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 الرسالة ملخص

 ايمن رشيد: ــــــمـالاســــــــ

 .تصميم الأشياء باستخدام الشرائح الملساء من الدرجة الثالثة: الرسالة عنوان

 علوم الحاسب الآلي والمعلومات: ــصــالتخصــــ

 1426ذو الحجة : رجــالتخ تاريخ

 

, تصميم السفن, هندسة الطيران, لسياراتمنها صناعة ا, مع تزايد تطبيقات الرسم بالحاسوب في تخصصات مختلفة

آل هذا يتطلب إيجاد تمثيل . تصميم خطوط الكتابة إلى غير ذلك, تحريك الأجسام بالحاسب, التجهيزات الميكانيكية

 .رياضي لشتى المجسمات عن طريق منحنيات أو أسطح

 

نحنيات القوية والتي يسهل التحكم فيها تشكل الم...لقد نفذت أبحاث آثيرة للحصول على طريقة مثلى لتصميم المنحنيات

من ضمن الحالات  المتوفرة لتصميم المنحنيات تعتبر الدوال من الدرجة الثالثة . الاهتمام الأآبر من قبل الباحثين

الأآثر قوة لأنها الدوال الأقل درجة التي يمكن استخدامها لتعريف منحنيات ذات ثلاث أبعاد ومنحنيات تتوفر على 

تعتبر الأفكار التي تخص إقحام النقاط . تعتبر هذه الدوال سهلة وفعالة فيما يخص حسابها, زيادة على ذلك. اءنقاط انثن

التقسيم المتكرر والتمثيل بالعامل طرق تمكن . التقريب بطريقة المربعات الصغيرة, اآتشاف النقاط المميزة, النهائية

 استعمالها في ملائمة المنحنيات
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CHAPTER 1 

INTRODUCTION 

 

INTRODUCTION 

 

 

The term spline goes back to the long flexible strips of metal used by draftsmen to lay out 

the surfaces of ships, cars, aircrafts etc. The weights were attached to those strings in 

order to give smooth shapes. The Splines are actually piecewise polynomial parametric 

curves, generated by varying a parameter over a specified range. Spline curve fitting 

techniques can be found in [72,73,76]. Among all other splines, B-Splines, Hermite and 

Beziér are the basis for research work in this field. 

 

B-Spline consists of curve segments whose polynomial co-efficient depend on just a few 

control points. This behavior is called as local control. Thus moving a control point 

affects only a small part of the curve. This local behavior is due to the fact that each 

vertex is associated with a unique basis function. The B-Spline basis allows the order of 

basis function and hence the degree of the resulting curves to be changed without 

changing the number of defining polygon vertices. Some evolutionary methods, using B-

splines, can be seen in [32,42-45]. These methods are based upon knot selection. Hermit 
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curves on the other hand are defined by two end points 1P  and 4P , and their respective 

tangent vectors 1R  and 4R . Bézier curves are developed by Pierre Bézier for use in 

designing automobiles at Renault. The Bézier form of cubic polynomial curve segment 

has four control points 0P , 1P , 2P , and 3P . Two intermediate points 1P  and 2P  are not on

the curve. The Bézier curve interpolates the two end control points 0P  and 3P  and 

approximates the two intermediate points 1P  and 2P . 

 

The two basic ways of manipulating curve design and shape using control polygon are 

through developing B-Spline like basis functions and control points interpolation. A 

combined technique is shown in [70]. Another useful class of spline curves is known as 

Rational Cubic Spline [78]. Rational curves can define space curves and curves with 

inflections. A technique to fit a curve to planar digital data is presented in [33]. For large 

data point set, the characteristic points are identified in a recursive manner by enhancing 

Davis algorithm. The rational cubic is converted to rational hermit cubic form to 

manipulate the shape. These characteristic points are searched based upon high curvature 

point. For achieving a better fit, sub-division is done on the basis of a threshold value. 

Conic representation of curves and surfaces is presented in [69]. In this case the rational 

cubic is broken at its mid point to form two conic sections. The advantage of this scheme 

is in terms of computational cost. Smoothness to some extent is also achieved. The price 

is paid when shape control is considered. The rational cubic splines with linear 

denominator sometimes do not work as they are not bounded in the specified regions 

[56]. The introduction of weights in rational cubic spline solves this problem. Local 
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support basis form is formulated for 2C  rational cubic curve and the effect of weight is 

analyzed in [55]. The spline curves and surfaces can also be modeled using trigonometric 

functions [21]. Trigonometric blending functions are used in the construction of curvature 

continuous curves. Since such parameterization is disadvantageous because of slow 

computation of trigonometric values and instability in the neighborhood of 0 degrees, 

therefore it is usually converted into polynomial or rational form. 

 

The splines can generally be represented in implicit, explicit or parametric form. 

Implicit Form 

In this case we can express y as explicit function of x (e.g. )(xfy = ). The 

difficulties with this approach are;  

 It is impossible to get multiple values of y for a single value of x , so 

curves such as circle and ellipse must be represented by multiple curve segments. 

 Such curves are not rotationally invariant and may require breading a 

curve segment into many segments. 

 Describing curves with vertical tangents is difficult, because a slope of 

infinity is difficult to represent. 

Explicit Form 

We can choose to model curves as solutions to implicit equations of the 

form )(xfy = . The difficulties with this approach are, 
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 The given equation may have more solutions than required, for example in 

modeling a circle, we might want to use 122 =+ yx , which is fine. But how do we 

model one-half of a circle? We must add constraints such as 0≥x which cannot 

be contained within the implicit equation. 

 If two implicit defined curve segments are joined together, it may be 

difficult to determine whether their tangent directions agree at joining point. 

Parametric Form 

The parametric form overcomes the problems caused by functional and implicit 

forms. The points on a curve are represented as ordered set of values, ],[ iii yxp = . 

There are corresponding parametric functions that may be used to represent 

arbitrary curves; these are of the form )](),([)( tytxtQ = . The parameter t takes the 

values from a specified range; conventionally from 0 to 1. a curve represented in 

this way can be thought of as the projection of the curve in 3-D, t as the third 

dimension, perpendicular to x and y plane. A unit circle can be represented in 

parametric form )]sin(),[cos()( tttQ = . Parametric form of curve allows multiple 

values of y for single or more values of x . Parametric curves replace the use of 

geometric slopes (which may be infinite) with parametric tangent vectors (which 

are never infinite). A parametric curve is approximated by piecewise polynomial 

curves. Cubic polynomials are most often used because lower degree polynomials 

give little flexibility in controlling the shape of the curve, and higher degree 

polynomials require more computation and can introduce unwanted wiggles.  
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Before going into the peculiarities of this research work, it is necessary to encompass a 

very important issue related to smooth curves, known as Continuity. 

 

To describe the shape of a free form curve, it is recommended to use several curve 

segments which are joined together using the constraints known as the degree of 

continuity. It is one of the active research areas of Computer Aided Geometric Design 

CAGD. The designing of continuous curves and surfaces for CAD software development 

has been a tough problem to deal with for a long time. Early efforts can be seen in 

[30,71]. There are two types of continuities; parametric continuity and geometric 

continuity. 

 

Parametric continuity is denoted as iC , which means that two adjacent curve pieces have 

thi  degree parametric continuity and all lower derivatives. 0C  means that the two pieces 

are joined through a common point. 1C  means that the two curves not only share the 

same endpoint but also their tangent vector is the same, the direction and the magnitude. 

2C  means that two curves are 1C  and also their second order parametric derivate matches 

at the common end point. 

 

Geometric continuity is denoted as iG . Unlike parametric continuity it is less stringent in 

the way that here only the direction of tangent vector should match. The magnitude of the 

tangent vector could be different. 0G  is similar to 0C . 1G  amounts to have a common 
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tangent vector direction. 2G  means that the adjacent segments have common tangent 

vector and same curvature. 

 

It is to be noted that the line segments joining the two curve segments must be collinear. 

Further more if a curve is said to be geometric continuous then it means that it is also 

parametric continuous but this is not possible the other way round. 

1.1. Motivation 

A common practice of formulating an object in the physical world into digital form is by 

first converting the object into gray level image by scanning it. Contours or boundary 

points are then obtained from this gray level image. These contours lead to the corner or 

significant point extraction. Finally splines are used to approximate or interpolate the 

significant points. 

 

Traditional approaches of object digitization [79] have the draw back of greater Human 

Computer Interface (HCI). Users are supposed to specify significant points by some 

interactive means, for example, mouse pointer or pen pointer etc. These significant points 

produce erroneous impact on the shape of the curve. Further more, a user is needed to 

keep on specifying the significant points until he gets a desired curve fit. This kind of 

system is not only tedious to interact with but also very inefficient and especially for 

complex objects it becomes very inconvenient. Usually accuracy up to desired tolerance 
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limit is difficult to achieve. Moreover a user has to be familiar with the underlying 

mathematical model of the system in order to use it properly.  

 

A great deal of research has been done to minimize the HCI factor and automate the 

whole process to greater extent. This has lead to digitization of objects in much efficient 

and accurate way. Unlike traditional approaches, researches have proposed some very 

good automated corner detection algorithms. Optimal curve fitting is done by segmenting 

the contour outline at the corner points. The curve fitting techniques used are usually 

based on Bézier Cubic function where as many researchers have used other spline models 

as well [6,41,46,60]. 

1.2. Methodology 

1.2.1. Contour Extraction 

The first and foremost step for this research work is to find the boundary of planar object. 

This can be done using chain code. Chain codes give the list of edge points and their 

directions along the boundary. The selection of these boundary points are based on their 

corner strength and contour fluctuations. 

1.2.2. Corner Detection 

Corners in digital images give important clues for shape representation and analysis. 

Generally objects information can be represented in terms of its corners, thus corner 
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points play a very vital role in object recognition, shape representation and image 

interpretation. 

1.2.3. Spline Modeling 

An efficient way of representing 2D planar objects is by using splines, which are piece 

wise polynomial curves. Generally splines are used in the form of parametric equations. 

Suppose that )(tx  and )(ty  can supply points ))(),(( tytx  along the curve as t is varied then 

we can write the parametric form as under, 

n
n

n
n

tbtbtbbty

tatataatx

++++=

++++=

...)(

...)(
2

210

2
210  (1.1) 

 

The value of n describes the degree of the spline in the above equation. For 2=n , it is 

known as conic. For 3=n , it is known as cubic and so on and so forth. The 

approximation is done piecewise by breaking the planar object into segments. The joining 

points of the segments are made continuous by careful selection of polynomial 

coefficients. For a polynomial of degree n , smoothness or continuity of degree 1−n  can 

be achieved. This approach is advantageous in a manner that it allows to derive multiple 

shapes from a single stored object. Further more translations are applicable here. 

 

It is desired to come up with a spline model which has properties like smoothness, local 

control, and point tension. Along with these properties it is also desirable to have the 

representation of spline model in interpolant form and local support basis form. 
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 Introduction of Smoothness in curve designing 

To attain a better shape it is required that the spline should permit the mixing of sharp 

and smooth sections within the same description. Continuity condition provides the 

solution for this requirement. To achieve shapes with cusps, a zero order continuity 

condition can be used. For smooth shapes higher order continuity conditions are 

satisfied.  

 Introduction of Local Control in curve handling 

Each control point, if moved, should only exert influence on the shape of the spline in 

a neighborhood rather than producing impact on the whole curve. A given spline 

fitting method may offer varying degrees of local control depending on the influence 

of any given set of control points.  

 Introduction of Point and Interval Tension in curve rendering and 

their effect on object shapes 

To achieve point and interval tension we need to introduce the shape parameters 

associated with each point and interval. The change of shape parameter such that it 

affects only on the neighborhood of a specific point is known as point tension. The 

change of the shape parameters such that it affects the curve in the specified interval 

is known as interval tension. The increase in shape parameter of two consecutive 
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points tightens the curve towards a line segment joint by those control points, thus 

producing the same effect as that of interval tension. 

 Development of Interpolant Form of the Spline Model 

In this approach, the parametric values of the spline are made to pass through all the 

given set of data points. An interpolating function is devised to find those parametric 

values which do not match with the given set of data points. This technique is suitable 

in cases when the data points describing the contour of the object are sufficiently 

smooth and accurate with no sharp edges. 

 Development of Local Support Basis Form 

This approach is not as much restrictive as capture by Interpolation. In this case it is 

sufficient that the spline is made to pass close to the given set of data points. The 

proximity criterion between parametric point and given point is usually taken as 

distance along a coordinate or along a normal to the captured curve. A tolerance limit 

is defined for this distance, which could be an approximation based on the average. 

This approach is useful when the object to be approximated is not smooth. We can 

introduce the local support in the spline by transforming it from the control points to 

piece wise Bernstein-Bézier representation. 
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1.2.4. Curve Fitting Technique 

Different techniques, like recursive algebraic fitting, piecewise polynomial fitting etc, 

have been employed for curve fitting. It is desired to formulate an efficient technique 

in such a way that there is no tradeoff for quality. 

1.3. Objectives and Contribution 

The research work is aimed to propose an efficient strategy for object designing using 

smooth cubic splines. To achieve this objective, several areas needed to be analyzed and 

studied in depth. The objectives are as under; 

 Finding set of corner points from the object contour in such a way that they describe 

the shape of the object and as well as they are not in greater number. 

 Designing of interpolant form as well as local support basis form of smooth 

parametric cubic spline model. 

 Introduction of point and interval tension in the formulation of spline model. 

 Designing of objects using spline model. 

 Approximating the object contour using the spline model. 

1.4. Organization of Chapters 

The organization of this thesis is as follows. Chapter 1 is introduction to the objective and 

motivation. Chapter 2 covers Corner Detection. We have presented our proposed 

strategy. We cover the development of Interpolant form and Free form of cubic generic 
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spline model in Chapter 3. This chapter is also the backbone of our thesis contributions. 

In Chapter 4 we discuss the proposed methodologies of object design and approximation. 

Finally we conclude and present future possibilities in Chapter 5. 
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CHAPTER 2 

CORNER DETECTION 

 

CORNER DETECTION 

 

 

Corners in digital images give important clues for shape representation and analysis. 

Generally objects information can be represented in terms of its corners, thus corner 

points play a very vital role in object recognition, shape representation and image 

interpretation [8,9,11,12,22,60,64]. Corners are robust features in the sense that they 

provide important information regarding objects under translation, rotation and scales 

change. A shape can be presented compactly, efficiently and accurately if corners are 

detected aptly. Since the mathematical notion of a corner is that of a high curvature point 

in planer curves [15,22-24,36,60], therefore most of the corner detection algorithms are 

based on curvature evaluation or calculation of opening angle at each contour point . This 

approach is effective for smoother shapes. In case of noisy shapes it detects false corners. 

Like other approaches, we are also considering the corner point as any point with a 

change in slope with respect to previous state of slope. The enhancement is that we have 

developed a scheme to reject false corners. Moreover our algorithm can also detect non-

sharp corners and thus we have lower rate of false rejections. This algorithm also 

preserves the shape of the object. 
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The algorithm proposed by [23] relies on calculating the shape curvature function [57] 

using an adaptive filtering to remove as much noise as possible without losing corners. 

The authors have defined corners as the peaks of the function. The approach is stable 

against noise, scale and rotation affects. 

 

An improved chain-code methodology is adapted to get a better characterization of 

contour [36]. This process helps in calculating the curvature at each point in an adaptive 

manner and thus works efficiently even if working with poor signal to noise ratio. 

 

The curvature estimation technique [24] is approximation to curvature analysis since 

incase of digital curve, there does not exits any fixed definition of curvature. In this 

scheme the points with local maximum curvature are considered as dominant points. 

 

A boundary based corner detection method is proposed by [14,61,77]. The geometrical 

centroid of the symmetrical boundary segment within the neighborhood of the point, on 

the boundary, under consideration is used. The distance between the centroid and the 

point under consideration defines the evidence of a point to be a corner point. This 

scheme is transformation invariant. The problem with this approach is that curves with 

smoother corners or edges will result in the increasing rate of false rejections. 

 



15 

 

The algorithm proposed by [15] is using both the information of local extrema as of 

curvature and modulus of transform through a specially designed wavelet transform 

function to detect corners and arcs effectively. 

 

This chapter is organized as follows. In Section 2.1 the new corner detection algorithm is 

explained. The corner detection results of algorithms (including ours) are demonstrated 

and compared in section 2.2. Finally section 2.3 concludes this chapter.  

2.1. Proposed Algorithm 

The algorithm is composed of three phases. First phase is the basis of the whole 

algorithm where candidate points are detected using slope analysis. Points detected in the 

first phase are passed to the second phase for refinement, which is done by removing 

adjacent points. This adjacency is based upon a certain threshold. The third phase takes 

the refined points and removes the cluster of points lying on the jaggedly planner shape 

to give the final set of corner points. The cluster of points is removed using angular 

measurements. The tangents at each point for slope analysis are calculated as in 

(Equations 2.1-2.3) [69]; 

2
)(

)(2 02
010

PP
PPT

−
−−=  (2.1) 

 

2
)(

)(2 2
1

−
−

−
−−= nn

nnn
PP

PPT  (2.2) 



16 

 

 

))(1()( 11 iiiiiii PPaPPaT −−+−= +−  (2.3) 

where, 

11

1

−+

+

−+−

−
=

iiii

ii
i PPPP

PP
a  (2.4) 

The tangent calculation is taken as a preprocessing step. 

2.1.1. First Phase 

The slope analysis is done on the basis of transitions. For example, there are only three 

possible states of slope. 

 Increasing, i.e. +ve. 

 Decreasing, i.e. –ve. and 

 Constant, i.e. moving along any of the axis in 2D-plane. 

Depending upon slope states, we have only four transitions, 

 +ve  0  

 0  –ve 

 –ve  0  

 0  +ve 

Now any point Pi is taken as a candidate point if it comes after any one of the transitions, 

which means that there is a change in slope. This is shown in (Figure 2.1). Notice that if 

we encounter transitions 1 and 3 then we also need to take care of a small jaggy. To cater 
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such problem we have defined a threshold, which is describing if such transition is a 

proper one or just a small jaggy. Incase where it is taken as a small jaggy, we ignore it 

and keep record of our last transition state. 

 

Figure 2.1 Possible slope transitions in digital curves 

The advantage of this technique is that, we can apply this algorithm for smooth functions 

as well as irregular objects with jaggies. 

Constant Constant 

- 

+ 

+ 

- 

+ - 

Constant 

- + 

Constant 

(a) (b) 

(c) 
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2.1.2. Second Phase 

Sometimes the corners to be detected are not the sharp angle points or they are the result 

of sharp jaggies and we may detect superfluous candidate corner points in first phase. 

These superfluous points are discarded in this phase. The superfluous points in this case 

are the ones with very close co-ordinate positions as shown in (Figure 2.2). So, in order 

to get refined points we remove such points. This phase actually acts as a preprocessing 

step for the next phase. 

 

Figure 2.2 Close coordinates 

(Figure 2.3) shows the Figure after second phase. The close coordinate points are 

removed. 

 

Figure 2.3 Close coordinates removed after phase 2 

2.1.3. Third Phase 

The basic requirement of this phase is to remove the cluster of unwanted points as shown 

in (Figure 2.4). The points shown in big spots would have been enough rather than 

having so many intermediate points. We solved this problem by taking the angle between 

them. We considered 1ˆ += ii PPa  as a vector and 21 ++= ii PPb
v

 as another vector. Points are 
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shown in (Figure 2.5). The angle is calculated using dot product between them as in 

(Equation 2.5). 

θcosˆˆ. baba =
vv  (2.5) 

     

If this angle is greater than a certain threshold, the points are then taken as collinear and 

therefore the middle point is no more a corner point. This is demonstrated in (Figure 2.6). 

