikPjp = E <E Cj—1,kQn—2k + E Qj—1,kdn—2k> P
keZ nez keZ keZ P
Cj,n
Hence
Cin = g (Cjm1,k0n—2k + @j—1,kdn—2k)
kEZ
= E (Cj—1 k-2 + (—1)"qj—1 k1 128—1) , (2.61)

keZ
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Formula (2.61) allows us to add the sequences ¢’ ! and C?~! to obtain C7. If we start
this process with C7~™ and ¢’ ~™ and we also know the “details” ¢/ =™+ /=™ ...... ¢,
we have the construction algorithm given in the Figure 2.8.

| —m j—m—+1 —1
J q] q]

N N\ N N

q

Figure 2.8. Reconstruction algorithm.

2.5 Biorthogonal Wavelets

The orthogonality property puts a strong limitation on the construction of wavelets. It is
known that the Haar wavelet is the only real valued wavelet that is compactly supported,
symmetric and orthogonal [10].

Definition 2.3 (Biorthogonal Wavelets) Two function t, 1) € L?(R) are called biorthogonal
wavelets if each one of the set {¢;, : j,k € Z} and {{U]k ik € Z} is a Riesz basis of

L?(R) and they are biorthogonal,

<77Z)j,kqu}l,m> = 0j10km forallj,l,k,m € Z. (2.62)

Recall from section 2.1. A multiresolution analysis (MRA) of L?(R) is defined as a
sequence of closed subspaces V; of L*(R), j € Z, that satisfies the following properties:

Monotonicity

V; C Vi1, foralljeZ,
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2. Dilation property
fx)eV; & f(2x) € Vi forall j € Z,

3. Intersection property

(Vi = {0},

JEZ
4. Density property

U V; is dense in L*(R),

jez
5. Existence of scaling function. There exists a function ¢ € V), such that the set of

functions{¢; ,(x) = 27/2¢(2x — 1) : | € Z} is a Riesz basis of V.

As aresult, there is a sequence {hy, : k € Z} such that the scaling function satisfies a

refinement equation

$(x) =2 hu(2x —n). (2.63)

neL

Define IV; as a complementary space of V; in V}, such that V; = V; @ W, and conse-

quently,

L*(R) = é W

l=—00
A function ¢ is a wavelet if the set of function {¢)(x —[) : | € Z} is a Riesz basis of .
Then the set of wavelet functions {v; ,(x) = 2//2¢(27z — k) : j,k € Z} is a Riesz basis
of L?(R). Since the wavelet is an element of V; then it satisfies the relation

P(x) =2 gnd(22 — n). (2.64)

ne”Z
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There are dual functions &SJ,Z and 1) ;1 exist so that the projection operators P; and Q; onto

V; and W}, respectively are given by

Pi(f)(x) = Z < f, &j,k > ¢ x(2),

keZ
and
Qi(f)(@) =D < fithjp > (),

Kz
then we have

F= <>t

J,kEZL

Here the definitions of éj,k and {pj,k are similar to those for ¢, and ¢, .. Then, the basis

functions and dual functions are biorthogonal [20] ,

< @i Qi >= 01k and <Y, 0 >=0;m00-

(2.65)

Note that if the basis functions are orthogonal, they coincide with the dual function and the

projections are orthogonal as in section 2.1.

The dual scaling function and wavelet satisfy

1) =23 had(2r —n).  Ba) =23 Gud(2z —n),

neL nez
and
21‘_” Zhn 2l¢x_l +Zgn 2l¢x_l

leZ leZ
Taking the Fourier transform of the refinement equations (2.63) and (2.64) gives

P(w) = (%)&(%) with  h(w ;h eminw
and

w
5) with g Z gn€

neL

(2.66)

(2.67)

(2.68)

(2.69)
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Here h and g are 2m-periodic functions. Similarly, for dual functions. Taking the Fourier

transform of (2.66) gives

&w):ﬁ(%”)é(%) with B(w):%iznemw (2.70)
and
bw) =350 with  glw) = Y e, @71
nez

A necessary condition for biorthogonality is then [8], [20],

Yw € R : m(w)mt(w) =1,
where
| h(w) h(w+ )
miw) = [ g(w) glw+) }
and

o= 8:731]

The existence of the dual filters is guaranteed by the following lemma:
Lemma 2.12 The space generated by the set of functions {¢;; : | € Z} complements V; in

Vi1 if and only if §(w) = det m(w) does not vanish [20].



Chapter 3
WAVELETS AND DIFFERENTIAL
EQUATIONS

Many applications of mathematics require the numerical approximation of solutions
of differential equations. In this chapter we will present different approaches of using
wavelets in the solution of boundary value ordinary differential equations. We consider the

class of ordinary differential equation of the form

Lu(z) = f(z) forxz €[0,1], where L = iaj(x)Dj,

J=0

and with appropriate boundary conditions on u(x) for x = 0, 1. There are two major so-
lution techniques. First, if the coefficients a;(x) of the operator are constants, then the
Fourier transform is well suited for solving these equations because that the complex expo-
nentials are eigenfunctions of a constant coefficient operator and they form an orthogonal
system. As a result, the operator becomes diagonal in the Fourier basis and can be inverted
trivially. If the coefficients are not constant finite element or finite difference methods can

be used [14]. We focus here on finite element methods.

