

Dedicated to

My beloved

family

 ii

ACKNOWLEDGMENTS

In the name of Allah (Sub’hanahu-wa-Ta’ala), the Most Gracious, the Most Merciful

Alhumdulillah, All praise be to Allah (SWT), the self-sufficient Master, the Lord of the

Worlds, Master of the Day of Judgment. The Creator of All and to Whom we all shall

return. And there is none co-equal or comparable unto Him. Thee do we worship and

Thee aid we seek.

Peace and blessings of Allah (SWT) be upon the last Prophet Muhammad

(Sallallaahu’alaihi wa Sallam), his family and companions.

Acknowledgement is due to King Fahd University of Petroleum and Minerals, Dhahran,

Saudi Arabia, for providing support and facilities for this research work.

With deep sense of gratitude, my appreciation goes to the thesis advisor, Dr. Muhammad

Sarfraz, for his indomitable support and advice. Without his sheer guidance and

suggestions, this work would have become a daunting task. His extensive knowledge and

experience made it possible to shape the thesis. My unrestrained recognition also goes to

the committee members, Dr. Muhammed Al-Mulhem and Dr. Wasfi G.Al-Khatib for

their interest, invaluable cooperation and support.

 iii

I would like to render my profound acknowledgements to Dr. M. Balah for his countless

hours that he spent on discussing and solving problems that I faced. It was his keen

interest in this area that made this unsurmountable task viable.

Acknowledgements are due to my friends and colleagues who made my stay at the

university a cherished and an unforgettable era. In particular I would like to express my

gratefulness to Syed Zeeshan Muzaffar for always showing interest in the field of

Computer Graphics. Saad A+, for his guidance in software for symbolic evaluation of

mathematical formulations. Syed Akhtar Ghazi, Syed Adnan Shahab, Mudassir Masood,

Imran Naseem, Imran Azam, Khawar Khan, Sarfraz Abbasi, Kashif Khan, Saad Azhar

and Moin BHAI for their ever helpful natures. Finally, and most importantly I would like

to thank Syed Adnan Yusuf who was always by my side, encouraging me for this

achievement. His brainstorming habit made it possible for me to furnish new ideologies.

Finally, I am most profoundly thankful to my family members for being the source of

inspiration and motivation. They have always helped me spur my spirits and encourage

me throughout my life with their inspiriting and hortatory words. Their celebrations of

my minutest successes elate me to the pinnacle of confidence. Their prayers, patience,

guidance and support lead to the successful accomplishment of this thesis.

 iv

TABLE OF CONTENTS

ACKNOWLEDGMENTS .. ii

LIST OF FIGURES .. vii

LIST OF TABLES .. xx

THESIS ABSTRACT .. xxiv

CHAPTER 1 INTRODUCTION... 1

1.1. Motivation.. 6

1.2. Methodology.. 7

1.2.1. Contour Extraction.. 7

1.2.2. Corner Detection... 7

1.2.3. Spline Modeling.. 8

1.2.4. Curve Fitting Technique ... 11

1.3. Objectives and Contribution .. 11

1.4. Organization of Chapters ... 11

CHAPTER 2 CORNER DETECTION... 13

2.1. Proposed Algorithm... 15

2.1.1. First Phase... 16

2.1.2. Second Phase .. 18

2.1.3. Third Phase ... 18

2.1.4. Tuning Parameters .. 20

2.2. Results and Analysis .. 20

 v

2.3. Conclusion ... 50

CHAPTER 3 GENERIC CUBIC SPLINE MODELING ... 52

3.1. Interpolant Form .. 55

3.2. Local Support Basis Form ... 63

3.2.1. Curve Design .. 72

3.2.2. Curve Representation.. 73

3.3. Extension to Special Class: Timmer Parametric Cubic Spline.......................... 75

3.3.1. Introduction to Timmer Parametric Cubic.. 75

3.3.2. Properties of Timmer Parametric Cubic ... 78

3.3.3. Designing GC2 Continuous Piecewise Timmer Curve using Iterative

Scheme.. 83

3.3.4. Shape Control for Timmer Curves.. 88

3.4. Results and Analysis .. 92

3.4.1 Interpolant Form .. 94

3.4.2 Local Support Basis Form ... 98

3.4.3 Timmer Parametric Cubic.. 112

3.5. Conclusion ... 116

CHAPTER 4 CURVE DESIGN .. 117

4.1 Preprocessing .. 123

4.1.1 Finding Boundary of Planar Object ... 123

4.1.2 Corner Detection.. 125

4.2 Curve Fitting with Cubic Spline Model.. 127

 vi

4.2.1 Cubic Spline Interpolant Form... 128

4.3 Knot Insertion ... 131

4.3.1. Randomized Knot Insertion .. 132

4.3.2. Fuzzy Random Knot Insertion .. 142

4.4 Results and Discussion ... 146

4.5 Conclusion .. 464

CHAPTER 5 CONCLUSION AND FUTURE WORK... 465

5.1. Conclusion ... 465

5.1.1. Corner Detection... 466

5.1.2. Spline Modeling.. 466

5.1.3. Introduction of Smoothness in Curve Design... 467

5.1.4. Introduction of Shape Parameters... 468

5.1.5. Development of Interpolant Form of Spline Model 468

5.1.6. Development of Local Support Basis Form.. 469

5.1.7. Planar Object Approximation and Designing ... 469

5.2. Future Work ... 470

5.2.1. Designing of tuning parameter independent corner detector.................... 470

5.2.2. Enhancement of curve fitting technique in terms of time and space

complexity... 471

5.2.3. Extension of concepts to 3D geometry ... 471

References:.. 472

 vii

LIST OF FIGURES

Figure 2.1 Possible slope transitions in digital curves.. 17

Figure 2.2 Close coordinates... 18

Figure 2.3 Close coordinates removed after phase 2 .. 18

Figure 2.4 Unwanted clustered points .. 19

Figure 2.5 Points sequence for angle calculation.. 19

Figure 2.6 Removal of clustered points after phase 3... 19

Figure 2.7 Detected corner points for im1 as per parameters given in Table 2.1............. 23

Figure 2.8 Detected corner points for im2 as per parameters given in Table 2.1............. 25

Figure 2.9 Detected corner points for im3 as per parameters given in Table 2.1............. 27

Figure 2.10 Detected corner points for im4 as per parameters given in Table 2.1........... 29

Figure 2.11 Detected corner points for im5 as per parameters given in Table 2.1. 31

Figure 2.12 Detected corner points for im6 as per parameters given in Table 2.1........... 33

Figure 2.13 Detected corner points for im7 as per parameters given in Table 2.1........... 35

Figure 2.14 (a) Corner points detection using (a) Marji, results without collinear points

suppression [22] (b) Marji, results with collinear points suppression [22]............... 37

Figure 2.15 (b) Corner points detection using .. 38

Figure 2.16 Corner points detection using (a) Guru [14] (b) Chang [77] (c) Tsai [61] and

(d) SRM05 .. 42

Figure 2.17 Testing SRM05 with different tuning parameters ... 46

Figure 2.18 Results of SRM05 for functions using default tuning parameter values.

Default are ZCT = 7, DT = 5 and TA = 152... 47

 viii

Figure 2.19 Rotation testing of SRM05 using default tuning parameter values Default are

ZCT = 7, DT = 5 and TA = 152.. 49

Figure 3.1 Blending function of Timmer curve .. 76

Figure 3.2 Timmer curve disobeying convex hull property ... 79

Figure 3.3 Timmer parametric cubic disobey VDP.. 80

Figure 3.4 Default values of shape parameters. 1=iω and 0=iν , i∀ 94

Figure 3.5 Global values of point tension shape parameter. 1=iω and 10=iν , i∀ 95

Figure 3.6 Global values of point tension shape parameter. 1=iω and 50=iν , i∀ 95

Figure 3.7 Interval values of shape parameter. 100=iω and 0=iν , i∀ 96

Figure 3.8 Global values of point tension shape parameter. 1=iω and 3−=iν , i∀ 96

Figure 3.9 Global values of point tension shape parameter. 1=iω and 15−=iν , i∀ 97

Figure 3.10 Global values of point tension shape parameter. 1=iω and 25−=iν , i∀ 97

Figure 3.11 Global values of point tension shape parameter. 1=iω and 50−=iν , i∀ 98

Figure 3.12 Default values of parameters 1=iω and 0=iν for shape Pot........................ 98

Figure 3.13 Default values of parameters 1=iω and 0=iν for shape Square 99

Figure 3.14 Global values of point tension parameters 1=iω and 10=iν 99

Figure 3.15 Global values of point tension parameters 1=iω and 100=iν 100

Figure 3.16 Global values of point tension parameters 1=iω and 10=iν 100

Figure 3.17 Global values of point tension parameters 1=iω and 100=iν 101

Figure 3.18 Interval tension values of parameters for bottom segment 10=ω and 0=ν

... 101

 ix

Figure 3.19 Interval tension values of parameters for bottom segment 100=ω and 0=ν

... 102

Figure 3.20 Interval tension values of parameters for bottom segment 10=ω and 0=ν

... 102

Figure 3.21 Interval tension values of parameters for bottom segment 100=ω and 0=ν

... 103

Figure 3.22 Point tension values at specified points 1=ω and 10=ν 103

Figure 3.23 Point tension values at specified points 1=ω and 100=ν 104

Figure 3.24 Point tension values at specified points 1=ω and 10=ν 104

Figure 3.25 Point tension values at specified points 1=ω and 100=ν 105

Figure 3.26 Global values of point tension parameters 1=iω and 3−=iν 105

Figure 3.27 Global values of point tension parameters 1=iω and 5−=iν 106

Figure 3.28 Global values of point tension parameters 1=iω and 8−=iν 106

Figure 3.29 Global values of point tension parameters 1=iω and 10−=iν 107

Figure 3.30 Global values of point tension parameters 1=iω and 20−=iν 107

Figure 3.31 Global values of point tension parameters 1=iω and 25−=iν 108

Figure 3.32 Global values of point tension parameters 1=iω and 50−=iν 108

Figure 3.33 Global values of point tension parameters 1=iω and 3−=iν 109

Figure 3.34 Global values of point tension parameters 1=iω and 5−=iν 109

Figure 3.35 Global values of point tension parameters 1=iω and 8−=iν 110

Figure 3.36 Global values of point tension parameters 1=iω and 10−=iν 110

Figure 3.37 Global values of point tension parameters 1=iω and 20−=iν 111

 x

Figure 3.38 Global values of point tension parameters 1=iω and 50−=iν 111

Figure 3.39 Global values of shape parameters 1=iα and 1=iβ 112

Figure 3.40 Global values of shape parameters 2=iα and 2=iβ 112

Figure 3.41 Global values of shape parameters 3=iα and 3=iβ 113

Figure 3.42 Global values of shape parameters 4=iα and 4=iβ 113

Figure 3.43 Global values of shape parameters 20=iα and 20=iβ 114

Figure 3.44 Interval tension at base 15=α and 15=β , for 1=default 114

Figure 3.45 Global values of shape parameters 10−=iα and 10−=iβ 115

Figure 3.46 Interval tension at base 5−=α and 5−=β , for 3=default 115

Figure 4.1 Outline capturing of the digital images ... 122

Figure 4.2 Bitmap image... 124

Figure 4.3 Contour of the bitmap image... 125

Figure 4.4 Corner Points of the Image.. 127

Figure 4.5 Contour Division into Pieces... 128

Figure 4.6 Spline fit over Object Contour .. 131

Figure 4.7 Calculation of random knot in Algorithm 4.1 ... 134

Figure 4.8 Calculation of random knot in Algorithm 4.2 and 4.3 137

Figure 4.9 Calculation of random knot in Algorithm 4.4 ... 140

Figure 4.10 Calculation of random knot in Algorithm 4.5 ... 141

Figure 4.11 Fuzzy membership criteria .. 143

Figure 4.12 Algorithm 4.1: Demonstration of spline fitting at each iteration using

threshold =1 .. 149

 xi

Figure 4.13 Algorithm 4.1: Demonstration of spline fitting at each iteration using

threshold =2 .. 152

Figure 4.14 Algorithm 4.1: Demonstration of spline fitting at each iteration using

threshold =3 .. 155

Figure 4.15 Algorithm 4.2: Demonstration of spline fitting at each iteration using

threshold =1 .. 159

Figure 4.16 Algorithm 4.2: Demonstration of spline fitting at each iteration using

threshold =2 .. 162

Figure 4.17 Algorithm 4.2: Demonstration of spline fitting at each iteration using

threshold =3 .. 165

Figure 4.18 Algorithm 4.3: Demonstration of spline fitting at each iteration using

threshold =1 .. 169

Figure 4.19 Algorithm 4.3: Demonstration of spline fitting at each iteration using

threshold =2 .. 172

Figure 4.20 Algorithm 4.3: Demonstration of spline fitting at each iteration using

threshold =3 .. 175

Figure 4.21 Algorithm 4.4: Demonstration of spline fitting at each iteration using

threshold =1 .. 179

Figure 4.22 Algorithm 4.4: Demonstration of spline fitting at each iteration using

threshold =2 .. 182

Figure 4.23 Algorithm 4.4: Demonstration of spline fitting at each iteration using

threshold =3 .. 185

 xii

Figure 4.24 Algorithm 4.5: Demonstration of spline fitting at each iteration using

threshold =1 .. 189

Figure 4.25 Algorithm 4.5: Demonstration of spline fitting at each iteration using

threshold =2 .. 192

Figure 4.26 Algorithm 4.5: Demonstration of spline fitting at each iteration using

threshold =3 .. 195

Figure 4.27 Algorithm 4.6: Demonstration of spline fitting at each iteration using

threshold =1 .. 199

Figure 4.28 Algorithm 4.6: Demonstration of spline fitting at each iteration using

threshold =2 .. 202

Figure 4.29 Algorithm 4.6: Demonstration of spline fitting at each iteration using

threshold =3 .. 205

Figure 4.30 Algorithm 4.1: Demonstration of spline fitting at each iteration using

threshold =1 .. 208

Figure 4.31 Algorithm 4.1: Demonstration of spline fitting at each iteration using

threshold =2 .. 211

Figure 4.32 Algorithm 4.1: Demonstration of spline fitting at each iteration using

threshold =3 .. 214

Figure 4.33 Algorithm 4.2: Demonstration of spline fitting at each iteration using

threshold =1 .. 217

Figure 4.34 Algorithm 4.2: Demonstration of spline fitting at each iteration using

threshold =2 .. 220

 xiii

Figure 4.35 Algorithm 4.2: Demonstration of spline fitting at each iteration using

threshold =3 .. 223

Figure 4.36 Algorithm 4.3: Demonstration of spline fitting at each iteration using

threshold =1 .. 226

Figure 4.37 Algorithm 4.3: Demonstration of spline fitting at each iteration using

threshold =2 .. 229

Figure 4.38 Algorithm 4.3: Demonstration of spline fitting at each iteration using

threshold =3 .. 232

Figure 4.39 Algorithm 4.4: Demonstration of spline fitting at each iteration using

threshold =1 .. 235

Figure 4.40 Algorithm 4.4: Demonstration of spline fitting at each iteration using

threshold =2 .. 238

Figure 4.41 Algorithm 4.4: Demonstration of spline fitting at each iteration using

threshold =3 .. 241

Figure 4.42 Algorithm 4.5: Demonstration of spline fitting at each iteration using

threshold =1 .. 244

Figure 4.43 Algorithm 4.5: Demonstration of spline fitting at each iteration using

threshold =2 .. 247

Figure 4.44 Algorithm 4.5: Demonstration of spline fitting at each iteration using

threshold =3 .. 250

Figure 4.45 Algorithm 4.6: Demonstration of spline fitting at each iteration using

threshold =1 .. 253

 xiv

Figure 4.46 Algorithm 4.6: Demonstration of spline fitting at each iteration using

threshold =2 .. 256

Figure 4.47 Algorithm 4.6: Demonstration of spline fitting at each iteration using

threshold =3 .. 259

Figure 4.48 Algorithm 4.1: Demonstration of spline fitting at each iteration using

threshold =1 .. 262

Figure 4.49 Algorithm 4.1: Demonstration of spline fitting at each iteration using

threshold =2 .. 265

Figure 4.50 Algorithm 4.1: Demonstration of spline fitting at each iteration using

threshold =3 .. 268

Figure 4.51 Algorithm 4.2: Demonstration of spline fitting at each iteration using

threshold =1 .. 271

Figure 4.52 Algorithm 4.2: Demonstration of spline fitting at each iteration using

threshold =2 .. 274

Figure 4.53 Algorithm 4.2: Demonstration of spline fitting at each iteration using

threshold =3 .. 277

Figure 4.54 Algorithm 4.3: Demonstration of spline fitting at each iteration using

threshold =1 .. 280

Figure 4.55 Algorithm 4.3: Demonstration of spline fitting at each iteration using

threshold =2 .. 283

Figure 4.56 Algorithm 4.3: Demonstration of spline fitting at each iteration using

threshold =3 .. 286

 xv

Figure 4.57 Algorithm 4.4: Demonstration of spline fitting at each iteration using

threshold =1 .. 289

Figure 4.58 Algorithm 4.4: Demonstration of spline fitting at each iteration using

threshold =2 .. 292

Figure 4.59 Algorithm 4.4: Demonstration of spline fitting at each iteration using

threshold =3 .. 295

Figure 4.60 Algorithm 4.5: Demonstration of spline fitting at each iteration using

threshold =1 .. 298

Figure 4.61 Algorithm 4.5: Demonstration of spline fitting at each iteration using

threshold =2 .. 301

Figure 4.62 Algorithm 4.5: Demonstration of spline fitting at each iteration using

threshold =3 .. 304

Figure 4.63 Algorithm 4.6: Demonstration of spline fitting at each iteration using

threshold =1 .. 307

Figure 4.64 Algorithm 4.6: Demonstration of spline fitting at each iteration using

threshold =2 .. 310

Figure 4.65 Algorithm 4.6: Demonstration of spline fitting at each iteration using

threshold =3 .. 313

Figure 4.66 Algorithm 4.1: Demonstration of spline fitting at each iteration using

threshold =1 .. 317

Figure 4.67 Algorithm 4.1: Demonstration of spline fitting at each iteration using

threshold =2 .. 320

 xvi

Figure 4.68 Algorithm 4.1: Demonstration of spline fitting at each iteration using

threshold =3 .. 323

Figure 4.69 Algorithm 4.2: Demonstration of spline fitting at each iteration using

threshold =1 .. 327

Figure 4.70 Algorithm 4.2: Demonstration of spline fitting at each iteration using

threshold =2 .. 330

Figure 4.71 Algorithm 4.2: Demonstration of spline fitting at each iteration using

threshold =3 .. 334

Figure 4.72 Algorithm 4.3: Demonstration of spline fitting at each iteration using

threshold =1 .. 338

Figure 4.73 Algorithm 4.3: Demonstration of spline fitting at each iteration using

threshold =2 .. 342

Figure 4.74 Algorithm 4.3: Demonstration of spline fitting at each iteration using

threshold =3 .. 346

Figure 4.75 Algorithm 4.4: Demonstration of spline fitting at each iteration using

threshold =1 .. 350

Figure 4.76 Algorithm 4.4: Demonstration of spline fitting at each iteration using

threshold =2 .. 353

Figure 4.77 Algorithm 4.4: Demonstration of spline fitting at each iteration using

threshold =3 .. 356

Figure 4.78 Algorithm 4.5: Demonstration of spline fitting at each iteration using

threshold =1 .. 360

 xvii

Figure 4.79 Algorithm 4.5: Demonstration of spline fitting at each iteration using

threshold =2 .. 364

Figure 4.80 Algorithm 4.5: Demonstration of spline fitting at each iteration using

threshold =3 .. 368

Figure 4.81 Algorithm 4.6: Demonstration of spline fitting at each iteration using

threshold =1 .. 371

Figure 4.82 Algorithm 4.6: Demonstration of spline fitting at each iteration using

threshold =2 .. 374

Figure 4.83 Algorithm 4.6: Demonstration of spline fitting at each iteration using

threshold =3 .. 377

Figure 4.84 Algorithm 4.1: Demonstration of spline fitting at each iteration using

threshold =1 .. 381

Figure 4.85 Algorithm 4.1: Demonstration of spline fitting at each iteration using

threshold =2 .. 384

Figure 4.86 Algorithm 4.1: Demonstration of spline fitting at each iteration using

threshold =3 .. 388

Figure 4.87 Algorithm 4.2: Demonstration of spline fitting at each iteration using

threshold =1 .. 392

Figure 4.88 Algorithm 4.2: Demonstration of spline fitting at each iteration using

threshold =2 .. 396

Figure 4.89 Algorithm 4.2: Demonstration of spline fitting at each iteration using

threshold =3 .. 400

 xviii

Figure 4.90 Algorithm 4.3: Demonstration of spline fitting at each iteration using

threshold =1 .. 404

Figure 4.91 Algorithm 4.3: Demonstration of spline fitting at each iteration using

threshold =2 .. 408

Figure 4.92 Algorithm 4.3: Demonstration of spline fitting at each iteration using

threshold =3 .. 412

Figure 4.93 Algorithm 4.4: Demonstration of spline fitting at each iteration using

threshold =1 .. 416

Figure 4.94 Algorithm 4.4: Demonstration of spline fitting at each iteration using

threshold =2 .. 419

Figure 4.95 Algorithm 4.4: Demonstration of spline fitting at each iteration using

threshold =3 .. 422

Figure 4.96 Algorithm 4.5: Demonstration of spline fitting at each iteration using

threshold =1 .. 426

Figure 4.97 Algorithm 4.5: Demonstration of spline fitting at each iteration using

threshold =2 .. 429

Figure 4.98 Algorithm 4.5: Demonstration of spline fitting at each iteration using

threshold =3 .. 433

Figure 4.99 Algorithm 4.6: Demonstration of spline fitting at each iteration using

threshold =1 .. 436

Figure 4.100 Algorithm 4.6: Demonstration of spline fitting at each iteration using

threshold =2 .. 439

 xix

Figure 4.101 Algorithm 4.6: Demonstration of spline fitting at each iteration using

threshold =3 .. 442

 xx

LIST OF TABLES

Table 2.1 Parameter values for 8 tested shapes .. 22

Table 2.2 Comparison of algorithm evaluation for im1 ... 24

Table 2.3 Comparison of algorithm evaluation for im2 ... 26

Table 2.4 Comparison of algorithm evaluation for im3 ... 28

Table 2.5 Comparison of algorithm evaluation for im4 ... 30

Table 2.6 Comparison of algorithm evaluation for im5 ... 32

Table 2.7 Comparison of algorithm evaluation for im6 ... 34

Table 2.8 Comparison of algorithm evaluation for im7 ... 36

Table 2.9 Comparison of algorithm evaluation .. 39

Table 2.10 Comparison of algorithm evaluation for figure 2.15.1 42

Table 2.11 Comparison of algorithm evaluation for figure 2.15.2 43

Table 2.12 Comparison of algorithm evaluation for figure 2.15.3 43

Table 2.13 Comparison of algorithm evaluation for figure 2.15.4 44

Table 2.14 Comparison of algorithm evaluation for figure 2.15.5 44

Table 2.15 Comparison of algorithm evaluation for figure 2.15.6 45

Table 4.1 Evaluation of algorithm 4.1 for Arabic word “Ali”.. 155

Table 4.2 Evaluation of algorithm 4.2 for Arabic word “Ali”.. 165

Table 4.3 Evaluation of algorithm 4.3 for Arabic word “Ali”.. 175

Table 4.4 Evaluation of algorithm 4.4 for Arabic word “Ali”.. 185

Table 4.5 Evaluation of algorithm 4.5 for Arabic word “Ali”.. 195

Table 4.6 Evaluation of algorithm 4.6 for Arabic word “Ali”.. 205

 xxi

Table 4.7 Evaluation of algorithm 4.1 for object “Apple” ... 214

Table 4.8 Evaluation of algorithm 4.2 for object “Apple” ... 223

Table 4.9 Evaluation of algorithm 4.3 for object “Apple” ... 232

Table 4.10 Evaluation of algorithm 4.4 for object “Apple” ... 241

Table 4.11 Evaluation of algorithm 4.5 for object “Apple” ... 250

Table 4.12 Evaluation of algorithm 4.6 for object “Apple” ... 259

Table 4.13 Evaluation of algorithm 4.1 for object “Plane” .. 268

Table 4.14 Evaluation of algorithm 4.2 for object “Plane” .. 277

Table 4.15 Evaluation of algorithm 4.3 for object “Plane” .. 286

Table 4.16 Evaluation of algorithm 4.4 for object “Plane” .. 295

Table 4.17 Evaluation of algorithm 4.5 for object “Plane” .. 304

Table 4.18 Evaluation of algorithm 4.6 for object “Plane” .. 313

Table 4.19 Evaluation of algorithm 4.1 for English alphabet “D” 323

Table 4.20 Evaluation of algorithm 4.2 for English alphabet “D” 334

Table 4.21 Evaluation of algorithm 4.3 for English alphabet “D” 346

Table 4.22 Evaluation of algorithm 4.4 for English alphabet “D” 356

Table 4.23 Evaluation of algorithm 4.5 for English alphabet “D” 368

Table 4.24 Evaluation of algorithm 4.6 for English alphabet “D” 377

Table 4.25 Evaluation of algorithm 4.1 for Object “Mult_Seg_Plane”.......................... 388

Table 4.26 Evaluation of algorithm 4.2 for Object “Mult_Seg_Plane”.......................... 400

Table 4.27 Evaluation of algorithm 4.3 for Object “Mult_Seg_Plane”.......................... 412

Table 4.28 Evaluation of algorithm 4.4 for Object “Mult_Seg_Plane”.......................... 422

Table 4.29 Evaluation of algorithm 4.5 for Object “Mult_Seg_Plane”.......................... 433

 xxii

Table 4.30 Evaluation of algorithm 4.6 for Object “Mult_Seg_Plane”.......................... 442

Table 4.31 Evaluation of algorithm 4.1 for object ‘Ali’ ... 443

Table 4.32 Evaluation of algorithm 4.2 for object ‘Ali’ ... 443

Table 4.33 Evaluation of algorithm 4.3 for object ‘Ali’ ... 444

Table 4.34 Evaluation of algorithm 4.4 for object ‘Ali’ ... 444

Table 4.35 Evaluation of algorithm 4.5 for object ‘Ali’ ... 445

Table 4.36 Evaluation of algorithm 4.6 for object ‘Ali’ ... 445

Table 4.37 Evaluation of algorithm 4.1 for object ‘Apple’ .. 446

Table 4.38 Evaluation of algorithm 4.2 for object ‘Apple’ .. 446

Table 4.39 Evaluation of algorithm 4.3 for object ‘Apple’ .. 447

Table 4.40 Evaluation of algorithm 4.4 for object ‘Apple’ .. 447

Table 4.41 Evaluation of algorithm 4.5 for object ‘Apple’ .. 448

Table 4.42 Evaluation of algorithm 4.6 for object ‘Apple’ .. 448

Table 4.43 Evaluation of algorithm 4.1 for object ‘Plane’ ... 449

Table 4.44 Evaluation of algorithm 4.2 for object ‘Plane’ ... 449

Table 4.45 Evaluation of algorithm 4.3 for object ‘Plane’ ... 450

Table 4.46 Evaluation of algorithm 4.4 for object ‘Plane’ ... 450

Table 4.47 Evaluation of algorithm 4.5 for object ‘Plane’ ... 451

Table 4.48 Evaluation of algorithm 4.6 for object ‘Plane’ ... 451

Table 4.49 Evaluation of algorithm 4.1 for English character ‘D’ 452

Table 4.50 Evaluation of algorithm 4.2 for English character ‘D’ 452

Table 4.51 Evaluation of algorithm 4.3 for English character ‘D’ 453

Table 4.52 Evaluation of algorithm 4.4 for English character ‘D’ 453

 xxiii

Table 4.53 Evaluation of algorithm 4.5 for English character ‘D’ 454

Table 4.54 Evaluation of algorithm 4.6 for English character ‘D’ 454

Table 4.55 Evaluation of algorithm 4.1 for object Mult_Seg_Plane 455

Table 4.56 Evaluation of algorithm 4.2 for object Mult_Seg_Plane 455

Table 4.57 Evaluation of algorithm 4.3 for object Mult_Seg_Plane 456

Table 4.58 Evaluation of algorithm 4.4 for object Mult_Seg_Plane 456

Table 4.59 Evaluation of algorithm 4.5 for object Mult_Seg_Plane 457

Table 4.60 Evaluation of algorithm 4.6 for object Mult_Seg_Plane 457

Table 4.61 Evaluation of space efficiency in terms of reduction of dataset 458

 xxiv

THESIS ABSTRACT

NAME: AIMAN RASHEED

TITLE: DESINGING OF OBJECTS USING SMOOTH CUBIC SPLINES

MAJOR FIELD: COMPUTER SCIENCE

DATE OF DEGREE: DECEMBER 2005.