 

Figure 2.4 Unwanted clustered points 

 

 

 

Figure 2.5 Points sequence for angle calculation 

 

Figure 2.6 Removal of clustered points after phase 3 

P1 P2

P3 P4
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2.1.4. Tuning Parameters 

The algorithm needs three different tuning parameters at different phases. In the first 

phase Zero Count Threshold (ZCT) is needed to differentiate a jaggy from a line. Incase 

of a line the end points of it as corner points. The jaggies are ignored. Distance Threshold 

(DT) is used in second phase in order to remove the points nearer by this parameter. The 

last parameter is Tolerance Angle (TA) which is used to remove the clustered points. If 

points are clustered so that the intermediate points are not needed then such superfluous 

are removed from the list of final corner points. The hypothesis is that if three 

consecutive points are making an angle greater than TA then such points are taken as 

collinear points and due to which middle point is neglected. The default value of ZCT is 

7, DT is 5 and TA is 152o
. 

 

A distinct property of our algorithm is that the default values of tuning parameters work 

equally well for almost all the shapes, either it be a smooth curve or irregular object 

boundary. 

2.2. Results and Analysis 

A number of frequently cited corner detectors were discussed in the survey by [60,85]. 

They selected four algorithms among them and compared the results with their corner 

detector. Along with these algorithms we are comparing our algorithm with [13]. The 

algorithms are referred as SAM04, IPAN99, BT87, FD77, RW75 and RJ73 respectively 
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in this paper. The default values of each algorithm is shown in (Table 2.1). The 

comparisons are represented in (Figures 2.7 – 2.13). SRM05 is our proposed algorithm. 

Further more we have also compared our algorithm with [22,62,80-84,86]; shown in 

(Figure 2.14). Also we tested the objects present in [14,61,77] against our approach as 

depicted in (Figure 2.15). After this we have tested our algorithm for different tuning 

parameters, shown in (Figure 2.16). Also we have demonstrated in (Figure 2.17) that our 

algorithm works perfect in case of smooth functions. Finally we have tested our approach 

for rotation affects and results are shown in (Figure 2.18). 

 

Criteria for performance evaluation of corner detectors were given by Chetverikov and 

Szabo [12], which are as follow; 

 Selectivity: It is the most important factor for any corner detector. The rate of 

correct detections should be high and the wrong ones should be low.  

 Single response: Each corner should be detected only once.  

 Precision: The positions of detected corners should be precise.  

 Robustness to noise: The algorithm should perform well for noisy shapes as well.  

 Easy setting of parameters: Parameters should be logical and easy to tune for 

variety of shapes.  

 Robustness to parameters: Minor changes in parameter should not cause drastic 

changes in performance.  

 Speed 
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Table 2.1 Parameter values for 8 tested shapes 

Fig Algorithm Im1 Im2 Im3 Im4 Im5 Im6 Im7 Im8 

A 

B 

C 

D 

E 

F 

G 

SAM04 

IPAN99 

BT87 

FD77 

RW75 

RJ73  

SRM05 

D 

D 

D 

D 

D 

D 

D 

D 

D 

D 

7,2500 

.15 

.15  

D 

D 

D 

D 

D 

5,2500 

D 

D 

D 

D 

D 

500 

5,500 

D 

D 

D 

D 

D 

1000 

D 

D 

D 

D 

D 

D 

1300 

7,1000 

D 

D 

D 

D 

D 

D 

D 

D 

D 

D 

D 

D 

1000 

D 

D 

D 

 

D stands for Default values for tuning parameters.  
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(g)

 

 

 

 

Figure 2.7 Detected corner points for im1 as per parameters given in Table 2.1  

(a) SAM04. (b) IPAN99. (c) BT87. (d) FD77. (e) RW75. (f) RJ73 (g) SRM05 

 

 

 

 

(a) (b) (c) 

(d) (e) (f) 
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Table 2.2 Comparison of algorithm evaluation for im1 

Algorithm 
Total 

Detections 

Correct 

Detections 

Corners 

Missed 

False 

Detections 

SAM04 9 9 8 0 

IPAN99 9 9 8 0 

BT87 11 11 6 0 

FD77 11 11 6 0 

RW75 12 12 5 0 

RJ73 13 13 4 0 

SRM05 17 17 0 0 

 

A close inspection of results from (Figure 2.7) and (Table 2.2) shows that no false 

corners are detected. In fact the detected corners are representing the shape more 

explicitly. Unlike all other algorithms which are missing some very important corners, 

there is no corner missed in our approach as well. Moreover no corners are repeated. 
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(g)

(a) (b) (c)

(d) (e) (f)

 

 

 

 

 

 

 

 

 

Figure 2.8 Detected corner points for im2 as per parameters given in Table 2.1  

(a) SAM04. (b) IPAN99. (c) BT87. (d) FD77. (e) RW75. (f) RJ73 (g) SRM05 
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Table 2.3 Comparison of algorithm evaluation for im2 

Algorithm 
Total 

Detections 

Correct 

Detections 

Corners 

Missed 

False 

Detections 

SAM04 2 2 12 0 

IPAN99 2 2 12 0 

BT87 2 2 12 0 

FD77 2 2 12 0 

RW75 4 4 10 0 

RJ73 4 4 10 0 

SRM05 12 12 2 0 

 

We can examine from (Figure 2.8) and (Table 2.3) that a couple of corners are missed 

using our algorithm but still as compared to other algorithms the number of missed 

corners is very low. Shape of the object is captured in a much better way than any other 

algorithm. Other than our approach only (Figure 2.8e and Figure 2.8f) are preserving the 

shape to some extent. 
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Figure 2.9 Detected corner points for im3 as per parameters given in Table 2.1 

(a) SAM04. (b) IPAN99. (c) BT87. (d) FD77. (e) RW75. (f) RJ73 (g) SRM05 

 

 

 

 

(a) (b) (c)

(d) (e) (f)



28 

 

Table 2.4 Comparison of algorithm evaluation for im3 

Algorithm 
Total 

Detections 

Correct 

Detections 

Corners 

Missed 

False 

Detections 

SAM04 4 4 8 0 

IPAN99 4 4 8 0 

BT87 4 4 8 0 

FD77 9 9 3 0 

RW75 9 8 3 1 

RJ73 9 8 3 1 

SRM05 12 12 0 0 

 

Analysis of (Figure 2.9) and (Table 2.4) shows that our algorithm has chosen the most 

optimal point set as corners. Only (Figure 2.9e) and (Figure 2.9f) are good enough to 

preserve the shape of object except our approach. No corner is missed using this 

approach and also no extra corner is detected. 
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(g)

 

 

 

Figure 2.10 Detected corner points for im4 as per parameters given in Table 2.1 

(a) SAM04. (b) IPAN99. (c) BT87. (d) FD77. (e) RW75. (f) RJ73 (g) SRM05 

 

 

 

 

 

 

 

 

 

(a) (b) (c) (d) (e) (f)
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Table 2.5 Comparison of algorithm evaluation for im4 

Algorithm 
Total 

Detections 

Correct 

Detections 

Corners 

Missed 

False 

Detections 

SAM04 8 7 8 1 

IPAN99 13 8 8 5 

BT87 5 5 6 0 

FD77 7 4 6 3 

RW75 17 5 5 12 

RJ73 16 4 4 12 

SRM05 14 9 0 5 

 

Analysis of (Figure 2.10) and (Table 2.5) depicts that our approach works fine since it is 

not missing any important corner point therefore preserving the object’s shape. Some of 

the points are still superfluous, but the number is still lesser and in the acceptable range 

unlike (Figure 2.10e) and (Figure 2.10f). In case of (Figure 2.10a), (Figure 2.10c) and 

(Figure 2.10e) the false detection percentage is low but they have missed a great number 

of vital corners.  The analysis shows that percentage of corners missed should be less 

than the percentage of false detected corners. 
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(g)

 

 

 

Figure 2.11 Detected corner points for im5 as per parameters given in Table 2.1. 

(a) SAM04. (b) IPAN99. (c) BT87. (d) FD77. (e) RW75. (f) RJ73 (g) SRM05 

 

 

 

 

 

(a) (b) (c) 

(d) (e) (f) 
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Table 2.6 Comparison of algorithm evaluation for im5 

Algorithm 
Total 

Detections 

Correct 

Detections 

Corners 

Missed 

False 

Detections 

SAM04 8 8 6 0 

IPAN99 14 12 3 2 

BT87 12 12 6 0 

FD77 15 12 6 3 

RW75 15 11 5 4 

RJ73 14 11 2 3 

SRM05 17 16 2 1 

 

We can see that our algorithm is missing two vital corner points as shown in (Figure 

2.11g). This is because of the fact that our phase three is removing any point lying on 

almost a straight line. Due to this the shape is not properly preserved. We can also 

observe that (Figure 2.11e) is performing best for this shape. Moreover, if we compare 

our algorithm against (Figure 2.11a) and (Figure 2.11c) which have not detected any false 

corners, we can see that those algorithms have missed more corners than ours, as depicted 

in (Table 2.6), and thus overall our algorithm performs better. 
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(g)

 

 

 

Figure 2.12 Detected corner points for im6 as per parameters given in Table 2.1  

(a) SAM04. (b) IPAN99. (c) BT87. (d) FD77. (e) RW75. (f) RJ73 (g) SRM05 

 

 

 

 

 

(a) (b) (c)

(d) (e) (f) 
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Table 2.7 Comparison of algorithm evaluation for im6 

Algorithm 
Total 

Detections 

Correct 

Detections 

Corners 

Missed 

False 

Detections 

SAM04 20 20 9 0 

IPAN99 28 26 4 2 

BT87 16 16 13 0 

FD77 14 12 17 2 

RW75 19 18 9 1 

RJ73 17 12 15 5 

SRM05 30 27 2 3 

 

The analysis of (Figure 2.12) shows that in case of highly irregular images, our algorithm 

has outperformed all other approaches. Our approach is preserving the shape most 

accurately since the least number of corners are missed, as we can see in (Table 2.7). 

Unlike other algorithms, our algorithm is detecting the most optimal set of corner points. 

Further more the percentage of false detected corners is very small and insignificant. 
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Figure 2.13 Detected corner points for im7 as per parameters given in Table 2.1 

(a) SAM04. (b) IPAN99. (c) BT87. (d) FD77. (e) RW75. (f) RJ73 (g) SRM05 

 

 

 

 

(a) (b) (c) 

(d) (e) (f) 
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Table 2.8 Comparison of algorithm evaluation for im7 

Algorithm 
Total 

Detections 

Correct 

Detections 

Corners 

Missed 

False 

Detections 

SAM04 17 17 5 1 

IPAN99 21 21 2 1 

BT87 10 10 14 1 

FD77 11 11 11 1 

RW75 18 18 4 0 

RJ73 17 17 6 1 

SRM05 24 20 2 4 

 

In (Figure 2.13) we analyze that except for (Figure 2.13c) and (Figure 2.13d), all the 

approaches work almost the same. Most of them are properly preserving the shape of 

object. Even though a couple of corner points are missed but still no significant corner 

point is missed. Furthermore extra detected corner points are in the range of acceptable 

point set. In this specific case only (Figure 2.13b) has better results in terms of lesser 

false detections and overall shape preservation as we can observe in (Table 2.8). 
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(a) (b) (c) 

   
(d) (e) (f) 

 

Figure 2.14 (a) Corner points detection using (a) Marji, results without collinear 

points suppression [22] (b) Marji, results with collinear points suppression [22] 

(c) The-Chin [86] (d) Ansari-Huang [84] (e) Ray-Ray [82] (f) Ray-Ray [83] 
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(g) (h) (i) 

 

(j) 

Figure 2.15 (b) Corner points detection using  

(g) Arcelli-Ramella [81] (h) Sarkar [80] (i) Cornin [62] and (j) SRM05 
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Table 2.9 Comparison of algorithm evaluation 

Algorithm 
Total 

Detections 

Correct 

Detections 

Corners 

Missed 

False 

Detections 

Marji(a) 26 26 26 0 

Marji(b) 18 18 34 0 

The-Chin 22 22 30 0 

Ansari-

Huang 
28 28 24 0 

Ray-Ray(e) 29 29 23 0 

Ray-Ray(f) 27 27 25 0 

Arcelli-

Ramella 
10 10 42 0 

Sarkar 19 19 33 0 

Cornin 33 33 19 0 

SRM05 52 52 0 0 

 

We can clearly observe in (Figure 2.14) that our proposed algorithm is not missing any 

important corner point and each corner position is picked at a very precise position. Thus 
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it is preserving the shape of the object. We can also see that there is no false rejection or 

false acceptance, as shown in (Table 2.9).  

 

   

(a) (b) (c) 

 

(d) 

(15.1) 

 

    

(a) (b) (c) (d) 

(15.2) 
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(a) (b) (c) (d) 

(15.3) 

 

   

(a) (b) (c) (d) 

(15.4) 

 

    

(a) (b) (c) (d) 

(15.5) 
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(a) (b) (c) (d) 

(15.6) 

 

Figure 2.16 Corner points detection using (a) Guru [14] (b) Chang [77] (c) Tsai [61] 

and (d) SRM05 

 

Table 2.10 Comparison of algorithm evaluation for figure 2.15.1 

Algorithm 
Total 

Detections 

Correct 

Detections 

Corners 

Missed 

False 

Detections 

Guru 4 4 13 0 

Chang 28 11 4 17 

Tsai 6 6 9 0 

SRM05 15 14 1 1 
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Table 2.11 Comparison of algorithm evaluation for figure 2.15.2 

Algorithm 
Total 

Detections 

Correct 

Detections 

Corners 

Missed 

False 

Detections 

Guru 11 11 4 0 

Chang 14 14 1 0 

Tsai 11 11 4 0 

SRM05 15 15 0 0 

 

Table 2.12 Comparison of algorithm evaluation for figure 2.15.3 

Algorithm 
Total 

Detections 

Correct 

Detections 

Corners 

Missed 

False 

Detections 

Guru 2 2 12 0 

Chang 18 6 8 9 

Tsai 2 2 12 0 

SRM05 14 14 0 0 
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Table 2.13 Comparison of algorithm evaluation for figure 2.15.4 

Algorithm 
Total 

Detections 

Correct 

Detections 

Corners 

Missed 

False 

Detections 

Guru 8 8 32 0 

Chang 25 20 20 0 

Tsai 24 24 16 0 

SRM05 36 36 4 0 

 

Table 2.14 Comparison of algorithm evaluation for figure 2.15.5 

Algorithm 
Total 

Detections 

Correct 

Detections 

Corners 

Missed 

False 

Detections 

Guru 16 16 8 0 

Chang 27 24 0 3 

Tsai 16 16 8 0 

SRM05 20 20 4 0 
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Table 2.15 Comparison of algorithm evaluation for figure 2.15.6 

Algorithm 
Total 

Detections 

Correct 

Detections 

Corners 

Missed 

False 

Detections 

Guru 5 5 20 0 

Chang 14 9 16 5 

Tsai 24 16 9 8 

SRM05 28 22 3 6 

 

In (Figure 2.15) we examined that Chang is high on false acceptance and on the other 

hand Guru has high rate of false rejections. Incase of Tsai the rate of false acceptance and 

rejection is varying with the shape. Unlike other algorithms our approach is working in a 

similar fashion for all the objects with negligible false acceptance in a few cases as 

shown in (Tables 2.10 - 1.15). Further more since our approach is not missing any vital 

corner point therefore shape preservation is much better than other cases. 
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Default ZCT = 7, DT = 5 and TA = 145o 

  

ZCT = 5, DT = 7 and TA = 145 ZCT = 7, DT = 5 and TA = 140 

  

ZCT = 5, DT = 7 and TA = 152 ZCT = 5, DT = 7 and TA = 140 

Figure 2.17 Testing SRM05 with different tuning parameters 

Default are ZCT = 7, DT = 5, TA = 152. 
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In (Figure 2.16) we have depicted that our approach is not much dependent upon the 

tuning parameters as is the case with other algorithms. Using our algorithm, one has to 

set these tuning parameters once in the beginning and then the set values work fine for 

most of the objects. 

 

  

(a) )sin(xy =  (b) 222 ryx =+  

 

Figure 2.18 Results of SRM05 for functions using default tuning parameter values. 

Default are ZCT = 7, DT = 5 and TA = 152. 

We have demonstrated in (Figure 2.17) that our approach works even better in case of 

smooth functions. How ever it is important to note that only 1st phase is enough for such 

mathematical functions. 
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Rotation = 0 

  

Rotation = 30 Rotation = 45 

  

Rotation = 60 Rotation = 90 
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Rotation = -30 Rotation = -45 

  

Rotation = -60 Rotation = -90 

 

Figure 2.19 Rotation testing of SRM05 using default tuning parameter values 

Default are ZCT = 7, DT = 5 and TA = 152. 

We also tested our approach against rotation affects, shown in (Figure 2.18). The close 

inspection shows that even though there is small affect of rotation but still shape 

preservation is valid. We can see that the rate of false rejection and false acceptance is 

not increasing. 
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The analysis of all experiments shows that our algorithm has less false rejection and less 

false acceptance rate as compared to any of the algorithms presented. Moreover our 

approach is giving the optimal corner point set for all shapes irrespective of its nature. 

Further more the corners are detected at the precise positions in all the cases. The 

important aspect of this approach is that it is robust to noise. Incase of smoother shapes, 

the algorithm works fine as shown in case of smooth functions. Therefore, we can say 

that it is kind of a generic solution for finding corners in digital objects. Another 

preeminence of this approach is that although we are using some of the tuning parameters 

for better output but changing them does not change the result by big margins. Also we 

do not need to change these tuning parameters with respect to different shapes. 

2.3. Conclusion 

In areas like pattern recognition, image matching, motion analysis, outline capturing, 

reconstruction of objects etc, the corners of an object play a very vital role as of features 

for shape representation and analysis. In this chapter we present a novel scheme for 

detecting corners of a planner object. The core of the algorithm is based upon slope 

analysis. The complexity of our algorithm is linear. It is very efficient and as well as 

accurate. This scheme works for both, smooth planner curves and irregular planner 

curves. Test results of this algorithm are compared with some commonly referred corner 

detectors. The experiments show that this method leads to good quality results and 

robustness to noise with low computational cost. 
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We have demonstrated a linear time corner detection algorithm which is simple to 

implement, efficient and robust to noise. It is non-recursive in nature, does not depend 

much on tuning parameters and it is not effected greatly by small changes in tuning 

parameters. It is very effective for shape preservation and representation. The problem 

with this algorithm is that if tuning is needed then it is done manually. This work can be 

extended for adaptive/dynamic tuning of parameters. Further a tuning parameter 

independent algorithm will be the best option. 
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CHAPTER 3 

GENERIC CUBIC SPLINE MODELING 

 

GENERIC CUBIC SPLINE MODELING 

 

 

Computer Graphics and Geometric Modeling play a very vital role in modeling and 

simulation of real life objects, yet there are shapes that are difficult to represent. For 

example; modeling of hand drawn shapes is quite a cumbersome task. Also it is required 

to have memory efficient object representation system. Splines are the answer to these 

requirements. They are taken as considerably decent and accurate way of representing, 

designing and manipulating the hand drawn objects. Further they also provide memory 

efficient solution. 

 

The simplest way of curve fitting and object designing is to apply linear 

interpolation/approximation for finding intermediate data values between pairs of data 

points. The problem is that such attempts are extremely unlikely to provide reliable 

results if the data being used is anything other than broadly linear. In an attempt to deal 

with inherent non-linearity, the next step usually involves some sort of polynomial 

interpolation/approximation. This generally leads to far more stable and robust solution, 

but is also potentially a difficult area as the end points, local convexity and continuity of 
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derivatives all make their influences felt in often-contradictory ways. One of the most 

popular ways of dealing with these issues is to use splines. In their most general form, 

splines can be considered as a mathematical model that associate a continuous 

representation of a curve or surface with a discrete set of points in a given space. Spline 

fitting is an extremely popular form of piecewise approximation using various forms of 

polynomials of degree n, or more general functions, on an interval in which they are 

fitted to the function at specified points, known as control points, nodes or knots. The 

polynomial used can change, but the derivatives of the polynomials are required to match 

up to degree n-1 at each side of the knots, or to meet related interpolatory conditions. 

