

Content-Aware Congestion Control over MPLS

Networks for Multimedia Transmission

by

Muhammad Rehan Sami

A Thesis Presented to the

DEANSHIP OF GRADUATE STUDIES

In Partial Fulfillment of the

Requirements for the degree

MASTER OF SCIENCE

IN

COMPUTER NETWORKING

King Fahd University of Petroleum & Minerals

Dhahran, Saudi Arabia

January 2005

i

King Fahd University of Petroleum & Minerals
DHAHRAN 31261, SAUDI ARABIA

DEANSHIP OF GRADUATE STUDIES

This thesis, written by Muhammad Rehan Sami under the direction of

his thesis advisor and approved by his thesis committee, has been

presented to and accepted by the Dean of Graduate Studies, in partial

fulfillment of the requirements for the degree of MASTER OF

SCIENCE IN COMPUTER NETWORKING.

 Thesis Committee

Dr. Abdul Waheed (Chairman)

Dr. Muhammad Sadiq Sait (Member)

Dr. Muhammad Farrukh Khan
(Member)

Dr. Muhammad Sadiq Sait
(Department Chairman)

Dr. Mohammad A. Al-Ohali
(Dean of Graduate Studies)

Date

 ii

Dedications

I dedicate this work to my parents, for their endless love and prayers for my

success, to my fiancée for her companionship, support and patience and to all

who love me.

 iii

Acknowledgments

All thanks are due Allah first and foremost for His countless blessings.

Acknowledgement is due to KFUPM and the COE Department for

supporting this research.

I was honored and privileged to have Dr. Abdul Waheed as my advisor. I

feel deeply indebted to him for shaping this research with his extensive

knowledge and experience. I am thankful to him for bearing with patience

my every mistake, correcting it and encouraging at every step. I also wish to

thank my thesis committee members, Dr. Sadiq Sait and Dr. Farrukh Khan

for their help, support, and contributions.

My thankful admiration goes to my colleague, peer researcher Itrat for

positively contributing to my research through constructive criticism and

discussions. I specially thank James R. Leu, developer of MPLS-Linux, and

Hung-ying Tyan, developer of J-Sim, for their expert advice. I would like to

express my gratitude towards Ali Mazhar for his efforts in helping me during

the course of this work. Thanks to all my friends and colleagues at KFUPM

who provided wholesome companionship throughout my studies at KFUPM.

Above all I thank my family for all their support and love throughout my MS

studies.

 iv

Table of Contents

Acknowledgments .. iv

List of Tables ... x

List of Figures... xi

Thesis Abstract ... xiv

UTخلاصة الرسالة .. xv

Chapter 1 Introduction.. 1

1.1 Content Service Model .. 3

1.2 Discrete Wavelet Transform based Compression.. 4

1.3 Multiprotocol Label Switching .. 5

1.3.1 Sequence of MPLS Operations ... 7

1.3.2 MPLS Forwarding Information Base.. 8

1.3.3 Traffic Aggregation .. 9

1.3.4 Traffic Engineering... 10

1.4 Advantages of MPLS... 11

1.5 Quantitative QoS Evaluation ... 12

1.5.1 Bandwidth... 12

1.5.2 End-to-end Delay and Delay Jitter.. 13

1.5.3 Packet Loss ... 14

1.6 Problem Statement ... 14

1.7 Practicality of Proposed Scheme ... 15

1.8 Contributions ... 16

1.9 Organization of Thesis... 16

1.10 Summary.. 17

Chapter 2 Literature Survey.. 18

2.1 Compression using DWT... 18

2.2 Congestion Control in MPLS Networks .. 22

2.3 Using MPLS-TE to Improve QoS.. 24

2.4 QoS Approach in Ipv4 Networks... 27

 v

2.5 Summary.. 28

Chapter 3 Problem Definition and Solution Methodology 29

3.1 Problem Definition .. 29

3.2 Solution Methodology ... 30

3.2.1 Bit Mapping and Quality of Service Routing ... 30

3.2.2 End-to-end Flow ... 32

3.2.3 Packet Identification using RTP ... 33

3.2.4 Packet order and Prioritization.. 34

3.2.5 EXP bits Encoding Scheme .. 35

3.2.6 MPLS Router Operations.. 36

3.2.7 Buffer Management at Router .. 37

3.3 Summary.. 38

Chapter 4 Simulation and Analysis .. 39

4.1 J-Sim Network Simulator .. 39

4.1.1 The J-Sim Autonomous Component Architecture.................................. 39

4.1.2 J-Sim Network Modeling and Simulation .. 40

4.1.3 The J-Sim Core Service Layer (CSL) ... 41

4.2 MPLS Support in J-Sim... 41

4.2.1 MPLS Model within J-SIM .. 42

4.3 Implementation of Content-Aware MPLS Routing in J-Sim......................... 43

4.3.1 New Packet Header for DWT Encoded Packets 43

4.3.2 Enhanced MPLS Router with Content-Aware Routing Functionalities . 44

4.3.3 Additional Changes... 44

4.4 Simulation Experiments... 45

4.4.1 Experimental Design... 46

4.4.2 Experimental Parameters .. 46

4.4.3 Metrics .. 47

4.4.4 Factors... 47

4.4.5 Network Model ... 48

4.4.6 Simulation-Based Evaluation.. 49

 vi

4.4.6.1 Comparison of Average end-to-end Delay and Jitter...................... 49

4.4.6.2 Comparison of Packet Loss .. 52

4.4.7 Heterogeneous Network Model .. 54

4.4.7.1 Comparison of Average end-to-end Delay and Jitter...................... 55

4.4.7.2 Comparison of Packet Loss .. 57

4.4.8 Service Ratings ... 58

4.5 Summary.. 59

Chapter 5 Implementation of Content-Aware MPLS Router 61

5.1 The Linux iptables and netfilter ... 61

5.1.1 Life of a packet within the Linux Box .. 62

5.1.2 Matching Packets .. 64

5.1.3 Targets/Jumps ... 65

5.2 QoS and Traffic Shaping ... 67

5.2.1 Traffic Shaping Strategies... 68

5.2.1.1 Packet Queues... 69

5.2.1.2 QoS Guarantees .. 70

5.2.2 Queue Disciplines ... 70

5.2.2.1 Classless Queuing Disciplines .. 71

5.2.2.2 Classful Queuing Disciplines.. 71

5.2.2.3 The PRIO qdisc... 73

5.2.2.4 Stochastic Fairness Queuing (SFQ) .. 73

5.3 The MPLS-Linux Project... 74

5.3.1 Implementation of FIB in MPLS-Linux ... 77

5.4 Content-Aware MPLS Router Architecture... 81

5.4.1 Ingress Mode... 82

5.4.1.1 Marker – Content-Aware Routing Module..................................... 82

5.4.1.2 Classifier – QoS Module... 84

5.4.1.3 MPLS Module... 84

5.4.2 Switch Mode ... 85

5.4.3 Egress Mode ... 86

 vii

5.5 Summary.. 87

Chapter 6 Measurement Based Performance Evaluation.................................... 89

6.1 Experimental Test-bed ... 89

6.1.1 Hardware/Software Platform .. 90

6.1.2 Traffic Generation Tools... 91

6.2 Goals and Hypotheses of Experimental Verification..................................... 92

6.3 Experimental Design and Parameters .. 93

6.3.1 Metrics .. 93

6.3.2 Factors... 94

6.3.3 Experimental Scenarios .. 94

6.4 Analysis of Results .. 95

6.4.1 Comparison of Packet Loss .. 96

6.4.2 Comparison of Image Quality and Received File Size 97

6.4.3 Comparison of Average end-to-end Delay and Jitter............................ 102

6.4.4 System level Measurements.. 106

6.5 Heterogeneous Network Backbone.. 108

6.5.1 Comparison of Packet Loss .. 109

6.5.2 Comparison of Image Quality... 110

6.5.3 Comparison of Average end-to-end Delay and Jitter............................ 111

6.6 Summary.. 113

Chapter 7 Conclusion ... 115

7.1 Limitations and Further Work ... 115

7.1.1 DWT compressed Video... 116

7.1.2 Support for Multicasting ... 116

7.1.3 Comparison with IPv6 and ATM.. 116

7.2 Summary and Contributions of Thesis... 117

Appendix A: Network Traces .. 119

Appendix B: MPLS Configuration Files ... 121

Appendix C: System Level Measurements.. 122

Bibliography .. 125

 viii

Vita .. 130

 ix

List of Tables

Table 4.1. Comparison of image packet loss between DiffServ, MPLS and content-

aware MPLS at ρ = 1. ... 53
Table 4.2. Comparison of video packet loss between DiffServ, MPLS and content-

aware MPLS at ρ = 1. ... 54
Table 4.3. Comparison of video packet loss at ρ = 1. ... 57
Table 4.4. Comparison of image packet loss at ρ = 1. ... 58
Table 4.5. Comparison of DiffServ, MPLS and MPLS using proposed scheme as a

viable candidate for Multimedia Transportation... 59
Table 5.1. Targets in iptables and their functions. ... 66
Table 5.2. Queuing Disciplines in Linux. .. 72
Table 5.3. MPLS-Linux unicast instructions overview. .. 75
Table 5.4. Implementation of the three MPLS operations with the five MPLS-Linux

instructions.. 77
Table 6.1. Hardware/Software resources used in test-bed. 91
Table 6.2. Comparison of packet loss between MPLS, MPLS using proposed

scheme and DiffServ at ρ = 1.. 97
Table 6.3. Comparison of packet loss of simulation and measurement based tests

when transmitted over content-aware MPLS.. 97
Table 6.4. Comparison of packet loss at ρ = 1. .. 109
Table 6.5. Comparison of packet loss of simulation and measurement based tests

when transmitted over heterogeneous network backbone. 110

 x

List of Figures

Number Page
Figure 1.1: Content Service Model. ... 4
Figure 1.2: Architecture of a typical MPLS Domain... 6
Figure 1.3: A sequence of operations of forwarding IP packets through an MPLS

domain. ... 7
Figure 3.1: 32-bit MPLS Shim header. .. 31
Figure 3.2: End-to-end flow of proposed scheme.. 33
Figure 3.3: Fields inside an RTP header. ... 34
Figure 3.4: DWT encoded packet format. ... 34
Figure 3.5: EXP bits encoding scheme. ... 36
Figure 3.6: Flow of priority information.. 37
Figure 3.7: Priority queue for router buffer management. 38
Figure 4.1: Network Topology for Simulation. ... 48
Figure 4.2: Comparison of average end-to-end delay of compressed video traffic

over DiffServ, MPLS and MPLS using proposed scheme.......................... 50
Figure 4.3: Comparison of average end-to-end delay of compressed images over

DiffServ, MPLS and MPLS using proposed scheme.................................. 51
Figure 4.4: Comparison of average jitter of compressed video traffic over DiffServ,

MPLS and MPLS using proposed scheme.. 51
Figure 4.5: Comparison of average jitter of compressed image traffic over DiffServ,

MPLS and MPLS using proposed scheme.. 52
Figure 4.6: A heterogeneous network backbone.. 54
Figure 4.7: Comparison of average end-to-end delay of video traffic. 55
Figure 4.8: Comparison of average end-to-end delay of DWT encoded images..... 56

Figure 4.9: Comparison of average jitter of video traffic. 56
Figure 4.10: Comparison of average jitter of DWT encoded images. 57
Figure 5.1: Traversal of packet within Linux router. ... 63
Figure 5.2: Processing of a packet in the MPLS layer with MPLS-Linux unicast. . 79

 xi

Figure 5.3: Modules of proposed content-aware router in ingress mode................. 82
Figure 5.4: Modules of proposed content-aware router in switch mode.................. 86
Figure 5.5: Modules of proposed content-aware router in egress mode. 87
Figure 6.1: Experimental test-bed.. 90
Figure 6.2: Comparison of image quality at ρ = 0.5. ... 99
Figure 6.3: Comparison of image quality at ρ = 0.7. ... 100
Figure 6.4: Comparison of image transferred at ρ = 0.9 over proposed scheme

(image b) and an image transferred at ρ = 0.7 over regular MPLS (image a).

.. 100
Figure 6.5: Comparison of image transferred at ρ = 0.9 over DiffServ (image a) and

proposed scheme (image b). ... 102
Figure 6.6: Comparison of average jitter. .. 103
Figure 6.7: Comparison of average end-to-end delay.. 103
Figure 6.8: Comparison of delay values obtained from simulation and measurement

studies while transmitting DWT traffic over content-aware MPLS. 105
Figure 6.9: Comparison of jitter obtained from simulation and measurement studies

while transmitting DWT traffic over content-aware MPLS. 105
Figure 6.10: Comparison of active memory of user processes at different values of ρ

at ingress router... 107
Figure 6.11: Comparison of interrupts per second at different values of ρ at ingress

router... 107
Figure 6.12: Comparison of CPU utilization at different values of ρ at ingress router.

