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PREFACE

Wavelet analysis has been one of the major research areas in science and engineering

in the last 15 years. More and more, mathematicians and scientists are joining this exciting

area. Wavelet analysis has had a great impact on areas such as approximation theory,

harmonic analysis, differential and integral equations, and scienti�c computation. It has

shown great potential in applications to information technology such as data compression,

image processing, and computer graphics.

The work is organized as follows. Chapter 1 gives general introduction to wavelets,

basic idea of Fourier transforms, and continuous and discrete wavelet transform. In Chap-

ter 2, the idea of multiresolution analysis and construction of wavelets are presented. This

chapter includes decomposition and reconstruction algorithms for wavelets. Finally, Chap-

ter 3 presents different apporoches of using wavelets to solve ordinary differential equa-

tions. Some work that we have done during our research is disscussed.
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Chapter 1
WAVELET TRANSFORM

1.1 Introduction

Wavelet theory involves representing general functions in terms of simpler building blocks

at different scales and positions. The fundamental idea behind wavelets is to analyze ac-

cording to scale. Wavelets are mathematical tools that cut up data or functions or operators

into different frequency components, and then study each component with a resolution

matching to its scale.

Everywhere around us there are signals that can be analyzed. For example, there are

human speech, engine vibrations, medical images, �nancial data, music, and many other

type of signals. Wavelet analysis is a new and promising set of tools and techniques for

analyzing these signals.

In the history of mathematics, wavelet analysis shows many different origins. Much

of the work was performed in the 1930s [19]. Before 1930, the main branch of mathematics

leading to wavelets began with Joseph Fourier with his theory of frequency analysis. He

asserted in 1807 that any 2�-periodic function f(x) could be represented by the sum

f(x) = a0 +
1X
k=1

(ak cos kx+ bk sin kx) (1.1)

which is called Fourier series. The coef�cients ak and bk are calculated by

a0 =
1

2�

Z 2�

0

f(x)dx; (1.2)

2



1.1 Introduction 3

ak =
1

�

Z 2�

0

f(x) cos(kx)dx; k = 1; 2; � � � ; (1.3)

bk =
1

�

Z 2�

0

f(x) sin(kx)dx k = 1; 2; � � � : (1.4)

Fourier's statement played an essential role in the evolution of the ideas mathematicians

had about the functions. He opened up the door to a new functional universe.

The �rst mention of wavelets appeared in an appendix to the thesis of A. Haar (1909).

Haar asked himself this question in his thesis: Does there exist another orthonormal system

h1; h2; ::hn; of functions de�ned on [0, 1] such that, for any continuous function f de�ned

on [0,1], the series

< f; ho > ho+ < f; h1 > h1 + � � � � � �+ < f; hn > hn + � � � � � � (1.5)

converges to f uniformly on [0; 1] ? Here the inner product < ; > is de�ned as

< f; g >=

Z 1

0

f(x)�g(x)dx (1.6)

where �g(x) is the complex conjugate of g(x).

In 1909, Haar discovered the simplest solution and at the same time opened a route

leading to wavelets.

Haar introduced the functions h and hn(x) as

h(x) =

8<: 1; 0 � x < 1
2
;

�1; 1
2
� x < 1;

0; otherwise,
(1.7)

hn(x) = 2
j=2h(2jx� k);
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where n = 2j + k, j � 0 , 0 � k < 2j , j; k; n are integers. To complete the set, let

h0(x) = 1 on [0,1). Then the sequence

h0; h1; � � � � � � ; hn; � � � � � �

is an orthonormal basis forL2[0; 1]: h(x) de�ned in (1.7) is known as the Haar wavelet. One

property of the Haar wavelet is that it has compact support, which means that it vanishes

outside a �nite interval. Unfortunately, Haar wavelets are not continuously differentiable

which somewhat limits their applications [7], [11].

1.2 Fourier Analysis

Fourier's representation of functions as a superposition of sines and cosines has become

very important for both the analytic and numerical solution of differential equations and

for the analysis and treatment of communication signals [13].

Let L2(0; 2�) denote the space of all measurable functions de�ned on the interval

(0; 2�) with the following condition:Z 2�

0

jf(x)j2 dx <1:

This collection is often called the space of 2�-periodic square integrable functions. Any

function f in L2(0; 2�) can be represented in the form

f(x) =
1X
�1

cne
inx; (1.8)

where the constants cn are called Fourier coef�cients of f , and can be calculated by

cn =
1

2�

Z 2�

0

f(x)e�inxdx: (1.9)
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The Fourier transform is used to analyze the frequency content of a signal in the

time domain. It transforms a function in the time domain into a function in the frequency

domain. The signal can then be analyzed for its frequency content. An inverse Fourier

transform takes the data from the frequency domain into the time domain.

A function f is considered to be a square-integrable function if

Z 1

�1
jf(x)j2 dx <1:

The function space L2(R) is the space of all square integrable functions de�ned on R.

L2(R) =

�
f :

Z 1

�1
jf(x)j2 dx <1

�
with the L2- norm de�ned by

kfk2 =
�Z 1

�1
jf(x)j2 dx

� 1
2

<1:

Elements of L2(R) are called square integrable functions. Many functions in physics and

engineering are square integrable.

De�nition 1.1 Let f; g 2 L2(R) then, the inner product is de�ned by

< f; g >=

Z 1

�1
f(x)�g(x)dx; (1.10)

where �g(x) is the complex conjugate of g(x). It is clear that

< f; f >= kfk22 :

De�nition 1.2 The Fourier transform of a function f 2 L2(R) de�ned by

(Ff)(w) = f̂(w) =

Z 1

�1
f(x)e�iwxdx; (1.11)
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x is called the time variable and w is called frequency variable. The Fourier transformation

(F ) takes L2(R) onto itself.

De�nition 1.3 The inverse Fourier transform (F�1) of g(w) is de�ned by

(F�1g)(x) = �g(x) =
1

2�

Z 1

�1
g(w)eiwxdw: (1.12)

As we said Fourier analysis is a mathematical technique for transforming our view of

the signal from time domain to frequency domain.

Theorem 1.1 (Parseval's Formula) [7], [13] Suppose f; g 2 L2(R): Then we have

< f; g >=
1

2�
< f̂; ĝ > : (1.13)

For many signals, Fourier analysis is extremely useful because the signal's frequency

content is of great importance. So why do we need other techniques, like wavelet analysis?

The Fourier transform of a signal does not contain any local information and it just

enables us to investigate problems either in the time domain or in the frequency domain,

but not simultaneously in both domains. These are the major weaknesses of the Fourier

transform analysis.

In transforming to the frequency domain, time information is lost. When looking at a

Fourier transform of a signal, it is impossible to tell when a particular event took place. If

the signal properties do not change much over time, that is, if it is what is called a stationary

signal, the weaknesses of the Fourier transform isn't very important. However, most inter-

esting signals contain numerous non-stationary characteristics. These characteristics are

often the most important part of the signal, and Fourier analysis is not suited to detecting

them.
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In an effort to correct the weaknesses of Fourier transform, Dennis Gabor (1946)

introduced the windowed Fourier transform to measure localized frequency components of

sound wave. He adapted the Fourier transform to analyze only a small section of the signal

at a time, a technique called windowing the signal. Windowed Fourier Transform maps

a signal into a two-dimensional function of time and frequency. The Windowed Fourier

transform can be used to give information about signals simultaneously in the time domain

and in the frequency domain. Gabor �rst introduced the windowed Fourier transform by

using a Gaussian distribution function as a window function. His major idea was to use

a time-localization window function g(x � t) for extracting local information from the

Fourier transform of a signal, where parameter t is used to translate the window in order to

cover the whole time domain. The idea is to use this window function in order to localize

the Fourier transform, then shift the window to another position, and so on. See Figure 1.1.

f(x)

g(x+t0) g(x) 1 g(x­t0)

Figure 1.1. The windowed Fourier transform.

In the windowed Fourier transform, the function f(x) is multiplied with the window

function g(x) and the Fourier coef�cients of the product f(x)g(x) are computed. Then, the

procedure is repeated for translated versions of the windows, g(x� t0); g(x� 2t0); � � � :
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De�nition 1.4 The Windowed Fourier Transform of a function f with respect to a window

function g denoted by G(f)(w; t) is de�ned by

G(f)(w; t) = ~fg(w; t) =

Z 1

�1
f(x)g(x� t)e�iwxdx (1.14)

where f; g 2 L2(R):

Clearly, the windowed Fourier transform of a given function f depends on both time

t and frequency w. For more detail see [13].

De�nition 1.5 The inversion formula for the Windowed Fourier transform (G�1) is given

by

G�1
�
~fg(w; t)

�
= f(x) =

1

2� kgk2
Z 1

�1

Z 1

�1
~fg(w; t)g(x� t)eiwtdtdw:

With the Windowed Fourier Transform, the input signal f(x) is chopped up into

sections, and each section is analyzed for its frequency content separately.

TheWindowed Fourier Transform provides some information about both when and at

what frequencies a signal event occurs. The drawback of the Windowed Fourier Transform

is that once you choose a size for the window, that window is the same for all frequencies.

For more details [13], [19].

1.3 Continuous Wavelet Transforms

Unlike Fourier analysis, in which we analyze signals using sines and cosines, now we use

wavelet functions. One of the main reasons for the discovery of wavelets and wavelet

transforms is that the Fourier transform analysis does not contain the local information of
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signals. Wavelet analysis is a new method for solving dif�cult problems in mathematics,

physics, and engineering [7], [11], [13].

De�nition 1.6 A wavelet is a function  2 L2(R) which satis�es the condition

C =

1Z
�1

��� ̂(�)���2
j�j d� <1; (1.15)

where  ̂(�) is the Fourier transform of  (x):

The condition (1.15) is called the wavelet admissibility condition and it is required

for �nding the inverse of the continuous wavelet transform.

Based on the idea of wavelets as a family of functions constructed from translation

and dilation of a single function  called the mother wavelet, we de�ne family of wavelets

by

 a;b(x) =
1p
jaj
 (
x� b

a
); a; b 2 R; a 6= 0; (1.16)

where a is called a scaling parameter which measures the degree of compression or scale,

and b is translation parameter which determines the time location for the wavelet.

Remark 1.1

1. Scaling a wavelet simply means stretching (or compressing) it. If jaj < 1, the wavelet

 a;b(x) is the compressed version of the mother wavelet  (x) and corresponds mainly to

higher frequencies. However, at a large scale, the wavelet  a;b(x) is stretched version of

the mother wavelet  (x) and corresponds lower frequencies.

2. As the scale a decreases, the resolution in the time domain increases (the time resolu-

tion becomes �ner) while that in the frequency domain increases (the frequency resolution

becomes coarser).
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3. Since  (x) 2 L2(R), then  a;b(x) 2 L2(R) for all a; b, because



 a;b(x)

2 =
1

jaj

Z 1

�1

���� (x� b

a
)

����2 dx
=

Z 1

�1
j (x)j2 dx = k k2 : (1.17)

4. The Fourier transform of  a;b(x)

 ̂a;b(w) =
1p
jaj

Z 1

�1
 (
x� b

a
)e�iwxdx =

p
jaje�iwb ̂(aw): (1.18)

We sketch a typical mother wavelet in the Figure 1.2 (a). Different values of the

parameter b represent the time localization center, and each  a;b(x) is localized around the

center x = b. As a scale parameter a varies, wavelet  a;b(x) covers different frequency

ranges. Large values of jaj (jaj � 1) result in very wide windows and correspond to small

frequencies Figure 1.2 (b). However, small values of jaj (jaj � 1) result in very narrow

windows and correspond to high frequencies as shown in Figure 1.2 (c).

De�nition 1.7 Let  be a wavelet. The continuous wavelet transform T of f 2 L2(R)

with respect to the wavelet  is de�ned on L2(R) by

(T f)(a; b) = < f;  a;b >=

Z 1

�1
f(x) a;b(x)dx

=
1p
jaj

Z 1

�1
f(x) (

x� b

a
)dx; (1.19)

where a 2 Rnf0g; b 2 R.
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Ψa,b
With a>1
        b<0

x

Ψa,b
With a<1
        b>0

x

Ψ(x)

x

(a)

(b) (c)

Figure 1.2. Typical mother wavelet.

Example 1.1 The Haar wavelet is one of the most fundamental examples that illustrates

major features of the general wavelet theory. It is de�ned by

 (x) =

8<: 1; 0 � x < 1
2

�1; 1
2
� x < 1

0; otherwise.
(1.20)

The Haar wavelet has compact support [0,1] and satis�es

Z 1

�1
 (x)dx = 0;

and

Z 1

�1
j (x)j2 dx = 1:
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This wavelet is well localized in the time domain, but it is discontinuous at x = 0; 1
2
; 1: The

Fourier transform of the Haar wavelet is calculated as follows:

 ̂(�) =

Z 1
2

0

e�i�xdx�
Z 1

1
2

e�i�xdx

=
1

�i�

n�
e�i�x

� 1
2

0
�
�
e�i�x

�1
1
2

o
=

i

�

n
2e�

i�
2 � e�i� � 1

o
=

4 sin2( �
4
)

�
e�

i
2
(���):

The  (x) and
��� ̂(�)��� are sketched in Figure 1.3 and Figure 1.4 respectively.

1.510.50­0.5

1

0.5

0

­0.5

­1

Figure 1.3. The Haar wavelet  (x):



1.3 Continuous Wavelet Transforms 13

2512.50­12.5­25

0.625

0.5

0.375

0.25

0.125

0

Figure 1.4. The Fourier Transform of Haar wavelet
���b ��� :

The following theorem is useful to generate new wavelets.

Theorem 1.2 If  is a wavelet and ' a bounded integrable function, then the convolution

function  � ' is a wavelet [13], [26].

Proof. Since,

Z 1

�1
j � '(x)j2 dx =

Z 1

�1

����Z 1

�1
 (x� y)'(y)dy

����2 dx
�

Z 1

�1

�Z 1

�1
j (x� y)j j'(y)j dy

�2
dx

=

Z 1

�1

�Z 1

�1
j (x� y)j

p
j'(y)j

p
j'(y)jdy

�2
dx

�
Z 1

�1

�Z 1

�1
j (x� y)j2 j'(y)j dy

Z 1

�1
j'(y)j dy

�
dx

�
Z 1

�1
j'(y)j dy

Z 1

�1

Z 1

�1
j (x� y)j2 j'(y)j dxdy

=

�Z 1

�1
j'(y)j dy

�2 Z 1

�1
j (x)j2 dx <1;
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we have,  � ' 2 L2(R):Moreover,

C �' =

1Z
�1

���[ � '(�)���2
j�j d� =

1Z
�1

��� ̂(�)'̂(�)���2
j�j d�

=

1Z
�1

��� ̂(�)���2 j'̂(�)j2
j�j d� � sup j'̂(�)j2

1Z
�1

��� ̂(�)���2
j�j d� <1:

Therefore, the convolution function  � ' is a wavelet.