3.1 Wavelet- Galerkin Methods for Differential Equations

In this section we will describe how to use wavelets to find the numerical solution of or-
dinary differential equations. The classical Galerkin methods have the disadvantage that

the stiffness matrix becomes ill conditioned as the problem size grows. To overcome this

57
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disadvantage, we use wavelets as basis functions in a Galerkin method. Then, the results
is a linear system that is sparse because of the compact support of the wavelets, and that,
after preconditioning, has a condition number independent of problem size because of the
multiresolution structure. We will see that using wavelets in conjunction with the Galerkin
method gives the two main desired properties for the associated linear system : sparseness
and low condition number [5], [12], [14], [18], [20] and [29].

The methods for numerically solving a linear ordinary differential equation come
down to solving a linear system of equations, or equivalently, a matrix equation Ax = y.
For the system to have a unique solution x for every y if and only if A is an invertible
matrix. However, in applications there are further issues that are of crucial importance. One
of these has to do with the condition number of a matrix A which measures the stability of
the linear system Ax = y. Let us see an example [14].

Example 3.1 Consider the linear system Az = y, where z,y € C?, and

A [595 —1485
198 —4.94

The determinant of A is 0.01, which is not 0, so A is invertible. For
| 3.05
Y= 1102 |

the solution to Ax = y is

however, if
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Then the solution to Ax’ = ¢/ is

= [ ? } :
Note that y and ¢y’ are close but x and 2’ are far apart. A linear system for which this
happens is called ill conditioned. In this case, small errors in the data y can lead to large
errors in the solution x. This is undesirable in applications.
Definition 3.1 Let A be an n x n matrix. Define || A|| called the operator norm, or just the

norm, of A by
|Az]]

I2I

where the supremum is taken over all nonzero vector in C".

[A]] = sup

Equivalently
|A[l = sup {[|Az] : |z]| = 1,2 € C"}.
Definition 3.2 (Condition number of a matrix) Let A be an n x n matrix. Define Cy(A),

the condition number of the matrix A, by
Cy(A) = [lA] A7

if A is not invertible, set C,(A) = oo.

Note that the condition number C (A) is scale invariant [6], that is for ¢ # 0,
Lemma 3.1 Suppose that A is an n X n normal invertible matrix. Let

IA|... = max {|A| : A1is an eigenvalue of A}

max

and

|A|,;, = min {|\| : \is an eigenvalue of A} .

min
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Then

A

The condition number of A measures how unstable the linear system Az = y is

min

under perturbation of the data y. In applications, a small condition number (i.e., near 1) is
desirable [14]. If the condition number of A is high, we would like to replace the linear
system Ax = y by an equivalent system Mz = v whose matrix M has a low condition
number.

We consider the class of ordinary differential equations (known as Sturm-Liouville

equations) of the form

Lu(t) = —a(t)u"(t) —ad'(t)u'(t) + b(t)u(t)
= —% (a(t)z—?) +b(t)u(t) = f(t), for0 <t <1, (3.1)

with Dirichlet boundary conditions

Here a, b, and f are given real-valued functions and we wish to solve for u. We assume f
and b are continuous and a has a continuous derivative on [0, 1] (this always means a one-
sided derivative at the endpoints). Note that L may be a variable coefficient differential
operator because a(t) and b(t) are not necessarily constant. We assume that the operator is

uniformly elliptic which means that there exist finite constants C', Cs, and Cj5 such that
0< Cl < Cl(t) < CQ and 0 < b(t) < 03, (32)

for all ¢ € [0,1]. By a result in the theory of ordinary differential equations, there is a

unique function v satisfying equation (3.1) and the boundary conditions «(0) = u(1) = 0.
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For the Galerkin method [14], [15], we suppose that {v; }j is a complete orthonormal

system for L?[0, 1], and that every v; is C* on [0, 1] and it satisfies
v;(0) =v;(1) = 0. (3.3)
We select some finite set A of indices j and consider the subspace
S =span{v;; j € A}.
We look for an approximation to the solution u of equation (3.1) of the form

Ug = Zxkvk €S, (3.4)

where each x;, is a scalar. These coefficients should be determined such that u, behaves

like the true solution u on the subspace .S, that is

(Lus,v;) = (f,v;) forallj € A. (3.5)
By linearity, it follows that

(Lug,g) = (f,g) forallg e S.

Note that the approximate solution u, automatically satisfies the boundary conditions us(0) =
us(1) = 0 because of equation (3.3).

Substituting (3.4) in equation (3.5), we get

<L <Z xkvk) ,vj> = (f,v;) forall j € A,
kEA
or

> (Lvg,vj ) xp = (f,v;)  forall j € A. (3.6)
keA
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Let = denote the vector (x1),., , and y be the vector ()., Where y, = (f,v;). Let A

be the matrix with rows and columns indexed by A, that is, A = [aj,k]j wen Where
ajr = (Lvg,vj) . (3.7)
Thus, equation (3.6) is the linear system of equations

Zamxk =y; forallje A,
keA

or
Ax =y. (3.8)

In the Galerkin method, for each subset A we obtain an approximation ug € S, by solving
the linear system (3.8) for x and using these components to determine u, by equation (3.4).
We expect that as we increase our set A in some systematic way, our approximation u, will
converge to the exact solution u.

Our main concern is the nature of the linear system (3.8) that results from choosing
a wavelet basis for the Galerkin method. There are two properties that we would like the
matrix A in the linear system (3.8) to have. First, we would like A to have a small condition
number to obtain stability of the solution under small perturbations in the data. Second, we
would like A to be sparse for quick calculations [14], [15].