Boundary conditions are also imposed on the end points of the intervals. The heart of 

spline construction revolves around how the selected control points are effectively 

blended together using the polynomial function of choice. 

 

Given the various alternative forms of spline, the question of which type of spline is most 

applicable in any given situation naturally arises and is inevitably a difficult one to 

answer without clear criteria. Arguably the most important deciding question is whether 

the spline is required to approximate or interpolate the control points. In other words, 

does the user require the curve to pass through the control points with absolute precision, 

or is the overall shape of the curve more important?  

 

An interpolating function is devised to find those intermediate values which do not match 

with the given set of data points. This technique is suitable in cases when the data points 
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describing the contour of the object are sufficiently smooth and accurate with no sharp 

edges. Approximation is not as much restrictive as capture by Interpolation. In this case it 

is sufficient that the spline is made to pass close to the given set of data points. This 

approach is useful when the object to be approximated is not smooth [59,75]. 

It is necessary to take the degree of the polynomial into account before going into the 

details. Cubic polynomials are most often used because as compared with other 

polynomials, they provide reasonable smoothness, economical computation and ideal 

storage facility. Lower degree polynomials give little flexibility in controlling the shape 

of the curve. Moreover they do not posses smoothness property. Where as higher degree 

polynomials require more computation and can introduce unwanted wiggles. However 

cubic splines have limitations like lack of freedom in shape control and object design. 

Due to which they are not as useful for the designer as it is the requirement in present 

scenario [76].  

 

In this chapter we will discuss the proposed formulation of interpolant form and local 

support basis form of a generic cubic spline model. Our proposed approach, in addition to 

enjoying the good features of cubic splines also possesses interesting shape design 

features. The methodology involves two families of shape design parameters. One of 

them is associated with intervals and the other is associated with points. These parameters 

give shape control properties like interval and point tension.  
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We have developed an interpolatory curve scheme which involves piecewise cubic spline 

in its description. It is desired to extend this idea to freeform curves, which can have all 

the properties similar to that of B-Spline. This will help preserve the geometric 

smoothness of the design curve while allowing the continuity conditions on the spline 

functions at the knots to be varied by certain parameters, thus giving greater flexibility. 

This gives the designer control over the curve shape in such a way that if shape 

parameters are changed in an interval then the shape is changed only in the neighborhood 

and it does not affect the over all shape of the curve. 

 

B-Splines are amongst the most useful and powerful tool for Computer Graphics and 

Geometric Modeling. They form the basis for the splines of thn  degree having the 

continuity of class 1−nC . The properties of B-Spline include its non-negativity of thn  

degree spline that is nonzero only on n+1 intervals. They for the partition of unity, that is, 

the basis functions sum up to one. The curves generated by the summation of the product 

of control points with the basis function have some very useful properties like local 

convex hull property and variation diminishing property. 

3.1. Interpolant Form 

In this section we will generalize the idea of curve design for any given amount of data. 

We will formulate the piecewise generation of curve by joining the segments together 

with 2GC  continuity constraints. The procedure for curve design is as follows; 
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For parametric interpolation, let m
iii RyxF ∈= ),( , Ζ∈i , be the given data points at 

distinct knots Rti ∈ . Also suppose that 0>iν  for ni ,...,1=  and 0>iω  for ni ,...,1=  be the 

respective point and interval weights for producing tension effect in a piece. If we let 

)(tX  be the spline interpolant to the data ),( ii xt  and )(tY  be the spline interpolant to the 

data ),( ii yt , then the parametric curve ))(),(()( tYtXtP = , where nttt ≤≤1 , is the piecewise 

cubic generic spline model, given as in (Equation 3.5) with subject to one of the 

following end conditions: 

 

 Type 1: First derivative end conditions, 

 Type 2: Natural end conditions,  

 Type 3: Periodic end conditions. 

 

Necessary and sufficient condition for the function )(tP  to be the generic spline 

interpolant is that its derivatives iM  satisfy, 

)()(22
2
1

1111111 −−++−−− −+−=+⎟
⎠
⎞

⎜
⎝
⎛ +++ kkkkkkkkkkkkkk yybyybMcMccMc ν  (3.1) 

 

For nk ,...,2,1= , where iii hwc = , iii hcb 3=  and ih  is the interval spacing given by 

(Equation 3.7). The system of Equation given in (Equation 3.1) provides )2( −n  equations 

in n  unknowns, nMM ,...,1 . The two unknown derivative values can be calculated using 

anyone of the end conditions. In this thesis we have used Type 1 first derivative end 
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conditions. Now we can transform the set of equations into tri-diagonal system of linear 

system in order to calculate the unknowns. Since we are using Type 1 end conditions, 

therefore we end up with diagonally dominant tri-diagonal system. Not only do they have 

unique solution, but also they can be efficiently solved. Once the unknown derivative 

values are calculated the piecewise parametric cubic spline interpolant form can easily be 

computed. The end condition equations are given as under; 

 

The equations for Type 1 first derivative end conditions are represented in (Equation 3.2); 

)( 11 tPM ′=  and )( nn tPM ′=  (3.2) 

 

For Type 2 natural end conditions they are represented in (Equation 3.3); 

)(2
2
1

12121111 yybMcMc −=+⎟
⎠
⎞

⎜
⎝
⎛ +ν  and 

)(2
2
1

11111 −−−−− −=⎟
⎠
⎞

⎜
⎝
⎛ ++ nnnnnnnn yybMcMc ν  

(3.3) 

 

For Type 3 periodic end conditions, the equations are represented in (Equation 3.4); 

)()(22
2
1

2
1

1112111211111 −−−−− −+−=++⎟
⎠
⎞

⎜
⎝
⎛ +++ nnnnnnn yybyybMcMcMccνν  and 

nMM =1  

(3.4) 

 

The generic spline model is given as in (Equation 3.5) 
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1
2222 )}2)(1(1{)1()1()}2(1{)1()( +−−++−+−+−+−= iiiiiiiii FWVFtP βθθθθβθθααθθ  (3.5) 

 

Where, 

i

i
tt h

tt
t

ii

)(
)(),[ 1

−
=

+
θ  (3.6) 

 

The interval spacing between the distinct knots is given by (Equations 3.7 - 3.9); 

01 >−= + iii tth , (3.7) 

      

ii htt θ+=⇒ , 10 ≤≤θ , (3.8) 

Therefore for each interval the knots can be given as, 

iii httt +≤≤  (3.9) 

 

Also, 

i

ii
ii

i
i

i
i

i

i
ii

hM
FV

M
h
V

h
F

tP

α

αα
θ

+=⇒

=+−=′
=

)()(
0

 (3.10) 

 

and 
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From (Equations 3.10) and (Equation 3.11), we can analyze that the piecewise cubic 

spline model hold the following interpolatory properties; 

ii FtP =)( ,  11 )( ++ = ii FtP  

ii MtP =′ )( , 11 )( ++ =′ ii MtP  
(3.12) 

 

Where P′  denotes the first derivatives with respect to t  and iM  denotes derivative value 

computed at the knot it . This eventually leads the piecewise cubic to the Hermite 

interpolant. 

 

Now, applying 2GC  constraint equation at the joining points of the segments or pieces in 

order to achieve second order geometric continuity and for the formulation of tri-diagonal 

system of linear equations; 

 

The constraints are given as in (Equation 3.13); 
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This can also be written as, 

)()()( 1
1

1 ii
i

i
ii

i

i
ii tPtPtP −

−
− ′′+′=′′

ω
ω

ω
ν  (3.14) 

To satisfy the constraint, calculate the unknowns written in (Equation 3.15). 

)()(),( 11 iiiiii tPandtPtP −− ′′′′′  (3.15) 

 

Since these unknowns involve first and second derivative of the cubic spline model, 

therefore first and second derivatives of the generic cubic spline are calculated as under. 

 

First derivative of the generic cubic spline is given in (Equation 3.16). 

i

i
ii

i

i
i

i

i
i

i

i
iii

h
F

h
W

h
V

h
F

tP

1)}]2)(1(1{2)2([

)32()31)(1()}]2(1{2)2)(1)[(1()(

+−−++−+

−+−−+−+−−−−=′

βθβθθ

θθβθθααθαθθ
 (3.16) 

 

The second derivative is given by the (Equation 3.17). 
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2
1

222

)}]2)(1(1{2)2(4[

)31(2)}31()1(3{)]2)(1(4)}2(1{2[)(

i

i
ii

i

i
i

i

i
i

i

i
iii

h
F

h
W

h
V

h
F

tP

+−−++−+

−+−+−−−−−−+=′′

βθβθ

θβθθααθαθ

 (3.17) 

 

To calculate the value of )( ii tP ′′  put 0=θ  in (Equation 3.17), we get. 

2
1

2220 )3(224)32(2)(
i

i
i

i

i
i

i

i
i

i

i
iii h

F
h
W

h
V

h
FtP +

=
−++−−=′′ ββααθ  (3.18) 

 

Putting the values of Vi and Wi in (Equation 3.18) 

}23{2)( 10 +=
−−Δ=′′ iii

i
ii MM

h
tP θ  (3.19) 

 

For )(1 ii tP −′  we know that, 

iii MtP =′− )(1  (3.20) 

 

To calculate the value of )(1 ii tP −′′  put 1=θ  in (Equation 3.17), we get. 

2
1

12
1

1
12

1

1
12

1

1
111 )32(242)3(2)(

−
−

−

−
−

−

−
−

−

−
−=− −+−+−=′′

i

i
i

i

i
i

i

i
i

i

i
iii h

F
h
W

h
V

h
FtP ββααθ  (3.21) 

 

Putting the values of Vi-1 and Wi-1 in (Equation 3.21), we get. 
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}23{2)( 11
1

11 iii
i

ii MM
h

tP ++Δ−=′′ −−
−

=− θ  (3.22) 

   

Substituting (Equation 3.18), (Equation 3.20) and (Equation 3.22) in (Equation 3.14), we 

get the tri-diagonal system of linear equations. 

1

111

1

1

1

11 662)44(2

−

−−+

−

−

−

−− Δ
+

Δ
=++++

ii

ii

i

i

i

i
i

ii

i

ii

i

ii

ii

hhh
MM

hhh
M

ω
ω

ω
ν

ω
ω

ω
ω  (3.23) 

 

Where, 

( ) iiii hFF −=Δ +1  (3.24) 

 

Multiply (Equation 3.23) by 2iω  and then put the iii hc ω= , we get. 

111111 332}22
2

{ −−+−−− Δ+Δ=++++ iiiiiiiii
i

ii ccMcMccMc
ν  (3.25) 

 

In order to study the behavior of the solution with respect to tension parameters, it is 

convenient to write the system depicted in (Equation 3.25) in unit diagonal form. Thus 

dividing (Equation 3.19) by the co-efficient of Mi will give us unit diagonal form, 

 

1,...,1,11 −==++ +− nibMcMMa iiiiii  (3.26) 
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With ],...,[ 1 n
T MMM = , this system has the matrix form, 

BMEI =+ )(  (3.27) 

 

The terms involving 0M  and nM  have been transferred to the right hand side. E  is the 

tri-diagonal matrix with zero diagonal. 

3.2. Local Support Basis Form 

In this section, we will construct the B-Spline like basis for the generic cubic spline curve 

with the same continuity constraints as those for interpolatory spline formulation. These 

are the local basis functions with local support and having the property like being positive 

everywhere. The curve designed using these local support basis functions possesses all 

idea geometric properties like partition of unity, convex hull and variation diminishing. 

The curve design not only provides interesting shape control properties like point and 

interval tension but also as special case it recovers classes of cubic curves like Bézier, 

Ball and Timmer splines. 

 

To construct the local support basis form, we have adopted the methodology used in [7]. 

Here we will transform the curve scheme representation into piecewise defined Bézier 

form. 

 

Let, 

iii hc ω= , iii hcb 3=  and ii ca 1=  

Substitute the values in (Equation 3.25). Multiplying both sides by ωi and after that 

replace ic  and then multiply again by ii aa 1− .  
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We will get, 

iiiiiiii
iii

iii aaMaMaaaaMa Δ+Δ=++++ −−+−−
−

− 11111
1

1 33)2
2

2( ν  (3.28) 

 

Let additional knots be added outside the knot partition nttt <<< ...21  of the interval 

[ ]ntt ,1 , defined by, 

1012 tttt <<< −−  and 321 +++ <<< nnnn tttt  (3.29) 

 

Also defining the cubic spline )(tiϕ ; 

⎩
⎨
⎧

≥
≤

=
+

−

1

2

1
0

)(
i

i
i tt

tt
tϕ  (3.30) 

 

After imposing the constraints defined in (Equation 3.13) on the cubic spline defined in 

(Equation 3.30) we get, 

 

At 2−= itt , 

0)(,0)(,0)( 222 =′′=′= −−− iiiiii ttt ϕϕϕ  (3.31) 

 

Now from (Equation 3.19) 
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{ } 0)()(2)()(32)()( 1221
22

22 =⎥
⎦

⎤
⎢
⎣

⎡
′−′−−=′′=′′ −−−−

−−
−− iiiiiiii

ii
iiii tttt

hh
tPt ϕϕϕϕϕ  (3.32) 

 

Which is simplified to, 

)(
3

)( 1
2

1 −
−

− ′= ii
i

ii t
h

t ϕϕ  (3.33) 

 

At 1+= itt , 

0)(,0)(,1)( 111 =′′=′= +++ iiiiii ttt ϕϕϕ  (3.34) 

 

Now from (Equation 3.22), 

{ } 0)()(2)()(32)()( 11111 =⎥
⎦

⎤
⎢
⎣

⎡
′+′+−−=′′=′′ +++++ iiiiiiii

ii
iiii tttt

hh
tPt ϕϕϕϕϕ  (3.35) 

 

Which is simplified to, 

)(
3

1)( ii
i

ii t
h

t ϕϕ ′−=  (3.36) 

 

At 1−= itt , 

From (Equation 3.28) 
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ϕϕϕϕ

ϕϕϕ
 (3.37) 

 

Which is simplified to, 

)(
33

)(3)()()(2 1
1

2

2

1

1

2
2121 −

−

−

−

−

−

−
−−−− ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
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i

i

i

i
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i

i
iiiiiii t

h
a

h
a

t
h
a

tataa ϕϕϕϕ  (3.38) 

 

Substituting the values of )( 1−ii tϕ  and )( ii tϕ , we get 

1

2

1

2
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1
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3
)()(2

−

−

−

−
−−

−

−−
−− =′⎟⎟

⎠

⎞
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⎜⎜
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i
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i
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a
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h
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h
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aa ϕϕ  (3.39) 

 

At itt = , 

From (Equation 3.28) 

( ) ( ))()(3)()(3

)()()(2)(

1
1

1
1

1111

iiii
i

i
iiii

i

i

iiiiiiiiii
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−
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+−−−

 (3.40) 

 

Which is simplified to, 

)(
33

)(
3

)(3)()()(2 11
1
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11 ii

i

i

i

i
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i
ii

i

i
iiiiiii t

h
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h

a
t
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a

tataa ϕϕϕϕϕ −−
−
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−− −+−=′+′+  (3.41) 
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Substituting the values of )( 1−ii tϕ  and )( ii tϕ , we get 
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1

2 3
)(2)(
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− =′⎟⎟
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(Equations 3.39) and (Equation 3.42) are in terms of two unknowns )( 1−′ ii tϕ  and )( ii tϕ′ , 

solving them simultaneously give us, 

2112

3113)(
ABAB
ABAB

tii −
−

=′ϕ  (3.43) 
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Where, 

1

22
211 2

−

−−
−− ++=

i

ii
ii h

ha
aaA  (3.45) 

 

i
i

i
i h

h
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1

2
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−
− +=  (3.46) 
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1

2
1

−

−+=
i
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1
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−
− ++=

i
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ii h
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aaB  (3.49) 
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−
=
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i

h
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B  (3.50) 

 

Substituting the values of )( 1−′ ii tϕ  and )( ii tϕ′  in (Equations 3.33) and (Equation 3.36), we 

get 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−=
2112

3113

3
1)(

ABAB
ABABh

t i
iiϕ  (3.52) 

 

Substituting the values of variables 1A - 3A  and 1B - 3B , and simplifying we get, 
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1
22

1)( −
−−

− == i
i

iii
ii D

dhat μϕ  (3.53) 

 

i
i

iii
ii D

dhat λϕ ==− −1)(1  (3.54) 

 

1
2

1 ˆ3)( −
−

− ==′ i
i

ii
ii D

dat μϕ  (3.55) 

      

i
i

ii
ii D

dat λϕ ˆ3)( 1 ==′ −  (3.56) 

 

Similarly defining, 

⎩
⎨
⎧

≥
≤

=
+

−
+

2

1
1 1

0
)(

i

i
i tt

tt
tϕ  (3.57) 

 

After imposing the constraints defined in (Equation 3.13), we get, 

i
i

iii
ii D

dhat μϕ ==
+

+−−
+

1

111
1 )(  (3.58) 
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1
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+
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++ ==− i

i
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ii D

dhat λϕ  (3.59) 

 

i
i

ii
ii D

dat μϕ ˆ3)(
1

11
1 ==′

+

+−
+  (3.60) 

 

1
1

1
11

ˆ3)( +
+

+
++ ==′ i

i

ii
ii D

dat λϕ  (3.61) 

 

We can analyze a relation here, 

1
2

1
2ˆ −
−

− = i
i

i h
μμ  (3.62) 

 

i
i

i h
λλ 3ˆ =  (3.63) 

 

Where, 

112
1

−− ++= iiiiii aaaad ν  (3.64) 

 

And 
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iiiiiiiiiiii dhhadhhaddhD )()( 1221111 −−−−−−− ++++=  (3.65) 

 

Now for local support basis, define 

)()()( 1 tttB iii +−= ϕϕ  (3.66) 

 

iB  has the local support ( )22 , +− ii tt  and an explicit representation of jB  on any 

interval ( )1, +ii tt , 1,,1,2 +−−= jjjji .  

 

To calculate the local support basis formulation, we have, 

)()}2)(1(1{})()(){1(

})()({)1()()}2(1{)1()(

1
2

11
2

22

+++ −−++′−−

+′+−+−+−=

ijiiijiji

iijijiijij

tBhtBtB

htBtBtBtB

βθθβθθ

αθθαθθ
 (3.67) 

  

Where from (Equation 3.66) 

0)()( =′= ijij tBtB , for 1,,1 +−≠ jjji  (3.68) 

 

11)( −− = jjj tB μ ; 11 ˆ)( −− =′ jjj tB μ  (3.69) 

 

iijj tB μλ −−= 1)( ; jjjj tB μλ ˆˆ)( −=′  (3.70) 
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11)( ++ = jjj tB λ ; 11
ˆ)( ++ −=′ jjj tB λ  (3.71) 

 

3.2.1. Curve Design 

Now that we have developed local support basis functions for freeform generic spline 

formulation, it is desired to devise a convenient methodology to compute the curve 

representation. 