Example 1.2 The convolution of the Haar wavelet with the following function

'(x) =

�
1; 0 � x � 1
0 otherwise

generate a wavelet as shown in Figure 1.5.

Example 1.3 By convolution of the Haar wavelet with '(x) = e�x
2 , we get an in�nitely

differentiable (or smooth ) wavelet , as shown in Figure 1.6.

))(( xϕψ ∗

2
1

−

2
1

2
3 21

2
1

x

Figure 1.5. The convolution of the Haar wavelet with
'(x):
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­2 2

  0.2

x

))(( xϕψ ∗

Figure 1.6. The convolution of Haar wavelet with
'(x) = e�x

2
:

De�nition 1.8 The kth moment of a wavelet  is de�ned by

mk =

Z 1

�1
xk (x)dx: (1.21)

A wavelet  has n vanishing moments ifZ 1

�1
xk (x)dx = 0 for k = 0; 1; : : : ; n: (1.22)

Or, equivalently, "
dk ̂(�)

d�k

#
�=0

= 0 for k = 0; 1; : : : ; n: (1.23)

Since the wavelet transform is expressed as the inner product of f with  a;b, it is

linear. The following properties can be proved by using the properties of the inner product.

Let  and ' be wavelets and let f and g be functions of L2(R): Then the following

relations hold [13], [26] :
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1. (Isometry) The wavelet transform T f is an isometry, that is,

k(T f)(a; b)kL2 = kfkL2 : (1.24)

2. (Translation)

T (Scf)(a; b) = T f(a; b� c) (1.25)

where Sc is the translation operator de�ned by

Scf(x) = f(x� c):

2. (Dilation)

T (Dcf)(a; b) =
1p
c
T f(

a

c
;
b

c
); c > 0; (1.26)

where c is a positive number and Dc is a dilation operator de�ned by

Dcf(x) =
1

c
f(
x

c
):

3. (Antilinearity)

(T(� +�')f)(a; b) = �(T f)(a; b) + �(T'f)(a; b); (1.27)

where � and � 2 R:

4. (Symmetry)

(T ')(a; b) = (T' )(
1

a
;� b

a
); a 6= 0: (1.28)

5. (Parity)

TP (Pf)(a; b) = (T f)(a;�b); (1.29)

where P is the parity operator de�ned by Pf(x) = f(�x):
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6.

TSc (f)(a; b) = (T f)(a; b+ ac); (1.30)

7.

TDc (f)(a; b) =
1p
c
T f(ac; b) (1.31)

Theorem 1.3 (Parseval's Formula for Wavelet Transforms) [7], [13]. Let  be a wavelet.

Then, for any functions f; g 2 L2(R); the following formula holds:

< f; g >=
1

C 

1Z
�1

da

a2

1Z
�1

(T f)(a; b)(T g)(a; b)db; (1.32)

where

0 < C =

1Z
�1

��� ̂(w)���2
jwj dw <1:

Proof. By Parseval's Formula for Fourier transform Theorem 1.1, we have

(T f)(a; b) = < f;  a;b >

=
1

2�
< f̂;  ̂a;b >

=
1

2�

1Z
�1

f̂(w)
p
jajeibw ̂(aw)dw; (1.33)

and

(T g)(a; b) = < g;  a;b >

=

1Z
�1

�g(x)
1p
jaj
 (
x� b

a
)dx

=
1

2�
< ĝ;  ̂a;b >

=
1

2�

1Z
�1

ĝ(�)
p
jaje�ib� ̂(a�)d�: (1.34)
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Then, by using (1.33) and (1.34) we have

1Z
�1

1Z
�1

(T f)(a; b)(T g)(a; b)
dbda

a2

=

1Z
�1

1Z
�1

1

2�

1Z
�1

f̂(w)
eibwp
jaj
 ̂(aw)dw

1

2�

1Z
�1

ĝ(�)
e�ib�p
jaj
 ̂(a�)d�

dbda

a2

=
1

(2�)2

1Z
�1

1Z
�1

dbda

a2

1Z
�1

1Z
�1

jaj f̂(w)ĝ(�) ̂(aw) ̂(a�)eib(w��)dwd�;

by interchanging the order of integration, we have

=
1

2�

1Z
�1

da

jaj

1Z
�1

1Z
�1

f̂(w)ĝ(�) ̂(aw) ̂(a�)dwd�

24 1
2�

1Z
�1

eib(w��)db

35
=

1

2�

1Z
�1

da

jaj

1Z
�1

1Z
�1

f̂(w)ĝ(�) ̂(aw) ̂(a�)dwd� [���w]

=
1

2�

1Z
�1

da

jaj

1Z
�1

f̂(w)ĝ(w) ̂(aw) ̂(aw)dw;

=
1

2�

1Z
�1

da

jaj

1Z
�1

f̂(w)ĝ(w)
��� ̂(aw)���2 dw;

interchange the order of integration again and put aw = t; we get

1Z
�1

1Z
�1

(T f)(a; b)(T g)(a; b)
dbda

a2

=
1

2�

1Z
�1

f̂(w)ĝ(w)dw

1Z
�1

��� ̂(t)���2 dtjtj ;
= C 

1

2�
< f̂; ĝ >= C < f; g > :

By takin g = f , we have
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Corollary 1.4 If f 2 L2(R); then

C kfk2 = C 

1Z
�1

jf(x)j2 dx =
1Z

�1

1Z
�1

j(T f)(a; b)j2
dbda

a2
: (1.35)

This means that except for the factor C ; the wavelet transform is an isometry.

Theorem 1.5 (Inversion Formula) [7], [13], [26]. If f 2 L2(R); then f can be recon-

structed by the formula

f(x) =
1

C 

1Z
�1

1Z
�1

(T f)(a; b) a;b
(x)

dbda

a2
; (1.36)

where (T f)(a; b) is a wavelet transform of f and C is admissibility condition.

Proof. For any g 2 L2(R); we have from Theorem 1.3

C < f; g >=

1Z
�1

1Z
�1

(T f)(a; b)(T g)(a; b)
dbda

a2

=

1Z
�1

1Z
�1

0@(T f)(a; b) 1Z
�1

�g(x) a;b(x)dx

1A dbda

a2

C < f; g >=

1Z
�1

0@ 1Z
�1

1Z
�1

(T f)(a; b) a;b(x)
dbda

a2

1A �g(x)dx
= <

1Z
�1

1Z
�1

(T f)(a; b) a;b(x)
dbda

a2
; g(x) > :

or

< C f �
1Z

�1

1Z
�1

(T f)(a; b) a;b(x)
dbda

a2
; g >= 0; for all g 2 L2(R):

Therefore,

C f �
1Z

�1

1Z
�1

(T f)(a; b) a;b(x)
dbda

a2
= 0

or
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f =
1

C 

1Z
�1

1Z
�1

(T f)(a; b) a;b(x)
dbda

a2
:

1.4 Discrete Wavelet Transform

In many applications [1-5], [15], [18-21], [25], [27], data are represented by a �nite number

of values, so it is useful to consider a discrete version of the continuous wavelet transform

(1.19), by assuming that a and b take only integer values. For a wavelet  we can de�ne

 j;k(x) = a
j
2
0  (a

j
0x� kb0); (1.37)

where j and k 2 Z and a0 > 1 and b0 > 0 are �xed constants. Then Wavelet transform

de�ned by (1.19) becomes

(T f)(j; k) = < f;  j;k(x) >

= a
j
2
0

Z 1

�1
f(x) (aj0x� kb0)dx: (1.38)

There are two questions:

Q1) Does the sequence
�
< f;  j;k(x) >

	
j;k2Z characterize the function f ?

Q2) Is it possible to express any f(x) as the superposition

f(x) =
1X

k=�1

1X
j=�1

< f;  j;k(x) >  j;k(x)? (1.39)

The answer is positive if the wavelets  j;k(x) form a complete orthonormal system in

L2(R): For computational ef�ciency, a0 = 2 and b0 = 1 are commonly used, then

 j;k(x) = 2
j
2 (2jx� k) (1.40)
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De�nition 1.9 (Riesz Basis) [13], [17]. A sequence of vectors f�ngn=1;2;��� in a Hilbert

space H is called a Riesz basis if for every f 2 H there exists a unique sequence fcngn=1;2;��� 2

l2, such that, f =
P1

n=1 cn�n; and there exist two positive constants A and B, where

0 < A � B <1; independent of f 2 H , such that

A

1X
n=1

jcnj2 � kfk2 � B

1X
n=1

jcnj2 :

De�nition 1.10 A wavelet is a function  2 L2(R) such that the family of functions  j;k

de�ned by

 j;k(x) = 2
j=2 (2jx� k); (1.41)

where j and k are arbitrary integers, is an orthonormal basis in the Hilbert space L2(R):

This de�nition means the following:

1. Orthonormal family of f j;kg; that is,

<  j;k;  m;n >=

Z 1

�1
 j;k(x)� m;n(x)dx = �j;m�k;n (1.42)

where j; k;m; n are integer , �j;m and �k;n are Kronecker delta.

2. If f 2 L2(R) then it can be written as

f(x) =
X
j2Z

X
k2Z

< f;  j;k >  j;k(x); (1.43)

where Z denotes the set of integers.

3. The factor 2j=2 is included so that the L2 norm will be the same for all j; k that is,  j;k

are normalized


 j;k

 = k k = 1:

4. The wavelet  0;1 =  is called the basic wavelet or mother wavelet.
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De�nition 1.11Wavelet coef�cients of a function f 2 L2(R); denoted by cj;k are de�ned

as the inner product of f with  j;k

cj;k =< f;  j;k >=

Z 1

�1
f(x) j;k(x)dx (1.44)

The series X
j2Z

X
k2Z

< f;  j;k >  j;k(x);

is called the wavelet series of f 2 L2(R): The expression

f(x) =
X
j2Z

X
k2Z

< f;  j;k >  j;k(x);

is called the wavelet representation of f:

It may be observed that the wavelet coef�cient cj;k is the wavelet transform of f with

respect to  at the point (2�j; k2�j) :

cj;k = (T f)(2
�j; k2�j):



Chapter 2
MULTIRESOLUTION ANALYSIS AND
THE CONSTRUCTION OFWAVELET

The objective of this chapter is to construct a wavelet system, which is a complete

orthonormal set in L2(R):

2.1 Multiresolution Analysis (MRA)

The idea of multiresolution analysis is to represent a function (or signal) f as a limit of

successive approximations, each of which is a �ner version of the function f . The basic

principle of the multiresolution analysis (MRA) deals with the decomposition of the whole

function space into individual subspaces Vn � Vn+1 [7], [13], [17] and [22].

De�nition 2.1 (Multiresolution Analysis). A multiresolution analysis (MRA) of L2(R) is

de�ned as a sequence of closed subspaces Vj of L2(R), j 2 Z, that satisfy the following

properties:

1. Monotonicity

Vj � Vj+1; for all j 2 Z; (2.1)

2. Dilation property

f(x) 2 Vj , f(2x) 2 Vj+1 for all j 2 Z; (2.2)

23
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3. Intersection property \
j2Z

Vj = f0g; (2.3)

4. Density property [
j2Z

Vj is dense in L2(R); (2.4)

5. Existence of scaling function. There exists a function � 2 V0; such that

f�(x� n) : n 2 Zg is an orthonormal basis for V0.

V0 =

(X
k2Z

�k�(x� k) : f�kgk2Z 2 l2(Z)
)
: (2.5)

Density property means that for any f 2 L2(R); there exists a sequence ffng1n=1

such that each fn 2
S
j2Z

Vj and ffng1n=1 converges to f in L2(R), that is, kfn � fk ! 0 as

n!1:

The function � is called the scaling function or father wavelet of the given MRA.

Sometimes condition (2.5) is relaxed by assuming that f�(x � n) : n 2 Zg is a Riesz

basis for V0. In this case, we have a multiresolution analysis with a Riesz basis. Dilation

condition (2.2) implies that f (x) 2 Vj , f(2mx) 2 Vj+m for all j;m 2 Z: In particular

f(x) 2 V0 , f(2jx) 2 Vj . Let

�j;k(x) = 2
j=2�(2jx� k); (2.6)

The orthonormality of the set f�(x�n) : n 2 Zg implies that for each j 2 Z, f�j;k(x); k 2

Zg is an orthonormal set, because changing variables shows that for j; k;m 2 Z,

< �j;k; �j;m >=< �0;k; �0;m >
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Then f�j;k(x); k 2 Zg is an orthonormal basis for Vj . It follows that for each j 2 Z,

Vj =

(X
k2Z

�k�j;k(x) : f�kgk2Z 2 l2(Z)
)
: (2.7)

De�ne the orthogonal projection operator Pj from L2(R) onto Vj by

Pj(f)(x) =
X
k2Z

< f; �j;k > �j;k(x); (2.8)

then the conditions (2.3) and (2.4) give that

lim
j!1

Pj(f) = f (2.9)

and

lim
j!�1

Pj(f) = 0

The projection Pj(f) can be considered as an approximation of f at the scale 2�j .

Therefore, the successive approximations of a given function f are de�ned as the orthog-

onal projections Pj(f) onto the space Vj . We can choose j 2 Z such that Pj(f) is a good

approximation of f [7], [11], [26].

Theorem 2.1 Suppose � 2 L2(R) such that �̂ is bounded,
����̂��� is continuous at 0. Also,

suppose that for each j 2 Z;
�
�j;k : k 2 Z

	
is an orthonormal set. Let Vj de�ned by (2.7).

Then, the following two conditions are equivalent:

�̂(0) 6= 0;

[
j2Z

Vj is dense in L2(R):

Moreover, when either is the case,
����̂(0)��� = 1: The proof can be found in [11].



2.1 Multiresolution Analysis (MRA) 26

Example 2.1 Let Vj be the space of all function in L2(R) which are constant on intervals

of the form Ij;k = [2
�jk; 2�j(k + 1)]; k 2 Z:

Vj = ff 2 L2(R) : f = constant on Ij;k;8k 2 Zg:

Then, fVj; j 2 Zg is an MRA.