.. 108

Figure 6.13: Comparison of image quality at ρ = 0.5. ... 110
Figure 6.14: Comparison of average jitter. .. 111
Figure 6.15: Comparison of average end-to-end delay.. 111
Figure 6.16: Comparison of delay values obtained from simulation and

measurement studies while transmitting DWT traffic on heterogeneous

network backbone. .. 112

 xii

Figure 6.17: Comparison of jitter values obtained from simulation and measurement

studies while transmitting DWT traffic on heterogeneous network

backbone. .. 113

 xiii

Thesis Abstract

NAME: MUHAMMAD REHAN SAMI

TITLE: CONTENT-AWARE CONGESTION CONTROL OVER MPLS

NETWORKS FOR MULTIMEDIA TRANSMISSION

MAJOR FIELD: COMPUTER NETWORKING

DATE OF DEGREE: JANUARY 2005

Multimedia distribution over the Internet has emerged as a popular
application. However, delivering multimedia content poses many non-trivial
challenges such as fulfilling Quality of Service (QoS) requirements. This
thesis focuses on how to improve QoS of multimedia traffic over Enterprise
Data Networks (EDNs) using MultiProtocol Label Switching (MPLS). The
reason for choosing MPLS is its support for traffic engineering (TE) and
QoS provisioning. A novel content-aware congestion control algorithm is
designed, implemented and tested. The proposed scheme enables the MPLS
router to discard packets with less important content when there is
congestion in the network. By employing such content-aware congestion
control, the overall quality of multimedia content is not significantly affected,
enabling graceful degradation of quality using a Wavelet based compression
technique. The proposed scheme is modeled and simulated using the J-Sim
network simulator and implemented in an extended public domain Linux-
based MPLS router. Simulation and measurement based testing shows that
the proposed scheme maintains low delay, low jitter, and packet loss of
multimedia traffic, even under high network congestion when compared with
standard MPLS and IP QoS architecture - DiffServ. This thesis contributes a
novel scheme to the existing MPLS architecture to improve QoS of Wavelet
based compressed multimedia data.

Keywords: MPLS, QoS, Traffic Engineering, Wavelet Compression,
Multimedia, Congestion Control

Master of Science Degree

King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
January 2005

 xiv

 خلاصة الرسالة

 محمد ريحان سامي :الاســــما
لإرسال) MPLS(عبر شبكات إم بي إل إس – ذو الدراية بالمحتوي –التحكم بالازدحام : عنوان الرسالة

 الوسائط المتعددة
 شبكات الحاسب الآلي : التخصص

 ٢٠٠٥ يناير : تاريخ التخرج

ولكن توصيل محتوي متعدد . كتطبيق واسع الانتشار) الإنترنت(ة ظهر توزيع الوسائط المتعددة عبر الشبكة العنكبيوتي

يركز هذا البحث على كيفية . (QoS)الوسائط طرح العديد من التحديات المهمة مثل تلبية متطلبات نوعية الخدمية
باستخدام مقسمات ذات) EDN(تحسين نوعية الخدمة لمرور الوسائط المتعددة عبر مشروع شبكة البيانات

سبب اختيار بروتوكول أم بي إل إس هو دعمه لهندسة المرور وإدارته). MPLSإم بي إل إس (وكولات متعددة بروت
الخطة . تم تصميم وتطبيق واختبار خوارزمية جديدة للتحكم بالازدحام تتعرف على المحتوى. الوقائية لنوعية الخدمة

 الشأن الأقل أهمية عندما يكون هناك ازدحام في الشبكة، المقترحة تمكن موجه أم بي إل إس إلى التخلص من الحزم ذات
وبتوظيف مثل هذا التحكم فإن النوعية الكلية للرسائل المحتوية على وسائط متعددة لن تتأثر بصورة ملحوظة متيحة اال

 .لتدنٍ بسيط في النوعية عند استخدام طريقة ضغط مبنية على مويجة
وتطبيقها في موجه إم بي إل إس المبني) J-Sim(سيم - حة باستخدام محاكي الشبكة جيتمت نمذجة ومحاكاة الخطة المقتر

وأظهرت اختبارات المحاكاة والقياسات أن الخطة المقترحة تحتفظ بمستوى تأخير . العام والموسعلينكسعلى نطاق
ام عالٍ وذلك عند مقارنتها بـ منخفض ونسبة فقد قليلة للبيانات عند مرور الوسائط المتعددة حتى في حالة وجود ازدح

يساهم هذا البحث بوضع أسلوب جديد عن الأساليب . لنوعية الخدمة) IP(إم بي إل إس القياسي وبمعمارية آي بي
 .الموجوده لـ أم بي إل إس وذلك لتحسين نوعية الخدمة لبيانات وسائط متعددة مبنية على ضغط المويجة

، (QoS)، نوعية الخدمية MPLSإم بي إل إس (روتوكولات متعددة مقسمات ذات ب: كلمات البحث الرئيسية
 .، الضغط المويجي، التحكم بالازدحام، الوسائط المتعددةالازدحامهندسة

 في العلومالماجستيردرجة

 جامعة الملك فهد للبترول والمعادن، المملكة العربية السعودية
٢٠٠٥ يناير

 xv

Chapter 1

Introduction

Multimedia distribution over the Internet has emerged as a popular

application. However delivering real-time compressed video and images,

which is a major part in multimedia content, poses many non-trivial

challenges. Fulfilling the Quality of Service (QoS) requirements for

delivering multimedia content over the Internet is an active area of research.

As the QoS needs of such applications can not be ignored, the heterogeneous

nature of today’s “best-effort” Internet makes it difficult to deliver desired

quality of such content to different users with different requirements.

Compressing raw video or images and delivering them plays a key role in

obtaining desired level of QoS. Compression techniques essentially reduce

the size of data to be delivered and hence reduce the amount of bandwidth

required to deliver this content. Standard compression techniques (such as

Motion Picture Expert Group–MPEG Standard) provide Discrete Cosine

Transform (DCT) based lossy compression [1]. Playback of compressed

video using DCT does not tolerate losses of parts of the compressed frames

due to network congestion and quality of playback becomes unacceptable.

Wavelet based techniques provide an alternative video/image compression

methodology. These techniques are non-standard but can provide graceful

1

 2

degradation when parts of compressed data frames are dropped due to

congestion. Such techniques can identify parts of the compressed frames that

can be dropped under congestion without appreciable loss of quality.

Compression alone cannot improve delivery of good quality multimedia

content. The quality of such content also depends on the network

characteristics. A network that is aware of QoS requirements of the content

can strive to deliver that level of quality compared to today’s best-effort

Internet. The work focuses on the Multiprotocol Label Switching (MPLS)

technology to enhance the QoS provisions of the Internet.

This research involves implementation of a scheme that marks wavelet-based

compressed multimedia packets as those containing important or less

important contents of compressed and encoded frames. Such markings

enable an MPLS router to make decisions according to the packet’s priority.

At times of congestion, like any other congestion control enabled router, this

router will also restrict the rate of outgoing traffic. However, it can restrict

low priority traffic to allow high priority streams to maintain a gracefully

degraded QoS for compressed multimedia content at times of high network

congestion. The proposed congestion control scheme is a load-shedding

based congestion control scheme that not only ensures QoS by adding

content awareness in devices but also allows efficient utilization of available

network resources.

 3

A simulation and measurement based performance study is conducted by

compressing raw multimedia content using DWT based compression and

transporting it over an MPLS network. QoS is compared with QoS enabled

IPv4 (Differentiated Services – DiffServ) network as well as standard MPLS.

1.1 Content Service Model

In today’s content driven Internet, a content service model can be defined in

terms of three main entities [2]. These three entities are 1) Content

Customers 2) Content Providers (CP) and 3) Content Service Providers

(CSP). These three entities are interconnected together through Service Level

Agreements (SLA).

Content customers are able to get the content from the CPs through CSPs. In

current Internet, portal services such as Yahoo, America On-Line (AOL) and

Infoseek can be considered as CSPs. CSPs can help customers to access

content services efficiently and economically. CP in this model refers to the

actual creator and owner of the content.

In case of the Internet, there are several issues that pose non-trivial problems

such as scalability, compatibility and interoperability. The proposed scheme

is well suited for small and medium sized enterprise networks that comprise

of a single managed domain with end-to-end MPLS backbone.

 4

Internet

SLA 2

SLA 1 SLA 3

CP
SLA 4

CSP
Customers

Figure 1.1: Content Service Model.

1.2 Discrete Wavelet Transform based Compression

DWT is similar to DCT as it converts an image into frequency components.

The difference between DCT and DWT is that in the wavelet transform, the

process is performed on the entire image and the result is a hierarchal

representation of the image, where each layer is a frequency band [1] . DWT

techniques are more suitable to obtain variable QoS as compared to DCT.

For instance, some of the high frequency contents can be dropped with

minutely perceptible degradation of decompressed image quality. In the

worst case, low frequency bands of compressed image can help restore a

coarse grain representation of original image. Due to this characteristic,

graceful degradation of image quality using DWT-based compressed video is

an ideal candidate to test load shedding based congestion control schemes.

Thus this study will focus DWT compression of multimedia traffic only.

 5

The idea of Embedded Image Coding using Zerotrees of Wavelet

Coefficients (EZW) was presented by Shapiro [3]. The EZW coder exploits

the characteristic that visual information can tolerate some data loss without

drastically degrading the visual quality. It applies wavelet transformation and

heuristics such that the encoded data is ordered in terms of visual

significance. The encoded data is disseminated as an embedded bit-stream

with the data in descending order of significance. The bit-stream can be

truncated at any point. Thus various compression ratios are possible from a

single bit-stream. The degradation of visual quality, as a result of not sending

data of low-significance, can be managed so that the resulting decoded image

is still useable by the user and the application.

1.3 Multiprotocol Label Switching

MPLS is a layer 3 switching technology that emphasizes on the improvement

of packet forwarding performance of backbone routers [57]. The main idea

behind MPLS technology is to forward packets based on a short and fixed

length identifier termed as a “label” rather than the layer 3 IP address of the

packets. The labels are assigned to each packet (PUSH) at the ingress node

known as the Label Edge Router (LER) of an MPLS Domain [4]. MPLS

routers make forwarding decisions based on these labels (SWAP). The labels

are detached (POP) as the packets depart the MPLS domain at the egress

 6

LER. Within the MPLS domain, packets are forwarded using these labels by

the core Label Switch Routers (LSRs).

MPLS Domain

LSR
LSP

Ingress LER Egress LER

Figure 1.2: Architecture of a typical MPLS Domain.

The IP packets are switched through pre-established Label Switched Paths

(LSP) by signaling protocols or done statically. LSPs are determined at the

ingress LER and are unidirectional (from ingress to egress). Packets with the

identical label follow the same LSP and are categorized into a single

Forwarding Equivalence Class [4] (FEC). FEC can be defined as a group of

IP packets which are forwarded in the same manner along the same LSP.

 7

3 – Packet forwarded according to label
switching

2 - Label added by the ingress LER

4- Label removed by egress LER and
forwarded to the destination

1- Layer 3 packet without label

Figure 1.3: A sequence of operations of forwarding IP packets through an

MPLS domain.

1.3.1 Sequence of MPLS Operations

Consider a traffic flow from cloud A to cloud B in Figure 1.3. Both clouds A

and B are pure IP networks. When a packet from A enters the MPLS domain

and reaches the ingress LER, the source and destination IP addresses of the

packet are analyzed and the packet is classified in a FEC. All packets within

the same FEC use the same LSP. Suppose an LSP has already been

established for the FEC of the packet sent by A to B, then the ingress LER

inserts or pushes an MPLS header on the packet. Subsequent routers of the

MPLS domain update the MPLS header by swapping the label. Finally, the

last router of the LSP, called egress LER, removes or pops the MPLS header,

 8

so that the packet can be handled by subsequent MPLS-unaware IP routers or

hosts inside cloud B.

1.3.2 MPLS Forwarding Information Base

MPLS routers push, swap and pop MPLS headers according to rules

contained in a forwarding table called Forwarding Information Base (FIB)

that is distinct for each MPLS router. The FIB can contain three different

types of entries. A Next Hop Label Forwarding Entry (NHLFE) contains the

information necessary to forward a packet for which a label has already been

assigned. A NHLFE contains two pieces of information: the packet's next

hop address, and whether the MPLS header of the packet must be swapped

or popped. If the MPLS header of the packet must be swapped, then the

NHLFE also contains the new label of the packet. The Incoming Label Map

(ILM) contains the mappings between labels carried by incoming packets

and NHLFE entries. Last, the FEC-to-NHLFE (FTN) contains the mappings

between incoming packet FECs and NHLFE entries. MPLS routers use their

FIB as follows. Suppose a packet with no label arrives at an MPLS router.

The MPLS router first determines the FEC for the packet, and then looks up

in the FIB for the FTN that matches the FEC of the packet. This FTN

contains a label and a NHLFE which in turn contains the next hop for the

packet. The MPLS router pushes an MPLS header that contains the label

read in the FTN and forwards the packet according to the information

 9

contained in the NHLFE. Now suppose that a labeled packet arrives at an

MPLS router. The MPLS router searches in the FIB for an ILM that matches

the label of the packet and reads the associated NHLFE. The NHLFE can

either indicate that the MPLS header must be swapped against a new label,

or popped. In the former case, the MPLS router swaps the MPLS header and

forwards the packet to the next hop specified in the NHLFE. In the latter

case, the MPLS router pops the label and forwards the packet to the next hop

specified in the NHLFE.

1.3.3 Traffic Aggregation

A main point of interest with FECs in a traffic engineering context is that

they support aggregation. All packets from different sources but entering the

MPLS domain through the same LER, and bound to the same egress LER

can be assigned to the same FEC and therefore the same virtual circuit. In

other words, there is no need to establish a new virtual circuit for each

(source, destination) pair read in the headers of incoming packets. Once

ingress LER has determined the FEC of a packet, the ingress LER assigns a

virtual circuit to the packet via a label number. Also, FEC definitions can

take into consideration IP packet sources in addition to destinations. Two

packets that enter the MPLS domain through the same LER and going to the

same destination can use different sets of links so as to achieve load

 10

balancing, that is, put the same amount of traffic on all links hereby

distributing the load of traffic on each link.

1.3.4 Traffic Engineering

Traffic engineering deals with the performance of a network in supporting

users’ QoS needs. Traffic engineering for MPLS networks involves the

measurement and the control of traffic. The objectives of traffic engineering

in the MPLS environment are related to two performance functions [5]:

1. Traffic oriented performance which includes QoS operations.

2. Resource oriented performance objectives which deal with

networking resources to contribute to the realization of traffic

oriented objectives.