With the growing trend of computer graphics application in various fields such as,

Automobile industry, Aeronautical engineering, Ships designing, Mechanical

instrumentation, Animation, Fonts designing etc, it is desirable to have mathematical

representation of physical objects in curve and/or surface formulation.

A lot of research is done in order to acquire an optimized curve designing scheme. The

curves which are robust and easy to control and compute are of more interest. Of all the

possibilities in curve designing, the cubic functions are the most powerful as they can be

used to define space curves and curves with inflections. More over these functions are

easy and efficient in computation. The ideas such as end point interpolation, detection of

characteristic points, least square approximation, recursive subdivision and

parameterization can be used for curve fitting.

MASTER OF SCIENCE DEGREE
KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS, DHAHRAN.

DECEMBER 2005

 xxv

 الرسالة ملخص

 ايمن رشيد: ــــــمـالاســــــــ

 .تصميم الأشياء باستخدام الشرائح الملساء من الدرجة الثالثة: الرسالة عنوان

 علوم الحاسب الآلي والمعلومات: ــصــالتخصــــ

 1426ذو الحجة : رجــالتخ تاريخ

, تصميم السفن, هندسة الطيران, لسياراتمنها صناعة ا, مع تزايد تطبيقات الرسم بالحاسوب في تخصصات مختلفة

آل هذا يتطلب إيجاد تمثيل . تصميم خطوط الكتابة إلى غير ذلك, تحريك الأجسام بالحاسب, التجهيزات الميكانيكية

 .رياضي لشتى المجسمات عن طريق منحنيات أو أسطح

نحنيات القوية والتي يسهل التحكم فيها تشكل الم...لقد نفذت أبحاث آثيرة للحصول على طريقة مثلى لتصميم المنحنيات

من ضمن الحالات المتوفرة لتصميم المنحنيات تعتبر الدوال من الدرجة الثالثة . الاهتمام الأآبر من قبل الباحثين

الأآثر قوة لأنها الدوال الأقل درجة التي يمكن استخدامها لتعريف منحنيات ذات ثلاث أبعاد ومنحنيات تتوفر على

تعتبر الأفكار التي تخص إقحام النقاط . تعتبر هذه الدوال سهلة وفعالة فيما يخص حسابها, زيادة على ذلك. اءنقاط انثن

التقسيم المتكرر والتمثيل بالعامل طرق تمكن . التقريب بطريقة المربعات الصغيرة, اآتشاف النقاط المميزة, النهائية

 استعمالها في ملائمة المنحنيات

 1

CHAPTER 1

INTRODUCTION

INTRODUCTION

The term spline goes back to the long flexible strips of metal used by draftsmen to lay out

the surfaces of ships, cars, aircrafts etc. The weights were attached to those strings in

order to give smooth shapes. The Splines are actually piecewise polynomial parametric

curves, generated by varying a parameter over a specified range. Spline curve fitting

techniques can be found in [72,73,76]. Among all other splines, B-Splines, Hermite and

Beziér are the basis for research work in this field.

B-Spline consists of curve segments whose polynomial co-efficient depend on just a few

control points. This behavior is called as local control. Thus moving a control point

affects only a small part of the curve. This local behavior is due to the fact that each

vertex is associated with a unique basis function. The B-Spline basis allows the order of

basis function and hence the degree of the resulting curves to be changed without

changing the number of defining polygon vertices. Some evolutionary methods, using B-

splines, can be seen in [32,42-45]. These methods are based upon knot selection. Hermit

2

curves on the other hand are defined by two end points 1P and 4P , and their respective

tangent vectors 1R and 4R . Bézier curves are developed by Pierre Bézier for use in

designing automobiles at Renault. The Bézier form of cubic polynomial curve segment

has four control points 0P , 1P , 2P , and 3P . Two intermediate points 1P and 2P are not on

the curve. The Bézier curve interpolates the two end control points 0P and 3P and

approximates the two intermediate points 1P and 2P .

The two basic ways of manipulating curve design and shape using control polygon are

through developing B-Spline like basis functions and control points interpolation. A

combined technique is shown in [70]. Another useful class of spline curves is known as

Rational Cubic Spline [78]. Rational curves can define space curves and curves with

inflections. A technique to fit a curve to planar digital data is presented in [33]. For large

data point set, the characteristic points are identified in a recursive manner by enhancing

Davis algorithm. The rational cubic is converted to rational hermit cubic form to

manipulate the shape. These characteristic points are searched based upon high curvature

point. For achieving a better fit, sub-division is done on the basis of a threshold value.

Conic representation of curves and surfaces is presented in [69]. In this case the rational

cubic is broken at its mid point to form two conic sections. The advantage of this scheme

is in terms of computational cost. Smoothness to some extent is also achieved. The price

is paid when shape control is considered. The rational cubic splines with linear

denominator sometimes do not work as they are not bounded in the specified regions

[56]. The introduction of weights in rational cubic spline solves this problem. Local

3

support basis form is formulated for 2C rational cubic curve and the effect of weight is

analyzed in [55]. The spline curves and surfaces can also be modeled using trigonometric

functions [21]. Trigonometric blending functions are used in the construction of curvature

continuous curves. Since such parameterization is disadvantageous because of slow

computation of trigonometric values and instability in the neighborhood of 0 degrees,

therefore it is usually converted into polynomial or rational form.

The splines can generally be represented in implicit, explicit or parametric form.

Implicit Form

In this case we can express y as explicit function of x (e.g.)(xfy =). The

difficulties with this approach are;

 It is impossible to get multiple values of y for a single value of x , so

curves such as circle and ellipse must be represented by multiple curve segments.

 Such curves are not rotationally invariant and may require breading a

curve segment into many segments.

 Describing curves with vertical tangents is difficult, because a slope of

infinity is difficult to represent.

Explicit Form

We can choose to model curves as solutions to implicit equations of the

form)(xfy = . The difficulties with this approach are,

4

 The given equation may have more solutions than required, for example in

modeling a circle, we might want to use 122 =+ yx , which is fine. But how do we

model one-half of a circle? We must add constraints such as 0≥x which cannot

be contained within the implicit equation.

 If two implicit defined curve segments are joined together, it may be

difficult to determine whether their tangent directions agree at joining point.

Parametric Form

The parametric form overcomes the problems caused by functional and implicit

forms. The points on a curve are represented as ordered set of values,],[iii yxp = .

There are corresponding parametric functions that may be used to represent

arbitrary curves; these are of the form)](),([)(tytxtQ = . The parameter t takes the

values from a specified range; conventionally from 0 to 1. a curve represented in

this way can be thought of as the projection of the curve in 3-D, t as the third

dimension, perpendicular to x and y plane. A unit circle can be represented in

parametric form)]sin(),[cos()(tttQ = . Parametric form of curve allows multiple

values of y for single or more values of x . Parametric curves replace the use of

geometric slopes (which may be infinite) with parametric tangent vectors (which

are never infinite). A parametric curve is approximated by piecewise polynomial

curves. Cubic polynomials are most often used because lower degree polynomials

give little flexibility in controlling the shape of the curve, and higher degree

polynomials require more computation and can introduce unwanted wiggles.

5

Before going into the peculiarities of this research work, it is necessary to encompass a

very important issue related to smooth curves, known as Continuity.

To describe the shape of a free form curve, it is recommended to use several curve

segments which are joined together using the constraints known as the degree of

continuity. It is one of the active research areas of Computer Aided Geometric Design

CAGD. The designing of continuous curves and surfaces for CAD software development

has been a tough problem to deal with for a long time. Early efforts can be seen in

[30,71]. There are two types of continuities; parametric continuity and geometric

continuity.

Parametric continuity is denoted as iC , which means that two adjacent curve pieces have

thi degree parametric continuity and all lower derivatives. 0C means that the two pieces

are joined through a common point. 1C means that the two curves not only share the

same endpoint but also their tangent vector is the same, the direction and the magnitude.

2C means that two curves are 1C and also their second order parametric derivate matches

at the common end point.

Geometric continuity is denoted as iG . Unlike parametric continuity it is less stringent in

the way that here only the direction of tangent vector should match. The magnitude of the

tangent vector could be different. 0G is similar to 0C . 1G amounts to have a common

6

tangent vector direction. 2G means that the adjacent segments have common tangent

vector and same curvature.

It is to be noted that the line segments joining the two curve segments must be collinear.

Further more if a curve is said to be geometric continuous then it means that it is also

parametric continuous but this is not possible the other way round.

1.1. Motivation

A common practice of formulating an object in the physical world into digital form is by

first converting the object into gray level image by scanning it. Contours or boundary

points are then obtained from this gray level image. These contours lead to the corner or

significant point extraction. Finally splines are used to approximate or interpolate the

significant points.

Traditional approaches of object digitization [79] have the draw back of greater Human

Computer Interface (HCI). Users are supposed to specify significant points by some

interactive means, for example, mouse pointer or pen pointer etc. These significant points

produce erroneous impact on the shape of the curve. Further more, a user is needed to

keep on specifying the significant points until he gets a desired curve fit. This kind of

system is not only tedious to interact with but also very inefficient and especially for

complex objects it becomes very inconvenient. Usually accuracy up to desired tolerance

7

limit is difficult to achieve. Moreover a user has to be familiar with the underlying

mathematical model of the system in order to use it properly.

A great deal of research has been done to minimize the HCI factor and automate the

whole process to greater extent. This has lead to digitization of objects in much efficient

and accurate way. Unlike traditional approaches, researches have proposed some very

good automated corner detection algorithms. Optimal curve fitting is done by segmenting

the contour outline at the corner points. The curve fitting techniques used are usually

based on Bézier Cubic function where as many researchers have used other spline models

as well [6,41,46,60].

1.2. Methodology

1.2.1. Contour Extraction

The first and foremost step for this research work is to find the boundary of planar object.

This can be done using chain code. Chain codes give the list of edge points and their

directions along the boundary. The selection of these boundary points are based on their

corner strength and contour fluctuations.

1.2.2. Corner Detection

Corners in digital images give important clues for shape representation and analysis.

Generally objects information can be represented in terms of its corners, thus corner

8

points play a very vital role in object recognition, shape representation and image

interpretation.

1.2.3. Spline Modeling

An efficient way of representing 2D planar objects is by using splines, which are piece

wise polynomial curves. Generally splines are used in the form of parametric equations.

Suppose that)(tx and)(ty can supply points))(),((tytx along the curve as t is varied then

we can write the parametric form as under,

n
n

n
n

tbtbtbbty

tatataatx

++++=

++++=

...)(

...)(
2

210

2
210 (1.1)

The value of n describes the degree of the spline in the above equation. For 2=n , it is

known as conic. For 3=n , it is known as cubic and so on and so forth. The

approximation is done piecewise by breaking the planar object into segments. The joining

points of the segments are made continuous by careful selection of polynomial

coefficients. For a polynomial of degree n , smoothness or continuity of degree 1−n can

be achieved. This approach is advantageous in a manner that it allows to derive multiple

shapes from a single stored object. Further more translations are applicable here.

It is desired to come up with a spline model which has properties like smoothness, local

control, and point tension. Along with these properties it is also desirable to have the

representation of spline model in interpolant form and local support basis form.

9

 Introduction of Smoothness in curve designing

To attain a better shape it is required that the spline should permit the mixing of sharp

and smooth sections within the same description. Continuity condition provides the

solution for this requirement. To achieve shapes with cusps, a zero order continuity

condition can be used. For smooth shapes higher order continuity conditions are

satisfied.

 Introduction of Local Control in curve handling

Each control point, if moved, should only exert influence on the shape of the spline in

a neighborhood rather than producing impact on the whole curve. A given spline

fitting method may offer varying degrees of local control depending on the influence

of any given set of control points.

 Introduction of Point and Interval Tension in curve rendering and

their effect on object shapes

To achieve point and interval tension we need to introduce the shape parameters

associated with each point and interval. The change of shape parameter such that it

affects only on the neighborhood of a specific point is known as point tension. The

change of the shape parameters such that it affects the curve in the specified interval

is known as interval tension. The increase in shape parameter of two consecutive

10

points tightens the curve towards a line segment joint by those control points, thus

producing the same effect as that of interval tension.

 Development of Interpolant Form of the Spline Model

In this approach, the parametric values of the spline are made to pass through all the

given set of data points. An interpolating function is devised to find those parametric

values which do not match with the given set of data points. This technique is suitable

in cases when the data points describing the contour of the object are sufficiently

smooth and accurate with no sharp edges.

 Development of Local Support Basis Form

This approach is not as much restrictive as capture by Interpolation. In this case it is

sufficient that the spline is made to pass close to the given set of data points. The

proximity criterion between parametric point and given point is usually taken as

distance along a coordinate or along a normal to the captured curve. A tolerance limit

is defined for this distance, which could be an approximation based on the average.

This approach is useful when the object to be approximated is not smooth. We can

introduce the local support in the spline by transforming it from the control points to

piece wise Bernstein-Bézier representation.

11

1.2.4. Curve Fitting Technique

Different techniques, like recursive algebraic fitting, piecewise polynomial fitting etc,

have been employed for curve fitting. It is desired to formulate an efficient technique

in such a way that there is no tradeoff for quality.

1.3. Objectives and Contribution

The research work is aimed to propose an efficient strategy for object designing using

smooth cubic splines. To achieve this objective, several areas needed to be analyzed and

studied in depth. The objectives are as under;

 Finding set of corner points from the object contour in such a way that they describe

the shape of the object and as well as they are not in greater number.

 Designing of interpolant form as well as local support basis form of smooth

parametric cubic spline model.

 Introduction of point and interval tension in the formulation of spline model.

 Designing of objects using spline model.

 Approximating the object contour using the spline model.

1.4. Organization of Chapters

The organization of this thesis is as follows. Chapter 1 is introduction to the objective and

motivation. Chapter 2 covers Corner Detection. We have presented our proposed

strategy. We cover the development of Interpolant form and Free form of cubic generic

12

spline model in Chapter 3. This chapter is also the backbone of our thesis contributions.

In Chapter 4 we discuss the proposed methodologies of object design and approximation.

Finally we conclude and present future possibilities in Chapter 5.

13

CHAPTER 2

CORNER DETECTION

CORNER DETECTION

Corners in digital images give important clues for shape representation and analysis.

Generally objects information can be represented in terms of its corners, thus corner

points play a very vital role in object recognition, shape representation and image

interpretation [8,9,11,12,22,60,64]. Corners are robust features in the sense that they

provide important information regarding objects under translation, rotation and scales

change. A shape can be presented compactly, efficiently and accurately if corners are

detected aptly. Since the mathematical notion of a corner is that of a high curvature point

in planer curves [15,22-24,36,60], therefore most of the corner detection algorithms are

based on curvature evaluation or calculation of opening angle at each contour point . This

approach is effective for smoother shapes. In case of noisy shapes it detects false corners.

Like other approaches, we are also considering the corner point as any point with a

change in slope with respect to previous state of slope. The enhancement is that we have

developed a scheme to reject false corners. Moreover our algorithm can also detect non-

sharp corners and thus we have lower rate of false rejections. This algorithm also

preserves the shape of the object.

14

The algorithm proposed by [23] relies on calculating the shape curvature function [57]

using an adaptive filtering to remove as much noise as possible without losing corners.

The authors have defined corners as the peaks of the function. The approach is stable

against noise, scale and rotation affects.

An improved chain-code methodology is adapted to get a better characterization of

contour [36]. This process helps in calculating the curvature at each point in an adaptive

manner and thus works efficiently even if working with poor signal to noise ratio.

The curvature estimation technique [24] is approximation to curvature analysis since

incase of digital curve, there does not exits any fixed definition of curvature. In this

scheme the points with local maximum curvature are considered as dominant points.

A boundary based corner detection method is proposed by [14,61,77]. The geometrical

centroid of the symmetrical boundary segment within the neighborhood of the point, on

the boundary, under consideration is used. The distance between the centroid and the

point under consideration defines the evidence of a point to be a corner point. This

scheme is transformation invariant. The problem with this approach is that curves with

smoother corners or edges will result in the increasing rate of false rejections.

15

The algorithm proposed by [15] is using both the information of local extrema as of

curvature and modulus of transform through a specially designed wavelet transform

function to detect corners and arcs effectively.

This chapter is organized as follows. In Section 2.1 the new corner detection algorithm is

explained. The corner detection results of algorithms (including ours) are demonstrated

and compared in section 2.2. Finally section 2.3 concludes this chapter.

2.1. Proposed Algorithm

The algorithm is composed of three phases. First phase is the basis of the whole

algorithm where candidate points are detected using slope analysis. Points detected in the

first phase are passed to the second phase for refinement, which is done by removing

adjacent points. This adjacency is based upon a certain threshold. The third phase takes

the refined points and removes the cluster of points lying on the jaggedly planner shape

to give the final set of corner points. The cluster of points is removed using angular

measurements. The tangents at each point for slope analysis are calculated as in

(Equations 2.1-2.3) [69];

2
)(

)(2 02
010

PP
PPT

−
−−= (2.1)

2
)(

)(2 2
1

−
−

−
−−= nn

nnn
PP

PPT (2.2)

16

))(1()(11 iiiiiii PPaPPaT −−+−= +− (2.3)

where,

11

1

−+

+

−+−

−
=

iiii

ii
i PPPP

PP
a (2.4)

The tangent calculation is taken as a preprocessing step.

2.1.1. First Phase

The slope analysis is done on the basis of transitions. For example, there are only three

possible states of slope.

 Increasing, i.e. +ve.

 Decreasing, i.e. –ve. and

 Constant, i.e. moving along any of the axis in 2D-plane.

Depending upon slope states, we have only four transitions,

 +ve 0

 0 –ve

 –ve 0

 0 +ve

Now any point Pi is taken as a candidate point if it comes after any one of the transitions,

which means that there is a change in slope. This is shown in (Figure 2.1). Notice that if

we encounter transitions 1 and 3 then we also need to take care of a small jaggy. To cater

17

such problem we have defined a threshold, which is describing if such transition is a

proper one or just a small jaggy. Incase where it is taken as a small jaggy, we ignore it

and keep record of our last transition state.

Figure 2.1 Possible slope transitions in digital curves

The advantage of this technique is that, we can apply this algorithm for smooth functions

as well as irregular objects with jaggies.

Constant Constant

-

+

+

-

+ -

Constant

- +

Constant

(a) (b)

(c)

18

2.1.2. Second Phase

Sometimes the corners to be detected are not the sharp angle points or they are the result

of sharp jaggies and we may detect superfluous candidate corner points in first phase.

These superfluous points are discarded in this phase. The superfluous points in this case

are the ones with very close co-ordinate positions as shown in (Figure 2.2). So, in order

to get refined points we remove such points. This phase actually acts as a preprocessing

step for the next phase.

Figure 2.2 Close coordinates

(Figure 2.3) shows the Figure after second phase. The close coordinate points are

removed.

Figure 2.3 Close coordinates removed after phase 2

2.1.3. Third Phase

The basic requirement of this phase is to remove the cluster of unwanted points as shown

in (Figure 2.4). The points shown in big spots would have been enough rather than

having so many intermediate points. We solved this problem by taking the angle between

them. We considered 1ˆ += ii PPa as a vector and 21 ++= ii PPb
v

 as another vector. Points are

19

shown in (Figure 2.5). The angle is calculated using dot product between them as in

(Equation 2.5).

θcosˆˆ. baba =
vv (2.5)

If this angle is greater than a certain threshold, the points are then taken as collinear and

therefore the middle point is no more a corner point. This is demonstrated in (Figure 2.6).

Figure 2.4 Unwanted clustered points

Figure 2.5 Points sequence for angle calculation

Figure 2.6 Removal of clustered points after phase 3

P1 P2

P3 P4

20

2.1.4. Tuning Parameters

The algorithm needs three different tuning parameters at different phases. In the first

phase Zero Count Threshold (ZCT) is needed to differentiate a jaggy from a line. Incase

of a line the end points of it as corner points. The jaggies are ignored. Distance Threshold

(DT) is used in second phase in order to remove the points nearer by this parameter. The

last parameter is Tolerance Angle (TA) which is used to remove the clustered points. If

points are clustered so that the intermediate points are not needed then such superfluous

are removed from the list of final corner points. The hypothesis is that if three

consecutive points are making an angle greater than TA then such points are taken as

collinear points and due to which middle point is neglected. The default value of ZCT is

7, DT is 5 and TA is 152o
.

A distinct property of our algorithm is that the default values of tuning parameters work

equally well for almost all the shapes, either it be a smooth curve or irregular object

boundary.

2.2. Results and Analysis

A number of frequently cited corner detectors were discussed in the survey by [60,85].

They selected four algorithms among them and compared the results with their corner

detector. Along with these algorithms we are comparing our algorithm with [13]. The

algorithms are referred as SAM04, IPAN99, BT87, FD77, RW75 and RJ73 respectively

21

in this paper. The default values of each algorithm is shown in (Table 2.1). The

comparisons are represented in (Figures 2.7 – 2.13). SRM05 is our proposed algorithm.

Further more we have also compared our algorithm with [22,62,80-84,86]; shown in

(Figure 2.14). Also we tested the objects present in [14,61,77] against our approach as

depicted in (Figure 2.15). After this we have tested our algorithm for different tuning

parameters, shown in (Figure 2.16). Also we have demonstrated in (Figure 2.17) that our

algorithm works perfect in case of smooth functions. Finally we have tested our approach

for rotation affects and results are shown in (Figure 2.18).

Criteria for performance evaluation of corner detectors were given by Chetverikov and

Szabo [12], which are as follow;

 Selectivity: It is the most important factor for any corner detector. The rate of

correct detections should be high and the wrong ones should be low.

 Single response: Each corner should be detected only once.

 Precision: The positions of detected corners should be precise.

 Robustness to noise: The algorithm should perform well for noisy shapes as well.

 Easy setting of parameters: Parameters should be logical and easy to tune for

variety of shapes.

 Robustness to parameters: Minor changes in parameter should not cause drastic

changes in performance.

 Speed

22

Table 2.1 Parameter values for 8 tested shapes

Fig Algorithm Im1 Im2 Im3 Im4 Im5 Im6 Im7 Im8

A

B

C

D

E

F

G

SAM04

IPAN99

BT87

FD77

RW75

RJ73

SRM05

D

D

D

D

D

D

D

D

D

D

7,2500

.15

.15

D

D

D

D

D

5,2500

D

D

D

D

D

500

5,500

D

D

D

D

D

1000

D

D

D

D

D

D

1300

7,1000

D

D

D

D

D

D

D

D

D

D

D

D

1000

D

D

D

D stands for Default values for tuning parameters.

23

(g)

Figure 2.7 Detected corner points for im1 as per parameters given in Table 2.1

(a) SAM04. (b) IPAN99. (c) BT87. (d) FD77. (e) RW75. (f) RJ73 (g) SRM05

(a) (b) (c)

(d) (e) (f)

24

Table 2.2 Comparison of algorithm evaluation for im1

Algorithm
Total

Detections

Correct

Detections

Corners

Missed

False

Detections

SAM04 9 9 8 0

IPAN99 9 9 8 0

BT87 11 11 6 0

FD77 11 11 6 0

RW75 12 12 5 0

RJ73 13 13 4 0

SRM05 17 17 0 0

A close inspection of results from (Figure 2.7) and (Table 2.2) shows that no false

corners are detected. In fact the detected corners are representing the shape more

explicitly. Unlike all other algorithms which are missing some very important corners,

there is no corner missed in our approach as well. Moreover no corners are repeated.