Obviously, Vm � Vm+1; because any function that is constant on intervals of length

2�m is automatically constant on intervals of half that length. The space V0 contains all

functions f(x) in L2(R) that are constant on k � x < k + 1. The function f(2x) in V1 is

then constant on k
2
� x < k+1

2
: A sample function in spaces V�1; V0 and V1 are shown in

the Figure 2.1.

0  0.5  1   1.5  2   2.5  3   3.5  4   4.5  5   5.5  6   6.5  7   7.5  8 x

f ∈ V­1

f ∈ V0

0  0.5  1   1.5  2   2.5  3   3.5  4   4.5  5   5.5  6   6.5  7   7.5  8 x

0  0.5   1   1.5  2   2.5  3   3.5  4   4.5  5   5.5  6   6.5  7   7.5  8 x

f ∈ V1

Figure 3.1.1

(a)          (b)

(c)

Figure 2.1. A sample function in spaces V�1; V0 and V1:

We can take the scaling function to be � = �[0;1]; where �[0;1] denotes the characteris-

tic function of [0; 1]: This MRA is related to the Haar basis. Figure 2.2 shows the projection

of some function f on the Haar spaces V0 and V1:
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x

f(x)

x

P0 f(x)

x

P1f(x)

(a)

(b)      (c)

Figure 2.2. The projection of some function f on the Haar spaces
V0 and V1:

Theorem 2.2 If � 2 L2(R); then the system f�0;k = �(x� k) : k 2 Zg; is an orthonormal

system if and only if

X
k2Z

����̂(w + 2�k)���2 = 1 for a.e. w 2 R:
Proof. The Fourier transform of �0;k = �(x � k) is �̂0;k(w) = e�ikw�̂(w): By using

Parseval's formula for Fourier transform (Theorem 1.1), we have

< �0;n; �0;m >=< �0;0; �0;m�n >=
1

2�
< �̂0;0; �̂0;m�n >

=
1

2�

Z
R

e�i(m�n)w
����̂(w)���2 dw

=
1

2�

1X
k=�1

Z 2�(k+1)

2�k

e�i(m�n)w
����̂(w)���2 dw

=
1

2�

1X
k=�1

Z 2�

0

����̂(�+ 2�k)���2 e�i(m�n)�d�
=

1

2�

Z 2�

0

 1X
k=�1

����̂(�+ 2�k)���2! e�i(m�n)�d�
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Thus, it follows from the completeness of fe�in�; n 2 Zg in L2(0; 2�) that

< �0;n; �0;m >= �n;m

if and only if
1X

k=�1

����̂(�+ 2�k)���2 =1 for a.e. � 2 R:
Theorem 2.3 For any two functions �;  2 L2(R); the sets of functions f�0;n = �(x �

n); n 2 Zg and
�
 0;m =  (x�m);m 2 Z

	
are biorthogonal, that is,

< �0;n;  0;m >= 0 for all n;m 2 Z;

if and only if

1X
k=�1

�̂(w + 2�k) ̂(w + 2�k) = 0 almost everywhere w 2 R.

Proof. Applying similar argument to those stated in the proof of Theorem 2.2 to obtain

< �0;n;  0;m >=< �0;0;  0;m�n >=
1

2�
< �̂0;0;  ̂0;m�n >

=
1

2�

1Z
�1

e�i(m�n)w�̂(w) ̂(w)dw

=
1

2�

1X
k=�1

2�(k+1)Z
2�k

e�i(m�n)w�̂(w) ̂(w)dw

=
1

2�

2�Z
0

e�i(m�n)w
1X

k=�1

�̂(w + 2�k) ̂(w + 2�k)dw

Thus,

< �0;n;  0;m >= 0 for all n;m 2 Z;

if and only if

1X
k=�1

�̂(w + 2�k) ̂(w + 2�k) = 0 almost everywhere.
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If we only assume that
�
�0;n = �(x� n); n 2 Z

	
is a Riesz basis for V0; we can �nd

a function 
 2 V0 such that f
(x� n); n 2 Zg is an orthonormal basis for V0: This is an

easy consequence of the following theorem and corollary [17].

Theorem 2.4 Suppose � 2 L2(R) is such that the set of translates f�(x� n); n 2 Zg form

a Riesz basis of the closed subspace of L2(R) that they spans; that is,

A
X
n2Z

jcnj2 �





X
n2Z

cn�(x� n)







2

2

� B
X
n2Z

jcnj2 ; (2.10)

where the constants A and B satisfy 0 < A � B < 1 and are independent of fcngn2Z 2

l2(Z): Let

��(w) =

 X
n2Z

����̂(w + 2�n)���2!1=2 (2.11)

Then
p
A � ��(w) �

p
B for almost every w 2 R:

Corollary 2.5 Suppose � 2 L2(R) is such that the set of translates f�(x� n); n 2 Zg form

a Riesz basis of the V0: Then f
(x� n); n 2 Zg is an orthonormal basis of V0; with


̂(w) =
�̂(w)

��(w)
; (2.12)

and ��(w) is given by (2.11).

Proof. From the Theorem 2.4, 1
��(w)

is bounded with

0 <
1p
B
� 1

��(w)
� 1p

A
for a:e w 2 R;


̂(w) and, hence, 
 belong to L2(R): Since ��(w) is 2�-periodic we can �nd two sequences

fangn2Z and fbngn2Z 2 l2(Z) such that

1

��(w)
=
X
n2Z

ane
�inw (2.13)
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and

��(w) =
X
n2Z

bne
�inw (2.14)

for almost everywhere w 2 [��; �): Thus,


̂(w) = �̂(w)
X
n2Z

ane
�inw (2.15)

and

�̂(w) = 
̂(w)
X
n2Z

bne
�inw: (2.16)

Taking inverse Fourier transforms for (2.15) and (2.16) gives


(x) =
X
n2Z

an�(x� n)

and

�(x) =
X
n2Z

bn
(x� n);

with convergence in L2(R): Thus,


(x) 2 span f�(x� n); n 2 Zg

and

�(x) 2 span f
(x� n); n 2 Zg :

Furthermore, From the de�nition of 
̂(w) (2.12) and the 2�-periodicity of ��(w) we obtain

X
n2Z

j
̂(w + 2�n)j2 =
X
n2Z

����̂(w + 2�n)���2
j��(w + 2�n)j2

=
1

j��(w)j2
X
n2Z

����̂(w + 2�n)���2 = 1
Then, by Theorem 2.2 the system f
(x� n); n 2 Zg is an orthonormal basis of V0.
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2.2 Construction of Wavelets from a Multiresolution Analysis

We now pass to the construction of orthonormal wavelets from an MRA. The real impor-

tance of a multiresolution analysis lies in the simple fact that it enables us to construct an

orthonormal basis for L2(R) [7], [11], [13], [17]. In order to prove this statement, we �rst

assume that fVmg is a multiresolution analysis. Since V0 � V1, we de�ne W0 as the or-

thogonal complement of V0 in V1; that is, V1 = V0
L

W0. Since Vm � Vm+1, we de�ne

Wm as the orthogonal complement of Vm in Vm+1 for everym 2 Z so that we have

Vm+1 = Vm
M

Wm for eachm 2 Z:

Since Vm ! f0g asm! �1; we see that

Vm+1 = Vm
M

Wm =
mM

l=�1

Wl for allm 2 Z:

Since
S
j2Z

Vj is dense in L2(R); we may take the limit asm!1 to obtain

L2(R) =
1M

l=�1

Wl (2.17)

To �nd an orthonormal wavelet, therefore, all we need to do is to �nd a function

 2 W0 such that f (x� k) : k 2 Zg is an orthonormal basis for W0: In fact, if this is

the case, then
�
 j;k(x) = 2

j=2 (2jx� k) : k 2 Z
	
is an orthonormal basis for Wj for all

j 2 Z due to the condition (2.2) in the de�nition of multiresolution analysis and de�nition

ofWj: Hence �
 j;k(x) = 2

j=2 (2jx� k) : k; j 2 Z
	

is an orthonormal basis for L2(R); which shows that  is an orthonormal wavelet on R:

Consider V1 = V0
L

W0 and observe that �0;0 = � 2 V0 � V1: By (2.5) we can express
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this function in terms of the basis

n
�1;n(x) =

p
2�(2x� n) : n 2 Z

o
to obtain

�(x) =
p
2
X
n2Z

�n�(2x� n) (2.18)

where �n =< �; �1;n >=
p
2
R
R
� ��(2x�n)dx; the convergence in (2.18) is in L2(R) andP

n2Z
j�nj2 <1:

Taking Fourier transforms of (2.18), we obtain

�̂(w) =
1p
2

X
n2Z

�ne
�iwn
2 �̂(

w

2
)

= �̂(
w

2
)m̂(

w

2
); (2.19)

where

m̂(w) =
1p
2

X
n2Z

�ne
�iwn (2.20)

is a 2� -periodic function. The function m̂(w) is called low pass �lter associated with the

scaling function �.

Lemma 2.6 The low pass �lter satis�es the following property

jm̂(w)j2 + jm̂(w + �)j2 = 1 a.e. w 2 R: (2.21)

Proof. By using the relation (2.19) and substitute in the Theorem 2.2 we get

1 =

1X
k=�1

����̂(w + 2�k)���2 = 1X
k=�1

����̂(w
2
+ �k)

���2 ���m̂(w
2
+ �k)

���2 :
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This is true for any w and hence, replacing w by 2w gives

1 =

1X
k=�1

����̂(w + �k)
���2 jm̂(w + �k)j2 :

We now sum the above formula separately over the even integers and over the odd integers

and using the 2� periodic property of the function m̂ and the Theorem 2.2 to obtain

1 =
1X

k=�1

����̂(w + 2�k)���2 jm̂(w + 2�k)j2
+

1X
k=�1

����̂(w + (2k + 1)�)���2 jm̂(w + (2k + 1)�))j2
=

1X
k=�1

����̂(w + 2�k)���2 jm̂(w)j2 + 1X
k=�1

����̂(w + 2�k + �)
���2 jm̂(w + �)j2

= jm̂(w)j2
1X

k=�1

����̂(w + 2�k)���2 + jm̂(w + �)j2
1X

k=�1

����̂(w + 2�k + �)
���2

= jm̂(w)j2 :1 + jm̂(w + �)j2 :1

Lemma 2.7 The function �̂ can be represented by the in�nite product

�̂(w) =
1Y
k=1

m̂(
w

2k
): (2.22)

Proof. By using (2.19)

�̂(w) = �̂(
w

2
)m̂(

w

2
)

= m̂(
w

2
)m̂(

w

4
)�̂(

w

4
)

which is, by the (k � 1)th iteration, we get

�̂(w) = m̂(
w

2
)m̂(

w

4
) � � � � � � m̂(w

2k
)�̂(

w

2k
)

= �̂(
w

2k
):

kY
n=1

m̂(
w

2k
): (2.23)



2.2 Construction of Wavelets from a Multiresolution Analysis 34

Since �̂(0) = 1 and �̂(w) is continuous, we obtain

lim
k!1

�̂(
w

2k
) = �̂(0) = 1:

Taking the limit of (2.23) gives

�̂(w) = �̂(0)
1Y
n=1

m̂(
w

2k
) =

1Y
n=1

m̂(
w

2k
):

Lemma 2.8 If � is a scaling function for anMRA fVjgj2Z, and m̂ is the associated low-pass

�lter, then

V0 = ff : f̂(w) = l(w)�̂(w) g (2.24)

for some 2�-periodic function l 2 L2[��; �) and

W0 = ff : f̂(w) = ei
w
2 s(w)m̂(

w

2
+ �)�̂(

w

2
)g (2.25)

for some 2��periodic function s 2 L2[��; �):

Proof. If g 2 V0; then

g(x) =
X
k2Z

dk�(x� k) with
X
k2Z

jdkj2 <1 ,

taking the Fourier transform we get

g(w) = �̂(w)
X
k2Z

dke
�ikw = l(w)�̂(w)

where l(w) =
P
k2Z

dke
�ikw is a 2�� periodic function in L2[��; �):

Conversely, if l 2 L2[��; �) and is 2�� periodic function. Then l can be written as

l(w) =
X
k2Z

cke
�ikw where

X
k2Z

jckj2 <1:

Then the function f de�ned by

f̂(w) = l(w)�̂(w);
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or f(x) =
P

k2Z ck�(x� k); which belongs to V0:We have to prove that f̂ is a function in

L2(R): Due to the orthonormality of f�(x� k) : k 2 Zg we haveZ
R

���f̂(w)���2 dw =

Z
R

jl(w)j2
����̂(w)���2 dw

=
X
k2Z

2�Z
0

jl(w)j2
����̂(w + 2�k)���2 dw

=

2�Z
0

jl(w)j2 dw = klk2L2[��;�) :

This establishes the characterization of V0:

Since f 2 W0, it follows from V1 = V0
L

W0 that f 2 V1 and is orthogonal to

V0:Thus, f can be written as

f(x) =
X
n2Z

cn�1;n(x) =
p
2
X
n2Z

cn�(2x� n);

taking the Fourier transform we get,

f̂(w) =
1p
2

X
n2Z

cne
�inw
2 �̂(

w

2
)

= m̂f (
w

2
)�̂(

w

2
); (2.26)

where m̂f (
w
2
) = 1p

2

P
n2Z cne

�inw
2 is a 2�- periodic function belonging to L2[��; �): Since

f is orthogonal to V0 then

< f(x); �(x� n) >=
1

2�
< f̂(w); e�inw�̂(w) >= 0 for all n 2 Z:

Then we have,
1Z

�1

f̂(w)einw�̂(w)dw = 0; 8n 2 Z
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and hence,

1X
k=�1

2�(k+1)Z
2�k

f̂(w)einw�̂(w)dw =

1X
k=�1

2�Z
0

f̂(w + 2�k)einw�̂(w + 2�k)dw

=

2�Z
0

 1X
k=�1

f̂(w + 2�k)�̂(w + 2�k)

!
einwdw = 0;

thus, it follows from the completeness of feinw; n 2 Zg in L2(0; 2�) that
1X

k=�1

f̂(w + 2�k)�̂(w + 2�k) = 0: (2.27)

By substituting (2.26) and (2.19) into (2.27) we obtain

1X
k=�1

m̂f (
w

2
+ �k)�̂(

w

2
+ �k)�̂(w + 2�k)