There is a way of modifying the wavelet system for L?(R) so as to obtain a complete

orthonormal system

Wirl (j.k)er (3.9)
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for L?[0, 1]. More details [1], [12], [15] and references given therein. The set ' is a certain

subset of Z x Z. For each (j, k) € A, ¢;, € C? and satisfies the boundary conditions

wj,k«)) = wj,k:(l) = O

The wavelet system {¢j,k}(j K)er also satisfies the following estimate: There exist

constants Cy, C's > 0 such that for all functions ¢ of the form

9= cintip (3.10)
g,k
where the sum is finite, we have
1
Cy Y 2% el < /|g’(t)|2dt <G5 27 [ejul?. (3.11)
j7k 0 ]7k

An estimate of this form is called a norm equivalence. It states that up to the two constants,
1
the quantities ), 2% |c;x|* and bf |¢'(t)|? dt are equivalent.

For wavelets we write equation (3.4) as

Us = Z xj,k¢j,ka

(j,k)eA

and equation (3.6) as

> (L i) Tk = (f. ) forall (I,m) € A, (3.12)

(j,k)eA

for some finite set of indices A. We can write (3.12) as matrix equation of the form Az = vy,
where the vectors & = (k) j x)cp A Y = (Yjk) j 1)ea are indexed by the pairs (j, k) € A,
and the matrix

A= [al,m;j,k](l,m),(j,k)eA

defined by

gk = (LU Vym) (3.13)
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has its rows indexed by the pairs ([, m) € A and its columns indexed by the pairs (j, k) € A.

As suggested, we would like A to be sparse and have a low condition number. A

itself does not have a low condition number, however, we can replace the system Az = y

by an equivalent system M z = v, for which the new matrix M has low condition number.

To get this, first define the diagonal matrix

D = [dl7m;j7k](l,m),(j,k)€/\

2 if(l,m) = (j, k)
dl,mmk_{ 0 if (I,m) # (j, k) }

Define M = [my k] by

(I,m),(4,k)eA

M =D1'AD™!.

By writing this out, we get

My = 270 apmyge = 2777 (L gty ) -

Then, the system Ax = y is equivalent to
D 'AD'Dx = D1y,
if we put z = Dz and v = D1y, we get

Mz =w.

(3.14)

(3.15)

(3.16)

(3.17)

The norm equivalence (3.11) has the consequence that the system (3.17) is well con-

ditioned as we will see in Theorem 3.3. The following lemma is needed to prove Theorem

3.3. It explains the need for the uniform ellipticity assumption (3.2).



3.1 Wavelet- Galerkin Methods for Differential Equations 65

Lemma 3.2 Let L be a uniformly elliptic Sturm-Liouville operator (i.e., an operator as
defined in equation (3.1) satisfying relation (3.2)). Suppose ¢ is C? on [0, 1] and satisfies

g(0) = ¢g(1) = 0. Then

a / GO dt < (Lg.g) < (C + Cb) / o (3.18)

0 0

where (', C5, and (' are the constants in relation (3.2).

Proof. Observe that

= {ag.d),
by integration by parts (the boundary term is 0 because g(0) = g(1) = 0). Therefore,
(Lg,g) = (—(ag")' +bg,g) = {ag’. ¢') + (bg. g)

Hence, by relation (3.2),

1

c / JOPd <

0

a(t)|g'(t)" dt

1

a(t)g' (t)g'(t)dt = (ag', g') . (3.19)

o— —~—

Also by relation (3.2),
1

0< / b(t) lg(t) > dt = (b, g)

0
Adding the above inequalities gives

1
Cl/|g'(t)|2dt < (Lg,g),
0
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which is the left half of relation (3.18). For the other half, note that by relation (3.2),

1

1
(ag'.g') = [ a(t)|g' (&) dt < Cy | |g(t)] dt. (3.20)
/ /

Also note that because g(0) = 0,

g(t) = /tg'(S)ds,

by the fundamental theorem of calculus. Hence by the Cauchy-Schwarz inequality for the
function ¢"x(o , and x o, Where x| 4 is

(z) = 1 forxz € [0,t]
Xo.o\ ") = 0 forz¢[0,4 °

we get
t 1

lg(®)]* < /tlg’(S)Ist /1ds g/!g’(8)|2ds,

0 0
for every ¢ € [0, 1]. Therefore

1 1 1 1
g dt < [ |g'(s)*ds [ dt = [ |'(s)|" ds. (3.21)
[uoras fuere] o]

1 1 1

(bg. g) = / b(t) [g(t) 2 dt < Cs / 9(t)2dt < Cy / @) d.

0 0 0
Adding this result and relation (3.20) gives the right side of relation (3.18). ®

Hence, by (3.2),

Theorem 3.3 Let L be a uniformly elliptic Sturm-Liouville operator. Let {¢,, } Ger D
a complete orthonormal system for L?[0, 1] such that each ¢, , is C?, satisfies 1, (0) =
¥;1(1) = 0, and such that the norm equivalence (3.11) holds. Let A be a finite subset of I.
Let M be the matrix defined in equation (3.15). Then the condition number of M satisfies

(Cy + C5) Cs

M) <
Cy(M) < cc,

(3.22)
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for any finite set A, where C, C5, and C} are the constants in relation (3.2), Cy and C’5 are
the constants in relation (3.11).
Proof. Let z = (2j1); 1)ca be any vector with [[z]| = 1. For D as in equation (3.14), let

w = D'z thatis, w = (W) ; yen » Where
Wik =272 -

Define

Z w, kwgk

(j,k)eA
Then by equation (3.16),

(Mz,z) = Z (M2)1mZim

(IL,m)eA

= Z Z (LY s Vrm) 277 2502 20

(I,m)eA (5,k)EA

= <L Z wjkwjk Z wzm¢1m>=<Lg,g>7

(J.k)eA (I,m)eA

since 277 Zj = Wjy and 2*lzl,m = Wy, m. Applying Lemma 3.2 and relation (3.11) gives

(Mz,2) = (Lg,g) < (Cs + Cs) / GO dE< (Co+ Co)Cs S 2% fuyf?

