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Chapter 1

Introduction

1.1 The Problem of Pattern Classification

Pattern classification (or recognition) is one of the key features of intelligent behavior

for both humans and machines. It plays an important role in the daily life of humans,

e.g. recognizing the faces of friends in a crowd, characters and words on printed

pages, voices over a telephone line, and so forth. Likewise, reliance on machines

that perform some sort of pattern recognition is increasing by the day. Examples

of these machines are the readers of UPC (universal product code) bar codes that

expedite pricing and inventory of retail merchandise, readers of magnetic-strip codes

on credit cards that identify the user and determine if the purchase is authorized,

etc.

Pattern recognition can be defined as the science that involves the description

1
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or classification of measurements [3] .There is no doubt that pattern recognition

is an important, useful, and rapidly developing technology with cross-disciplinary

interest and participation. Some of the emerging applications of pattern recog-

nition include: radar signal classification/analysis, image analysis, computer vi-

sion, face recognition, fingerprint identification, character recognition, speech recog-

nition/ understanding, speaker identification, electroencephalogram (EEG) under-

standing/analysis, and medical diagnosis, etc. Human experts or even normal hu-

mans master most of these tasks quite easily. For many engineers and scientists,

the ability to build machines which can perform such tasks as accurate as humans

represents the ultimate challenge. Because of this, it has been of great interest

to researchers to understand how humans process and analyze different incoming

signals.

Human senses process signals, such as sounds or light waves, by transforming

these in some way such that important information is extracted from these signals.

The transformed signals are then mapped into a decision that equates with the

recognition of objects. Such processing detects subtle differences in the signals that

are necessary to perform optimal recognition. In order to design machines capable

of classifying and recognizing patterns, observation vectors (e.g. collected from a

probe or a camera) have to be transformed into feature vectors in a way similar

to the processing of signals by humans. The features are intended to be fewer in

number than the observations but should collectively contain most of the information
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needed for classification of the patterns. This is simply because when the number

of features is large, it becomes difficult to obtain good estimates for the parameters

needed by the decision rule. For example, the number of pixels (picture elements)

in a particular 1024X768 image is 786,432. Each 8-bit pixel may represent one of

256 shades of gray (or colors). Rather than using this huge number of observations,

we could rely on a small number of important attributes. Some of the important

features used for the classification of images include: angles between edges, and

blobs of a particular shade. These features do not depend upon the size, location

or orientation, but may be dilated, contracted, rotated, or translated. They may

number only a few dozen or even less.

Algorithms that analyze data in an attempt to estimate appropriate features

are called feature extraction algorithms. Such algorithms may be based on physical

or structural considerations of the problem or they may be purely mathematical

techniques. An example of physical sensory features used by machines is an image

provided by a video camera. Structural features are relationships of physical sensory

features, such as the relative locations of certain lines, edges, curves and blobs. A

mathematical feature is obtained by mapping pattern observations via a function

such that the newly obtained features have the power to distinguish between different

categories or classes in a more efficient way.

The performance of the classifier is another important aspect that affects the

overall behavior of pattern classification systems. The human brain can be consid-
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ered as an optimal classifier. It can easily assign a certain pattern to a specific class

label with a high degree of accuracy. However, this is not the case for machines.

One way for improving the classification accuracy of machines is by testing more

than one classification algorithm. The performance of these classifiers would then

be assessed and a choice is made on the best performing classifier. However, de-

tailed analysis of the performance of different classifiers showed that they tend to

exhibit different misclassified patterns [4]. This means that if several classifiers are

used to perform a specific classification task, then a wrong classification made by

one classifier could be recovered, given that other classifiers are able to provide the

correct answer. Thus, combining the classification results of different classifiers can

help improve the performance of pattern classification systems.

1.2 Biometric Recognition Systems

One major application of pattern recognition systems is in person identification.

With the exponential growth in technology and the growth in business carried world-

wide, it is becoming crucial to build automated systems that identify people. Tra-

ditionally, body characteristics such as face and voice have been successfully used

in identification. As early as the mid 19th century, Alphonse Bertillon, chief of the

criminal identification division of the police department in Paris, actually developed

the idea of using various body measurements [1] (for example, height, length of



5

arms, feet, and fingers) to identify criminals. In the late 19th century, just as his

idea was gaining popularity, it was eclipsed by a far more significant and practi-

cal discovery: the distinctiveness of human fingerprints. Soon after this discovery,

many major law-enforcement departments embraced the idea of “booking” crimi-

nals’ fingerprints and storing them in databases (initially, card files). Later, police

gained the ability to “lift” leftover, typically fragmentary, fingerprints from crime

scenes (commonly called latents) and match these to fingerprints in the database

to determine criminals identities. Biometrics first came into extensive use for law-

enforcement and legal purposes, identification of criminals and illegal aliens. It was

expanded for usage in security clearances for employees in sensitive jobs, paternity

determinations, forensics, positive identifications of convicts and prisoners, and so

on. Today, however, many civilian and private-sector applications are increasingly

using biometrics to establish personal identification.

1.2.1 What is a Biometric?

Traditionally there have been three different types of person authentication:

• Something you know,a password, PIN, or piece of personal information

• Something you have, a card key, smart card, or token (like a SecurID card)

and/or

• Something you are, a biometric.
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From the list above, a biometric is the most secure and convenient authentica-

tion tool. It can’t be borrowed, stolen, or forgotten, and forging one is practically

impossible. Biometrics measure individuals’ unique physical or behavioral charac-

teristics to recognize or authenticate their identity. Common physical biometrics

include: fingerprints, hand or palm geometry, retina, iris and facial characteristics.

Behavioral characters include signature, voice (which also has a physical compo-

nent), keystroke pattern, and gait. We discuss the main biometrics used nowadays

in the next section.

1.3 Different Biometrics

1.3.1 Fingerprints

Figure 1.1: A typical fingerprint image (www.cse.ucsd.edu)
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A fingerprint image looks at the patterns found on a fingertip (see figure 1.1).

There are a variety of approaches to fingerprint verification. Some emulate the tra-

ditional police method of matching minutiae; others use straight pattern-matching

devices; and still others are a bit more unique. Fingerprint identification systems

rely on a set of features representing the ridge endings and bifurcations for matching

patterns. Some verification approaches can detect when a live finger is presented;

some cannot.

1.3.2 Hand Geometry

Figure 1.2: A typical human hand recognition system (http://bias.csr.unibo.it)

Hand geometry involves analyzing and measuring the shape of the hand (see

figure 1.2).This biometric offers a good balance of performance characteristics and is

relatively easy to use. It might be suitable where there are more users or where users
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access the system infrequently and are perhaps less disciplined in their approach to

the system. Hand recognition systems use mainly geometric features such as width

of fingers, palm etc. Accuracy can be very high if desired, and flexible performance

tuning and configuration can accommodate a wide range of applications.

1.3.3 Retina and Iris

Figure 1.3: The human eye image (www.nlm.nih.gov)

A retina-based biometric involves the analysis of the layer of blood vessels at the

back of the eye (see figure 1.3). An established technology, this technique involves

using a low intensity light source through an optical coupler to scan the unique

patterns of the retina. Retinal scanning can be quite accurate but does require the

user to look into a receptacle and focus on a given point.This is not particularly

convenient if you wear glasses or are concerned about having close contact with the



9

reading device. For these reasons, retinal scanning is not warmly accepted by all

users, even though the technology itself can work well.

An iris-based biometric, on the other hand, involves analyzing features found

in the colored ring of tissue that surrounds the pupil. Iris scanning, undoubtedly

the less intrusive of the eye related biometrics, uses a fairly conventional camera

element and requires no close contact between the user and the reader. In addition,

it has the potential for higher than average template- matching performance. Iris

biometrics work with glasses in place and is one of the few approaches that can work

well in identification mode.

1.3.4 Face

Figure 1.4: A typical human face image (www.uk.research.att.com)

Face recognition systems analyze facial characteristics (see figure 1.4). A digital
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camera is required to capture a facial image of the user for authentication. This

technique has attracted considerable interest. Details about face recognition are

discussed later in the thesis.

1.3.5 Signature

Figure 1.5: A typical signature (http://bellsouthpwp.net)

Signature verification analyzes the way a user signs his/her name (see figure 1.5).

Signing features such as speed, velocity, and pressure are as important as the fin-

ished signatures static shape. Signature verification enjoys a synergy with existing

processes that other biometrics do not. People are used to signatures as a means

of transaction-related identity verification, and most would see nothing unusual in

extending this to encompass biometrics. Surprisingly, relatively few significant auto-

mated signature applications have emerged compared with other biometric method-

ologies. This is mainly due to the changes of the signature of the same individual

over time.
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1.3.6 Voice

Figure 1.6: A typical speech signal

Voice biometrics has the most potential for growth, because it requires no new

hardware, as most PCs already contain a microphone.However, poor quality micro-

phones and ambient noise can severely affect verification (figure 1.6 shows a typical

voice signal). In addition, the enrollment procedure has often been more compli-

cated than with other biometrics, leading to the perception that voice verification is

not user friendly. Therefore, current voice authentication systems still need improve-

ment. One day, voice may become an additive technology to finger-scan technology.

Because many people see finger scanning as a higher authentication form, voice bio-

metrics will most likely be relegated to replacing or enhancing PINs, passwords, or

account names.

Different biometric technologies may be appropriate for different applications,
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depending on perceived user profiles, the need to interface with other systems or

databases, environmental conditions, and a host of other application-specific pa-

rameters. Thus, there are a number of criteria to be argued, as shown in table 1.1,

before deciding for or against a specific biometric technology.

Properties
Finger-
print

Hand Retina Iris Face Signature Voice

Ease of
Use

High V.High Low Medium Medium High High

Accuracy High High V.High V.High High High High
Cost N.A N.A N.A N.A N.A N.A N.A
User Ac-
ceptance

Medium Medium Medium Medium Medium V.High High

Required
Security
Level

High Medium High V.High Medium Medium Medium

Long-term
Stability

High Medium High High Medium Medium Medium

Table 1.1: Comparison of different biometrics [1]

Choice of a particular biometric is made depending upon the application of

interest. For instance in a highly secured environment the issues of cost and ease of

use will not have much weight, where as for a system which has to be implemented

in a public place and is likely to be used more rapidly the user friendly environment

would be a major requirement.

1.4 The Need for Multimodal Biometric Systems

The monomodal or unimodal biometric systems rely on the evidence of a single

source of information for authentication (e.g., single fingerprint or face). These
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systems have to deal with a variety of problems including,

1. Noise in sensed data: A fingerprint image with a scar, or a voice sample

altered by cold are examples of noisy data. Noisy data could also result from

defective or improperly maintained sensors (e.g., accumulation of dirt on a

fingerprint sensor) or unfavorable ambient conditions (e.g., poor illumination

of a users face in a face recognition system).

2. Intra-class variations: These variations are typically caused by a user who

is incorrectly interacting with the sensor (e.g., incorrect facial pose), or when

the characteristics of a sensor are modified during authentication (e.g., optical

versus solid-state fingerprint sensors).

3. Inter-class similarities: In a biometric system comprising of a large number

of users, there may be inter-class similarities (overlap) in the feature space of

multiple users. Golfarelli et al. [5] state that the number of distinguishable

patterns in two of the most commonly used representations of hand geometry

and face are only of the order of 105 and 103, respectively.

4. Non-universality: The biometric system may not be able to acquire mean-

ingful biometric data from a subset of users. A fingerprint biometric system,

for example, may extract incorrect minutiae features from the fingerprints of

certain individuals, due to the poor quality of the ridges.
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5. Spoof attacks: This type of attack refers to the problem of forging the

identity of a user. These attacks are likely when behavioral traits such as

signature or voice are used. However, physical traits such as fingerprints are

also susceptible to spoof attacks.

Some of the limitations imposed by unimodal biometric systems can be over-

come by including multiple sources of information for establishing identity [6]. Such

systems, known as multimodal biometric systems, are found more reliable due to the

presence of multiple, (fairly) independent pieces of evidence [7]. These systems are

able to meet the stringent performance requirements imposed by various applica-

tions. In this thesis, we show that combining speech and face does indeed improve

recognition performance. Obviously, since independent systems are combined, we

need to formulate a strategy for such combination. In this work, we propose to use

the theory of evidence for such purpose.

1.5 Major Contributions of the Thesis

In this thesis, we have proposed a novel approach for multimodal biometric identifi-

cation using the Dempster-Shafer theory of evidence (DST). In particular the major

contributions of this thesis are summarized as follows:

1. Development of a new classifier combination algorithm called the Nearest

Neighbor based Evidence Fusion (NNEF), based on the DST for com-
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bining ”homogeneous” classifiers (Chapter 4).

2. Development of a new algorithm called the Recognition Rate based Evi-

dence Fusion (RREF) algorithm based on the DST for combining hetero-

geneous multimodal classifiers (Chapter 5).