∑
+

−=
+ −=∈=

2

1
1 1,...,0,),[,)()(

i

ij
iijj nitttPtBtP  (3.72) 

Using (Equation 3.67) with 2,1,,1 ++−= iiiij  

 

For 1−= ij  

)ˆ()1()}2(1{)1()( 22
1 iiiiiii htB λλαθθλαθθ −−+−+−=−  (3.73) 

 

 

For ij =  

1
2

11
2

22

)}2)(1(1{)ˆ)(1(

)ˆˆ()1({)1()1)}(2(1{)1()(

+++ −−+++−

+−+−−−+−−−+−=

iiiiii

iiiiiiiiii

h

htB

λβθθλλβθθ

μλμλαθθμλαθθ  (3.74) 
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For 1+= ij  

)1)}(2)(1(1{})ˆˆ()1(){1(

)ˆ()1()}2(1{)1()(

11
2

1111
2

22
1

++++++
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−−−−++−−−−−

++−+−+−=

iiiiiiiii

iiiiiii

h

htB

μλβθθμλμλβθθ

μμαθθμαθθ  (3.75) 

 

For 2+= ij  

1
2

11
2

2 )}2)(1(1{)ˆ)(1()( ++++ −−++−−= iiiiiii htB μβθθμμβθθ  (3.76) 

 

To prove the partition of unity, add these four basis functions defined in (Equations 3.72-

3.75), we get, 

1)()()()( 211 =+++ ++− tBtBtBtB iiii  (3.77) 

 

3.2.2. Curve Representation 

By local support property, 

∑
+

−=

=
21

1

)()(
ij

jj PtBtP , [ )1, +∈ ii ttt , 1,...,1,0 −= ni  (3.78) 

 

Where, 1,...,1,0, +=∈ njRP N
j  define the control points of the representation. 

 

We can write (Equation 3.78) as under; 
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221111 )()()()()( ++++−− +++=⇒ iiiiiiii PtBPtBPtBPtBtP  (3.79) 

 

Substituting the values of basis functions, we get the transformation to Bézier form. This 

form is very convenient for computational purposes. 

1
2222 )}2)(1(1{)1()1()}2(1{)1()( +−−++−+−+−+−= iiiiiiiii FWVFtP βθθθθβθθααθθ  (3.80) 

 

where, 

11 )1( +− +−−+= iiiiiiii PPPF μμλλ  (3.81) 

 

2111111 )1( +++++++ +−−+= iiiiiiii PPPF μμλλ  (3.82) 

 

11 )
ˆ

(})ˆˆ()1{()
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i
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iiii

i

i
ii PhPhPhV

α
μμ

α
μλμλ

α
λλ  (3.83) 

 

and 

2
1
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)11

11
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ˆ
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ˆ
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i
ii PhPhPhW
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β
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β
λλ  (3.84) 
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3.3. Extension to Special Class: Timmer Parametric Cubic Spline 

Timmer Parametric cubic curve was proposed by Harry G Timmer of McDonnell 

Douglas [90]. This curve was modeled after the Bézier curve. The difference is that it 

follows the control polygon in more restrictive way. Timmer achieved this by forcing the 

Parametric cubic to pass though the two control points and also through the mid point of 

the line joining two intermediate points 1,iP  and 2,iP . 

 

Even though this curve technique is a well accepted one in the field of computer graphics 

but the designers and practitioners did not opt for it. The rationale was its property of not 

satisfying the convex hull. 

3.3.1. Introduction to Timmer Parametric Cubic 

The blending functions of Timmer Parametric cubic are; 

2
0 )1)(21()( tttf −−=  (3.85) 

 

2
1 )1(4)( tttf −=  (3.86) 

 

)1(4)( 2
2 tttf −=  (3.87) 
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2
4 )12()( tttf −=  (3.88) 

 

 

Figure 3.1 Blending function of Timmer curve 

 

We can note that some part of 0f  and 3f  are negative, which shows that it does not 

follow the convex hull property. 

 

So, the parametric form of Timmer curve is; 

f0(t) 

f1(t) 

f3(t) 

f2(t) 
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22 )12()1(4)1(4)1)(21()(

))(),(()(

+−+−+−+−−=

=

iiiii

i

PttPttPttPtttH

tytxtH
 (3.89) 

 

Where as, 

 

)1,1(

1),( 1,1,1,

i
i

ii
i

i

i
i

iiii

NyMx

TPyxP

αα

α

++=

+=

 (3.90) 

 

)1,1(

1),(

1111

112,2,2,

++++

++

−−=

+=

i
i

ii
i

i

i
i

iiii

NyMx

TPyxP

ββ

β  (3.91) 

 

iP  and 1+iP  are the two control points for thi  piece. 1,iP  and 2,iP  are two intermediate 

points that are calculated in order to render a piece. ),( iii NMT  and ),( 111 +++ iii NMT  are unit 

tangent vectors at two control points respectively. iα  and iβ  are real numbers, which are 

used as shape parameters. 

 

Now, from (Equation 3.90) and (Equation 3.91), we can write (Equation 3.89) in its co-

ordinate form. So, Timmer parametric cubic is represented as follows, 
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)()1(4

)12()()1(4)1)(21()(

1
12
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+−+

−++−+−−=

i
i

i

ii
i

i
ii

P
T

tt

PttP
T

tttPtttH

β

α  (3.92) 

 

3.3.2. Properties of Timmer Parametric Cubic 

Following are the properties of Timmer curve. 

 Coordinate System Independent 

A coordinate system independent curve remains same even if the coordinates are 

changed. In order to follow this property the polynomial bases must identically sum to 

one; 

1)(
3

0

≡∑
=i

i tf  (3.93) 

 

This property can be proved by using (Equations 3.85) to (Equation 3.88). 

 Convex Hull Property 

The convex hull is a bounding polygon around all control points in such a way that the 

line joining any two of the control points remain inside the polygon. A curve is said to 
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fulfill this property if it is coordinate system independent and all the polynomial bases are 

non-negative. i.e. 

1)(
3

0

≡∑
=i

i tf , and 0)( ≥tf i , 10 ≤≤ t  (3.94) 

 

Timmer parametric cubic does not follow this property as already shown in (Figure 3.1). 

Also it can be seen from (Figure 3.2). 

 

Figure 3.2 Timmer curve disobeying convex hull property 

 Variation Diminishing Property 

If a given straight line, lying in the same plane space as that of the curve, intersects the 

curve in '' c  number of points and the control polygon in '' p  number of points then, 

jpc 2−= , 0≥j  (3.95) 
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Considering (Figure 3.3), it is proved that Timmer parametric cubic does not obey this 

property as well. Here we can see that 2=c  and 0=p  and thus 2−=j , which is negating 

the property. 

 

Figure 3.3 Timmer parametric cubic disobey VDP 

 Symmetry 

This property defines that the curve retains the shape even if the points are ordered in 

reverse order, thus 

∑∑
=

−
=

−≡
3

0
3

3

0

)1()(
i

iii
i

i PtfPtf  (3.96) 

 

Therefore Timmer follows this property. 

 Invariant Form under Affine Transformation 

The two ways for affine transformation are, 
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1. Transform sampled data points on the curve directly or, 

2. Transform only the control points and use the transformed control points to generate 

new Timmer curve. 

For an affine transformation to satisfy, we can write the form,  

This can be proved for Timmer as follows, 

bAXXM +=′:  (3.97) 

 

∑
=

=
3

0

)()())((
i

ii PMtftHM  (3.98) 

 

btAHtHM += )())((  (3.99) 

 

∑ ∑
= =

+=
3

0

3

0

)()(
i i

iii btfAPtf  (3.100)

 

∑
=

+=
3

0

))((
i

ii bAPtf  (3.101)
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∑
=

=
3

0

)()(
i

ii PMtf  (3.102)

 

Thus, Timmer is affine transformation invariant. 

 Endpoint Interpolation 

As in the case of Bézier, Timmer also interpolates the end points of a piece. It meets the 

following conditions; 

3,2,1,0)0(,1)0(0 === iff i  (3.103)

 

3,2,1,0)1(,1)1(3 === iff i  (3.104)

 Extra Interpolation 

Timmer interpolates the point at 5.0=t , which is actually the mid point of the line 

segment joining 1,iP  and 2,iP . 

3,1,0)5.0(,5.0)5.0(,5.0)5.0( 21 ==== ifff i  (3.105)
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3.3.3. Designing GC2 Continuous Piecewise Timmer Curve using 

Iterative Scheme 

This scheme was proposed by [6], in which, a 2GC  piecewise Timmer curve is obtained. 

Data set needed is a set of points in Cartesian coordinate where the points are in the form 

of ),( iii yxP  for ni ,...,1,0= . When there are a small number of points given as interpolating 

points, one may easily form 2G  data for those points in order to render a Timmer Curve 

with 2G  continuity. However, when there are large numbers of points, then forming 2G  

data for the given data points become troublesome. This scheme proposes a solution to 

this problem. In this case the curve passes through the points matching the unit tangent 

vectors and signed curvature at respective point. 

 

The tangent vectors are calculated as follows [29], 

2
)(

)(2 02
010

PP
PPT

−
−−=  (3.106)

 

2
)(

)(2 2
1

−
−

−
−−= nn

nnn
PP

PPT  (3.107)

 

))(1()( 11 iiiiiii PPaPPaT −−+−= +−  (3.108)

 

where, 
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11

1

−+

+

−+−

−
=

iiii

ii
i PPPP

PP
a  (3.109)

 

Here (Equation 3.106) represents tangent vector at the first point, (Equation 3.107) 

represents the tangent vector at the last point and the rest of intermediate tangent vectors 

are calculated using (Equation 3.108). 

 

The unit tangent vectors are used to fix the direction of travel of a curve. Therefore the 

unit tangent vectors at each interpolating points are formulated as follows, 
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The Timmer curve is defined as in (Equation 3.89), however the intermediate control 

points are calculated as follows; 
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Now, substituting (Equation 3.111) into (Equation 3.89). Each Timmer curve is 

dependent upon a single variable, iα . 
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The first and second derivatives of )(tH i are; 
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The formula for signed curvature is defined as follows, 
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And at 1=t ; 
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An initial positive value of 0α  is required for this scheme to work. This 0α  is required to 

calculate the value of )1(0K , by using the following constraint; 

niKK ii ,...1,)1()0( 1 == −  (3.119)

 

By utilizing the (Equation 3.117) and (Equation 3.118), an equation is achieved in 

quadratic form. 
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The general solution for iα  is stated as follows; 
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If there exists a real positive solution for iα , then it is selected to render Timmer curve. 

The general algorithm to generate a 2G  piecewise Timmer curve is shown in (Algorithm 

3.1): 

 

Algorithm 3.1 

Step1: For ntoi ,0=  do 

Step1.1: Define ),( iii yxP  

Step1.2: Calculate ),( iii NMT  using (Equation 3.110) 

Step2: Define 0α  

Step2.1: Calculate )1(0K  using (Equation 3.118) 

Step2.2: Calculate 1,0P  and 2,0P  using (Equation 3.112) 

Step2.3: Render the curve )(0 tH , with 10 ≤≤ t  where )(0 tH  is given by (Equation 3.89)  

Step3: For 1,0 −= ntoi  do 

Step3.1: )1()0( 1−= ii KK  as defined in (Equation 3.119) 

Step3.2: Solve (Equation 3.122) to obtain iα  

Step3.3: Select iα  with real positive number 
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Step3.4: Calculate 1,iP  and 2,iP  using (Equation 3.112) 

Step3.5: Render the curve )(tH i , with 10 ≤≤ t  where )(tH i  is given by (Equation 3.89) 

3.3.4. Shape Control for Timmer Curves 

A very useful and fascinating feature of cubic curve is the introduction of local control of 

a shape. This helps a user to define a specific shape and then allows him to play with the 

shape of the curve without changing the data set of control points.  Related research and 

mathematical formulation of local control can be found in [7,87,88]. We have also 

developed the shape control for parametric cubic piecewise 1GC  and 2GC  continuous 

Timmer curves. 

 Piecewise Timmer Curve with Shape control and GC1 Continuity 

The data set for 1GC  continuity is, set of points and shape parameters α  and β  for each 

piece. In this kind of interpolation, the curve passes through each point matching the unit 

tangent vectors. 

 

In order to render a 1GC  curve, we will use (Equation 3.92). The steps required to 

program this scheme are; 
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Algorithm 3.2 

Step1: Define all data points iP , ntoi ,1=  

Step1.1: Define all shape parameters for each piece. iα  and iβ , 1,1 −= ntoi . 

Step1.2: Calculate Tangent vectors for first and last point, using (Equation 3.106) and 

(Equation 3.107) 

Step2: Calculate all intermediate Tangent vectors using (Equation 3.108) 

Step2.1: Calculate the unit components of each vector. 

Step3: Render the curve piece by piece using (Equation 3.92) 

 Piecewise Timmer Curve with Shape control and GC2 Continuity 

In this scheme we are given a set of data points and the shape parameters α  and β . To 

develop 2GC  continuity, we not only force the curve to pass through the control points 

but also the second derivative matches at the points that are joining two different pieces. 

 

Here the condition to be satisfied is; 

)0()1(1 ii HH ′′=′′−  (3.123)

 

Taking 1st and 2nd derivative of (Equation 3.92), we will get (Equation 3.124) and 

(Equation 3.125) respectively.  
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Constrain given by (Equation 3.123) will give us the tri-diagonal system of 2−n  linear 

equations for n  unknown Tangent vectors.  

iiiiiii zTyTxTw =++ +− 11 , 1,...,2 −= ni  (3.126)

 

where, 

14 −= iiiiw ββα  (3.127)

 

)(8 11 −− += iiiiix βαβα  (3.128)

 

114 −−= iiiiy βαα  (3.129)

 

)(3 1111 +−−− −−= iiiiiii PPz βαβα  (3.130)
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Now we need two more equations to solve for n  unknown Tangent vectors. These two 

equations are derived using the Type 1 first derivative end conditions. 

)( 11 tfm ′=  and )( nn tfm ′=  (3.131)

 

This manipulation will provide us with a system in following form, 

BAT =   (3.132)

 

Where, A  is the tri-diagonal matrix of co-efficient. T  is the unknown matrix of Tangent 

vectors and B  is the constants matrix. After applying the end conditions we can transfer 

the terms involving the end conditions 1m  and nm  to the right hand side. Finally we can 

find the Tangent vectors by, 

BAT 1−=  (3.133)

 

Once we have got all the data points, their respective unit tangents and shape parameters, 

we can easily compute the Timmer curve in a piece by piece fashion using (Equation 

3.92). 

 

The steps required to program this scheme are; 
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Algorithm 3.3 

Step1: Define all data points iP , ntoi ,1=  

Step1: Define all shape parameters for each piece. iα  and iβ , 1,1 −= ntoi . 

Step2: Construct the tri-diagonal system of linear Equations using (Equation 3.126) 

Step2: Calculate the Tangent vectors using (Equation 3.133)  

Step3: Render the curve piece by piece using (Equation 3.130)  

3.4. Results and Analysis 

The tension behavior, including interval tension, point tension and global tension of the 

generic cubic spline model is tested for the interpolant and local support basis form. We 

have tested the effects for the range of values of data set in R2. The default values of 

shape parameters iν  will be assumed as zero i∀  and parameters iω  as 1 i∀ . The default 

values of shape parameters give us 2C  continuous curve design. The iν  are termed point 

tension factors because they tighten a parametric curve at the ith  point. The iω  are 

termed interval weights because they tighten the curve on the ith  interval. Further more it 

is important to note that parameters iα  and iβ  define the class of spline as special case. 

For example, 2== ii βα  i∀ , define cubic Ball curves, 3== ii βα  i∀ , define cubic Bézier 

curves and 4== ii βα  i∀ , define cubic Timmer curves. By default we have demonstrated 

our results for cubic Bézier curves. As special case we have demonstrated the results and 

shown the effect of shape parameters for cubic Timmer curves. 
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In (Figures 3.4-3.10), we have demonstrated the shape control for the interpolant form of 

generic cubic spline model. We can observe that, the interpolant form follows the control 

polygon in a very restrictive manner. We see that positive increase in global values of 

point and interval tension parameters do not produce any affect at all as shown in (Figure 

3.5 and 3.6). Where as, the progressive change in negative global values of shape 

parameters produce considerable effect on the shape of the curve. It is observed from 

(Figures 3.7 – 3.10) that for lower values, the curve tends to bulge inside but as we 

further decrease these values, the curve tends towards the control polygon. The inside 

bulging is due to the violation of geometric properties. 

 

The freeform curve design is much more effective and a user can play with the shape 

parameters in greater control as compared to the interpolant form. This is depicted in 

(Figures 3.11- 3.37). In (Figures 3.13- 3.16) we can observe the impact of progressive 

increase in global values of point tension parameters. As we keep on increasing the 

values, the curve tends to follow the control polygon. Moreover we also observe the 

effect of point tension at specified points in (Figures 3.21 – 3.24). We observe that the 

increment in point tension parameters leads to cusp, which is in fact the condition of 0C  

or 0G  parametric continuity. Moreover it is also observed that the change in point tension 

parameters exert influence of some degree on the adjacent curve pieces as well. (Figures 

3.17 – 3.20) show the influence of change in parameters for interval tension at the base. 

We have demonstrated that increase in values produces the effect of control polygon. 

Finally we show the effect of negative values for global values of point tension 

parameters in (Figures 3.21 – 3.37). We get very interesting shapes as we keep on 
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decreasing the values and the further decrement result in remapping of the curve to the 

control polygon as in case of global values of point tension parameters 

 

In case of cubic Timmer parametric spline’s interpolant form, we can notice that when 

interval tension is applied at a certain piece the intermediate points tend to overlap the 

control points and due to which the curve is stretched and consequently it is then 

appeared as straight line for that specific piece. Looking at (Equations 3.111 and 3.112), 

one can notice that as we increase the values of iα  and iβ  the tangent vector approaches 

zero and therefore making the intermediate point equal to the control point. Since the 

effect of tangent is nullified that’s why points are joined as straight line. 