(J,k)EA
and
(Mz,2) = (Lg,q) > C, / g1 dt > C1Cy > 2%
0 (4,k)eA
However,
j 2
> 2wl = > gl =2l = 1.
(j,k)eEA (j,k)eEA

So for any z with [|z]| = 1,

0104 S <MZ,Z> S (02 + 03)05.
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If \ is an eigenvalue of M, we can normalize the associated eigenvector z so that ||z|| = 1,

to obtain
(Mz,z) = (Az,2) = Mz, 2) = A|]2]|” = A,

Therefore, every eigenvalue A of M satisfies

C1Cy < A < (Cy + C3)Cs. (3.23)

Note that M is Hermitian and hence normal, so by Lemma 3.1, C'» (M) is the ratio of the
largest eigenvalue to the smallest. Then condition (3.22) holds. B

Thus the matrix in the system Mz = v has a condition number bounded indepen-
dently of the set A. As a result, if we increase A to approximate our solution with more
accuracy, the condition number remains bounded.

Note that the matrices that obtained by using finite differences are sparse, but they
have large condition numbers [14]. Using the Galerkin method with the Fourier system,
we can obtain a bounded condition number but the matrix is not sparse. Using the Galerkin

method with a wavelet system, we obtain both advantages [2], [5], [12] and [14].

3.2 Biorthogonal Wavelets Diagonalizing The Differential
Equations

The derivative operator is not diagonal in a wavelet basis [3], [12], [28]. However, we
can make differential operator diagonal by using two pairs of biorthogonal or dual bases

of compactly supported wavelets [12]. In this case, we have two related multiresolution
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spaces {V;} and {V;} such that

Vi;iCV;,  and ‘7j+1 C f/j, forall j € 7Z,

69

corresponding to two scaling functions ¢,$ and two wavelets 1, f[b They are defined by

two trigonometric polynomials mg and 1y, satisfying

Then we have

also, we have

and

with

where

mo(w)mg(w) + mo(w + m)me(w + 7) = 1.

2m Jaie
o) = L [ ol2w)
2 ey ’
dlw) = e Fiio(5 + md(5),

Vn(x) = 27922 — k),

Vi) = 2729272 — k).

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

If ¢» € C*~1(R), then ¢) must have L vanishing moments see [8] and [11], that is

/ p(z)dz =0 for 1=0,1,...

oo

Y

L—1.

(3.30)
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Or, equivalently,

dl
[ } =0 for [=0,1,...,L—1. (3.31)

duwl
Which implies that mg should be divisible by (1 + e~®)% [11]. The same for {p, reverse

the roles of 1, ¥ and my, 1g. Then myg and 1o can be written as [12]

mo(w) = (cos %)Le’"%P(cos w), (3.32)
~ WL w5
mo = (cos 5) e "2 P(cosw), (3.33)

where

| 1, ifLand L are odd,
~ 1 0, if L and L are even,

here L and L must have the same parity see [11] and [12]. The polynomials PP and P satisfy

the equation
(1+2)5 P(x)P(x) + (1 — 2)K P(—z)P(—z) = 25, (3.34)

where L+ L = 2K. Now, if we split 2K into a different sum 2K = L*+ L*, gives different
mg and mg, but P and P can be left unchanged. Substituting (3.32) and (3.33) into (3.25)

and (3.26) gives

L {Si?()%)rﬁp(coﬂ—jw), (3.35)

j=1

NS

NS
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where we used [[, cos(277a) = sin(@) - Also, substitution (3.32) and (3.33) into (3.27)

and (3.28) gives

L oo

. @) . wik [sin 7 | =
w(w)—m[smél} En jH2P<COSQ w), (3.36)
= ). wik —sin%—i S ;i
@D(w)—\/ﬁ[smzl} | jH2P(0052 w). (3.37)
Multiplying (3.36) by 1w gives
Ny 4 s wl—1 o©
iwih(w) = 4(7’)\/2_: [sin %] o {SIZ‘*} [ P(cos2 ). (3.38)
1

The Fourier transform of the derivative 9" of 1) is simply iwfp(w). Then (3.38) can

be written as

——— 4@ L wilH [sin2]P T _j
Y (w) = o [SIHZ] [ %4} j];[2P<C082 w). (3.39)

Up to multiplicative constant 4, this is exactly the Fourier transform of the wavelet
¥* which corresponded to the same P, P and K in (3.34), but with the choice L* = L — 1,
L* = L +1, we have

L-1 (1—r)w
mg(w) = [cos %] e P(cosw),

Z+1 (l—r)w ~
my(w) = [cos %] S P(cosw).

It follows that if we construct two pairs of biorthogonal wavelet bases, one using

W, 1;, and the other using 9", {ﬂ*, then we have
=4y,

or

(Vjx) = 2_j4¢;k7
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and hence
d ~x .
%T/}j,ka ¢m,n =2 45j,m6k:,n-
This means that we have diagonalized the derivative operator. Note that this is not a “true”

diagonalization because we use two different bases. However, this means that we can find

the wavelet coefficients of f ' i.e.,

<%f7 wj,k;> = 27j4 <f7 w;,k> .