25

(g)

(a) (b) (c)

(d) (e) (f)

Figure 2.8 Detected corner points for im2 as per parameters given in Table 2.1

(a) SAM04. (b) IPAN99. (c) BT87. (d) FD77. (e) RW75. (f) RJ73 (g) SRM05

26

Table 2.3 Comparison of algorithm evaluation for im2

Algorithm
Total

Detections

Correct

Detections

Corners

Missed

False

Detections

SAM04 2 2 12 0

IPAN99 2 2 12 0

BT87 2 2 12 0

FD77 2 2 12 0

RW75 4 4 10 0

RJ73 4 4 10 0

SRM05 12 12 2 0

We can examine from (Figure 2.8) and (Table 2.3) that a couple of corners are missed

using our algorithm but still as compared to other algorithms the number of missed

corners is very low. Shape of the object is captured in a much better way than any other

algorithm. Other than our approach only (Figure 2.8e and Figure 2.8f) are preserving the

shape to some extent.

27

(g)

Figure 2.9 Detected corner points for im3 as per parameters given in Table 2.1

(a) SAM04. (b) IPAN99. (c) BT87. (d) FD77. (e) RW75. (f) RJ73 (g) SRM05

(a) (b) (c)

(d) (e) (f)

28

Table 2.4 Comparison of algorithm evaluation for im3

Algorithm
Total

Detections

Correct

Detections

Corners

Missed

False

Detections

SAM04 4 4 8 0

IPAN99 4 4 8 0

BT87 4 4 8 0

FD77 9 9 3 0

RW75 9 8 3 1

RJ73 9 8 3 1

SRM05 12 12 0 0

Analysis of (Figure 2.9) and (Table 2.4) shows that our algorithm has chosen the most

optimal point set as corners. Only (Figure 2.9e) and (Figure 2.9f) are good enough to

preserve the shape of object except our approach. No corner is missed using this

approach and also no extra corner is detected.

29

(g)

Figure 2.10 Detected corner points for im4 as per parameters given in Table 2.1

(a) SAM04. (b) IPAN99. (c) BT87. (d) FD77. (e) RW75. (f) RJ73 (g) SRM05

(a) (b) (c) (d) (e) (f)

30

Table 2.5 Comparison of algorithm evaluation for im4

Algorithm
Total

Detections

Correct

Detections

Corners

Missed

False

Detections

SAM04 8 7 8 1

IPAN99 13 8 8 5

BT87 5 5 6 0

FD77 7 4 6 3

RW75 17 5 5 12

RJ73 16 4 4 12

SRM05 14 9 0 5

Analysis of (Figure 2.10) and (Table 2.5) depicts that our approach works fine since it is

not missing any important corner point therefore preserving the object’s shape. Some of

the points are still superfluous, but the number is still lesser and in the acceptable range

unlike (Figure 2.10e) and (Figure 2.10f). In case of (Figure 2.10a), (Figure 2.10c) and

(Figure 2.10e) the false detection percentage is low but they have missed a great number

of vital corners. The analysis shows that percentage of corners missed should be less

than the percentage of false detected corners.

31

(g)

Figure 2.11 Detected corner points for im5 as per parameters given in Table 2.1.

(a) SAM04. (b) IPAN99. (c) BT87. (d) FD77. (e) RW75. (f) RJ73 (g) SRM05

(a) (b) (c)

(d) (e) (f)

32

Table 2.6 Comparison of algorithm evaluation for im5

Algorithm
Total

Detections

Correct

Detections

Corners

Missed

False

Detections

SAM04 8 8 6 0

IPAN99 14 12 3 2

BT87 12 12 6 0

FD77 15 12 6 3

RW75 15 11 5 4

RJ73 14 11 2 3

SRM05 17 16 2 1

We can see that our algorithm is missing two vital corner points as shown in (Figure

2.11g). This is because of the fact that our phase three is removing any point lying on

almost a straight line. Due to this the shape is not properly preserved. We can also

observe that (Figure 2.11e) is performing best for this shape. Moreover, if we compare

our algorithm against (Figure 2.11a) and (Figure 2.11c) which have not detected any false

corners, we can see that those algorithms have missed more corners than ours, as depicted

in (Table 2.6), and thus overall our algorithm performs better.

33

(g)

Figure 2.12 Detected corner points for im6 as per parameters given in Table 2.1

(a) SAM04. (b) IPAN99. (c) BT87. (d) FD77. (e) RW75. (f) RJ73 (g) SRM05

(a) (b) (c)

(d) (e) (f)

34

Table 2.7 Comparison of algorithm evaluation for im6

Algorithm
Total

Detections

Correct

Detections

Corners

Missed

False

Detections

SAM04 20 20 9 0

IPAN99 28 26 4 2

BT87 16 16 13 0

FD77 14 12 17 2

RW75 19 18 9 1

RJ73 17 12 15 5

SRM05 30 27 2 3

The analysis of (Figure 2.12) shows that in case of highly irregular images, our algorithm

has outperformed all other approaches. Our approach is preserving the shape most

accurately since the least number of corners are missed, as we can see in (Table 2.7).

Unlike other algorithms, our algorithm is detecting the most optimal set of corner points.

Further more the percentage of false detected corners is very small and insignificant.

35

(g)

Figure 2.13 Detected corner points for im7 as per parameters given in Table 2.1

(a) SAM04. (b) IPAN99. (c) BT87. (d) FD77. (e) RW75. (f) RJ73 (g) SRM05

(a) (b) (c)

(d) (e) (f)

36

Table 2.8 Comparison of algorithm evaluation for im7

Algorithm
Total

Detections

Correct

Detections

Corners

Missed

False

Detections

SAM04 17 17 5 1

IPAN99 21 21 2 1

BT87 10 10 14 1

FD77 11 11 11 1

RW75 18 18 4 0

RJ73 17 17 6 1

SRM05 24 20 2 4

In (Figure 2.13) we analyze that except for (Figure 2.13c) and (Figure 2.13d), all the

approaches work almost the same. Most of them are properly preserving the shape of

object. Even though a couple of corner points are missed but still no significant corner

point is missed. Furthermore extra detected corner points are in the range of acceptable

point set. In this specific case only (Figure 2.13b) has better results in terms of lesser

false detections and overall shape preservation as we can observe in (Table 2.8).

37

(a) (b) (c)

(d) (e) (f)

Figure 2.14 (a) Corner points detection using (a) Marji, results without collinear

points suppression [22] (b) Marji, results with collinear points suppression [22]

(c) The-Chin [86] (d) Ansari-Huang [84] (e) Ray-Ray [82] (f) Ray-Ray [83]

38

(g) (h) (i)

(j)

Figure 2.15 (b) Corner points detection using

(g) Arcelli-Ramella [81] (h) Sarkar [80] (i) Cornin [62] and (j) SRM05

39

Table 2.9 Comparison of algorithm evaluation

Algorithm
Total

Detections

Correct

Detections

Corners

Missed

False

Detections

Marji(a) 26 26 26 0

Marji(b) 18 18 34 0

The-Chin 22 22 30 0

Ansari-

Huang
28 28 24 0

Ray-Ray(e) 29 29 23 0

Ray-Ray(f) 27 27 25 0

Arcelli-

Ramella
10 10 42 0

Sarkar 19 19 33 0

Cornin 33 33 19 0

SRM05 52 52 0 0

We can clearly observe in (Figure 2.14) that our proposed algorithm is not missing any

important corner point and each corner position is picked at a very precise position. Thus

40

it is preserving the shape of the object. We can also see that there is no false rejection or

false acceptance, as shown in (Table 2.9).

(a) (b) (c)

(d)

(15.1)

(a) (b) (c) (d)

(15.2)

41

(a) (b) (c) (d)

(15.3)

(a) (b) (c) (d)

(15.4)

(a) (b) (c) (d)

(15.5)

42

(a) (b) (c) (d)

(15.6)

Figure 2.16 Corner points detection using (a) Guru [14] (b) Chang [77] (c) Tsai [61]

and (d) SRM05

Table 2.10 Comparison of algorithm evaluation for figure 2.15.1

Algorithm
Total

Detections

Correct

Detections

Corners

Missed

False

Detections

Guru 4 4 13 0

Chang 28 11 4 17

Tsai 6 6 9 0

SRM05 15 14 1 1

43

Table 2.11 Comparison of algorithm evaluation for figure 2.15.2

Algorithm
Total

Detections

Correct

Detections

Corners

Missed

False

Detections

Guru 11 11 4 0

Chang 14 14 1 0

Tsai 11 11 4 0

SRM05 15 15 0 0

Table 2.12 Comparison of algorithm evaluation for figure 2.15.3

Algorithm
Total

Detections

Correct

Detections

Corners

Missed

False

Detections

Guru 2 2 12 0

Chang 18 6 8 9

Tsai 2 2 12 0

SRM05 14 14 0 0

44

Table 2.13 Comparison of algorithm evaluation for figure 2.15.4

Algorithm
Total

Detections

Correct

Detections

Corners

Missed

False

Detections

Guru 8 8 32 0

Chang 25 20 20 0

Tsai 24 24 16 0

SRM05 36 36 4 0

Table 2.14 Comparison of algorithm evaluation for figure 2.15.5

Algorithm
Total

Detections

Correct

Detections

Corners

Missed

False

Detections

Guru 16 16 8 0

Chang 27 24 0 3

Tsai 16 16 8 0

SRM05 20 20 4 0

45

Table 2.15 Comparison of algorithm evaluation for figure 2.15.6

Algorithm
Total

Detections

Correct

Detections

Corners

Missed

False

Detections

Guru 5 5 20 0

Chang 14 9 16 5

Tsai 24 16 9 8

SRM05 28 22 3 6

In (Figure 2.15) we examined that Chang is high on false acceptance and on the other

hand Guru has high rate of false rejections. Incase of Tsai the rate of false acceptance and

rejection is varying with the shape. Unlike other algorithms our approach is working in a

similar fashion for all the objects with negligible false acceptance in a few cases as

shown in (Tables 2.10 - 1.15). Further more since our approach is not missing any vital

corner point therefore shape preservation is much better than other cases.

46

Default ZCT = 7, DT = 5 and TA = 145o

ZCT = 5, DT = 7 and TA = 145 ZCT = 7, DT = 5 and TA = 140

ZCT = 5, DT = 7 and TA = 152 ZCT = 5, DT = 7 and TA = 140

Figure 2.17 Testing SRM05 with different tuning parameters

Default are ZCT = 7, DT = 5, TA = 152.

47

In (Figure 2.16) we have depicted that our approach is not much dependent upon the

tuning parameters as is the case with other algorithms. Using our algorithm, one has to

set these tuning parameters once in the beginning and then the set values work fine for

most of the objects.

(a))sin(xy = (b) 222 ryx =+

Figure 2.18 Results of SRM05 for functions using default tuning parameter values.

Default are ZCT = 7, DT = 5 and TA = 152.

We have demonstrated in (Figure 2.17) that our approach works even better in case of

smooth functions. How ever it is important to note that only 1st phase is enough for such

mathematical functions.

48

Rotation = 0

Rotation = 30 Rotation = 45

Rotation = 60 Rotation = 90

49

Rotation = -30 Rotation = -45

Rotation = -60 Rotation = -90

Figure 2.19 Rotation testing of SRM05 using default tuning parameter values

Default are ZCT = 7, DT = 5 and TA = 152.

We also tested our approach against rotation affects, shown in (Figure 2.18). The close

inspection shows that even though there is small affect of rotation but still shape

preservation is valid. We can see that the rate of false rejection and false acceptance is

not increasing.

50

The analysis of all experiments shows that our algorithm has less false rejection and less

false acceptance rate as compared to any of the algorithms presented. Moreover our

approach is giving the optimal corner point set for all shapes irrespective of its nature.

Further more the corners are detected at the precise positions in all the cases. The

important aspect of this approach is that it is robust to noise. Incase of smoother shapes,

the algorithm works fine as shown in case of smooth functions. Therefore, we can say

that it is kind of a generic solution for finding corners in digital objects. Another

preeminence of this approach is that although we are using some of the tuning parameters

for better output but changing them does not change the result by big margins. Also we

do not need to change these tuning parameters with respect to different shapes.

2.3. Conclusion

In areas like pattern recognition, image matching, motion analysis, outline capturing,

reconstruction of objects etc, the corners of an object play a very vital role as of features

for shape representation and analysis. In this chapter we present a novel scheme for

detecting corners of a planner object. The core of the algorithm is based upon slope

analysis. The complexity of our algorithm is linear. It is very efficient and as well as

accurate. This scheme works for both, smooth planner curves and irregular planner

curves. Test results of this algorithm are compared with some commonly referred corner

detectors. The experiments show that this method leads to good quality results and

robustness to noise with low computational cost.

51

We have demonstrated a linear time corner detection algorithm which is simple to

implement, efficient and robust to noise. It is non-recursive in nature, does not depend

much on tuning parameters and it is not effected greatly by small changes in tuning

parameters. It is very effective for shape preservation and representation. The problem

with this algorithm is that if tuning is needed then it is done manually. This work can be

extended for adaptive/dynamic tuning of parameters. Further a tuning parameter

independent algorithm will be the best option.

52

CHAPTER 3

GENERIC CUBIC SPLINE MODELING

GENERIC CUBIC SPLINE MODELING

Computer Graphics and Geometric Modeling play a very vital role in modeling and

simulation of real life objects, yet there are shapes that are difficult to represent. For

example; modeling of hand drawn shapes is quite a cumbersome task. Also it is required

to have memory efficient object representation system. Splines are the answer to these

requirements. They are taken as considerably decent and accurate way of representing,

designing and manipulating the hand drawn objects. Further they also provide memory

efficient solution.

The simplest way of curve fitting and object designing is to apply linear

interpolation/approximation for finding intermediate data values between pairs of data

points. The problem is that such attempts are extremely unlikely to provide reliable

results if the data being used is anything other than broadly linear. In an attempt to deal

with inherent non-linearity, the next step usually involves some sort of polynomial

interpolation/approximation. This generally leads to far more stable and robust solution,

but is also potentially a difficult area as the end points, local convexity and continuity of

53

derivatives all make their influences felt in often-contradictory ways. One of the most

popular ways of dealing with these issues is to use splines. In their most general form,

splines can be considered as a mathematical model that associate a continuous

representation of a curve or surface with a discrete set of points in a given space. Spline

fitting is an extremely popular form of piecewise approximation using various forms of

polynomials of degree n, or more general functions, on an interval in which they are

fitted to the function at specified points, known as control points, nodes or knots. The

polynomial used can change, but the derivatives of the polynomials are required to match

up to degree n-1 at each side of the knots, or to meet related interpolatory conditions.

Boundary conditions are also imposed on the end points of the intervals. The heart of

spline construction revolves around how the selected control points are effectively

blended together using the polynomial function of choice.

Given the various alternative forms of spline, the question of which type of spline is most

applicable in any given situation naturally arises and is inevitably a difficult one to

answer without clear criteria. Arguably the most important deciding question is whether

the spline is required to approximate or interpolate the control points. In other words,

does the user require the curve to pass through the control points with absolute precision,

or is the overall shape of the curve more important?

An interpolating function is devised to find those intermediate values which do not match

with the given set of data points. This technique is suitable in cases when the data points

54

describing the contour of the object are sufficiently smooth and accurate with no sharp

edges. Approximation is not as much restrictive as capture by Interpolation. In this case it

is sufficient that the spline is made to pass close to the given set of data points. This

approach is useful when the object to be approximated is not smooth [59,75].

It is necessary to take the degree of the polynomial into account before going into the

details. Cubic polynomials are most often used because as compared with other

polynomials, they provide reasonable smoothness, economical computation and ideal

storage facility. Lower degree polynomials give little flexibility in controlling the shape

of the curve. Moreover they do not posses smoothness property. Where as higher degree

polynomials require more computation and can introduce unwanted wiggles. However

cubic splines have limitations like lack of freedom in shape control and object design.

Due to which they are not as useful for the designer as it is the requirement in present

scenario [76].

In this chapter we will discuss the proposed formulation of interpolant form and local

support basis form of a generic cubic spline model. Our proposed approach, in addition to

enjoying the good features of cubic splines also possesses interesting shape design

features. The methodology involves two families of shape design parameters. One of

them is associated with intervals and the other is associated with points. These parameters

give shape control properties like interval and point tension.

55

We have developed an interpolatory curve scheme which involves piecewise cubic spline

in its description. It is desired to extend this idea to freeform curves, which can have all

the properties similar to that of B-Spline. This will help preserve the geometric

smoothness of the design curve while allowing the continuity conditions on the spline

functions at the knots to be varied by certain parameters, thus giving greater flexibility.

This gives the designer control over the curve shape in such a way that if shape

parameters are changed in an interval then the shape is changed only in the neighborhood

and it does not affect the over all shape of the curve.

B-Splines are amongst the most useful and powerful tool for Computer Graphics and

Geometric Modeling. They form the basis for the splines of thn degree having the

continuity of class 1−nC . The properties of B-Spline include its non-negativity of thn

degree spline that is nonzero only on n+1 intervals. They for the partition of unity, that is,

the basis functions sum up to one. The curves generated by the summation of the product

of control points with the basis function have some very useful properties like local

convex hull property and variation diminishing property.

3.1. Interpolant Form

In this section we will generalize the idea of curve design for any given amount of data.

We will formulate the piecewise generation of curve by joining the segments together

with 2GC continuity constraints. The procedure for curve design is as follows;

56

For parametric interpolation, let m
iii RyxF ∈=),(, Ζ∈i , be the given data points at

distinct knots Rti ∈ . Also suppose that 0>iν for ni ,...,1= and 0>iω for ni ,...,1= be the

respective point and interval weights for producing tension effect in a piece. If we let

)(tX be the spline interpolant to the data),(ii xt and)(tY be the spline interpolant to the

data),(ii yt , then the parametric curve))(),(()(tYtXtP = , where nttt ≤≤1 , is the piecewise

cubic generic spline model, given as in (Equation 3.5) with subject to one of the

following end conditions:

 Type 1: First derivative end conditions,

 Type 2: Natural end conditions,

 Type 3: Periodic end conditions.

Necessary and sufficient condition for the function)(tP to be the generic spline

interpolant is that its derivatives iM satisfy,

)()(22
2
1

1111111 −−++−−− −+−=+⎟
⎠
⎞

⎜
⎝
⎛ +++ kkkkkkkkkkkkkk yybyybMcMccMc ν (3.1)

For nk ,...,2,1= , where iii hwc = , iii hcb 3= and ih is the interval spacing given by

(Equation 3.7). The system of Equation given in (Equation 3.1) provides)2(−n equations

in n unknowns, nMM ,...,1 . The two unknown derivative values can be calculated using

anyone of the end conditions. In this thesis we have used Type 1 first derivative end

57

conditions. Now we can transform the set of equations into tri-diagonal system of linear

system in order to calculate the unknowns. Since we are using Type 1 end conditions,

therefore we end up with diagonally dominant tri-diagonal system. Not only do they have

unique solution, but also they can be efficiently solved. Once the unknown derivative

values are calculated the piecewise parametric cubic spline interpolant form can easily be

computed. The end condition equations are given as under;

The equations for Type 1 first derivative end conditions are represented in (Equation 3.2);

)(11 tPM ′= and)(nn tPM ′= (3.2)

For Type 2 natural end conditions they are represented in (Equation 3.3);

)(2
2
1

12121111 yybMcMc −=+⎟
⎠
⎞

⎜
⎝
⎛ +ν and

)(2
2
1

11111 −−−−− −=⎟
⎠
⎞

⎜
⎝
⎛ ++ nnnnnnnn yybMcMc ν

(3.3)

For Type 3 periodic end conditions, the equations are represented in (Equation 3.4);

)()(22
2
1

2
1

1112111211111 −−−−− −+−=++⎟
⎠
⎞

⎜
⎝
⎛ +++ nnnnnnn yybyybMcMcMccνν and

nMM =1

(3.4)

The generic spline model is given as in (Equation 3.5)

58

1
2222)}2)(1(1{)1()1()}2(1{)1()(+−−++−+−+−+−= iiiiiiiii FWVFtP βθθθθβθθααθθ (3.5)

Where,

i

i
tt h

tt
t

ii

)(
)(),[1

−
=

+
θ (3.6)

The interval spacing between the distinct knots is given by (Equations 3.7 - 3.9);

01 >−= + iii tth , (3.7)

ii htt θ+=⇒ , 10 ≤≤θ , (3.8)

Therefore for each interval the knots can be given as,

iii httt +≤≤ (3.9)

Also,

i

ii
ii

i
i

i
i

i

i
ii

hM
FV

M
h
V

h
F

tP

α

αα
θ

+=⇒

=+−=′
=

)()(
0

 (3.10)

and

59

i

ii
ii

i
i

i
i

i

i
ii

hM
FW

M
h

F
h
W

tP

β

ββ
θ

1
1

1
1

1
)(

+
+

+
+

=

−=⇒

=+−=′

 (3.11)

From (Equations 3.10) and (Equation 3.11), we can analyze that the piecewise cubic

spline model hold the following interpolatory properties;

ii FtP =)(, 11)(++ = ii FtP

ii MtP =′)(, 11)(++ =′ ii MtP
(3.12)

Where P′ denotes the first derivatives with respect to t and iM denotes derivative value

computed at the knot it . This eventually leads the piecewise cubic to the Hermite

interpolant.

Now, applying 2GC constraint equation at the joining points of the segments or pieces in

order to achieve second order geometric continuity and for the formulation of tri-diagonal

system of linear equations;

The constraints are given as in (Equation 3.13);

60

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′′
′

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′′
′

−

−

−

−+

+

+

)(
)(
)(

0
010
001

)(
)(
)(

1
i

i

i

i

i

i

i
i

i

i

tP
tP
tP

tP
tP
tP

ω
ω

ω
ν

 (3.13)

This can also be written as,

)()()(1
1

1 ii
i

i
ii

i

i
ii tPtPtP −

−
− ′′+′=′′

ω
ω

ω
ν (3.14)

To satisfy the constraint, calculate the unknowns written in (Equation 3.15).

)()(),(11 iiiiii tPandtPtP −− ′′′′′ (3.15)

Since these unknowns involve first and second derivative of the cubic spline model,

therefore first and second derivatives of the generic cubic spline are calculated as under.

First derivative of the generic cubic spline is given in (Equation 3.16).

i

i
ii

i

i
i

i

i
i

i

i
iii

h
F

h
W

h
V

h
F

tP

1)}]2)(1(1{2)2([

)32()31)(1()}]2(1{2)2)(1)[(1()(

+−−++−+

−+−−+−+−−−−=′

βθβθθ

θθβθθααθαθθ
 (3.16)

The second derivative is given by the (Equation 3.17).

61

2
1

222

)}]2)(1(1{2)2(4[

)31(2)}31()1(3{)]2)(1(4)}2(1{2[)(

i

i
ii

i

i
i

i

i
i

i

i
iii

h
F

h
W

h
V

h
F

tP

+−−++−+

−+−+−−−−−−+=′′

βθβθ

θβθθααθαθ

 (3.17)

To calculate the value of)(ii tP ′′ put 0=θ in (Equation 3.17), we get.

2
1

2220)3(224)32(2)(
i

i
i

i

i
i

i

i
i

i

i
iii h

F
h
W

h
V

h
FtP +

=
−++−−=′′ ββααθ (3.18)

Putting the values of Vi and Wi in (Equation 3.18)

}23{2)(10 +=
−−Δ=′′ iii

i
ii MM

h
tP θ (3.19)

For)(1 ii tP −′ we know that,

iii MtP =′−)(1 (3.20)

To calculate the value of)(1 ii tP −′′ put 1=θ in (Equation 3.17), we get.

2
1

12
1

1
12

1

1
12

1

1
111)32(242)3(2)(

−
−

−

−
−

−

−
−

−

−
−=− −+−+−=′′

i

i
i

i

i
i

i

i
i

i

i
iii h

F
h
W

h
V

h
FtP ββααθ (3.21)

Putting the values of Vi-1 and Wi-1 in (Equation 3.21), we get.

62

}23{2)(11
1

11 iii
i

ii MM
h

tP ++Δ−=′′ −−
−

=− θ (3.22)

Substituting (Equation 3.18), (Equation 3.20) and (Equation 3.22) in (Equation 3.14), we

get the tri-diagonal system of linear equations.

1

111

1

1

1

11 662)44(2

−

−−+

−

−

−

−− Δ
+

Δ
=++++

ii

ii

i

i

i

i
i

ii

i

ii

i

ii

ii

hhh
MM

hhh
M

ω
ω

ω
ν

ω
ω

ω
ω (3.23)

Where,

() iiii hFF −=Δ +1 (3.24)

Multiply (Equation 3.23) by 2iω and then put the iii hc ω= , we get.

111111 332}22
2

{ −−+−−− Δ+Δ=++++ iiiiiiiii
i

ii ccMcMccMc
ν (3.25)

In order to study the behavior of the solution with respect to tension parameters, it is

convenient to write the system depicted in (Equation 3.25) in unit diagonal form. Thus

dividing (Equation 3.19) by the co-efficient of Mi will give us unit diagonal form,

1,...,1,11 −==++ +− nibMcMMa iiiiii (3.26)

63

With],...,[1 n
T MMM = , this system has the matrix form,

BMEI =+)((3.27)

The terms involving 0M and nM have been transferred to the right hand side. E is the

tri-diagonal matrix with zero diagonal.

3.2. Local Support Basis Form

In this section, we will construct the B-Spline like basis for the generic cubic spline curve

with the same continuity constraints as those for interpolatory spline formulation. These

are the local basis functions with local support and having the property like being positive

everywhere. The curve designed using these local support basis functions possesses all

idea geometric properties like partition of unity, convex hull and variation diminishing.

The curve design not only provides interesting shape control properties like point and

interval tension but also as special case it recovers classes of cubic curves like Bézier,

Ball and Timmer splines.

To construct the local support basis form, we have adopted the methodology used in [7].

Here we will transform the curve scheme representation into piecewise defined Bézier

form.

Let,

iii hc ω= , iii hcb 3= and ii ca 1=

Substitute the values in (Equation 3.25). Multiplying both sides by ωi and after that

replace ic and then multiply again by ii aa 1− .