3. Development of a new algorithm called the Variance based Evidence Fu-

sion (VEF) algorithm based on the DST for combining heterogeneous mul-

timodal classifiers (Chapter 5).

4. Besides these major contributions we have also proposed: 1. a novel model

based approach to the problem of face detection, and 2. a new neural network

based algorithm for face recognition.

1.6 Organization of the Thesis

The thesis is organized as follows:

In Chapter 2, we propose a novel, model based face detection algorithm followed

by a neural network based face recognition technique. Further more we discuss the

issue of combining classifiers for pattern classification. We have discussed different

categories of amalgamation of classifiers namely abstract level fusion, rank level

fusion and measurement level fusion.

In Chapter 3, we give an introduction to the Dempster-Shafer theory of evidence
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(DST). The conceptual difference between the Bayesian theory and the DST is

discussed. The basic setup for the DST theory is formulated and the present methods

for belief estimation are reviewed.

In Chapter 4, we propose the Nearest Neighbor based Evidence Fusion

algorithm (NNEF) for fusing homogeneous classifiers. A DST based speaker

recognition system is developed based on the NNEF algorithm.

In Chapter 5 , we propose two different algorithms called the Recognition

Rate based Evidence Fusion (RREF) algorithm and the Variance based

Evidence Fusion (VEF) algorithm for combining heterogeneous classifiers. The

algorithms are implemented for the case of multimodal biometrics (fusion of face

and speech) and shown to outperform individual classifiers.

We conclude the thesis in Chapter 6 with some concluding remarks, and propose

some future research directions.



Chapter 2

Fundamental Concepts

2.1 Introduction

The ultimate goal of designing pattern recognition systems is to achieve the best

possible classification performance for the task at hand. This objective traditionally

led to the development of different classification schemes for any pattern recognition

problem to be solved. The results of an experimental assessment of different designs

can be used as the basis for choosing one specific classifier among many. It had been

observed in such design studies, that although one of the designs would yield the

best performance, the sets of patterns misclassified by the different classifiers would

not necessarily overlap. This suggested that different classifier designs potentially

offered complementary information about the patterns to be classified. Such comple-

mentary information could be harnessed to improve the performance of the selected

17
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classifier. These observations motivated the relatively recent interest in combining

classifiers. However before going into the details of the problem of fusing classifiers

we choose a typical face recognition system and enhanced its performance using our

own proposed approach. Before presenting the details of the proposed algorithm, it

is worth noting that “face detection” is the first step towards the problem of face

recognition. In many cases we first have to detect a human face in an image, then

move to the recognition stage. With this understanding, we first address here the

problem of human face detection as a background review and propose a model based

technique for face detection. The work presented below has already been accepted

for publication in [8].

2.2 A Typical Biometric System: Face Detection

and Recognition

2.2.1 Frontal Human Face Detection in Complex Color Im-

ages

In this section we present a model based technique for extracting human faces, from

complex, still color images. Most of the color images are represented in the RGB

color space. RGB is not only a 3-dimensional space but also represents the brightness

or luminance which is not a reliable criteria for skin separation due to the changed
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ambient lightning [9]. To avoid the luminance and to reduce the color space, the

RGB image is first transformed into the chromatic or pure color space [10, 11].

It has been observed that the skin colors of different people share almost the

similar points in the color space. The difference in the apparent skin colors of

different persons is mostly due to the intensity or luminance [12]. This fact is

depicted in figure 2.1, which shows the clustering of skin color distribution for

various skin colors.

Figure 2.1: The color distribution for skin color of different people

Given the clustering of skin pixels around certain center point, we can reliably

model the skin color using the Gaussian distribution [12] as shown in figure 2.2.

The parameters used for such a Gaussian Model are as follows:

x = [r b]T (2.1)
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Figure 2.2: Gaussian model for skin

E(x) = m (2.2)

C = E[(x − m)(x − m)T ] (2.3)

where r and b are the components of the pure color space, m is the mean vec-

tor, and C is the covariance matrix of the Gaussian model. With this Gaussian

distribution, the skin likelihood image can be obtained using the expression (up to

a constant):

P(r, b) = exp
[
− 0.5(x − m)TC−1(x − m)

]
(2.4)
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Figure 2.3: The original RGB image, the image transformed to chromatic color
space and the skin likelihood image

Thus, we are able to express the chromatic or pure color representation into a

gray scale image with brighter areas of the image showing the likelihood of the skin

region, i.e the brighter a region, is the more likely it is to be a skin region. Figure

2.3 shows the transformation of an original image into the chromatic color space,

then into the skin likelihood image.

After obtaining the skin likelihood image, we transform it into a binary image

using an adaptive thresholding approach. It is obvious that if we decrease the thresh-

old we will end up with an increased skin region. Thus, we propose here to decrease

the threshold in steps and to select that value which gives minimum increase in the

skin region. Once such threshold value is selected, all pixels having value above the

threshold are designated as 1s and those having value less then the threshold are

designated as non-skin (or 0s).

Since we are able to discriminate between the skin and non-skin regions, we must

now check each of the skin regions for some characteristics so that we can decide

which of the obtained region(s) correspond to a true human frontal face. In our
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Figure 2.4: The resulting binary image

approach we explored the following characteristics:

• Number of holes in a skin region: It has been observed that a frontal human

face will always have at least one hole (pixel value=0) corresponding to eyes

etc. Thus to improve our decision process we have developed a criterion to

reject all skin regions having no holes from being a human face candidate.

• Height to width ratio: Actually, human faces are vertically oriented [12] and

ideally the height to width ratio is around 1.2. Thus, we can use this obser-

vation to classify that the regions having height to width ratio below 0.8 do

not correspond to a human face. Similarly, we can put a higher upper limit

on the ratio. However there are cases in which we have images with uncovered

skin area below the face i.e neck etc, and to account for this, we put a higher

upper limit of 1.6. Thus we would discard all those regions in our search of

human face which have the region ratio less than 0.8 or above 1.6.

The most important development of the method is that it uses a template face
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Figure 2.5: The average face

to match to the skin regions to make a final decision. The template face will be

adapted using the geometric characteristics obtained for each region. It will first be

resized using the height and width of the region. The resized template face is then

oriented so that the template face has the same inclination as that of the region. The

center of the inclined template face is then calculated and matched to the already

calculated center of the region.

The cross-correlation between the adjusted template face and the skin region

under consideration is then calculated, where the cross-correlation between any two

functions f(x, y) and h(x, y) is given by:

E[f(x, y); h(x, y)] =
1

MN

M−1∑
m=0

N−1∑
n=0

f(m,n)h(x + m, y + n) (2.5)

Empirically we have determined that a correlation value of 0.6 is good enough

to decide that a given region corresponds to a human frontal face.

Figure 2.6 presents some of the results obtained using the proposed method.

The results show that the proposed method is robust for frontal human face
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(a) The Skin Like-
lihood Image

(b) The Binary
Image

(c) The Template
Matching

(d) The Detected
Face

Figure 2.6: The results of face detection for single face image

(a) The skin like-
lihood image

(b) The binary
image

(c) The template
matching

(d) The detected
faces

Figure 2.7: The results of face detection for two face images

detection in complex color images. We have implemented the method for detection

of multiple human faces in complex background and have found it extremely efficient.

The developed technique is robust and efficient in the sense that it does not use

complex neural networks, fuzzy integrals etc [13, 14, 15]
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Figure 2.8: Some experimental results for the problem of face detection
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2.2.2 Face Recognition

Face recognition has been a successful field of research mostly during the past two

decades. The growth of research works in the field is mainly due to three factors:

1. The growing amount of face recognition applications reflected in the increasing

number of face recognition companies.

2. The knowledge that face recognition models provide to the cognitive science

field

3. The fact that face recognition has become a paradigm or benchmark of recog-

nition methodologies.

In fact, face recognition, as a paradigm of a recognition system, has become a bench-

mark to the solutions of some of the main computer vision problems (invariance to

view point; illumination change; occlusion; deformation due to changes of expres-

sion, age, make-up and hair style), as well to some of the main problems in statistical

pattern recognition (feature selection; generalization; discriminability, etc.). This is

evident when the continuous publication of reviews and surveys is considered, from

the earliest of Samal and Iyengar (1992), to the latest of Jain (2003), passing through

the works of Valentin et al. (1994), Chellappa et al. (1995) and Fromherz (1998)

[16, 17, 18, 19]. Most of the statistical approaches to face recognition and detection,

are based on Gaussian or mixture of Gaussian models [20, 21]. These methods are
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mainly concerned with an estimation of the face manifold. However there are a few

examples in which the neural network has been implemented for face recognition

[22, 23]. These implementations have not been up to mark since they use small

databases (less number of classes) and give low recognition rate. For instance in

[22], 10 classes of AT&T database have been used giving a recognition rate of 75%.

Similarly, in [23], results are shown only for 10 classes with a huge amount of train-

ing data. In this thesis, we have presented a new algorithm for face recognition

using PCA (Principal Component Analysis) for feature extraction stage and neural

networks for classification stage. We have shown that our system outperforms all

conventional neural network based algorithms in both aspects of high recognition

rate and lesser amount of required training data.

We start our discussion with a mathematical explanation of PCA or Principal

Component Analysis which is used at the feature extraction stage.

2.2.3 Mathematical Analysis of PCA

The PCA or Principal Component Analysis is a technique to transform large di-

mensional data into a much reduced subspace called the “eigenspace”. The main

advantage of PCA is that it depicts all patterns in the data very efficiently. The

variations in the data are modeled using the covariance matrix, we then perform

eigenvalue eigenvector decomposition of such covariance matrix. These eigenvectors

are the basis vectors and are used to transform the data into the eigenspace. The
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mathematical implementation of the technique on images is as follows:

2-D facial images can be represented as 1-D vector by concatenating each row

(or column) into a long thin vector. Lets suppose we have M vectors of size N (=

rows of image x columns of image) representing a set of sampled images

xi = [p1......pN ]T , i = 1, 2, ....M (2.6)

where pj represents a pixel value. The images are mean centered by subtracting the

mean image from each of the image vectors. Let m represents the mean image:

m =
1

M

M∑
i=1

xi (2.7)

where M is the number of observations in the training data. Let wis be defined as

the mean centered images

wi = xi − m, i = 1, 2, ....M (2.8)

Our goal is to find a set of vectors eis which result in the largest possible variance

of the vectors wis. We wish to find a set of M orthonormal vectors eis for which

the quantity

λi =
1

M

M∑
n=1

(ei
Twn)2 (2.9)

is maximized with the orthonormality constraint

ei
Tek = δik (2.10)

It has been shown that the eis and λis are given by the eigenvectors and eigenvalues

of the covariance matrix of the data, since the covariance matrix is not available, we
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use an estimate of the covariance matrix:

C = WWT (2.11)

where W is a matrix composed of the column vectors wi placed side by side. The

size of W is NxN which could be enormous. For example, images of size 64 by

64 create the covariance matrix of size 4096 by 4096. It is not practical to find

the eigenvectors of C directly. A common theorem in linear algebra states that

the vectors eis and scalars λis can be obtained by solving for the eigenvectors and

eigenvalues of the MxM matrix WTW. Let di and µi be the eigenvectors and

eigenvalues of WTW, respectively.

WTWdi = µidi, i = 1, 2, ....M (2.12)

or,

WWT (Wdi) = µi(Wdi) (2.13)

which means that the first M − 1 eigenvectors eis and eigenvalues λis of WWT

are given by Wdi and µi, respectively. Wdi needs to be normalized in order to be

equal to ei. Since we only sum up a finite number of image vectors, M , the rank

of the covariance matrix cannot exceed M − 1 (the -1 comes from the subtraction

operation of the mean vector m).

The eigenvectors corresponding to the nonzero eigenvalues of the covariance matrix

produce an orthonormal basis for the subspace within which most image data can
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be represented with a small amount of error. The eigenvectors are sorted in order

of decreasing eigenvalues, the eigenvector associated with the largest eigenvalue is

one that reflects the greatest variance in the image. The eigenvalues decrease in an

exponential fashion, with roughly 90% of the total variance contained in the first

5% to 10% of the first dimensions [20].

A facial image can be projected onto an M ′ (M ′ � M) dimension space by using

Ω = [v1v2.....vM ′ ]T (2.14)

where vi = ei
Twi and vi is the ith coordinate of the facial image in the new feature

space, which came to be the principal component. The vectors eis are also images,

so called, eigenimages, or eigenfaces in our case, which were first named in [20].

They can be viewed as images and indeed look like faces. PCA computes the basis

of a space which is represented by its training vectors. When a particular face is

projected onto the face space, its vector into the face space describes the importance

of each of those eigenfaces in the overall face. The faces have representation in

the face space by their eigenface coefficients (or weights). We can handle a large

input vector, facial image, only by taking its small weight vector in the face space.