3.4.1 Interpolant Form 

 

Figure 3.4 Default values of shape parameters. 1=iω  and 0=iν , i∀  
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Figure 3.5 Global values of point tension shape parameter. 1=iω  and 10=iν , i∀  

 

Figure 3.6 Global values of point tension shape parameter. 1=iω  and 50=iν , i∀  
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Figure 3.7 Interval values of shape parameter. 100=iω  and 0=iν , i∀  

 

Figure 3.8 Global values of point tension shape parameter. 1=iω  and 3−=iν , i∀  
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Figure 3.9 Global values of point tension shape parameter. 1=iω  and 15−=iν , i∀  

 

Figure 3.10 Global values of point tension shape parameter. 1=iω  and 25−=iν , i∀  
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Figure 3.11 Global values of point tension shape parameter. 1=iω  and 50−=iν , i∀  

3.4.2 Local Support Basis Form 

 

Figure 3.12 Default values of parameters 1=iω  and 0=iν  for shape Pot 
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Figure 3.13 Default values of parameters 1=iω  and 0=iν  for shape Square 

 

Figure 3.14 Global values of point tension parameters 1=iω  and 10=iν   
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Figure 3.15 Global values of point tension parameters 1=iω  and 100=iν   

 

Figure 3.16 Global values of point tension parameters 1=iω  and 10=iν   
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Figure 3.17 Global values of point tension parameters 1=iω  and 100=iν  

 

Figure 3.18 Interval tension values of parameters for bottom segment 10=ω  and 

0=ν  
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Figure 3.19 Interval tension values of parameters for bottom segment 100=ω  and 

0=ν  

 

Figure 3.20 Interval tension values of parameters for bottom segment 10=ω  and 

0=ν  
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Figure 3.21 Interval tension values of parameters for bottom segment 100=ω  and 

0=ν  

 

Figure 3.22 Point tension values at specified points 1=ω  and 10=ν   
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Figure 3.23 Point tension values at specified points 1=ω  and 100=ν   

 

Figure 3.24 Point tension values at specified points 1=ω  and 10=ν   
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Figure 3.25 Point tension values at specified points 1=ω  and 100=ν   

 

 

Figure 3.26 Global values of point tension parameters 1=iω  and 3−=iν   
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Figure 3.27 Global values of point tension parameters 1=iω  and 5−=iν   

 

Figure 3.28 Global values of point tension parameters 1=iω  and 8−=iν   
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Figure 3.29 Global values of point tension parameters 1=iω  and 10−=iν   

 

Figure 3.30 Global values of point tension parameters 1=iω  and 20−=iν   
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Figure 3.31 Global values of point tension parameters 1=iω  and 25−=iν   

 

Figure 3.32 Global values of point tension parameters 1=iω  and 50−=iν   
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Figure 3.33 Global values of point tension parameters 1=iω  and 3−=iν   

 

Figure 3.34 Global values of point tension parameters 1=iω  and 5−=iν   
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Figure 3.35 Global values of point tension parameters 1=iω  and 8−=iν   

 

Figure 3.36 Global values of point tension parameters 1=iω  and 10−=iν   



111 

 

 

Figure 3.37 Global values of point tension parameters 1=iω  and 20−=iν   

 

Figure 3.38 Global values of point tension parameters 1=iω  and 50−=iν   
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3.4.3 Timmer Parametric Cubic 

 

Figure 3.39 Global values of shape parameters 1=iα  and 1=iβ  

 

Figure 3.40 Global values of shape parameters 2=iα  and 2=iβ  
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Figure 3.41 Global values of shape parameters 3=iα  and 3=iβ  

 

Figure 3.42 Global values of shape parameters 4=iα  and 4=iβ  
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Figure 3.43 Global values of shape parameters 20=iα  and 20=iβ  

 

Figure 3.44 Interval tension at base 15=α  and 15=β , for 1=default  
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Figure 3.45 Global values of shape parameters 10−=iα  and 10−=iβ  

 

Figure 3.46 Interval tension at base 5−=α  and 5−=β , for 3=default  



116 

 

3.5. Conclusion 

Cubic spline method has been developed with the prospect of its applications in 

Computer Graphics and Geometric Modeling. The proposed methodology covered in this 

chapter includes the development of 2GC  interpolatory form of curve design and as well 

as freeform 2GC  curve design. The free form curve design is developed through the 

construction of local support B-Spline like basis functions. Our proposed approach 

incorporates all the good features of cubic splines and along with that it also includes two 

families of shape design, known as point and interval tension, which behave in well 

controlled and meaningful way. Further more the freeform curve design also enjoys the 

features of local control and as well as global control. However, we have not considered 

the use of shape parameters for control of convexity for the interpolatory case. Moreover, 

our approach also recovers 2C  continuity as special case. We have also studied a special 

class of our generic spline model, Timmer parametric cubic splines. We have designed its 

interpolant forms for 1C  and 2C  continuous shapes. Also we have studied the shape 

control parameters for this class. 
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CHAPTER 4 

CURVE DESIGN 

 

CURVE DESIGN 

 

 

Data point approximation is a renowned problem of computer graphics, computer vision, 

image analysis, CAD/CAM etc. This kind of approximation is usually done by computing 

a curve close to the data point set [1,10,16,40,58]. The representation of planar object in 

terms of curve has many advantages, for example, scaling, shearing, translation, rotation 

and clipping operations can be performed. Further more we get the freedom to play with 

the shape of the object and we can tune it as desired and thus extending this research 

work for object designing. 

 

Vectorization of raster graphics is one of the fundamental research areas of computer 

graphics, image processing and computer vision. A lot of research has been done in this 

area [2-5,8,17,18,20,22,53,54]. The application ranges from designing and reconstruction 

to recognition of objects. These objects vary from simple to complex geometrical shapes 

like space craft model, structural objects related to civil engineering, mechanical 

engineering objects, bio-medial equipment designing etc.  
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Most of the research has tackled this kind of problem by curve subdivision or curve 

segmentation [68,89]. Curve segmentation is advantageous in a way that it gives a rough 

geometry of the shape. Approaches used to achieve this task are polygonal 

approximations [5,8,22], circular arc approximations [2,18,25,26,31,35,38,39,47-

49,52,63,65-67] and approximations using cubic or higher order splines 

[17,19,27,28,33,53,54,74]. 

 

Many approaches discussed use parametric piecewise-cubic functions, which are used 

throughout the computer graphics industry to represent curved shapes. For many 

applications, it is preferable to have such representation from a closely spaced set of 

points that approximate the desired curve. 

 

A non-parametric dominant point detection algorithm was proposed in [22], it used these 

dominant points for polygonization of digital curves. The problem with polygonal 

approximation is that these approaches are rarely used for shape analysis [5,8]. 

 

Algorithm for conic approximation is proposed in [35,47,66,67]. The combination of line 

segments and circular arcs for object approximation can be seen in [25,26,63]. In [18] the 

authors have proposed a scheme to construct a curvature continuous conic spline. They 

presented the conic spline curve fitting and fairing algorithm using conic arc scaling. The 

smoothing is done by removing unwanted curvature extrema. Conic splines can also be 

used to fit a piecewise linear curve or another smooth curve [48]. Algorithms for data 
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fitting by arc spline curves is also presented in [38,49]. A method for segmentation of 

curves into line segments and circular arcs by using types of breakpoints is proposed in 

[2]. Advantage of this technique is that it is threshold free and transformation invariant. 

The authors have defined five categories of breakpoints. The line and conic segmentation 

and merging is based on these breakpoints. The computational complexity of the 

proposed algorithm is O(nlogn). Short coming of arc splines is that they cannot be used 

for high quality shape modeling as desired smoothness cannot be achieved. 

 

Least square fitting is mostly adopted in approximations which use splines and higher 

order polynomials. Usually the objective is to minimize the sum squared error measures 

[31,39,52,65]. This kind of fitting is largely dependent upon proper parameterization 

[74]. Another approach is based on active contour models known as snakes. Application 

of this approach is [19,27,28]. This technique is also based on parameterization. 

Enhancement to the scheme by adjusting both number and position of control points of 

the active spline curve is shown in [17]. Here the authors used curve approximation using 

iterative optimization with B-spline curve based on squared distance minimization.  

 

Another way, other than parametric form, is to use implicit form of the polynomial. 

Curve reconstruction problem is solved by approximating the point clouds using implicit 

B-spline curve. Trust region algorithm is used in optimization theory as minimization 

heuristics [4]. Techniques described for fitting implicitly defined algebraic spline curves 
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and surfaces to scattered data by simultaneously approximating points and associated 

normal vectors are proposed by [37,50,51]. 

 

In our case the data point set represents planar object, the outline of which we want to 

capture. We present an iterative process to achieve our objective. The algorithms 

comprise of first finding the contour of the gray scaled bitmap image. Then the corners 

are detected using [1]. The first two steps are taken as preprocessing steps. We are using 

generic cubic spline curves, described in last chapter, for curve fitting. We have proposed 

two classes of algorithms. The first one involves random process and the second one is 

about the application of fuzzy inference rules. The first class includes further the 

description of four different variations.  

 

In the first class of algorithms, for each iteration we are inserting random point(s) as knot 

in every piece if the distance of random point(s) and its corresponding contour point(s), 

d , is greater then ε . This is computationally much efficient as compared to computing 

least square distance or least mean square error for all data points. We stop the iteration 

when all d ’s are less than ε . In the other class of algorithm, we take three random points 

and then compute their fuzzy membership for being a knot. The one with the highest 

fuzzy value is then taken as a knot. Again this algorithm is also iterative in nature and it 

stops when for all pieces the distance between fuzzy knot and corresponding contour 

point is less than ε . The second algorithm is little bit costlier in terms of time complexity 

as compared to other algorithms but it gives better curve approximation. 
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Our proposed algorithm for capturing the outline of digital images in general consists of 

the following steps; 

 Finding Boundary of Object 

 Detecting Corner from the Boundary 

 Curve Fitting with Cubic Spline 

 Inserting Knots for Breaking the Segment 

The flow of the program is shown in (Figure 4.1). The steps are discussed in details in 

later sections. 
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Figure 4.1 Outline capturing of the digital images 
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Get Digitized Image 

Extract Contour 
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Stop 

Check if 

curve is fit 
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knot 

No



123 

 

 

4.1 Preprocessing 

This step consists of first finding the boundary of the planar object and then using the 

output to find the corner points or the significant points. 

4.1.1 Finding Boundary of Planar Object 

The image of the object can be acquired either by scanning or by making it in software 

like MS-Paint or Adobe Photoshop. In case of scanning the quality of scanned image is 

dependent upon factors such as paper quality and scanning resolution. The better the 

resolution and paper quality the better will be the image. On the other hand if software is 

used then the quality is dependent upon the format in which the image is stored. For 

example, .bmp files have more detail than .jpeg. 

 

The aim of boundary detection is to produce an object’s shape in graphical or non-scalar 

representation. Chain codes [34,36] are the most widely used representations. Other well 

known representations are syntactic techniques, boundary approximations and scale-

space techniques. The benefit of using chain code is that it gives the direction of edges. 

The boundary points are selected as contour points based on their corner strength and 

fluctuations. 
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Chain codes were initially proposed by Freeman. The methodology adopted to detect the 

boundary is by encoding the shape boundary as a sequence of connected line segments of 

specified length and direction. The direction of a segment is coded using either 4-

connected or 8-connected schemes. In both schemes initially a point is selected using 

either horizontal or vertical scan. After this, the 4-connected or 8-connected component 

algorithm is applied. Both algorithms work in intensive stack formulation. Incase of 4-

connected, four neighboring points are analyzed. These points are pixel positions that are 

right, left, above and below the current pixel. The second method is a little more 

complex. In this method the set of neighboring positions to be tested include the four 

diagonal pixels as well. 

 

The point set obtained after this step is known as contour of the object. The bitmap image 

and its contour are shown in (Figures 4.2) and (Figure 4.3) respectively. 

 

Figure 4.2 Bitmap image 
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Figure 4.3 Contour of the bitmap image 

4.1.2 Corner Detection 

Accurate detection of corners in digital images accounts in the geometrical feature 

representation and analysis [1,22]. The corner detector used in this phase is described in 

detail in Chapter 2. However, for the ease of readers, we present the summary of 

proposed scheme.  

 

The algorithm is composed of three phases. Slope analysis is done in the first phase. In 

this phase candidate points are chosen if slope is changing. These candidate points are 

then passed to the second phase where closed coordinate points are removed. The second 

phase acts as a preprocessing step for the third phase, which is the last phase of our 

algorithm and gives the valid corner points as result. This phase is used to remove the 

points which are lying in near proximities to each other and are selected in clusters 

because of jaggy nature of contour. The removal process is based upon angular 
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measurement. If the angle calculated exceeds a threshold then the candidate point is 

dropped from the list of valid corners. 

 

In each phase the algorithm involves tuning parameters, which are used as thresholds. 

First phase includes Zero Count Threshold (ZCT). ZCT is used to differentiate a jaggy 

from a straight line. This is needed because we are selecting the two end points of straight 

line. Incase of jaggy, we do not select the end points as candidate points for being 

corners. Distance Threshold (DT) is used in second phase of the algorithm. It is used to 

remove all those candidate points which are in the limits of DT. Finally Tolerance Angle 

(TA) is applied in the third and final phase. It is calculated with the help of consecutive 

three candidate points. If these three points make an angle greater than TA then the 

middle point is removed from the list of valid corner points. The default value of ZCT is 

7, DT is 5 and TA is 152o
. 

 

The advantage of this technique is that, we can apply this algorithm for smooth functions 

as well as irregular objects with jaggies. A distinct property of our algorithm is that the 

default values of tuning parameters work equally well for almost all the shapes, 

regardless of the object contour. Further, the change in default parameters does not 

produce much impact on the outcome. The corner points of the image are shown in 

(Figure 4.4). 
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Figure 4.4 Corner Points of the Image 

4.2 Curve Fitting with Cubic Spline Model 

The motive of finding the corner points was to divide the contour into pieces. Each piece 

contains the data points in between two subsequent corners inclusive. This means that if 

there are m  corner points mcpcpcp ,...,, 21  then there will be m  pieces mppp ,...,, 21 . We treat 

each piece separately and fit the spline [55] to it. First piece includes all the contour 

points in between 1cp  and 2cp  including them as well. Second piece contains all contour 

points in between 2cp  and 3cp  inclusive. Consequently, the thm  piece contains all contour 

points between mcp  and 1cp . This is represented in (Figure 4.5). 
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Figure 4.5 Contour Division into Pieces 

After breaking the contour of the image into different pieces, we fit the spline curve to 

each piece. For this purpose we have used piecewise parametric rational cubic spline 

interpolant. Each parametric spline is 2GC  continuous.  

4.2.1 Cubic Spline Interpolant Form 

We have used the interpolant form of the cubic generic spline model that we have already 

explained in detail in (Section 3.1). However, for the ease of readers we will present the 

concepts again in brevity. 

 

The cubic generic spline model is given as under, 

1
2222 )}2)(1(1{)1()1()}2(1{)1()( +−−++−+−+−+−= iiiiiiiii FWVFtP βθθθθβθθααθθ  (4.1) 

 

where, 

ith Corner Point 

i+1st Corner Point 

ith Piece 
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and 

i

ii
ii

hMFV
α

+= , 
i

ii
ii

hMFW
β

1
1

+
+ −=  (4.3) 

 

To get the control points{ }1,,, +iiii FWVF , we made use of a Bernstein-Bezier representation 

where we can impose the Hermite interpolation condition. 

ii FtP =)( ,  11 )( ++ = ii FtP  

ii MtP =′ )( , 11 )( ++ =′ ii MtP  
(4.4) 

 

iF  and 1+iF  are corner points of thi  piece. iM  and 1+iM  are the corresponding tangents at 

corner points.  

 

To construct the parametric 2GC  cubic generic spline interpolant on the interval ],[ 0 ntt  

we have niRF m
i ,...,0, =∈  as interpolation data at knots niti ,...,0, = . The derivatives 

m
i RM ∈  can be found out by the imposition of 2GC  constraints on the piecewise defined 

Hermite form of the spline model. The 2GC  constraint can be written as, 
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This gives us the tri-diagonal system of consistency equations, 
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where, 

i

ii
i h

FF −
=Δ +1  (4.7) 

 

Multiply (Equation 4.6) by 2iω  and then put the iii hc ω= , we get. 

111111 332}22
2

{ −−+−−− Δ+Δ=++++ iiiiiiiii
i

ii ccMcMccMc
ν  (4.8) 

 

Dividing (Equation 4.8) by the co-efficient of iM  will give us unit diagonal form, 

1,...,1,11 −==++ +− nibMcMMa iiiiii  (4.9) 

 

Then (Equation 4.9) will give us diagonally dominant tri-diagonal system of linear 

equations in the unknowns iM  where, 1,...,1 −= ni . 
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Spline fitting is shown in (Figure 4.6). 

 

Figure 4.6 Spline fit over Object Contour 

4.3 Knot Insertion 

We have developed two classes of algorithms, namely Randomized Knot Insertion and 

Fuzzy Random Knot Insertion. Algorithms in both classes are iterative and random in 

nature and run piecewise on the contour of the object. Since the algorithms are random in 

nature therefore for each run, approximation takes different number of iterations for 

curve fitting. 
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4.3.1. Randomized Knot Insertion 

The idea here is to fit a spline model to the object contour in such a way that the spline 

curve approximates the data points on the contour. The whole process is done in 

piecewise manner. The contour is divided into multiple segments. We consider all 

segments or pieces one by one, in each iteration. We have devised four algorithms based 

on this idea. All algorithms vary from each other in knot selection. 

 

In our first algorithm, Single Unconstrained Random Point Algorithm, we pick a point on 

the spline curve at random considering it as candidate knot. Then we calculate the 

Euclidean distance of this candidate knot with the corresponding point on the contour. 

We insert the candidate knot into the appropriate position of corner points list if the 

distance is greater then a threshold ε , where 0>ε . The value of ε  depends upon the 

user’s choice of how close approximation he wants, the lesser the value the closer will be 

approximated curve fit. The formulation of the whole process is described as under. 

 

Let’s suppose that there are n  points, nPPP ,...,, 21  in thj  segment as shown in (Figure 4.7). 

To get a candidate random point r  on the spline model in this segment, we used rand() 

function. This function generates random number whose value is uniformly distributed in 

the interval (0,1) and therefore we multiply the resultant value by 100 to get a 

representative value. Now lets suppose that the value generated by this function is x . 

Then the location of the candidate random point is given in (Equation 4.10).  
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⎜
⎝
⎛= nxLOC
100

 (4.10 ) 

 

The ceiling function helps in avoiding selection of first corner point. This location exits 

in between the corner points of that particular segment. Once we have got the location of 

the candidate random point. We calculate the Euclidean distance between the 

corresponding points on the object contour represented by rP  and the point on the spline 

fit represented by rC  using (Equation 4.11). 

22 )()(
yyxx rrrr PCPCd −+−=  (4.11 ) 

 

The condition for valid knot selection is given as in (Equation 4.12); 

ε≥d , c≤≤ ε0  where 0>c  (4.12 ) 

 

The valid knot selection condition depicts that if this distance is greater than threshold ε  

then we select this candidate point as valid knot and insert it into the proper location in 

the corner points list. Where ε  is defined by the user. Lower the value of ε  the better 

approximation will be achieved. And subsequently if we increase the value of ε  we get 

average approximation. Incase where we want to have optimal interpolation, that is, all 

spline computed points pass through the contour points then we put the value of ε  as 0. 

This will increase the number of iterations for approximation and thus there will be 
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increase in total number of knots. In cases where interpolation is not required, a greater 

value of ε  can be used to achieve the approximation. This threshold gives the user a 

freedom to use curve fit as per his desires. 

 

We apply this process of finding valid knots to the whole list of pieces and if we are able 

to get at least one knot then a new spline fit is obtained and the whole process is repeated. 

On the other hand if the distance calculated is less than ε  then we leave this candidate 

point and we check the next piece. We stop the process when we do not get any candidate 

point as valid knot. 

  

Figure 4.7 Calculation of random knot in Algorithm 4.1 

 

(Algorithm 4.1) shows the steps of curve fitting. 
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Algorithm 4.1: Single Unconstrained Random Point 

Step 1: For each piece do the following 

Step 1.1: Pick a random point on the spline curve 

Step 1.2: Calculate its Euclidean distance ""d  with the corresponding point on the 

contour 

Step 1.3: If ε>d  

Step 1.3.1: Set the flag for another iteration, TRUEflag =  

Step 1.3.2: With respect to its position, insert it into the list of corner points. 

Step 2: If TRUEflag =  repeat step 1 otherwise stop the iteration. 

 

The second approach, Single Euclidean Distance Constraint Random Point Algorithm, 

also works in similar fashion as that of first approach. The only difference comes in that 

before selecting the candidate knot as corner, it is also checked whether it lies in the 

proximity of either corner points of particular segment or not. The distance between the 

candidate point and both corner points is calculated using the Euclidean distance formula.  

 

In short, if the Euclidean distance between candidate point and its respective point on the 

contour is more than the threshold ε  and the candidate point is not near the corner points 

then this candidate point is taken as knot and it is then inserted in the appropriate position 

of corner points list. If the segment under consideration is thj , then left corner point is 

denoted as jP  and the right corner point is denoted as 1+jP . Also suppose that random 
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candidate point is denoted as rC . The distance formula for both sides can be given as in 

(Equation 4.13) and (Equation 4.14), 

 

22 )()(
yyxx jrjrl PCPCd −+−=  (4.13) 

 

And, 

2
1

2
1 )()(

yyxx jrjrr PCPCd ++ −+−=  (4.14) 

 

The proximity criterion is again user’s choice. The nearness threshold criterion is given 

as in (Equation 4.15); 

τ

τ

<

<

r

l

d
or
d

 (4.15) 

 

Where ld  is the Euclidean distance between the candidate point and left corner point of 

the segment. rd  is the Euclidean distance between the candidate point and the right 

corner point of the segment and τ  is the threshold value which holds the nearness range. 