=
1X

k=�1

m̂f (
w

2
+ �k)�̂(

w

2
+ �k)�̂(

w

2
+ �k)m̂(

w

2
+ �k)

=
1X

k=�1

m̂f (
w

2
+ �k)m̂(

w

2
+ �k)

����̂(w
2
+ �k)

���2 = 0;
which is, by splitting the sum into even and odd integers k and then using the 2�- periodic

property of functions m̂ and m̂f we obtain

0 =
1X

k=�1

m̂f (
w

2
+ 2�k)m̂(

w

2
+ 2�k)

����̂(w
2
+ 2�k)

���2
+

1X
k=�1

m̂f (
w

2
+ � + 2�k)m̂(

w

2
+ � + 2�k)

����̂(w
2
+ � + 2�k)

���2
= m̂f (

w

2
)m̂(

w

2
)

1X
k=�1

����̂(w
2
+ 2�k)

���2
+m̂f (

w

2
+ �)m̂(

w

2
+ �)

1X
k=�1

����̂(w
2
+ � + 2�k)

���2 :
Due to orthonormality of the system f�(x� k); k 2 Zg we get

m̂f (
w

2
)m̂(

w

2
):1 + m̂f (

w

2
+ �)m̂(

w

2
+ �):1 = 0:
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By replacing w by 2w we get

m̂f (w)m̂(w) + m̂f (w + �)m̂(w + �) = 0 (2.28)

or equivalently, ���� m̂f (w) m̂(w + �)

�m̂f (w + �) m̂(w)

���� = 0:
This can be interpreted as the linear independence of two vectors

�
m̂f (w)

�m̂f (w + �)

�
and

�
m̂(w + �)

m̂(w)

�
:

Hence, there exists a function �(w) such that

m̂f (w) = �(w)m̂(w + �) almost everywhrere. (2.29)

Since both m̂f (w) and m̂(w) are 2�- periodic functions, so is �(w): Further, substi-

tuting (2.29) into (2.28) gives

�(w)m̂(w + �)m̂(w) + �(w + �)m̂(w)m̂(w + �) = 0;

or

�(w) + �(w + �) = 0 for a.e. w 2 [��; �):

Thus, there exist a 2�-periodic function s 2 L2[��; �) de�ned by

�(w) = eiws(2w): (2.30)

Substituting (2.30) in (2.29) gives

m̂f (w) = eiws(2w)m̂(w + �): (2.31)
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Finally, substituting (2.31) in (2.26) we get

f̂(w) = m̂f (
w

2
)�̂(

w

2
)

= ei
w
2 s(w)m̂(

w

2
+ �)�̂(

w

2
): (2.32)

This completes the proof.

Note, similarly, we have

Wj = ff : f̂(2jw) = ei
w
2 s(w)m̂(

w

2
+ �)�̂(

w

2
) g; (2.33)

for some 2�-periodic function s 2 L2[��; �):

If we de�ne  by

 ̂(w) = ei
w
2 m̂(

w

2
+ �)�̂(

w

2
) (2.34)

that is, s � 1 in (2.32) we claim that we have found an orthonormal wavelet we are looking

for. In fact, all orthonormal wavelets inW0 can be characterized as follows:

Proposition 2.9 If � is a scaling function for an MRA fVjgj2Z, and m̂ is the associated

low-pass �lter, then a function  2 W0 is an orthonormal wavelet for L2(R) if and only if

 ̂(w) = ei
w
2 v(w)m̂(

w

2
+ �)�̂(

w

2
) (3.35)

a.e.on R, for some 2�-periodic function v such that

jv(w)j = 1 a.e. on [��; �):

Proof. It is clear that  2 W0: Now for any g 2 W0; by our characterization ofW0, there

is a 2�-periodic s 2 L2[��; �) such that

ĝ(w) = ei
w
2 s(w)m̂(

w

2
+ �)�̂(

w

2
) =

s(w)

v(w)
ei

w
2 v(w)m̂(

w

2
+ �)�̂(

w

2
)

=
s(w)

v(w)
 ̂(w) = s(w)�v(w) ̂(w):
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Since s�v 2 L2[��; �); we can write s(w)�v(w) =
P

k2Z cke
�iwk; where

P
k2Z jckj

2 < 1:

Then

ĝ(w) =
X
k2Z

cke
�iwk ̂(w):

or

g(x) =
X
k2Z

ck (x� k);

which proves that f (x� k); k 2 Zg generatesW0: The orthonormality of f (x� k); k 2

Zg can be proved by showing that  ̂ satis�es the equality in Theorem 2.2.

X
k2Z

��� ̂(w + 2�k)���2 =
X
k2Z

����eiw+2�k2 v(w + 2�k)m̂(
w + 2�k

2
+ �)�̂(

w + 2�k

2
)

����2
=

X
k2Z

���m̂(w
2
+ �k + �)

���2 ����̂(w
2
+ �k)

���2
=

X
k2Z

���m̂(w
2
+ 2�k + �)

���2 ����̂(w
2
+ 2�k)

���2
+
X
k2Z

���m̂(w
2
+ 2�k + 2�)

���2 ����̂(w
2
+ 2�k + �)

���2
=

���m̂(w
2
+ �)

���2X
k2Z

����̂(w
2
+ 2�k)

���2
+
���m̂(w

2
)
���2X

k2Z

����̂(w
2
+ 2�k + �)

���2
=

���m̂(w
2
+ �)

���2 :1 + ���m̂(w
2
)
���2 :1 = 1;

where we have summed over the even and odd integers separately, and using the 2�-

periodicity of m̂, Theorem 2.2 for � and (2.21) for m̂. Now we have to show that all

orthonormal wavelets  in W0 are described by (2.35). For an  2 W0; by Lemma 2.8,

there must be a 2�-periodic function v 2 L2[��; �) such that

 ̂(w) = ei
w
2 v(w)m̂(

w

2
+ �)�̂(

w

2
):



2.2 Construction of Wavelets from a Multiresolution Analysis 40

If  is an orthonormal wavelet, then the orthonormality of f (x� k); k 2 Zg gives us

1 =
X
k2Z

��� ̂(w + 2�k)���2 =X
k2Z

jv(w)j2
���m̂(w

2
+ �k + �)

���2 ����̂(w
2
+ �k)

���2
= jv(w)j2

 X
k2Z

���m̂(w
2
+ �)

���2 ����̂(w
2
+ 2�k)

���2
+
X
k2Z

���m̂(w
2
)
���2 ����̂(w

2
+ 2�k + �)

���2!

= jv(w)j2
����m̂(w

2
+ �)

���2 + ���m̂(w
2
)
���2� = jv(w)j2 ;

where we have summed over the even and odd integers separately, and using the 2�-

periodicity of m̂, Theorem 2.2 for � and (2.21) for m̂. Finally, if f (x� k); k 2 Zg is

an orthonormal basis for W0, then f j;k(x) = 2j=2 (2jx � k); k 2 Zg is an orthonormal

basis forWj: Hence, (2.17) shows that  is an orthonormal wavelet for L2(R):

This proposition completes the construction of a wavelet from an MRA. Let us for

simplicity consider the wavelet given by (2.34) (in terms of Proposition 2.9 this means

v(w) � 1). Since  belongs to V1 it can be written as

 (x) =
p
2
X
n2Z

dn�(2x� n):

In fact, there is a way of writing dn in terms of �n's that determined m̂(w): From (2.34),

(2.20) and (2.19) we obtain

 ̂(w) = ei
w
2 m̂(

w

2
+ �)�̂(

w

2
)

= ei
w
2

X
n2Z

�np
2
e�in(

w
2
+�)�̂(

w

2
)
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 ̂(w) =
1p
2

X
n2Z

��ne
iw
2
(n+1)ei�n�̂(

w

2
)

=
1p
2

X
n2Z

(�1)n��nei
w
2
(n+1)�̂(

w

2
): (2.36)

Taking the inverse Fourier transform this gives us

 (x) =
p
2
X
n2Z

(�1)n��n�(2x+ (n+ 1));

which is, by putting n = �(k + 1);

 (x) =
p
2
X
k2Z

(�1)k�1���k�1�(2x� k)

=
p
2
X
n2Z

dn�(2x� n); (2.37)

where the coef�cients dn are given by

dn = (�1)n�1���n�1: (2.38)

Thus, the representation (2.37) of a mother wavelet  has the same structure as that

of the scaling function � given by (2.18).

The mother wavelet  associated with a given MRA is not unique. Let v(w) = e�iNw

for some N 2 Z: Substituting in the Proposition 2.9 we obtain

 ̂(w) = ei
w
2 v(w)m̂(

w

2
+ �)�̂(

w

2
)

= ei
w
2 e�iNw

X
n2Z

�np
2
e�in(

w
2
+�)�̂(

w

2
)

=
1p
2

X
n2Z

��ne
iw
2
(n+1�2N)ei�n�̂(

w

2
)

=
1p
2

X
n2Z

(�1)n��nei
w
2
(n+1�2N)�̂(

w

2
):
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Taking the inverse Fourier transform this gives us

 (x) =
p
2
X
n2Z

(�1)n��n�(2x+ (n+ 1� 2N));

which is, by putting n = �(k + 1� 2N); we get

dn = (�1)n�1��2N�n�1; (2.39)

which de�nes another wavelet. Also if we put v(w) = �e�iw we get

dn = (�1)n��1�n: (2.40)

Any one of dn in (2.38), (2.39) or (2.40) can be used to �nd a mother wavelet. If � has a

compact support (the support of � is contained in a �nite interval), only the �nite numbers

of �n are not zero, then  is represented by �nite linear combination of f�1;n =
p
2�(2x�

n);2 Zg:

2.3 Compactly Supported Wavelets

In this section we will present that for any non negative integer n there exists an orthonor-

mal wavelet  with compact support such that all the derivatives of  up to order n exist

and are bounded. Daubechies (1988, 1992) �rst developed the theory and constructed or-

thonormal wavelets with compact support [8], [10], [11]. Wavelet with compact support

can be constructed to have a given number of derivatives and a given number of vanishing

moments. Daubechies wavelets are family of orthogonal wavelets indexed by N where N

is the number of vanishing wavelet moments.
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Daubechies has constructed, for an arbitrary integer N , an orthonormal basis for

L2(R) of the form

 j;k(x) = 2
j=2 (2jx� k); j; k 2 Z

that satisfy the following properties:

1. The support of  is contained in [�N + 1; N ]: To emphasize this point,  is often

denoted by  N .

2.  N has 
N continuous derivatives, where 
 = (1 � 1
2
log

2
3) = 0:20752; for large

N [17]. Hence, a CN compactly supported wavelet has a support whose measure is,

roughly, 5N .

3.  N has N vanishing moments

Z 1

�1
xk (x)dx = 0 for k = 0; 1; : : : ; N:

Or, equivalently,

"
dk ̂(�)

d�k

#
�=0

= 0 for k = 0; 1; : : : ; N: (2.41)

In fact, we have the following theorem [10], [11], [26] :

Theorem 2.10 (Daubechies) There exists a constant K such that for each N = 2; 3; � � � ;

there exists an MRA with the scaling function � and associated wavelet  such that

1. � and  2 CN :
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2. � and  are compactly supported such that supp � and supp  are contained in

[�KN;KN ]:

3.
R1
�1  (x)dx =

R1
�1 x (x)dx = � � � =

R1
�1 x

N (x)dx = 0:

We refer to [11] for a proof of the theorem.

We assume that the scaling function � satis�es

�(x) =
p
2
X
n2Z

�n�(2x� n) (2.42)

where �n =< �; �1;n >=
p
2
R
R
� ��(2x�n)dx; the convergence is inL2(R) and

P
n2Z

j�nj2 <

1:

If the scaling function � has compact support, then only a �nite number of �n have

nonzero values. The associated low pass �lter m̂(w),

m̂(w) =
1p
2

X
n2Z

�ne
�iwn (2.43)

is a trigonometric polynomial and it satis�es (2.21) with m̂(0) = 1 and m̂(�) = 0: The

wavelet  is given by the formula (2.34) with
����̂(0)��� = 1: The Fourier transform  ̂ of order

N is N times continuously differentiable and it satis�es the moment condition (2.41) that

is

 ̂
(k)
(0) = 0 for k = 0; 1; : : : ;m: (2.44)

It follows that if � and  2 Cm then the low pass �lter m̂ has a zero at w = � of order

(m+ 1): This means that m̂ must be of the form

m̂(w) =

�
1 + e�iw

2

�m+1
L̂(w); (2.45)
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with L̂ being a trigonometric polynomial. In addition to the orthogonality condition (2.21),

we assume

m̂(w) =

�
1 + e�iw

2

�N
L̂(w); (2.46)

where L̂ is 2�-periodic and L̂ 2 CN�1:Writing

M(w) = jm̂(w)j2 = m̂(w)m̂(�w) =
�
1 + e�iw

2

�N
L̂(w)

�
1 + eiw

2

�N
L̂(�w)

=
�
cos2(

w

2
)
�N ���L̂(w)���2 = �cos2(w

2
)
�N

Q(cosw); (2.47)

where
���L̂(w)���2is a polynomial in cosw; that is,

���L̂(w)���2 = Q(cosw):

Since 1� cosw = 2 sin2(w
2
); we can write

M(w) =
�
cos2(

w

2
)
�N

Q(1� 2 sin2(w
2
)) = (1� x)NP (x); (2.48)

where x = sin2(w
2
) and P is a polynomial in x:

We next use the formula

cos2(
w + �

2
) = sin2(

w

2
) = x

and

���L̂(w + �)
���2 = Q(� cosw) = Q(2x� 1)

= Q(1� 2(1� x)) = P (1� x): (2.49)

This equality, together with (2.48) and (2.21) imply that P must satisfy the equality

(1� x)NP (x) + xNP (1� x) = 1: (2.50)
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Since (1 � x)N and xN are relatively prime, then, by Bezout's theorem (for more details

[11]), there is a unique polynomial PN(x) of degree � N � 1 that satis�es (2.50). An

explicit solution for PN(x) is given by

PN(x) =
N�1X
k=0

�
N � 1 + k

k

�
xk; (2.51)

since

PN(x) = Q(1� 2x) = Q(cosw) =
���L̂(w)���2 ; (2.52)

we can �nd L̂(w) from PN(x) by using the following lemma:

Lemma 2.11 (Riez-Spectral Factorization). If

Â(w) =
nX
k=0

ak cos
k w; (2.53)

where ak 2 R and ak 6= 0; and if Â(w) � 0 for real w with Â(0) = 1; then there exists a

trigonometric polynomial

L̂(w) =
nX
k=0

bke
�ikw (2.54)

with real coef�cients bk with L̂(0) = 1 such that

Â(w) = L̂(w)L̂(�w) =
���L̂(w)���2

is identically satis�ed for w:

For a proof of the lemma see [11]. Note that the factorization of Â(w) is not unique.