64

We will get,

iiiiiiii
iii

iii aaMaMaaaaMa Δ+Δ=++++ −−+−−
−

− 11111
1

1 33)2
2

2(ν (3.28)

Let additional knots be added outside the knot partition nttt <<< ...21 of the interval

[]ntt ,1 , defined by,

1012 tttt <<< −− and 321 +++ <<< nnnn tttt (3.29)

Also defining the cubic spline)(tiϕ ;

⎩
⎨
⎧

≥
≤

=
+

−

1

2

1
0

)(
i

i
i tt

tt
tϕ (3.30)

After imposing the constraints defined in (Equation 3.13) on the cubic spline defined in

(Equation 3.30) we get,

At 2−= itt ,

0)(,0)(,0)(222 =′′=′= −−− iiiiii ttt ϕϕϕ (3.31)

Now from (Equation 3.19)

65

{ } 0)()(2)()(32)()(1221
22

22 =⎥
⎦

⎤
⎢
⎣

⎡
′−′−−=′′=′′ −−−−

−−
−− iiiiiiii

ii
iiii tttt

hh
tPt ϕϕϕϕϕ (3.32)

Which is simplified to,

)(
3

)(1
2

1 −
−

− ′= ii
i

ii t
h

t ϕϕ (3.33)

At 1+= itt ,

0)(,0)(,1)(111 =′′=′= +++ iiiiii ttt ϕϕϕ (3.34)

Now from (Equation 3.22),

{ } 0)()(2)()(32)()(11111 =⎥
⎦

⎤
⎢
⎣

⎡
′+′+−−=′′=′′ +++++ iiiiiiii

ii
iiii tttt

hh
tPt ϕϕϕϕϕ (3.35)

Which is simplified to,

)(
3

1)(ii
i

ii t
h

t ϕϕ ′−= (3.36)

At 1−= itt ,

From (Equation 3.28)

66

() ())()(3)()(3

)()()(2)(

1
1

2
21

2

1

212121

−
−

−
−−

−

−

−−−−−−

−+−

=′+′++′

iiii
i

i
iiii

i

i

iiiiiiiiii

tt
h
a

tt
h
a

tataata

ϕϕϕϕ

ϕϕϕ
 (3.37)

Which is simplified to,

)(
33

)(3)()()(2 1
1

2

2

1

1

2
2121 −

−

−

−

−

−

−
−−−− ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+=′+′+ ii

i

i

i

i
ii

i

i
iiiiiii t

h
a

h
a

t
h
a

tataa ϕϕϕϕ (3.38)

Substituting the values of)(1−ii tϕ and)(ii tϕ , we get

1

2

1

2
21

1

22
21

3
)()(2

−

−

−

−
−−

−

−−
−− =′⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++′⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++

i

i
ii

i

ii
iii

i

ii
ii h

a
t

h
ha

at
h

ha
aa ϕϕ (3.39)

At itt = ,

From (Equation 3.28)

() ())()(3)()(3

)()()(2)(

1
1

1
1

1111

iiii
i

i
iiii

i

i

iiiiiiiiii

tt
h

a
tt

h
a

tataata

ϕϕϕϕ

ϕϕϕ

−+−

=′+′++′

+
−

−
−

+−−−

 (3.40)

Which is simplified to,

)(
33

)(
3

)(3)()()(2 11
1

11
11 ii

i

i

i

i
ii

i

i
ii

i

i
iiiiiii t

h
a

h
a

t
h

a
t

h
a

tataa ϕϕϕϕϕ −−
−

−−
−− −+−=′+′+ (3.41)

67

Substituting the values of)(1−ii tϕ and)(ii tϕ , we get

11
11

1

2 3
)(2)(

−−
−−

−

− =′⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++′⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

i

i
ii

i

ii
iiii

i

ii
i h

a
t

h
ha

aat
h
ha

a ϕϕ (3.42)

(Equations 3.39) and (Equation 3.42) are in terms of two unknowns)(1−′ ii tϕ and)(ii tϕ′ ,

solving them simultaneously give us,

2112

3113)(
ABAB
ABAB

tii −
−

=′ϕ (3.43)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−=′ −
2112

3113

1

2

1

3
1)(

ABAB
ABAB

A
A

A
A

tiiϕ (3.44)

Where,

1

22
211 2

−

−−
−− ++=

i

ii
ii h

ha
aaA (3.45)

i
i

i
i h

h
a

aA
1

2
22

−

−
− += (3.46)

68

1

2
3

3

−

−=
i

i

h
a

A (3.47)

1

2
1

−

−+=
i

ii
i h

ha
aB (3.48)

1
12 2

−
− ++=

i

ii
ii h

ha
aaB (3.49)

1
3

3

−
=

i

i

h
a

B (3.50)

Substituting the values of)(1−′ ii tϕ and)(ii tϕ′ in (Equations 3.33) and (Equation 3.36), we

get

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−= −
−

2112

3113

1

2

1

32
1 3
)(

ABAB
ABAB

A
A

A
Ah

t i
iiϕ (3.51)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−=
2112

3113

3
1)(

ABAB
ABABh

t i
iiϕ (3.52)

Substituting the values of variables 1A - 3A and 1B - 3B , and simplifying we get,

69

1
22

1)(−
−−

− == i
i

iii
ii D

dhat μϕ (3.53)

i
i

iii
ii D

dhat λϕ ==− −1)(1 (3.54)

1
2

1 ˆ3)(−
−

− ==′ i
i

ii
ii D

dat μϕ (3.55)

i
i

ii
ii D

dat λϕ ˆ3)(1 ==′ − (3.56)

Similarly defining,

⎩
⎨
⎧

≥
≤

=
+

−
+

2

1
1 1

0
)(

i

i
i tt

tt
tϕ (3.57)

After imposing the constraints defined in (Equation 3.13), we get,

i
i

iii
ii D

dhat μϕ ==
+

+−−
+

1

111
1)((3.58)

70

1
1

11
11)(1 +

+

++
++ ==− i

i

iii
ii D

dhat λϕ (3.59)

i
i

ii
ii D

dat μϕ ˆ3)(
1

11
1 ==′

+

+−
+ (3.60)

1
1

1
11

ˆ3)(+
+

+
++ ==′ i

i

ii
ii D

dat λϕ (3.61)

We can analyze a relation here,

1
2

1
2ˆ −
−

− = i
i

i h
μμ (3.62)

i
i

i h
λλ 3ˆ = (3.63)

Where,

112
1

−− ++= iiiiii aaaad ν (3.64)

And

71

iiiiiiiiiiii dhhadhhaddhD)()(1221111 −−−−−−− ++++= (3.65)

Now for local support basis, define

)()()(1 tttB iii +−= ϕϕ (3.66)

iB has the local support ()22 , +− ii tt and an explicit representation of jB on any

interval ()1, +ii tt , 1,,1,2 +−−= jjjji .

To calculate the local support basis formulation, we have,

)()}2)(1(1{})()(){1(

})()({)1()()}2(1{)1()(

1
2

11
2

22

+++ −−++′−−

+′+−+−+−=

ijiiijiji

iijijiijij

tBhtBtB

htBtBtBtB

βθθβθθ

αθθαθθ
 (3.67)

Where from (Equation 3.66)

0)()(=′= ijij tBtB , for 1,,1 +−≠ jjji (3.68)

11)(−− = jjj tB μ ; 11 ˆ)(−− =′ jjj tB μ (3.69)

iijj tB μλ −−= 1)(; jjjj tB μλ ˆˆ)(−=′ (3.70)

72

11)(++ = jjj tB λ ; 11
ˆ)(++ −=′ jjj tB λ (3.71)

3.2.1. Curve Design

Now that we have developed local support basis functions for freeform generic spline

formulation, it is desired to devise a convenient methodology to compute the curve

representation.

∑
+

−=
+ −=∈=

2

1
1 1,...,0,),[,)()(

i

ij
iijj nitttPtBtP (3.72)

Using (Equation 3.67) with 2,1,,1 ++−= iiiij

For 1−= ij

)ˆ()1()}2(1{)1()(22
1 iiiiiii htB λλαθθλαθθ −−+−+−=− (3.73)

For ij =

1
2

11
2

22

)}2)(1(1{)ˆ)(1(

)ˆˆ()1({)1()1)}(2(1{)1()(

+++ −−+++−

+−+−−−+−−−+−=

iiiiii

iiiiiiiiii

h

htB

λβθθλλβθθ

μλμλαθθμλαθθ (3.74)

73

For 1+= ij

)1)}(2)(1(1{})ˆˆ()1(){1(

)ˆ()1()}2(1{)1()(

11
2

1111
2

22
1

++++++

+

−−−−++−−−−−

++−+−+−=

iiiiiiiii

iiiiiii

h

htB

μλβθθμλμλβθθ

μμαθθμαθθ (3.75)

For 2+= ij

1
2

11
2

2)}2)(1(1{)ˆ)(1()(++++ −−++−−= iiiiiii htB μβθθμμβθθ (3.76)

To prove the partition of unity, add these four basis functions defined in (Equations 3.72-

3.75), we get,

1)()()()(211 =+++ ++− tBtBtBtB iiii (3.77)

3.2.2. Curve Representation

By local support property,

∑
+

−=

=
21

1

)()(
ij

jj PtBtP , [)1, +∈ ii ttt , 1,...,1,0 −= ni (3.78)

Where, 1,...,1,0, +=∈ njRP N
j define the control points of the representation.

We can write (Equation 3.78) as under;

74

221111)()()()()(++++−− +++=⇒ iiiiiiii PtBPtBPtBPtBtP (3.79)

Substituting the values of basis functions, we get the transformation to Bézier form. This

form is very convenient for computational purposes.

1
2222)}2)(1(1{)1()1()}2(1{)1()(+−−++−+−+−+−= iiiiiiiii FWVFtP βθθθθβθθααθθ (3.80)

where,

11)1(+− +−−+= iiiiiiii PPPF μμλλ (3.81)

2111111)1(+++++++ +−−+= iiiiiiii PPPF μμλλ (3.82)

11)
ˆ

(})ˆˆ()1{()
ˆ

(+− ++
−

+−−+−= ii
i

i
iii

i

ii
iiii

i

i
ii PhPhPhV

α
μμ

α
μλμλ

α
λλ (3.83)

and

2
1

11
)11

11
1

1)
ˆ

(}
ˆˆ(

)1{()
ˆ

(+
+

++
++

++
+

+ −+
−

−−−++= ii
i

i
iii

i

ii
iiii

i

i
ii PhPhPhW

β
μμ

β
μλ

μλ
β
λλ (3.84)

75

3.3. Extension to Special Class: Timmer Parametric Cubic Spline

Timmer Parametric cubic curve was proposed by Harry G Timmer of McDonnell

Douglas [90]. This curve was modeled after the Bézier curve. The difference is that it

follows the control polygon in more restrictive way. Timmer achieved this by forcing the

Parametric cubic to pass though the two control points and also through the mid point of

the line joining two intermediate points 1,iP and 2,iP .

Even though this curve technique is a well accepted one in the field of computer graphics

but the designers and practitioners did not opt for it. The rationale was its property of not

satisfying the convex hull.

3.3.1. Introduction to Timmer Parametric Cubic

The blending functions of Timmer Parametric cubic are;

2
0)1)(21()(tttf −−= (3.85)

2
1)1(4)(tttf −= (3.86)

)1(4)(2
2 tttf −= (3.87)

76

2
4)12()(tttf −= (3.88)

Figure 3.1 Blending function of Timmer curve

We can note that some part of 0f and 3f are negative, which shows that it does not

follow the convex hull property.

So, the parametric form of Timmer curve is;

f0(t)

f1(t)

f3(t)

f2(t)

77

1
2

2,
2

1,
22)12()1(4)1(4)1)(21()(

))(),(()(

+−+−+−+−−=

=

iiiii

i

PttPttPttPtttH

tytxtH
 (3.89)

Where as,

)1,1(

1),(1,1,1,

i
i

ii
i

i

i
i

iiii

NyMx

TPyxP

αα

α

++=

+=

 (3.90)

)1,1(

1),(

1111

112,2,2,

++++

++

−−=

+=

i
i

ii
i

i

i
i

iiii

NyMx

TPyxP

ββ

β (3.91)

iP and 1+iP are the two control points for thi piece. 1,iP and 2,iP are two intermediate

points that are calculated in order to render a piece.),(iii NMT and),(111 +++ iii NMT are unit

tangent vectors at two control points respectively. iα and iβ are real numbers, which are

used as shape parameters.

Now, from (Equation 3.90) and (Equation 3.91), we can write (Equation 3.89) in its co-

ordinate form. So, Timmer parametric cubic is represented as follows,

78

)()1(4

)12()()1(4)1)(21()(

1
12

1
222

+
+

+

+−+

−++−+−−=

i
i

i

ii
i

i
ii

P
T

tt

PttP
T

tttPtttH

β

α (3.92)

3.3.2. Properties of Timmer Parametric Cubic

Following are the properties of Timmer curve.

 Coordinate System Independent

A coordinate system independent curve remains same even if the coordinates are

changed. In order to follow this property the polynomial bases must identically sum to

one;

1)(
3

0

≡∑
=i

i tf (3.93)

This property can be proved by using (Equations 3.85) to (Equation 3.88).

 Convex Hull Property

The convex hull is a bounding polygon around all control points in such a way that the

line joining any two of the control points remain inside the polygon. A curve is said to

79

fulfill this property if it is coordinate system independent and all the polynomial bases are

non-negative. i.e.

1)(
3

0

≡∑
=i

i tf , and 0)(≥tf i , 10 ≤≤ t (3.94)

Timmer parametric cubic does not follow this property as already shown in (Figure 3.1).

Also it can be seen from (Figure 3.2).

Figure 3.2 Timmer curve disobeying convex hull property

 Variation Diminishing Property

If a given straight line, lying in the same plane space as that of the curve, intersects the

curve in '' c number of points and the control polygon in '' p number of points then,

jpc 2−= , 0≥j (3.95)

80

Considering (Figure 3.3), it is proved that Timmer parametric cubic does not obey this

property as well. Here we can see that 2=c and 0=p and thus 2−=j , which is negating

the property.

Figure 3.3 Timmer parametric cubic disobey VDP

 Symmetry

This property defines that the curve retains the shape even if the points are ordered in

reverse order, thus

∑∑
=

−
=

−≡
3

0
3

3

0

)1()(
i

iii
i

i PtfPtf (3.96)

Therefore Timmer follows this property.

 Invariant Form under Affine Transformation

The two ways for affine transformation are,

81

1. Transform sampled data points on the curve directly or,

2. Transform only the control points and use the transformed control points to generate

new Timmer curve.

For an affine transformation to satisfy, we can write the form,

This can be proved for Timmer as follows,

bAXXM +=′: (3.97)

∑
=

=
3

0

)()())((
i

ii PMtftHM (3.98)

btAHtHM +=)())(((3.99)

∑ ∑
= =

+=
3

0

3

0

)()(
i i

iii btfAPtf (3.100)

∑
=

+=
3

0

))((
i

ii bAPtf (3.101)

82

∑
=

=
3

0

)()(
i

ii PMtf (3.102)

Thus, Timmer is affine transformation invariant.

 Endpoint Interpolation

As in the case of Bézier, Timmer also interpolates the end points of a piece. It meets the

following conditions;

3,2,1,0)0(,1)0(0 === iff i (3.103)

3,2,1,0)1(,1)1(3 === iff i (3.104)

 Extra Interpolation

Timmer interpolates the point at 5.0=t , which is actually the mid point of the line

segment joining 1,iP and 2,iP .

3,1,0)5.0(,5.0)5.0(,5.0)5.0(21 ==== ifff i (3.105)

83

3.3.3. Designing GC2 Continuous Piecewise Timmer Curve using

Iterative Scheme

This scheme was proposed by [6], in which, a 2GC piecewise Timmer curve is obtained.

Data set needed is a set of points in Cartesian coordinate where the points are in the form

of),(iii yxP for ni ,...,1,0= . When there are a small number of points given as interpolating

points, one may easily form 2G data for those points in order to render a Timmer Curve

with 2G continuity. However, when there are large numbers of points, then forming 2G

data for the given data points become troublesome. This scheme proposes a solution to

this problem. In this case the curve passes through the points matching the unit tangent

vectors and signed curvature at respective point.

The tangent vectors are calculated as follows [29],

2
)(

)(2 02
010

PP
PPT

−
−−= (3.106)

2
)(

)(2 2
1

−
−

−
−−= nn

nnn
PP

PPT (3.107)

))(1()(11 iiiiiii PPaPPaT −−+−= +− (3.108)

where,

84

11

1

−+

+

−+−

−
=

iiii

ii
i PPPP

PP
a (3.109)

Here (Equation 3.106) represents tangent vector at the first point, (Equation 3.107)

represents the tangent vector at the last point and the rest of intermediate tangent vectors

are calculated using (Equation 3.108).

The unit tangent vectors are used to fix the direction of travel of a curve. Therefore the

unit tangent vectors at each interpolating points are formulated as follows,

1,...2,1,),(−=== ni
D
D

NMT
i

i
iii (3.110)

The Timmer curve is defined as in (Equation 3.89), however the intermediate control

points are calculated as follows;

),(),(1,1,1,
i

i
i

i

i
iiii

N
y

M
xyxP

αα
++= (3.111)

),(),(1
1

1
12,2,2,

i

i
i

i

i
iiii

N
y

M
xyxP

αα
+

+
+

+ −−= (3.112)

85

Now, substituting (Equation 3.111) into (Equation 3.89). Each Timmer curve is

dependent upon a single variable, iα .

i

iiiiiii
i

PPtttTtTttP
tH

α
αα))(32(])1()[1(4{

)(11 ++ −−++−−+
= (3.113)

The first and second derivatives of)(tH i are;

i

iiiiiiii
i

PPtttTTtTTT
tH

α
α))(1(6])(3)2(2[4

)(1
2

11 +++ −−++++−
=′ (3.114)

i

iiiiiii
i

PPttTTTT
tH

α
α))(12(6)(24)2(8

)(111 +++ −−++++−
=′′ (3.115)

The formula for signed curvature is defined as follows,

3
22)}('{)}('{

)(')('')('')(')(
⎟
⎠
⎞⎜

⎝
⎛ +

−
=

tyHtHx

tHytHxtHytHxtKi
(3.116)

At 0=t ;

})]()([344{
8

)0(1111 iiiiiiiiiii
i

i yyMxxNNMNMK α
α

−+−+−= ++++ (3.117)

86

And at 1=t ;

]})(34[]4)(3[{
8

)1(1111 iiiiiiiiii
i

i yyNMMxxNK αα
α

++++ −++−−= (3.118)

An initial positive value of 0α is required for this scheme to work. This 0α is required to

calculate the value of)1(0K , by using the following constraint;

niKK ii ,...1,)1()0(1 == − (3.119)

By utilizing the (Equation 3.117) and (Equation 3.118), an equation is achieved in

quadratic form.

02 =++ cba ii αα (3.120)

where,

)1(

)(
2
1

)]()([
8
3

1

11

11

−

++

++

−=

−=

−+−=

i

iiii

iiiiii

Kc

andNMNMb

yyMxxNa

 (3.121)

The general solution for iα is stated as follows;

87

)}()({3
])1()}()({6)(

)}()({3
)[(2

11

111
2

11

11

11

iiiiii

iiiiiiiiiii

iiiiii

iiii
i

yyMxxN
KyyMxxNNMNM

yyMxxN
NMNM

−+−
−+−−−

±
−+−

−
=

++

−++++

++

++α

 (3.122)

If there exists a real positive solution for iα , then it is selected to render Timmer curve.

The general algorithm to generate a 2G piecewise Timmer curve is shown in (Algorithm

3.1):

Algorithm 3.1

Step1: For ntoi ,0= do

Step1.1: Define),(iii yxP

Step1.2: Calculate),(iii NMT using (Equation 3.110)

Step2: Define 0α

Step2.1: Calculate)1(0K using (Equation 3.118)

Step2.2: Calculate 1,0P and 2,0P using (Equation 3.112)

Step2.3: Render the curve)(0 tH , with 10 ≤≤ t where)(0 tH is given by (Equation 3.89)

Step3: For 1,0 −= ntoi do

Step3.1:)1()0(1−= ii KK as defined in (Equation 3.119)

Step3.2: Solve (Equation 3.122) to obtain iα

Step3.3: Select iα with real positive number

88

Step3.4: Calculate 1,iP and 2,iP using (Equation 3.112)

Step3.5: Render the curve)(tH i , with 10 ≤≤ t where)(tH i is given by (Equation 3.89)

3.3.4. Shape Control for Timmer Curves

A very useful and fascinating feature of cubic curve is the introduction of local control of

a shape. This helps a user to define a specific shape and then allows him to play with the

shape of the curve without changing the data set of control points. Related research and

mathematical formulation of local control can be found in [7,87,88]. We have also

developed the shape control for parametric cubic piecewise 1GC and 2GC continuous

Timmer curves.

 Piecewise Timmer Curve with Shape control and GC1 Continuity

The data set for 1GC continuity is, set of points and shape parameters α and β for each

piece. In this kind of interpolation, the curve passes through each point matching the unit

tangent vectors.

In order to render a 1GC curve, we will use (Equation 3.92). The steps required to

program this scheme are;

89

Algorithm 3.2

Step1: Define all data points iP , ntoi ,1=

Step1.1: Define all shape parameters for each piece. iα and iβ , 1,1 −= ntoi .

Step1.2: Calculate Tangent vectors for first and last point, using (Equation 3.106) and

(Equation 3.107)

Step2: Calculate all intermediate Tangent vectors using (Equation 3.108)

Step2.1: Calculate the unit components of each vector.

Step3: Render the curve piece by piece using (Equation 3.92)

 Piecewise Timmer Curve with Shape control and GC2 Continuity

In this scheme we are given a set of data points and the shape parameters α and β . To

develop 2GC continuity, we not only force the curve to pass through the control points

but also the second derivative matches at the points that are joining two different pieces.

Here the condition to be satisfied is;

)0()1(1 ii HH ′′=′′− (3.123)

Taking 1st and 2nd derivative of (Equation 3.92), we will get (Equation 3.124) and

(Equation 3.125) respectively.

90

ii

iiiiiii
i

PPttTtttT
tH

βα
αβα)}](3)26(){1()32(2[2

)()11 ++ −+−−+−
=′ (3.124)

ii

iiiiiii
i

PPttTtT
tH

βα
αβα)}])(12(3)23(4{)31(4[2

)(11 ++ −−+−+−
=′′ (3.125)

Constrain given by (Equation 3.123) will give us the tri-diagonal system of 2−n linear

equations for n unknown Tangent vectors.

iiiiiii zTyTxTw =++ +− 11 , 1,...,2 −= ni (3.126)

where,

14 −= iiiiw ββα (3.127)

)(8 11 −− += iiiiix βαβα (3.128)

114 −−= iiiiy βαα (3.129)

)(3 1111 +−−− −−= iiiiiii PPz βαβα (3.130)

91

Now we need two more equations to solve for n unknown Tangent vectors. These two

equations are derived using the Type 1 first derivative end conditions.

)(11 tfm ′= and)(nn tfm ′= (3.131)

This manipulation will provide us with a system in following form,

BAT = (3.132)

Where, A is the tri-diagonal matrix of co-efficient. T is the unknown matrix of Tangent

vectors and B is the constants matrix. After applying the end conditions we can transfer

the terms involving the end conditions 1m and nm to the right hand side. Finally we can

find the Tangent vectors by,

BAT 1−= (3.133)

Once we have got all the data points, their respective unit tangents and shape parameters,

we can easily compute the Timmer curve in a piece by piece fashion using (Equation

3.92).

The steps required to program this scheme are;

92

Algorithm 3.3

Step1: Define all data points iP , ntoi ,1=

Step1: Define all shape parameters for each piece. iα and iβ , 1,1 −= ntoi .

Step2: Construct the tri-diagonal system of linear Equations using (Equation 3.126)

Step2: Calculate the Tangent vectors using (Equation 3.133)

Step3: Render the curve piece by piece using (Equation 3.130)

3.4. Results and Analysis

The tension behavior, including interval tension, point tension and global tension of the

generic cubic spline model is tested for the interpolant and local support basis form. We

have tested the effects for the range of values of data set in R2. The default values of

shape parameters iν will be assumed as zero i∀ and parameters iω as 1 i∀ . The default

values of shape parameters give us 2C continuous curve design. The iν are termed point

tension factors because they tighten a parametric curve at the ith point. The iω are

termed interval weights because they tighten the curve on the ith interval. Further more it

is important to note that parameters iα and iβ define the class of spline as special case.

For example, 2== ii βα i∀ , define cubic Ball curves, 3== ii βα i∀ , define cubic Bézier

curves and 4== ii βα i∀ , define cubic Timmer curves. By default we have demonstrated

our results for cubic Bézier curves. As special case we have demonstrated the results and

shown the effect of shape parameters for cubic Timmer curves.

93

In (Figures 3.4-3.10), we have demonstrated the shape control for the interpolant form of

generic cubic spline model. We can observe that, the interpolant form follows the control

polygon in a very restrictive manner. We see that positive increase in global values of

point and interval tension parameters do not produce any affect at all as shown in (Figure

3.5 and 3.6). Where as, the progressive change in negative global values of shape

parameters produce considerable effect on the shape of the curve. It is observed from

(Figures 3.7 – 3.10) that for lower values, the curve tends to bulge inside but as we

further decrease these values, the curve tends towards the control polygon. The inside

bulging is due to the violation of geometric properties.

The freeform curve design is much more effective and a user can play with the shape

parameters in greater control as compared to the interpolant form. This is depicted in

(Figures 3.11- 3.37). In (Figures 3.13- 3.16) we can observe the impact of progressive

increase in global values of point tension parameters. As we keep on increasing the

values, the curve tends to follow the control polygon. Moreover we also observe the

effect of point tension at specified points in (Figures 3.21 – 3.24). We observe that the

increment in point tension parameters leads to cusp, which is in fact the condition of 0C

or 0G parametric continuity. Moreover it is also observed that the change in point tension

parameters exert influence of some degree on the adjacent curve pieces as well. (Figures

3.17 – 3.20) show the influence of change in parameters for interval tension at the base.

We have demonstrated that increase in values produces the effect of control polygon.

Finally we show the effect of negative values for global values of point tension

parameters in (Figures 3.21 – 3.37). We get very interesting shapes as we keep on

94

decreasing the values and the further decrement result in remapping of the curve to the

control polygon as in case of global values of point tension parameters

In case of cubic Timmer parametric spline’s interpolant form, we can notice that when

interval tension is applied at a certain piece the intermediate points tend to overlap the

control points and due to which the curve is stretched and consequently it is then

appeared as straight line for that specific piece. Looking at (Equations 3.111 and 3.112),

one can notice that as we increase the values of iα and iβ the tangent vector approaches

zero and therefore making the intermediate point equal to the control point. Since the

effect of tangent is nullified that’s why points are joined as straight line.