For mor details see [12] and the references therein.

Another approach of diagonalizing the differential operator, using wavelets, is by
constructing biorthogonal wavelets with respect to the inner product defined by the operator
[19], [20].

We consider the class of ordinary differential equation of the form

Lu(z) = f(z) foraz € [0,1], where L =Y a;(x)D’, (3.40)
=0
and with appropriate boundary conditions on u(x) for x = 0, 1.

Define the operator inner product associated with an operator L by

({(u,v)) = (Lu,v) .

An approximate solution of u can be found with a Petrov-Galerkin method, i.e. consider

two spaces S and S* and look for a solution u € S such that

{{u,0)) = (f,v),
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forall vin S*. If S and S* are finite dimensional spaces with the same dimension, this leads
to a linear system of equations. The matrix of this system, also referred to as the stiffness
matrix, has as elements the operator inner products of the basis functions of .S and S*.

We assume that L is self-adjoint and positive definite and, in particular, we can write
L=V"V,

where V* is the adjoint of V. We call V' the square root operator of L. Suppose that {¥;;}
and {\I/jl} are bases for S and S* respectively. The entries of the stiffness matrix are then
given by

(0, U )) = (L0, 9 = (VG VG )

Now, the idea is to let
U=V, and W5 =V"'4,,

where ¢ and ¢ are the wavelets of a classical multiresolution analysis. We will call the
¥ and ¥* functions the operator wavelets. Then the operator wavelet are biorthogonal
with respect to the operator inner product. We want the operator wavelets to be compactly
supported and to be able to construct compactly supported operator scaling functions ®; ;.
The analysis is relatively straight forward for simple constant coefficient operators such as
the Laplace and polyharmonic operator [20].

Example 3.2 (Laplace operator) Consider the one dimensional Laplace operator
L=-D?

Then the square root operator V' is
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The associated operator inner product is
{{u,v)) = (Lu,v) = (Vu, Vo) = (u',0') .
Since the action of V! is taking the antiderivative, we define the operator wavelets as

\If(x):/_x Y(t)dt, and \Il*(a:):/_x U (t)dt. (3.41)

Note that the operator wavelets W(z) and ¥*(z) are compactly supported because the in-
tegral of the original wavelets has to vanish. Also translation and dilation invariance is

preserved, so we define
U (z) =W(Pz—1) and U} (z) ="z —1).
Now,
(U5 (2), U (2))) = (VU (2), VU (3)) = 276,01 for j,l,m,n € Z.

This means that the stiffness matrix is diagonal with powers of 2 on its diagonal. We
now need to find an operator scaling function ®. The antiderivative of the original scaling
function is not compactly supported and hence not suited. To find an operator scaling

function ¢ convolute the original scaling function with the indicator function x(g

D = ¢ Yo, (3.42)
and define
D,i(z) = 0z —1).
Similarly for the dual functions

o = 55 * X[0,1]-
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Now, define
V; = clos span {®; : k € Z}
and
W; = clos span {¥; : k € Z}.
We want to show that V; C V;;; and W; complements V; in V. By taking the Fourier

transform of (3.41) and (3.42) we get

@(w):%ﬁ(w) and ﬁ/(w):%{b(w). (3.43)

A simple calculation shows that the operator scaling function satisfies the following equa-

tion
A W, W . 1+ e
(w) = H(E)@(E) with  H(w) = 5 h(w). (3.44)
Consequently, V; C V1. Also
. W, . W ) 1

where h(w) and g(w) are defined as in (2.68) and (2.69) respectively. This implies that

W, C Vj41. To prove that IW; is complements V; in V;;; we have to prove that

H(w) H(w+7)

Alw) =det | G Glw + )

does not vanish. In fact,
Alw) = H(w)G(w+m) — H(w+m)G(w)

1+ e v () 1
= ——h(w .
2 2(1 — e—ilwtn))

glw+m) —
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where 6(w) = h(w)g(w + 7) — h(w + 7)g(w), and this cannot vanish since ¢ and 1
generate a multiresolution analysis. Then W; is complements V; in V,,; by Lemma 2.12.
The construction of the dual functions ®* and U* from ¢ and ¢ is completely similar. The
coefficients of the trigonometric functions H, H*, G and G* now define a fast wavelet
transform.

Now, we will describe the algorithm in the case of periodic boundary conditions.
This implies that the basis functions on the interval [0, 1] are just the periodization of the
basis functions on the real line.

Let S = V,, and consider the basis {®,,; : 0 < [ < 2"}. Define vectors b and x such
that

2n—1

b= (f9,,), and u=Y znd,. (3.46)
=0

The Galerkin method with this basis then yields a system
AZE =b with AkJ = <<q)n,ly (I)n,k>> . (347)

The matrix A is not diagonal and the condition number grows as O(22") [20]. Now, con-
sider the decomposition
Vn:%GBWO@"'@anl?
and the corresponding wavelet basis. The space V; has dimension one and contains constant
functions. We now switch to a one index notation such that the sets
{1,0,,:0<j<n0<1<2} and {¥,:0<k<2"}
coincide. Now, define the vectors b and 7 such that

2" —1

b= (f¥]) and u= ) &V (3.48)
=0
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There exists matrices 7" and 7™ [20] such that
b=T" and = =Ti.