The aim of traffic engineering is to find mechanisms to satisfy the growing

need of users for bandwidth; thus, the efficient management of the available

bandwidth is the essence of traffic engineering. MPLS plays an important

role in engineering the network to provide efficient services to its customers.

RFC 2702 specifies the requirements of traffic engineering over MPLS and

describes the basic concepts of MPLS traffic engineering like traffic trunks,

traffic flows and LSPs [20]. The advantages of MPLS for traffic engineering

include:

1. Label switches are not limited to conventional IP forwarding by

conventional IP-based routing protocols

 11

2. Traffic trunks can be mapped onto label switched paths

3. Attributes can be associated with traffic trunks

4. MPLS permits address aggregation and disaggregation (IP

forwarding permits only aggregation)

5. Constraint-based routing is easy to implement

6. MPLS hardware is less expensive than ATM hardware.

Proper traffic engineering techniques are the basis of providing good QoS

support to MPLS networks [41][44].

1.4 Advantages of MPLS

Three main factors determine the performance of any network application,

namely the supporting system, network and the protocol. Considering the

architectural philosophy of IP, it imposes a restriction in that it does not

support a fixed data flow model upon the network’s application set. It does

not take into consideration the “type” of traffic to route. It merely routes the

traffic based on simple routing algorithms (mostly shortest path). In such

cases, delay sensitive traffic can have an impact due to excessive injection of

delay insensitive traffic as mentioned in [6], because all types of traffic

follow the same shortest path. This can be a drawback for video traffic due to

its time stringent nature. Another disadvantage of conventional IP routing is

the amount of processing the core routers have to perform in order to forward

 12

a packet to its destination. In L3 (IP) routing, the network does not maintain

state, the data packets following the first packet in a flow are unaware of its

routing. Hence the route is calculated independently for every packet

although they have the same destination address. MPLS improves these

shortcomings in IP routing by combining L3 routing with L2 switching. It

uses the first data packet to establish the LSP, and distributes a label to the

FEC that the first data packet belongs to. If the data packets following the

first one belong to the same FEC as the fist data packet, then MPLS uses the

same label to encapsulate them. Forwarding decisions are made on the basis

of the fixed length short labels rather than the variable length IP header and

longest prefix matches. This considerably reduces the processing time and in

turn increases the core network’s packet forwarding performance.

1.5 Quantitative QoS Evaluation

In order to transport desired quality multimedia content, there are certain

quantitative requirements that should be fulfilled; these include: bandwidth,

delay and delay jitter, and loss. Each of these is considered in more detail in

the following.

1.5.1 Bandwidth

Minimum bandwidth is required to achieve an acceptable quality for

streaming multimedia content. However keeping in mind today’s Internet,

 13

there is no explicit bandwidth reservation mechanism, which is deployed

everywhere for such applications. Furthermore, excessive traffic can cause

congestion in the network, which can further degrade the quality of such

applications. Hence congestion control must be introduced. For video

streaming, congestion control takes the form of rate control; that is, adapting

the sending rate to the available bandwidth in the network. Compared with

non-scalable DCT based video compression, scalable DWT based video

compression is more adaptable to the varying levels of available bandwidth

in the network.

1.5.2 End-to-end Delay and Delay Jitter

In contrast to data transmission, multimedia content requires bounded end-

to-end delay and delay jitter. That is, every multimedia packet must arrive at

the destination in time to be decoded and displayed. This is because real-time

compressed video must be played out continuously. If the video packet does

not arrive in time, the playout process will pause, which is annoying to the

human eye. The video packet that arrives beyond a time constraint is useless

and can be considered lost. Although real-time compressed video requires

timely delivery, the best-effort Internet does not offer such a delay or jitter

guarantee. In particular, the congestion in the Internet could incur excessive

delay. Since the Internet introduces time-varying delay, to provide

continuous playout, a buffer at the receiver is usually introduced to remove

 14

jitter. The average delay for real-time applications should not exceed more

than 400ms [65] [66]. An acceptable range lies from 150 to 400ms where

anything below 150ms is guaranteed high quality [25].

1.5.3 Packet Loss

Loss of packets can potentially make the presentation displeasing to human

eyes, or, in some cases, make the presentation impossible. Thus, multimedia

applications typically impose some packet loss requirements. Specifically,

the packet loss ratio is required to be kept below a threshold to achieve

acceptable visual quality. However, the best-effort Internet does not provide

any loss guarantee. In particular, the packet loss ratio could be very high

during network congestion, when number of packets queued at the router’s

buffer exceed the capacity of the buffer causing the router to drop packets.

This in turn results in severe degradation of video quality. Thus, it is

desirable that a multimedia stream be tolerant to packet loss.

1.6 Problem Statement

An acceptable quality of multimedia content is essential at the receiver’s end

even under high network congestion. This requires the network devices to be

intelligent enough to discard only those packets that contain less important

content. The crux of the underlying problem is to design and implement a

mechanism in MPLS router to distinguish between high priority and low

 15

priority packets containing DWT encoded content. Furthermore the MPLS

device must also encode this priority information in the MPLS header for

QoS routing (QoSR)

1.7 Practicality of Proposed Scheme

Based on the generalized content service model described in Section 1.1, a

crisp practicality of the proposed scheme can be defined here. In case of the

Internet, there are several issues that pose non-trivial problems such as

scalability, compatibility and interoperability. The proposed scheme is well

suited for small and medium sized enterprise networks that comprise of a

single managed domain with end-to-end MPLS backbone. Hence, Enterprise

Data Networks (EDNs) are most suitable candidates for implementing the

content-aware congestion control since the CP and CSP are managed and

administered by same authorities. Data applications can generate DWT

compressed multimedia content and the MPLS backbone can be made

content-aware congestion control enabled to utilize the compression

technique and provide EDN users with optimum quality content even when

the network backbone is congested due to other application data on the

backbone.

 16

1.8 Contributions

This thesis contributes to the state of the art a novel content-aware

congestion control method in MPLS routers that enables the routers to

forward packets based on the content in the packet’s payload. It implements

a client/server architecture that has a server application sending DWT/EZW

encoded images and performs application level prioritization of packets and

a client application receiving DWT/EZW encoded images, decoding the

image and displaying it on the picture viewer at the client’s machine. The

modeling and simulation of the proposed scheme required modifications in

the current MPLS implantation of J-Sim. This work adds extension to the J-

Sim MPLS classes by adding content-aware routing, new packet format, and

delay counters. The proposed content-aware congestion control scheme is

implemented in software based MPLS routers and is experimentally verified

and tested on a Linux based MPLS test-bed.

1.9 Organization of Thesis

The rest of this thesis is organized as follows. Chapter 2 gives an extensive

literature survey of DWT encoded schemes, congestion control in MPLS

networks and QoS in IP networks. Chapter 3 presents the implementation

methodology of the proposed scheme. Chapter 4 presents simulation based

study and provides critical analysis of the results obtained from this study.

 17

Implementation of content-aware congestion control techniques in Linux

based software MPLS router is described in detail in Chapter 5. Chapter 6

describes the experimental test-bed, gives the experimental validation and

results of these experiments. Chapter 7 provides the conclusion and further

work in this direction.

1.10 Summary

This is an introductory chapter outlining fundamental concepts of content

modeling, basic operations of MPLS networks, traffic engineering,

advantages of MPLS networks and the QoS parameters understudy in a

typical QoS related research. The chapter crisply defines the problem

statement and describes the expediency of the proposed scheme as a

performance enhancement scheme for DWT encoded multimedia traffic for

end-to-end MPLS enabled EDNs. At the end the chapter presents the key

contributions made by this thesis work and a brief organization of the thesis.

Chapter 2

Literature Survey

This chapter reviews some of the recent work on improving QoS for

delivering multimedia content over the Internet. Many approaches have been

reported to achieve high quality of streaming video. The chapter is organized

as follows: In Section 2.1 a review of recent video and image compression

efforts using Discrete Wavelet Transform is presented. Different congestion

control mechanisms in MPLS networks are discussed in Section 2.2, Section

2.3 elaborates on QoS issues related to the delivery of rich multimedia on the

Internet and finally Section 2.4 elaborates QoS techniques in IPv4 networks.

2.1 Compression using DWT

Video compression is necessary in terms of achieving better quality video as

it optimizes the video quality over a given bit rate range. As our study

focuses on DWT compression techniques, we will consider a few

contributions made in this area.

Reza Adhami [7] has presented a video compression technique based on the

use of wavelet transform and a differential image compression technique.

The basic idea behind the algorithm is to perform a wavelet transform on the

first frame of the video images; concurrently quantize, encode and store the

18

 19

wavelet transforms coefficients. All subsequent frames are treated similarly.

Experimental results showed the highest compression ratio without visible

degradation in the video quality to be 72:1 (better in some cases than JPEG).

The idea of Embedded Image Coding using Zerotrees of Wavelet

Coefficients was presented by Shapiro [3]. The EZW algorithm generates

bits in the bit stream in order of importance. Thus the resulting code is fully

embedded. Embedded coding allows the encoder to terminate encoding at

any point thereby allowing achieving a target rate exactly. Since embedded

code contains all the lower rate codes embedded at the beginning of the bit

stream, effectively, the bits are “coded in importance”.

The EZW algorithm discussed above has the following main features as

described by the author:

1. The EZW uses a discrete wavelet transform that provides a compact

multiresolution representation of the image.

2. It implements zerotree coding that provides a compact

multiresolution representation of significance maps that are binary

maps indicating the positions of the significant coefficients.

3. It uses Successive Approximation that provides a compact

multiprecision representation of the significant coefficients and helps

in embedded coding.

 20

4. It makes use of a prioritization protocol that determines the order of

importance. That is it decides the importance of wavelet coefficients

by considering parameters such as precision, magnitude, spatial

location and scale.

5. Adaptive multilevel arithmetic coding is also used to provide a fast

and efficient method for entropy coding.

6. The EZW runs in a sequential manner and stops whenever a target bit

rate or a target distortion is met.

Experimental studies of this algorithm showed that the compression

performance was competitive with virtually all known techniques. A distinct

advantage of this algorithm is that it achieves a precise rate control. It allows

the user to choose any bit rate and encode the image to exactly the desired bit

rate. Furthermore, since no training of any kind is required, EZW is fairly

general and runs smoothly with most types of images.

The DWT approach is also useful when integrated with standards such as

MPEG. The authors present a scalable coding scheme based on DWT and

MPEG coding [8]. This technique uses the hierarchal pyramid structure that

provides multiple resolutions. DWT decomposes the image into several

bands. Each band is then subjected to MPEG coding technique. One of the

advantages of this scheme is that it reuses the widely available MPEG

 21

hardware and software. Simulation results also show that this approach

provided significantly improved results than the original MPEG coding.

A very low-bit rate video coding scheme is designed using DWT [9]. The

authors claim that the approach reveals that the coding process works more

efficiently if the quantized wavelet coefficients are preprocessed by a

mechanism exploiting the redundancies in the subband structure of the

wavelet. They introduce a new precoding technique termed as PACC

(partitioning, aggregation and conditional coding). Experimental studies have

been carried out to compare the PACC approach with MPEG4 both for

coding of intraframes and residual frames of typical MPEG4 test sequences.

The algorithm mainly consisted of: motion estimation and compensation,

wavelet representation and quantization, the PACC precoding framework,

and arithmetic coding. By comparing the PACC codec with MPEG4 coding

technique at very low bit rates showed better performance of PACC using

the four MPEG4 test sequences Akiyo, Hallmonitor, News, and Foreman.

There are many other codec standards that are out of the scope of this

research study.

 22

2.2 Congestion Control in MPLS Networks

This section highlights some of the research that has been done in improving

congestion control in MPLS networks. An Active Traffic and Congestion

Control Mechanism in MPLS (MPLS ATCC) was proposed by Zhiqan

Zhand et al [10]. The authors propose an integrated model that combines

both MPLS and active networks. This mechanism moves the endpoint

congestion control algorithm to the core network. ATCC uses Active

Networking technology to enable router participation in both congestion

detection and congestion recovery. The feedback congestion control system

is extended from the ingress routers to the core LSRs. Congestion is detected

at the core router, which immediately begins reacting to congestion by

changing the traffic that has already entered the network. Performance

studies were conducted using simulation techniques to compare the MPLS

ATCC with TCP congestion control. The results showed that the proposed

approach was much better in terms of round trip delay and overall

throughput of the network.

A reactive congestion control scheme is proposed known as the Fast Acting

Traffic Engineering (FATE) to control congestion in MPLS networks [11].

The ingress LER and the LSRs react to information received from the

network regarding flows experiencing significant packet losses, by taking

 23

appropriate remedial action, i.e., by dynamically routing traffic away from a

congested LSR to the downstream or upstream underutilized LSRs.

The above mentioned schemes are focused on controlling congestion in

MPLS networks. There is a general idea among the research groups that if by

appropriately incorporating TE in MPLS networks the congestion point

might not be reached. Proper traffic engineering in a MPLS network is itself

a congestion avoidance scheme. A traffic engineered MPLS network less

likely requires a congestion control mechanism. Or in other words, when

congestion avoidance is done properly, congestion control may be of less

significance. General patterns of response time and throughput of a network

are described in [12] as the network load increases. If the load is small, the

throughput generally keeps up with the load. As the load increases,

throughput increases. After the load reaches the network capacity throughput

stops increasing. This point is called the knee. If the load is increased any

further, the queues start building, potentially resulting in packets being

dropped. Throughput may suddenly drop when the load increases beyond

this point. This point is called the cliff because the throughput falls off

rapidly beyond this point.

A scheme that allows a network to operate at the knee is known as a

congestion avoidance scheme as distinguished by a congestion control

 24

scheme, which tries to keep the network operating in the zone to the left of

the cliff [12].