3.4.1 Interpolant Form

Figure 3.4 Default values of shape parameters. 1=iω and 0=iν , i∀

95

Figure 3.5 Global values of point tension shape parameter. 1=iω and 10=iν , i∀

Figure 3.6 Global values of point tension shape parameter. 1=iω and 50=iν , i∀

96

Figure 3.7 Interval values of shape parameter. 100=iω and 0=iν , i∀

Figure 3.8 Global values of point tension shape parameter. 1=iω and 3−=iν , i∀

97

Figure 3.9 Global values of point tension shape parameter. 1=iω and 15−=iν , i∀

Figure 3.10 Global values of point tension shape parameter. 1=iω and 25−=iν , i∀

98

Figure 3.11 Global values of point tension shape parameter. 1=iω and 50−=iν , i∀

3.4.2 Local Support Basis Form

Figure 3.12 Default values of parameters 1=iω and 0=iν for shape Pot

99

Figure 3.13 Default values of parameters 1=iω and 0=iν for shape Square

Figure 3.14 Global values of point tension parameters 1=iω and 10=iν

100

Figure 3.15 Global values of point tension parameters 1=iω and 100=iν

Figure 3.16 Global values of point tension parameters 1=iω and 10=iν

101

Figure 3.17 Global values of point tension parameters 1=iω and 100=iν

Figure 3.18 Interval tension values of parameters for bottom segment 10=ω and

0=ν

102

Figure 3.19 Interval tension values of parameters for bottom segment 100=ω and

0=ν

Figure 3.20 Interval tension values of parameters for bottom segment 10=ω and

0=ν

103

Figure 3.21 Interval tension values of parameters for bottom segment 100=ω and

0=ν

Figure 3.22 Point tension values at specified points 1=ω and 10=ν

104

Figure 3.23 Point tension values at specified points 1=ω and 100=ν

Figure 3.24 Point tension values at specified points 1=ω and 10=ν

105

Figure 3.25 Point tension values at specified points 1=ω and 100=ν

Figure 3.26 Global values of point tension parameters 1=iω and 3−=iν

106

Figure 3.27 Global values of point tension parameters 1=iω and 5−=iν

Figure 3.28 Global values of point tension parameters 1=iω and 8−=iν

107

Figure 3.29 Global values of point tension parameters 1=iω and 10−=iν

Figure 3.30 Global values of point tension parameters 1=iω and 20−=iν

108

Figure 3.31 Global values of point tension parameters 1=iω and 25−=iν

Figure 3.32 Global values of point tension parameters 1=iω and 50−=iν

109

Figure 3.33 Global values of point tension parameters 1=iω and 3−=iν

Figure 3.34 Global values of point tension parameters 1=iω and 5−=iν

110

Figure 3.35 Global values of point tension parameters 1=iω and 8−=iν

Figure 3.36 Global values of point tension parameters 1=iω and 10−=iν

111

Figure 3.37 Global values of point tension parameters 1=iω and 20−=iν

Figure 3.38 Global values of point tension parameters 1=iω and 50−=iν

112

3.4.3 Timmer Parametric Cubic

Figure 3.39 Global values of shape parameters 1=iα and 1=iβ

Figure 3.40 Global values of shape parameters 2=iα and 2=iβ

113

Figure 3.41 Global values of shape parameters 3=iα and 3=iβ

Figure 3.42 Global values of shape parameters 4=iα and 4=iβ

114

Figure 3.43 Global values of shape parameters 20=iα and 20=iβ

Figure 3.44 Interval tension at base 15=α and 15=β , for 1=default

115

Figure 3.45 Global values of shape parameters 10−=iα and 10−=iβ

Figure 3.46 Interval tension at base 5−=α and 5−=β , for 3=default

116

3.5. Conclusion

Cubic spline method has been developed with the prospect of its applications in

Computer Graphics and Geometric Modeling. The proposed methodology covered in this

chapter includes the development of 2GC interpolatory form of curve design and as well

as freeform 2GC curve design. The free form curve design is developed through the

construction of local support B-Spline like basis functions. Our proposed approach

incorporates all the good features of cubic splines and along with that it also includes two

families of shape design, known as point and interval tension, which behave in well

controlled and meaningful way. Further more the freeform curve design also enjoys the

features of local control and as well as global control. However, we have not considered

the use of shape parameters for control of convexity for the interpolatory case. Moreover,

our approach also recovers 2C continuity as special case. We have also studied a special

class of our generic spline model, Timmer parametric cubic splines. We have designed its

interpolant forms for 1C and 2C continuous shapes. Also we have studied the shape

control parameters for this class.

117

CHAPTER 4

CURVE DESIGN

CURVE DESIGN

Data point approximation is a renowned problem of computer graphics, computer vision,

image analysis, CAD/CAM etc. This kind of approximation is usually done by computing

a curve close to the data point set [1,10,16,40,58]. The representation of planar object in

terms of curve has many advantages, for example, scaling, shearing, translation, rotation

and clipping operations can be performed. Further more we get the freedom to play with

the shape of the object and we can tune it as desired and thus extending this research

work for object designing.

Vectorization of raster graphics is one of the fundamental research areas of computer

graphics, image processing and computer vision. A lot of research has been done in this

area [2-5,8,17,18,20,22,53,54]. The application ranges from designing and reconstruction

to recognition of objects. These objects vary from simple to complex geometrical shapes

like space craft model, structural objects related to civil engineering, mechanical

engineering objects, bio-medial equipment designing etc.

118

Most of the research has tackled this kind of problem by curve subdivision or curve

segmentation [68,89]. Curve segmentation is advantageous in a way that it gives a rough

geometry of the shape. Approaches used to achieve this task are polygonal

approximations [5,8,22], circular arc approximations [2,18,25,26,31,35,38,39,47-

49,52,63,65-67] and approximations using cubic or higher order splines

[17,19,27,28,33,53,54,74].

Many approaches discussed use parametric piecewise-cubic functions, which are used

throughout the computer graphics industry to represent curved shapes. For many

applications, it is preferable to have such representation from a closely spaced set of

points that approximate the desired curve.

A non-parametric dominant point detection algorithm was proposed in [22], it used these

dominant points for polygonization of digital curves. The problem with polygonal

approximation is that these approaches are rarely used for shape analysis [5,8].

Algorithm for conic approximation is proposed in [35,47,66,67]. The combination of line

segments and circular arcs for object approximation can be seen in [25,26,63]. In [18] the

authors have proposed a scheme to construct a curvature continuous conic spline. They

presented the conic spline curve fitting and fairing algorithm using conic arc scaling. The

smoothing is done by removing unwanted curvature extrema. Conic splines can also be

used to fit a piecewise linear curve or another smooth curve [48]. Algorithms for data

119

fitting by arc spline curves is also presented in [38,49]. A method for segmentation of

curves into line segments and circular arcs by using types of breakpoints is proposed in

[2]. Advantage of this technique is that it is threshold free and transformation invariant.

The authors have defined five categories of breakpoints. The line and conic segmentation

and merging is based on these breakpoints. The computational complexity of the

proposed algorithm is O(nlogn). Short coming of arc splines is that they cannot be used

for high quality shape modeling as desired smoothness cannot be achieved.

Least square fitting is mostly adopted in approximations which use splines and higher

order polynomials. Usually the objective is to minimize the sum squared error measures

[31,39,52,65]. This kind of fitting is largely dependent upon proper parameterization

[74]. Another approach is based on active contour models known as snakes. Application

of this approach is [19,27,28]. This technique is also based on parameterization.

Enhancement to the scheme by adjusting both number and position of control points of

the active spline curve is shown in [17]. Here the authors used curve approximation using

iterative optimization with B-spline curve based on squared distance minimization.

Another way, other than parametric form, is to use implicit form of the polynomial.

Curve reconstruction problem is solved by approximating the point clouds using implicit

B-spline curve. Trust region algorithm is used in optimization theory as minimization

heuristics [4]. Techniques described for fitting implicitly defined algebraic spline curves

120

and surfaces to scattered data by simultaneously approximating points and associated

normal vectors are proposed by [37,50,51].

In our case the data point set represents planar object, the outline of which we want to

capture. We present an iterative process to achieve our objective. The algorithms

comprise of first finding the contour of the gray scaled bitmap image. Then the corners

are detected using [1]. The first two steps are taken as preprocessing steps. We are using

generic cubic spline curves, described in last chapter, for curve fitting. We have proposed

two classes of algorithms. The first one involves random process and the second one is

about the application of fuzzy inference rules. The first class includes further the

description of four different variations.

In the first class of algorithms, for each iteration we are inserting random point(s) as knot

in every piece if the distance of random point(s) and its corresponding contour point(s),

d , is greater then ε . This is computationally much efficient as compared to computing

least square distance or least mean square error for all data points. We stop the iteration

when all d ’s are less than ε . In the other class of algorithm, we take three random points

and then compute their fuzzy membership for being a knot. The one with the highest

fuzzy value is then taken as a knot. Again this algorithm is also iterative in nature and it

stops when for all pieces the distance between fuzzy knot and corresponding contour

point is less than ε . The second algorithm is little bit costlier in terms of time complexity

as compared to other algorithms but it gives better curve approximation.

121

Our proposed algorithm for capturing the outline of digital images in general consists of

the following steps;

 Finding Boundary of Object

 Detecting Corner from the Boundary

 Curve Fitting with Cubic Spline

 Inserting Knots for Breaking the Segment

The flow of the program is shown in (Figure 4.1). The steps are discussed in details in

later sections.

122

Figure 4.1 Outline capturing of the digital images

START

Get Digitized Image

Extract Contour

Detect Corner Points

Fit Parametric Spline

Stop

Check if

curve is fit
Yes

Insert random point as

knot

No

123

4.1 Preprocessing

This step consists of first finding the boundary of the planar object and then using the

output to find the corner points or the significant points.

4.1.1 Finding Boundary of Planar Object

The image of the object can be acquired either by scanning or by making it in software

like MS-Paint or Adobe Photoshop. In case of scanning the quality of scanned image is

dependent upon factors such as paper quality and scanning resolution. The better the

resolution and paper quality the better will be the image. On the other hand if software is

used then the quality is dependent upon the format in which the image is stored. For

example, .bmp files have more detail than .jpeg.

The aim of boundary detection is to produce an object’s shape in graphical or non-scalar

representation. Chain codes [34,36] are the most widely used representations. Other well

known representations are syntactic techniques, boundary approximations and scale-

space techniques. The benefit of using chain code is that it gives the direction of edges.

The boundary points are selected as contour points based on their corner strength and

fluctuations.

124

Chain codes were initially proposed by Freeman. The methodology adopted to detect the

boundary is by encoding the shape boundary as a sequence of connected line segments of

specified length and direction. The direction of a segment is coded using either 4-

connected or 8-connected schemes. In both schemes initially a point is selected using

either horizontal or vertical scan. After this, the 4-connected or 8-connected component

algorithm is applied. Both algorithms work in intensive stack formulation. Incase of 4-

connected, four neighboring points are analyzed. These points are pixel positions that are

right, left, above and below the current pixel. The second method is a little more

complex. In this method the set of neighboring positions to be tested include the four

diagonal pixels as well.

The point set obtained after this step is known as contour of the object. The bitmap image

and its contour are shown in (Figures 4.2) and (Figure 4.3) respectively.

Figure 4.2 Bitmap image

125

Figure 4.3 Contour of the bitmap image

4.1.2 Corner Detection

Accurate detection of corners in digital images accounts in the geometrical feature

representation and analysis [1,22]. The corner detector used in this phase is described in

detail in Chapter 2. However, for the ease of readers, we present the summary of

proposed scheme.

The algorithm is composed of three phases. Slope analysis is done in the first phase. In

this phase candidate points are chosen if slope is changing. These candidate points are

then passed to the second phase where closed coordinate points are removed. The second

phase acts as a preprocessing step for the third phase, which is the last phase of our

algorithm and gives the valid corner points as result. This phase is used to remove the

points which are lying in near proximities to each other and are selected in clusters

because of jaggy nature of contour. The removal process is based upon angular

126

measurement. If the angle calculated exceeds a threshold then the candidate point is

dropped from the list of valid corners.

In each phase the algorithm involves tuning parameters, which are used as thresholds.

First phase includes Zero Count Threshold (ZCT). ZCT is used to differentiate a jaggy

from a straight line. This is needed because we are selecting the two end points of straight

line. Incase of jaggy, we do not select the end points as candidate points for being

corners. Distance Threshold (DT) is used in second phase of the algorithm. It is used to

remove all those candidate points which are in the limits of DT. Finally Tolerance Angle

(TA) is applied in the third and final phase. It is calculated with the help of consecutive

three candidate points. If these three points make an angle greater than TA then the

middle point is removed from the list of valid corner points. The default value of ZCT is

7, DT is 5 and TA is 152o
.

The advantage of this technique is that, we can apply this algorithm for smooth functions

as well as irregular objects with jaggies. A distinct property of our algorithm is that the

default values of tuning parameters work equally well for almost all the shapes,

regardless of the object contour. Further, the change in default parameters does not

produce much impact on the outcome. The corner points of the image are shown in

(Figure 4.4).

127

Figure 4.4 Corner Points of the Image

4.2 Curve Fitting with Cubic Spline Model

The motive of finding the corner points was to divide the contour into pieces. Each piece

contains the data points in between two subsequent corners inclusive. This means that if

there are m corner points mcpcpcp ,...,, 21 then there will be m pieces mppp ,...,, 21 . We treat

each piece separately and fit the spline [55] to it. First piece includes all the contour

points in between 1cp and 2cp including them as well. Second piece contains all contour

points in between 2cp and 3cp inclusive. Consequently, the thm piece contains all contour

points between mcp and 1cp . This is represented in (Figure 4.5).

128

Figure 4.5 Contour Division into Pieces

After breaking the contour of the image into different pieces, we fit the spline curve to

each piece. For this purpose we have used piecewise parametric rational cubic spline

interpolant. Each parametric spline is 2GC continuous.

4.2.1 Cubic Spline Interpolant Form

We have used the interpolant form of the cubic generic spline model that we have already

explained in detail in (Section 3.1). However, for the ease of readers we will present the

concepts again in brevity.

The cubic generic spline model is given as under,

1
2222)}2)(1(1{)1()1()}2(1{)1()(+−−++−+−+−+−= iiiiiiiii FWVFtP βθθθθβθθααθθ (4.1)

where,

ith Corner Point

i+1st Corner Point

ith Piece

129

i

i
tt h

tt
t

ii

)(
)(),[1

−
=

+
θ (4.2)

and

i

ii
ii

hMFV
α

+= ,
i

ii
ii

hMFW
β

1
1

+
+ −= (4.3)

To get the control points{ }1,,, +iiii FWVF , we made use of a Bernstein-Bezier representation

where we can impose the Hermite interpolation condition.

ii FtP =)(, 11)(++ = ii FtP

ii MtP =′)(, 11)(++ =′ ii MtP
(4.4)

iF and 1+iF are corner points of thi piece. iM and 1+iM are the corresponding tangents at

corner points.

To construct the parametric 2GC cubic generic spline interpolant on the interval],[0 ntt

we have niRF m
i ,...,0, =∈ as interpolation data at knots niti ,...,0, = . The derivatives

m
i RM ∈ can be found out by the imposition of 2GC constraints on the piecewise defined

Hermite form of the spline model. The 2GC constraint can be written as,

130

)()()(1
1

1 ii
i

i
ii

i

i
ii tPtPtP −

−
− ′′+′=′′

ω
ω

ω
ν (4.5)

This gives us the tri-diagonal system of consistency equations,

1

111

1

1

1

11 662)44(2

−

−−+

−

−

−

−− Δ
+

Δ
=++++

ii

ii

i

i

i

i
i

ii

i

ii

i

ii

ii

hhh
MM

hhh
M

ω
ω

ω
ν

ω
ω

ω
ω (4.6)

where,

i

ii
i h

FF −
=Δ +1 (4.7)

Multiply (Equation 4.6) by 2iω and then put the iii hc ω= , we get.

111111 332}22
2

{ −−+−−− Δ+Δ=++++ iiiiiiiii
i

ii ccMcMccMc
ν (4.8)

Dividing (Equation 4.8) by the co-efficient of iM will give us unit diagonal form,

1,...,1,11 −==++ +− nibMcMMa iiiiii (4.9)

Then (Equation 4.9) will give us diagonally dominant tri-diagonal system of linear

equations in the unknowns iM where, 1,...,1 −= ni .

131

Spline fitting is shown in (Figure 4.6).

Figure 4.6 Spline fit over Object Contour

4.3 Knot Insertion

We have developed two classes of algorithms, namely Randomized Knot Insertion and

Fuzzy Random Knot Insertion. Algorithms in both classes are iterative and random in

nature and run piecewise on the contour of the object. Since the algorithms are random in

nature therefore for each run, approximation takes different number of iterations for

curve fitting.

132

4.3.1. Randomized Knot Insertion

The idea here is to fit a spline model to the object contour in such a way that the spline

curve approximates the data points on the contour. The whole process is done in

piecewise manner. The contour is divided into multiple segments. We consider all

segments or pieces one by one, in each iteration. We have devised four algorithms based

on this idea. All algorithms vary from each other in knot selection.

In our first algorithm, Single Unconstrained Random Point Algorithm, we pick a point on

the spline curve at random considering it as candidate knot. Then we calculate the

Euclidean distance of this candidate knot with the corresponding point on the contour.

We insert the candidate knot into the appropriate position of corner points list if the

distance is greater then a threshold ε , where 0>ε . The value of ε depends upon the

user’s choice of how close approximation he wants, the lesser the value the closer will be

approximated curve fit. The formulation of the whole process is described as under.

Let’s suppose that there are n points, nPPP ,...,, 21 in thj segment as shown in (Figure 4.7).

To get a candidate random point r on the spline model in this segment, we used rand()

function. This function generates random number whose value is uniformly distributed in

the interval (0,1) and therefore we multiply the resultant value by 100 to get a

representative value. Now lets suppose that the value generated by this function is x .

Then the location of the candidate random point is given in (Equation 4.10).

133

⎥
⎥

⎤
⎢
⎢

⎡
×⎟
⎠
⎞

⎜
⎝
⎛= nxLOC
100

 (4.10)

The ceiling function helps in avoiding selection of first corner point. This location exits

in between the corner points of that particular segment. Once we have got the location of

the candidate random point. We calculate the Euclidean distance between the

corresponding points on the object contour represented by rP and the point on the spline

fit represented by rC using (Equation 4.11).

22)()(
yyxx rrrr PCPCd −+−= (4.11)

The condition for valid knot selection is given as in (Equation 4.12);

ε≥d , c≤≤ ε0 where 0>c (4.12)

The valid knot selection condition depicts that if this distance is greater than threshold ε

then we select this candidate point as valid knot and insert it into the proper location in

the corner points list. Where ε is defined by the user. Lower the value of ε the better

approximation will be achieved. And subsequently if we increase the value of ε we get

average approximation. Incase where we want to have optimal interpolation, that is, all

spline computed points pass through the contour points then we put the value of ε as 0.

This will increase the number of iterations for approximation and thus there will be

134

increase in total number of knots. In cases where interpolation is not required, a greater

value of ε can be used to achieve the approximation. This threshold gives the user a

freedom to use curve fit as per his desires.

We apply this process of finding valid knots to the whole list of pieces and if we are able

to get at least one knot then a new spline fit is obtained and the whole process is repeated.

On the other hand if the distance calculated is less than ε then we leave this candidate

point and we check the next piece. We stop the process when we do not get any candidate

point as valid knot.

Figure 4.7 Calculation of random knot in Algorithm 4.1

(Algorithm 4.1) shows the steps of curve fitting.

d

Object

contour

Spline fit

Corner points

Random point at

location LOC

Pj
Pj+1

Pr

Cr

135

Algorithm 4.1: Single Unconstrained Random Point

Step 1: For each piece do the following

Step 1.1: Pick a random point on the spline curve

Step 1.2: Calculate its Euclidean distance ""d with the corresponding point on the

contour

Step 1.3: If ε>d

Step 1.3.1: Set the flag for another iteration, TRUEflag =

Step 1.3.2: With respect to its position, insert it into the list of corner points.

Step 2: If TRUEflag = repeat step 1 otherwise stop the iteration.

The second approach, Single Euclidean Distance Constraint Random Point Algorithm,

also works in similar fashion as that of first approach. The only difference comes in that

before selecting the candidate knot as corner, it is also checked whether it lies in the

proximity of either corner points of particular segment or not. The distance between the

candidate point and both corner points is calculated using the Euclidean distance formula.

In short, if the Euclidean distance between candidate point and its respective point on the

contour is more than the threshold ε and the candidate point is not near the corner points

then this candidate point is taken as knot and it is then inserted in the appropriate position

of corner points list. If the segment under consideration is thj , then left corner point is

denoted as jP and the right corner point is denoted as 1+jP . Also suppose that random

136

candidate point is denoted as rC . The distance formula for both sides can be given as in

(Equation 4.13) and (Equation 4.14),

22)()(
yyxx jrjrl PCPCd −+−= (4.13)

And,

2
1

2
1)()(

yyxx jrjrr PCPCd ++ −+−= (4.14)

The proximity criterion is again user’s choice. The nearness threshold criterion is given

as in (Equation 4.15);

τ

τ

<

<

r

l

d
or
d

 (4.15)

Where ld is the Euclidean distance between the candidate point and left corner point of

the segment. rd is the Euclidean distance between the candidate point and the right

corner point of the segment and τ is the threshold value which holds the nearness range.

The description is shown in (Figure 4.8). The bold area in the figure shows restricted

vicinity for a candidate point to be taken as knot.

137

Figure 4.8 Calculation of random knot in Algorithm 4.2 and 4.3

The algorithm for this approach is outlined in (Algorithm 4.2).

Algorithm 4.2: Single Euclidean Distance Constraint Random Point

Step 1: For each piece do the following

Step 1.1: Pick a random point on the spline curve

Step 1.2: Calculate its Euclidean distance ""d with the corresponding point on the

contour

Step 1.3: Calculate its Euclidean distance "" ld with the left corner point.

Step 1.4: Calculate its Euclidean distance "" rd with the right corner point.

Step 1.5: If ε>d & τ>ld & τ>rd

d

Object

contour

Spline fit

Corner points

Random point at

location LOC

Pj
Pj+1

Pr

Cr

138

Step 1.5.1: Set the flag for another iteration, TRUEflag =

Step 1.5.2: With respect to its position, insert it into the list of corner points.

Step 2: If TRUEflag = repeat step 1 otherwise stop the iteration.

The third, Single Positional Distance Constraint Random Point Algorithm, approach is a

very slight variation of second one. Here we follow all the steps of second approach

except for calculating the Euclidean distance for candidate knot proximity we calculate

the positional distance. It is calculated based on index position information. That is if the

candidate knot is near to either of the corners with respect to its position then we will not

take such a point as knot. The closeness threshold τ in this case is taken as a percent

value with respect to the total points on the piece.

Let’s suppose that there are m points in a piece then, the actual index IDX to be

considered as threshold vicinity can be expressed as in (Equation 4.16) and shown as

bold shade in (Figure 4.8),

⎥⎥

⎤
⎢⎢

⎡ ×= mIDX
100
τ (4.16)

The algorithm for third approach is written in (Algorithm 4.3).

139

Algorithm 4.3: Single Positional Distance Constraint Random Point

Step 1: For each piece do the following

Step 1.1: Pick a random point on the spline curve

Step 1.2: Calculate its Euclidean distance ""d with the corresponding point on the

contour

Step 1.3: Calculate its positional distance "" ld with the left corner point.

Step 1.4: Calculate its positional distance "" rd with the right corner point.

Step 1.5: If ε>d & τ>ld & τ>rd

Step 1.5.1: Set the flag for another iteration, TRUEflag =

Step 1.5.2: With respect to its position, insert it into the list of corner points.

Step 2: If TRUEflag = repeat step 1 otherwise stop the iteration.

The fourth algorithm, Three Unconstraint Random Points Algorithm, takes three random

points as candidate knots and inserts them in list of valid corners or break points if their

distances with respective points on the contour are less then the threshold. Rest of the

process is followed as in case 1. This is demonstrated in (Figure 4.9).

140

Figure 4.9 Calculation of random knot in Algorithm 4.4

The algorithm for fourth approach is written in (Algorithm 4.4).

Algorithm 4.4: Three Unconstraint Random Points

Step 1: For each piece do the following

Step 1.1: Pick three random point on the spline curve

Step 1.2: Calculate their Euclidean distances ""d with the corresponding points on the

contour

Step 1.3: Check for each point separately if ε>d

Step 1.3.1: Set the flag for another iteration, TRUEflag =

Step 1.3.2: With respect to position of point under consideration, insert it into the list of

corner points.

d

Object

contour

Spline fit

Corner points

Random point at

location LOC

Pj
Pj+1

Pr

Cr

141

Step 2: If TRUEflag = repeat step 1 otherwise stop the iteration.

The fifth algorithm, Three Equal Spaces Segmented Random Points Algorithm, is an

enhancement of fourth approach. In this case instead of selecting three random points,

first we are dividing the segment into three equally spaced sub-segments and then

treating them as pieces, as shown in (Figure 4.10) with the help of vertical lines on the

spline curves. We are then randomly selecting a candidate random knot for each of these

sub-segments. These random candidate points are taken as valid control points incase

their distances with corresponding points on the contour are greater than the threshold.

Figure 4.10 Calculation of random knot in Algorithm 4.5

The algorithm for fourth approach is written in (Algorithm 4.5).

Random point at

location LOC

Cr

d

Object

contour

Spline fit

Corner points

Pj
Pj+1

Pr

Partitioning

Label

142

Algorithm 4.5: Three Equal Spaces Segmented Random Points

Step 1: For each piece do the following

Step 2: Divide the piece under consideration into three equally spaced sub-segments

Step 3: Pick a random point on the spline curve for that sub-segment

Step 3.1: Calculate its Euclidean distance ""d with the corresponding point on the

contour

Step 3.2: If ε>d

Step 3.2.1: Set the flag for another iteration, TRUEflag =

Step 3.2.2: With respect to its position, insert it into the list of corner points.

Step 4: If TRUEflag = repeat step 1 otherwise stop the iteration.

4.3.2. Fuzzy Random Knot Insertion

The main idea behind this algorithm is to select a knot based upon its fuzzy membership

value. This value defines the candidacy of a randomly selected point to be taken as a

knot. Here we first take three points randomly on the spline curve as candidate knots.