The description is shown in (Figure 4.8). The bold area in the figure shows restricted 

vicinity for a candidate point to be taken as knot. 
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Figure 4.8 Calculation of random knot in Algorithm 4.2 and 4.3 

 

The algorithm for this approach is outlined in (Algorithm 4.2). 

 

Algorithm 4.2: Single Euclidean Distance Constraint Random Point 

Step 1: For each piece do the following 

Step 1.1: Pick a random point on the spline curve 

Step 1.2: Calculate its Euclidean distance ""d  with the corresponding point on the 

contour 

Step 1.3: Calculate its Euclidean distance "" ld  with the left corner point. 

Step 1.4:  Calculate its Euclidean distance "" rd  with the right corner point. 

Step 1.5: If ε>d  & τ>ld  & τ>rd  
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Step 1.5.1: Set the flag for another iteration, TRUEflag =  

Step 1.5.2: With respect to its position, insert it into the list of corner points. 

Step 2: If TRUEflag =  repeat step 1 otherwise stop the iteration. 

 

The third, Single Positional Distance Constraint Random Point Algorithm, approach is a 

very slight variation of second one. Here we follow all the steps of second approach 

except for calculating the Euclidean distance for candidate knot proximity we calculate 

the positional distance. It is calculated based on index position information. That is if the 

candidate knot is near to either of the corners with respect to its position then we will not 

take such a point as knot. The closeness threshold τ  in this case is taken as a percent 

value with respect to the total points on the piece. 

 

Let’s suppose that there are m  points in a piece then, the actual index IDX  to be 

considered as threshold vicinity can be expressed as in (Equation 4.16) and shown as 

bold shade in (Figure 4.8), 

 

⎥⎥

⎤
⎢⎢

⎡ ×= mIDX
100
τ  (4.16) 

 

The algorithm for third approach is written in (Algorithm 4.3). 

 



139 

 

Algorithm 4.3: Single Positional Distance Constraint Random Point 

Step 1: For each piece do the following 

Step 1.1: Pick a random point on the spline curve 

Step 1.2: Calculate its Euclidean distance ""d  with the corresponding point on the 

contour 

Step 1.3: Calculate its positional distance "" ld  with the left corner point. 

Step 1.4:  Calculate its positional distance "" rd  with the right corner point. 

Step 1.5: If ε>d  & τ>ld  & τ>rd  

Step 1.5.1: Set the flag for another iteration, TRUEflag =  

Step 1.5.2: With respect to its position, insert it into the list of corner points. 

Step 2: If TRUEflag =  repeat step 1 otherwise stop the iteration. 

 

The fourth algorithm, Three Unconstraint Random Points Algorithm, takes three random 

points as candidate knots and inserts them in list of valid corners or break points if their 

distances with respective points on the contour are less then the threshold. Rest of the 

process is followed as in case 1. This is demonstrated in (Figure 4.9).  
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Figure 4.9 Calculation of random knot in Algorithm 4.4 

 

The algorithm for fourth approach is written in (Algorithm 4.4). 

 

Algorithm 4.4: Three Unconstraint Random Points 

Step 1: For each piece do the following 

Step 1.1: Pick three random point on the spline curve 

Step 1.2: Calculate their Euclidean distances ""d  with the corresponding points on the 

contour 

Step 1.3: Check for each point separately if ε>d  

Step 1.3.1:  Set the flag for another iteration, TRUEflag =  

Step 1.3.2: With respect to position of point under consideration, insert it into the list of 

corner points. 
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Step 2: If TRUEflag =  repeat step 1 otherwise stop the iteration. 

 

The fifth algorithm, Three Equal Spaces Segmented Random Points Algorithm, is an 

enhancement of fourth approach. In this case instead of selecting three random points, 

first we are dividing the segment into three equally spaced sub-segments and then 

treating them as pieces, as shown in (Figure 4.10) with the help of vertical lines on the 

spline curves. We are then randomly selecting a candidate random knot for each of these 

sub-segments. These random candidate points are taken as valid control points incase 

their distances with corresponding points on the contour are greater than the threshold. 

 

 

Figure 4.10 Calculation of random knot in Algorithm 4.5 

 

The algorithm for fourth approach is written in (Algorithm 4.5). 
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Algorithm 4.5: Three Equal Spaces Segmented Random Points 

Step 1: For each piece do the following 

Step 2: Divide the piece under consideration into three equally spaced sub-segments 

Step 3: Pick a random point on the spline curve for that sub-segment 

Step 3.1: Calculate its Euclidean distance ""d  with the corresponding point on the 

contour 

Step 3.2: If ε>d  

Step 3.2.1: Set the flag for another iteration, TRUEflag =  

Step 3.2.2: With respect to its position, insert it into the list of corner points. 

Step 4: If TRUEflag =  repeat step 1 otherwise stop the iteration. 

4.3.2. Fuzzy Random Knot Insertion 

The main idea behind this algorithm is to select a knot based upon its fuzzy membership 

value. This value defines the candidacy of a randomly selected point to be taken as a 

knot. Here we first take three points randomly on the spline curve as candidate knots. 

Next we delineate the criteria for assessing our problem in terms of fuzzy logic by 

defining our membership functions. After this, it is necessary to fuzzify all the input 

values. This is done to determine the degree to which the inputs belong to each of the 

appropriate fuzzy sets via membership functions. The resultant of this step is in fact the 

degree of membership in the qualifying linguistic set, which is between 0 and 1. These 

values are passed to the fuzzy operators so that we obtain one value which represents the 
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antecedent of our rule. Since we have different criteria to assess the fuzzy membership of 

a random point therefore we assign weights to each of these norms. In the final step we 

aggregate our rules in order to make a decision. 

 

The fuzzy membership criteria are defined as under; 

 Euclidean distance between the random point on spline curve and its corresponding 

point on the object contour. 

 Positional distance between the random point and the left corner point on that piece. 

 Positional distance between the random point and the right corner point on that piece. 

The variables for fuzzy membership criteria are demonstrated in (Figure 4.11). 

 

Figure 4.11 Fuzzy membership criteria 

 

The fuzzification of the inputs is done as depicted in (Equation 4.17) and (Equation 4.19); 
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Fuzzy Positional Distance = 

2
1 ii

i

cpcp
PD
−+

 
(4.17) 

 

Where, 

 

),min( rli PDPDPD =  (4.18) 

 

lPD  and rPD  are the distances between random point and left corner point and right 

corner point respectively. 

Fuzzy Euclidean Distance = 
i

j

Sum
E

 (4.19) 

 

Where, 

jE  is the Euclidean distance 3,2,1=j  and, 

321 EEESumi ++=  (4.20) 

 

iSum  is the sum of Euclidean distances of all three random points in thi  piece. 

 

Now we assume that the Euclidean distance factor produces more impact on the 

fuzzification process therefore we assign some weight w  to it. Also we assign weight v  
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to positional distance factor. This implication method will ensure that in most of the cases 

a point with greater Euclidean distance value will be taken as knot. The relationship 

between w and v is shown in (Equation 4.21). 

vw >  (4.21) 

 

In the aggregation process we multiply these fuzzified values to get single representative 

result. This result helps us to choose just one point out of three points to take as knot. 

Although we get a point at this stage as a knot but we take it as candidate and before 

taking it as a knot we check if its Euclidean distance is with in the range of ε. 

 

The algorithm is as follows; 

 

Algorithm 4.6: Fuzzy Random Knot Selection 

Step 1: For each piece do the following 

Step 1.1: Take three random points on the spline curve 

Step 1.2: Calculate their respective Euclidean distances “E” with the corresponding 

points on the contour 

Step 1.3: Calculate their respective positional distances with left and right corner points 

Step 1.4: Calculate their fuzzy membership values and select one of them as knot k 

Step 1.5: If ε>kE , kE  is the Euclidean distance of selected point with corresponding 

point of the contour 
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Step 1.5.1: Set the flag for another iteration; TRUEflag =  

Step 1.5.2: With respect to its position, insert it into the list of corner points. 

Step 2: If TRUEflag =  repeat the process otherwise stop the iteration. 

4.4 Results and Discussion 

The evaluation results for all the algorithms as depicted in Table 4.1-Table 4.12 show that 

the number of knots inserted is independent of the total number of points on the contour 

and also they do not depend upon the complexity of the object shape. This is because of 

the true randomized nature of the algorithms. Also we can analyze that the total number 

of iterations are not greater in number thus showing the efficiency of the algorithm. The 

tradeoff is in terms of increased number of knots. A detailed analysis is presented after 

the compiled result set. 

 

(Figure 4.12) to (Figure 4.14) shows the fitted curve over object contour, ‘Ali’, at 

different iterations for algorithm 4.1 at threshold values of 1,2 and 3 respectively. 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At last iteration = 20 

 

(d) At last iteration = 30 
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(e) Approximated spline for Arabic word “Ali” 

Figure 4.12 Algorithm 4.1: Demonstration of spline fitting at each iteration using 

threshold =1 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At last iteration = 20 

 

(d) At last iteration = 30 
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(e) Approximated spline for Arabic word “Ali” 

Figure 4.13 Algorithm 4.1: Demonstration of spline fitting at each iteration using 

threshold =2 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At last iteration = 20 

 

(d) At last iteration = 30 
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(e) Approximated spline for Arabic word “Ali” 

Figure 4.14 Algorithm 4.1: Demonstration of spline fitting at each iteration using 

threshold =3 

Table 4.1 Evaluation of algorithm 4.1 for Arabic word “Ali” 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1644 33 652 30 531 1 

1644 33 343 30 64 2 

1644 33 197 30 24 3 
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(Figure 4.15) to (Figure 4.17) shows the fitted curve over object contour at different 

iterations for algorithm 4.2 at threshold values of 1,2 and 3 respectively. 

 

(a) At iteration = 1 
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(b) At iteration = 10 

 

(c) At last iteration = 20 
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(d) At last iteration = 30 

 



159 

 

 

(e) Approximated spline for Arabic word “Ali” 

Figure 4.15 Algorithm 4.2: Demonstration of spline fitting at each iteration using 

threshold =1 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At last iteration = 20 

 

(d) At last iteration = 30 
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(e) Approximated spline for Arabic word “Ali” 

Figure 4.16 Algorithm 4.2: Demonstration of spline fitting at each iteration using 

threshold =2 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At last iteration = 20 

 

(d) At last iteration = 30 
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(e) Approximated spline for Arabic word “Ali” 

Figure 4.17 Algorithm 4.2: Demonstration of spline fitting at each iteration using 

threshold =3 

Table 4.2 Evaluation of algorithm 4.2 for Arabic word “Ali” 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1644 33 308 30 112 1 

1644 33 160 30 29 2 

1644 33 96 30 22 3 
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(Figure 4.18) to (Figure 4.20) shows the fitted curve over object contour at different 

iterations for algorithm 4.3 at threshold values of 1,2 and 3 respectively. 

 

(a) At iteration = 1 
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(b) At iteration = 10 

 

(c) At last iteration = 20 
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(d) At last iteration = 30 
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(e) Approximated spline for Arabic word “Ali” 

Figure 4.18 Algorithm 4.3: Demonstration of spline fitting at each iteration using 

threshold =1 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At last iteration = 20 

 

(d) At last iteration = 30 
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(e) Approximated spline for Arabic word “Ali” 

Figure 4.19 Algorithm 4.3: Demonstration of spline fitting at each iteration using 

threshold =2 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At last iteration = 20 

 

(d) At last iteration = 30 
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(e) Approximated spline for Arabic word “Ali” 

Figure 4.20 Algorithm 4.3: Demonstration of spline fitting at each iteration using 

threshold =3 

Table 4.3 Evaluation of algorithm 4.3 for Arabic word “Ali” 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1644 33 183 30 28 1 

1644 33 144 30 26 2 

1644 33 98 30 19 3 
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(Figure 4.21) to (Figure 4.23) shows the fitted curve over object contour at different 

iterations for algorithm 4.4 at threshold values of 1,2 and 3 respectively. 

 

(a) At iteration = 1 
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(b) At iteration = 10 

 

(c) At last iteration = 20 
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(d) At last iteration = 30 
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(e) Approximated spline for Arabic word “Ali” 

Figure 4.21 Algorithm 4.4: Demonstration of spline fitting at each iteration using 

threshold =1 
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(a) At iteration = 1 

 

(b) At iteration = 10 



181 

 

 

(c) At last iteration = 20 

 

(d) At last iteration = 30 
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(e) Approximated spline for Arabic word “Ali” 

Figure 4.22 Algorithm 4.4: Demonstration of spline fitting at each iteration using 

threshold =2 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At last iteration = 20 

 

(d) At last iteration = 30 
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(e) Approximated spline for Arabic word “Ali” 

Figure 4.23 Algorithm 4.4: Demonstration of spline fitting at each iteration using 

threshold =3 

Table 4.4 Evaluation of algorithm 4.4 for Arabic word “Ali” 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1644 33 1334 30 5219 1 

1644 33 664 30 229 2 

1644 33 422 30 65 3 
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(Figure 4.24) to (Figure 4.26) shows the fitted curve over object contour at different 

iterations for algorithm 4.5 at threshold values of 1,2 and 3 respectively. 

 

(a) At iteration = 1 
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(b) At iteration = 10 

 

(c) At last iteration = 20 
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(d) At last iteration = 30 
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(e) Approximated spline for Arabic word “Ali” 

Figure 4.24 Algorithm 4.5: Demonstration of spline fitting at each iteration using 

threshold =1 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At last iteration = 20 

 

(d) At last iteration = 30 
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(e) Approximated spline for Arabic word “Ali” 

Figure 4.25 Algorithm 4.5: Demonstration of spline fitting at each iteration using 

threshold =2 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At last iteration = 20 

 

(d) At last iteration = 30 
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(e) Approximated spline for Arabic word “Ali” 

Figure 4.26 Algorithm 4.5: Demonstration of spline fitting at each iteration using 

threshold =3 

Table 4.5 Evaluation of algorithm 4.5 for Arabic word “Ali” 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1644 33 1002 30 1653 1 

1644 33 431 30 325 2 

1644 33 260 30 88 3 
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(Figure 4.27) to (Figure 4.29) shows the fitted curve over object contour at different 

iterations for algorithm 4.6 at threshold values of 1,2 and 3 respectively. 

 

(a) At iteration = 1 
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(b) At iteration = 10 

 

(c) At last iteration = 15 
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(d) At last iteration = 18 
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(e) Approximated spline for Arabic word “Ali” 

Figure 4.27 Algorithm 4.6: Demonstration of spline fitting at each iteration using 

threshold =1 
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(a) At iteration = 1 

 

(b) At iteration = 5 
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(c) At last iteration = 10 

 

(d) At last iteration = 14 
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(e) Approximated spline for Arabic word “Ali” 

Figure 4.28 Algorithm 4.6: Demonstration of spline fitting at each iteration using 

threshold =2 
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(a) At iteration = 1 

 

(b) At iteration = 5 
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(c) At last iteration = 10 

 

(d) At last iteration = 12 
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(e) Approximated spline for Arabic word “Ali” 

Figure 4.29 Algorithm 4.6: Demonstration of spline fitting at each iteration using 

threshold =3 

Table 4.6 Evaluation of algorithm 4.6 for Arabic word “Ali” 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1644 33 344 14 81 1 

1644 33 173 15 21 2 

1644 33 91 10 9 3 
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(Figure 4.30) to (Figure 4.32) shows the fitted curve over object contour at different 

iterations for algorithm 4.1 at threshold values of 1,2 and 3 respectively. 

 

(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) Approximated spline for object “Apple” 

Figure 4.30 Algorithm 4.1: Demonstration of spline fitting at each iteration using 

threshold =1 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) Approximated spline for object “Apple” 

Figure 4.31 Algorithm 4.1: Demonstration of spline fitting at each iteration using 

threshold =2 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) Approximated spline for object “Apple” 

Figure 4.32 Algorithm 4.1: Demonstration of spline fitting at each iteration using 

threshold =3 

Table 4.7 Evaluation of algorithm 4.1 for object “Apple” 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1242 13 544 30 202 1 

1242 13 219 30 50 2 

1242 13 151 30 21 3 
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(Figure 4.33) to (Figure 4.35) shows the fitted curve over object contour at different 

iterations for algorithm 4.2 at threshold values of 1,2 and 3 respectively. 

 

(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) Approximated spline for object “Apple” 

Figure 4.33 Algorithm 4.2: Demonstration of spline fitting at each iteration using 

threshold =1 
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(a) At iteration = 1 

 

(b) At iteration = 10 

 



219 

 

 

(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) Approximated spline for object “Apple” 

Figure 4.34 Algorithm 4.2: Demonstration of spline fitting at each iteration using 

threshold =2 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) Approximated spline for object “Apple” 

Figure 4.35 Algorithm 4.2: Demonstration of spline fitting at each iteration using 

threshold =3 

Table 4.8 Evaluation of algorithm 4.2 for object “Apple” 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1242 13 271 30 57 1 

1242 13 151 30 21 2 

1242 13 105 30 16 3 
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(Figure 4.36) to (Figure 4.38) shows the fitted curve over object contour at different 

iterations for algorithm 4.1 at threshold values of 1,2 and 3 respectively. 

 

(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) Approximated spline for object “Apple” 

Figure 4.36 Algorithm 4.3: Demonstration of spline fitting at each iteration using 

threshold =1 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) Approximated spline for object “Apple” 

Figure 4.37 Algorithm 4.3: Demonstration of spline fitting at each iteration using 

threshold =2 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) Approximated spline for object “Apple” 

Figure 4.38 Algorithm 4.3: Demonstration of spline fitting at each iteration using 

threshold =3 

Table 4.9 Evaluation of algorithm 4.3 for object “Apple” 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1242 13 189 30 26 1 

1242 13 107 30 17 2 

1242 13 89 30 15 3 
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(Figure 4.39) to (Figure 4.41) shows the fitted curve over object contour at different 

iterations for algorithm 4.1 at threshold values of 1,2 and 3 respectively. 

 

(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) Approximated spline for object “Apple” 

Figure 4.39 Algorithm 4.4: Demonstration of spline fitting at each iteration using 

threshold =1 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) Approximated spline for object “Apple” 

Figure 4.40 Algorithm 4.4: Demonstration of spline fitting at each iteration using 

threshold =2 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) Approximated spline for object “Apple” 

Figure 4.41 Algorithm 4.4: Demonstration of spline fitting at each iteration using 

threshold =3 

Table 4.10 Evaluation of algorithm 4.4 for object “Apple” 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1242 13 1196 30 1299 1 

1242 13 398 30 112 2 

1242 13 305 30 53 3 
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(Figure 4.42) to (Figure 4.44) shows the fitted curve over object contour at different 

iterations for algorithm 4.1 at threshold values of 1,2 and 3 respectively. 

 

(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) Approximated spline for object “Apple” 

Figure 4.42 Algorithm 4.5: Demonstration of spline fitting at each iteration using 

threshold =1 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 

 



247 

 

 

(e) Approximated spline for object “Apple” 

Figure 4.43 Algorithm 4.5: Demonstration of spline fitting at each iteration using 

threshold =2 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) Approximated spline for object “Apple” 

Figure 4.44 Algorithm 4.5: Demonstration of spline fitting at each iteration using 

threshold =3 

Table 4.11 Evaluation of algorithm 4.5 for object “Apple” 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1242 13 821 30 955 1 

1242 13 443 30 142 2 

1242 13 268 30 42 3 
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(Figure 4.45) to (Figure 4.47) shows the fitted curve over object contour at different 

iterations for algorithm 4.1 at threshold values of 1,2 and 3 respectively. 