An application-specific congestion control method is yet to be implemented.

The proposed scheme emphasizes on employing appropriate congestion

control by providing the ingress router application-specific information to

assign priorities.

2.3 Using MPLS-TE to Improve QoS

"Traffic engineering is the process of arranging how traffic flows through the

network so that congestion caused by uneven network utilization can be

avoided" [13]. As mentioned earlier, QoS for multimedia content relates to

terms like bandwidth, end-to-end delay and packet loss. End-to-end delay

and packet loss are mainly caused by congestion in the network. Congestion

is caused when there is more traffic on a link than the link can actually

handle. Generally speaking, for any time interval, the total sum of demands

on a resource is more than the capacity of the resource, the resource is said to

be congested for that interval. Mathematically

∑Demands > Available Resources

Hence in a congested network, traffic gets delayed or is even dropped at the

routers. This sort of congested links are due to one of the major

 25

characteristics of today’s routing protocols. Almost all the routing protocols

use a single objective optimization i.e. shortest path to the destination and

omit all the paths that are not the shortest. Second, today's "best-effort"

routing will shift the traffic from one path to "better" path whenever the

"better" path is found. This happens even if the current used path meets the

service requirements of the traffic. This kind of shift is undesirable because it

will bring routing oscillations when the routing is based on metrics like

available bandwidth, which changes rapidly from time to time. The traffic

will be routed back and forth between alternate paths. Even worse, this kind

of oscillations can increase the variation in the delay and jitter experienced

by the end users.

MPLS offers the capability of efficiently utilizing network resources to

improve the delivery of packets on the network by implementing Traffic

Engineering. Traffic engineering reroutes traffic to paths that are not used by

regular routing protocols. This can be defined as QoS routing (QoSR). This

phenomenon of MPLS can prove to be very handy in terms of improving

QoS of multimedia content. Different LSPs can be set up according to the

traffic requirements of these LSPs. For example, different LSPs can be used

for different classes of traffic with different priorities, resulting in the logical

partitioning of the network. Each logical partition of the network will

transport one class of traffic. The end result being that the premium traffic

 26

(in our case DWT encoded video and images) will use the more resources of

the network as compared to the best effort traffic [14].

Improvement in QoS using MPLS-TE is becoming a very hot area of

research nowadays. Researchers have conducted simulation based

experiments in order to study the impact on QoS using proper traffic

engineering techniques. In [6], the authors report the results they generated

from conducting a simulation based study by comparing the services

received by TCP and UDP traffic flows when they share a link or a MPLS

traffic trunk. Since TCP flow is congestion sensitive, it suffers at the hands

of UDP flow that is congestion insensitive. The authors show that by

properly engineering the different traffic flows using MPLS trunks on LSPs,

the overall throughput of the TCP flow improves significantly. What they

did was that they isolated the TCP traffic flow on a different trunk. This way

even if they increased the UDP flow to quite some extent, it had no effect on

the TCP flow that was using a different path.

Performance of time critical applications over MPLS enabled networks has

been tested [15]. The authors conduct a simulation based study, which

incorporates TE and QoSR of the MPLS to support Internet-Based Distance

Learning (I-DL). This service model is simulated using OPNET and

compared to existing IP routing algorithms. Using MPLS approach,

 27

dedicated LSPs were used for different application types, each serving for an

application of different priority. Optimal results were obtained with I-DL

end-to-end delay of only 3.5ms.

2.4 QoS Approach in Ipv4 Networks

The best effort service cannot provide effective QoS support to real-time

multimedia applications because it treats all packets the same way, without

taking into consideration the constraints these applications have. IETF

introduced “Differentiated Services” [16] as a simple and scalable method

for providing QoS over IP networks.

DiffServ provides scalable and “better than best-effort” QoS. DiffServ

routers are stateless and do not keep track of individual microflows, making

it scalable to be deployed in the Internet. The DiffServ Code Point (DSCP) in

the Differentiated Services (DS) field of the IP header identifies the Per Hop

Behavior (PHB) associated with the packet, which is used to specify

queuing, scheduling, and drop precedence.

The motivations for DiffServ with MPLS [17] include user demands for

consistent QoS guarantees, efficient network resource requirements by

network providers, and reliability and adaptation of node and link failures.

DiffServ provides scalable edge-to-edge QoS, while MPLS performs traffic

 28

engineering to evenly distribute traffic load on available links and fast

rerouting to route around node and link failures.

The proposed scheme adds the “better than best-effort” QoS characteristic of

DiffServ into the MPLS technology. With this scheme, the Class of Service

(CoS) architecture of DiffServ is eliminated and priority information can be

directly mapped to EXP bits. In this way, a QoS aware network may no not

require integrating two different technologies; instead MPLS alone can serve

the purpose.

2.5 Summary

This chapter presents some of the recent work on improving QoS for

delivering multimedia content over the Internet. It highlights key

achievements in the area of DWT compression for multimedia content,

congestion control in MPLS networks, and application of MPLS-TE to

improve QoS. It also describes DiffServ, architecture for QoS support in IP

networks. It emphasizes on the point presented in literature that both MPLS

and DiffServ are being implemented in a hybrid manner to achieve better

QoS and that the proposed scheme will be able to do that with MPLS alone.

Chapter 3

Problem Definition and Solution Methodology

This chapter discusses the problem definition and describes in detail the

solution methodology of the proposed scheme.

3.1 Problem Definition

Transmitting multimedia content like video and images over IP networks

using the Internet Protocol (IPv4), suffers from many drawbacks due to the

best-effort nature of IP. The unreliable performance of IP is the primary

motivation to integrate MPLS traffic engineering functionality in

transmitting multimedia content over the Internet. Different compression

techniques have been proposed and implemented that compress raw content

in efficient ways to conserve network bandwidth. High quality multimedia

content over the Internet requires bounded delay and jitter, minimal packet

loss and economical use of available link bandwidth. Some standard video

compression techniques have been tried over MPLS networks [19] but these

studies do not incorporate content-aware differentiation among various types

of incoming network traffic. Although these approaches show better

performance in terms of path establishment, they provide insignificant

improvement of QoS. Moreover, they are restricted to standard compression

29

 30

techniques. A DWT encoded data transmission framework delivered over

MPLS (QoS aware network) is not implemented so far. The primary goal is

to improve the overall quality of multimedia content and to maintain a

certain level of QoS even when the network is congested. As seen in

literature, MPLS is appropriate for delay sensitive traffic and also provides

TE and QoS capabilities. DWT based compression should achieve graceful

degradation of quality in a congested network.

3.2 Solution Methodology

This section comprehensively describes the details of the various parts of the

solution methodology and their design. It also describes why each part is

used in the proposed solution.

3.2.1 Bit Mapping and Quality of Service Routing

One of the problems related to MPLS, as defined in [20], is how to map

packets onto forwarding equivalence classes. Figure 3.1 shows the MPLS

Shim Header. This header contains the actual label that is inserted between

the layers 2 and 3 headers. The header is 32 bits long. It is worth noting here

the 3 experimental bits, marked as EXP. These bits may be used to map

certain priority information encoded within the video packets onto FECs.

The question here lies in the fact that how to map this information from the

 31

DWT encoded packet to the MPLS header so that the MPLS router has

ample information and can decide on the basis of this information whether to

discard a packet at times of congestion or not.

Figure 3.1: 32-bit MPLS Shim header.

The task was to design a scheme that maps the output bits of the DWT

decoder to these 3 Exp bits in such a way that there could be a clear

distinction between high priority packets and low priority packets. This will

provide a means for routing these frames in a different manner according to

the priority of the data to be routed. There can be 8 (23) different priority

levels of image frames. By having knowledge of the importance level of

different image frames, the ingress router should be capable of determining

which frames can be dropped at time of network congestion without

degrading the overall video quality.

An MPLS router performs three main functions: pushing of a label

(encapsulating a regular IP packet with MPLS header), swapping the label

(changing incoming label to outgoing label according to preconfigured

switching table) and popping label (removing label at the edge of the

network). The proposed algorithm adds diminutive but significant changes to

 32

these three functions of an MPLS router in such a way that it makes the

router intelligent enough in making forwarding decisions under network

congestion. The scheme is implemented to serve a wide range of loss-

tolerant, real-time applications as well as images whose content can be

dropped under congestion (graceful degradation). However, this adds a

constraint to the algorithm’s applicability that it can be used only for DWT

encoded data.

3.2.2 End-to-end Flow

The proposed content-aware congestion control scheme has end-to-end flow.

At the sending end, application generates raw multimedia content that is

encoded using EZW technique. Packetization is performed by encapsulating

the content with appropriate headers and packet priority is assigned at the

application and sent on to the network via the MPLS router. The MPLS

router checks the packet’s priority and encodes priority information in the

MPLS header with the relevant EXP bit value. At the receiving end, again

the MPLS router (egress) removes the MPLS header and sends the packet to

the upper layers for de-encapsulation. Headers are removed and the decoder

decodes the content and finally the application displays the content. Figure

3.2 depicts the end-to-end flow of the scheme. This scheme works well with

a pure end-to-end MPLS network. The same methodology can be applied to

 33

a mix of IP and MPLS network where packet encapsulation/de-encapsulation

will be done at every demarcation point between an MPLS domain and an IP

network.

Application Application

Encoding Decoding

 P

MPLS Domain

Figure 3.2: End-to-end flow of propose

3.2.3 Packet Identification using RTP

Since the main idea is to treat a particular class of

must be some sort of packet identification scheme b

order to classify packet on the basis of type. Given th

is a real-time application and that the compression

ordered in importance, we use the Real Time Prot

transport protocol. Apart from the real-time nature of

RT
RTP
UDP
UDP

IP
d

tr

u

at

 a

o

 m
IP

scheme.

affic differently, there

ilt within the router in

 multimedia streaming

lgorithm encodes bits

col (RTP) [18] as the

ost of the multimedia

 34

content, another motivation is to use UDP as the underlying transport

protocol since UDP has proven to be a better solution in transferring DWT

encoded images [58]. The payload type field in the RTP header is used to

uniquely identify DWT encoded files. The sending application marks high

priority packets with a unique payload type value and the low priority

packets with another.

Timestamp
32 bits

Payload
Type 7 bits

Sequence no.
16 bits

Figure 3.3: Fields inside an RTP header.

The fields in use and the ones that can be used for more complicated real-

time applications are shown in the figure above. The total size of the DWT

encoded packet is 1468 bytes from which 20 bytes consist of IP header, 4

bytes of UDP header and 16 bytes of RTP header. The size of the payload

may vary from 576 bytes to 1468 bytes. The maximum size is kept to follow

the Ethernet standard of a maximum of 1500 bytes for a packet.

RTP
16B

UDP
4B

Payload
576/1428B

IP 20B

Figure 3.4: DWT encoded packet format.

3.2.4 Packet order and Prioritization

Since the DWT compression component decomposes an image into different

frequency bands and generates bits ordered in importance, sequence numbers

 35

assigned to packets will represent this order. A video clip may contain many

frames, and within each frame there could be many frequencies (both

important as well as less significant). So for an average long video clip, if

there are n frames each with f different frequency components, where fh are

the high priority frequency bands and fl are the low priority bands, then n can

be defined as a set of fh and fl and a video clip is a sequence of n fh and fl.

From this it can be stated that sequencing of packets will replicate this order

of importance and after every complete set of fh and fl, the sequencing of

packets will restart for the next n.

From the above description, it is clear that the sending application will

follow the generation of packets as a prioritization scheme. In a total of n

packet generation, first n/2 packets can be considered high priority packets

and the rest low priority.

3.2.5 EXP bits Encoding Scheme

An EXP bit encoding scheme has been designed that will be used for

encoding packet information onto the 3 EXP bits in the MPLS header. If the

first bit is set to 0, then there is no need to check further as the packet is not a

DWT encoded packet. If it is 1, then check for the next bit. If the second bit

is 0, then the packet is of low priority and is suitable to drop under

congestion. If it is 1, then the packet is of high priority and cannot be

 36

dropped even under severe congestion. If the third bit is 0, the packet is

delayed and is of no use any longer. This implies that it can be dropped at

any time. If it is 1, then the packet is in time and has to be forwarded.

Keeping this bit scheme in mind, there are only two values for the EXP field

that will be used for packet prioritization by the router: 7 and 5.

0 – Low priority packet
1 – High priority packet

0 – Delayed packet
1 – In-time packet

0 – Non-DWT encoded Packet
1 – DWT encoded Packet

Figure 3.5: EXP bits encoding scheme.

3.2.6 MPLS Router Operations

The ingress router determines the priority of a particular DWT encoded

packet when it pushes the MPLS header at the edge. Router analyzes the

header and assigns EXP field value 7 to high priority packets and 5 to lower

ones. At the core backbone, the label switch routers need not read the

transport layer header, instead they will just check the EXP field value in the

MPLS header and queue them according to their respective priorities.

Similarly at the receiving edge, the router is intelligent enough to save

 37

bandwidth of the subsequent IP network by discarding all delayed video

packets (assuming there could be still some delay within the MPLS cloud).

DWT Encoding

Ordered Bits

RTP Header

Payload Type

EXP bits

Figure 3.6: Flow of priority information.

3.2.7 Buffer Management at Router

Priority queues are used instead of the regular FIFO queues for buffer

management at the router’s interface. A priority queue is an m-level queue

where m is configurable. Specifically, it consists of m FIFO queues. The

level 0 queue has the highest priority while the level (m-1) queue has the

lowest. When a packet arrives, the packet is classified into one of the m

levels and is put in that FIFO queue.