Next we delineate the criteria for assessing our problem in terms of fuzzy logic by

defining our membership functions. After this, it is necessary to fuzzify all the input

values. This is done to determine the degree to which the inputs belong to each of the

appropriate fuzzy sets via membership functions. The resultant of this step is in fact the

degree of membership in the qualifying linguistic set, which is between 0 and 1. These

values are passed to the fuzzy operators so that we obtain one value which represents the

143

antecedent of our rule. Since we have different criteria to assess the fuzzy membership of

a random point therefore we assign weights to each of these norms. In the final step we

aggregate our rules in order to make a decision.

The fuzzy membership criteria are defined as under;

 Euclidean distance between the random point on spline curve and its corresponding

point on the object contour.

 Positional distance between the random point and the left corner point on that piece.

 Positional distance between the random point and the right corner point on that piece.

The variables for fuzzy membership criteria are demonstrated in (Figure 4.11).

Figure 4.11 Fuzzy membership criteria

The fuzzification of the inputs is done as depicted in (Equation 4.17) and (Equation 4.19);

E
PDl PDr

Knot under
consideration

Object

Spline fit

144

Fuzzy Positional Distance =

2
1 ii

i

cpcp
PD
−+

(4.17)

Where,

),min(rli PDPDPD = (4.18)

lPD and rPD are the distances between random point and left corner point and right

corner point respectively.

Fuzzy Euclidean Distance =
i

j

Sum
E

 (4.19)

Where,

jE is the Euclidean distance 3,2,1=j and,

321 EEESumi ++= (4.20)

iSum is the sum of Euclidean distances of all three random points in thi piece.

Now we assume that the Euclidean distance factor produces more impact on the

fuzzification process therefore we assign some weight w to it. Also we assign weight v

145

to positional distance factor. This implication method will ensure that in most of the cases

a point with greater Euclidean distance value will be taken as knot. The relationship

between w and v is shown in (Equation 4.21).

vw > (4.21)

In the aggregation process we multiply these fuzzified values to get single representative

result. This result helps us to choose just one point out of three points to take as knot.

Although we get a point at this stage as a knot but we take it as candidate and before

taking it as a knot we check if its Euclidean distance is with in the range of ε.

The algorithm is as follows;

Algorithm 4.6: Fuzzy Random Knot Selection

Step 1: For each piece do the following

Step 1.1: Take three random points on the spline curve

Step 1.2: Calculate their respective Euclidean distances “E” with the corresponding

points on the contour

Step 1.3: Calculate their respective positional distances with left and right corner points

Step 1.4: Calculate their fuzzy membership values and select one of them as knot k

Step 1.5: If ε>kE , kE is the Euclidean distance of selected point with corresponding

point of the contour

146

Step 1.5.1: Set the flag for another iteration; TRUEflag =

Step 1.5.2: With respect to its position, insert it into the list of corner points.

Step 2: If TRUEflag = repeat the process otherwise stop the iteration.

4.4 Results and Discussion

The evaluation results for all the algorithms as depicted in Table 4.1-Table 4.12 show that

the number of knots inserted is independent of the total number of points on the contour

and also they do not depend upon the complexity of the object shape. This is because of

the true randomized nature of the algorithms. Also we can analyze that the total number

of iterations are not greater in number thus showing the efficiency of the algorithm. The

tradeoff is in terms of increased number of knots. A detailed analysis is presented after

the compiled result set.

(Figure 4.12) to (Figure 4.14) shows the fitted curve over object contour, ‘Ali’, at

different iterations for algorithm 4.1 at threshold values of 1,2 and 3 respectively.

147

(a) At iteration = 1

(b) At iteration = 10

148

(c) At last iteration = 20

(d) At last iteration = 30

149

(e) Approximated spline for Arabic word “Ali”

Figure 4.12 Algorithm 4.1: Demonstration of spline fitting at each iteration using

threshold =1

150

(a) At iteration = 1

(b) At iteration = 10

151

(c) At last iteration = 20

(d) At last iteration = 30

152

(e) Approximated spline for Arabic word “Ali”

Figure 4.13 Algorithm 4.1: Demonstration of spline fitting at each iteration using

threshold =2

153

(a) At iteration = 1

(b) At iteration = 10

154

(c) At last iteration = 20

(d) At last iteration = 30

155

(e) Approximated spline for Arabic word “Ali”

Figure 4.14 Algorithm 4.1: Demonstration of spline fitting at each iteration using

threshold =3

Table 4.1 Evaluation of algorithm 4.1 for Arabic word “Ali”

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1644 33 652 30 531 1

1644 33 343 30 64 2

1644 33 197 30 24 3

156

(Figure 4.15) to (Figure 4.17) shows the fitted curve over object contour at different

iterations for algorithm 4.2 at threshold values of 1,2 and 3 respectively.

(a) At iteration = 1

157

(b) At iteration = 10

(c) At last iteration = 20

158

(d) At last iteration = 30

159

(e) Approximated spline for Arabic word “Ali”

Figure 4.15 Algorithm 4.2: Demonstration of spline fitting at each iteration using

threshold =1

160

(a) At iteration = 1

(b) At iteration = 10

161

(c) At last iteration = 20

(d) At last iteration = 30

162

(e) Approximated spline for Arabic word “Ali”

Figure 4.16 Algorithm 4.2: Demonstration of spline fitting at each iteration using

threshold =2

163

(a) At iteration = 1

(b) At iteration = 10

164

(c) At last iteration = 20

(d) At last iteration = 30

165

(e) Approximated spline for Arabic word “Ali”

Figure 4.17 Algorithm 4.2: Demonstration of spline fitting at each iteration using

threshold =3

Table 4.2 Evaluation of algorithm 4.2 for Arabic word “Ali”

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1644 33 308 30 112 1

1644 33 160 30 29 2

1644 33 96 30 22 3

166

(Figure 4.18) to (Figure 4.20) shows the fitted curve over object contour at different

iterations for algorithm 4.3 at threshold values of 1,2 and 3 respectively.

(a) At iteration = 1

167

(b) At iteration = 10

(c) At last iteration = 20

168

(d) At last iteration = 30

169

(e) Approximated spline for Arabic word “Ali”

Figure 4.18 Algorithm 4.3: Demonstration of spline fitting at each iteration using

threshold =1

170

(a) At iteration = 1

(b) At iteration = 10

171

(c) At last iteration = 20

(d) At last iteration = 30

172

(e) Approximated spline for Arabic word “Ali”

Figure 4.19 Algorithm 4.3: Demonstration of spline fitting at each iteration using

threshold =2

173

(a) At iteration = 1

(b) At iteration = 10

174

(c) At last iteration = 20

(d) At last iteration = 30

175

(e) Approximated spline for Arabic word “Ali”

Figure 4.20 Algorithm 4.3: Demonstration of spline fitting at each iteration using

threshold =3

Table 4.3 Evaluation of algorithm 4.3 for Arabic word “Ali”

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1644 33 183 30 28 1

1644 33 144 30 26 2

1644 33 98 30 19 3

176

(Figure 4.21) to (Figure 4.23) shows the fitted curve over object contour at different

iterations for algorithm 4.4 at threshold values of 1,2 and 3 respectively.

(a) At iteration = 1

177

(b) At iteration = 10

(c) At last iteration = 20

178

(d) At last iteration = 30

179

(e) Approximated spline for Arabic word “Ali”

Figure 4.21 Algorithm 4.4: Demonstration of spline fitting at each iteration using

threshold =1

180

(a) At iteration = 1

(b) At iteration = 10

181

(c) At last iteration = 20

(d) At last iteration = 30

182

(e) Approximated spline for Arabic word “Ali”

Figure 4.22 Algorithm 4.4: Demonstration of spline fitting at each iteration using

threshold =2

183

(a) At iteration = 1

(b) At iteration = 10

184

(c) At last iteration = 20

(d) At last iteration = 30

185

(e) Approximated spline for Arabic word “Ali”

Figure 4.23 Algorithm 4.4: Demonstration of spline fitting at each iteration using

threshold =3

Table 4.4 Evaluation of algorithm 4.4 for Arabic word “Ali”

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1644 33 1334 30 5219 1

1644 33 664 30 229 2

1644 33 422 30 65 3

186

(Figure 4.24) to (Figure 4.26) shows the fitted curve over object contour at different

iterations for algorithm 4.5 at threshold values of 1,2 and 3 respectively.

(a) At iteration = 1

187

(b) At iteration = 10

(c) At last iteration = 20

188

(d) At last iteration = 30

189

(e) Approximated spline for Arabic word “Ali”

Figure 4.24 Algorithm 4.5: Demonstration of spline fitting at each iteration using

threshold =1

190

(a) At iteration = 1

(b) At iteration = 10

191

(c) At last iteration = 20

(d) At last iteration = 30

192

(e) Approximated spline for Arabic word “Ali”

Figure 4.25 Algorithm 4.5: Demonstration of spline fitting at each iteration using

threshold =2

193

(a) At iteration = 1

(b) At iteration = 10

194

(c) At last iteration = 20

(d) At last iteration = 30

195

(e) Approximated spline for Arabic word “Ali”

Figure 4.26 Algorithm 4.5: Demonstration of spline fitting at each iteration using

threshold =3

Table 4.5 Evaluation of algorithm 4.5 for Arabic word “Ali”

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1644 33 1002 30 1653 1

1644 33 431 30 325 2

1644 33 260 30 88 3

196

(Figure 4.27) to (Figure 4.29) shows the fitted curve over object contour at different

iterations for algorithm 4.6 at threshold values of 1,2 and 3 respectively.

(a) At iteration = 1

197

(b) At iteration = 10

(c) At last iteration = 15

198

(d) At last iteration = 18

199

(e) Approximated spline for Arabic word “Ali”

Figure 4.27 Algorithm 4.6: Demonstration of spline fitting at each iteration using

threshold =1

200

(a) At iteration = 1

(b) At iteration = 5

201

(c) At last iteration = 10

(d) At last iteration = 14

202

(e) Approximated spline for Arabic word “Ali”

Figure 4.28 Algorithm 4.6: Demonstration of spline fitting at each iteration using

threshold =2

203

(a) At iteration = 1

(b) At iteration = 5

204

(c) At last iteration = 10

(d) At last iteration = 12

205

(e) Approximated spline for Arabic word “Ali”

Figure 4.29 Algorithm 4.6: Demonstration of spline fitting at each iteration using

threshold =3

Table 4.6 Evaluation of algorithm 4.6 for Arabic word “Ali”

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1644 33 344 14 81 1

1644 33 173 15 21 2

1644 33 91 10 9 3

206

(Figure 4.30) to (Figure 4.32) shows the fitted curve over object contour at different

iterations for algorithm 4.1 at threshold values of 1,2 and 3 respectively.

(a) At iteration = 1

(b) At iteration = 10

207

(c) At iteration = 20

(d) At iteration = 30

208

(e) Approximated spline for object “Apple”

Figure 4.30 Algorithm 4.1: Demonstration of spline fitting at each iteration using

threshold =1

209

(a) At iteration = 1

(b) At iteration = 10

210

(c) At iteration = 20

(d) At iteration = 30

211

(e) Approximated spline for object “Apple”

Figure 4.31 Algorithm 4.1: Demonstration of spline fitting at each iteration using

threshold =2

212

(a) At iteration = 1

(b) At iteration = 10

213

(c) At iteration = 20

(d) At iteration = 30

214

(e) Approximated spline for object “Apple”

Figure 4.32 Algorithm 4.1: Demonstration of spline fitting at each iteration using

threshold =3

Table 4.7 Evaluation of algorithm 4.1 for object “Apple”

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1242 13 544 30 202 1

1242 13 219 30 50 2

1242 13 151 30 21 3

215

(Figure 4.33) to (Figure 4.35) shows the fitted curve over object contour at different

iterations for algorithm 4.2 at threshold values of 1,2 and 3 respectively.

(a) At iteration = 1

(b) At iteration = 10

216

(c) At iteration = 20

(d) At iteration = 30

217

(e) Approximated spline for object “Apple”

Figure 4.33 Algorithm 4.2: Demonstration of spline fitting at each iteration using

threshold =1

218

(a) At iteration = 1

(b) At iteration = 10

219

(c) At iteration = 20

(d) At iteration = 30

220

(e) Approximated spline for object “Apple”

Figure 4.34 Algorithm 4.2: Demonstration of spline fitting at each iteration using

threshold =2

221

(a) At iteration = 1

(b) At iteration = 10

222

(c) At iteration = 20

(d) At iteration = 30

223

(e) Approximated spline for object “Apple”

Figure 4.35 Algorithm 4.2: Demonstration of spline fitting at each iteration using

threshold =3

Table 4.8 Evaluation of algorithm 4.2 for object “Apple”

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1242 13 271 30 57 1

1242 13 151 30 21 2

1242 13 105 30 16 3

224

(Figure 4.36) to (Figure 4.38) shows the fitted curve over object contour at different

iterations for algorithm 4.1 at threshold values of 1,2 and 3 respectively.

(a) At iteration = 1

(b) At iteration = 10

225

(c) At iteration = 20

(d) At iteration = 30

226

(e) Approximated spline for object “Apple”

Figure 4.36 Algorithm 4.3: Demonstration of spline fitting at each iteration using

threshold =1

227

(a) At iteration = 1

(b) At iteration = 10

228

(c) At iteration = 20

(d) At iteration = 30

229

(e) Approximated spline for object “Apple”

Figure 4.37 Algorithm 4.3: Demonstration of spline fitting at each iteration using

threshold =2

230

(a) At iteration = 1

(b) At iteration = 10

231

(c) At iteration = 20

(d) At iteration = 30

232

(e) Approximated spline for object “Apple”

Figure 4.38 Algorithm 4.3: Demonstration of spline fitting at each iteration using

threshold =3

Table 4.9 Evaluation of algorithm 4.3 for object “Apple”

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1242 13 189 30 26 1

1242 13 107 30 17 2

1242 13 89 30 15 3

233

(Figure 4.39) to (Figure 4.41) shows the fitted curve over object contour at different

iterations for algorithm 4.1 at threshold values of 1,2 and 3 respectively.

(a) At iteration = 1

(b) At iteration = 10

234

(c) At iteration = 20

(d) At iteration = 30

235

(e) Approximated spline for object “Apple”

Figure 4.39 Algorithm 4.4: Demonstration of spline fitting at each iteration using

threshold =1

236

(a) At iteration = 1

(b) At iteration = 10

237

(c) At iteration = 20

(d) At iteration = 30

238

(e) Approximated spline for object “Apple”

Figure 4.40 Algorithm 4.4: Demonstration of spline fitting at each iteration using

threshold =2

239

(a) At iteration = 1

(b) At iteration = 10

240

(c) At iteration = 20

(d) At iteration = 30

241

(e) Approximated spline for object “Apple”

Figure 4.41 Algorithm 4.4: Demonstration of spline fitting at each iteration using

threshold =3

Table 4.10 Evaluation of algorithm 4.4 for object “Apple”

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1242 13 1196 30 1299 1

1242 13 398 30 112 2

1242 13 305 30 53 3

242

(Figure 4.42) to (Figure 4.44) shows the fitted curve over object contour at different

iterations for algorithm 4.1 at threshold values of 1,2 and 3 respectively.

(a) At iteration = 1

(b) At iteration = 10

243

(c) At iteration = 20

(d) At iteration = 30

244

(e) Approximated spline for object “Apple”

Figure 4.42 Algorithm 4.5: Demonstration of spline fitting at each iteration using

threshold =1

245

(a) At iteration = 1

(b) At iteration = 10

246

(c) At iteration = 20

(d) At iteration = 30

247

(e) Approximated spline for object “Apple”

Figure 4.43 Algorithm 4.5: Demonstration of spline fitting at each iteration using

threshold =2

248

(a) At iteration = 1

(b) At iteration = 10

249

(c) At iteration = 20

(d) At iteration = 30

250

(e) Approximated spline for object “Apple”

Figure 4.44 Algorithm 4.5: Demonstration of spline fitting at each iteration using

threshold =3

Table 4.11 Evaluation of algorithm 4.5 for object “Apple”

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1242 13 821 30 955 1

1242 13 443 30 142 2

1242 13 268 30 42 3

251

(Figure 4.45) to (Figure 4.47) shows the fitted curve over object contour at different

iterations for algorithm 4.1 at threshold values of 1,2 and 3 respectively.

(a) At iteration = 1

(b) At iteration = 5

252

(c) At iteration = 10

(d) At iteration = 15

253

(e) Approximated spline for object “Apple”

Figure 4.45 Algorithm 4.6: Demonstration of spline fitting at each iteration using

threshold =1

254

(a) At iteration = 1

(b) At iteration = 5

255

(c) At iteration = 10

(d) At iteration = 15

256

(e) Approximated spline for object “Apple”

Figure 4.46 Algorithm 4.6: Demonstration of spline fitting at each iteration using

threshold =2

257

(a) At iteration = 1

(b) At iteration = 5

258

(c) At iteration = 10

(d) At iteration = 15

259

(e) Approximated spline for object “Apple”

Figure 4.47 Algorithm 4.6: Demonstration of spline fitting at each iteration using

threshold =3

Table 4.12 Evaluation of algorithm 4.6 for object “Apple”

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1242 13 289 16 35 1

1242 13 159 15 8 2

1242 13 101 16 9 3

260

(Figure 4.48) to (Figure 4.50) shows the fitted curve over object contour at different

iterations for algorithm 4.1 at threshold values of 1,2 and 3 respectively.

(a) At iteration = 1

(b) At iteration = 10

261

(c) At iteration = 20

(d) At iteration = 30

262

(e) Approximated spline for object “Plane”

Figure 4.48 Algorithm 4.1: Demonstration of spline fitting at each iteration using

threshold =1

263

(a) At iteration = 1

(b) At iteration = 10

264

(c) At iteration = 20

(d) At iteration = 30

265

(e) Approximated spline for object “Plane”

Figure 4.49 Algorithm 4.1: Demonstration of spline fitting at each iteration using

threshold =2

266

(a) At iteration = 1

(b) At iteration = 10

267

(c) At iteration = 20

(d) At iteration = 25

268

(e) Approximated spline for object “Plane”

Figure 4.50 Algorithm 4.1: Demonstration of spline fitting at each iteration using

threshold =3

Table 4.13 Evaluation of algorithm 4.1 for object “Plane”

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1293 27 531 30 257 1

1293 27 254 30 39 2

1293 27 174 30 23 3

269

(Figure 4.51) to (Figure 4.53) shows the fitted curve over object contour at different

iterations for algorithm 4.2 at threshold values of 1,2 and 3 respectively.

(a) At iteration = 1

(b) At iteration = 10

270

(c) At iteration = 20

(d) At iteration = 30

271

(e) Approximated spline for object “Plane”

Figure 4.51 Algorithm 4.2: Demonstration of spline fitting at each iteration using

threshold =1

272

(a) At iteration = 1

(b) At iteration = 10

273

(c) At iteration = 20

(d) At iteration = 30

274

(e) Approximated spline for object “Plane”

Figure 4.52 Algorithm 4.2: Demonstration of spline fitting at each iteration using

threshold =2

275

(a) At iteration = 1

(b) At iteration = 10

276

(c) At iteration = 20

(d) At iteration = 30

277

(e) Approximated spline for object “Plane”

Figure 4.53 Algorithm 4.2: Demonstration of spline fitting at each iteration using

threshold =3

Table 4.14 Evaluation of algorithm 4.2 for object “Plane”

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1293 27 285 30 78 1

1293 27 150 30 27 2

1293 27 86 30 18 3

278

(Figure 4.54) to (Figure 4.56) shows the fitted curve over object contour at different

iterations for algorithm 4.3 at threshold values of 1,2 and 3 respectively.

(a) At iteration = 1

(b) At iteration = 10

279

(c) At iteration = 20

(d) At iteration = 30

280

(e) Approximated spline for object “Plane”

Figure 4.54 Algorithm 4.3: Demonstration of spline fitting at each iteration using

threshold =1

281

(a) At iteration = 1

(b) At iteration = 10

282

(c) At iteration = 20

(d) At iteration = 30

283

(e) Approximated spline for object “Plane”

Figure 4.55 Algorithm 4.3: Demonstration of spline fitting at each iteration using

threshold =2

284

(a) At iteration = 1

(b) At iteration = 10

285

(c) At iteration = 20

(d) At iteration = 30

286

(e) Approximated spline for object “Plane”

Figure 4.56 Algorithm 4.3: Demonstration of spline fitting at each iteration using

threshold =3

Table 4.15 Evaluation of algorithm 4.3 for object “Plane”

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1293 27 190 30 24 1

1293 27 110 30 17 2

1293 27 80 30 16 3

287

(Figure 4.57) to (Figure 4.59) shows the fitted curve over object contour at different

iterations for algorithm 4.4 at threshold values of 1,2 and 3 respectively.

(a) At iteration = 1

(b) At iteration = 10

288

(c) At iteration = 20

(d) At iteration = 30

289

(e) Approximated spline for object “Plane”

Figure 4.57 Algorithm 4.4: Demonstration of spline fitting at each iteration using

threshold =1

290

(a) At iteration = 1

(b) At iteration = 10

291

(c) At iteration = 20

(d) At iteration = 30

292

(e) Approximated spline for object “Plane”

Figure 4.58 Algorithm 4.4: Demonstration of spline fitting at each iteration using

threshold =2

293

(a) At iteration = 1

(b) At iteration = 10

294

(c) At iteration = 20

(d) At iteration = 30

295

(e) Approximated spline for object “Plane”

Figure 4.59 Algorithm 4.4: Demonstration of spline fitting at each iteration using

threshold =3

Table 4.16 Evaluation of algorithm 4.4 for object “Plane”

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1293 27 971 30 1441 1

1293 27 572 30 293 2

1293 27 507 30 192 3

296

 (Figure 4.60) to (Figure 4.62) shows the fitted curve over object contour at different

iterations for algorithm 4.5 at threshold values of 1,2 and 3 respectively.

(a) At iteration = 1

(b) At iteration = 10

297

(c) At iteration = 20

(d) At iteration = 30

298

(e) Approximated spline for object “Plane”

Figure 4.60 Algorithm 4.5: Demonstration of spline fitting at each iteration using

threshold =1

299

(a) At iteration = 1

(b) At iteration = 10

300

(c) At iteration = 20

(d) At iteration = 30

301

(e) Approximated spline for object “Plane”

Figure 4.61 Algorithm 4.5: Demonstration of spline fitting at each iteration using

threshold =2

302

(a) At iteration = 1

(b) At iteration = 10

303

(c) At iteration = 20

(d) At iteration = 30

304

(e) Approximated spline for object “Plane”

Figure 4.62 Algorithm 4.5: Demonstration of spline fitting at each iteration using

threshold =3

Table 4.17 Evaluation of algorithm 4.5 for object “Plane”

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1293 27 863 30 1257 1

1293 27 390 30 130 2

1293 27 395 30 98 3

305

 (Figure 4.63) to (Figure 4.65) shows the fitted curve over object contour at different

iterations for algorithm 4.6 at threshold values of 1,2 and 3 respectively.

(a) At iteration = 1

(b) At iteration = 5

306

(c) At iteration = 10

(d) At iteration = 15

307

(e) Approximated spline for object “Plane”

Figure 4.63 Algorithm 4.6: Demonstration of spline fitting at each iteration using

threshold =1

308

(a) At iteration = 1

(b) At iteration = 5

309

(c) At iteration = 10

(d) At iteration = 15

310

(e) Approximated spline for object “Plane”

Figure 4.64 Algorithm 4.6: Demonstration of spline fitting at each iteration using

threshold =2

311

(a) At iteration = 1

(b) At iteration = 5

312

(c) At iteration = 10

313

(d) Approximated spline for object “Plane”

Figure 4.65 Algorithm 4.6: Demonstration of spline fitting at each iteration using

threshold =3

Table 4.18 Evaluation of algorithm 4.6 for object “Plane”

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1293 27 332 30 64 1

1293 27 142 30 12 2

1293 27 92 30 5 3

314

 (Figure 4.66) to (Figure 4.68) shows the fitted curve over object contour at different

iterations for algorithm 4.1 at threshold values of 1,2 and 3 respectively.

(a) At iteration = 1

(b) At iteration = 10

315

(c) At iteration = 20

(d) At iteration = 30

316

(e) At iteration = 40

(f) At iteration = 50

317

(g) Approximated spline for English alphabet “D”

Figure 4.66 Algorithm 4.1: Demonstration of spline fitting at each iteration using

threshold =1

318

(a) At iteration = 1

(b) At iteration = 10

319

(c) At iteration = 20

(d) At iteration = 30

320

(e) At iteration = 35

(f) Approximated spline for English alphabet “D”

Figure 4.67 Algorithm 4.1: Demonstration of spline fitting at each iteration using

threshold =2

321

(a) At iteration = 1

(b) At iteration = 10

322

(c) At iteration = 15

323

 (d) Approximated spline for English alphabet “D”

Figure 4.68 Algorithm 4.1: Demonstration of spline fitting at each iteration using

threshold =3

Table 4.19 Evaluation of algorithm 4.1 for English alphabet “D”

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

849 15 314 55 1.85 1

849 15 155 39 1.09 2

849 15 47 19 0.59 3

324

(Figure 4.69) to (Figure 4.71) shows the fitted curve over object contour at different

iterations for algorithm 4.2 at threshold values of 1,2 and 3 respectively.

(a) At iteration = 1

(b) At iteration = 10

325

(c) At iteration = 20

(d) At iteration = 30

326

(e) At iteration = 40

(f) At iteration = 50

327

(g) At iteration = 60

(h) Approximated spline for English alphabet “D”

Figure 4.69 Algorithm 4.2: Demonstration of spline fitting at each iteration using

threshold =1

328

(a) At iteration = 1

(b) At iteration = 10

329

(c) At iteration = 20

(d) At iteration = 30

330

(e) Approximated spline for English alphabet “D”

Figure 4.70 Algorithm 4.2: Demonstration of spline fitting at each iteration using

threshold =2

331

(a) At iteration = 1

(b) At iteration = 10

332

(c) At iteration = 20

(d) At iteration = 30

333

(e) At iteration = 40

334

(e) Approximated spline for English alphabet “D”

Figure 4.71 Algorithm 4.2: Demonstration of spline fitting at each iteration using

threshold =3

Table 4.20 Evaluation of algorithm 4.2 for English alphabet “D”

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

849 15 137 60 0.92 1

849 15 68 35 0.67 2

849 15 50 57 0.73 3

335

(Figure 4.72) to (Figure 4.74) shows the fitted curve over object contour at different

iterations for algorithm 4.3 at threshold values of 1,2 and 3 respectively.