 

(a) At iteration = 1 

 

(b) At iteration = 5 
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(c) At iteration = 10 

 

(d) At iteration = 15 
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(e) Approximated spline for object “Apple” 

Figure 4.45 Algorithm 4.6: Demonstration of spline fitting at each iteration using 

threshold =1 
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(a) At iteration = 1 

 

(b) At iteration = 5 
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(c) At iteration = 10 

 

 

(d) At iteration = 15 
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(e) Approximated spline for object “Apple” 

Figure 4.46 Algorithm 4.6: Demonstration of spline fitting at each iteration using 

threshold =2 
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(a) At iteration = 1 

 

(b) At iteration = 5 
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(c) At iteration = 10 

 

(d) At iteration = 15 
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(e) Approximated spline for object “Apple” 

Figure 4.47 Algorithm 4.6: Demonstration of spline fitting at each iteration using 

threshold =3 

Table 4.12 Evaluation of algorithm 4.6 for object “Apple” 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1242 13 289 16 35 1 

1242 13 159 15 8 2 

1242 13 101 16 9 3 
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(Figure 4.48) to (Figure 4.50) shows the fitted curve over object contour at different 

iterations for algorithm 4.1 at threshold values of 1,2 and 3 respectively. 

 

(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) Approximated spline for object “Plane” 

Figure 4.48 Algorithm 4.1: Demonstration of spline fitting at each iteration using 

threshold =1 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) Approximated spline for object “Plane” 

Figure 4.49 Algorithm 4.1: Demonstration of spline fitting at each iteration using 

threshold =2 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 25 
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(e) Approximated spline for object “Plane” 

Figure 4.50 Algorithm 4.1: Demonstration of spline fitting at each iteration using 

threshold =3 

Table 4.13 Evaluation of algorithm 4.1 for object “Plane” 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1293 27 531 30 257 1 

1293 27 254 30 39 2 

1293 27 174 30 23 3 
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(Figure 4.51) to (Figure 4.53) shows the fitted curve over object contour at different 

iterations for algorithm 4.2 at threshold values of 1,2 and 3 respectively. 

 

(a) At iteration = 1 

 

(b) At iteration = 10 



270 

 

 

 

(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) Approximated spline for object “Plane” 

Figure 4.51 Algorithm 4.2: Demonstration of spline fitting at each iteration using 

threshold =1 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) Approximated spline for object “Plane” 

Figure 4.52 Algorithm 4.2: Demonstration of spline fitting at each iteration using 

threshold =2 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) Approximated spline for object “Plane” 

Figure 4.53 Algorithm 4.2: Demonstration of spline fitting at each iteration using 

threshold =3 

Table 4.14 Evaluation of algorithm 4.2 for object “Plane” 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1293 27 285 30 78 1 

1293 27 150 30 27 2 

1293 27 86 30 18 3 
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(Figure 4.54) to (Figure 4.56) shows the fitted curve over object contour at different 

iterations for algorithm 4.3 at threshold values of 1,2 and 3 respectively. 

 

(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) Approximated spline for object “Plane” 

Figure 4.54 Algorithm 4.3: Demonstration of spline fitting at each iteration using 

threshold =1 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) Approximated spline for object “Plane” 

Figure 4.55 Algorithm 4.3: Demonstration of spline fitting at each iteration using 

threshold =2 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) Approximated spline for object “Plane” 

Figure 4.56 Algorithm 4.3: Demonstration of spline fitting at each iteration using 

threshold =3 

Table 4.15 Evaluation of algorithm 4.3 for object “Plane” 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1293 27 190 30 24 1 

1293 27 110 30 17 2 

1293 27 80 30 16 3 
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(Figure 4.57) to (Figure 4.59) shows the fitted curve over object contour at different 

iterations for algorithm 4.4 at threshold values of 1,2 and 3 respectively. 

 

(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) Approximated spline for object “Plane” 

Figure 4.57 Algorithm 4.4: Demonstration of spline fitting at each iteration using 

threshold =1 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) Approximated spline for object “Plane” 

Figure 4.58 Algorithm 4.4: Demonstration of spline fitting at each iteration using 

threshold =2 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 

 



295 

 

 

(e) Approximated spline for object “Plane” 

Figure 4.59 Algorithm 4.4: Demonstration of spline fitting at each iteration using 

threshold =3 

Table 4.16 Evaluation of algorithm 4.4 for object “Plane” 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1293 27 971 30 1441 1 

1293 27 572 30 293 2 

1293 27 507 30 192 3 
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 (Figure 4.60) to (Figure 4.62) shows the fitted curve over object contour at different 

iterations for algorithm 4.5 at threshold values of 1,2 and 3 respectively. 

 

(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) Approximated spline for object “Plane” 

Figure 4.60 Algorithm 4.5: Demonstration of spline fitting at each iteration using 

threshold =1 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) Approximated spline for object “Plane” 

Figure 4.61 Algorithm 4.5: Demonstration of spline fitting at each iteration using 

threshold =2 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) Approximated spline for object “Plane” 

Figure 4.62 Algorithm 4.5: Demonstration of spline fitting at each iteration using 

threshold =3 

Table 4.17 Evaluation of algorithm 4.5 for object “Plane” 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1293 27 863 30 1257 1 

1293 27 390 30 130 2 

1293 27 395 30 98 3 
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 (Figure 4.63) to (Figure 4.65) shows the fitted curve over object contour at different 

iterations for algorithm 4.6 at threshold values of 1,2 and 3 respectively. 

 

(a) At iteration = 1 

 

(b) At iteration = 5 
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(c) At iteration = 10 

 

(d) At iteration = 15 
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(e) Approximated spline for object “Plane” 

Figure 4.63 Algorithm 4.6: Demonstration of spline fitting at each iteration using 

threshold =1 
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(a) At iteration = 1 

 

(b) At iteration = 5 
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(c) At iteration = 10 

 

(d) At iteration = 15 
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(e) Approximated spline for object “Plane” 

Figure 4.64 Algorithm 4.6: Demonstration of spline fitting at each iteration using 

threshold =2 
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(a) At iteration = 1 

 

(b) At iteration = 5 
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(c) At iteration = 10 
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(d) Approximated spline for object “Plane” 

Figure 4.65 Algorithm 4.6: Demonstration of spline fitting at each iteration using 

threshold =3 

Table 4.18 Evaluation of algorithm 4.6 for object “Plane” 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1293 27 332 30 64 1 

1293 27 142 30 12 2 

1293 27 92 30 5 3 
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 (Figure 4.66) to (Figure 4.68) shows the fitted curve over object contour at different 

iterations for algorithm 4.1 at threshold values of 1,2 and 3 respectively. 

 

(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) At iteration = 40 

 

(f) At iteration = 50 
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(g) Approximated spline for English alphabet “D” 

Figure 4.66 Algorithm 4.1: Demonstration of spline fitting at each iteration using 

threshold =1 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) At iteration = 35 

 

(f) Approximated spline for English alphabet “D” 

Figure 4.67 Algorithm 4.1: Demonstration of spline fitting at each iteration using 

threshold =2 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 15 
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 (d) Approximated spline for English alphabet “D” 

Figure 4.68 Algorithm 4.1: Demonstration of spline fitting at each iteration using 

threshold =3 

Table 4.19 Evaluation of algorithm 4.1 for English alphabet “D” 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

849 15 314 55 1.85 1 

849 15 155 39 1.09 2 

849 15 47 19 0.59 3 
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(Figure 4.69) to (Figure 4.71) shows the fitted curve over object contour at different 

iterations for algorithm 4.2 at threshold values of 1,2 and 3 respectively. 

 

(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) At iteration = 40 

 

(f) At iteration = 50 
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(g) At iteration = 60 

 

(h) Approximated spline for English alphabet “D” 

Figure 4.69 Algorithm 4.2: Demonstration of spline fitting at each iteration using 

threshold =1 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) Approximated spline for English alphabet “D” 

Figure 4.70 Algorithm 4.2: Demonstration of spline fitting at each iteration using 

threshold =2 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) At iteration = 40 
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(e) Approximated spline for English alphabet “D” 

Figure 4.71 Algorithm 4.2: Demonstration of spline fitting at each iteration using 

threshold =3 

Table 4.20 Evaluation of algorithm 4.2 for English alphabet “D” 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

849 15 137 60 0.92 1 

849 15 68 35 0.67 2 

849 15 50 57 0.73 3 



335 

 

(Figure 4.72) to (Figure 4.74) shows the fitted curve over object contour at different 

iterations for algorithm 4.3 at threshold values of 1,2 and 3 respectively. 

 

(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) At iteration = 40 

 

(f) At iteration = 50 
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(g) At iteration = 60 

 

(h) Approximated spline for English alphabet “D” 

Figure 4.72 Algorithm 4.3: Demonstration of spline fitting at each iteration using 

threshold =1 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) At iteration = 40 

 

(f) At iteration = 50 



342 

 

 

(g) At iteration = 60 

 

(h) Approximated spline for English alphabet “D” 

Figure 4.73 Algorithm 4.3: Demonstration of spline fitting at each iteration using 

threshold =2 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) At iteration = 40 
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(f) Approximated spline for English alphabet “D” 

Figure 4.74 Algorithm 4.3: Demonstration of spline fitting at each iteration using 

threshold =3 

Table 4.21 Evaluation of algorithm 4.3 for English alphabet “D” 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

849 15 141 60 0.93 1 

849 15 94 60 0.87 2 

849 15 60 43 0.78 3 
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(Figure 4.75) to (Figure 4.77) shows the fitted curve over object contour at different 

iterations for algorithm 4.4 at threshold values of 1,2 and 3 respectively. 

 

(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) At iteration = 40 

 

(f) At iteration = 50 
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(g) At iteration = 60 

 

(e) Approximated spline for English alphabet “D” 

Figure 4.75 Algorithm 4.4: Demonstration of spline fitting at each iteration using 

threshold =1 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) At iteration = 40 

 

(f) Approximated spline for English alphabet “D” 

Figure 4.76 Algorithm 4.4: Demonstration of spline fitting at each iteration using 

threshold =2 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 25 
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(e) Approximated spline for English alphabet “D” 

Figure 4.77 Algorithm 4.4: Demonstration of spline fitting at each iteration using 

threshold =3 

Table 4.22 Evaluation of algorithm 4.4 for English alphabet “D” 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

849 15 612 60 14.17 1 

849 15 216 43 1.2 2 

849 15 125 26 1.53 3 
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(Figure 4.78) to (Figure 4.80) shows the fitted curve over object contour at different 

iterations for algorithm 4.5 at threshold values of 1,2 and 3 respectively. 

 

(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) At iteration = 40 

 

(f) At iteration = 50 
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(g) At iteration = 60 

 

(h) Approximated spline for English alphabet “D” 

Figure 4.78 Algorithm 4.5: Demonstration of spline fitting at each iteration using 

threshold =1 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) At iteration = 40 

 

(f) At iteration = 50 
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(g) At iteration = 60 

 

(h) Approximated spline for English alphabet “D” 

Figure 4.79 Algorithm 4.5: Demonstration of spline fitting at each iteration using 

threshold =2 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) At iteration = 35 

 

 

 

 



368 

 

 

(f) Approximated spline for English alphabet “D” 

Figure 4.80 Algorithm 4.5: Demonstration of spline fitting at each iteration using 

threshold =3 

Table 4.23 Evaluation of algorithm 4.5 for English alphabet “D” 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

849 15 618 60 9.43 1 

849 15 324 60 2.18 2 

849 15 220 36 1.422 3 
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(Figure 4.81) to (Figure 4.83) shows the fitted curve over object contour at different 

iterations for algorithm 4.6 at threshold values of 1,2 and 3 respectively. 

 

(a) At iteration = 1 

 

(b) At iteration = 5 
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(c) At iteration = 10 

 

(d) At iteration = 15 
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(e) Approximated spline for English alphabet “D” 

Figure 4.81 Algorithm 4.6: Demonstration of spline fitting at each iteration using 

threshold =1 
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(a) At iteration = 1 

 

(b) At iteration = 5 
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(c) At iteration = 10 

 

(d) At iteration = 15 
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(e) Approximated spline for English alphabet “D” 

Figure 4.82 Algorithm 4.6: Demonstration of spline fitting at each iteration using 

threshold =2 
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(a) At iteration = 1 

 

(b) At iteration = 5 
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(c) At iteration = 10 

 

(d) At iteration = 15 
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(e) Approximated spline for English alphabet “D” 

Figure 4.83 Algorithm 4.6: Demonstration of spline fitting at each iteration using 

threshold =3 

Table 4.24 Evaluation of algorithm 4.6 for English alphabet “D” 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

849 15 160 18 0.92 1 

849 15 77 19 0.67 2 

849 15 61 17 0.67 3 
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(Figure 4.84) to (Figure 4.86) shows the fitted curve over object contour at different 

iterations for algorithm 4.1 at threshold values of 1,2 and 3 respectively. 

 

(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) At iteration = 31 

 

(f) At iteration = 33 
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(g) Approximated spline for Object “Mult_Seg_Plane” 

Figure 4.84 Algorithm 4.1: Demonstration of spline fitting at each iteration using 

threshold =1 
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(a) At iteration = 1 

 

(b) At iteration = 10 

 



383 

 

 

(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) Approximated spline for Object “Mult_Seg_Plane” 

Figure 4.85 Algorithm 4.1: Demonstration of spline fitting at each iteration using 

threshold =2 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) At iteration = 31 

 

(f) At iteration = 32 
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(g) Approximated spline for Object “Mult_Seg_Plane” 

Figure 4.86 Algorithm 4.1: Demonstration of spline fitting at each iteration using 

threshold =3 

Table 4.25 Evaluation of algorithm 4.1 for Object “Mult_Seg_Plane” 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1005 41 415 33 10.96 1 

1005 41 224 34 2.45 2 

1005 41 182 32 2.18 3 
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(Figure 4.87) to (Figure 4.89) shows the fitted curve over object contour at different 

iterations for algorithm 4.2 at threshold values of 1,2 and 3 respectively. 

 

(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 

 



391 

 

 

(e) At iteration = 35 

 

(f) At iteration = 40 
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(g) Approximated spline for Object “Mult_Seg_Plane” 

Figure 4.87 Algorithm 4.2: Demonstration of spline fitting at each iteration using 

threshold =1 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) At iteration = 32 

 

(f) At iteration = 34 
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(g) Approximated spline for Object “Mult_Seg_Plane” 

Figure 4.88 Algorithm 4.2: Demonstration of spline fitting at each iteration using 

threshold =2 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) At iteration = 31 

 

(f) At iteration = 32 
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(g) Approximated spline for Object “Mult_Seg_Plane” 

Figure 4.89 Algorithm 4.2: Demonstration of spline fitting at each iteration using 

threshold =3 

Table 4.26 Evaluation of algorithm 4.2 for Object “Mult_Seg_Plane” 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1005 41 195 44 2.1 1 

1005 41 90 34 1.21 2 

1005 41 60 32 1.59 3 
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 (Figure 4.90) to (Figure 4.93) shows the fitted curve over object contour at different 

iterations for algorithm 4.3 at threshold values of 1,2 and 3 respectively. 

 

(a) At iteration = 1 

 

(b) At iteration = 10 



402 

 

 

(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) At iteration = 35 

 

(f) At iteration = 40 
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(g) Approximated spline for Object “Mult_Seg_Plane” 

Figure 4.90 Algorithm 4.3: Demonstration of spline fitting at each iteration using 

threshold =1 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) At iteration = 31 

 

(f) At iteration = 32 

 



408 

 

 

(g) Approximated spline for Object “Mult_Seg_Plane” 

Figure 4.91 Algorithm 4.3: Demonstration of spline fitting at each iteration using 

threshold =2 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) At iteration = 31 

 

(f) At iteration = 32 
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(g) Approximated spline for Object “Mult_Seg_Plane” 

Figure 4.92 Algorithm 4.3: Demonstration of spline fitting at each iteration using 

threshold =3 

Table 4.27 Evaluation of algorithm 4.3 for Object “Mult_Seg_Plane” 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1005 41 165 44 1.68 1 

1005 41 97 33 1.79 2 

1005 41 70 33 1.74 3 
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 (Figure 4.93) to (Figure 4.95) shows the fitted curve over object contour at different 

iterations for algorithm 4.4 at threshold values of 1,2 and 3 respectively. 

 

(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) At iteration = 35 

 

(f) At iteration = 40 
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(g) Approximated spline for Object “Mult_Seg_Plane” 

Figure 4.93 Algorithm 4.4: Demonstration of spline fitting at each iteration using 

threshold =1 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) Approximated spline for Object “Mult_Seg_Plane” 

Figure 4.94 Algorithm 4.4: Demonstration of spline fitting at each iteration using 

threshold =2 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) Approximated spline for Object “Mult_Seg_Plane” 

Figure 4.95 Algorithm 4.4: Demonstration of spline fitting at each iteration using 

threshold =3 

Table 4.28 Evaluation of algorithm 4.4 for Object “Mult_Seg_Plane” 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1005 41 774 49 49.87 1 

1005 41 403 34 9.85 2 

1005 41 316 33 6.21 3 
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 (Figure 4.96) to (Figure 4.98) shows the fitted curve over object contour at different 

iterations for algorithm 4.5 at threshold values of 1,2 and 3 respectively. 

 

(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) At iteration = 35 

 

(f) At iteration = 45 
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(g) Approximated spline for Object “Mult_Seg_Plane” 

Figure 4.96 Algorithm 4.5: Demonstration of spline fitting at each iteration using 

threshold =1 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) Approximated spline for Object “Mult_Seg_Plane” 

Figure 4.97 Algorithm 4.5: Demonstration of spline fitting at each iteration using 

threshold =2 
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(a) At iteration = 1 

 

(b) At iteration = 10 
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(c) At iteration = 20 

 

(d) At iteration = 30 
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(e) At iteration = 31 

 

(f) At iteration = 32 
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(g) Approximated spline for Object “Mult_Seg_Plane” 

Figure 4.98 Algorithm 4.5: Demonstration of spline fitting at each iteration using 

threshold =3 

Table 4.29 Evaluation of algorithm 4.5 for Object “Mult_Seg_Plane” 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1005 41 591 45 26.84 1 

1005 41 282 33 4.84 2 

1005 41 218 32 3.51 3 
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 (Figure 4.99) to (Figure 4.101) shows the fitted curve over object contour at different 

iterations for algorithm 4.6 at threshold values of 1,2 and 3 respectively. 

 

(a) At iteration = 1 

 

(b) At iteration = 5 
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(c) At iteration = 10 

 

(d) At iteration = 15 
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(e) Approximated spline for Object “Mult_Seg_Plane” 

Figure 4.99 Algorithm 4.6: Demonstration of spline fitting at each iteration using 

threshold =1 
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(a) At iteration = 1 

 

(b) At iteration = 5 
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(c) At iteration = 10 

 

(d) At iteration = 15 
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(e) At iteration = 20 

 

(f) Approximated spline for Object “Mult_Seg_Plane” 

Figure 4.100 Algorithm 4.6: Demonstration of spline fitting at each iteration using 

threshold =2 
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(a) At iteration = 1 

 

(b) At iteration = 5 
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(c) At iteration = 10 
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(d) Approximated spline for Object “Mult_Seg_Plane” 

Figure 4.101 Algorithm 4.6: Demonstration of spline fitting at each iteration using 

threshold =3 

Table 4.30 Evaluation of algorithm 4.6 for Object “Mult_Seg_Plane” 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1005 41 197 18 2.01 1 

1005 41 113 20 1.29 2 

1005 41 58 13 1.43 3 
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(Table 4.31) to (Table 4.60) show the cumulative results for all algorithms at threshold 

values of 1,2 and 3.  