This means that we can reconstruct the original face with minor errors, since the

dimensionality of the image space is much larger than that of face space.
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2.2.4 Neural Networks in Face Recognition

Artificial Neural Networks (ANNs) are computational systems with architecture

and operation inspired from our knowledge about biological neural cells (neurons)

in the brain. ANNs can be described either as mathematical and computational

models for non-linear function approximation, data classification, clustering and

non-parametric regression, or as simulations of the behavior of collections of model

biological neurons. These are not simulations of real neurons in the sense that they

do not model the biology, chemistry, or physics of a real neuron. They do, however,

model several aspects of the information combining and pattern recognition behavior

of real neurons in a simple yet meaningful way. Neural modeling has shown incredible

capability for emulation, analysis, prediction, and association. ANNs have also been

used in a variety of powerful ways: to learn and reproduce rules or operations from

given examples; to analyze and generalize from sample facts and make predictions

from these; to memorize characteristics and features of given data, and to match or

make associations from new data to the old data.

ANNs can be used to solve difficult problems in a way that resembles human

intelligence. What is unique about neural networks is their ability to learn by

example. Traditional artificial intelligence (AI) solutions, on the other hand, rely

on symbolic processing of the data, an approach which requires a priori human

knowledge about the problem. Neural networks techniques have also an advantage
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over statistical methods of data classification as they are distribution-free and require

no a priori knowledge about the statistical distributions of the classes in the data

sources in order to classify these. Unlike the statistical approaches, ANNs are able to

solve problems without any a priori assumptions. As long as enough data is available,

a neural network can learn and extract any regularities and form a solution.

Figure 2.9: The basic structure of a neuron [2]

As ANNs are models of biological neural structures, the starting point for any

kind of neural network analysis is a model neuron whose behavior follows closely our

understanding of how real neurons work. This model neuron is shown in figure 2.9.

The neuron has N input lines and a single output. Each input signal is weighted, that

is, it is multiplied with the weight value of the corresponding input line (by analogy

to the synaptic strength of the connections of real neurons). The neuron combines

these weighted inputs by forming their sum and, with reference to a threshold value

and activation function, it determines the output. In mathematical terms, we may
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describe the neuron by writing the following pair of equations:

u =
N∑

i=1

wixi (2.15)

y = f(u − θ) (2.16)

where xis are the inputs to the neuron, wis are the weights of the neuron, u is the

weighted sum, f(.) is the nonlinearity function and y is the final output.

Feed-forward networks form the most important class among the different classes

of neural networks. Typically, these consist of a set of sensory units (source nodes)

that constitute the input layer, one or more hidden layers of computation nodes and

an output layer of computation nodes. The input signal propagates through the

network in a forward direction, on a layer-by-layer basis. These neural networks are

commonly referred to as multilayer perceptrons(MLPs) (figure 2.10). MLPs have

been applied successfully to solve some difficult and diverse problems by training

these in a supervised manner with the highly popular algorithm known as the error

back-propagation algorithm.

2.2.5 The Proposed Algorithm and Obtained Results

In our proposed system, after the face is detected, the PCA features are extracted,

followed by classification using an MLP based ANN. Extensive experiments were

carried out using the proposed algorithm. Eigen space dimension was chosen to be
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Figure 2.10: Topology of a single hidden layer MLP [2]

10, since it has been observed that increased dimension does not contribute to the

accuracy [20]. A single hidden layer MLP based architecture of neural network is

implemented with back propagation method used for weight updating.

Table 2.1 shows the results using the AT&T database. The pose variations for

one class has also been shown. We have taken 10 classes i.e there were 10 persons,

with a training set of 7 images and testing set of 3 images per person. The results are

displayed in terms of cost function which is a measure of performance of learning,

achieving an overall recognition rate of 93.3%. Our algorithm outperformed the

recognition rate of 75% on AT&T database for same number of classes as achieved

in [22].
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CLASS Recognized as
1 2 3 4 5 6 7 8 9 10

1 3 0 0 0 0 0 0 0 0 0
2 0 3 0 0 0 0 0 0 0 0
3 0 0 3 0 0 0 0 0 0 0
4 0 0 0 3 0 0 0 0 0 0
5 0 0 0 1 2 0 0 0 0 0
6 0 0 0 0 0 3 0 0 0 0
7 0 0 0 0 0 0 3 0 0 0
8 0 0 0 0 0 0 0 3 0 0
9 0 0 0 0 0 0 0 0 3 0
10 0 0 0 0 0 0 0 1 0 2

Table 2.1: Classifications results with the AT&T database

CLASS TRUE CLASSIFICATIONS FALSE CLASSIFICATIONS
1 3 0
2 3 0
3 2 1
4 3 0
5 3 0
6 3 0
7 3 0
8 1 2
9 2 1
10 3 0
11 3 0
12 3 0
13 3 0
14 3 0
15 3 0

Table 2.2: Classification results with the YALE database
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The algorithm was also tested using the YALE database (15 classes with 11

images per class) with 8 training images and 3 testing images per class. The results

of classification for each class are shown in Table 2 with an overall recognition rate

of 91.11%. An example of misclassification result is shown in figure 2.12. The main

contribution of the approach has been the improvement achieved in recognition rate.

Note that we have performed experiments without any thresholding, thus the issue

of false acceptance rate is not addressed here.

2.3 Combining Multiple Classifiers

The idea of combining multiple classifiers is not to rely on a single decision mak-

ing scheme. Instead, all the designs, or their subsets, are used for decision making

by combining their individual “opinions” to derive a consensus decision. Various

classifier combination schemes have been devised and shown to lead to better clas-

sification results then those obtained using a single best classifier. However, there is

presently inadequate understanding why some combination schemes are better than

others and in what circumstances. It is mentioned in [4] that there are two main

reasons for combining classifiers: efficiency and accuracy.

The existing classifier combination methods can be divided into two groups: the

multi-stage methods and the ensemble methods. The multi-stage methods decom-

pose the classification problem into a set of subproblems that can be solved by
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Figure 2.11: A subject of AT&T database with various poses.

(a) The unknown image (b) The recognized image

Figure 2.12: An example of misclassification
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“local” classifiers. Therefore, the focus is more on the decomposition rather than on

the classifiers. On the other hand, the main point for ensemble methods is that a

group (ensemble) of “global” classifiers potentially gives better generalization than

the individual classifiers (ensemble members).

The fusion of classifiers could be achieved at three levels i.e data level fusion,

feature level fusion and decision level fusion. In this thesis, we have addressed the

decision level fusion problem.

2.4 The Multi-Stage Classifiers

The multi-stage classifier architecture is based on the divide-and conquer principle,

in which a large, hard to solve problem is broken up into many smaller, easier to

solve problems. This principle yields good performance and allows fast training.

Many types of classifiers have been used in multi-stage methods. Simple classifiers

were used in [24], generalized linear models were used in [25], and ANNs were used

in [26]. An example of multi-stage classifiers was given by Cao et al. [27], where the

problem of handwritten numerals recognition was considered. Rather than classify-

ing the patterns into 10 classes in one step, a subclass method of 2 classes was used.

Thus, the 10-category numeral recognition problem was divided into 45 2-category

classification problems, where each sub-classifier was for two numerals. In the first

stage, a clustering neural network decided which classifier to be used for an unknown
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input pattern. Zhou and Pavlidis [28] proposed a hierarchical character recognition

scheme. An object was first classified based on a preliminary shape description and

then justified the shape on questionable parts according to acquired class knowledge

and additional information. Polygonal features and contour features were used as

preliminary and secondary sources of shape information. Other examples of multi-

stage methods can be found in [29, 30, 31, 32, 33, 34, 35]. The multi-stage classifiers

are often used to solve specific problems [36].

2.5 Combination of a Group of Global Classifiers

Combining classification results of a group of global classifiers has recently received

considerable attention as a new direction for the development of highly reliable

pattern classification systems. This is due to the following:

1. In many pattern classification problems, there are a number of classification

algorithms available. These algorithms are based on different theories and

methodologies. For a specific problem, these classifiers usually attain different

degrees of success, but the perfection of one technique cannot be claimed. We

need to investigate ways of integrating the results of these different classifiers

in order to achieve better results.

2. Many types of features have been proposed to represent patterns. These fea-

tures could be in the form of binary values, discrete labels, continuous vari-



40

ables, etc. No single classifier can handle all types of features, and the only

way to process them is by using many classifiers. Hence, we need to integrate

the results obtained by classifying the different types of features to obtain

better results than any specific set of features can provide.

Figure 2.13: Multiple classifier system

In other words, the use of multiple classifier systems is motivated by the existence of

many alternative solutions to a pattern classification problem, and the observation

that these solutions often complement one another in accuracy. A block diagram of

a multiple classifier system is shown in figure 2.13.

An interesting question is whether it is possible to integrate these alternative

solutions, in such a way that the integration excels the individual solutions in per-

formance. In several preliminary studies [37, 38, 39, 40, 41], there are hints that

robust solutions to certain recognition problems may involve a number of indepen-

dent methods. These studies suggest the idea of a multiple classifier system. The
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main issue that needs to be tackled in designing a multiple classifier system is the

conflict between classifiers, which arises when two or more classifiers make differ-

ent decisions. As explained in [42], the problem of combining multiple classifiers

consists of two parts. The first part, closely dependent on specific applications, in-

cludes the problems of “How many and what type of classifiers should be used for a

specific application?, and for each classifier what type of features should we use?”,

as well as other problems that are related to the construction of those individual

and complementary classifiers. For the particular case of handwritten numerals,

good description of these issues can be found in [43, 44], while Alkoot and Kittler

[45] studied the effect of adding classifiers to the multiple classifier architecture and

adding new features to each of the classifiers in the architecture. The second part,

which is common to various applications, tackle the problems related to the question

“How to combine the results from different existing classifiers so that a better result

can be obtained?”. In our work, we will be concentrating on problems related to the

second part. It is first necessary to understand the type of information provided by

each of the classifiers before trying to combine their results. The output information

from various classification algorithms can be categorized into three levels [42, 46]:

1. The abstract level: a classifier only outputs a unique label, as in the case of

syntactic classifiers.

2. The rank level: a classifier ranks all class labels or a subset of the class labels



42

in a queue with the label at the top being the first choice.

3. The measurement level: a classifier attributes to each class a measurement

value that reflects the degree of confidence that a specific input belongs to a

given class. This degree could be a probability, as in the Bayesian classifier,

or any other scoring measure.

It is obvious that class ranking can be obtained from class measurements, as well

as class labels can be obtained from the top choice among class ranking and class

measurements. In other words, the measurement level contains the highest amount

of information while the abstract level contains the lowest.

The basic formulation of the problem is as follows: Consider that we have N

different classifiers, cn, n = 1, ..., N . Then the input pattern x is assigned to one of

the K possible classes {ω1, ...ωk, ...ωK} by each classifier. The input feature vector

to classifier cn is fn, and the type of classification vector yn = [yn(1), ..., yn(K)]T

produced by cn could be either abstract, ranking, or measurement. Below are de-

scriptions of the different combination methods developed for the three decision

levels.

2.6 Combination of Abstract level Decisions

A number of methods have been used to combine classification results at the abstract

level. Below are the most well-known techniques:
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2.6.1 Majority Voting

The majority voting can be considered as the default combination scheme for this

type of information. It has received great attention as it is seen as the simplest

combination scheme and lends itself easily to theoretical analysis of behavior and

performance [47, 41, 48, 49, 4].

As indicated by its name, the method is based on the majority voting principle.

If classifier cn assigns a given pattern to class label ωk, then we say that a vote

is given to ωk. After counting the votes given to each class label by all classifiers,

the class label that receives a number of votes higher than others (or higher than a

prefixed threshold) is taken as the final output.

Hansen and Salamon [41] showed that if independent neural networks are com-

bined, provided that each network can get the right answer more than half the times,

then the more networks used, the less is the likelihood of an error. A weighted voting

scheme was also proposed in [50]. The vote of each classifier was weighted according

to its performance, i.e., the weight of a good classifier would be higher than that of

a less powerful classifier. Thus, this approach takes into account the reliability of

the different classifiers. Lam and Suen [51] proposed a method to obtain the weights

of each classifier through the optimization of an objective function for the combined

decision. Bayesian formulation and genetic algorithms were also studied. Xu et al.

[42] described the different variants of the voting principle and presented a general
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formula to the voting function.

2.6.2 Bagging and Boosting

Two decision expert learning approaches, boosting [52, 53] and bagging [54], have

received extensive attention recently [55, 56]. The Bagging algorithm (Bootstrap

aggregating) votes classifiers generated by different bootstrap samples. A Bootstrap

sample is generated by uniformly sampling m instances from the training set with

replacement. T bootstrap samples B1, B2, ..., BT are generated and a classifier Ci is

built from each bootstrap sample Bi. A final classifier C∗ is built from C1, C2, ..., CT

whose output is the class, predicted most often by its sub-classifiers, with ties broken

arbitrarily.