For a given N , then Â(w) is a polynomial of degree (N � 1) in cosw and L̂(w) is a

polynomial of degree (N � 1) in e�iw . Then the low pass �lter m̂(w) in (2.46) is of degree

(2N � 1) in e�iw: The support of the scaling function �N is [0; 2N � 1]: More details [2],

[3], [10], [11] and references given therein. Some Daubechies wavelet are drawn in the
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following �gures:
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Figure 2.3. Daubechies wavelet  2:
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Figure 2.4. Daubechies wavelet  3:
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Figure 2.5. Daubechies wavelet  7:
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Figure 2.6. Daubechies wavelet  10:

2.4 Decomposition and Reconstruction algorithms for wavelets

The multiresolution analysis (MRA) is well adapted to image analysis. The spaces Vj that

appeared in the de�nition of an MRA can be interpreted as spaces where an approximation

to the image at the jth level is obtained. In addition, the detail in the approximation occur-

ring in Vj , that is not in Vj�1; is stored in the spacesWj�1 which satisfy Vj = Vj�1
L

Wj�1:

This leads to ef�cient decomposition and reconstruction algorithms [4], [7], [13], [26].

Chose an MRA with scaling � and wavelet  :

De�nition 2.2 De�ne the approximation operators Pj; j 2 Z from L2(R) onto Vj by

Pjf(x) =
X
k2Z

< f; �j;k > �j;k(x)

and de�ne the detail operator Qj by

Qjf(x) = Pj+1f(x)� Pjf(x)

=
X
k2Z

< f;  j;k >  j;k(x);
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where

�j;k(x) = 2
j=2�(2jx� k);

 j;k(x) = 2
j=2 (2jx� k):

Let f be a function de�ned on R. Since limj!1 Pjf(x) = f(x) in L2(R) norm, we

can choose j 2 Z such that Pjf is a good approximation of f . Thus, we have

f(x) ' Pjf(x) =
X
k2Z

cj;k�j;k(x); (2.55)

the coef�cients

cj;k =< f; �j;k >; j; k 2 Z:

Since we have the orthogonal direct sum decomposition

Vj = Vj�1
L

Wj�1;

we can also use the bases for Vj�1 andWj�1; that is , we use

�
�j�1;k

	
k2Z

[�
 j�1;k

	
k2Z ;

then

Pjf(x) =
X
k2Z

< f; �j�1;k > �j�1;k| {z }(x)
Pj�1f

+
X
k2Z

< f;  j�1;k >  j�1;k(x):| {z }
Qj�1f

(2.56)

The decomposition formula starts with the coef�cients relative to the �rst basis in

(2.55) and uses them to calculate the coef�cients relative to the second basis in (2.56). The

reconstruction formula does the reverse.
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Recall that � 2 V0 � V1; so that

�(x) =
X
k2Z

�k�1;k(x) =
p
2
X
k2Z

�k�(2x� k);

where

�k =

Z 1

�1
�(x)�(2x� k)dx:

Then for Vj and Vj�1 we have

�j;k(x) = 2j=2�(2jx� k) = 2j=2
p
2
X
n2Z

�n�(2
j+1x� 2k � n)

=
X
n2Z

�n�j+1;2k+n(x)

That is

�j�1;k(x) =
X
n2Z

�n�j;2k+n(x) (2.57)

and similarly,  2 W0 � V1 and hence

 (x) =
X
k2Z

dk�1;k(x) =
p
2
X
k2Z

dk�(2x� k);

 j;k(x) =
X
n2Z

dn�j+1;2k+n(x)

or

 j�1;k(x) =
X
n2Z

dn�j;2k+n(x); (2.58)

where dk is chosen as in (2.40)

dk = (�1)k�1�k;

so that the coef�cient dk do not require further computations.

What we want to do is to decompose the sequence

Cj =
�
cj;k =< f; �j;k >; k 2 Z

	
;

into sequences Cj�1 and qj�1:
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Now by using (2.57) we obtain

cj�1;k = < f; �j�1;k >=< f;
X
n2Z

�n�j;2k+n >

=
X
n2Z

�n < f; �j;2k+n >

=
X
n2Z

�ncj;2k+n

=
X
n2Z

�n�2kcj;n: (2.59)

This shows that the coef�cients cj�1;k of the lowest resolution Vj�1 can be obtained from

the coef�cients cj;k of the Vj and the low-pass �lter coef�cients �k.

The rest of the terms, which contain the �details� in passing fromVj�1 to Vj , are

contained inWj�1;

Qj�1f(x) = Pjf(x)� Pj�1f(x)

=
X
k2Z

qj�1;k j�1;k(x);

where

qj�1;k =< f;  j�1;k > :

Using (2.58) we obtain

qj�1;k = < f;  j�1;k >

= < f;
X
n2Z

dn�j;2k+n >

=
X
n2Z

dn < f; �j;2k+n >

=
X
n2Z

dncj;2k+n

=
X
n2Z

(�1)n�1�n+2kcj;n: (2.60)



2.4 Decomposition and Reconstruction algorithms for wavelets 52

Thus we have decomposed Cj into sequences Cj�1 and qj�1: The process can be continued

with Cj�1 to obtain the decomposition algorithm given in the Figure 2.7.

qj�1 qj�2 � � � qj�m

% % % � � � % %
Cj ! Cj�1 �! Cj�2 �! � � � Cj�m+1 �! Cj�m �!

Figure 2.7. Decomposition algorithm.

Reconstruction Cj from the sequences qj�1; qj�2; � � � � � � ; qj�m and Cj�m. By in-

duction, it is enough to consider the reconstruction of Cj from qj�1 and Cj�1: Since

Pjf(x) = Pj�1f(x) +Qj�1f(x)

By using (2.57) and (2.58) we obtain

X
k2Z

cj;k�j;k =
X
k2Z

cj�1;k�j�1;k +
X
k2Z

qj�1;k j�1;k

=
X
k2Z

cj�1;k

 X
n2Z

�n�j;2k+n

!
+
X
k2Z

qj�1;k

 X
n2Z

dn�j;2k+n

!

=
X
k2Z

cj�1;k

 X
n2Z

�n�2k�j;n

!
+
X
k2Z

qj�1;k

 X
n2Z

dn�2k�j;n

!

=
X
n2Z

 X
k2Z

cj�1;k�n�2k +
X
k2Z

qj�1;kdn�2k

!
�j;n

X
k2Z

cj;k�j;k =
X
n2Z

 X
k2Z

cj�1;k�n�2k +
X
k2Z

qj�1;kdn�2k

!
| {z }

cj;n

�j;n;

Hence

cj;n =
X
k2Z

(cj�1;k�n�2k + qj�1;kdn�2k)

=
X
k2Z

(cj�1;k�n�2k + (�1)nqj�1;k�1+2k�n) ; (2.61)
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Formula (2.61) allows us to add the sequences qj�1 and Cj�1 to obtain Cj: If we start

this process with Cj�m and qj�m and we also know the �details� qj�m+1; qj�m � � � � � � qj�1;

we have the construction algorithm given in the Figure 2.8.

qj�m qj�m+1 � � � qj�1

& & � � � & &
Cj�m �! Cj�m+1 �! Cj�m+2 � � � �! Cj�1 �! Cj

Figure 2.8. Reconstruction algorithm.

2.5 Biorthogonal Wavelets

The orthogonality property puts a strong limitation on the construction of wavelets. It is

known that the Haar wavelet is the only real valued wavelet that is compactly supported,

symmetric and orthogonal [10].

De�nition 2.3 (Biorthogonal Wavelets) Two function  ; ~ 2 L2(R) are called biorthogonal

wavelets if each one of the set
�
 j;k : j; k 2 Z

	
and

n
~ j;k : j; k 2 Z

o
is a Riesz basis of

L2(R) and they are biorthogonal,

D
 j;k; ~ l;m

E
= �j;l�k;m for all j; l; k;m 2 Z: (2.62)

Recall from section 2.1. A multiresolution analysis (MRA) of L2(R) is de�ned as a

sequence of closed subspaces Vj of L2(R), j 2 Z; that satis�es the following properties:

1. Monotonicity

Vj � Vj+1; for all j 2 Z;
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2. Dilation property

f(x) 2 Vj , f(2x) 2 Vj+1 for all j 2 Z;

3. Intersection property \
j2Z

Vj = f0g;

4. Density property [
j2Z

Vj is dense in L2(R);

5. Existence of scaling function. There exists a function � 2 V0; such that the set of

functions
�
�j;l(x) = 2

j=2�(2jx� l) : l 2 Z
	
is a Riesz basis of Vj:

As a result, there is a sequence fhk : k 2 Zg such that the scaling function satis�es a

re�nement equation

�(x) = 2
X
n2Z

hn�(2x� n): (2.63)

De�neWj as a complementary space of Vj in Vj+1; such that Vj+1 = Vj
L

Wj; and conse-

quently,

L2(R) =

1M
l=�1

Wl:

A function  is a wavelet if the set of function f (x� l) : l 2 Zg is a Riesz basis of W0.

Then the set of wavelet functions
�
 j;k(x) = 2

j=2 (2jx� k) : j; k 2 Z
	
is a Riesz basis

of L2(R): Since the wavelet is an element of V1 then it satis�es the relation

 (x) = 2
X
n2Z

gn�(2x� n): (2.64)
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There are dual functions ~�j;l and ~ j;l exist so that the projection operators Pj and Qj onto

Vj andWj , respectively are given by

Pj(f)(x) =
X
k2Z

< f; ~�j;k > �j;k(x);

and

Qj(f)(x) =
X
k2Z

< f; ~ j;k >  j;k(x);

then we have

f =
X
j;k2Z

< f; ~ j;k >  j;k:

Here the de�nitions of ~�j;k and ~ j;k are similar to those for �j;k and  j;k: Then, the basis

functions and dual functions are biorthogonal [20] ,

< �j;l;
~�j;k >= �l;k and <  j;l;

~ m;k >= �j;m�l;k: (2.65)

Note that if the basis functions are orthogonal, they coincide with the dual function and the

projections are orthogonal as in section 2.1.

The dual scaling function and wavelet satisfy

~�(x) = 2
X
n2Z

~hn~�(2x� n); ~ (x) = 2
X
n2Z

~gn~�(2x� n); (2.66)

and

~�(2x� n) =
X
l2Z

hn�2l~�(x� l) +
X
l2Z

gn�2l~ (x� l): (2.67)

Taking the Fourier transform of the re�nement equations (2.63) and (2.64) gives

�̂(w) = h(
w

2
)�̂(

w

2
) with h(w) =

X
n2Z

hne
�inw (2.68)

and

 ̂(w) = g(
w

2
)�̂(

w

2
) with g(w) =

X
n2Z

gne
�inw: (2.69)
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Here h and g are 2�-periodic functions. Similarly, for dual functions. Taking the Fourier

transform of (2.66) gives

b~�(w) = ~h(w
2
)b~�(w

2
) with ~h(w) =

X
n2Z

~hne
�inw (2.70)

and b~ (w) = ~g(w
2
)b~�(w

2
) with ~g(w) =

X
n2Z

~gne
�inw: (2.71)

A necessary condition for biorthogonality is then [8], [20],

8w 2 R : ~m(w)mt(w) = 1;

where

m(w) =

�
h(w) h(w + �)
g(w) g(w + �)

�
and

~m(w) =

�
~h(w) ~h(w + �)
~g(w) ~g(w + �)

�
:

The existence of the dual �lters is guaranteed by the following lemma:

Lemma 2.12 The space generated by the set of functions f j;l : l 2 Zg complements Vj in

Vj+1 if and only if �(w) = detm(w) does not vanish [20].



Chapter 3
WAVELETS AND DIFFERENTIAL

EQUATIONS

Many applications of mathematics require the numerical approximation of solutions

of differential equations. In this chapter we will present different approaches of using

wavelets in the solution of boundary value ordinary differential equations. We consider the

class of ordinary differential equation of the form

Lu(x) = f(x) for x 2 [0; 1]; where L =
mX
j=0

aj(x)D
j;

and with appropriate boundary conditions on u(x) for x = 0; 1: There are two major so-

lution techniques. First, if the coef�cients aj(x) of the operator are constants, then the

Fourier transform is well suited for solving these equations because that the complex expo-

nentials are eigenfunctions of a constant coef�cient operator and they form an orthogonal

system. As a result, the operator becomes diagonal in the Fourier basis and can be inverted

trivially. If the coef�cients are not constant �nite element or �nite difference methods can

be used [14]. We focus here on �nite element methods.

3.1 Wavelet- Galerkin Methods for Differential Equations

In this section we will describe how to use wavelets to �nd the numerical solution of or-

dinary differential equations. The classical Galerkin methods have the disadvantage that

the stiffness matrix becomes ill conditioned as the problem size grows. To overcome this

57
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disadvantage, we use wavelets as basis functions in a Galerkin method. Then, the results

is a linear system that is sparse because of the compact support of the wavelets, and that,

after preconditioning, has a condition number independent of problem size because of the

multiresolution structure. We will see that using wavelets in conjunction with the Galerkin

method gives the two main desired properties for the associated linear system : sparseness

and low condition number [5], [12], [14], [18], [20] and [29].

The methods for numerically solving a linear ordinary differential equation come

down to solving a linear system of equations, or equivalently, a matrix equation Ax = y.

For the system to have a unique solution x for every y if and only if A is an invertible

matrix. However, in applications there are further issues that are of crucial importance. One

of these has to do with the condition number of a matrix A which measures the stability of

the linear system Ax = y: Let us see an example [14].

Example 3.1 Consider the linear system Ax = y, where x; y 2 C2; and

A =

�
5:95 �14:85
1:98 �4:94

�
:

The determinant of A is 0:01, which is not 0, so A is invertible. For

y =

�
3:05
1:02

�
;

the solution to Ax = y is

x =

�
8
3

�
;

however, if

y0 =

�
3
1

�
:
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Then the solution to Ax0 = y0 is

x0 =

�
3
1

�
:

Note that y and y0 are close but x and x0 are far apart. A linear system for which this

happens is called ill conditioned. In this case, small errors in the data y can lead to large

errors in the solution x: This is undesirable in applications.