Table 4.31 Evaluation of algorithm 4.1 for object ‘Ali’ 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1644 33 652 30 531 1 

1644 33 343 30 64 2 

1644 33 197 30 24 3 

 

Table 4.32 Evaluation of algorithm 4.2 for object ‘Ali’ 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1644 33 308 30 112 1 

1644 33 160 30 29 2 

1644 33 96 30 22 3 
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Table 4.33 Evaluation of algorithm 4.3 for object ‘Ali’ 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1644 33 183 30 28 1 

1644 33 144 30 26 2 

1644 33 98 30 19 3 

 

Table 4.34 Evaluation of algorithm 4.4 for object ‘Ali’ 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1644 33 1334 30 5219 1 

1644 33 664 30 229 2 

1644 33 422 30 65 3 
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Table 4.35 Evaluation of algorithm 4.5 for object ‘Ali’ 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1644 33 1002 30 1653 1 

1644 33 431 30 325 2 

1644 33 260 30 88 3 

 

 

Table 4.36 Evaluation of algorithm 4.6 for object ‘Ali’ 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1644 33 344 14 81 1 

1644 33 173 15 21 2 

1644 33 91 10 9 3 
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Table 4.37 Evaluation of algorithm 4.1 for object ‘Apple’ 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1242 13 544 30 202 1 

1242 13 219 30 50 2 

1242 13 151 30 21 3 

 

 

Table 4.38 Evaluation of algorithm 4.2 for object ‘Apple’ 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1242 13 271 30 57 1 

1242 13 151 30 21 2 

1242 13 105 30 16 3 
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Table 4.39 Evaluation of algorithm 4.3 for object ‘Apple’ 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1242 13 189 30 26 1 

1242 13 107 30 17 2 

1242 13 89 30 15 3 

 

 

Table 4.40 Evaluation of algorithm 4.4 for object ‘Apple’ 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1242 13 1196 30 1299 1 

1242 13 398 30 112 2 

1242 13 305 30 53 3 
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Table 4.41 Evaluation of algorithm 4.5 for object ‘Apple’ 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1242 13 821 30 955 1 

1242 13 443 30 142 2 

1242 13 268 30 42 3 

 

 

Table 4.42 Evaluation of algorithm 4.6 for object ‘Apple’ 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1242 13 289 16 35 1 

1242 13 159 15 8 2 

1242 13 101 16 9 3 
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Table 4.43 Evaluation of algorithm 4.1 for object ‘Plane’ 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1293 27 531 30 257 1 

1293 27 254 30 39 2 

1293 27 174 30 23 3 

 

 

Table 4.44 Evaluation of algorithm 4.2 for object ‘Plane’ 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1293 27 285 30 78 1 

1293 27 150 30 27 2 

1293 27 86 30 18 3 
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Table 4.45 Evaluation of algorithm 4.3 for object ‘Plane’ 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1293 27 190 30 24 1 

1293 27 110 30 17 2 

1293 27 80 30 16 3 

 

 

Table 4.46 Evaluation of algorithm 4.4 for object ‘Plane’ 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1293 27 971 30 1441 1 

1293 27 572 30 293 2 

1293 27 507 30 192 3 
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Table 4.47 Evaluation of algorithm 4.5 for object ‘Plane’ 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1293 27 863 30 1257 1 

1293 27 390 30 130 2 

1293 27 395 30 98 3 

 

 

Table 4.48 Evaluation of algorithm 4.6 for object ‘Plane’ 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1293 27 332 30 64 1 

1293 27 142 30 12 2 

1293 27 92 30 5 3 
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Table 4.49 Evaluation of algorithm 4.1 for English character ‘D’ 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

849 15 314 55 1.85 1 

849 15 155 39 1.09 2 

849 15 47 19 0.59 3 

 

 

Table 4.50 Evaluation of algorithm 4.2 for English character ‘D’ 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

849 15 137 60 0.92 1 

849 15 68 35 0.67 2 

849 15 50 57 0.73 3 
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Table 4.51 Evaluation of algorithm 4.3 for English character ‘D’ 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

849 15 141 60 0.93 1 

849 15 94 60 0.87 2 

849 15 60 43 0.78 3 

 

 

Table 4.52 Evaluation of algorithm 4.4 for English character ‘D’ 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

849 15 612 60 14.17 1 

849 15 216 43 1.2 2 

849 15 125 26 1.53 3 

 



454 

 

Table 4.53 Evaluation of algorithm 4.5 for English character ‘D’ 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

849 15 618 60 9.43 1 

849 15 324 60 2.18 2 

849 15 220 36 1.42 3 

 

 

Table 4.54 Evaluation of algorithm 4.6 for English character ‘D’ 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

849 15 160 18 0.92 1 

849 15 77 19 0.67 2 

849 15 61 17 0.67 3 
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Table 4.55 Evaluation of algorithm 4.1 for object Mult_Seg_Plane 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1005 41 415 33 10.96 1 

1005 41 224 34 2.45 2 

1005 41 182 32 2.18 3 

 

 

Table 4.56 Evaluation of algorithm 4.2 for object Mult_Seg_Plane 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1005 41 195 44 2.1 1 

1005 41 90 34 1.21 2 

1005 41 60 32 1.59 3 
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Table 4.57 Evaluation of algorithm 4.3 for object Mult_Seg_Plane 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1005 41 165 44 1.68 1 

1005 41 97 33 1.79 2 

1005 41 70 33 1.7 3 

 

 

Table 4.58 Evaluation of algorithm 4.4 for object Mult_Seg_Plane 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1005 41 774 49 49 1 

1005 41 403 34 9.85 2 

1005 41 316 33 6.21 3 
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Table 4.59 Evaluation of algorithm 4.5 for object Mult_Seg_Plane 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1005 41 591 45 26 1 

1005 41 282 33 4.84 2 

1005 41 218 32 3.51 3 

 

 

Table 4.60 Evaluation of algorithm 4.6 for object Mult_Seg_Plane 

Total 

number 

of points 

on 

contour 

Number of 

corner 

points 

Number of 

knots 

inserted 

Total 

number of 

iterations 

Execution 

time 

Threshold 

values 

1005 41 197 18 2.01 1 

1005 41 113 20 1.29 2 

1005 41 58 13 1.43 3 
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Table 4.61 Evaluation of space efficiency in terms of reduction of dataset 

Algorithm Threshold 

Object 

‘Ali’ % 

Reduction 

in Dataset 

Object 

‘Apple’ 

% 

Reduction 

in Dataset 

Object 

‘Mult_Seg_Plane’ 

% Reduction in 

Dataset 

Object 

‘D’ % 

Reduction 

in Dataset 

Object 

‘Plane’ % 

Reduction 

in Dataset 

Average 

% 

Reduction 

Algorithmic  

Average % 

Reduction 

1 60.34 56.19 58.70 63.01 58.93 59.43 

2 79.13 82.36 81.79 81.74 80.35 81.07 1 

3 88.01 87.84 85.97 94.46 86.54 88.56 

76.36 

1 81.26 78.18 80.59 83.86 77.95 80.37 

2 90.26 87.84 91.04 91.99 88.39 89.90 2 

3 94.16 91.54 94.02 94.11 93.34 93.43 

87.90 
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Algorithm Threshold 

Object 

‘Ali’ % 

Reduction 

in Dataset 

Object 

‘Apple’ 

% 

Reduction 

in Dataset 

Object 

‘Mult_Seg_Plane’ 

% Reduction in 

Dataset 

Object 

‘D’ % 

Reduction 

in Dataset 

Object 

‘Plane’ % 

Reduction 

in Dataset 

Average % 

Reduction 

Algorithmic  

Average % 

Reduction 

1 88.86 84.78 83.58 83.39 85.30 85.18 

2 91.24 91.38 90.34 88.92 91.49 90.67 3 

3 94.03 92.83 93.03 92.93 93.81 93.33 

89.73 

1 18.85 3.70 22.98 27.91 24.90 19.67 

2 59.61 67.95 59.90 76.32 55.76 63.91 4 

3 74.33 75.44 68.55 87.04 60.78 73.23 

52.27 
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Algorithm Threshold 

Object 

‘Ali’ % 

Reduction 

in Dataset 

Object 

‘Apple’ 

% 

Reduction 

in Dataset 

Object 

‘Mult_Seg_Plane’ 

% Reduction in 

Dataset 

Object 

‘D’ % 

Reduction 

in Dataset 

Object 

‘Plane’ % 

Reduction 

in Dataset 

Average % 

Reduction 

Algorithmic  

Average % 

Reduction 

1 39.05 33.89 41.19 27.20 33.25 34.92 

2 73.78 64.33 71.94 61.83 69.83 68.34 5 

3 84.18 78.42 78.30 75.85 69.45 77.24 

60.17 

1 79.07 76.73 80.39 82.92 74.32 78.68 

2 89.47 88.24 88.75 92.69 89.01 89.63 6 

3 94.46 91.86 94.22 94.58 92.88 93.60 

87.31 
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The ideal objective in reengineering of objects is to get an accurate representation in least 

possible time with least possible data set. This defines the time and space complexity of 

an algorithm. However in practical situations, either of the two conditions is usually 

targeted.  

 

Our algorithms are more time efficient as compared to space efficiency. We have 

observed that except for Algorithm 4.3, ‘Single Positional Distance Constraint Random 

Point’, all of the algorithms converge to the object contour in 15 iterations on the 

average. We can say that the rest of the iterations are taken as tuning iterations for 

achieving better reengineered result. In these tuning iterations we observe a very slight 

improvement on curve fitting outcome. Also from the result set we can observe that 

Algorithm 4.6, ‘Fuzzy Random Knot Selection’, performs the best in terms of 

convergence in total number of iterations. The specialty of this algorithm is that it does 

not need extra tuning iterations, thus improving overall time efficiency. Most importantly 

it is to be noted that our algorithms are linear in time.  

 

It is analyzed from Table 4.61 that Algorithm 4.3, ‘Single Positional Distance Constraint 

Random Point’, performs best by reducing the dataset representation by 89%. Also 

Algorithm 4.2, ‘Single Euclidean Distance Constraint Random Point’ and Algorithm 4.6, 

‘Fuzzy Random Knot Selection’, reduce the dataset representation by 87% and 87%. On 

the other hand Algorithm 4.4, ‘Three Unconstraint Random Points’ and Algorithm 4.5, 
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‘Three Equal Spaces Segmented Random Points’, perform the worst. The dataset 

reduction is very low.  

 

A very important factor involved in our algorithms is that one can tune up the accuracy 

and space efficiency by adjusting the threshold value. In case accuracy is desired, then 

the threshold value can be decreased while on the other hand threshold value is increased 

to get the object representation in the least possible dataset. We have observed, Table 

4.31 – Table 4.60, that Algorithm 4.3, ‘Single Positional Distance Constraint Random 

Point’, performs most uniformly. Such that the threshold value does not produce much 

effect on the space complexity however the accuracy is increased when the threshold 

value is decreased. The rest of the algorithms show a great deal of improvement in terms 

of space efficiency incase the threshold value is increased. Moreover we observed that 

overall there is no effect on the number of iterations for convergence. 

 

Furthermore, it is also analyzed that the number of knots inserted is independent of the 

total number of points on the contour and also they do not depend upon the complexity of 

the object shape. This is because of the true randomize nature of the algorithms. 

 

The close inspection and analysis of results depicted in Table 4.31 – Table 4.60, show 

that Algorithm 4.3, ‘Single Positional Distance Constraint Random Point’ and Algorithm 

4.6, ‘Fuzzy Random Knot Selection’, give us better results in terms of both time and 

space complexity. Algorithm 4.3 is better in terms of space complexity and Algorithm 4.6 
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is better in terms of time complexity. Moreover Algorithm 4.6 is far beyond Algorithm 

4.3 in case of space complexity. So, overall we can say that Algorithm 4.6 works best 

among all spline approximation algorithms in all the cases regardless of the threshold 

values. It not only converges in least iterations but also it selects near to the least number 

of knots and produces a very close fitted curve on the object contour. 
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4.5 Conclusion 

A lot of applications in computer graphics, image processing, computer vision and 

CAD/CAM require the data points to be approximated by computing curves. These 

applications include outline capturing of bitmap images or fonts, designing of objects, 

data compression, regression analysis etc. The proposed work presented in this chapter, is 

concerned with efficient techniques of curve fitting to a large amount of digital planar 

data using cubic splines. We have developed enhanced techniques for knot insertion to 

obtain an approximation in lesser operations. Moreover, these algorithms are quite 

economical in terms of computation cost as they use a cubic function in their description 

and the randomized nature of algorithms is also simple. Our approaches can be used to 

visualize large set of data in much smaller data set. Further they can be used in object 

designing area. On the storage side, they require very few points to store and recover a 

planar image, especially the fuzzy approach is far better than any other approach in terms 

of time and space complexity. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

 

 

CONCLUSION AND FUTURE WORK 

 

 

5.1. Conclusion 

The research work was substantially aimed to come up with an efficient strategy for 

object designing using smooth cubic splines. During the course of this thesis we also 

developed some efficient schemes of spline approximation which can also be used in 

object designing. To achieve the objective, several areas were analyzed and studied in 

depth, which are as under; 

 

 Corner detection. 

 Introduction of smoothness in parametric cubic spline model. 

 Designing of interpolant form of smooth parametric cubic spline model. 

 Designing of local support basis form of smooth parametric cubic spline model. 
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 Introduction of shape control parameters in the spline model. 

 Designing of objects using smooth parametric cubic spline model. 

 Approximating the object contour using the smooth parametric cubic spline model. 

 

5.1.1. Corner Detection 

A rough shape of digital object can be represented with the help of corner points. Thus, 

corners of a digital image store vital information for shape analysis. We have developed 

an efficient scheme for detecting corners in digital images. Our scheme’s time 

complexity is linear. Moreover we have demonstrated that our algorithm neither detects 

wrong corners nor it leaves true corners undetected. Although our algorithm is not 

transformation invariant but we have shown that rotation does not produce much effect 

on shape descriptors. Further, the most important aspect of our algorithms is that our 

default tuning parameters work in the same way for all the objects. We have also shown 

that the tuning parameters do not have much effect when changed. That is, it is not 

required to change the tuning parameters as the input object is changed. 

5.1.2. Spline Modeling 

Splines are used to produce smooth curves. They can be applied to set up paths for object 

motions or to provide a representation for an existing object or drawing also they can be 

used to design object shapes. The important aspects to address for spline modeling and 

usage are to decide if it will be an interpolating or approximating spline. Interpolating 

splines mean that the curve is passing through the designated set of data points also 
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known as control points. Where as, approximating splines do not necessarily pass through 

the given set of control points. Further, degree of spline plays a very important role in 

object designing and approximation. The most often used class of splines is cubic, which 

offer a reasonable compromise between flexibility and speed of computation. Compared 

to higher-order polynomials, cubic splines require less calculations and memory and they 

are more stable. Compared to lower-order polynomials, cubic splines are more flexible 

for modeling arbitrary curve shapes. 

 

We have formulated the mathematical notion of the interpolant and as well as local 

support basis form of cubic generic spline model. The interpolant form, as the name 

suggests is used for interpolation of given data set where as the local support basis form 

is used for approximation purposes. We have induced the 2GC  continuity in its 

description. This spline formulation recovers general cubic Bézier, Ball and Timmer 

curves as special cases. Also we have introduced the shape parameters for control over 

design. These shape parameters can be used to produce local or global tension. Moreover 

we have studied Timmer parametric cubic splines in detail and we have further proposed 

two interpolating schemes for curve rendering using 1C  and 2C  continuity. 

5.1.3. Introduction of Smoothness in Curve Design 

To attain a better shape it is required that the spline should permit the mixing of sharp 

and smooth sections within the same description. Continuity condition provides the 
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solution for this requirement. To achieve shapes with cusps, a zero order continuity 

condition can be used. For smooth shapes higher order continuity conditions are satisfied. 

 

We have introduced 2GC  continuity in the generic cubic spline description. The benefit is 

that it can be used as 2C  continuous constraint with some change in parameter values.  

5.1.4. Introduction of Shape Parameters 

Shape parameters allow the designer to play with the shape of the object without ever 

changing the set of data points. These parameters in fact add a layer of shape control. 

Generally there are two kinds of shape parameters associated with curves. The first one is 

known as point tension. As the name suggests, it is associated with producing affect only 

on the neighborhood of a specific point. Where as the second type of shape parameter is 

concerned with producing the affect on an interval and thus known as interval tension 

parameter. We have successfully introduced the concept of shape parameters in the 

generic cubic curve design theory. We have also demonstrated the affect of changing the 

point and tension parameters. Further it is up to the designer to use these parameters 

globally or locally. Global change will impact the whole shape of the object where as 

local change will render the change in a specified interval or point. 

5.1.5. Development of Interpolant Form of Spline Model 

As we have already explained that interpolation is used when spline curve is suppose to 

pass through the given set of data points. Further it is used when the control points which 
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are describing the contour of the object are smooth with no sharp edges. We have devised 

an interpolant form of generic cubic spline model. For interpolation curve scheme, the 

data point set is transformed into Hermite form and the implementation of the tri-

diagonal system is proposed for computation of tangents. We have used Type 1 natural 

end conditions for the formulation of tri-diagonal system of linear equations. The 

tangents are calculated at joining points of the segments in such a way that they follow 

2GC  continuity. 

5.1.6. Development of Local Support Basis Form 

Local support basis formulation is used for spline approximation. This is less restrictive 

as compared to the interpolant form of spline model. In this case, as we have discussed 

earlier, the spline curve does not necessarily pass through the data points describing the 

contour of object. This approach is useful when the object to be approximated is not 

smooth. We have introduced the local support basis in the spline by transforming it in to 

piece wise Bernstein-Bézier representation. The freeform curve method is computed by 

the generation of Bezier points through B-Spline representation. The rationale of this 

conversion is to get all the desired properties of B-Spline like basis function. 

5.1.7. Planar Object Approximation and Designing 

One way to tackle object designing is by using spline approximation. Here it is required 

to find a close spline fit to the object contour. Once we get the approximated spline fit of 

the object we can apply all transformations on it. Thus allowing a designer to play with 
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the shape of the object or use it for designing purposes. Several steps are required to get 

approximated spline fit. Among them are, boundary extraction, corner detection and knot 

insertion or breaking the segment. We have used chain codes for boundary extraction. 

Most importantly we have proposed two classes of knot insertion algorithms. Both 

classes involve random process. Further we have also described our fuzzy criteria for 

selecting a random point amongst three using our proposed fuzzy membership function. 

We have shown that our proposed approaches are much efficient as far as the time 

complexity is concerned. We have also demonstrated that our approaches converge to the 

solution in very less iterations. However, these approaches are not good in terms of space 

complexity. Thus we claim that these approaches are very useful in on-line applications 

where space complexity is not much of concern. 

5.2. Future Work 

5.2.1. Designing of tuning parameter independent corner detector 

In ideal situation it is required to have a corner detector which is independent of all kinds 

of tuning parameters and also which is transformation invariant. Even though our 

proposed corner detector’s tuning parameters do not produce much difference when 

changed but still there presence invalidate an ideal condition. 
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5.2.2. Enhancement of curve fitting technique in terms of time and 

space complexity 

A universal approach is required for curve fitting which could be applied both at online 

and offline applications. Thus it is required to find a solution which is efficient in terms 

of both time and space complexity. 

5.2.3. Extension of concepts to 3D geometry 

In this thesis we have explored the planar objects in detail. All our algorithms and 

techniques revolve around 2D objects. It will be interesting to find if these approaches are 

also applicable to 3D geometry.  
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