Boosting was introduced by Schapire (1990) as a method for boosting the perfor-

mance of a weak learning algorithm. Like Bagging the Boosting algorithm generates

a set of classifiers and votes them. It changes the weight of the votes given to each

classifier in an adaptive manner. Given an integer T specifying the number of trials,

T weighted training sets S1, S2, ..., ST are generated in sequence and T classifiers

C1, C2, ..., CT are built. A final classifier is formed using a weighted voting scheme:

the weight of each classifier depends on its performance on the training set used to

build it.

There are two major differences between bagging and boosting. First, boosting

changes adaptively the distribution of the training set based on the performance of
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previously created classifiers while bagging changes the distribution of the training

set stochastically [57]. Second, boosting uses a function of the performance of a

classifier as a weight for voting, while bagging uses equal weight voting [57]. With

both techniques the error decreases when the size of the experts increases, but the

marginal error reduction of an additional member tends to decrease [57].

2.6.3 Dempster-Shafer Theory of Evidence

Dempster-Shafer theory of evidence or the DST, proposed in the mid of 1970, has

shown its power for modeling uncertainty. In order to take into account uncertainties

in classification, the Dempster-Shafer theory of evidence was used in [42] to combine

the classification results. The recognition, substitution, and rejection rates were used

to measure the belief of each classifier. When tested experimentally, this method was

found to be quite robust, and was shown to outperform majority voting. However,

the way the belief was measured in [42] is not optimal, as it does not take into

consideration the accuracy with respect to each class label, and hence does not

resolve conflicts between classifiers in an optimal way.

2.6.4 Bayesian Formulation

The confusion matrix, which describes the errors of different classifiers, was used by

Xu et al. [42] to estimate the conditional probabilities that input pattern x belongs

to class label ωk is true under the condition that classifier cn chooses label ωj (i.e.,
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yn(j) = 1), that is:

P (x ∈ ωk/y
n(j) = 1) =

e
(n)
kj

K∑
k=1

e
(n)
kj

(2.17)

where e
(n)
kj is the number of patterns actually belonging to ωk that have been

assigned to ωj by the classifier cn. On the basis of the above probabilities, the com-

bination of independent classifiers can be carried out by multiplying the normalized

conditional probabilities. The pattern is then assigned to the class for which the

combined value is maximum. A detail of the Bayesian approaches could be found

in [58].

2.6.5 Behavior-Knowledge Space

Huang and Suen [59] presented a combination scheme designed to avoid the implica-

tions of the independence assumption. To this end, prior knowledge on the behavior

of the classifier ensemble is recorded in the behavior-knowledge space (BKS). It is

an N-dimensional space where each dimension corresponds to the decision of one

classifier. Each intersection in the BKS represents a possible N-tuple of decisions

taken by the classifiers in the ensemble. The number of samples of each class with

the same ensemble behavior is stored in each BKS intersection. When a new pattern

needs to be classified, the answers of the ensemble are used to pick the proper entry

in the BKS. The class that accumulated the highest number of samples in the picked

BKS entry is then taken as the true class for the test pattern. Since the independent
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assumption of Bayesian Formalism fails to hold for many real situations, and BKS is

hard to implement, due to its computational and large storage requirements, Kang

et al. [60, 61] proposed an intermediate approach based on the approximation of

the product of Nth order dependency.

2.7 Combination of Rank Level Decisions

The rank level classifiers give an output vector with class labels arranged in a de-

creasing order of priority. Little work has been conducted in the combination of rank

level decisions mainly because the information provided by most classifiers falls ei-

ther into the abstract or measurement levels. The main contribution was made by

Ho et al. [62], where two classes of techniques have been investigated: class set

reduction and class set reordering. Class set reduction aims at reducing the number

of classes in the output list without losing the true class. The criteria of success

are: the size of the result set should be minimized, and the probability of the in-

clusion of the true class should be maximized. The method derives a threshold on

the ranks according to the worst-case ranks of the true classes. On the other hand,

class set reordering attempts to improve the rank of the correct class. The criterion

of success is the position of the true class in the resultant ranking, as compared to

its position in the ranking before combination. A method is considered successful

if the probability of having the true class near the top of the combined ranking is
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higher than that of each of the original rankings.

The use of such methods allows the combination of classifiers where the outputs

are at the measurement level but they are expressed on different scales. Rankings

can be in fact easily derived from measurement outputs. Of course some information

would be lost since the confidence of the decisions cannot be estimated.

2.8 Combination of Measurement Level Decisions

Measurement level classifiers give output in form of confidence (score) in each class

label. Because classifiers that produce measurement decisions are widely used, many

researchers have concentrated on the combination of such classifiers. Below are the

well-known methods developed to date:

2.8.1 Traditional Methods

A theoretical framework for combining classifiers using traditional methods was

developed by Kittler et al. [4]. Classifier combination strategies based on the product

and sum decision rules were investigated. The max,min,median and majority voting

rules were derived from the above two rules.

Previous experimental comparison of various classifier combination schemes showed

that the combination under the sum rule outperformed the other classifier combina-

tion scheme. Alkoot and Kittler [63] emulated the behavior of individual classifiers
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by subjecting their nominal soft outputs to perturbation errors. The experiments

showed that combined classifiers give better results than those by single classifier,

especially the sum and median. However, the single classifier might be preferable

over the product, minimum, and maximum, under the Gaussian noise assumption

of the estimation error. The results also confirmed the theoretical prediction that

in most scenarios the sum rule outperformed the product rule and other strategies

derived from it [63].

2.8.2 The Dempster-Shafer Theory of Evidence

Because of its ability in representing uncertainty and lack of knowledge, the Dempster-

Shafer theory of evidence has generated considerable interest in various fields, in-

cluding classifier combination. Measurement outputs could provide more useful in-

formation, compared to abstract and rank outputs, that can help in estimating the

evidence of classifiers more accurately. Mandler and Schurmann [40] attempted to

estimate the a posteriori probability function for both intra and interclass distances,

which were then transformed into evidence. But due to the approximations asso-

ciated with estimating the statistical models of intra and interclass distances, the

accurate estimation of evidence could not be claimed. Rogova [64] proposed to use

a reference vector and a proximity measure to estimate the evidence. The results

obtained were promising. However, the techniques to appropriately choose both the

reference vector and the proximity measure were not well formulated.
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2.8.3 Re-classifying the original classification results

Stacked generalization, a scheme for minimizing the generalization error rate of one

or more classifiers, was proposed by Wolpert [65]. Stacked generalization works by

deducing the biases of the classifier(s) with respect to a provided learning set.

Merz [66] used the strategies of stacking and correspondence analysis to model

the relationship between the learning examples and their classification by a collec-

tion of learned classifiers. Correspondence analysis is a method for geometrically

modeling the relationship between the rows and columns of a matrix whose entries

are categorical [67]. The goal was to explore the relationship between the training

examples and their classification by the learned models. In an empirical analysis,

the method was showed to be insensitive to poor learned models and matched the

performance of plurality voting as the errors of the learned models become less

correlated.

Krogh and Vedelsby [68] defined the ambiguity as the variation of the output of

ensemble members averaged over unlabeled data, which quantifies the disagreement

among classifiers. They used the ambiguity with cross-validation to give an estimate

of the ensemble generalization error.

A two-fold approach to the problem that contains data transformation and data

classification was proposed by Huang et al. [69]. In data transformation, the classifi-

cation results of each classifier are transformed into a form of likeness measurement.
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The larger the likeness measurement is, the more probable the corresponding class

belongs to that input. In data classification, a neural network was used to aggregate

the transformed results to produce the final classification decisions.

2.9 Chapter Summary

In this chapter we have proposed a neural network based face recognition system

which outperforms the previous benchmark algorithms. With the understanding

that in a real time implementation, a localized face is not always available, we

developed a robust model based technique for face detection in complex images.

Further, we discussed the issue of combining classifiers. Classifier designs differ

from each other in two aspects:

1. The method in which the features are extracted and

2. The algorithm used for classification.

Different classifier designs offer complementary information for a given test pat-

tern. This observation provides enough rational to conduct research in area of

combining the complementary classifiers so that a consensus decision is achieved.

Studies have shown that a combined classifier system consistently outperforms the

individual classification results.

We have discussed different methods of combining classifiers for e.g majority

voting, Bayesian formulation, Dempster-Shafer theory of evidence etc. Among these
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the Dempster-Shafer theory of evidence models the uncertainty in a better way by

avoiding the over commitment in certain hypothesis. In the next chapter, we discuss

the Dempster-Shafer theory of evidence and its implementation to the classifier

combination problem with application to multimodal biometrics.



Chapter 3

Combining Classifiers Using the

Dempster-Shafer Theory of

Evidence

3.1 Introduction

In pattern recognition, the main objective is to achieve the highest possible clas-

sification accuracy. To attain this objective, researchers, throughout the past few

decades, have developed numerous systems working with different features depend-

ing upon the application of interest. These features are extracted from the data

and can be of different types like continuous variables, binary values, etc. As such,

a certain classification algorithm used with a specific set of features may or may

53
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not be appropriate with a different set of features. In addition, classification algo-

rithms are different in their theories, and hence achieve different degrees of success

for different applications. Even though, a specific feature set used with a specific

classifier might achieve better results than those obtained using another feature set

and/or classification scheme, one can not conclude that this set and this classifi-

cation scheme achieve the best classification results [46]. It has been found that

the different classifiers used for a special classification task usually complement each

other with respect to the information extracted from the patterns to be classified

[4]. As a result, combining the different classifiers, in an efficient way, is expected to

achieve better classification results than any single classifier including the best one.

As explained in [42], the problem of combining multiple classifiers consists of

two parts. The first part includes the problems of “How many and what type of

classifiers should be used for a specific application?, and for each classifier what type

of features should we use?”, as well as other problems that are related to the con-

struction of these individual and complementary classifiers. The second part covers

the problems related to the question “How to combine the results from different

existing classifiers so that a better result can be obtained?”. Several combination

methods based on different theories have been proposed in the literature however

one of the important issues that needs to be considered when combining classifiers

is the level of uncertainty associated with the performance of each of the classifiers.

In the following section, we discuss how the Dempster-Shafer theory of evidence is
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an appropriate approach when it comes to representing uncertainty.

3.2 Representation of Uncertainty

Let us first give a simple example to explain uncertainty. Let θ represent the fol-

lowing proposition: the passionfruit is delicious. Then according to the Bayesian

theorem P (θ) + P (θ) = 1, where θ is negation of θ. Now suppose that Jim has not

tasted the passionfruit before. Then, we cannot say that Jim believes the proposi-

tion if he has no idea what it means. Also, it is not fair to say that he disbelieves the

proposition. This problem can be better represented by the Dempster-Shafer (D-S)

theory of evidence, which is regarded as a more general approach to representing

uncertainty than the Bayesian approach. The D-S theory would denote Jim’s belief

of the proposition, m(θ), and disbelief, m(θ), as both being zero. Certainty factors

do not allow this.

Thus, the difference between the Bayesian statistical model and the D-S evi-

dential theory is conceptual. In the statistical model, it is assumed that there is

a Boolean phenomena which either does or does not exist. The result of this as-

sumption leads to the implication that commitment of belief to a hypothesis leads

to the commitment of the remaining belief to its negation. If there is little belief

for the existence of a phenomena this would imply, under the Bayesian formulation,

a large belief to its non-existence, which is what we call over-commitment. In D-S
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theory, one considers the evidence in favor of a hypothesis. There is no causal rela-

tionship between a hypothesis and its negation, hence lack of belief does not imply

disbelief. Rather, lack of belief in any particular hypothesis implies belief in the

set of all hypotheses, which is referred to as the state of uncertainty. If we denote

the uncertainty by Θ, then in the above example m(Θ) = 1, which is calculated by

the following formula: m(θ) + m(θ) + m(Θ) = 1. For this reason, we will only be

concerned here with the D-S theory of evidence and its application to the problem

of classifier combination.

We now introduce some basic concepts of the Dempster-Shafer theory of evi-

dence.

3.3 The Dempster-Shafer Theory of Evidence

The D-S theory of evidence [70] is a powerful tool for representing uncertain knowl-

edge. This theory has inspired many researchers to investigate different aspects re-

lated to uncertainty and lack of knowledge and their applications to real life problems

[71]. Today, the D-S theory covers several different models including the transferable

belief model (TBM) [70].