For this implementation, m = 3, level 0 queue is the highest priority queue

and all DWT encoded packets with EXP bits set to 7 are assigned to this

level. Level 1 is the next higher priority queue to which all DWT encoded

packets with EXP bits set to 5 are assigned. All other packets are assigned to

the level 2 queue that maintains the lowest priority. At times of congestion

packets belonging to queue 0 have the privilege to be forwarded to the

 38

outgoing interface whereas packets belonging to queues 1 and 2 are treated

with lesser importance.

m = 0

Interface m = 1

m = 2

Figure 3.7: Priority queue for router buffer management.

In order to maintain fairness among the three levels of the priority queue,

Stochastic Fairness Queue is also implemented. Traffic is separated into

conversations and packets are dequeued in a round-robin fashion ensuring

that no single conversation completely swamps the queue.

3.3 Summary

This chapter defines the problem under study and presents a comprehensive

and detailed description of the solution methodology that is adopted in order

to solve the problem. The bit mapping scheme at the MPLS router along with

packet identification, ordering and prioritization of packets is discussed in

further detail. The chapter sheds light on the key aspects of operation of the

proposed MPLS router that include bit encoding scheme and packet queuing

and buffer management.

Chapter 4

Simulation and Analysis

Simulation based analysis was conducted to evaluate the performance of the

proposed scheme. This chapter goes in the details of the simulation study and

provides critical analysis on the results obtained from this study.

4.1 J-Sim Network Simulator

J-Sim network simulator [21] was used to study an MPLS network. J-Sim

(formerly known as JavaSim) is a component-based compositional

simulation environment. It has been built upon the notion of the autonomous

component programming model similar to COM/COM+, JavaBeansTM, or

CORBA.

4.1.1 The J-Sim Autonomous Component Architecture

The basic entity in J-Sim is components, but unlike the other component-

based software packages/standards, components in J-Sim are autonomous

and are realization of software ICs [22]. The autonomous component

architecture mimics the IC design architecture in the closest possible way.

The behavior of J-Sim components are defined in terms of contracts and can

be individually designed, implemented, tested and incrementally deployed in

39

 40

a software system. A system can be composed of individual components in

much the same way a hardware module is composed of IC chips. Moreover,

components can be plugged into a software system, even during execution.

4.1.2 J-Sim Network Modeling and Simulation

For the purpose of network modeling and simulation, a generalized packet

switched network model is defined on top of the autonomous component

architecture. The model defines the generic structure of a node (either an end

host or a router) and the generic network components, both of which can

then be used as base classes to implement protocols across various layers.

Although the model is derived by featuring out the common attributes of

network entities in the current best-effort Internet, it is general enough to

accommodate other network architectures, such as the IETF differentiated

services architecture, the mobile wireless network architecture, and the

WDM-based optical network architecture.

J-Sim has been developed entirely in Java. This, coupled with the

autonomous component architecture, makes J-Sim a truly platform-neutral,

extensible, and reusable environment. J-Sim also provides a script interface

to allow integration with different script languages such as Perl, Tcl, or

Python. In the current release, J-Sim is fully integrated with a Java

implementation of the Tcl interpreter (with the Tcl/Java extension), called

 41

Jacl. So, similar to ns-2, J-Sim is a dual-language simulation environment in

which classes are written in Java (for ns-2, in C++) and "glued" together

using Tcl/Java. However, unlike ns-2, classes/methods/fields in Java need

not be explicitly exported in order to be accessed in the Tcl environment.

Instead, all the public classes/methods/fields in Java can be accessed

(naturally) in the Tcl environment.

4.1.3 The J-Sim Core Service Layer (CSL)

In J-Sim, a node is a composite component which consists of applications,

protocol modules, and a core service layer (CSL).

The CSL is an abstract component which encapsulates the functions of the

network layer and the layers beneath the network layer. It provides network

services and events to protocols, in the form of inter-component contracts.

Each service port is in charge of one or more CSL services.

4.2 MPLS Support in J-Sim

To support MPLS inside J-Sim, developers have done some modifications

inside the simulator [24]. Two components have been added: a forwarding

table component and a MPLS component. The forwarding table component

keeps all information about configured labels. It associates an IP prefix or an

incoming label with an outgoing interface and an outgoing label.

 42

4.2.1 MPLS Model within J-SIM

To create an MPLS compliant node, a specific Core Service Layer (CSL)

builder termed MPLSBuilder has also been developed. The forwarding table

keeps information about labels: it links a label or an IP prefix to an outgoing

interface and an operation list. This list contains an operator (SWAP, PUSH

or POP) and a label as argument. These operators are applied on label carried

in the packet.

A new type of packet has also been defined: the Label Switched Path packet

(called LSP in the following). It is used to carry MPLS information like a

stack of labels and another packet (an IP packet for instance). The stack of

labels is used with the operator to store appropriate label inside the packet.

These packets are used by the MPLS component of a node to bypass normal

routing.

The MPLS component is located between the down port of the CSL and the

packet dispatcher. This component receives packets from other nodes.

According to the received packet and the configuration of the forwarding

table, this component decides where the packet is sent. If it is an LSP packet,

the MPLS component looks up inside the forwarding table and forwards the

packet according to the record found. If it receives an IP packet, it also looks

inside the forwarding table to see if it needs to encapsulate this packet inside

 43

a new LSP (that's why the forwarding table can associate a label to an IP

prefix). If no record is found for a given IP prefix, the packet is sent to the

packet dispatcher and routed normally.

4.3 Implementation of Content-Aware MPLS Routing in J-Sim

In order to implement the idea of content-aware MPLS routing, certain

changes are made to the existing implementation of the MPLS Class and

network packet implementation.

Basically, a new packet format is designed as described in Section 3.2.3 and

an enhanced MPLS router that incorporates the content-aware routing

functionalities as described in Sections 3.2.6 and 3.2.7.

This section describes the implementation of the proposed scheme and the

changes that are made to the current MPLS code in J-Sim in order to achieve

the above.

4.3.1 New Packet Header for DWT Encoded Packets

By default, J-Sim only supports one type of standard IP packet encapsulated

in a transport layer header with no unique identification. For the MPLS

router to differentiate among regular packets and packets containing DWT

encoded data, a unique identification is required along with other header

fields that implement the real-time services such as timestamp and sequence

 44

number as needed for RTP implementation. The required packet format is

designed. This is done in the DwtPacket Class. A new feature is added that

allows the user to tell any traffic generator in J-Sim to use which packets at

the time of network modeling. By doing so, generating a mix of traffic that

had both DWT encoded data as well as regular Internet traffic is made

possible for the test runs.

4.3.2 Enhanced MPLS Router with Content-Aware Routing
Functionalities

As described in Section 4.2, the MPLS implementation in J-Sim allows an

MPLS compliant node to perform PUSH, SWAP and POP operations. In

order to make the MPLS router smart enough to distinguish between regular

packets and packets containing DWT encoded data and then assign routing

priorities as described in Section 3.2.6, the proposed algorithm is integrated

with the PUSH, SWAP and POP operations in the MPLS Class. Backward

compatibility is maintained by adding a feature to select MPLS mode

(regular MPLS or MPLS with Content-Aware Routing) for comparison

purpose.

4.3.3 Additional Changes

J-Sim provides with tools for counting packets on interfaces and plotting

results. The experiment runs required a mechanism to calculate average end-

 45

to-end delay of packets traversing the MPLS network. However, the

Simulator lacks in providing a delay counting tool. For this purpose, a delay

counter is developed that counts delay on each packet received on the

interface by subtracting current time from the value obtained in the

timestamp field of the packet header. The counter is also capable of

calculating the average delay of all the packets and displaying the result on

the console. This is implemented in the DelayCounter Class.

4.4 Simulation Experiments

As mentioned in Section 3, the proposed scheme can serve a wide range of

real-time, loss-tolerant applications as well as compressed images; both

video streaming and compressed still image transfer over RTP with and

without proposed and enhanced MPLS routers, is simulated. Delay

characteristics of the DWT encoded traffic carried using proposed

mechanism is observed and are compared with that carried over regular

MPLS network and DiffServ enabled IPv4. Along with this, the proposed

scheme is also tested in a hybrid network backbone consisting of MPLS and

IP clouds.

DWT encoded traffic is simulated along with background IP traffic in order

to analyze the impact on end-to-end delay, jitter and packet loss under

normal circumstances as well as congested conditions. In order to simulate

 46

the proposed algorithm, it is assumed that packets with sequence number 0 to

n are high priority packets carrying essential frequency bands resulting from

a DWT compression.

4.4.1 Experimental Design

The simulation experiments are based on the 2kr Factorial Designs with

Replications approach [67]. Each experiment consists of k factors and r

independent runs for each data point to get it within 90% confidence interval

of the mean. This allows estimation of experimental errors.

4.4.2 Experimental Parameters

As mentioned in Section 3.2.3, the size of a DWT encoded packet varies

from 576 to 1468. For video packets, a packet size of 1468 bytes is chosen.

This size is chosen to keep jitter values is low as possible. In general, local

jitter increases as the maximum packet size decreases. This phenomenon is

explained by the fact that more packets are generated for the smaller

maximum packet size during the same time interval. More packets with a

variety of inter-arrival times result in a greater likelihood of inter-arrival time

variation and hence, jitter.

For still images, the average packet size is kept 576 bytes. An average packet

size of background IP traffic is arbitrarily picked as 1000 bytes, which is sent

at different bit rates in order to gradually congest the network and then

 47

analyze average end-to-end delay, jitter and packet loss for DWT encoded

packets. Another main reason for selecting these packet sizes is to avoid

fragmentation.

4.4.3 Metrics

Following are the response variables (metrics)

• Average End-to-end delay

• Average Jitter (inter-arrival time variation of two consecutive packets

[74])

• Packet loss

4.4.4 Factors

The factors affecting the response variables are:

• The congestion level quantity is defined as

ρ = λ/µ

Where λ = rate of incoming background traffic

µ = the capacity of the network

• Type of network backbone : MPLS or IP or MPLS with IP

• Type of QoS technique: MPLS, MPLS with proposed scheme or IP

with DiffServ

 48

4.4.5 Network Model

Figure 4.1 illustrates the network topology used for simulation. Nodes h0

and h1 are traffic sources generating different types of traffic destined to

nodes h2 and h3. Node n4 is the ingress edge router of the MPLS cloud

whereas node n9 is egress edge router. The core cloud consists of four switch

routers; nodes n5, n6, n7 and n8.

n5 (LSR) n6 (LSR)

h3 (Sink) h0 (Source)

n4 (LER) n9 (LER)

h1 (Source) h4 (Sink)

n7 (LSR) n8 (LSR) Label Edge Router
Label Switch Router
Label Switch Path 1
Label Switch Path 2

Figure 4.1: Network Topology for Simulation.

Two LSPs in the MPLS cloud are configured. Path 1 (n4 n5 n6 n9)

is the LSP from source to sink whereas LSP 2 (n4 n7 n8 n9) is the

path carrying traffic back to the source. Both LSPs support 100Mbps.

In order to compare the proposed scheme with regular MPLS and also with

DiffServ, several experiments were conducted with the same simulation

parameters and compared the average end-to-end delay, jitter and packet loss

 49

of multimedia traffic on each of the three networks. Similar model is used for

the DiffServ enabled IP backbone with all routers operating as DiffServ

enabled devices.

4.4.6 Simulation-Based Evaluation

Transferring DWT encoded content over regular MPLS, MPLS with

proposed scheme and DiffServ enabled IP network results in interesting and

varying results. Under high network congestion, i.e. high values of ρ, both

MPLS and MPLS with proposed scheme perform better in terms of delay

and jitter. On the other hand, MPLS lags behind both MPLS with proposed

scheme and DiffServ in terms of packet loss due to absence of any packet

classification and marking scheme. The reason being that the routers cannot

distinguish between packets of different applications and start dropping them

randomly when the buffers reach a maximum.

4.4.6.1 Comparison of Average end-to-end Delay and Jitter

It is obvious from the results in Figure 4.2 that under higher values of ρ, the

average end-to-end delay of video traffic is much high compared to that

when transmitted using proposed scheme on the same link under same

congestion level. Results also show that although DiffServ supports QoS, the

delay of traffic is high. This is because DiffServ relies on IP routing

algorithms that are slower compared to fast MPLS switching.

 50

0

500

1000

1500

2000

2500

3000

0 0.01 0.03 0.05 0.07 0.1 0.3 0.5 0.7 1

p

A
ve

ra
ge

 e
nd

-to
-e

nd
 d

el
ay

 (m
s)

proposed scheme
regular MPLS
DiffServ

Figure 4.2: Comparison of average end-to-end delay of compressed video

traffic over DiffServ, MPLS and MPLS using proposed scheme.

Similar trend is seen when simulating compressed image transfer over RTP.

Here again, MPLS routers using proposed scheme excel regular MPLS

devices and DiffServ enabled IP routers and maintain low end-to-end delay

of RTP traffic. Results of these experiments are illustrated in Figure 4.3.

Even at lower levels of congestion, content-aware congestion control enabled

MPLS shows improvement in delay and jitter over DiffServ and regular

MPLS, although all the three network backbones lie within the acceptable

range [66]. At higher levels, only content-aware congestion control enabled

MPLS maintains the toll quality whereas both DiffServ and regular MPLS

approach the unacceptable region [66].

 51

0

200

400

600

800

1000

1200

0 0.01 0.03 0.05 0.07 0.1 0.3 0.5 0.7 1

p

A
ve

ra
ge

 e
nd

-to
-e

nd
 d

el
ay

 (m
s)

proposed scheme
regular MPLS
DiffServ

Figure 4.3: Comparison of average end-to-end delay of compressed images

over DiffServ, MPLS and MPLS using proposed scheme.

Simulation results show that the proposed scheme maintains comparatively

low jitter values. Figure 4.4 illustrates the difference in jitter values among

DiffServ, MPLS and MPLS with content-aware congestion control when

simulating DWT compressed video traffic.