(a) At iteration = 1

(b) At iteration = 10

336

(c) At iteration = 20

(d) At iteration = 30

337

(e) At iteration = 40

(f) At iteration = 50

338

(g) At iteration = 60

(h) Approximated spline for English alphabet “D”

Figure 4.72 Algorithm 4.3: Demonstration of spline fitting at each iteration using

threshold =1

339

(a) At iteration = 1

(b) At iteration = 10

340

(c) At iteration = 20

(d) At iteration = 30

341

(e) At iteration = 40

(f) At iteration = 50

342

(g) At iteration = 60

(h) Approximated spline for English alphabet “D”

Figure 4.73 Algorithm 4.3: Demonstration of spline fitting at each iteration using

threshold =2

343

(a) At iteration = 1

(b) At iteration = 10

344

(c) At iteration = 20

(d) At iteration = 30

345

(e) At iteration = 40

346

(f) Approximated spline for English alphabet “D”

Figure 4.74 Algorithm 4.3: Demonstration of spline fitting at each iteration using

threshold =3

Table 4.21 Evaluation of algorithm 4.3 for English alphabet “D”

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

849 15 141 60 0.93 1

849 15 94 60 0.87 2

849 15 60 43 0.78 3

347

(Figure 4.75) to (Figure 4.77) shows the fitted curve over object contour at different

iterations for algorithm 4.4 at threshold values of 1,2 and 3 respectively.

(a) At iteration = 1

(b) At iteration = 10

348

(c) At iteration = 20

(d) At iteration = 30

349

(e) At iteration = 40

(f) At iteration = 50

350

(g) At iteration = 60

(e) Approximated spline for English alphabet “D”

Figure 4.75 Algorithm 4.4: Demonstration of spline fitting at each iteration using

threshold =1

351

(a) At iteration = 1

(b) At iteration = 10

352

(c) At iteration = 20

(d) At iteration = 30

353

(e) At iteration = 40

(f) Approximated spline for English alphabet “D”

Figure 4.76 Algorithm 4.4: Demonstration of spline fitting at each iteration using

threshold =2

354

(a) At iteration = 1

(b) At iteration = 10

355

(c) At iteration = 20

(d) At iteration = 25

356

(e) Approximated spline for English alphabet “D”

Figure 4.77 Algorithm 4.4: Demonstration of spline fitting at each iteration using

threshold =3

Table 4.22 Evaluation of algorithm 4.4 for English alphabet “D”

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

849 15 612 60 14.17 1

849 15 216 43 1.2 2

849 15 125 26 1.53 3

357

(Figure 4.78) to (Figure 4.80) shows the fitted curve over object contour at different

iterations for algorithm 4.5 at threshold values of 1,2 and 3 respectively.

(a) At iteration = 1

(b) At iteration = 10

358

(c) At iteration = 20

(d) At iteration = 30

359

(e) At iteration = 40

(f) At iteration = 50

360

(g) At iteration = 60

(h) Approximated spline for English alphabet “D”

Figure 4.78 Algorithm 4.5: Demonstration of spline fitting at each iteration using

threshold =1

361

(a) At iteration = 1

(b) At iteration = 10

362

(c) At iteration = 20

(d) At iteration = 30

363

(e) At iteration = 40

(f) At iteration = 50

364

(g) At iteration = 60

(h) Approximated spline for English alphabet “D”

Figure 4.79 Algorithm 4.5: Demonstration of spline fitting at each iteration using

threshold =2

365

(a) At iteration = 1

(b) At iteration = 10

366

(c) At iteration = 20

(d) At iteration = 30

367

(e) At iteration = 35

368

(f) Approximated spline for English alphabet “D”

Figure 4.80 Algorithm 4.5: Demonstration of spline fitting at each iteration using

threshold =3

Table 4.23 Evaluation of algorithm 4.5 for English alphabet “D”

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

849 15 618 60 9.43 1

849 15 324 60 2.18 2

849 15 220 36 1.422 3

369

(Figure 4.81) to (Figure 4.83) shows the fitted curve over object contour at different

iterations for algorithm 4.6 at threshold values of 1,2 and 3 respectively.

(a) At iteration = 1

(b) At iteration = 5

370

(c) At iteration = 10

(d) At iteration = 15

371

(e) Approximated spline for English alphabet “D”

Figure 4.81 Algorithm 4.6: Demonstration of spline fitting at each iteration using

threshold =1

372

(a) At iteration = 1

(b) At iteration = 5

373

(c) At iteration = 10

(d) At iteration = 15

374

(e) Approximated spline for English alphabet “D”

Figure 4.82 Algorithm 4.6: Demonstration of spline fitting at each iteration using

threshold =2

375

(a) At iteration = 1

(b) At iteration = 5

376

(c) At iteration = 10

(d) At iteration = 15

377

(e) Approximated spline for English alphabet “D”

Figure 4.83 Algorithm 4.6: Demonstration of spline fitting at each iteration using

threshold =3

Table 4.24 Evaluation of algorithm 4.6 for English alphabet “D”

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

849 15 160 18 0.92 1

849 15 77 19 0.67 2

849 15 61 17 0.67 3

378

(Figure 4.84) to (Figure 4.86) shows the fitted curve over object contour at different

iterations for algorithm 4.1 at threshold values of 1,2 and 3 respectively.

(a) At iteration = 1

(b) At iteration = 10

379

(c) At iteration = 20

(d) At iteration = 30

380

(e) At iteration = 31

(f) At iteration = 33

381

(g) Approximated spline for Object “Mult_Seg_Plane”

Figure 4.84 Algorithm 4.1: Demonstration of spline fitting at each iteration using

threshold =1

382

(a) At iteration = 1

(b) At iteration = 10

383

(c) At iteration = 20

(d) At iteration = 30

384

(e) Approximated spline for Object “Mult_Seg_Plane”

Figure 4.85 Algorithm 4.1: Demonstration of spline fitting at each iteration using

threshold =2

385

(a) At iteration = 1

(b) At iteration = 10

386

(c) At iteration = 20

(d) At iteration = 30

387

(e) At iteration = 31

(f) At iteration = 32

388

(g) Approximated spline for Object “Mult_Seg_Plane”

Figure 4.86 Algorithm 4.1: Demonstration of spline fitting at each iteration using

threshold =3

Table 4.25 Evaluation of algorithm 4.1 for Object “Mult_Seg_Plane”

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1005 41 415 33 10.96 1

1005 41 224 34 2.45 2

1005 41 182 32 2.18 3

389

(Figure 4.87) to (Figure 4.89) shows the fitted curve over object contour at different

iterations for algorithm 4.2 at threshold values of 1,2 and 3 respectively.

(a) At iteration = 1

(b) At iteration = 10

390

(c) At iteration = 20

(d) At iteration = 30

391

(e) At iteration = 35

(f) At iteration = 40

392

(g) Approximated spline for Object “Mult_Seg_Plane”

Figure 4.87 Algorithm 4.2: Demonstration of spline fitting at each iteration using

threshold =1

393

(a) At iteration = 1

(b) At iteration = 10

394

(c) At iteration = 20

(d) At iteration = 30

395

(e) At iteration = 32

(f) At iteration = 34

396

(g) Approximated spline for Object “Mult_Seg_Plane”

Figure 4.88 Algorithm 4.2: Demonstration of spline fitting at each iteration using

threshold =2

397

(a) At iteration = 1

(b) At iteration = 10

398

(c) At iteration = 20

(d) At iteration = 30

399

(e) At iteration = 31

(f) At iteration = 32

400

(g) Approximated spline for Object “Mult_Seg_Plane”

Figure 4.89 Algorithm 4.2: Demonstration of spline fitting at each iteration using

threshold =3

Table 4.26 Evaluation of algorithm 4.2 for Object “Mult_Seg_Plane”

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1005 41 195 44 2.1 1

1005 41 90 34 1.21 2

1005 41 60 32 1.59 3

401

 (Figure 4.90) to (Figure 4.93) shows the fitted curve over object contour at different

iterations for algorithm 4.3 at threshold values of 1,2 and 3 respectively.

(a) At iteration = 1

(b) At iteration = 10

402

(c) At iteration = 20

(d) At iteration = 30

403

(e) At iteration = 35

(f) At iteration = 40

404

(g) Approximated spline for Object “Mult_Seg_Plane”

Figure 4.90 Algorithm 4.3: Demonstration of spline fitting at each iteration using

threshold =1

405

(a) At iteration = 1

(b) At iteration = 10

406

(c) At iteration = 20

(d) At iteration = 30

407

(e) At iteration = 31

(f) At iteration = 32

408

(g) Approximated spline for Object “Mult_Seg_Plane”

Figure 4.91 Algorithm 4.3: Demonstration of spline fitting at each iteration using

threshold =2

409

(a) At iteration = 1

(b) At iteration = 10

410

(c) At iteration = 20

(d) At iteration = 30

411

(e) At iteration = 31

(f) At iteration = 32

412

(g) Approximated spline for Object “Mult_Seg_Plane”

Figure 4.92 Algorithm 4.3: Demonstration of spline fitting at each iteration using

threshold =3

Table 4.27 Evaluation of algorithm 4.3 for Object “Mult_Seg_Plane”

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1005 41 165 44 1.68 1

1005 41 97 33 1.79 2

1005 41 70 33 1.74 3

413

 (Figure 4.93) to (Figure 4.95) shows the fitted curve over object contour at different

iterations for algorithm 4.4 at threshold values of 1,2 and 3 respectively.

(a) At iteration = 1

(b) At iteration = 10

414

(c) At iteration = 20

(d) At iteration = 30

415

(e) At iteration = 35

(f) At iteration = 40

416

(g) Approximated spline for Object “Mult_Seg_Plane”

Figure 4.93 Algorithm 4.4: Demonstration of spline fitting at each iteration using

threshold =1

417

(a) At iteration = 1

(b) At iteration = 10

418

(c) At iteration = 20

(d) At iteration = 30

419

(e) Approximated spline for Object “Mult_Seg_Plane”

Figure 4.94 Algorithm 4.4: Demonstration of spline fitting at each iteration using

threshold =2

420

(a) At iteration = 1

(b) At iteration = 10

421

(c) At iteration = 20

(d) At iteration = 30

422

(e) Approximated spline for Object “Mult_Seg_Plane”

Figure 4.95 Algorithm 4.4: Demonstration of spline fitting at each iteration using

threshold =3

Table 4.28 Evaluation of algorithm 4.4 for Object “Mult_Seg_Plane”

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1005 41 774 49 49.87 1

1005 41 403 34 9.85 2

1005 41 316 33 6.21 3

423

 (Figure 4.96) to (Figure 4.98) shows the fitted curve over object contour at different

iterations for algorithm 4.5 at threshold values of 1,2 and 3 respectively.

(a) At iteration = 1

(b) At iteration = 10

424

(c) At iteration = 20

(d) At iteration = 30

425

(e) At iteration = 35

(f) At iteration = 45

426

(g) Approximated spline for Object “Mult_Seg_Plane”

Figure 4.96 Algorithm 4.5: Demonstration of spline fitting at each iteration using

threshold =1

427

(a) At iteration = 1

(b) At iteration = 10

428

(c) At iteration = 20

(d) At iteration = 30

429

(e) Approximated spline for Object “Mult_Seg_Plane”

Figure 4.97 Algorithm 4.5: Demonstration of spline fitting at each iteration using

threshold =2

430

(a) At iteration = 1

(b) At iteration = 10

431

(c) At iteration = 20

(d) At iteration = 30

432

(e) At iteration = 31

(f) At iteration = 32

433

(g) Approximated spline for Object “Mult_Seg_Plane”

Figure 4.98 Algorithm 4.5: Demonstration of spline fitting at each iteration using

threshold =3

Table 4.29 Evaluation of algorithm 4.5 for Object “Mult_Seg_Plane”

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1005 41 591 45 26.84 1

1005 41 282 33 4.84 2

1005 41 218 32 3.51 3

434

 (Figure 4.99) to (Figure 4.101) shows the fitted curve over object contour at different

iterations for algorithm 4.6 at threshold values of 1,2 and 3 respectively.

(a) At iteration = 1

(b) At iteration = 5

435

(c) At iteration = 10

(d) At iteration = 15

436

(e) Approximated spline for Object “Mult_Seg_Plane”

Figure 4.99 Algorithm 4.6: Demonstration of spline fitting at each iteration using

threshold =1

437

(a) At iteration = 1

(b) At iteration = 5

438

(c) At iteration = 10

(d) At iteration = 15

439

(e) At iteration = 20

(f) Approximated spline for Object “Mult_Seg_Plane”

Figure 4.100 Algorithm 4.6: Demonstration of spline fitting at each iteration using

threshold =2

440

(a) At iteration = 1

(b) At iteration = 5

441

(c) At iteration = 10

442

(d) Approximated spline for Object “Mult_Seg_Plane”

Figure 4.101 Algorithm 4.6: Demonstration of spline fitting at each iteration using

threshold =3

Table 4.30 Evaluation of algorithm 4.6 for Object “Mult_Seg_Plane”

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1005 41 197 18 2.01 1

1005 41 113 20 1.29 2

1005 41 58 13 1.43 3

443

(Table 4.31) to (Table 4.60) show the cumulative results for all algorithms at threshold

values of 1,2 and 3.

Table 4.31 Evaluation of algorithm 4.1 for object ‘Ali’

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1644 33 652 30 531 1

1644 33 343 30 64 2

1644 33 197 30 24 3

Table 4.32 Evaluation of algorithm 4.2 for object ‘Ali’

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1644 33 308 30 112 1

1644 33 160 30 29 2

1644 33 96 30 22 3

444

Table 4.33 Evaluation of algorithm 4.3 for object ‘Ali’

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1644 33 183 30 28 1

1644 33 144 30 26 2

1644 33 98 30 19 3

Table 4.34 Evaluation of algorithm 4.4 for object ‘Ali’

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1644 33 1334 30 5219 1

1644 33 664 30 229 2

1644 33 422 30 65 3

445

Table 4.35 Evaluation of algorithm 4.5 for object ‘Ali’

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1644 33 1002 30 1653 1

1644 33 431 30 325 2

1644 33 260 30 88 3

Table 4.36 Evaluation of algorithm 4.6 for object ‘Ali’

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1644 33 344 14 81 1

1644 33 173 15 21 2

1644 33 91 10 9 3

446

Table 4.37 Evaluation of algorithm 4.1 for object ‘Apple’

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1242 13 544 30 202 1

1242 13 219 30 50 2

1242 13 151 30 21 3

Table 4.38 Evaluation of algorithm 4.2 for object ‘Apple’

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1242 13 271 30 57 1

1242 13 151 30 21 2

1242 13 105 30 16 3

447

Table 4.39 Evaluation of algorithm 4.3 for object ‘Apple’

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1242 13 189 30 26 1

1242 13 107 30 17 2

1242 13 89 30 15 3

Table 4.40 Evaluation of algorithm 4.4 for object ‘Apple’

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1242 13 1196 30 1299 1

1242 13 398 30 112 2

1242 13 305 30 53 3

448

Table 4.41 Evaluation of algorithm 4.5 for object ‘Apple’

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1242 13 821 30 955 1

1242 13 443 30 142 2

1242 13 268 30 42 3

Table 4.42 Evaluation of algorithm 4.6 for object ‘Apple’

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1242 13 289 16 35 1

1242 13 159 15 8 2

1242 13 101 16 9 3

449

Table 4.43 Evaluation of algorithm 4.1 for object ‘Plane’

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1293 27 531 30 257 1

1293 27 254 30 39 2

1293 27 174 30 23 3

Table 4.44 Evaluation of algorithm 4.2 for object ‘Plane’

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1293 27 285 30 78 1

1293 27 150 30 27 2

1293 27 86 30 18 3

450

Table 4.45 Evaluation of algorithm 4.3 for object ‘Plane’

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1293 27 190 30 24 1

1293 27 110 30 17 2

1293 27 80 30 16 3

Table 4.46 Evaluation of algorithm 4.4 for object ‘Plane’

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1293 27 971 30 1441 1

1293 27 572 30 293 2

1293 27 507 30 192 3

451

Table 4.47 Evaluation of algorithm 4.5 for object ‘Plane’

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1293 27 863 30 1257 1

1293 27 390 30 130 2

1293 27 395 30 98 3

Table 4.48 Evaluation of algorithm 4.6 for object ‘Plane’

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1293 27 332 30 64 1

1293 27 142 30 12 2

1293 27 92 30 5 3

452

Table 4.49 Evaluation of algorithm 4.1 for English character ‘D’

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

849 15 314 55 1.85 1

849 15 155 39 1.09 2

849 15 47 19 0.59 3

Table 4.50 Evaluation of algorithm 4.2 for English character ‘D’

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

849 15 137 60 0.92 1

849 15 68 35 0.67 2

849 15 50 57 0.73 3

453

Table 4.51 Evaluation of algorithm 4.3 for English character ‘D’

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

849 15 141 60 0.93 1

849 15 94 60 0.87 2

849 15 60 43 0.78 3

Table 4.52 Evaluation of algorithm 4.4 for English character ‘D’

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

849 15 612 60 14.17 1

849 15 216 43 1.2 2

849 15 125 26 1.53 3

454

Table 4.53 Evaluation of algorithm 4.5 for English character ‘D’

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

849 15 618 60 9.43 1

849 15 324 60 2.18 2

849 15 220 36 1.42 3

Table 4.54 Evaluation of algorithm 4.6 for English character ‘D’

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

849 15 160 18 0.92 1

849 15 77 19 0.67 2

849 15 61 17 0.67 3

455

Table 4.55 Evaluation of algorithm 4.1 for object Mult_Seg_Plane

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1005 41 415 33 10.96 1

1005 41 224 34 2.45 2

1005 41 182 32 2.18 3

Table 4.56 Evaluation of algorithm 4.2 for object Mult_Seg_Plane

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1005 41 195 44 2.1 1

1005 41 90 34 1.21 2

1005 41 60 32 1.59 3

456

Table 4.57 Evaluation of algorithm 4.3 for object Mult_Seg_Plane

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1005 41 165 44 1.68 1

1005 41 97 33 1.79 2

1005 41 70 33 1.7 3

Table 4.58 Evaluation of algorithm 4.4 for object Mult_Seg_Plane

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1005 41 774 49 49 1

1005 41 403 34 9.85 2

1005 41 316 33 6.21 3

457

Table 4.59 Evaluation of algorithm 4.5 for object Mult_Seg_Plane

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1005 41 591 45 26 1

1005 41 282 33 4.84 2

1005 41 218 32 3.51 3

Table 4.60 Evaluation of algorithm 4.6 for object Mult_Seg_Plane

Total

number

of points

on

contour

Number of

corner

points

Number of

knots

inserted

Total

number of

iterations

Execution

time

Threshold

values

1005 41 197 18 2.01 1

1005 41 113 20 1.29 2

1005 41 58 13 1.43 3

458

Table 4.61 Evaluation of space efficiency in terms of reduction of dataset

Algorithm Threshold

Object

‘Ali’ %

Reduction

in Dataset

Object

‘Apple’

%

Reduction

in Dataset

Object

‘Mult_Seg_Plane’

% Reduction in

Dataset

Object

‘D’ %

Reduction

in Dataset

Object

‘Plane’ %

Reduction

in Dataset

Average

%

Reduction

Algorithmic

Average %

Reduction

1 60.34 56.19 58.70 63.01 58.93 59.43

2 79.13 82.36 81.79 81.74 80.35 81.07 1

3 88.01 87.84 85.97 94.46 86.54 88.56

76.36

1 81.26 78.18 80.59 83.86 77.95 80.37

2 90.26 87.84 91.04 91.99 88.39 89.90 2

3 94.16 91.54 94.02 94.11 93.34 93.43

87.90

459

Algorithm Threshold

Object

‘Ali’ %

Reduction

in Dataset

Object

‘Apple’

%

Reduction

in Dataset

Object

‘Mult_Seg_Plane’

% Reduction in

Dataset

Object

‘D’ %

Reduction

in Dataset

Object

‘Plane’ %

Reduction

in Dataset

Average %

Reduction

Algorithmic

Average %

Reduction

1 88.86 84.78 83.58 83.39 85.30 85.18

2 91.24 91.38 90.34 88.92 91.49 90.67 3

3 94.03 92.83 93.03 92.93 93.81 93.33

89.73

1 18.85 3.70 22.98 27.91 24.90 19.67

2 59.61 67.95 59.90 76.32 55.76 63.91 4

3 74.33 75.44 68.55 87.04 60.78 73.23

52.27

460

Algorithm Threshold

Object

‘Ali’ %

Reduction

in Dataset

Object

‘Apple’

%

Reduction

in Dataset

Object

‘Mult_Seg_Plane’

% Reduction in

Dataset

Object

‘D’ %

Reduction

in Dataset

Object

‘Plane’ %

Reduction

in Dataset

Average %

Reduction

Algorithmic

Average %

Reduction

1 39.05 33.89 41.19 27.20 33.25 34.92

2 73.78 64.33 71.94 61.83 69.83 68.34 5

3 84.18 78.42 78.30 75.85 69.45 77.24

60.17

1 79.07 76.73 80.39 82.92 74.32 78.68

2 89.47 88.24 88.75 92.69 89.01 89.63 6

3 94.46 91.86 94.22 94.58 92.88 93.60

87.31

461

The ideal objective in reengineering of objects is to get an accurate representation in least

possible time with least possible data set. This defines the time and space complexity of

an algorithm. However in practical situations, either of the two conditions is usually

targeted.

Our algorithms are more time efficient as compared to space efficiency. We have

observed that except for Algorithm 4.3, ‘Single Positional Distance Constraint Random

Point’, all of the algorithms converge to the object contour in 15 iterations on the

average. We can say that the rest of the iterations are taken as tuning iterations for

achieving better reengineered result. In these tuning iterations we observe a very slight

improvement on curve fitting outcome. Also from the result set we can observe that

Algorithm 4.6, ‘Fuzzy Random Knot Selection’, performs the best in terms of

convergence in total number of iterations. The specialty of this algorithm is that it does

not need extra tuning iterations, thus improving overall time efficiency. Most importantly

it is to be noted that our algorithms are linear in time.

It is analyzed from Table 4.61 that Algorithm 4.3, ‘Single Positional Distance Constraint

Random Point’, performs best by reducing the dataset representation by 89%. Also

Algorithm 4.2, ‘Single Euclidean Distance Constraint Random Point’ and Algorithm 4.6,

‘Fuzzy Random Knot Selection’, reduce the dataset representation by 87% and 87%. On

the other hand Algorithm 4.4, ‘Three Unconstraint Random Points’ and Algorithm 4.5,

462

‘Three Equal Spaces Segmented Random Points’, perform the worst. The dataset

reduction is very low.

A very important factor involved in our algorithms is that one can tune up the accuracy

and space efficiency by adjusting the threshold value. In case accuracy is desired, then

the threshold value can be decreased while on the other hand threshold value is increased

to get the object representation in the least possible dataset. We have observed, Table

4.31 – Table 4.60, that Algorithm 4.3, ‘Single Positional Distance Constraint Random

Point’, performs most uniformly. Such that the threshold value does not produce much

effect on the space complexity however the accuracy is increased when the threshold

value is decreased. The rest of the algorithms show a great deal of improvement in terms

of space efficiency incase the threshold value is increased. Moreover we observed that

overall there is no effect on the number of iterations for convergence.

Furthermore, it is also analyzed that the number of knots inserted is independent of the

total number of points on the contour and also they do not depend upon the complexity of

the object shape. This is because of the true randomize nature of the algorithms.

The close inspection and analysis of results depicted in Table 4.31 – Table 4.60, show

that Algorithm 4.3, ‘Single Positional Distance Constraint Random Point’ and Algorithm

4.6, ‘Fuzzy Random Knot Selection’, give us better results in terms of both time and

space complexity. Algorithm 4.3 is better in terms of space complexity and Algorithm 4.6

463

is better in terms of time complexity. Moreover Algorithm 4.6 is far beyond Algorithm

4.3 in case of space complexity. So, overall we can say that Algorithm 4.6 works best

among all spline approximation algorithms in all the cases regardless of the threshold

values. It not only converges in least iterations but also it selects near to the least number

of knots and produces a very close fitted curve on the object contour.

464

4.5 Conclusion

A lot of applications in computer graphics, image processing, computer vision and

CAD/CAM require the data points to be approximated by computing curves. These

applications include outline capturing of bitmap images or fonts, designing of objects,

data compression, regression analysis etc. The proposed work presented in this chapter, is

concerned with efficient techniques of curve fitting to a large amount of digital planar

data using cubic splines. We have developed enhanced techniques for knot insertion to

obtain an approximation in lesser operations. Moreover, these algorithms are quite

economical in terms of computation cost as they use a cubic function in their description

and the randomized nature of algorithms is also simple. Our approaches can be used to

visualize large set of data in much smaller data set. Further they can be used in object

designing area. On the storage side, they require very few points to store and recover a

planar image, especially the fuzzy approach is far better than any other approach in terms

of time and space complexity.

465

CHAPTER 5

CONCLUSION AND FUTURE WORK

CONCLUSION AND FUTURE WORK

5.1. Conclusion

The research work was substantially aimed to come up with an efficient strategy for

object designing using smooth cubic splines. During the course of this thesis we also

developed some efficient schemes of spline approximation which can also be used in

object designing. To achieve the objective, several areas were analyzed and studied in

depth, which are as under;

 Corner detection.

 Introduction of smoothness in parametric cubic spline model.

 Designing of interpolant form of smooth parametric cubic spline model.

 Designing of local support basis form of smooth parametric cubic spline model.

466

 Introduction of shape control parameters in the spline model.

 Designing of objects using smooth parametric cubic spline model.

 Approximating the object contour using the smooth parametric cubic spline model.

5.1.1. Corner Detection

A rough shape of digital object can be represented with the help of corner points. Thus,

corners of a digital image store vital information for shape analysis. We have developed

an efficient scheme for detecting corners in digital images. Our scheme’s time

complexity is linear. Moreover we have demonstrated that our algorithm neither detects

wrong corners nor it leaves true corners undetected. Although our algorithm is not

transformation invariant but we have shown that rotation does not produce much effect

on shape descriptors. Further, the most important aspect of our algorithms is that our

default tuning parameters work in the same way for all the objects. We have also shown

that the tuning parameters do not have much effect when changed. That is, it is not

required to change the tuning parameters as the input object is changed.