De�nition 3.1 Let A be an n� n matrix. De�ne kAk called the operator norm, or just the

norm, of A by

kAk = sup kAzkkzk ;

where the supremum is taken over all nonzero vector in Cn:

Equivalently

kAk = sup fkAzk : kzk = 1; z 2 Cng :

De�nition 3.2 (Condition number of a matrix) Let A be an n � n matrix. De�ne C#(A);

the condition number of the matrix A; by

C#(A) = kAk


A�1

 :

if A is not invertible, set C#(A) =1:

Note that the condition number C#(A) is scale invariant [6], that is for c 6= 0;

C#(cA) = C#(A):

Lemma 3.1 Suppose that A is an n� n normal invertible matrix. Let

j�jmax = max fj�j : � is an eigenvalue of Ag

and

j�jmin = min fj�j : � is an eigenvalue of Ag :
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Then

C#(A) =
j�jmax
j�jmin

:

The condition number of A measures how unstable the linear system Ax = y is

under perturbation of the data y: In applications, a small condition number (i.e., near 1) is

desirable [14]. If the condition number of A is high, we would like to replace the linear

system Ax = y by an equivalent system Mz = v whose matrix M has a low condition

number.

We consider the class of ordinary differential equations (known as Sturm-Liouville

equations) of the form

Lu(t) = �a(t)u00(t)� a0(t)u0(t) + b(t)u(t)

= � d

dt

�
a(t)

du

dt

�
+ b(t)u(t) = f(t); for 0 � t � 1; (3.1)

with Dirichlet boundary conditions

u(0) = u(1) = 0:

Here a; b; and f are given real-valued functions and we wish to solve for u:We assume f

and b are continuous and a has a continuous derivative on [0; 1] (this always means a one-

sided derivative at the endpoints). Note that L may be a variable coef�cient differential

operator because a(t) and b(t) are not necessarily constant. We assume that the operator is

uniformly elliptic which means that there exist �nite constants C1; C2; and C3 such that

0 < C1 � a(t) � C2 and 0 � b(t) � C3; (3.2)

for all t 2 [0; 1]: By a result in the theory of ordinary differential equations, there is a

unique function u satisfying equation (3.1) and the boundary conditions u(0) = u(1) = 0:
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For the Galerkin method [14], [15], we suppose that fvjgj is a complete orthonormal

system for L2[0; 1]; and that every vj is C2 on [0; 1] and it satis�es

vj(0) = vj(1) = 0: (3.3)

We select some �nite set � of indices j and consider the subspace

S = span fvj ; j 2 �g :

We look for an approximation to the solution u of equation (3.1) of the form

us =
X
k2�

xkvk 2 S; (3.4)

where each xk is a scalar. These coef�cients should be determined such that us behaves

like the true solution u on the subspace S; that is

hLus; vji = hf; vji for all j 2 �: (3.5)

By linearity, it follows that

hLus; gi = hf; gi for all g 2 S:

Note that the approximate solution us automatically satis�es the boundary conditions us(0) =

us(1) = 0 because of equation (3.3).

Substituting (3.4) in equation (3.5), we get*
L

 X
k2�

xkvk

!
; vj

+
= hf; vji for all j 2 �;

or X
k2�

hLvk; vj ixk = hf; vji for all j 2 �: (3.6)
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Let x denote the vector (xk)k2� ; and y be the vector (yk)k2�, where yk = hf; vji : Let A

be the matrix with rows and columns indexed by �, that is, A = [aj;k]j;k2�; where

aj;k = hLvk; vji : (3.7)

Thus, equation (3.6) is the linear system of equations

X
k2�

aj;kxk = yj for all j 2 �;

or

Ax = y: (3.8)

In the Galerkin method, for each subset � we obtain an approximation us 2 S; by solving

the linear system (3.8) for x and using these components to determine us by equation (3.4).

We expect that as we increase our set � in some systematic way, our approximation us will

converge to the exact solution u:

Our main concern is the nature of the linear system (3.8) that results from choosing

a wavelet basis for the Galerkin method. There are two properties that we would like the

matrixA in the linear system (3.8) to have. First, we would likeA to have a small condition

number to obtain stability of the solution under small perturbations in the data. Second, we

would like A to be sparse for quick calculations [14], [15].

There is a way of modifying the wavelet system for L2(R) so as to obtain a complete

orthonormal system

�
 j;k
	
(j;k)2� (3.9)
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for L2[0; 1]:More details [1], [12], [15] and references given therein. The set � is a certain

subset of Z� Z: For each (j; k) 2 �,  j;k 2 C2 and satis�es the boundary conditions

 j;k(0) =  j;k(1) = 0:

The wavelet system
�
 j;k
	
(j;k)2� also satis�es the following estimate: There exist

constants C4; C5 > 0 such that for all functions g of the form

g =
X
j;k

cj;k j;k (3.10)

where the sum is �nite, we have

C4
X
j;k

22j jcj;kj2 �
1Z
0

jg0(t)j2 dt � C5
X
j;k

22j jcj;kj2 : (3.11)

An estimate of this form is called a norm equivalence. It states that up to the two constants,

the quantities
P

j;k 2
2j jcj;kj2 and

1R
0

jg0(t)j2 dt are equivalent.

For wavelets we write equation (3.4) as

us =
X
(j;k)2�

xj;k j;k;

and equation (3.6) as

X
(j;k)2�



L j;k;  l;m

�
xj;k =



f;  l;m

�
for all (l;m) 2 �; (3.12)

for some �nite set of indices �:We can write (3.12) as matrix equation of the formAx = y;

where the vectors x = (xj;k)(j;k)2� and y = (yj;k)(j;k)2� are indexed by the pairs (j; k) 2 �,

and the matrix

A = [al;m;j;k](l;m);(j;k)2�

de�ned by

al;m;j;k =


L j;k;  l;m

�
(3.13)
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has its rows indexed by the pairs (l;m) 2 � and its columns indexed by the pairs (j; k) 2 �:

As suggested, we would like A to be sparse and have a low condition number. A

itself does not have a low condition number, however, we can replace the system Ax = y

by an equivalent systemMz = v; for which the new matrixM has low condition number.

To get this, �rst de�ne the diagonal matrix

D = [dl;m;j;k](l;m);(j;k)2�

by

dl;m;j;k =

�
2j if (l;m) = (j; k)
0 if (l;m) 6= (j; k)

�
: (3.14)

De�neM = [ml;m;j;k](l;m);(j;k)2� by

M = D�1AD�1: (3.15)

By writing this out, we get

ml;m;j;k = 2
�j�lal;m;j;k = 2

�j�l 
L j;k;  l;m � : (3.16)

Then, the system Ax = y is equivalent to

D�1AD�1Dx = D�1y;

if we put z = Dx and v = D�1y, we get

Mz = v: (3.17)

The norm equivalence (3.11) has the consequence that the system (3.17) is well con-

ditioned as we will see in Theorem 3.3. The following lemma is needed to prove Theorem

3.3. It explains the need for the uniform ellipticity assumption (3.2).
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Lemma 3.2 Let L be a uniformly elliptic Sturm-Liouville operator (i.e., an operator as

de�ned in equation (3.1) satisfying relation (3.2)). Suppose g is C2 on [0; 1] and satis�es

g(0) = g(1) = 0: Then

C1

1Z
0

jg0(t)j2 dt � hLg; gi � (C2 + C3)

1Z
0

jg0(t)j2 ; (3.18)

where C1; C2; and C3 are the constants in relation (3.2).

Proof. Observe that

h�(ag0)0; gi =

Z 1

0

�(ag0)0(t)�g(t)dt

=

Z 1

0

a(t)g0(t)g0(t)dt

= hag0; g0i ;

by integration by parts (the boundary term is 0 because g(0) = g(1) = 0). Therefore,

hLg; gi = h�(ag0)0 + bg; gi = hag0; g0i+ hbg; gi :

Hence, by relation (3.2),

C1

1Z
0

jg0(t)j2 dt �
1Z
0

a(t) jg0(t)j2 dt

=

Z 1

0

a(t)g0(t)g0(t)dt = hag0; g0i : (3.19)

Also by relation (3.2),

0 �
1Z
0

b(t) jg(t)j2 dt = hbg; gi :

Adding the above inequalities gives

C1

1Z
0

jg0(t)j2 dt � hLg; gi ;
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which is the left half of relation (3.18). For the other half, note that by relation (3.2),

hag0; g0i =
1Z
0

a(t) jg0(t)j2 dt � C2

1Z
0

jg0(t)j2 dt: (3.20)

Also note that because g(0) = 0;

g(t) =

tZ
0

g0(s)ds;

by the fundamental theorem of calculus. Hence by the Cauchy-Schwarz inequality for the

function g0�[0; t] and �[0; t] where �[0; t] is

�[0; t](x) =

�
1 for x 2 [0; t]
0 for x =2 [0; t] ;

we get

jg(t)j2 �

0@ tZ
0

jg0(s)j2 ds

1A0@ tZ
0

1ds

1A �
1Z
0

jg0(s)j2 ds;

for every t 2 [0; 1]: Therefore
1Z
0

jg(t)j2 dt �
1Z
0

jg0(s)j2 ds
1Z
0

dt =

1Z
0

jg0(s)j2 ds: (3.21)

Hence, by (3.2),

hbg; gi =
1Z
0

b(t) jg(t)j2 dt � C3

1Z
0

jg(t)j2 dt � C3

1Z
0

jg0(t)j2 dt:

Adding this result and relation (3.20) gives the right side of relation (3.18).

Theorem 3.3 Let L be a uniformly elliptic Sturm-Liouville operator. Let
�
 j;k
	
(j;k)2� be

a complete orthonormal system for L2[0; 1] such that each  j;k is C2; satis�es  j;k(0) =

 j;k(1) = 0; and such that the norm equivalence (3.11) holds. Let � be a �nite subset of �.

LetM be the matrix de�ned in equation (3.15). Then the condition number ofM satis�es

C#(M) �
(C2 + C3)C5

C1C4
; (3.22)
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for any �nite set �; where C1; C2; and C3 are the constants in relation (3.2), C4 and C5 are

the constants in relation (3.11).

Proof. Let z = (zj;k)(j;k)2� be any vector with kzk = 1: For D as in equation (3.14), let

w = D�1z; that is, w = (wj;k)(j;k)2� ; where

wj;k = 2
�jzj;k:

De�ne

g =
X
(j;k)2�

wj;k j;k:

Then by equation (3.16),

hMz; zi =
X

(l;m)2�

(Mz)l;mzl;m

=
X

(l;m)2�

X
(j;k)2�



L j;k;  l;m

�
2�jzj;k2

�lzl;m

=

*
L

0@ X
(j;k)2�

wj;k j;k

1A ;
X

(l;m)2�

wl;m l;m

+
= hLg; gi ;

since 2�jzj;k = wj;k and 2�lzl;m = wl;m: Applying Lemma 3.2 and relation (3.11) gives

hMz; zi = hLg; gi � (C2 + C3)

1Z
0

jg0(t)j2 dt � (C2 + C3)C5
X
(j;k)2�

22j jwj;kj2 ;

and

hMz; zi = hLg; gi � C1

1Z
0

jg0(t)j2 dt � C1C4
X
(j;k)2�

22j jwj;kj2 :

However, X
(j;k)2�

22j jwj;kj2 =
X
(j;k)2�

jzj;kj2 = kzk = 1:

So for any z with kzk = 1;

C1C4 � hMz; zi � (C2 + C3)C5:
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If � is an eigenvalue ofM , we can normalize the associated eigenvector z so that kzk = 1;

to obtain

hMz; zi = h�z; zi = � hz; zi = � kzk2 = �:

Therefore, every eigenvalue � ofM satis�es

C1C4 � � � (C2 + C3)C5: (3.23)

Note thatM is Hermitian and hence normal, so by Lemma 3.1, C#(M) is the ratio of the

largest eigenvalue to the smallest. Then condition (3.22) holds.

Thus the matrix in the system Mz = v has a condition number bounded indepen-

dently of the set �: As a result, if we increase � to approximate our solution with more

accuracy, the condition number remains bounded.

Note that the matrices that obtained by using �nite differences are sparse, but they

have large condition numbers [14]. Using the Galerkin method with the Fourier system,

we can obtain a bounded condition number but the matrix is not sparse. Using the Galerkin

method with a wavelet system, we obtain both advantages [2], [5], [12] and [14].