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

p

Av
er

ag
e

jit
te

r (
m

s)

proposed scheme
regular MPLS
DiffServ

Figure 4.4: Comparison of average jitter of compressed video traffic over

DiffServ, MPLS and MPLS using proposed scheme.

 52

0

10

20

30

40

50

60

70

80

90

0 0.01 0.03 0.05 0.07 0.1 0.3 0.5 0.7 1

p

Av
er

ag
e

jit
te

r (
m

s)

proposed scheme
regular MPLS
DiffServ

Figure 4.5: Comparison of average jitter of compressed image traffic over

DiffServ, MPLS and MPLS using proposed scheme.

A similar trend is seen for DWT compressed images, where MPLS and IP

routers fail to provide lower jitter values compared to the proposed scheme.

4.4.6.2 Comparison of Packet Loss

Packet loss in all the three cases is compared. Table 4.1 summarizes the

results obtained when transmitting DWT encoded images at ρ = 1, i.e., at

100Mbps. It is clear from the results shown that DiffServ drops least number

of DWT encoded data packets due to the fact that it is marking them as

premium traffic and is not allowing background traffic to be injected into the

network at times of congestion. On the other hand, in regular MPLS, since

there is no traffic prioritization and all traffic (DWT encoded as well as

background traffic), is treated similar, DWT encoded data packets are

dropped along with background traffic.

 53

Table 4.1. Comparison of image packet loss between DiffServ, MPLS and

content-aware MPLS at ρ = 1.

Network Type Packet
Size (B)

Packets
Sent

Packets
Received

% Packets
Received

DiffServ 576 116 75 64 %
MPLS 576 116 15 13 %
MPLS with proposed
scheme

576 116 59 50.8 %

The packet loss of multimedia traffic on the congested LSP decreases using

content-aware MPLS compared to regular MPLS. The reason being that the

content-aware MPLS router identifies and prioritizes packets containing

DWT encoded data. Also it divides and prioritizes DWT encoded data into

two classes; hence the DWT encoded data packets that are dropped by

content-aware MPLS are those of lower priority.

It can be seen from Table 4.1 that less packets are dropped in case if

DiffServ compared to the proposed scheme. This phenomenon can be

explained by the fact that DiffServ is not able to distinguish one single

stream of DWT encoded data into two: high priority and low priority. Hence

under high network congestion DiffServ can not drop low priority packets

containing less important DWT content. This results in poor utilization of

available network resources and also causes background traffic to starve.

Table 4.2 summarizes the results obtained from simulating video traffic.

 54

Table 4.2. Comparison of video packet loss between DiffServ, MPLS and

content-aware MPLS at ρ = 1.

Network Type Packet
Size (B)

Packets
Sent

Packets
Received

% Packets
Received

DiffServ 1468 2500 2355 94.2 %
MPLS 1468 2500 1945 77.8 %
MPLS with proposed
scheme

1468 2500 2125 85 %

4.4.7 Heterogeneous Network Model

A real world scenario of a heterogeneous network backbone consisting of

ingress and egress MPLS clouds along with an intermediate IP cloud is

modeled and simulated to verify the performance of the proposed scheme.

The logical view of the backbone is depicted in Figure 4.6.

MPLS Cloud IP Cloud MPLS Cloud

Server Client

Figure 4.6: A heterogeneous network backbone.

In the scenario above, DWT encoded content reaches the client after passing

through an intermediate IP cloud that does not support content-aware

congestion control. Thus when the packets leave the first MPLS cloud and

enter the subsequent IP cloud, they loose their respective priorities and are

treated like any other data packet while traversing the IP cloud. When they

reach the next MPLS cloud, only then the content-aware congestion control

enabled MPLS routers re-prioritize and mark packets for QoS.

 55

4.4.7.1 Comparison of Average end-to-end Delay and Jitter

Average end-to-end delay and jitter values were carefully examined at

different values of ρ. It can be seen from the figures that an end-to-end

content-aware MPLS backbone performs much better in terms of delay and

jitter than a backbone with intermediate IP hops that do not support content-

awareness and QoS.

Results show that the proposed scheme does not work well in such a case

since the packets loose there respective priorities once out of the MPLS

domain. The IP network may randomly drop packets due to congestion

which may very well include high priority DWT data. This in turn increases

delay as well as number of packets lost.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 0.01 0.03 0.05 0.07 0.1 0.3 0.5 0.7 1

p

Av
er

ag
e

en
d-

to
-e

nd
 d

el
ay

 (m
s)

end-to-end MPLS with
proposed scheme
heterogeneous network

Figure 4.7: Comparison of average end-to-end delay of video traffic.

 56

0

200

400

600

800

1000

1200

1400

1600

0 0.01 0.03 0.05 0.07 0.1 0.3 0.5 0.7 1

p

A
ve

ra
ge

 e
nd

-to
-e

nd
 d

el
ay

 (m
s)

end-to-end MPLS with
proposed scheme
heterogeneous network

Figure 4.8: Comparison of average end-to-end delay of DWT encoded images.

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10

p

Av
er

ag
e

jit
te

r (
m

s)

end-to-end MPLS with
proposed scheme
heterogeneous network

Figure 4.9: Comparison of average jitter of video traffic.

The delay and jitter graphs in Figures 4.7 - 4.10 show that the delay and jitter

values are higher in case of heterogeneous network backbone when

compared with an end-to-end MPLS backbone with content-aware support.

This test supports the proposed applicability of the scheme as a viable QoS

solution for end-to-end MPLS based EDNs managed by a single domain.

 57

0

20

40

60

80

100

120

140

0 0.01 0.03 0.05 0.07 0.1 0.3 0.5 0.7 1

p

Av
er

ag
e

jit
te

r
(m

s)

end-to-end MPLS with
proposed scheme
heterogeneous network

Figure 4.10: Comparison of average jitter of DWT encoded images.

4.4.7.2 Comparison of Packet Loss

It can be seen from Tables 4.3 and 4.4 that a large number of multimedia

packets are being dropped by the heterogeneous network although these

packets are being marked at the first MPLS cloud.

Table 4.3. Comparison of video packet loss at ρ = 1.

Backbone Type Packet
Size (B)

Packets
Sent

Packets
Received

% Packets
Received

End-to-end MPLS 1468 2500 2125 85 %
Heterogeneous 1468 2500 960 38.4 %

Table 4.3 shows poor results in case of heterogeneous network. Only 38.4 %

of the total traffic transmitted is received at the receiver’s end. Whereas,

under the same congestion level, 85 % of traffic is received when transmitted

using an end-to-end content-aware MPLS backbone. Similar results are

shown for DWT encoded images in Table 4.4

 58

Table 4.4. Comparison of image packet loss at ρ = 1.

Backbone Type Packet
Size (B)

Packets
Sent

Packets
Received

% Packets
Received

End-to-end MPLS 576 116 59 50.8 %
Heterogeneous 576 116 35 30 %

4.4.8 Service Ratings

Simulation results show that by employing the content-aware congestion

control scheme into the MPLS router, the average end-to-end delay and jitter

of DWT encoded traffic is maintained quite low even under high network

congestion. From these results, the three services (DiffServ, MPLS, and

MPLS using proposed scheme) can be rated in terms of viable solutions for

transporting DWT encoded multimedia content. DiffServ is not suitable in

terms of delay and jitter when compared to the fast switching capability of

MPLS. MPLS further enhances the performance and maintains QoS when

integrated with the proposed content-aware technique. The proposed scheme

not only guarantees QoS but also manages and utilizes available resources in

a more efficient manner allowing non-DWT traffic a fair chance at the

network bandwidth. Table 4.5 summarizes the analysis. Despite of

reasonable and acceptable results obtained by employing content-aware

congestion control to MPLS networks, the proposed scheme only works well

in an end-to-end pure MPLS backbone as reported from the results obtained

in Section 4.4.7.

 59

Table 4.5. Comparison of DiffServ, MPLS and MPLS using proposed scheme

as a viable candidate for Multimedia Transportation.

Service Content-
Awareness

Traffic
Engineering

Delay Jitter Packet
Loss

DiffServ No No Highest Highest Lowest

MPLS No Yes High High Highest

Proposed
MPLS

Yes Yes Lowest Lowest Low

4.5 Summary

This chapter presents modeling and simulation of the proposed scheme using

J-Sim network simulator. It outlines structural details of the simulator and

highlights the contribution made to the existing implementation in order to

incorporate content-aware congestion control in MPLS networks. The

chapter elaborates the experimental designs of the simulation and analysis of

the model. It points out the metrics under study such as delay, jitter, packet

loss and the factors that affect these metrics like type of network backbone

and the type of QoS support. A detailed presentation and subsequent analysis

of results obtained from the simulation experiments are presented followed

by concluding remarks and observation. Results show that proposed scheme

works better than regular MPLS and DiffServ in terms of delay and jitter

although DiffServ shows better packet loss ratio. This in turn proves that

proposed scheme utilizes available network bandwidth and also maintains

 60

fairness among different flows of traffic. Another experiment proves that the

proposed scheme works well with an end-to-end MPLS backbone with no

intermediate IP cloud.

Chapter 5

Implementation of Content-Aware MPLS Router

This chapter discusses the prototype router developed for content-aware

routing in MPLS networks. It also describes the Linux based MPLS

implementation that is used to build the testbed and validate the router. The

chapter also describes some of the key features of the Linux operating

system that aided in the design and development of the content-aware router.

The key features of the router are as explained in Chapter 3. This chapter

details how these features have been implemented on a Linux based public

domain router.

5.1 The Linux iptables and netfilter

“netfilter” and “iptables” are building blocks of a framework inside the

Linux 2.4.x and 2.6.x kernel [26]. This framework enables packet filtering,

network address [and port] translation (NA[P]T) and other packet mangling.

It is the re-designed and heavily improved successor of the previous Linux

2.2.x ipchains and Linux 2.0.x ipfwadm systems [27].

“netfilter” is a set of hooks inside the Linux kernel that allows kernel

modules to register callback functions with the network stack. A registered

61

 62

callback function is then called back for every packet that traverses the

respective hook within the network stack.

iptables is a generic table structure for the definition of rule sets. Each rule

within an IP table consists out of a number of classifiers (iptables matches)

and one connected action (iptables target).

netfilter, iptables and the connection tracking as well as the NAT subsystem

together build the whole framework.

Following are the main features of the framework.

1. Stateless packet filtering (IPv4 and IPv6)

2. Stateful packet filtering (IPv4)

3. All kinds of network address and port translation (NAT/NAPT)

4. Flexible and extensible infrastructure

5. Multiple layers of API's for 3rd party extensions

6. Large number of plug-in/modules kept in “patch-o-matic” repository

[28]

5.1.1 Life of a packet within the Linux Box

Basically there is a chain for packets leaving, entering, or passing through

the computer. Any packet entering the computer goes through the INPUT

 63

chain. Any packet that the computer sends out to the network goes through

the OUTPUT chain. Any packet that the computer picks up on one network

and sends to another goes through the FORWARD chain. The chains are half

of the logic behind iptables themselves.

Figure 5.1: Traversal of packet within Linux router.

Now the way that iptables works is that certain rules are set in each of these

chains that decide what happens to packets of data that pass through them.

For instance, if the computer was to send out a packet to www.yahoo.com

requesting an HTML page, it would first pass through the OUTPUT chain.

The kernel would look through the rules in the chain and see if any of them

match. The first one that matches will decide the outcome of that packet. If

none of the rules match, then the policy of the whole chain will be the final

decision maker. Then whatever reply Yahoo sent back would pass through

the INPUT chain.

 64

5.1.2 Matching Packets

Matching packets is, of course, the most important aspect of packet filtering

setup. The two most basic match conditions are source and destination

address of the packet, the first of which is discussed above. These can either

be individual IP addresses or a whole subnet, depending upon what is to be

achieved. If all packets heading to 192.168.1.2 from anything on the

10.0.0.0/8 network are to be blocked, the following command will perform

this action.

iptables -A INPUT -s 10.0.0.0/8 -d 192.168.1.2 -j DROP

Match can also be based on protocol used, such as TCP, UDP, ICMP and so

forth, as well as the specific port or service type used by that protocol. As an

example, a common usage is to block connections to port 113 via TCP.

iptables -A INPUT -p tcp --dport 113 -j REJECT –rejectwith tcp-reset

Of course, protocol and source or destination address can be mixed into one

whole rule, as appropriate.

iptables -I INPUT -p tcp --dport 113 -s 10.0.0.0/8 -j ACCEPT

When a protocol is specified, either the abbreviated name can be used, such

as tcp, udp or icmp, or its numeric reference, 6, 17 and 1 respectively. If for

some reason iptables complains about a protocol name, ensure that it is

 65

defined in /etc/protocols, as the system uses that file to associate protocol

names with the numeric assignments.

5.1.3 Targets/Jumps

The target/jumps tell the rule what to do with a packet that is a perfect match

with the match section of the rule. There are a couple of basic targets, the

ACCEPT and DROP targets. The jump specification is done in exactly the

same way as in the target definition, except that it requires a chain within the

same table to jump to. To jump to a specific chain, it is of course a

prerequisite that that chain exists.

Targets on the other hand specify an action to take on the packet in question.

Jumping to targets may incur different results, as it were. Good examples of

such rules are DROP and ACCEPT. Rules that are stopped will not pass

through any of the rules further on in the chain or in superior chains. Other

targets, may take an action on the packet, after which the packet will

continue passing through the rest of the rules. A good example of this would

be the LOG, ULOG and TOS targets. These targets can log the packets,

mangle them and then pass them on to the other rules in the same set of

chains. Some targets will accept extra options (what TOS value to use etc),

while others don't necessarily need any options. Table 5.1 summarizes

different types of targets in iptables/netfilter.