The matrix 7™ corresponds to the fast wavelet transform decomposition with filters H*
and G* and 'T" corresponds to reconstruction with filters H and G'. In the wavelet basis the
system becomes
Ai=b with A=TAT
and
Ay = (Y, T i)

Since A is diagonal, it can be trivially inverted and the solution is then given by
x=TAT*.
Example 3.3 (The polyharmonic operator) The polyharmonic equation is defined as
—u®m = f, (3.49)

then the square root operator is V' = D™. The operator scaling function ® is m times
the convolution of the original scaling function ¢ with the indicator function X, ;; and
the operator wavelet W is m times the antiderivative of the original wavelet ). In order
to get a compactly supported wavelet, the original wavelet now needs to have at least m
vanishing moments [20]. The construction and algorithm are similar to the case of the
Laplace operator as in Example 3.2.

Example 3.4 (The Helmholz operator) The one dimensional Helmholz operator is defined
by

L=-D>+k% (3.50)
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Without loss of generality assume that £ = 1 which can always be obtained from transfor-

mation. The square root operator is
V=D+1=e"De" (3.51)

and
Vi=e"D e, (3.52)
Note that V' ~'4) will not necessarily give a compactly supported function because e”1),; in

general does not have a vanishing integral. Therefore we let

U, =V'te ™) —a”D—lz/}jJ. (3.53)

il =
If b, has a vanishing integral, then W;, is compactly supported.
In order to diagonalize the stiffness matrix, the original wavelets now need to be

orthogonal with respect to a weighted inner product with weight function e~2*

(W, 07 ) = (VU VI

= <eiij,l> eixwm,n>

= [ @iy e (3.54)

o0

To find the wavelet let

supp ¥, = [2771,277 (1 + 1)].
Then the orthogonality of the wavelets on each level immediately follows from their disjoint
support. To get orthogonality between two different levels, we need that V; is orthogonal

to W,, form > j or

/ e’QIqu,l(x){bm’n(x)d:v =0 form > j.

o0
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Now, let the scaling function coincide with e** on the support of the finer scale wavelets,

¢u(x) = €2$X[j,l]a (3.55)

where x/; is the indicator function on the interval [2771,277(I + 1)], normalized such that
the integral of the scaling functions is constant. As in the Haar case we choose the wavelets

as

1/le = ¢j+1,2z - ¢j+1,21+17 (3.56)

)

so that they have vanishing integral. The orthogonality between levels now follows from the
fact that the scaling functions coincide with €2* on the support of the finer scale wavelets,

and from the vanishing integral of the wavelets

| e ou@inaeie = [ b= [ b, @ =0

o0 — [e.0]
One can see that the operator wavelets are now piecewise combinations of ¢” and e™”. The

operator scaling functions are chosen as

;= eifol(ﬁbj,l - ¢j,l+1) (3.57)
so that
o= @)1 (3.58)

With the right normalization, one gets

sinh(z—1279 _ .
sm(T—J)_) fOI'QIE[lQ ],(l—|—1)2 ]]
Bju(w) = | Az o) forz € [(I+1)277, (1 + 2)279]
elsewhere.

The operator scaling functions on one level are translates of each other but the ones on

different levels are no longer dilates of each other. They are supported on the same sets.
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The operator scaling functions satisfy a relation

2
Dj = Z Hy® 1 011k, (3.59)
k=0
where
i i sinh(27971) i
Hy=H,; = —sinh(Z—j) and Hy =1.

The Helmholz operator in this bases of hyperbolic wavelets is diagonal . So we can con-
clude that a wavelet transform can diagonalize constant coefficient operators similar to the
Fourier transform. The resulting algorithm is faster (O(N) instead of O(NlogN)) [20].

Now, how to use wavelets for variable coefficient operator. Consider the following
operator

L = —Dp*(x)D, (3.60)

where p is sufficiently smooth and positive. The square root operator is now

1
V=pD and V'=D"1'-, (3.61)
p

The analysis is similar to the case of the Helmholz operator. Applying V! directly to a

wavelet does not yield a compactly supported function. Therefore we take
W=V ip, =Dy, (3.62)
Then,

(W, 07 0) = (VU V)

= <p¢j,l7pwm,n>

_ / P2 () ()i, (3.63)
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which implies that the wavelets need to be biorthogonal with respect to a weighted inner
product with p? as weight function. We use the same trick as for Helmholz operator. Let
the scaling function ¢;,; coincide with _; on the interval [2771,27/(1 + 1)

1
B0 = 5 X6 (3.64)

and normalize them such that they have a constant integral. We then take the wavelets

?ﬂj,z = <Z5j+1,2z - ¢j+1,2l+17

so they have vanishing integral and the operator wavelet are compactly supported. The

operator wavelets W, ; are now piecewise functions that locally look like
AP+ B

where P is the antiderivative of #. The operator wavelets are neither dilates nor translates
of one function, since their behavior locally depends on p [20]. The coefficients in the fast
wavelet transform are now different every where and they depend in a very simple way
on the Haar wavelet transform of #. Then, the entries of diagonal stiffness matrix can
be calculated from the wavelets transform of z% we refer for more details to [20] and the
references cited therein.

Let us take a numerical example [20]. By solving the equation

e (sin(x)(322 — 2) + cos(z) (22 — 22%))

.”172
—De” Du(x) = p

b

with «(0) = 1 and u(1) = sin(1), the exact solution is given by u(z) = 2% The Ly,
error of the numerically computed solution is function of the number of levels (1) is given

in Table 3.1.
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- error

1.22 x 1072
3.37 x 1073
8.66 x 1074
2.18 x 10~*
5.45 x 107°
1.36 x 107°

Table 3.1.