3.2 Biorthogonal Wavelets Diagonalizing The Differential
Equations

The derivative operator is not diagonal in a wavelet basis [3], [12], [28]. However, we

can make differential operator diagonal by using two pairs of biorthogonal or dual bases

of compactly supported wavelets [12]. In this case, we have two related multiresolution
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spaces fVjg and f ~Vjg such that

Vj+1 � Vj; and ~Vj+1 � ~Vj; for all j 2 Z;

corresponding to two scaling functions �; ~� and two wavelets  ; ~ . They are de�ned by

two trigonometric polynomialsm0 and ~m0, satisfying

m0(w) ~m0(w) +m0(w + �) ~m0(w + �) = 1: (3.24)

Then we have

b�(w) = 1p
2�

1Y
j=1

m0(2
�jw); (3.25)

b~�(w) = 1p
2�

1Y
j=1

~m0(2
�jw); (3.26)

also, we have

 ̂(w) = e�
iw
2 ~m0(

w

2
+ �)�̂(

w

2
); (3.27)

and

b~ (w) = e�
iw
2 m0(

w

2
+ �)b~�(w

2
); (3.28)

with

<  j;k;
~ m;n >= �j;m�k;n; (3.29)

where

 j;k(x) = 2
�j=2 (2�jx� k);

~ j;k(x) = 2
�j=2~ (2�jx� k):

If  2 CL�1(R); then ~ must have L vanishing moments see [8] and [11], that isZ 1

�1
xl~ (x)dx = 0 for l = 0; 1; : : : ; L� 1: (3.30)
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Or, equivalently, �
dl

dwl
m0

�
w=�

= 0 for l = 0; 1; : : : ; L� 1: (3.31)

Which implies that m0 should be divisible by (1 + e�iw)L [11]. The same for ~ ; reverse

the roles of  ; ~ andm0; ~m0: Thenm0 and ~m0 can be written as [12]

m0(w) = (cos
w

2
)Le�ir

w
2 P (cosw); (3.32)

~m0 = (cos
w

2
)
~Le�ir

w
2 ~P (cosw); (3.33)

where

r =

�
1; if L and ~L are odd,
0; if L and ~L are even,

here L and ~Lmust have the same parity see [11] and [12]. The polynomials P and ~P satisfy

the equation

(1 + x)KP (x) ~P (x) + (1� x)KP (�x) ~P (�x) = 2K ; (3.34)

where L+ ~L = 2K: Now, if we split 2K into a different sum 2K = L�+ ~L�; gives different

m�
0 and ~m�

0; but P and ~P can be left unchanged. Substituting (3.32) and (3.33) into (3.25)

and (3.26) gives

b�(w) = 1p
2�
e�ir

w
2

�
sin(w

2
)

(w
2
)

�L 1Y
j=1

P (cos 2�jw); (3.35)

b~�(w) = 1p
2�
e�ir

w
2

�
sin(w

2
)

(w
2
)

�~L 1Y
j=1

~P (cos 2�jw);
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where we used
Q1

j=1 cos(2
�j�) = sin(�)

�
: Also, substitution (3.32) and (3.33) into (3.27)

and (3.28) gives

 ̂(w) =
(i)rp
2�

h
sin

w

4

i~L �sin w
4

w
4

�L 1Y
j=2

P (cos 2�jw); (3.36)

b~ (w) = (i)rp
2�

h
sin

w

4

iL �sin w
4

w
4

�~L 1Y
j=2

~P (cos 2�jw): (3.37)

Multiplying (3.36) by iw gives

iw ̂(w) =
4(i)r+1p
2�

h
sin

w

4

i~L+1 �sin w
4

w
4

�L�1 1Y
j=2

P (cos 2�jw): (3.38)

The Fourier transform of the derivative  0 of  is simply iw ̂(w): Then (3.38) can

be written as

\ 0(w) =
4(i)r+1p
2�

h
sin

w

4

i~L+1 �sin w
4

w
4

�L�1 1Y
j=2

P (cos 2�jw): (3.39)

Up to multiplicative constant 4, this is exactly the Fourier transform of the wavelet

 � which corresponded to the same P; ~P andK in (3.34), but with the choice L� = L� 1,

~L� = ~L+ 1; we have

m�
0(w) =

h
cos

w

2

iL�1
e�

i(1�r)w
2 P (cosw);

~m�
0(w) =

h
cos

w

2

i~L+1
e�

i(1�r)w
2 ~P (cosw):

It follows that if we construct two pairs of biorthogonal wavelet bases, one using

 ; ~ ; and the other using  �; ~ 
�
; then we have

 0 = 4 �;

or

( j;k)
0 = 2�j4 �j;k;
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and hence �
d

dx
 j;k; ~ 

�
m;n

�
= 2�j4�j;m�k;n:

This means that we have diagonalized the derivative operator. Note that this is not a �true�

diagonalization because we use two different bases. However, this means that we can �nd

the wavelet coef�cients of f 0 i.e.,

�
d

dx
f;  j;k

�
= 2�j4



f;  �j;k

�
:

For mor details see [12] and the references therein.

Another approach of diagonalizing the differential operator, using wavelets, is by

constructing biorthogonal wavelets with respect to the inner product de�ned by the operator

[19], [20].

We consider the class of ordinary differential equation of the form

Lu(x) = f(x) for x 2 [0; 1]; where L =
mX
j=0

aj(x)D
j; (3.40)

and with appropriate boundary conditions on u(x) for x = 0; 1:

De�ne the operator inner product associated with an operator L by

hhu; vii = hLu; vi :

An approximate solution of u can be found with a Petrov-Galerkin method, i.e. consider

two spaces S and S� and look for a solution u 2 S such that

hhu; vii = hf; vi ;
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for all v in S�: If S and S� are �nite dimensional spaces with the same dimension, this leads

to a linear system of equations. The matrix of this system, also referred to as the stiffness

matrix, has as elements the operator inner products of the basis functions of S and S�:

We assume that L is self-adjoint and positive de�nite and, in particular, we can write

L = V �V;

where V � is the adjoint of V:We call V the square root operator of L: Suppose that f	j;lg

and
�
	�j;l
	
are bases for S and S� respectively. The entries of the stiffness matrix are then

given by 


	j;l;	

�
m;n

��
=


L	j;l;	

�
m;n

�
=


V	j;l; V	

�
m;n

�
:

Now, the idea is to let

	j;l = V �1 j;l and 	�j;l = V �1~ j;l;

where  and ~ are the wavelets of a classical multiresolution analysis. We will call the

	 and 	� functions the operator wavelets. Then the operator wavelet are biorthogonal

with respect to the operator inner product. We want the operator wavelets to be compactly

supported and to be able to construct compactly supported operator scaling functions �j;l:

The analysis is relatively straight forward for simple constant coef�cient operators such as

the Laplace and polyharmonic operator [20].

Example 3.2 (Laplace operator) Consider the one dimensional Laplace operator

L = �D2

Then the square root operator V is

V = D:
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The associated operator inner product is

hhu; vii = hLu; vi = hV u; V vi = hu0; v0i :

Since the action of V �1 is taking the antiderivative, we de�ne the operator wavelets as

	(x) =

Z x

�1
 (t)dt; and 	�(x) =

Z x

�1
~ (t)dt: (3.41)

Note that the operator wavelets 	(x) and 	�(x) are compactly supported because the in-

tegral of the original wavelets has to vanish. Also translation and dilation invariance is

preserved, so we de�ne

	j;l(x) = 	(2
jx� l) and 	�j;l(x) = 	

�(2jx� l):

Now,




	�j;l(x);	m;n(x)

��
=


V	�j;l(x); V	m;n(x)

�
= 2j�j;m�l;n for j; l;m; n 2 Z:

This means that the stiffness matrix is diagonal with powers of 2 on its diagonal. We

now need to �nd an operator scaling function �: The antiderivative of the original scaling

function is not compactly supported and hence not suited. To �nd an operator scaling

function � convolute the original scaling function with the indicator function �[0;1];

� = � � �[0;1]; (3.42)

and de�ne

�j;l(x) = �(2
jx� l):

Similarly for the dual functions

�� = ~� � �[0;1]:



3.2 Biorthogonal Wavelets Diagonalizing The Differential Equations 75

Now, de�ne

Vj = clos span f�j;k : k 2 Zg

and

Wj = clos span f	j;k : k 2 Zg :

We want to show that Vj � Vj+1 and Wj complements Vj in Vj+1: By taking the Fourier

transform of (3.41) and (3.42) we get

�̂(w) =
1� e�iw

iw
�̂(w) and 	̂(w) =

1

iw
 ̂(w): (3.43)

A simple calculation shows that the operator scaling function satis�es the following equa-

tion

�̂(w) = H(
w

2
)�̂(

w

2
) with H(w) =

1 + e�iw

2
h(w): (3.44)

Consequently, Vj � Vj+1. Also

	̂(w) = G(
w

2
)�̂(

w

2
) with G(w) =

1

2(1� e�iw)
g(w); (3.45)

where h(w) and g(w) are de�ned as in (2.68) and (2.69) respectively. This implies that

Wj � Vj+1. To prove thatWj is complements Vj in Vj+1 we have to prove that

�(w) = det

�
H(w) H(w + �)
G(w) G(w + �)

�
does not vanish. In fact,

�(w) = H(w)G(w + �)�H(w + �)G(w)

=
1 + e�iw

2
h(w)

1

2(1� e�i(w+�))
g(w + �)�

1 + e�i(w+�)

2
h(w + �)

1

2(1� e�iw)
g(w)

=
1

4
h(w)g(w + �)� 1

4
h(w + �)g(w) =

1

4
�(w);
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where �(w) = h(w)g(w + �) � h(w + �)g(w); and this cannot vanish since � and  

generate a multiresolution analysis. Then Wj is complements Vj in Vj+1 by Lemma 2.12.

The construction of the dual functions �� and 	� from ~� and ~ is completely similar. The

coef�cients of the trigonometric functions H; H�; G and G� now de�ne a fast wavelet

transform.

Now, we will describe the algorithm in the case of periodic boundary conditions.

This implies that the basis functions on the interval [0; 1] are just the periodization of the

basis functions on the real line.

Let S = Vn and consider the basis f�n;l : 0 � l � 2ng. De�ne vectors b and x such

that

bl =


f;��n;l

�
; and u =

2n�1X
l=0

xl�n;l: (3.46)

The Galerkin method with this basis then yields a system

Ax = b with Ak;l = hh�n;l;�n;kii : (3.47)

The matrix A is not diagonal and the condition number grows as O(22n) [20]. Now, con-

sider the decomposition

Vn = V0 �W0 � � � � �Wn�1;

and the corresponding wavelet basis. The space V0 has dimension one and contains constant

functions. We now switch to a one index notation such that the sets

�
1;	j;l : 0 � j < n; 0 � l < 2j

	
and f	k : 0 � k < 2ng

coincide. Now, de�ne the vectors ~b and ~x such that

~b = hf;	�l i and u =
2n�1X
l=0

~xl	l: (3.48)
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There exists matrices T and T � [20] such that

~b = T �b and x = T ~x:

The matrix T � corresponds to the fast wavelet transform decomposition with �lters H�

and G� and T corresponds to reconstruction with �lters H and G: In the wavelet basis the

system becomes

~A~x = ~b with ~A = T �AT

and

~Ak;l = hh	n;l;	n;kii :

Since ~A is diagonal, it can be trivially inverted and the solution is then given by

x = T ~A�1T �b:

Example 3.3 (The polyharmonic operator) The polyharmonic equation is de�ned as

�u(2m) = f; (3.49)

then the square root operator is V = Dm: The operator scaling function � is m times

the convolution of the original scaling function � with the indicator function �[0;1] and

the operator wavelet 	 is m times the antiderivative of the original wavelet  : In order

to get a compactly supported wavelet, the original wavelet now needs to have at least m

vanishing moments [20]. The construction and algorithm are similar to the case of the

Laplace operator as in Example 3.2.

Example 3.4 (The Helmholz operator) The one dimensional Helmholz operator is de�ned

by

L = �D2 + k2: (3.50)
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Without loss of generality assume that k = 1 which can always be obtained from transfor-

mation. The square root operator is

V = D + 1 = e�xDex (3.51)

and

V �1 = e�xD�1ex: (3.52)

Note that V �1 will not necessarily give a compactly supported function because ex j;l in

general does not have a vanishing integral. Therefore we let

	j;l = V �1e�x j;l = e�xD�1 j;l: (3.53)

If  j;l has a vanishing integral, then 	j;l is compactly supported.

In order to diagonalize the stiffness matrix, the original wavelets now need to be

orthogonal with respect to a weighted inner product with weight function e�2x




	j;l;	

�
m;n

��
=



V	j;l; V	

�
m;n

�
=



e�x j;l; e

�x m;n
�

=

Z 1

�1
e�2x j;l(x)

~ m;n(x)dx: (3.54)

To �nd the wavelet let

supp  j;l = [2�jl; 2�j(l + 1)]:

Then the orthogonality of the wavelets on each level immediately follows from their disjoint

support. To get orthogonality between two different levels, we need that Vj is orthogonal

toWm form � j or Z 1

�1
e�2x�j;l(x)

~ m;n(x)dx = 0 form � j:
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Now, let the scaling function coincide with e2x on the support of the �ner scale wavelets,

�j;l(x) = e2x�[j;l]; (3.55)

where �[j;l] is the indicator function on the interval [2�jl; 2�j(l + 1)]; normalized such that

the integral of the scaling functions is constant. As in the Haar case we choose the wavelets

as

 j;l = �j+1;2l � �j+1;2l+1; (3.56)

so that they have vanishing integral. The orthogonality between levels now follows from the

fact that the scaling functions coincide with e2x on the support of the �ner scale wavelets,

and from the vanishing integral of the waveletsZ 1

�1
e�2x�j;l(x)

~ m;n(x)dx =

Z 1

�1
�[j;l]

~ m;n(x)dx =

Z 1

�1
~ m;n(x)dx = 0:

One can see that the operator wavelets are now piecewise combinations of ex and e�x. The

operator scaling functions are chosen as

�j;l = e�xD�1(�j;l � �j;l+1) (3.57)

so that

	j;l = �j+1;2l: (3.58)

With the right normalization, one gets

�j;l(x) =

8><>:
sinh(x�l2�j)
sinh(2�j) for x 2 [l2�j; (l + 1)2�j]

sinh((l+2)2�j�x)
sinh(2�j) for x 2 [(l + 1)2�j; (l + 2)2�j]

0 elsewhere.

The operator scaling functions on one level are translates of each other but the ones on

different levels are no longer dilates of each other. They are supported on the same sets.
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The operator scaling functions satisfy a relation

�j;l =

2X
k=0

Hj
k�j+1;2l+k; (3.59)

where

Hj
0 = Hj

2 =
sinh(2�j�1)

sinh(2�j)
and Hj

1 = 1:

The Helmholz operator in this bases of hyperbolic wavelets is diagonal . So we can con-

clude that a wavelet transform can diagonalize constant coef�cient operators similar to the

Fourier transform. The resulting algorithm is faster (O(N) instead of O(NlogN)) [20].

Now, how to use wavelets for variable coef�cient operator. Consider the following

operator

L = �Dp2(x)D; (3.60)

where p is suf�ciently smooth and positive. The square root operator is now

V = pD and V �1 = D�11

p
: (3.61)

The analysis is similar to the case of the Helmholz operator. Applying V �1 directly to a

wavelet does not yield a compactly supported function. Therefore we take

	j;l = V �1p j;l = D�1 j;l: (3.62)

Then,




	j;l;	

�
m;n

��
=



V	j;l; V	

�
m;n

�
=



p j;l; p m;n

�
=

Z 1

�1
p2 j;l(x)

~ m;n(x)dx; (3.63)
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which implies that the wavelets need to be biorthogonal with respect to a weighted inner

product with p2 as weight function. We use the same trick as for Helmholz operator. Let

the scaling function �j;l coincide with 1
p2
on the interval [2�jl; 2�j(l + 1)]

�j;l =
1

p2
�[j;l]; (3.64)

and normalize them such that they have a constant integral. We then take the wavelets

 j;l = �j+1;2l � �j+1;2l+1;

so they have vanishing integral and the operator wavelet are compactly supported. The

operator wavelets 	j;l are now piecewise functions that locally look like

AP +B

where P is the antiderivative of 1
p2
: The operator wavelets are neither dilates nor translates

of one function, since their behavior locally depends on p [20]. The coef�cients in the fast

wavelet transform are now different every where and they depend in a very simple way

on the Haar wavelet transform of 1
p2
. Then, the entries of diagonal stiffness matrix can

be calculated from the wavelets transform of 1
p2
we refer for more details to [20] and the

references cited therein.