In order to explain the combination rule under the TBM model, we need to

present the definitions of basic belief assignment and belief function. Let Θ =

{θ1, ....θK} be a finite set of possible hypotheses. This set is referred to as the frame
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of discernment, and its powerset denoted by 2Θ. The basic belief assignment of a

subset of Θ and the belief function associated with it are defined as follows:

3.3.1 Basic Belief Assignment (BBA)

A basic belief assignment m(.) is a function that assigns a value in [0,1] to every

subset A of Θ and satisfies the following:

m(φ) = 0, and
∑
A⊆Θ

m(A) = 1 (3.1)

where φ is the empty set. It is worth noting that m(φ) can be non-zero when

considering un-normalized combination rule as will be explained later. While in

probability theory a measure of probability is assigned to atomic hypotheses θi,

m(A) is the measure of belief that supports A, but does not support anything more

specific, i.e., strict subsets of A. For A �= θi, m(A) reflects some ignorance because

it is a belief that we cannot subdivide A into finer subsets. m(A) is a measure

of support we are willing to assign to a composite hypothesis A at the expense of

support m(θi) of atomic hypotheses θi. For a particular frame of discernment Θ,

if we set m(θi �= 0) for all θi and m(A) = 0 for all A �= θi, then m(θi) becomes

probability of θi with
∑

i m(θi) = 1 . A subset A for which m(A) > 0 is called

a focal element. The partial ignorance associated with A leads to the following

inequality: m(A) + m(A) ≤ 1, where A is the complement of A. In other words,

the D-S theory of evidence allows us to represent only our actual knowledge without
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being forced to overcommit when we are ignorant.

3.3.2 Belief Function

The belief function, bel(.), associated with the BBA m(.) is a function that assigns

a value in [0,1] to every nonempty subset B of Θ. It is called degree of belief in B

and is defined by

bel(B) =
∑
A⊆B

m(A) (3.2)

where A is subset of B. We can consider a basic belief assignment as a general-

ization of a probability density function whereas a belief function is a generalization

of a probability distribution function.

3.3.3 Combination rule

Consider two BBAs m1(.) and m2(.) for belief functions bel1(.) and bel2(.) respec-

tively. Let Aj and Bk be focal elements of bel1(.) and bel2(.) respectively. Then m1(.)

and m2(.) can be combined to obtain the belief committed to C ⊂ Θ according to

the following combination or orthogonal sum formula [70],

m(C) = m1(C) ⊕ m2(C) =

∑
j,k,Aj∩Bk=C

m1(Aj)m2(Bk)

1 −
∑

j,k,Aj∩Bk=φ

m1(Aj)m2(Bk)
, C �= φ (3.3)

The denominator is a normalizing factor, which intuitively measures how much
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m1(.) and m2(.) are conflicting. Smets [72] proposed the un-normalized combination

rule :

m1(C) ∩ m2(C) =
∑

j,k,Aj∩Bk=C

m1(Aj)m2(Bk) ,∀C ⊆ Θ (3.4)

This rule implies that m(φ) could be positive, and in such case reflects some

kind of contradiction in the belief state. In our passionfruit example, suppose that

Kim has tasted the passionfruit and expressed his belief as follows: m2(θ) = 0.8,

m2(θ) = 0.2 and m2(Θ) = 0. The reason behind assigning 0 to m2(Θ) is that

Kim knows exactly what the proposition means. Combining the beliefs of Jim and

Kim according to the combination rule would lead to: m(θ) = 0.8, m(θ) = 0.2

and m(Θ) = 0, which is Kim’s belief. This makes sense, as there is no reason for

the totally uncertain belief to have any effect on the combination outcome. Now

assume that Lim has only tasted the passionfruit once while eating a fruit salad and

that he did not like the taste of the fruit salad. Lim expressed his belief as follows:

m3(θ) = 0.1, m3(θ) = 0.4 and m3(Θ) = 0.5. Lim was a bit uncertain because he had

no clear idea about the taste of the passionfruit itself. The outcome of combining

Kim’s and Lim’s beliefs would be: m(θ) = 0.73, m(θ) = 0.27 and m(Θ) = 0. Note

how the result is influenced by Kim’s belief. This is due to the uncertainty of Lim,

without which, both Kim and Lim would have the same influence on the combination

outcome.
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3.3.4 Combining Several Belief Functions

The combination rule can easily be extended to several belief functions by repeating

the rule for new belief functions. Thus the pairwise orthogonal sum of n belief

functions bel1, bel2, ...., beln, can be formed as

((bel1 ⊕ bel2) ⊕ bel3)...... ⊕ beln =
n⊕

i=1

beli (3.5)

Based on the above, the outcome of combining the beliefs of Jim, Kim and Lim

would be: m(θ) = 0.73, m(θ) = 0.27 and m(Θ) = 0, please note the influence of

Jim’s belief on the combination.

The D-S theory can be applied to the problem of combining the classification

results of different classifiers by considering the evidence of each classifier as a BBA.

Since the classifiers’ evidence plays a crucial role in the combination performance,

there is an increased interest in the proper estimation of such evidence. In the next

section, we discuss how a number of existing classifier combination methods estimate

the evidence of classifiers.

3.4 Existing Methods for Estimating the Evidence

Mandler and Schurmann [40] proposed a method that transformed distance measures

of the different classifiers into evidence. This was achieved by first calculating a

distance between learning datasets and a number of reference points in order to
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estimate statistical distributions of intra- and interclass distances. A distance within

a specific class label is called intraclass distance, while interclass distance is the

distance between different classes. For both, the a posteriori probability function

was estimated, indicating degree at which an input pattern belongs to a certain

reference point. Then, for each class label, the class conditional probabilities were

combined into an evidence value ranging between 0 and 1, which was considered as

the BBA of that class. Finally, Dempster’s combination rule was used to combine

the BBAs of the different classifiers to give the final result. This approach departs

from the traditional Bayesian method in the way the basic belief is assigned, here

the distance measure is used to develop certain statistical model, where as in the

Bayesian we pre-assume some sort of distribution over the data. As explained in

[64], this method brought forward questions about the choice of reference vectors

and the distance measure. Moreover, approximations associated with estimation

of parameters of statistical models for intra- and interclass distances can lead to

inaccurate measurements of the evidence.

In [42], K + 1 classes were used to perform the classification task, where the

Kth+1 class denotes that the classifier has no idea about which class the input comes

from. For each classifier cn, n = 1.....N , recognition, substitution and rejection rates

(εn
r ,εn

s and 1−εn
r−εn

s ) were used as a measure of BBA. Recognition rate is the accuracy

of correctly classifying a test pattern, substitution rate is the misclassification rate

and the rejection rate is a measure of the amount of patterns designated the class
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label K + 1.

Based on the above assumption, the algorithm in [42] is summarized as:

1. If the maximum output of a specific classifier belongs to K + 1, then mn has

only one focal element Θ with mn(Θ) = 1.

2. When the maximum output belongs to one of the K classes, mn has two focal

elements θk and θk with mn(θk) = εn
r , mn(θk) = εn

s . As the classifier says

nothing about any other proposition, mn(Θ) = 1 − mn(θk) − mn(θk).

The drawback of this method is again the way the evidence is measured. There

are two problems associated with this method. Firstly, many classifiers do not

produce binary outputs, but rather probability like outputs. So, for the first case, it

would be inaccurate assigning 0 to both mn(θk) and mn(θk). Secondly, this way of

measuring evidence ignores the fact that classifiers normally do not have the same

performance with different classes. This had a clear impact on the performance of

this combination method when compared with other conventional methods especially

the Bayesian approach [42].

Rogova [64] used several proximity measures between a reference vector and a

classifier’s output vector. The proximity measure that gives the highest classification

accuracy was later transformed into evidences. The reference vector used was the

mean vector, µn
k , of the output set of each classifier cn and each class label k. A

number of proximity measures, dn
k , for µn

k and yn were considered, yn being the



63

output vector for the nth classifier. For each classifier, the proximity measure of

each class is transformed into the following BBAs:

mk(θk) = dn
k , mk(Θ) = 1 − dn

k (3.6)

mk(θk) = 1 −
∏
l �=k

(1 − dn
l ),mk(Θ) =

∏
l �=k

(1 − dn
l ) (3.7)

The evidence of classifier cn and class label k is obtained by combining the

knowledge about θk. Finally, Dempster’s combination rule was used to combine

evidences for all classifiers to obtain a measure of confidence for each class label.

This was a promising idea. However, the major drawback is the way the reference

vectors were calculated, where the mean of output vectors may not be the best

choice. Also, trying several proximity measures and choosing the one that gives the

highest classification accuracy is itself questionable and computationally expensive.

3.5 Chapter Summary

The Bayesian formulation of a given problem assumes a Boolean phenomenon which

leads to over-commitment i.e the degree of belief we have in existence of certain

hypothesis (say θ) has a causal effect on our belief in non-existence of the hypothesis

(θ). Thus a small degree of belief in hypothesis θ automatically leads to large degree

of belief to the negation of the hypothesis (θ). Thus our lack of knowledge leads to
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a over-commited formulation of the problem. Dempster-Shafer theory of evidence

(DST) in contrast to the Bayesian theory keeps as much belief in a hypothesis

as implied by an evidence, there by avoiding the over-commitment. As such, under

DST formulation of the problem, lack of belief does not mean disbelief, leading to an

adequate representation of uncertainty. This ability of DST to represent uncertainty

has attracted researchers to implement it in decision making problems where there

is a lack of knowledge. Thus classifier combination approaches have been proposed

using the DST formulation of the problem. After presenting the details of DST

in combining classifiers, we propose in the next chapter a text-dependent speaker

identification system using the DST framework.



Chapter 4

The DST Fusion of Homogeneous

Distance Classifiers

4.1 Introduction

Accessing restricted areas or resources is becoming a regular part of our lives,

whether we are trying to access a building or our bank accounts, we need some

sort of identification or authentication. There are many ways to achieve this, for

example an identity card, smart card etc, these all approaches however fall in the cat-

egory of “what you have?”. However these means of authentication could be forged

or stolen, thus the challenge is to use a biometric. Biometric rely on “what we are?”

rather than “what we have?” to develop more secure and safe authentication sys-

tems. Among the biometric traits available for the purpose of person identification,

65
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speech makes the most natural and obvious choice. Automatic speaker recognition

(ASR) systems identify people utilizing the utterances.

The area of automatic speaker recognition could be subdivided into two specific

branches:

1. Automatic Speaker Identification (ASI): This is a problem of recognizing that

who is talking? In other words, the speaker desiring authentication, provides

a test sample to the system. The system is then required to figure out who is

the speaker among the N existing speakers in the database.

2. Automatic Speaker Verification (ASV): In this scenario, the user claims a

certain identity (I am Mr.X ) and the system verifies, (Mr.X authenticated)

or rejects (Access denied) the user. Thus, verification is a 1 to 1 classification

problem resulting into a binary outcome (authentication or rejection).

Depending upon the nature of the application, speaker identification or speaker

verification systems, could be modeled to operate either in text-dependent or text-

independent modes. For text-dependent ASR, the user is required to utter a specific

password, while for text-independent ASR, there is no need for such a constraint.

Success in both cases depends on the modeling of speech characteristics which distin-

guish one user from the other. Text-dependent ASR is used for applications where

the user is willing to cooperate by memorizing the phrase or password to be spoken.

Research in the field of speaker recognition traces back to the early 1960s when
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Lawrence Kersta at Bell Labs made the first major step in speaker verification by

computers, where he introduced the term voiceprint for a spectrogram, which was

generated by a complicated electro-mechanical device [73]. Since then, there has

been a tremendous amount of research in the area. Starting from spectrogram

comparisons, passing through simple template matching, dynamic-time wrapping,

to more sophisticated statistical approaches like Gaussian Mixture Model (GMM)

[74, 75, 76], Hidden Markov Model (HMM) [77, 78, 79], neural networks [80, 81], etc.

We continue to witness new techniques on regular basis, however, despite robustness

and reliability, speaker recognition systems, as all other biometric systems, have their

own limitations. Furthermore, one classification method good for one application

might not suit a different application. These observations have attracted the interest

of researchers in trying to combine decisions from multiple classifiers to reach better

recognition rates.

In this work, we propose to apply the Dempster-Shafer theory of evidence to the

problem of speaker recognition. This chapter is organized as follows: In section 2,

we propose our algorithm called NNEF (Nearest Neighbor based Evidence Fusion),

followed by section 3 which discusses the two individual speaker recognition systems

considered here. The chapter is concluded in section 4 with a number of experimental

results.



68

4.2 Dempster-Shafer Formulation of the Problem

Consider the case of N classifiers denoted by e(n), where n = 1, 2........N . Let Xk

be the training data matrix for each class, k = 1, 2, ......K, K being total number

of classes. We will assume here equal amount of training for each of the classes.

Also let θk be the label for each class k. Now, the feature extraction module of each

classifier extracts a feature matrix X
(n)
k . We define a modeling function Ω(.) which

models each class so that

Ω(X
(n)
k ) = U

(n)
k ; k = 1, 2, . . . , K (4.1)

n = 1, 2, . . . , N (4.2)

Let z be an input test pattern which is modeled in a similar way :

Ω(z) = Z (4.3)

For the case of a single classifier, the classification task is to assign class i to

pattern z if:

D(Ui,Z) < D(Uk,Z) ∀ k = 1, 2, ..., K (k �= i) (4.4)

where Uk is the model for each class k, and Ui being the nearest neighbor to

Z. D(.) is a distance measure between the test pattern model (Z) and the training

pattern models for each class (Uk k = 1, 2, . . . , K).
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Assume now that we have N classifiers, so that each classifier operates on the

test model independently to reach an independent decision.