5.1.2. Spline Modeling

Splines are used to produce smooth curves. They can be applied to set up paths for object

motions or to provide a representation for an existing object or drawing also they can be

used to design object shapes. The important aspects to address for spline modeling and

usage are to decide if it will be an interpolating or approximating spline. Interpolating

splines mean that the curve is passing through the designated set of data points also

467

known as control points. Where as, approximating splines do not necessarily pass through

the given set of control points. Further, degree of spline plays a very important role in

object designing and approximation. The most often used class of splines is cubic, which

offer a reasonable compromise between flexibility and speed of computation. Compared

to higher-order polynomials, cubic splines require less calculations and memory and they

are more stable. Compared to lower-order polynomials, cubic splines are more flexible

for modeling arbitrary curve shapes.

We have formulated the mathematical notion of the interpolant and as well as local

support basis form of cubic generic spline model. The interpolant form, as the name

suggests is used for interpolation of given data set where as the local support basis form

is used for approximation purposes. We have induced the 2GC continuity in its

description. This spline formulation recovers general cubic Bézier, Ball and Timmer

curves as special cases. Also we have introduced the shape parameters for control over

design. These shape parameters can be used to produce local or global tension. Moreover

we have studied Timmer parametric cubic splines in detail and we have further proposed

two interpolating schemes for curve rendering using 1C and 2C continuity.

5.1.3. Introduction of Smoothness in Curve Design

To attain a better shape it is required that the spline should permit the mixing of sharp

and smooth sections within the same description. Continuity condition provides the

468

solution for this requirement. To achieve shapes with cusps, a zero order continuity

condition can be used. For smooth shapes higher order continuity conditions are satisfied.

We have introduced 2GC continuity in the generic cubic spline description. The benefit is

that it can be used as 2C continuous constraint with some change in parameter values.

5.1.4. Introduction of Shape Parameters

Shape parameters allow the designer to play with the shape of the object without ever

changing the set of data points. These parameters in fact add a layer of shape control.

Generally there are two kinds of shape parameters associated with curves. The first one is

known as point tension. As the name suggests, it is associated with producing affect only

on the neighborhood of a specific point. Where as the second type of shape parameter is

concerned with producing the affect on an interval and thus known as interval tension

parameter. We have successfully introduced the concept of shape parameters in the

generic cubic curve design theory. We have also demonstrated the affect of changing the

point and tension parameters. Further it is up to the designer to use these parameters

globally or locally. Global change will impact the whole shape of the object where as

local change will render the change in a specified interval or point.

5.1.5. Development of Interpolant Form of Spline Model

As we have already explained that interpolation is used when spline curve is suppose to

pass through the given set of data points. Further it is used when the control points which

469

are describing the contour of the object are smooth with no sharp edges. We have devised

an interpolant form of generic cubic spline model. For interpolation curve scheme, the

data point set is transformed into Hermite form and the implementation of the tri-

diagonal system is proposed for computation of tangents. We have used Type 1 natural

end conditions for the formulation of tri-diagonal system of linear equations. The

tangents are calculated at joining points of the segments in such a way that they follow

2GC continuity.

5.1.6. Development of Local Support Basis Form

Local support basis formulation is used for spline approximation. This is less restrictive

as compared to the interpolant form of spline model. In this case, as we have discussed

earlier, the spline curve does not necessarily pass through the data points describing the

contour of object. This approach is useful when the object to be approximated is not

smooth. We have introduced the local support basis in the spline by transforming it in to

piece wise Bernstein-Bézier representation. The freeform curve method is computed by

the generation of Bezier points through B-Spline representation. The rationale of this

conversion is to get all the desired properties of B-Spline like basis function.

5.1.7. Planar Object Approximation and Designing

One way to tackle object designing is by using spline approximation. Here it is required

to find a close spline fit to the object contour. Once we get the approximated spline fit of

the object we can apply all transformations on it. Thus allowing a designer to play with

470

the shape of the object or use it for designing purposes. Several steps are required to get

approximated spline fit. Among them are, boundary extraction, corner detection and knot

insertion or breaking the segment. We have used chain codes for boundary extraction.

Most importantly we have proposed two classes of knot insertion algorithms. Both

classes involve random process. Further we have also described our fuzzy criteria for

selecting a random point amongst three using our proposed fuzzy membership function.

We have shown that our proposed approaches are much efficient as far as the time

complexity is concerned. We have also demonstrated that our approaches converge to the

solution in very less iterations. However, these approaches are not good in terms of space

complexity. Thus we claim that these approaches are very useful in on-line applications

where space complexity is not much of concern.

5.2. Future Work

5.2.1. Designing of tuning parameter independent corner detector

In ideal situation it is required to have a corner detector which is independent of all kinds

of tuning parameters and also which is transformation invariant. Even though our

proposed corner detector’s tuning parameters do not produce much difference when

changed but still there presence invalidate an ideal condition.

471

5.2.2. Enhancement of curve fitting technique in terms of time and

space complexity

A universal approach is required for curve fitting which could be applied both at online

and offline applications. Thus it is required to find a solution which is efficient in terms

of both time and space complexity.

5.2.3. Extension of concepts to 3D geometry

In this thesis we have explored the planar objects in detail. All our algorithms and

techniques revolve around 2D objects. It will be interesting to find if these approaches are

also applicable to 3D geometry.

472

References:

[1] M. Sarfraz, A. Rasheed and Z. Muzaffar, “A Novel Linear Time Corner Detection

Algorithm”, Proceedings of International Conference on Computer Graphics,

Imaging and Vision CGIV05, IEEE Computer Society, 27-29 July 2005, Beijing,

China, pp. 191-196.

[2] Wu-Chih Hu, “Multiprimitive Segmentation Based on Meaningful Breakpoints for

Fitting Digital Planar Curves with Line Segments and Conic Arcs”, Image and

Vision Computing Vol. 23, Issue 9, September 2005, pp. 783-789.

[3] Hiroyuki Kano, Hiroaki Nakata, Clyde F. Martin, “Optimal Curve Fitting and

Smoothing Using Normalized Uniform B-Splines: A Tool for Studying Complex

Systems”, Applied Mathematics and Computation 169, 2005, pp. 96-128.

[4] Zhouwang Yang, Jiansong Deng, Falai Chen, “Fitting Unorganized Point Clouds

with Active Implicit B-Spline Curves”, Proceedings of Special Issues of Pacific

Graphics, Visual Computing Vol. 21, Issue 8-10, September 2005, pp. 831-839.

[5] Guillaume Lavoue, Florent Dupont, Atilla Baskurt, “A New Subdivision Based

Approach for Piecewise Smooth Approximation of 3D Polygonal Curves”, Pattern

Recognition Vol. 38, Issue 8, 2005, pp. 1139-1151.

[6] Gobithassan Rudrudamy, “Designing Geometrically Continuous Curves Using

Timmer Parametric Cubic”, Master’s Thesis, Department of Mathematics, FST,

College University of Science and Technology Malaysia, March 2004.

[7] M. Sarfraz, “Weighted Nu Spline with Local Support Basis Functions”, Computer

and Graphics, Vol. 28, 2004, pp. 539-549.

473

[8] Sarfraz M., Asim M.R., Masood A., “Piecewise Polygonal Approximation of

Digital Curves”, IEEE Computer Society in the proceedings of 8th International

Conference on Information Visualization - IV 2004, London, England 14-16 July

2004, pp. 991-996.

[9] Sarfraz, M., Asim, M. S., and Masood, A., “Capturing Outlines using Cubic Bezier

Curves”, The Proceedings of The International Conference on Information &

Communication Technologies: from Theory to Applications - ICTTA'04, Omayyad

Palace, Damascus, Syria, IEEE Computer Society Press, USA, ISBN: 0-7803-8482-

2, 2004.

[10] Muhammad Sarfraz, “Some Algorithms for Curve Design and Automatic Outline

Capturing of Images”, International Journal of Image and Graphics, Vol. 4, Issue 2,

2004, pp. 301-324.

[11] Sarfraz M., Asim M.R., Masood A., “Web Based System for Capturing Outlines of

2D shapes”, International Conference on Information and Computer Science,

KFUPM Dhahran, Saudi Arabia 28-30 Nov, 2004-ICICS’ 2004, pp. 575-586.

[12] Sarfraz M., Asim M.R., Masood A., “Capturing Outlines with Cubic Bezier

Curves”, The Proceedings of The International Conference on Information and

Communication Technologies: From Theory to Applications – ICTTA’04, IEEE-

Computer Society, Syria, April 2004.

[13] Sarfraz, M., Asim, M. R. and Masood, A. “A New Approach to Corner Detection”,

Kluwer in The Book Series: Computational Imaging and Vision, Kluwer, ISBN: 1-

4020-1817-7, 2004, pp. 181 – 197.

474

[14] D.S Guru, R. Dinesh and P. Nagabhushan, “Boundary Based Corner Detection and

Localization Using New ‘Cornerity’ Index: A Robust Approach”, Proceedings of

the First Canadian Conference on Computer and Robot Vision (CRV’04), IEEE,

2004.

[15] Lu Sun, Y.Y, Tang, Xinge You, “Corner Detection for Object Recognition by

Using Wavelet Transform”, Proceedings of the Third International Conference on

Machine Learning and Cybernetics, IEEE, Shanghai, 26-29 August 2004.

[16] M. Sarfraz, M.A. Khan, “An Automatic Algorithm for Approximating Boundary of

Bitmap Characters”, Future Generation Computer Systems, Vol. 20, Issue 8,

November 2004, pp 1327-1336.

[17] Huaiping Yang, Wenping Wang, Jiaguang Sun, “Control Point Adjustment for B-

Spline Curve Approximation”, Computer Aided Design Vol. 36, Issue 7, 2004, pp.

639-652.

[18] Xummian Yang, “Curve Fitting and Fairing Using Conic Splines”, Computer Aided

Design Vol. 36, Issue 5, 2004, pp. 461-472.

[19] C.C. Leung, C.H. Chan, F.H.Y. Chan and W.K. Tsui, “B-Spline Snakes in Two

Stages”, In Proceedings of 17th International Conference on Pattern Recognition

ICPR’04, 2004, pp. 568-571.

[20] Wenping Wang, Helmut Pottmann, Yan Liu, “Fitting B-Spline Curves to Point

Clouds by Squared Distance Minimization”, HKU CS Tech Report TR-2004-11.

[21] Terézia P. V., “Curve and Surface Modeling with Spline Functions of Mixed

Type”, PhD Thesis, Budapest University of Technology and Economics, 2003.

475

[22] Marji M., Siy P., “A New Algorithm for Dominant Points Detection and

Polygonization of Digital Curves”, Pattern Recognition, Vol. 36, Issue 10, 2003, pp.

2239-2251.

[23] C.Urdiales, C. Trazegnies, A. Bandera and F. Sandoval, “Corner Detection Based

on Adaptively Filtered Curvature Function”, Electronic Letters, Vol. 39, Issue 5,

6th March 2003, pp. 426-428.

[24] Wen-Yen Wu, “An Adaptive Method for Detecting Dominant Points”, Journal of

Pattern Recognition, Vol. 36, Issue 10, 2003, pp. 2231-2237.

[25] J. H. Horng, “An Adaptive Smoothing Approach for Fitting Digital Planar Curves

with Line Segments and Circular Arcs”, Pattern Recognition Letters Vol. 24, Issue

1-3, January 2003, pp. 565-577.

[26] B. Sarkar, L. K. Singh, D. Sarkar, “Approximation of Digital Curves with Line

Segments and Circular Arcs Using Genetic Algorithms”, Pattern Recognition

Letters, Vol. 24, Issue 15, November 2003, pp. 2585-2595.

[27] Pottmann, H., Hofer, M., “Geometry of the Squared Distance Function to Curves

and Surfaces”, In Hege, H., Polthier, K. (Eds) Visulaization and Mathematics III,

Springer, Berlin Heidelberg New York, 2003, pp. 223-244.

[28] Pottmann, H., Leopoldseder, S., Hofer, M., “Approximation with Active B-Spline

Curves and Surfaces”, In Proceedings of 10th Pacific Conference on Computer

Graphics, 2002, pp. 8-25.

[29] M. Sarfraz & M.F.A. Razzak, “An algorithm for Automatic Capturing of the Font

Outlines”, Computers & Graphics Vol. 26, Issue 5, 2002, pp. 795-804.

476

[30] Meek, D.S., “Coaxing a Planar Curve to Comply”, Journal of Computational and

Applied Mathematics, Vol. 140, Issue 1-2, March 2002, pp. 599-618.

[31] Meek D.S., Walton D.J., “Planar G2 Hermite Interpolation with Some Fair C-

Shaped Curves”, Journal of Computational Applied Mathematics, Vol. 139, Issue 1,

February 2002, pp. 141-161.

[32] M. Sarfraz & Arshad Raza, “Visualization of Data Using Genetic Algorithm”, The

Proceedings of the Fourth KFUPM Workshop on Information and Computer

Science: Internet Computing, WICS, 2002.

[33] M. Sarfraz, “Fitting Curve to Planar Digital Data”, Proceedings of the Sixth

International Conference on Information Visualization, IEEE, 2002, pp.633-638.

[34] Z.J. Hou, G.W. Wei, “A New Approach to Edge Detection”, Pattern Recognition,

Vol. 35, Issue 7, July 2002, pp. 1559-1570.

[35] G.Y. Wang, Z. Houkes, B.Zheng, X. Li, “A Note on Conic Fitting by the Gradient

Weighted Least Squares Estimation: Refined Eigenvector Solution”, Pattern

Recognition Letters Vol. 23, Issue 14, 2002, pp. 1695-1703.

[36] P. Reche, C. Urdiales, A. Bandera, C. Trazegnies and F. Sandoval, “Corner

Detection by Means of Contour Local Vectors”, Electronic Letters Vol. 38, Issue

14, July 2002, pp. 699-701.

[37] Juttler, B., Felis, A., “A Least Square Fitting of Algebraic Spline Surfaces”,

Advance Computer Mathematics 17, 2002, pp. 135-152.

[38] Piegl L.A., Tiller W., “Data Approximation Using Bi-arcs”, Engineering with

Computers, Vol. 18, Issue 1, 2002, pp. 59-65.

477

[39] Bae S.H., Choi B.K., “BURBS Surface Fitting Suing Orthogonal Coordinate

Transform for Rapid Product Development”, Computer Aided Design, Vol. 34,

Issue 10, 2002, pp. 683-690.

[40] M. Sarfraz & M. A. Khan, “Automatic Outline Capture of Arabic Fonts”,

Information Sciences – Informatics and Computer Science: An International

Journal, Vol. 140, Issue 3, February 2002, pp. 269-281.

[41] Murtaza Ali Khan, “An Efficient Font Design Method”, Master’s Thesis, KFUPM,

January 2001.

[42] M. Sarfraz & Arshad Raza, “Visualization of Data Using Genetic Algorithm”. Soft

Computing and Industry, Recent Applications, Eds.: R. Roy, M. Koppen, S.

Ovaska, T. Furuhashi, and F. Hoffmann, ISBN: 1-85233-539-4, 2002, pp. 535-544.

[43] M. Sarfraz & Arshad Raza, “Genetic Algorithm and Data Visualization”, The 6th

Online World Conference on Soft Computing in Industrial Applications, WSC6:

Multimedia and Internet Session, 2001.

[44] M. Sarfraz & Arshad Raza, “Capturing Outline of Fonts Using Genetic Algorithm

and Splines”, The proceedings of IEEE International Conference on Information

Visualization-IV 2001-UK, IEEE Computer Society Press, 25-27 July 2001, pp.

738-743.

[45] Arshad Raza, “Genetic Algorithm for Visualization. Master’s Thesis”, KFUPM,

2001.

[46] Muhammad Faisal Aubdul Razzak, “A Web Based Automatic Outline Capturing of

Images”, Master’s Thesis, KFUPM, December 2001.

478

[47] S.J. Ahn, W. Tauh, H.J. Warnecke, “Least Squares Orthogonal Distances Fitting of

Circle, Sphere, Ellipse, Hyperbola and Parabola”, Pattern Recognition Vol. 34 Issue

12, December 2001, pp. 2283-2303.

[48] Ahn Y.J., “Conic Approximation of Planar Curves”, Computer Aided Design Vol.

33, Issue 12, 2001, pp. 867-872.

[49] Yang X.N. Wang G.Z, “Planar Point Set Fairing and Fitting by Arc Splines”,

computer Aided Design 33(1), 2001, pp. 35-43.

[50] Morse, B.S., Yoo, T.S., Chen, D.T., Rheingans, P., Subramanian, K.R.,

“Interpolating Implicit Surfaces from Scattered Surface Data using Compactly

Supported Radial Basis Functions”, In Shape Modeling International 01

Proceedings of the international Conference on Shape Modeling and Applications,

IEEE Computer Society, Washington DC, 2001, pp. 89-98.

[51] Carr, J.C., Beatson, R.K, Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum,

B.C., Evans, T.R., “Reconstruction and Representation of 3D Objects with Radial

Basis Functions”, In Proceedings of SIGGRAPH, ACM Press New York 2001,

2001, pp. 67-76.

[52] Park H. “Choosing Nodes and Knots in Closed B-Spline Curve Interpolation to a

Point Data”, Computer Aided Design Vol. 33, Issue 13, 2001, pp. 967-974.

[53] M. Sarfraz, M.N. Haque, & M. A. Khan, “Capturing Outlines of 2D Images”, The

Proceedings of International Conference on Imaging Science, Systems and

Technology (CISST 2000), Las Vegas, Nevada, CSREA Press, USA, 2000, pp. 87-

93.

479

[54] M. Sarfraz & M. A. Khan, “Towards Automation of Capturing Outlines of Arabic

Fonts”, Proceedings of the Third KFUPM Workshop on Information and Computer

Science: Software Development for the New Millennium (WICS’2000), Saudi

Arabia, 2000, pp. 83-98.

[55] M.Sarfraz & M. Abdul Raheem, “Curve Designing Using a Rational Cubic Spline

with Point and Interval Shape Control”, The Proceedings of IEEE International

Conference on Information Visualization-IV’2000-UK, IEEE Computer Society

Press, USA, 2000, pp. 63-68.

[56] Qi Duan, T.S. Chen, K. Djidjeli & W.G. Price, Twizell E.H., “A Method of Shape

Control of Curve Design”, Proceedings of Geometric Modeling and Processing,

Digital Object Identifier, IEEE, Hong Kong 2000, pp. 184-189.

[57] Bandera, A. Urdiales, C. Arrebola, F. and Sandoval, F., “Corner Detection by

Means of Adaptively Estimated Curvature Function”, Electronic Letters, Vol. 36,

Issue 2, January 2000, pp. 124-126.

[58] A. Ardeshir Goshtasby, “Grouping and Parameterizing Irregularly Spaced Points

for Curve Fitting”, ACM Transactions on Graphics (TOG), Vol. 19, Issue 3, July

2000, pp. 185-203.

[59] Foley, Van Dam, Feiner & Hughes, “Computer Graphics: Principles and Practice”,

Addison Wesley Publishing Company, 1999.

[60] Dmitry Chetverikov & Zsolt Szabo, “A Simple and Efficient Algorithm for

Detection of High Curvature Points in Planar Curves”, Proceedings of 23rd

workshop of the Australian Pattern Recognition Group, 1999, pp. 175-184.

480

[61] Tsai D.M., H.T. Hou and H.J. Su, “Boundary Based Corner Detection Using

Eigenvalues of Covariance Matrices”, Pattern Recognition Letters, Vol. 20, Issue 1,

1999, pp. 31-40.

[62] T. M. Cronin, “A Boundary Concavity Code to Support Dominant Point Detection”,

Pattern Recognition Letters, Volume 20, Issue 6, June 1999, pp. 617-634.

[63] H.T. Sheu, W.C. Hu, “Multi-primitive Segmentation of Planar Curves – A Two

Level Breakpoint Classification and Tuning Approach”, IEEE Transactions on

Pattern Analysis and Machine Intelligence Vol. 21, Issue 8, IEEE Computer

Society, 1999, pp 791-797.

[64] Zheng Z., Wang H. Teoh E., “Analysis of Gray Level Corner Detection”, Pattern

Recognition Letters, Vol. 20, 1999, pp. 149-162.

[65] Walton D.J. Meek D.S., “Planar G2 Curve Design with Spiral Segments”, Computer

Aided Design Vol. 34, Issue 13, 1998, pp. 1037-1046.

[66] Z.Zhang, “Parameter Estimation Techniques: A Tutorial with Application to Conic

Fitting”, Image and Vision Computing Journal, Vol. 15, Issue 1, 1997, pp 59-76.

[67] Q. Zhu, L. Peng, “A New Approach to Conic Section Approximation of Object

Boundaries”, Image and Vision Computing Vol. 17, Issue 9, July 1999, pp. 645-

658.

[68] Chang H. & Yan H., “Vectorization of Hand-Drawn Image Using Piecewise Cubic

Bézier Curves Fitting”, Pattern Recognition, Elsevier Science, Vol. 31, Issue 11,

1998, pp. 1747-1755.

481

[69] M. Sarfraz, “A Rational Spline with Tension: Some CAGD Perspectives”,

Proceedings of International Conference on Information Visualization, IV, IEEE

Computer Society, 29-31 July, 1998.

[70] M. Sarfraz, “Designing of Curves and Surfaces using Cubic Splines with Geometric

Characterization”, The Proceedings of International Conference on Information

Visualization-IV’97, UK, IEEE Computer Society Press, 1997, pp. 82-94.

[71] K. HSollig, J. Koch., “Geometric Hermite Interpolation with Maximal Order and

Smoothness”, Computer Aided Geometric Design, Vol. 13, Issue 8, 1996, pp. 681-

695.

[72] M. Sarfraz, “A Mathematical Model for Computer Graphics”, Journal of Scientific

Research, Pakistan, Vol. 25, Issue 1&2, 1996.

[73] M. Sarfraz, “Designing of 3D Rectangular Objects”, Lecture Notes in Computer

Science 1024: Image Analysis Applications and Computer Graphics, Third

International Computer Science Conference, ICSC’95, Springer-Verlag, 1995, pp.

411-418.

[74] Ma, W.Y., Ruth, J.P., “Parameterization of Randomly Measured Points for Least

Squares Fitting of B-Spline Curves and Surfaces”, Computer Aided Geometric

Design Vol. 27, Issue 9, 1995, pp. 663-675.

[75] G.E. Farin, “Curves and Surfaces for Computer Aided Geometric Design”,

Academic press, New York, 1994.

[76] M. Sarfraz, “Cubic Spline Curves with Shape Control”, Computer and Graphics,

Vol. 18, Issue 5, Ingenta, 1994, pp.707-713.

482

[77] Chang S.P, J.H. Horng, “Corner Point Detection Using Nest Moving Average”,

Pattern Recognition Journal, Vol. 27, Issue 11, 1994, pp. 1533-1537.

[78] M. Sarfraz, “C2 Rational B-spline Surfaces with Tension Control”, New Advances

in CAD and Computer Graphics, 1993, pp.314-320.

[79] Koichi Itoh & Yoshio Ohno, “A Curve Fitting Algorithm for Character Fonts”,

Electronic Publishing, Vol. 6, Issue 3, September 1993, 195-198.

[80] D. Sarkar, “A Simple Algorithm for Detection of Significant Vertices for Polygonal

Approximation of Chain-Code Curves”, Pattern Recognition Letters, Vol. 14, Issue

12, 1993, pp. 959-964.

[81] C. Arcelli, G. Ramella, “Finding Contour-Based Abstractions of Planner Patterns”,

Pattern Recognition Letters, Vol. 26, Issue 10, 1993, pp. 1563-1577.

[82] B. K. Ray, K. S. Ray, “Detection of Significant Points and Polygonal

Approximation of Digitized Curves”, Pattern Recognition Letters, Vol. 13, Issue 6,

June 1992, pp. 443-452.

[83] B. K. Ray, K. S. Ray, “An Algorithm for Detecting Dominant Points and Polygonal

Approximation of Digitized Curves”, Pattern Recognition Letters, Vol. 13, 1992,

pp. 840-856.

[84] N. Ansari, K. W. Huang, “Non-Parametric Dominant Point Detection”, Pattern

Recognition Vol. 24, Issue 9, 1991, pp. 849-862.

[85] H. C. Liu and M. D. Srinath, “Corner Detection from Chain-Code”, Pattern

Recognition, Vol. 23, Issue 1-2, 1990, pp. 51-68.

483

[86] C. The, R. Chin, “On the Detection of Dominant Points on Digital Curves”, IEEE

Transaction on Pattern Analysis and Machine Intelligence Vol. 2, Issue 8, Aug

1989, pp. 859-872.

[87] Thomas A. Foley, “Interpolation with Interval and Point Tension Controls Using

Cubic Weighted V-Splines”, ACM Transactions on Mathematical Software, Vol.

13, Issue 1, March 1987, pp 68-96.

[88] Brain A. Barsky & John C. Beatty, “Local Control of Bias and Tension in Beta-

Splines”, ACM Transactions on Graphics, Vol. 2, Issue 2, April 1983.

[89] Michael Plass & Maureen Stone, “Curve-Fitting with Piecewise Parametric

Cubics”, Computer Graphics, Vol. 17, Issue 3, July 1983, pp. 229-239.

[90] Timmer, H.G., “Alternative Representation of Parametric Cubic Curves and

Surfaces”, Computer Aided Design, Vol. 12, Issue 1, 1980, pp. 25-28.

Vita

 Aiman Rasheed.

 Born in Tripoli, Libya on May 08, 1977.

 Received Bachelor of Science degree in Computer Science from University of,

Karachi, Karachi, Pakistan in January 2001.

 Co-operative Teacher in University of Karachi.

 Worked as a Software Engineer in VTR Services (PVT) Ltd.

 Joined KFUPM as Research Assistant in September 2002.

Publications

 “Security of XML Documents”, e-Business WorldExpo hosted by WowGao on

June 16 and 17, 2004, Toronto, Canada.

 “Methods of Protecting Stack Overflow Vulnerability”, The Proceedings of

ICICS, 2004, Dhahran, Saudi Arabia.

 “A Novel Linear Time Corner Detection Algorithm”, International Conference on

Computer Graphics, Imaging and Vision cgiv05, 27-28 and 29 July 2005, Beijing,

China.