Let us take a numerical example [20]. By solving the equation

�Dex2Du(x) = ex
2
(sin(x)(3x2 � 2) + cos(x)(2x� 2x3))

x3
;

with u(0) = 1 and u(1) = sin(1); the exact solution is given by u(x) = sinx
x
: The L1

error of the numerically computed solution is function of the number of levels (l) is given

in Table 3.1.
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l l1 error
1 1:22� 10�2
2 3:37� 10�3
3 8:66� 10�4
4 2:18� 10�4
5 5:45� 10�5
6 1:36� 10�5
Table 3.1.

Note that each time the number of levels is increased the error is divided almost by a

factor of 4, which agrees with the O(h2) convergence. For more details see [20].

3.3 Discussion

In this section we present some work that we have done during our research.

3.3.1 Differential and Integral Equations

In this subsection the relation between some differential equations and the integral equa-

tions is given. The differential equations can be transformed into the integral equations by

using the continuous wavelet transform. An abstract proof of the following lemma can be

found in [16] but here we present our proof.

Lemma 3.4 Let  2 L2(R); with 0 < C <1; then for any f 2 L2(R) we have

f (k)(x) =
1

C 

1Z
�1

da

a2

1Z
�1



f;  a;b

�
a�k (k)

a;b
(x)db; (3.65)

where C is admissibility condition de�ned by

C =

1Z
�1

��� ̂(�)���2
j�j d� <1; (3.66)
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and

 a;b(x) =
1p
jaj
 (
x� b

a
); a; b 2 R; a 6= 0;

Proof. By using the Parseval's Formula for Wavelet Transforms Theorem 1.3 For any

g 2 L2(R); we have

< f (k); g >=
1

C 

1Z
�1

da

a2

1Z
�1



f (k);  a;b

� 

g;  a;b

�
db (3.67)

By using Parseval's Formula for Fourier Transform Theorem 1.1 we have

< f (k); g >=
1

2�
< df (k);d a;b >= (iw)k

2�
< bf;  ̂a;b > (3.68)

Then (3.67) becomes

< f (k); g >=
1

C 

1Z
�1

da

a2

1Z
�1

1

(2�)2
(iw)k < bf;  ̂a;b > Dĝ;  ̂a;bEdb

=
1

C 

1Z
�1

da

a2

1Z
�1

a�k

(2�)2
< bf;  ̂a;b >< ĝ; (iwa)k ̂a;b >db

=
1

C 

1Z
�1

da

a2

1Z
�1

a�k

(2�)2
< bf;  ̂a;b >< ĝ;d (k)

a;b
>db:

Again using Parseval's Formula for Fourier Transform Theorem 1.1 we have

< f (k); g >=
1

C 

1Z
�1

da

a2

1Z
�1

a�k < f;  a;b >< g;  (k)
a;b
>db

=
1

C 

1Z
�1

da

a2

1Z
�1

a�k < f;  a;b >

0@ 1Z
�1

�g(x) (k)
a;b
(x)dx

1A db

=

1Z
�1

0@ 1

C 

1Z
�1

da

a2

1Z
�1

a�k < f;  a;b >  (k)
a;b
(x)db

1A �g(x)dx
= <

1

C 

1Z
�1

da

a2

1Z
�1

a�k < f;  a;b >  (k)
a;b
db; g >;
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where we have interchanged integral in the third step. Then we have

< f (k) � 1

C 

1Z
�1

da

a2

1Z
�1

a�k < f;  a;b >  (k)
a;b
db; g >= 0;

for all g 2 L2(R): Then

f (k) � 1

C 

1Z
�1

da

a2

1Z
�1

a�k < f;  a;b >  (k)
a;b
db = 0

or

f (k) =
1

C 

1Z
�1

da

a2

1Z
�1

< f;  a;b > a�k (k)
a;b
db:

Now, consider the following class of differential equations

nX
k=0

ak(x)y
(k) = b(x); (3.69)

fak(x); k = 0; 1; � � � ; ng � L1(R) , fy(k); k = 0; 1; � � � ; ng � L2(R), b(x) 2 L2(R):

Let f (k); k = 0; 1; � � � ; ng � L2(R) with supp( ) � [�L;L]: According to Lemma

3.4 we have

y(k)(x) =
1

C 

1Z
�1

da

a2

1Z
�1



y;  a;b

�
a�k (k)

a;b
(x)db; (3.70)

ffor k = 0; 1; � � � ; ng. Then (3.69) becomes

1

C 

1Z
�1

da

a2

1Z
�1



f;  a;b

� nX
k=0

a�kak(x) 
(k)
a;b
(x)db = b(x): (3.71)

Then the differential equation (3.69) is equivalent to integral equation (3.71).

Example 3.5 Consider the following differential equation

nX
k=0

ak(x)y
(k) = b(x); (3.72)

fb(x); ak(x); k = 0; 1; � � � ; ng � C[��; �], fy(k); k = 0; 1; � � � ; ng � L2(R). If x =2

[��; �] let b(x) = ak(x) = y(k) = 0 for k = 0; 1; � � � ; n: Then fb(x); ak(x); k =
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0; 1; � � � ; ng � L1(R) and fb(x); ak(x); y(k); k = 0; 1; � � � ; ng � L2(R). De�ne  by

 (x) =

�
cosx x 2 [��; �]
0 x =2 [��; �] ;

 is drawn in Figure 3.1.  is a wavelet because

 ̂(w) =
1p
2�

�
sin(w + 1)�

w + 1
+
sin(w � 1)�

w � 1

�
;

and

0 < C <1:

Then the continuous wavelet transform of y with respect to the wavelet  is

(T y)(a; b) =

Z 1

�1
y(z) a;b(z)dz =

1p
jaj

Z 1

�1
y(z) (

z � b

a
)dz

=
1p
jaj

Z jaj�+b

�jaj�+b
y(z) cos(

z � b

a
)dz: (3.73)

Now, by using Lemma 3.4, (3.72) becomes

b(x) =
1

C 

1Z
�1

da

a2

0B@ jaj�+xZ
�jaj�+x

"
1p
jaj

Z jaj�+b

�jaj�+b
y(z) cos(

z � b

a
)dz

#
nX
k=0

ak(x)
1p
jaj
a�k cos(

x� b

a
+ k

�

2
)db

!
: (3.74)

Then in order to solve the differential equation (3.72) we only need to solve the integral

equation in (3.74) [16].
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­ ^ ­ ^/2 ^/2 ^

Figure 3.1. Wavelet in Example 3.5.

3.3.2 Using Difference Equations

Suppose � is a scaling function for a multiresolution analysis fVjgj2Z :

Vj =

(X
k2Z

�k�j;k(x) : f�kgk2Z 2 l2(Z)
)
;

where

�j;k(x) = 2
j=2�(2jx� k):

The orthogonal projection operator Pj from L2(R) onto Vj is de�ned by

Pj(f)(x) =
X
k2Z

< f; �j;k > �j;k(x);

also we have

lim
j!1

Pj(f) = f:

The projection Pj(f) can be considered as an approximation of f at the scale 2�j . There-

fore, the successive approximations of a given function f are de�ned as the orthogonal

projections Pj(f) onto the space Vj . We can choose j 2 Z such that Pj(f) is a good
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approximation of f . For very large j we can approximate f(x) by Pj(f) that is

f(x) t Pj(f)(x) =
X
k2Z

�j;k�j;k(x); (3.75)

where

�j;k =< f; �j;k >;

and

�j;k(x) = 2
j=2�(2jx� k):

From the de�nition of the derivative we have

f 0(x) = lim
j!1

f(x+ 1
2j
)� f(x)
1
2j

;

Again for large j we can approximate f 0(x) by

f 0(x) t 2j
�
f(x+

1

2j
)� f(x)

�
; (3.76)

substituting (3.75) into (3.76) we get

f 0(x) t 2j
�
f(x+

1

2j
)� f(x)

�
= 2j

"X
k2Z

�j;k2
j=2�(2j(x+

1

2j
)� k)�

X
k2Z

�j;k2
j=2�(2jx� k)

#

= 2j

"X
k2Z

�j;k2
j=2�(2jx+ 1� k)�

X
k2Z

�j;k2
j=2�(2jx� k)

#

= 2j

"X
k2Z

(�j;k+1 � �j;k)�j;k(x)

#
: (3.77)

Let Vj be the space of all function in L2(R) which are constants on intervals of the

form Ij;k = [2
�jk; 2�j(k + 1)]; k 2 Z:

Vj = ff 2 L2(R) : f = constant on Ij;k;8k 2 Zg:
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Then fVj; j 2 Zg is an MRA see Example 2.1. The scaling function is given by

� = �[0;1]:

Now, consider a simple differential equation

f 0(x) + bf(x) = 0; f(0) = f0 ; (3.78)

where b is a constant real number. The exact solution of the differential equation (3.78) is

f(x) = f0e
�bx:

Now, substituting (3.75) and (3.77) into (3.78) yields

2j

"X
k2Z

(�j;k+1 � �j;k)�j;k

#
+ b
X
k2Z

�j;k�j;k(x) = 0

X
k2Z

�
2j�j;k+1 + (b� 2j)�j;k

�
�j;k = 0; (3.79)

taking the inner product with �j;n in (3.79) we get

2j�j;n+1 + (b� 2j)�j;n = 0

or

�j;n+1 = (1�
b

2j
)�j;n: (3.80)

Solving the difference equation in (3.80) we get

�j;n = (1�
b

2j
)n�j;0; (3.81)
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where

�j;0 = < f; �j;0 >=

Z 1

�1
f(x)�j;0(x)dx

=

Z 2�j

0

f(x)2j=2�(2jx)dx

= 2j=2f(0)

Z 2�j

0

�(2jx)dx

= 2j=2f(0)

Z 2�j

0

1dx

= 2�j=2f(0) = 2�j=2f0 : (3.82)

Since f(x) is continuous and the integration is taken over a small interval [0; 2�j]; we can

approximate f(x) by f(0) for very large j: Similarly for �j;k we have

�j;k = < f; �j;k >=

Z 1

�1
f(x)�j;k(x)dx

=

Z 2�j(k+1)

2�jk

f(x)2j=2�(2jx� k)dx

= 2�j=2f(2�jk): (3.83)

Then, from (3.81), (3.82) and (3.83) we get

f(2�jk) = f0(1�
b

2j
)k: (3.84)

Let k ! 2jx, then (3.84) becomes

f(x) = f0(1�
b

2j
)2
jx; (3.85)

for very large j: Take the limit in (3.85) as j !1 we get

f(x) = lim
j!1

f0(1�
b

2j
)2
jx = f0e

�bx; (3.86)

which coincides with the exact solution of (3.78).
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3.3.3 Expansion of Derivative

In this subsection we will prove that for certain functions the derivative can be written as

f 0(x) =
X
n2Z

tnf(x� n);

where tn 2 R for all n 2 Z:

Let Pk be a space of polynomial which has degree less than or equal to k: Then tn

can be found by solving a system of linear equations. For example for f 2 P2: One can

prove that

f 0(x) =
1

2
f(x+ 1)� 1

2
f(x� 1):

For f 2 P4:We have

f 0(x) =
�1
12
f(x+ 2) +

2

3
f(x+ 1)� 2

3
f(x� 1) + 1

12
f(x� 2):

Lemma 3.5 Let f 2 L2(R); and f̂ does not vanish in [��; �] almost everywhere, then f 0

can be written in the following form:

f 0(x) =
X
n2Z

tnf(x� n); (3.87)

where

tn =

8<:
(�1)n
n
; n 6= 0; n 2 Z

0; n = 0

9=; :

Proof. Taking the Fourier Transform of (3.87) we get

(iw)f̂(w) =
X
n2Z

tne
�iwnf̂(w)

Since f̂(w) 6= 0 a:e: w 2 (��; �) , then by cancelling f̂(w) from both sides we get

(iw) =
X
n2Z

tne
�iwn: (3.88)
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Taking inner product with e�iwm;m 6= 0 in (3.88) we getZ �

��
(iw)eiwmdw =

Z �

��

X
n2Z

tne
�iwneiwmdw

Then

2� (cos�m)m� 2 sin �m
m2

=
X
n2Z

tn

Z �

��
e�iwneiwmdw

Because fe�iwng are orthogonal in (��; �) andm is integer we have

2�(�1)m
m

= 2�tm:

Thus,

tm =
(�1)m
m

:

Ifm = 0; then t0 = 0:

Example 3.6 Let f(x) = sinx
xX

n2Z

tnf(x� n) =
X
n6=0

(�1)n
n

sin(x� n)

x� n
=
cosx

x
� sin x

x2
= f 0(x):

Similar results can be found with higher derivatives. For second derivative we have

f 00(x) =
X
n2Z

rnf(x� n);

where

rn =

8<:
2(�1)n+1

n2
; n 6= 0; n 2 Z

��2

3
; n = 0

9=; :

For third derivative

f 000(x) =
X
n2Z

rnf(x� n);

where

rn =

8<: (�1)n( 6
n3
� �2

n
); n 6= 0; n 2 Z

0; n = 0

9=; :
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For fourth Derivative we get

f (4)(x) =
X
n2Z

rnf(x� n);

where

rn =

�
4(�1)n(�2

n2
� 6

n4
); n 6= 0; n 2 Z

�4

5
; n = 0

�
:

And higher derivatives can be obtained in a similar procedure.

There are four main properties of wavelets; namely, they are local in both space and

frequency, they satisfy biorthogonality conditions, they provide a multiresolution struc-

ture and fast transform algorithms are available. Because of these properties wavelets have

proven to be useful in the solution of ordinary differential equations. As proposed by sev-

eral researchers, wavelets can be used as basis functions in Galerkin method. This has

proven to work and the results in a linear system that is sparse because of the compact sup-

port of wavelets, and that, after preconditioning, has a condition number independent of

problem size because of the multiresolution structure. By using two pairs of biorthogo-

nal compactly supported wavelets, derivative operator can be diagonalized [12]. Like the

Fourier transform, wavelets can diagonalize constant coef�cient operators. The resulting

algorithm is slightly faster [20]. Even non constant coef�cient operators can be diago-

nalized with the right choice of basis which yields a much faster algorithm than classical

iterative methods.
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