 66

Table 5.1. Targets in iptables and their functions.

Targets Operation
ACCEPT This target needs no further options. As soon as the match

specification for a packet has been fully satisfied, and we specify
ACCEPT as the target, the rule is accepted.

DROP The DROP target does just what it says, it drops packets dead and
will not carry out any further processing.

DNAT The DNAT target is used to do Destination Network Address
Translation.

SNAT The SNAT target is used to do Source Network Address Translation.

LOG The LOG target is specially designed for logging detailed
information about packets.

MARK The MARK target is used to set Netfilter mark values that are
associated with specific packets.

MASQUERADE The MASQUERADE target is used basically the same as the SNAT
target, but it does not require any --to-source option.

QUEUE The QUEUE target is used to queue packets to User-land programs
and applications

REDIRECT The REDIRECT target is used to redirect packets and streams to the
machine itself

REJECT The REJECT target works basically the same as the DROP target,
but it also sends back an error message to the host sending the packet
that was blocked.

RETURN The RETURN target will cause the current packet to stop traveling
through the chain where it hit the rule.

TOS The TOS target is used to set the Type of Service field within the IP
header

TTL The TTL target is used to modify the Time To Live field in the IP
header

ULOG The ULOG target is used to provide user-space logging of matching
packets

From all of the targets mentioned in Table 5.1, QUEUE is most important in

terms of this research. The QUEUE target is used to queue packets to User-

land programs and applications. It is used in conjunction with programs or

 67

utilities that are extraneous to iptables and may be used, for example, with

network accounting, or for specific and advanced applications which proxy

or filter packets. In this case, it is the QUEUE target that will basically

contribute the most in adding content-awareness to the router. This is

explained in more detail in the latter sections.

5.2 QoS and Traffic Shaping

Simply put, traffic shaping is an attempt to control network traffic in order to

optimize or guarantee performance, low-latency, and/or bandwidth [30].

Traffic shaping deals with concepts of classification, queue disciplines,

enforcing policies, congestion management, quality of service (QoS), and

fairness.

Despite (or maybe because of) the open and cooperative nature of the

Internet, competition for available network resources tend to be unfair or

selfish. Given that network bandwidth is a limited resource, traffic shaping

allows prioritizing and managing network services.

Intelligently managed, traffic shaping improves latency, service availability

and bandwidth utilization without any drawback (theoretically). Imagine a

typical business that needs to connect to their headquarters for a mission

critical financial application, but application performance is too slow because

 68

of local users browsing the web or downloading multimedia content. Imagine

the other scenario where a typical home user is running a P2P application

and his roommates complain because web browsing is now unacceptably

slow due to the saturated uplink.

Traffic shaping can provide:

1. Granular control of network services

2. More efficient use of limited/shared resources

3. Guaranteed QoS

5.2.1 Traffic Shaping Strategies

Generally speaking, egress (outgoing) traffic is more important than ingress

(incoming) traffic. This is true for a couple of reasons. First, the network

bottleneck on ingress traffic typically sits at the ISP (capped bandwidth).

Second, while it's possible to have more or less completely control of the

traffic sent out, the reverse is not true. While protocols like TCP may have

flow control features, it's not always possible to utilize that to a full

advantage.

A typical network today is running at least around 100mbits/s (bits) while a

T1 connection is 1.5mbits/s. This means that when traffic leaves the network,

it's going from a lot to a little - putting the bottleneck at the egress packet

 69

queue. Whereas the reverse, the ingress queue, is likely never used because

of the bandwidth disparity. Besides, when policing ingress policies, perfectly

good packets (already received) gets dropped and have to be retransmitted.

Because of this, ingress queues are still rather controversial.

5.2.1.1 Packet Queues

A packet queue is basically a buffer. When the amount of packets leaving

exceeds the gateway router's ability to send them, it typically queues up

packets until it's possible. If the packet queue overflows, then the packets are

silently dropped. If a timeout occurs because a packet sits in the queue for

too long, the packet gets resent making the queue even more likely to

overflow (necessitating even more resends and their associated timeouts).

All network devices utilize a packet queue. Linux by default has a packet

queue length of 100, meaning that it can buffer up to 100 packets before it

starts to silently drop packets. Most ISPs also configure packet queues to be

significantly larger, in order to avoid resends. DSL and cable modems have

their own packet queues as well.

What this means that a packet might take several seconds to make it through

all of the egress queues before it actually reaches the first hop of Internet.

The sum result of this is very high latency when the network link becomes

congested. If the latency becomes sufficiently high, timeouts may occur and

 70

necessitate packet resends making a bad situation worse. Packets already sent

and received could appear to have timed-out (not acknowledged in time due

to the latency). Resends further deepens the packet queues.

5.2.1.2 QoS Guarantees

Other considerations such as minimum guaranteed bandwidth for specific

network services, or a maximum bandwidth cap for certain departments or

clients might also be important when it comes to traffic shaping policies.

Suppose the accounting department runs Citrix clients in order to update

financial records at the headquarters, but the network is completely swamped

by the sales people downloading the latest Apple iPod commercials on

Kazaa. Traffic shaping can set aside a minimum guaranteed bandwidth and

latency for the accounting department, but allow sales to utilize the rest of

the bandwidth when the pipe lays idle.

5.2.2 Queue Disciplines

A queue discipline is a strategy for managing a "queue." Imagine standing in

line in the post office vs. waiting in the emergency room. Both have "items"

in the queue that needs to be cleared in some manner, but have very different

strategies. Post offices typically use a first in first out strategy (classless

FIFO). Customers are served in the order that they've arrived in the queue.

Other the other hand, this is an unacceptable strategy for managing an

 71

emergency room (prioritized classful). Someone in a critical condition

requires urgent attention regardless of their order of arrival. Suppose 10

people all show up at the same time, and there are only enough resources to

deal with two people, what needs to happen? First the queue (or line) needs

to be sorted into classes (maybe critical, urgent, non-urgent, can-wait-

indefinitely). Then the queue is emptied based on priority of the different

classes.

In Linux, queuing disciplines can be divided into two main groups: Classless

Queuing and Classful Queuing.

5.2.2.1 Classless Queuing Disciplines

Classless queuing disciplines are those that, by and large accept data and

only reschedule, delay or drop it. These can be used to shape traffic for an

entire interface, without any subdivisions. By far the most widely used

discipline is the pfifo_fast qdisc - this is the default.

5.2.2.2 Classful Queuing Disciplines

Classful queues have the ability to classify and prioritize traffic. Since this

study mainly focuses on QoS, classful queues are explained more in detail.

When traffic enters a classful qdisc, it needs to be sent to any of the classes

within - it needs to be 'classified'. To determine what to do with a packet, the

 72

so called 'filters' are consulted. It is important to know that the filters are

called from within a qdisc, and not the other way around.

The filters attached to that qdisc then return with a decision, and the qdisc

uses this to enqueue the packet into one of the classes. Each subclass may try

other filters to see if further instructions apply. If not, the class enqueues the

packet to the qdisc it contains.

Besides containing other qdiscs, most classful qdiscs also perform shaping.

This is useful to perform both packet scheduling and rate control. There are 4

main classful qdiscs in Linux. For this implementation, the PRIO qdisc is

used along with the SFQ discipline to prioritize and classify traffic flows and

to keep fairness among different priority levels.

Table 5.2. Queuing Disciplines in Linux.

Qdisc Type Description
pfifo_fast Classless First-in, First-out. No classification of traffic

Token Bucket
Filter (TBF)

Classless passes packets arriving at a rate which is not exceeding
some Administratively set rate

Stochastic
Fairness Queue
(SFQ)

Classless implementation of the fair queuing algorithms family

PRIO Classful Classful queuing discipline that contains an arbitrary
number of classes of differing priority

Class Based
Queuing (CBQ)

Classful CBQ is a classful qdisc that implements a rich link
sharing hierarchy of classes

Hierarchical
Token Bucket
(HTB)

Classful Multiplexes a fixed amount of bandwidth into different
classes, guaranteeing each class a specified amount of
bandwidth

 73

5.2.2.3 The PRIO qdisc

The PRIO qdisc doesn't actually shape, it only subdivides traffic based on the

configuration of filters. When a packet is enqueued to the PRIO qdisc, a class

is chosen based on the filter commands. By default, three classes are created.

These classes by default contain pure FIFO qdiscs with no internal structure,

but can be replaced by any qdisc available.

Whenever a packet needs to be dequeued, class 1 is tried first. Higher classes

are only used if lower bands all did not give up a packet.

This qdisc is very useful in case certain kind of traffic is to be prioritized

without using only TOS-flags but using all the power of the tc filters. It can

also contain more or all qdiscs.

5.2.2.4 Stochastic Fairness Queuing (SFQ)

This is a useful queue discipline when dealing with very full queues, and

especially combined with a classful queue discipline. Traffic is separated into

conversations and packets are dequeued in a round-robin fashion ensuring

that no single conversation completely swamps the queue. It is a classless

queuing discipline.

SFQ is a simple implementation of the fair queuing algorithms family. It's

less accurate than others, but it also requires fewer calculations while being

almost perfectly fair.

 74

The key word in SFQ is conversation (or flow), which mostly corresponds to

a TCP session or a UDP stream. Traffic is divided into a pretty large number

of FIFO queues, one for each conversation. Traffic is then sent in a round

robin fashion, giving each session the chance to send data in turn. This leads

to very fair behavior and disallows any single conversation from drowning

out the rest. SFQ is called 'Stochastic' because it doesn't really allocate a

queue for each session; it has an algorithm which divides traffic over a

limited number of queues using a hashing algorithm.

5.3 The MPLS-Linux Project

The Linux based MPLS implementation is used for the proposed prototype

and its measurement based evaluation [31]. MPLS for Linux is a project to

implement a MPLS stack for the Linux kernel, and portable versions of the

signaling protocols associated with MPLS.

There are several reasons to choose the Linux based version, one of the more

important reasons is that Linux provides an extensive set of traffic control

functions and mechanisms [32]. Since the experiments are closely coupled to

QoS, flexibility was a major concern.

MPLS-Linux is a recent implementation of MPLS for PCs running the Linux

operating system. MPLS-Linux is freely modifiable under the GNU license

 75

and conforms to the MPLS specifications. Other MPLS implementations for

PCs have been proposed in the past [33][34], but are not maintained by their

authors. Thus, MPLS-Linux is chosen to implement the content-aware

routing mechanism on PCs. Before explaining how MPLS-Linux is

extended, some background information is provided on the existing MPLS-

Linux implementation. MPLS-Linux is implemented as a layer between

Ethernet and IP. Ethernet is a MAC layer protocol which encapsulates IP

packets in frames. In Sections 1.3.1 and 3.2, an overview of the three

operations that MPLS routers can perform on packets (push, swap and pop)

are described and in Section 1.3.2 description of the Forwarding Information

Base (FIB) is provided which contains the rules according to which MPLS

routers forward packets. This section describes how the MPLS operations

and the FIB are implemented in MPLS-Linux.

Table 5.3. MPLS-Linux unicast instructions overview.

Instruction Input Layer Output Layer Description
PUSH IP MPLS Adds a shim header to an IP

packet

SET MPLS Ethernet Passes an MPLS unicast packet
to an Ethernet interface.

POP Ethernet MPLS Removes a shim header from an
Ethernet frame.

FWD MPLS MPLS Calls PUSH for a packet coming
from POP.

DLV MPLS IP Passes an MPLS packet to the IP
layer.

 76

MPLS-Linux defines five instructions to implement shim header pushing,

swapping and popping. Each of these instructions can be applied to IP

packets or Ethernet frames in the MPLS layer as they are being processed by

the Linux kernel. Overview of these five instructions is provided in Table 5.3

and description on how they implement the three MPLS operations in Table

5.4. The PUSH instruction adds an MPLS shim header to a packet which

comes from the IP layer. The SET instruction passes an IP packet with a

shim header from the MPLS layer to the Ethernet layer and tells the Ethernet

layer on which Ethernet interface the MPLS packet should be forwarded.

Together, the PUSH and SET instructions implement the MPLS ``push''

operation. The POP instruction removes the shim header of a packet that

comes from the Ethernet layer. Packets processed by POP must be

subsequently processed by either FWD or SET. The FWD instruction takes

as an input a packet processed by POP and calls the PUSH instruction.

Together, the POP, FWD, PUSH and SET instructions implement the MPLS

``swap'' operation. Last, the DLV instruction takes as an input a packet

processed by POP and passes it to the IP layer. The POP and DLV

instructions implement the MPLS ``pop'' operation.

 77

Table 5.4. Implementation of the three MPLS operations with the five MPLS-

Linux instructions.

MPLS
Operation

Corresponding sequence of instructions in MPLS-
Linux

Push PUSH, SET

Swap POP, FWD, PUSH, SET

Pop POP, DLV

5.3.1 Implementation of FIB in MPLS-Linux

In MPLS-Linux, the FIB is split into three tables: the MPLS input and output

tables, and the IP routing table. MPLS-Linux defines a Forwarding

Equivalence Class (FEC) with a prefix and a prefix length. A prefix is a 32-

bit IP address and a prefix length is a number comprised between 1 and 32.

A packet with destination IP IPd matches the FEC P/Plen constituted by the

prefix P and the prefix length Plen if and only if the first Plen bits of IPd and P

are the same. A requirement of MPLS-Linux is the presence in the IP routing

table of a specific entry for each FEC that is defined at MPLS ingress LER.

It is not possible to define a FEC if no matching entry exists in the routing

table. Indeed, MPLS-Linux relies on the IP routing table to determine the

FEC of an IP packet. In MPLS-Linux, IP routing table entries are extended

and contain FEC to Next Hop Label Forwarding Entry (FTN) mappings in

addition to the IP routing information. Both the MPLS input and output table

contain Next Hop Label Forwarding Entries (NHLFEs), while the MPLS

input table implements the Incoming Label Map (ILM).