Since for each classifier, the function Ω(.) models the patterns in the same man-

ner, we propose the nearest neighbor distance
(n)

min︸︷︷︸
k

{D(U
(n)
k ,Z)} as the evidence of

our belief in the decision made by classifier n. Thus, the belief becomes a decreasing

function (say ψ(.)) of this distance:

m(n)(i) = ψ(
(n)

min︸︷︷︸
k

{D(Uk,Z)}) (4.5)

where m(n)(i) is our belief in classifier n for classifying z as class i.

One candidate for the function ψ(.) could be the exponential function:

m(n)(i) = exp( − (
(n)

min︸︷︷︸
k

{D(Uk,Z)})) (4.6)

Hence the smaller the nearest neighbor distance measure, the greater is our belief

in the decision of the classifier. In summary our algorithm works as follows:

1. Each class is modeled using the training data matrix Xk, k = 1, 2, . . . , K and

the function Ω(X
(n)
k ) = U

(n)
k .

2. Input test pattern z is also modeled using the same modeling function Ω(.),

i.e Ω(z) = Z.
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3. A distance measure, D(.) is then used to evaluate the distance between Z and

each of the models U
(n)
k , k = 1, 2, . . . , K.

4. For each classifier, a label is given to the test pattern z which corresponds to

minimum distance measure

d(n) = min︸︷︷︸
k

{D(U
(n)
k ,Z(n))} (4.7)

n = 1, 2, . . . , N

k = 1, 2, . . . , K

5. We estimate our confidence in each classifier’s decision as:

m(n)(i) = exp(−d(n)) (4.8)

6. We then combine all evidences m(n) n = 1, 2, . . . , N using Dempster-Shafer

theory of evidence as follows:

m(k) =

∑
j,l,Aj∩Al=k

m(1)(Aj) . . . m(N)(Al)

1 −
∑

j,l,Aj∩Al=φ

m(1)(Aj) . . . m(N)(Al)
(4.9)

k = 1, 2, . . . , K

7. Class label j is assigned to test pattern if
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j = max︸︷︷︸
k

{m(k)}; k = 1, 2, . . . K (4.10)

Some special cases to be considered are:

(a) if all classifiers reject a pattern, the consensus decision will then be re-

jection and thus our belief will be given to the frame of discernment

m(Θ) = 1.

(b) if a subset of classifiers say M rejects a test pattern, then these classifiers

will be excluded and the decision will be made on basis of remaining

(N − M) classifiers.

The flow chart of NNEF algorithm is shown in figure 4.1.

4.3 The Developed Speaker Recognition System

We have developed two different speaker recognition systems, the main difference

between the two systems resides in the different features used. Specifically we used

the LPCC (Linear Prediction Cepstral Coefficients) and MFCC (Mel Frequency

Cepstral Coefficients) methods of feature extraction.
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Figure 4.1: Flow chart for the proposed NNEF algorithm
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4.3.1 Feature Extraction through LPCC

One of the most popular speech analysis techniques is that of linear prediction.

Linear prediction analysis of speech has become the predominant technique for es-

timating the basic parameters of speech. Linear prediction analysis provides a good

representation of speech characteristics at a low computational load.

The basic idea behind linear prediction analysis is that a specific speech sample

at the current time can be approximated as a linear combination of past speech

samples. Through minimizing the sum of squared differences (over a finite interval)

between the actual speech samples and linearly predicted values a unique set of

parameters or prediction coefficients can be determined. These coefficients form the

basis for linear prediction analysis of speech. Thus a speech signal at time r can be

approximated using p previous samples using an LP model of order p.

ỹ(r) =

p∑
j=1

ajy(r − j) (4.11)

where ỹ(r) is the predicted speech sample, ajs are the prediction coefficients and

y(r − j)s are the p previous speech samples. The error in prediction is given as:

e(r) = y(r) − ỹ(r) (4.12)

The speech signal is first framed into blocks of approximately 30ms in length, the

process is referred to as windowing. Fourier transform is then applied to each win-
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dowed frame, to obtain the short-time spectrum. Power spectral density (PSD) is

computed from the square of the magnitude of the spectrum. In the next step, IDFT

(Inverse Discrete Fourier Transform) is applied to the PSD to obtain the autocor-

relation function. Then the Levinson-Durbin recursion is used to estimate the LPC

coefficients from the autocorrelation coefficients. Finally, the cepstral coefficients

are found from the LPC coefficients in a recursive manner. The mathematical de-

tails could be found in [82]. We have used the work in [83] to implement an LPCC

system.

4.3.2 Feature Extraction through MFCC

MFCC is perhaps the best known and the most popular feature extraction technique

for speech signals. The main purpose of the MFCC is to imitate the behavior of

a human ear. Psychophysical studies have shown that human perception of the

frequency contents of sounds for speech signals does not follow a linear scale. Thus

for each tone with an actual frequency f , measured in hertz, a subjective pitch is

measured on a scale called the ’Mel’ scale [84, 85, 86]. The Mel-frequency scale is

linear frequency spacing below 1000 Hz and a logarithmic spacing above 1000Hz.

As a reference point, the pitch of a 1 kHz tone, 40 dB above the perceptual hearing

threshold, is defined as 1000 Mels. Therefore we can use the following approximate

formula to compute the Mels for a given frequency f in Hertz:
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mel(f) = 2595 ∗ log10(1 +
f

700
) (4.13)

Figure 4.2: A typical Mel-spaced filter bank

One approach to simulate the subjective spectrum is to use a filter bank, spaced

uniformly on the Mel scale (see figure 4.2). This filter bank is applied to the

spectrum of the speech signal to get a Mel-spectrum. This Mel-spectrum when

transformed back to time domain using the Discrete Cosine Transform (DCT) gives

us the MFCC coefficients. Therefore if we denote the Mel power spectrum coeffi-

cients by Sk k = 1, 2, ..., L, k being the index of the Mel-spaced filters, then the
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MFCC (cn) are calculated as:

cn =
K∑

k=1

(log Sk) cos(n(k − 1

2
)
π

K
) n = 1, 2, . . . , L (4.14)

4.3.3 The Speaker Recognition System

We consider second order statistical modeling of speech, assuming a wide sense

stationary process (WSS) as proposed in [87]. Let Xk be the training data ma-

trix for class k, so that we have b samples available per class for training. Let

{x1,x2, . . . ,xb}, be a set of b feature vectors available for class k. Given the b

patterns available for training per class, we model a class k through the mean and

covariance matrix as follows:

x̂ =
1

b

b∑
i=1

xi (4.15)

(4.16)

Uk =
1

b

b∑
i=1

(xi − x̂)(xi − x̂)t (4.17)

Similarly for a test pattern z, we derive a covariance matrix Z. Once we have

developed the second-order statistical models, we apply an arithmetic-harmonic

sphericity measure [87] as the distance metric between X and Z, thus

Dsph(Uk,Z) = log

[
tr(UkZ

−1)tr(ZUk
−1)

m2

]
; k = 1, 2, . . . K. (4.18)
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where m is the dimension of the feature vector and tr(A) is trace of A. The

distance measures are mapped to [0, 1] with a sigmoid function.

4.4 DST based Fusion of Speaker Recognition Sys-

tems using the Proposed NNEF Algorithm

We are now at the stage of testing our proposed fusion algorithm. Note that al-

though the features are heterogeneous, they are reduced to the same distance metric,

and thus we can safely take the distance as an evidence measure since there is no

normalization issue. We have used a locally developed text-dependent database con-

sisting of 40 classes. The password for authentication is the arabic greeting sentence

assalam-o-alaikum wa rahmatullah-e-wabarakathu.

We tested our algorithm under three evaluation protocols:

1. Evaluation Protocol 1: Under the first evaluation protocol we verify our

fusion algorithm (NNEF) when we assume one classifier is perfect. In our

case it is the MFCC based classifier, which resulted in a 0% rejection and

substitution (misclassification) rate. The NNEF algorithm also resulted in a

100% classification accuracy. Thus the evidence of MFCC classifier is strong

enough to dominate the decision of LPCC, the DST fusion of the two thereby

giving an optimal result.
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Figure 4.3: Bar graph representation of recognition rates for evaluation protocol 1
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Method Training Testing Classes Recog. Rej. Subst.
MFCC 5 3 40 100% 0% 0%
LPCC 5 3 40 91.67% 0% 8.33%
NNEF 5 3 40 100% 0% 0%

Table 4.1: DST fusion results under evaluation protocol 1

Figure 4.3 and table 4.1 clearly show that when combining a perfect classi-

fier with a poor classifier, the proposed NNEF algorithm opts for the perfect

classifier, thereby avoiding the averaging process.

2. Evaluation Protocol 2: Under the second evaluation protocol, we modify

our MFCC and LPCC classifiers by introducing a threshold value α for re-

jection. The values of α being 0.53 and 0.6 for MFCC and LPCC classifiers

respectively.

Method Training Testing Classes Recog. Rej. Subst.
MFCC 5 3 40 91.67% 8.33% 0%
LPCC 5 3 40 87.5% 5% 7.5%
NNEF 5 3 40 95.83% 1.67% 2.5%

Table 4.2: DST fusion results under evaluation protocol 2

The recognition accuracy of the two classifiers has thus been reduced to 91.67%

for MFCC and 87.5% for LPCC (see table 4.2 and figure 4.4). The DST

based fusion of the two classifiers’ decision using the proposed NNEF algorithm

outperformed the two individual classifiers giving an improved recognition rate

of 95.83%.

3. Evaluation Protocol 3: Under Evaluation Protocol 3, we make the problem
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Figure 4.4: Bar graph representation of recognition rates for evaluation protocol 2

more complicated by adding white Gaussian noise to the speech data. The

aim is to verify the robustness of the NNEF algorithm under noisy conditions.

Method Training Testing Classes Recog. Rej. Subst.
MFCC 5 3 40 89.17% 10.83% 0%
LPCC 5 3 40 90.83% 0% 9.17%
NNEF 5 3 40 96.67% 0% 3.33%

Table 4.3: Results of the NNEF algorithm for 30dB SNR

The results for noise contaminated speech data for different SNR values are

shown in tables 4.3, 4.4 and 4.5 and figures 4.5, 4.6 and 4.7. For 30dB, 20dB

and 15dB SNR the NNEF algorithm shows an improvement of 5.84%, 6.63% and

5% respectively, over the best of the combining classifiers.
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Figure 4.5: Bar graph representation of recognition rates for 30dB SNR

Figure 4.6: Bar graph representation of recognition rates for 20dB SNR
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Method Training Testing Classes Recog. Rej. Subst.
MFCC 5 3 40 87.5% 12.5% 0%
LPCC 5 3 40 86.6% 2.5% 10.9%
NNEF 5 3 40 93.33% 0% 6.66%

Table 4.4: Results of the NNEF algorithm for 20dB SNR

Method Training Testing Classes Recog. Rej. Subst.
MFCC 5 3 40 85% 15% 0%
LPCC 5 3 40 83.3% 0% 6.66%
NNEF 5 3 40 90% 0% 10%

Table 4.5: Results of the NNEF algorithm for 15dB SNR

4.5 Chapter Summary

For homogeneous distance classifiers, the nearest neighbor (NN) distance is a strong

evidence in favor of the decision made by the classifier. Based on this observation

we proposed our algorithm called NNEF for fusion of different distance classifiers.

The proposed algorithm has been tested on the speaker recognition problem and

has shown to outperform the individual classifiers. The NNEF algorithm maintains

its robustness even for speech data with the AWGN (Additive White Gaussian

Noise). However the NNEF algorithm cannot combine heterogeneous classifiers. In

the next chapter, we propose a DST fusion algorithm for multimodal biometrics

(heterogeneous classifiers).
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Figure 4.7: Bar graph representation of recognition rates for 15dB SNR



Chapter 5

The Proposed Multimodal

Biometric Recognition System

A typical biometric system could be broadly divided into following four stages:

1. The sensor stage; collects the raw biometric data.

2. The feature extraction stage; converts the raw biometric data to a compact

form (features).

3. The classification stage; which operates on the test pattern and the already

developed client models to produce the decision variable.

4. The decision stage; performs the decision of either accepting a user or rejecting

him.

84
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In multimodal biometrics, the information fusion can occur at any of the above

stages:

1. Combination at the data or feature level: Either the raw data or the features

obtained from the data originating from multiple sources are fused.

2. Combination at the classification stage: The decision variables obtained from

classifiers using different modalities are fused.