O O x| W DO | =~

Note that each time the number of levels is increased the error is divided almost by a

factor of 4, which agrees with the O(h?) convergence. For more details see [20].

3.3 Discussion

In this section we present some work that we have done during our research.

3.3.1 Differential and Integral Equations

In this subsection the relation between some differential equations and the integral equa-
tions is given. The differential equations can be transformed into the integral equations by
using the continuous wavelet transform. An abstract proof of the following lemma can be
found in [16] but here we present our proof.

Lemma 3.4 Let ¢ € L*(R), with 0 < C, < oo, then for any f € L?(R) we have
©) () = L [ 9 ) ()b 3.65
f (LE) - C_@Z} ? <f> 2ﬂa,b> a wa’b (fL’) ) ( . )
where C, is admissibility condition defined by

7 |0
o :_Z §

‘ 2

d¢ < oo, (3.66)
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and
1 r—0b

\/mzb(

Proof. By using the Parseval’s Formula for Wavelet Transforms Theorem 1.3 For any

%,b(ﬂ?) = )7 a,b€ R, a 7é 0,

g € L*(R), we have

1 r da r T
<fO.g5= o [ [ (1900 b (3.67)
Cq/, a
By using Parseval’s Formula for Fourier Transform Theorem 1.1 we have
(k) Lo )t o
< fWiog>= =< fR ), >= < fithap > (3.68)
2 27

Then (3.67) becomes

07/ /% )t < Fodos > (0. 00s)

) 00 Ja 00 a_k o — =
- 01/1 ? / (27T)2 < f?dja,b >< 9, (Zwa)k¢a,b >db
1 o0 d [e.e] k —_—
. o o —
B 5 oy (k)
_ el < f, >< g, >db.
Cy a? / (27T)2 fi¥ap g ¢a,b

Again using Parseval’s Formula for Fourier Transform Theorem 1.1 we have

d
< f(’“,g>——/ a/ < ftbay >< g.0® >db

_ O% 7 & 7 0 < ey > 7 3wy @)z | db
_ 7 C¢/ / £ < fotbey > 0B (@)db | go)de

1 da _k (k)
- <C_w/¥/“ < Lty > 00 g >,
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where we have interchanged integral in the third step. Then we have
1 r da r
w - [ 2= —k (k) _
<f e, / s /a <f,zpa7b>z/za7bdb,g >= 0,

forall g € L?*(R). Then

1 [da [ —k &
_C_w/ﬁ/a < fotbyp > 0P db =0

Fl :—/da/<f¢ab>a%(kdbl

Now, consider the followmg class of differential equations

or

Zak y® = b(z), (3.69)
{ap(z);k=0,1,--- ,n} C L®(R) , {y®:k =0,1,--- ,n} C L}(R), b(x) € L*(R).
Let {™;k =0,1,--- ,n} C L*(R) with supp(¢) C [—L, L]. According to Lemma
3.4 we have
@) = [ 5 [ i)t B, (3.70)
P a '

{for k =0,1,--- ,n}. Then (3.69) becomes

_/ /fwab Za ar(@)®) (x)db = b(x). 3.71)

Then the differential equation (3.69) is equivalent to integral equation (3.71).

Example 3.5 Consider the following differential equation

Zak y®) = b(x), (3.72)
{b(z), ax(z); k = 0,1,--- ,n} C O[—ﬂ',ﬂ'], {y®:k = 0,1,--- ,n} C L*(R). Ifz ¢

[—7, 7] let b(z) = ap(z) = y® = 0 for k = 0,1,--- ,n. Then {b(z), ar(x); k =
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0,1,---,n} C L=®(R) and {b(x), ar(x),y*®; k =0,1,--- ,n} C L*(R). Define 1 by
| coszx x €[, 7]
() = { 0 x ¢ [-mm]
¥ is drawn in Figure 3.1. ¢ is a wavelet because

sin(w + 1)m N sin(w — 1)m

~ 1
W”):m{ w1 w—1 |’

and

0<O¢<OO.

Then the continuous wavelet transform of y with respect to the wavelet v is

° z—b
(Toy)(a.b) = / ooy(z)wa,b(z)dz o / %)

|a|7r+b Z —b

/ COS
Vlal \a|7r+b

)dz. (3.73)

Now, by using Lemma 3.4, (3.72) becomes

0 la|m+x
1 da 1 lalm+b z—b
bx) = — [ — / —/ y(z) cos( )dz
Cy J a [\/m —la|r+b a

—00 —|a|m+z

n

1 x—0b T
;ak(x)\/ma cos( - +k:§)db). (3.74)

Then in order to solve the differential equation (3.72) we only need to solve the integral

equation in (3.74) [16].
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Figure 3.1. Wavelet in Example 3.5.

3.3.2 Using Difference Equations

Suppose ¢ is a scaling function for a multiresolution analysis {V]}J cz -

Vi = {Zak%,k(m) {aktrer € l2(Z)} ;

kEZ

where

0;(x) = 2126(2x — k).