3. Combination at the decision stage: The decisions taken for different biometrics

are combined to achieve an optimal decision.

5.1 The Multimodal Fusion Architecture

Depending upon the number of traits, sensors, and feature sets used, a variety of

scenarios are possible in a multimodal biometric system, as shown in Figure 5.1.

1. Single biometric trait, multiple sensors: Multiple sensors record the same bio-

metric trait. Thus, raw biometric data pertaining to different sensors are

obtained. Chang et al. [88] acquired both 2D and 3D images of the face and

combined these at the data level as well as the match score level to improve

the performance of a face recognition system. Kumar et al. [89] described

a hand-based verification system that combines the geometric features of the

hand with palm prints at the feature and match score levels. Interestingly, in
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Figure 5.1: Different architectures of a multimodal biometric system

their experiments, fusion at the match score level results in better performance

than fusion at the feature level. This could be due to the high-dimensionality

of the fused feature set (the curse-of-dimensionality problem) and, therefore,

the application of a feature reduction technique might have been more appro-

priate.

2. Single biometric trait, multiple classifiers: Unlike the previous scenario, only

a single sensor is employed to obtain raw data; this data is then used by

multiple classifiers. Each of these classifiers either operate on the same feature
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set extracted from the data or generate their own feature sets. Jain et al. [90]

used the logistic function to integrate the matching scores obtained from three

different fingerprint matchers operating on the same minutiae sets. Ross et al.

[91] combined the matching score of a minutiae-based fingerprint matcher with

that of a texture-based matcher to improve matching performance. Lu et al.

extracted three different types of feature sets from the face image of a subject

(using PCA, LDA and ICA) and integrated the output of the corresponding

classifiers at the match score level [92].

3. Single biometric trait, multiple units: In the case of fingerprints (or iris), it is

possible to integrate information presented by 2 or more fingers (or both the

irises) of a single user. This is an inexpensive way of improving system perfor-

mance since this does not entail deploying multiple sensors nor incorporating

additional feature extraction and/or matching modules.

4. Multiple biometric traits: Here, multiple biometric traits of an individual are

used to establish the identity. Such systems employ multiple sensors to acquire

data pertaining to different traits. The independence of the traits ensures that

a significant improvement in performance is obtained. Brunelli et al. [93] used

the face and voice traits of an individual for identification. A HyperBF network

is used to combine the normalized scores of five different classifiers operating on

the voice and face feature sets. Bigun et al. developed a statistical framework
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based on Bayesian statistics to integrate speech (text dependent) and face

data [94]. The estimated biases of each classifier is taken into account during

the fusion process. Hong and Jain associated different confidence measures

with the individual matchers when integrating face and fingerprint traits of

a given user [95]. They also suggested an indexing mechanism wherein face

information is used to retrieve a set of possible identities and the fingerprint

information is then used to select a single identity. A commercial product

called BioID [96] uses the voice, lip motion and face features of a user to verify

identity.

In the next section we discuss the face and speaker recognition system we devel-

oped in this thesis.

5.2 The Proposed Multimodal Biometric System

5.2.1 The Face Recognition System

Face recognition, as a paradigm of a typical recognition system, has become a bench-

mark to the solutions of some of the main computer vision problems (invariance to

view point; illumination change; occlusion; deformation due to changes of expres-

sion, age, make-up and hair style), as well to some of the main topics in statistical

pattern recognition (feature selection; generalization; discriminability, etc.). This
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is evident when the continuous publication of reviews and surveys is considered,

from the earliest of Samal and Iyengar (1992), to the latest of Jain (2003), passing

through the works of Valentin et al. (1994), Chellappa et al. (1995) and Fromherz

(1998).

We have developed a PCA (Principal Component Analysis) based approach to

the face recognition. The faces are mapped to PCA space, represented by eigen

vectors, a minimum distance classifier is implemented for the decision purpose.

5.2.2 Mathematical Analysis of PCA

The mathematical description of the PCA has been presented in chapter 2 of this

thesis.

5.2.3 The Speaker Recognition System

The speaker recognition system used is the same as the one developed in chapter 4

of this thesis.

5.3 A Dempster-Shafer Approach to Multimodal

Biometrics

The Dempster-Shafer theory of evidence has proved its ability for adequate modeling

of uncertainty in various applications. The problem of pattern classification is one
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such application. However the theory has not yet been comprehensively explored in

the area of person identification, specifically there is little research done in the im-

plementation of the idea to the field of multimodal biometrics. The main hinderance

being the multitude of heterogeneous classifiers that need to be combined. The term

“heterogeneous” introduced in the context of classifiers, refers to the differences in

classifiers to be combined. These may be:

1. The biometric traits to be combined are different.

2. The subspace techniques implemented for different classifiers are different.

3. In case of distance classifiers, the distance measure functions themselves are

different

These deviations of different classifiers have been the main challenge for the

purpose of belief estimation. Since for belief estimation we need such a parameter

as an evidence which is same for the combining classifiers, we name such parameters

as “global parameters”. In this section we have proposed two global parameters to

estimate our confidence in a classifier.

5.3.1 The Performance Parameters of a Classifier as the Ev-

idence

The global parameter proposed as an evidence in committing belief in a classifier, has

to be uniform and indifferent to the theory of the classifiers used. The performance
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parameters of a classifiers such as recognition rate, substitution rate, rejection rate

etc. are strong candidates for this purpose. This idea was adopted in [42] for the

purpose of handwriting recognition. Asserting on the fact that the DST has not yet

been used for multimodal biometric systems, we start our quest by forming basis

on the approach discussed in [42]. We call our proposed algorithm as the RREF

(Recognition Rate based Evidence Fusion).

Analytical Formulation

Let there be K number of classes θ1, θ2, . . . , θK , and let N be the total number of

classifiers available e(1), e(2), . . . , e(N). Let the (K + 1)th class denote the scenario

when the classifier(s) has/have no idea about the class label of the input pattern

and thus it corresponds to rejection.

Let us denote the recognition rate, substitution rate and rejection rate of a

classifier “n” as εn
r , ε

n
s and εn

rej respectively. Thus, the degree of confidence committed

in the decision of classifier en is its recognition rate εr and the disbelief about the

decision is its misclassification (substitution) rate. The rejection rate, corresponding

to uncertainity, is distributed over the frame of discernment Θ.

Thus if classifier e(n) classifies a test pattern as θk, the DS-formulation of the
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problem would be:

mn(θk) = εn
r

mn(¬ θk) = εn
s

mn(Θ) = εn
rej

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5.1)

Thus for a given test pattern z we have N such BPAs m1(.),m2(.), . . . ,mN(.).

Our problem is to combine all these evidences using Dempster’s rule of combination:

m(.) = m1(.)
⊕

m2(.)
⊕

. . .
⊕

mN(.) (5.2)

Once a combined BPA is estimated for each class, the belief is calculated as given

in equation 3.2,

bel(θj)

bel(¬ θj)

⎫⎪⎪⎬
⎪⎪⎭ ; j = 1, 2, . . . , K (5.3)

and thus a combined decision rule will be:

E(z) = max︸︷︷︸
j

[bel(θj)] (5.4)

Where E(.) indicates the operation of the supervisor algorithm at the decision

combination stage.

A few special cases are discussed below:
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1. If all classifiers reject, a pattern the combined decision will also be rejection

i.e E(z) = K + 1

2. If a subset of classifiers M < N rejects a pattern, such classifiers will be

discarded in the decision making procedure, and thus we will have a total of

N − M evidences.

3. If there is a classifier with εn
r = 1, it means that it always makes a correct

decision. Thus, decision of such a classifier overrides the decision of other

experts.

4. If there is a classifier with εn
s = 1, i.e its decision is always wrong, such classifier

will be discarded.

The flow chart of RREF algorithm is shown in figure 5.2

5.3.2 Experimental Evaluation of the RREF Algorithm

The RREF algorithm discussed above was tested on a 40 class problem, where the

data for the face recognition part comes from the AT&T database (www.uk.research.att.com/ )

and the speaker database is the same used in chapter 4 of the thesis. First, we exe-

cuted a validation procedure which would estimate the confidence in each classifier.

The validation procedure results clearly indicated that the recognition rate of the

speech based classifier is better than that of the face classifier for the given thresholds
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Figure 5.2: Flow chart for the RREF algorithm
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Biometric
Training
data

Validating
data

Threshold Recog. Subst. Rej.

Face 6 2 0.05 85% 2.5% 12.5%
Speech 6 2 0.57 87.5% 3.75% 8.75%

Table 5.1: Validation procedure for multimodal biometric system

Biometric
Training
data

Testing
data

Recog. Subst. Rej.

Face 6 2 86.25% 2.5% 11.25%
Speech 6 2 85% 8.75% 6.25%
RREF 6 2 90% 8.75% 1.25%

Table 5.2: Testing procedure for multimodal biometric system based on RREF
algorithm

(refer to table 5.1). Based on these results we allocated the BPAs as m1 = 0.85 and

m2 = 0.875. We then performed testing (please note that the test patterns are

different from the validating patterns) with results displayed in table 5.2.
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Figure 5.3: Bar graph representation of recognition rates for RREF algorithm
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Figure 5.4: A subject of AT&T database with various poses.
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The results clearly showed that the RREF algorithm outperforms the individual

classifiers in recognition accuracy by almost 5%. Thus, the approach of belief esti-

mation using the performance parameters as proposed in [42] for the handwriting

recognition problem is also valid for the person identification problem. However

there are a few comments to be made in this regard:

1. First, the system needs some validation data to estimate the confidence in the

different classifier. If we don’t have enough data, the validation procedure will

not result in an adequate estimation of the belief.

2. In many cases the validation data is not a good representative of a particular

subject, in this case, there will be an erroneous confidence estimation. Thus the

confidence estimation procedure is subjective to the quality of the validating

data available. As has been shown in the previous results, under validating

protocol, the speech classifier seems to be a better classifier, while for the

testing session, the face classifier outperformed the speech classifier. Thus,

there is always an element of ambiguity involved in the RREF algorithm.

3. Also, using global recognition rate of a classifier as an evidence is itself not

always true, since a classifier is likely to have different recognition rates for

different classes. The same point is raised in [97], in which a class based recog-

nition rate is used as the evidence for the problem of handwritten numerals

(10 classes). Our criticism on this approach is two fold: firstly, this approach
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makes the system too complex, secondly, for the person identification problem

with large number of classes, the approach is impractical and burdensome.

5.3.3 The Statistical Measure of the Decision Variable as an

Evidence

In the previous section we showed that there is no optimal approach to combine

heterogeneous distance classifiers for the problem of person identification. In this

section, we propose a new method based on the statistical measures of the partici-

pating experts. The proposed method is developed on a rational that the parameter

to estimate evidence should be independent to the theories of the combining clas-

sifier. This would result in a supervisor algorithm which would be able to combine

heterogeneous distance classifiers.

Different distance classifiers available diverge from each other in their theories,

however no matter what the theory behind a certain distance classifier is, the main

aim is to amplify the inter class distances. Thus, in general, it is quite adequate

to say that the more a classifier is able to discriminate between the classes, the

better the classification result is. Based on this observation, we propose to use the

second order statistical measure of the decision variable (inter class distances) as

an evidence of our belief. We call this algorithm as the VEF i.e Variance based

Evidence Fusion.



100

5.3.4 Analytical Formulation of the VEF Algorithm

Let there be N classifiers e(1), e(2), . . . , e(N) used for a K class problem, such that

each class is denoted as θk, k = 1, 2, . . . , K. Thus under Dempster-Shafer framework

we have a frame of discernment denoted as: Θ = {θ1, θ2, . . . , θK}.

Let Xk be the training data matrix for class θk, k = 1, 2, . . . , K. This training

data is used to develop a client model for class “k”. Let the modeling function

for classifier e(n) be Ω(n)(.), n = 1, 2, . . . , N , such that each modeling function is

different from the other in its theory and approach, resulting in the heterogeneous

models for each classifier.

Ω(1)(Xk) = U
(1)
k

Ω(2)(Xk) = U
(2)
k

...

Ω(N)(Xk) = U
(N)
k

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

k = 1, 2, . . . , K (5.5)

Please note that U
(1)
k ,U

(2)
k , . . . ,U

(N)
k are the client models developed by classifiers

e(1), e(2), . . . , e(N) respectively, for class θk, k = 1, 2, . . . , K.

Now for a test pattern z, the modeling operation results in:
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Ω(1)(z) = Y(1)

Ω(2)(z) = Y(2)

...