The orthogonal projection operator P; from L?(R) onto V; is defined by

Pi(f)(x) = Z < [y 955 > bjx(T),

kEZ

also we have

lim P;(f) = f.
The projection P;(f) can be considered as an approximation of f at the scale 277. There-

fore, the successive approximations of a given function f are defined as the orthogonal

projections P;(f) onto the space V;. We can choose j € Z such that P;(f) is a good
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approximation of f. For very large j we can approximate f(z) by P;(f) that is

f@) = Pi(f) (@) = ajud;(x)

kEZ

where

Qi =< f7¢gk >,

and

bix(x) = 2202z — k).
From the definition of the derivative we have

) — i L 3) @)

J—0o0 5%

Again for large j we can approximate f'(x) by

substituting (3.75) into (3.76) we get

Fie) = Wf@+;>f@ﬂ
= 2 1) q k2ﬂ/2¢(2ﬂ(g;+ )= 22
LkeZ keZ

Y Zaj,k2j/2¢(2jx +1—k)— Zajkajp(ﬁ(QjSC

LkEZ keZ

= 2 Z (k1 — ) ij,k(x)] :

LkEZ

(3.75)

(3.76)

@]

(3.77)

Let V; be the space of all function in L?(R) which are constants on intervals of the

form I, = [279k, 27 (k + 1)], k € Z.

V; ={f € L*(R) : f = constant on I, Vk € Z}.
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Then {V}, j € Z} is an MRA see Example 2.1. The scaling function is given by

¢ = X[0,1]

Now, consider a simple differential equation
fl@)+bf(zx) =0, f(0)=f, (3.78)
where b is a constant real number. The exact solution of the differential equation (3.78) is
flx) = fye™™.

Now, substituting (3.75) and (3.77) into (3.78) yields

27 Z (1 — ) Gy | + bz @k ®;n(x) =0

kEZ keZ
> (@ajpe + (b—2)ayi) ¢, =0, (3.79)
kEZ

taking the inner product with ¢, , in (3.79) we get

2j04j,n+1 -+ (b — 2j)05j7n =0

or
b
aj,n—l—l = (1 — E)Oljm. (380)
Solving the difference equation in (3.80) we get
b n
ajn = (1= =)"ap, (3.81)

97
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where

a0 = < Fb>= [ 1@
B / @2 ()
0
2—J
— 92i2¢(0 27 1)d
o oo
23
_ i d
27/2 £(0) /O 1da
= 2792f(0) = 279/%f,. (3.82)

Since f(z) is continuous and the integration is taken over a small interval [0,27], we can

approximate f(z) by f(0) for very large j. Similarly for o, we have

au = <Ly [ I
279 (k+1) ) )
_ / F(@)2726(2 0 — k)de
2-7k

= 2792f(27k). (3.83)

Then, from (3.81), (3.82) and (3.83) we get

b

F@7R) = f,(1 = 5)" (3.84)
Let k — 27, then (3.84) becomes
b 2
f@) = £(0 - ) (.85

for very large j. Take the limit in (3.85) as j — oo we get

flz) = lim f,(1 - 3.)2” = fe (3.86)

Jj—o0 2.7

which coincides with the exact solution of (3.78).
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3.3.3 Expansion of Derivative

In this subsection we will prove that for certain functions the derivative can be written as

fl@) =) taf(z—n),

nel

where t,, € R foralln € Z.

Let Py be a space of polynomial which has degree less than or equal to k. Then %,
can be found by solving a system of linear equations. For example for f € P. One can
prove that

, 1 1
fl@) = 5f+1) = S - 1)

For f € P,. We have
F/@) = Ty f 2+ a4 1) = 2 f = 1)+ g fe - 2).

Lemma 3.5 Let f € L2(R), and f does not vanish in [—, ] almost everywhere, then f’

can be written in the following form:

Fla) =) tuf(z—n), (3.87)

neZ

where
E o £0nez

n

t, =
0, n=>0
Proof. Taking the Fourier Transform of (3.87) we get

(iw) f(w) =Y tae™" f(w)

nez

Since f(w) # 0 a.e. w € (—m, ) , then by cancelling f(w) from both sides we get

(iw) =Y tpe ™" (3.88)

ne”L
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Taking inner product with e =™ m # 0 in (3.88) we get

s s
/ (tw)e™™dw = / tpe e dw
- T nez

Then

27 (cosmm) m — 2sinm _ Z . /71' T

2
m
nez -m

Because {e~""} are orthogonal in (—7, 7) and m is integer we have

Ll

Thus,

Ifm=20,thenty =0.1

Example 3.6 Let f(z) = 522

T

Ztnf(f ) = Z (—=1)"sin(z — n) _cosr  sinz ().

n T—n T 2
neL n#0

Similar results can be found with higher derivatives. For second derivative we have

f'(x) =) raf(z—n),

neL

where

2(‘12"“, n#0,n€ez

n

2
™ —
— n 0

For third derivative

f"(@) =Y raf(z—n),

nez
where
()& - ), n#£0nez

n3 n

0, n=20
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For fourth Derivative we get

fO(x) =) raf(z—n),

neL

where

n

4
X n=>0

5

B { A5~ 8), n£0neZ }
And higher derivatives can be obtained in a similar procedure.

There are four main properties of wavelets; namely, they are local in both space and
frequency, they satisfy biorthogonality conditions, they provide a multiresolution struc-
ture and fast transform algorithms are available. Because of these properties wavelets have
proven to be useful in the solution of ordinary differential equations. As proposed by sev-
eral researchers, wavelets can be used as basis functions in Galerkin method. This has
proven to work and the results in a linear system that is sparse because of the compact sup-
port of wavelets, and that, after preconditioning, has a condition number independent of
problem size because of the multiresolution structure. By using two pairs of biorthogo-
nal compactly supported wavelets, derivative operator can be diagonalized [12]. Like the
Fourier transform, wavelets can diagonalize constant coefficient operators. The resulting
algorithm is slightly faster [20]. Even non constant coefficient operators can be diago-
nalized with the right choice of basis which yields a much faster algorithm than classical

iterative methods.
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