Ω(N)(z) = Y(N)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.6)

Now the classifier operation for classifier e(n) with test pattern model Y(n) and

training models for each class U
(n)
k , k = 1, 2, . . . , K is reduced to be:

d
(n)
min = min︸︷︷︸

k

[D(n)(U
(n)
k ,Y(n))] (5.7)

k = 1, 2, . . . , K

For classifier e(n), we define the inter-class distances as:

dn
k = D(n)(U

(n)
k ,Y(n)) (5.8)

Note that these distances are normalized and mapped to [0,1]. For classifier en,

we arrange the K inter class distances in a vector d(n) so that:

d(n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d
(n)
1

d
(n)
2

...

d
(n)
K

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.9)
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Perceiving the affiliation between performance of a classifier and these inter class

distance measures, we argue that the more apart these distance are the better the

classifier is. Thus if a distance classifier is able to perform clustering of classes more

distinctively, it has a better chance of making correct decision. Harnessing upon

this observation, we propose the second order statistical measure, i.e variance, of

these inter class distances as an evidence in favor of the classifier’s decision, thus

v(n) = variance[d(n)] (5.10)

Our evidence should be an increasing function of v(n), let ψ(.) be this increasing

function which maps variance to [0,1], thus if e(n) decides class θj for a test pattern

z with a confidence measure m(n)(θj) then

m(n)(θj) = ψ(v(n)) (5.11)

There could be many possible candidates for ψ(.), however we have used sigmoid

function (logsig) for our experiments, thus

m(n)(θj) = logsig(v(n)) (5.12)

m(n)(Θ) = 1 − m(n)(θj) (5.13)

Thus using Dempster’s rule of combination, we have combined our belief for the

classes:
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Figure 5.5: Transfer function of the logistic function

m(θk) =

∑
j,l,Aj∩Bl=θk

m(1)(Aj) . . . m(N)(Bl)

1 −
∑

j,l,Aj∩Bl=φ

m(1)(Aj) . . . m(N)(Bl)
(5.14)

k = 1, 2, . . . , K

Finally the decision rule is

θj = arg max︸ ︷︷ ︸
k

[m(θk)] (5.15)

The flow chart of VEF algorithm is shown in figure 5.6.

5.3.5 Experimental Results for VEF Algorithm

We will now test the VEF algorithm for the heterogeneous classifiers case. To check

the validity of the approach, we have carried out experiments under two evaluation



104

Figure 5.6: Flow chart for the VEF algorithm
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protocols, both utilizing the benchmark databases.

Evaluation Protocol 1

Under evaluation protocol 1 we have tested the algorithm for a 15 class bench mark

database called the YALE database (www.cvc.yale.edu/projects/yalefaces/ ). For

the YALE database we have 15 subjects with 11 samples per subject. The face

recognition system is trained for 7 and tested for 4 samples per subject with the

value of threshold α = 0.03. The speech recognition system is trained on 6 and tested

on 4 samples per class with a threshold value of α = 0.57. The speech database used

is the same used in chapter 4 of the thesis. The fusion results of VEF algorithm are

shown in table 5.3.

Biometric Recognition Rate Substitution Rate Rejection Rate
Face 91.67% 3.33% 5%

Speech 85% 15% 0%
VEF 96.6% 3.33% 0%

Table 5.3: Classification results for a multimodal biometric system based on VEF
algorithm using YALE database

The results of the VEF fusion show improved performance. The amalgamation

algorithm has been able to improve the results of the individual classifiers, the

recognition accuracy being better than the best of the combining classifiers by a

substantial margin of 5%.

However a close observation of the results in table 5.3 shows that the face clas-
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Figure 5.7: Bar graph representation of recognition rates for VEF algorithm
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sifier offers 91.67% recognition with a rejection of 5%, where as the VEF algorithm

actually gives 96.6% recognition with 0% rejection, which could mislead us to a con-

clusion that had the face classifier been made a 0% rejection classifier it would have

given similar results as the VEF algorithm. To avoid this misleading conclusion,

we performed experiments by removing the threshold for the face classifier and thus

making the ambiguity very clear.

Biometric Recognition Rate Substitution Rate Rejection Rate
Face 93.3% 6.7% 0%

Speech 85% 15% 0%
VEF 96.6% 3.33% 0%

Table 5.4: Comparison of performance between the face and the VEF classifier at 0
rejection.

The results in table 5.4 clearly show that even for the no rejection case the

VEF algorithm outperforms the best of the combining classifiers. Thus the VEF

algorithm is superior to both the speech and the face classifiers individually.

Evaluation Protocol 2

We continue our experiments for the VEF algorithm, under evaluation protocol 2

where we have increased the number of classes from 15 to 40 making the problem

more complicated. The face database is the AT&T benchmark face database with

40 subjects and 10 samples per subject. The speech data base is the same used

in chapter 4 of the thesis. The threshold values for face and speech are α = 0.05

and α = 0.57 respectively. The experiments conducted for different combinations of
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Figure 5.8: A subject of the YALE database with different poses and illumination
conditions.

training and testing data show dominance of the VEF algorithm.

The results of the experiments are shown in table 5.5 which discernibly justify

our rationale of adopting the clustering ability of a classifier as an evidence. Exten-

sive experiments were carried out for different combination of training and testing

data and the VEF algorithm has shown its dominance in all cases.

However a similar argument can be made here as was made in Evaluation Pro-

tocol 1, meaning that the rejection rate of the face classifier is too high, and had

the face classifier been a no rejection classifier, its performance would have been

comparable to that of the VEF algorithm. To avoid this misleading conclusion, we

made the face classifier a non rejecting classifier so that a fair comparison of the
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Biometric
Training
data

Testing
data

Recog. Subst. Rej.

Face 6 2 86.25% 2.5% 11.25%
Speech 6 2 90% 10% 0%
VEF 6 2 95% 5% 0%

Biometric
Training
data

Testing
data

Recog. Subst. Rej.

Face 7 3 89.17% 2.5% 8.33%
Speech 7 3 90% 10% 0%
VEF 7 3 93.3% 6.7% 0%

Biometric
Training
data

Testing
data

Recog. Subst. Rej.

Face 6 4 85.62% 2.5% 11.87%
Speech 6 4 91.87% 8.13% 0%
VEF 6 4 95% 5% 0%

Biometric
Training
data

Testing
data

Recog. Subst. Rej.

Face 5 5 81% 8.5% 10.5%
Speech 5 5 89.5% 10.5% 0%
VEF 5 5 90.5% 9.55% 0%

Table 5.5: Classification results for a multimodal biometric system based on VEF
algorithm using AT&T database

performance could be made.

Biometric
Training
data

Testing
data

Recog. Subst. Rej.

Face 5 5 84% 16% 0%
Speech 5 5 89.5% 10.5% 0%
VEF 5 5 90.5% 9.5% 0%

Table 5.6: Comparison of the face classifier with the VEF algorithm for no rejection
condition

The results shown in 5.6 clearly demonstrate that making the face classifier a

non rejecting classifier actually increases the substitution rate, which is undesirable,

rather than contributing towards the recognition rate.

We assert the fact that the proposed algorithm is independent of the theories
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behind the combining classifiers, and thus any number of heterogeneous distance

classifiers could be combined using this algorithm. The VEF algorithm is superior

to RREF algorithm because of the following reasons:

1. Recognition rate (εr) in RREF algorithm used as an evidence is highly de-

pendent upon the quality and quantity of the validation data while the VEF

algorithm uses the statistical measures of the decision variables as evidence.

2. There has to be a validation procedure for RREF algorithm, which most of

the time is considered to be a burden on the system. The VEF algorithm does

not need such procedure, thereby making system more robust and simple.

3. In RREF algorithm we ignored the fact that for different classes a classifier

may have different recognition rates, thus use of the global recognition rate

solely as an evidence is somehow unjust.

5.4 Chapter Summary

The Dempster-Shafer theory of evidence has not yet been utilized for the multimodal

biometric recognition problem. In this chapter, we have proposed two algorithms to

achieve the DST fusion of face and speech traits. The RREF algorithm makes use of

the performance parameters of the individual classifiers for estimating belief, whereas

the VEF algorithm utilizes the second order statistics of the decision variable to
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commit belief. The fusion algorithms have been shown to outperform the individual

classifiers with respect to recognition accuracy.



Chapter 6

Conclusions

In this chapter, we give a summary of the thesis and major findings of the research

performed. We then describe future research directions that may be conducted in

the area of classifiers’ fusion using the Dempster-Shafer theory of evidence.

6.1 Thesis Summary

It is well known that different classifiers give complementary information for a spe-

cific pattern recognition problem. Thus, combining classifiers efficiently promises

an improved recognition accuracy which is better than the best of the combining

classifiers. The Dempster-Shafer theory of evidence, due to its ability of adequate

modeling of uncertainty, has been proposed for combining different classifiers and

has shown to improve the overall recognition accuracy. However the area of person

112
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identification using biometrics has not yet been explored in this regard, specifically

there have been no research carried for combining multimodal biometrics using the

DST. Perceiving the ability of the DST under conditions of lack of knowledge, we

proposed the use of the theory for the problem of person identification using bio-

metrics.

In chapter 4 of the thesis we have proposed the NNEF algorithm for combin-

ing homogeneous distance classifiers. The term “homogeneous” introduced in this

context refers to the ability of different classifiers to reduce input patterns to uni-

form distance measures. The NNEF algorithm conceives the fact that for distance

classifiers, the nearest neighbor distance is a strong evidence to commit ones belief

in the decision of the classifier. Thus, under such framework, the NNEF algorithm

converts the nearest neighbor distances into evidences, the DST is used to fuse

these evidences to get a consensus decision. The NNEF algorithm was implemented

for the speaker recognition problem. Extensive experiments were carried out using

a 40 class, text dependent speech data base, the NNEF algorithm was shown to

outperform the individual classifiers even in the presence of AWGN.

However, this algorithm is not applicable for a multimodal biometric recognition

system. There is no implementation of the DST sofar for the problem of multimodal

biometric systems. We have proposed the RREF algorithm in chapter 5 of the

thesis. The RREF algorithm apprehend the fact that the performance parameter

(recognition rate) of a classifier is a good candidate to be used as an evidence in
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favor of the classifier’s decision. Thus, we proposed the RREF algorithm which,

in the validation stage, works on the validation database to evaluate performance

parameter of the classifier, which is then converted into an evidence. At the testing

stage, these evidences are combined using the DST theory to get a consensus deci-

sion. The algorithm was implemented in fusing face and speech data in a 40 class

problem. The experimental results showed the dominance of the RREF algorithm

over the individual classifiers.

However the RREF algorithm had a few drawbacks:

1. First of all, the system needs some validation data to estimate the confidence

in the classifiers. If we don’t have enough data, the validation procedure will

not result in an adequate estimation of the belief.

2. In many cases, the validation data is not a good representative of a partic-

ular subject, in this case, there will be an erroneous confidence estimation.

Thus, the confidence estimation procedure is subjective to the quality of the

validating data available.

3. Also, using the global recognition rate of a classifier alone as an evidence is

itself not very accurate, since a classifier is likely to have different recognition

rates for different classes. The same point is raised in [97], in which a class

based recognition rate is used as the evidence for the problem of handwritten

numerals (10 classes).
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Based on the above, there was a need of a technique which can dynamically

estimate the belief in a given classifier.

This is a common observation that for the case of distance classifiers the per-

formance depends on the clustering ability of the classifier. Which means that if a

classifier is able to cluster classes more distinctly, it is a better classifier than the

one with poor clustering ability. As such, we proposed the second order moment of

the inter-class distances to be an evidence in favor of the classifier. This observa-

tion leads to the formulation of the VEF algorithm proposed in chapter 5 of the

thesis. For the first time, statistical measures of classifiers are used to estimate evi-

dence. We implemented the VEF algorithm for fusing decisons from face and speech

classifiers. Extensive experiments were carried out using standard databases, which

confirm our argument on the power and advantages of this VEF algorithm.

6.2 Recommendations for the Future Research

Our recommendations for the future research include:

1. The RREF and VEF algorithms developed here, have shown their success the

in case of fusion of face and speech classifiers. We strongly recommend the

use of these algorithms for different biometric traits, for example iris, finger

prints, hand geometry etc



116

2. We propose the use of these algorithms to fuse classifiers which perform data

decomposition using wavelets prior going into the feature space.

3. We recommend the investigation of high order statistical measures for belief

estimation.

6.3 Conclusion

In this thesis we investigated the problem of classifier combination under the frame-

work of the theory of evidence. We have developed three novel techniques for the

fusion of both unimodal and multimodal biometric recognition systems:

1. The NNEF Algorithm is developed to fuse the homogeneous classifiers. It

estimates the belief in a classifier using the nearest neighbor distance.

2. The RREF Algorithm utilizes the performance parameters of a classifier such

as recognition rate, misclassification rate and rejection rate to estimate belief.

3. The VEF Algorithm utilizes the second order moment of the decision variables

to estimate belief in a classifier’s performance.

We performed extensive experiments to verify the validity of the developed algo-

rithms. The NNEF algorithm was implemented for the speaker recognition problem.

It has shown to outperform the individual experts. The RREF and the VEF algo-
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rithms were tested for the fusion of audio and visual information. Both algorithms

outperformed the individual classifiers.
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