 78

Figure 5.2(a) shows how a shim header is pushed on an incoming Ethernet

frame by ingress LER. The Ethernet layer of the LER receives a frame with a

protocol field in the Ethernet header set to 0x0800, which is the protocol

code for IPv4. The Ethernet layer passes the incoming frame to the IP layer.

The MPLS router searches for an entry in the IP routing table to make the

routing decision, but since this entry matches a FEC it has been modified so

that the packet is passed to the MPLS layer instead of being routed by the IP

layer. The additional information contained in the IP routing table is a FTN,

that is, a pointer to an MPLS output table entry. This output table entry is a

NHLFE that contains two instructions. A PUSH instruction defines the label

number of the packet, and a SET instruction defines on which interface the

packet should be sent on.

The MPLS layer adds at the beginning of the packet an MPLS header which

contains the label found in the NHLFE, and passes the packet to the Ethernet

layer. The Ethernet layer generates a frame with the protocol field set to the

code assigned to MPLS unicast packets (0x8847) and sends the frame over

the wire. Consider now Figure 5.2(b) which shows how a label is swapped

by a LSR.

 79

Figure 5.2: Processing of a packet in the MPLS layer with MPLS-Linux

unicast.

The Ethernet layer of the LSR receives a frame with a protocol field in the

Ethernet header set to 0x8847. Since 0x8847 is the code assigned to MPLS

unicast packets encapsulated in Ethernet frames, the Ethernet layer passes the

frame to the MPLS layer of the LSR. The MPLS layer searches in the MPLS

 80

input table for the entry that matches the label embedded in the shim header

of the packet. The input table implements the ILM and tells the MPLS layer

what to do with the packet. The input table entry contains two instructions.

The POP instruction tells the LSR to remove the MPLS header, and the

FWD instruction points to an entry of the MPLS output table. This entry in

turn contains two instructions: the PUSH instruction contains the new label

for the packet and tells the LSR to add a shim header on the packet with this

new label, while the SET instruction tells the LSR on which Ethernet

interface the packet should be sent. The Ethernet layer then builds a frame

with a protocol field of 0x8847 and sends it over the wire. By definition, the

NHLFE tells an MPLS router whether a header must be popped or swapped.

In MPLS-Linux the SWAP operation is implemented by successively

popping and pushing a shim header, and the instructions required to pop and

push a label are located in each of the MPLS tables. In this case, the NHLFE

is contained at the same time in the input table and the output table.

Last, consider Figure 5.2(c) which shows how a label is popped by an egress

LSR. The Ethernet layer of the LSR receives a frame with a protocol field in

the Ethernet header set to 0x8847 and therefore passes the frame to the

MPLS layer. The MPLS input table entry that matches the label of the packet

contains two instructions. The POP instruction tells the LER to remove the

shim header from the packet, and the DLV instruction tells the LER to pass

 81

the packet to the IP layer where it will be processed like any other IP packet.

In this case, the NHLFE is fully contained in the input table entry and tells

the packet to pop the shim header.

Labelspaces define the scope of forwarding rules. If two interfaces of the

same MPLS router belong to the same labelspace, then they apply the same

set of forwarding rules to MPLS packets. For example, if interfaces ``2'' and

``4'' are part of the same labelspace, then two packets with the same label

arriving one on interface ``2'' and the other on interface ``4'' will follow the

same forwarding rule. On the other hand, if multiple interfaces do not belong

to the same labelspace then the incoming MPLS packets follow different

forwarding rules. In our implementation, we do not use labelspaces and for

each Ethernet interface we set the labelspace to be equal to the interface

index assigned by the kernel.

5.4 Content-Aware MPLS Router Architecture

So far, in Linux, QoS is incorporated within the implementation integrating

DiffServ with MPLS [64]. The architecture of the proposed content-aware

MPLS router is independent and does not involve assimilation of other

technology. Just like any other MPLS router, the proposed content-aware

MPLS router has 3 modes of operation: as ingress, switch or egress router. In

all of these 3 modes, the router is carefully programmed to differentiate,

 82

prioritize, and then apply specific MPLS operations on the packets based on

classification and prioritization. This section will describe in detail the design

and function of the architecture of the proposed router in all of the above

mentioned operational modes.

5.4.1 Ingress Mode

In the ingress mode, the router has three main modules that perform content-

aware MPLS routing. Figure 5.3 shows the internal logical structure of the

router and the different modules and their relationship.

C
L
A
S
S
I
F
I
E
R

M
P
L
S
M
O
D
U
L
E

EXP = 7 EXP = 7 EXP = 7

LSP1 M
A
R
K
E
R

EXP = 5 EXP = 5 EXP = 5
LSP2 LINK

EXP = 0 EXP = 0 EXP = 0
LSP3

Figure 5.3: Modules of proposed content-aware router in ingress mode.

5.4.1.1 Marker – Content-Aware Routing Module

The marker is the module that takes all incoming packets from the incoming

interface and then analyzes packet header and marks packets on the basis of

some predefined policy.

By default, in Linux, all incoming packets at a particular network interface

are taken up by the kernel and routed according to defined routing policies.

This is done using iptables and netfilter as explained in the beginning of this

 83

chapter. In the current implementation of iptables and netfilter, there is no

support for RTP/RTSP and since the multimedia client and server

communicate over RTP, there is a need to incorporate some mechanism into

the Linux router to understand RTP packets. For this purpose the extended

version of the libipq library is used. This library is available with the iptables

to design userspace packet identification and marking applications [35]. By

using this library, an application is developed that takes all incoming packets

from the kernel and then analyzes their header and payload. For the purpose,

packets with RTP version number and payload type are matched for

identification since the DWT application server adds a different and fixed

value to the payload type field while prioritizing packets. The pseudo code

that implements this module is given below.

For all incoming packets, check the header and verify the following conditions:

if RTP packet with payload type 95

set nfmark 1 and ACCEPT

else if RTP packet with payload type 96

set nfmark 2 and ACCEPT

else

set nfmark 3 and ACCEPT

The nfmark above corresponds to the mark on the packet as described in

Table 5.1.

 84

The Marker basically looks at the value of the payload type field in the RTP

header and then marks packets and passes them to the next module.

5.4.1.2 Classifier – QoS Module

This module performs all the queuing functions at the egress interface of the

router. It implements the PRIO and SFQ queuing discipline as described in

Section 5.2.2.3 and 5.2.2.4. The module then classifies packets on the basis

of the mark values returned by the Marker module.

The Classifier creates three priority queues, one for each flow of traffic. The

module implements packet classification rules that directs packets carrying

high priority DWT packets to the queue with highest priority to dequeue

packets, low priority DWT packets to the queue with second highest priority

and rest of the traffic to the queue with the least priority.

In order to maintain fairness among the three levels of priority, the Classifier

also implements the Stochastic Fairness Queue discipline. The SFQ

discipline prevents low priority flows from starvation as it checks after a

fixed amount of time whether any higher priority flow is eating up all the

resources.

5.4.1.3 MPLS Module

Finally, the MPLS module creates LSPs on the outgoing interface and

assigns appropriate labels and EXP bits values to outgoing traffic. As

 85

mentioned in Section 3.2.6, high priority DWT application data packets will

be encapsulated in MPLS header with EXP bits set to value 7, whereas

packets containing less important data will be assigned EXP bits equal to 5,

this module implements this core feature of the content-aware router. Once

the packets are marked and classified by the first two modules, the MPLS

module knows exactly what packets will be assigned what EXP value and

forwarded on which LSP. All the packets marked 1 (high priority DWT

application data packets) by the Marker module and classified by the

Classifier are encapsulated with MPLS header carrying EXP bits set to 7 and

forwarded on the appropriate LSP.

5.4.2 Switch Mode

The switch mode is kept simple and scalable to maintain the useful fast

forwarding paradigm of MPLS. In this mode there are only two modules that

perform content-aware MPLS switching. In fact the switch router is unaware

of the content of the packets it has to switch. It only relies on the information

provided to it by the ingress or the previous switch router in the network.

 86

M
P
L
S
M
O
D
U
L
E

C
L
A
S
S
I
F
I
E
R

EXP = 7 EXP = 7 EXP = 7
LSP1

EXP = 5 EXP = 5 EXP = 5
LSP2 LINK

EXP = 0 EXP = 0 EXP = 0

LSP3

Figure 5.4: Modules of proposed content-aware router in switch mode.

The MPLS module, in the figure above, analyzes, for every incoming packet,

the MPLS header and reads the EXP bits value. According to the value

received, for every pre-defined flow, the module marks the FEC and then

delivers the packets to the next module. The function of the Classifier

Module is exactly the same as the one in ingress mode. Baaed on the mark

value received from the MPLS Module, the classifier classifies and queues

packets in accordance with their respective priorities.

It is clear from the figure above that the EXP bits value is maintained

between the two modules, but that is only logical. In actual, the Classifier

reads the mark on the FEC and enqueues packets.

5.4.3 Egress Mode

At the egress, the router finally removes the MPLS header and forwards the

packet to the IP link. But before doing so, the router maintains the priorities

of the FECs. This is the last mile of the end-to-end MPLS QoS using

 87

content-awareness. A congested IP link beyond this point will not maintain

the priorities assigned by the MPLS ingress.

In the egress mode, just like the switch mode, there are also two modules. the

only difference is that now, the router removes MPLS header and forwards

packet based on destination IP address instead of assigning label and

maintaining EXP bits value.

EXP = 7

EXP = 5
LINK

EXP = 0

Figure 5.5: Mod

5.5 Summary

This chapter prese

content-aware cong

Linux based IP ro

Linux such as iptab

Linux in terms of tr

The chapter present

content-aware cong

M
P
L
S
M
O
D
U
L
E
ules of proposed

nts in depth de

estion control en

uter. The chapte

les and netfilter

affic shaping, pa

s details of the M

estion control sc
C
L
A
S
S
I
F
I
E
R

 content-aware router in egress mode.

scription of the implementation of the

abled MPLS router over a public domain

r explains IP routing functionalities in

. It also highlights some key aspects of

cket queuing and QoS.

PLS-Linux project, on top of which the

heme is built. Finally, implementation of

 88

the prototype router is presented with explanation of its different modes, how

each mode operates and interacts with other modes. Description of the

ingress, switch and egress modes of the proposed MPLS router is presented

with the help of illustrations.

Chapter 6

Measurement Based Performance Evaluation

In this chapter, an evaluation of the proposed content-aware congestion

control routing scheme is presented. The proposed scheme is experimentally

validated. For the purpose of experimental evaluation, an MPLS enabled

network test-bed is installed. The test-bed consists of label edge and label

switch routers along with a content server that provides DWT encoded data

on request by the client. Section 6.1 describes the experimental MPLS test-

bed configuration, hardware and software platform used for the test-bed and

the client/server application. Section 6.2 elaborates the goals and hypothesis

of the experiments, details like traffic characteristics, metrics to be measured

and experimental design are described in Section 6.3. Sections 6.4 and 6.5

provide in-depth analysis of experimental results obtained from different

tests and compare the results to those presented in Chapter 4.

6.1 Experimental Test-bed

The MPLS test-bed consists of Linux based MPLS enabled software routers

and Microsoft Windows based client and server. Figure 6.1 illustrates the

topology of the test-bed.

89

90

LSR 1 LSR 4

LER 1 LER 2 Server Client

LSR 2 LSR 3 Label Edge Router
Label Switch Router
LSP 1 (server to client)
LSP 1 (client to server)

LSP 2 (client to server)
 LSP 2 (server to client)

Figure 6.1: Experimental test-bed.

All the MPLS routers in the figure above are running both the regular MPLS

with no congestion control capabilities as well as with the content-aware

congestion control technique.

6.1.1 Hardware/Software Platform

The experimental test-bed consists of 8 PCs. Two PCs are used for sending

and receiving DWT encoded traffic as well as generating background traffic

for emulating a congested network. The PC based routers are all Pentium III

hosts with 600 MHz CPU, 128 MB RAM running RED HAT Linux 9.0 with

kernel 2.6.1. MPLS is enabled through patching the kernel along with

iptables and iproute files. Table 6.1 summarizes the hardware and software

resources utilized for the experiments.

91

Table 6.1. Hardware/Software resources used in test-bed.

Processor Memory Operating
System

Functional Status Number

PIII – 600MHz 128 MB RED HAT Linux
9.0

MPLS Router (LER
and LSR)

6

PIII – 600MHz 128MB Windows 2000
Server

Client 1

PIV – 2.0GHz 512MB Windows XP
Professional

Content Server 1

6.1.2 Traffic Generation Tools

Traffic on the MPLS test-bed is mainly of two types; DWT encoded data

from server to client and background network traffic to emulate network

congestion. IPERF [36] is used as background traffic generator due to its

capability of producing large amount of traffic with characteristics similar to

that of traffic on the Internet. It is generally used to test the effective

bandwidth of a network.

For DWT encoded traffic, a dedicated client/server application is developed

that transfers DWT encoded images over RTP as the transport protocol. The

client requests a known content server for compressed images. The server

application, on receiving client request, starts to send the images. The

application is capable of assigning priorities to different packets as it sends

packets on the network. The design of the application is made such that it

understands the EZW approach and assigns high priority to packets that are

high in order and are sent first on the wire. It uses the payload type field in

92

the RTP header to assign a value that reflects the priority of the packets. It

breaks the stream into two and assigns value 95 to the first half (high priority

packets) and 96 to the rest. These values are unreserved for experimental

purposes [37].

On the receiving end, the client application receives the compressed image

and hands it over to an EZW decoder [38] that decodes the image and

displays it on the client’s screen.

6.2 Goals and Hypotheses of Experimental Verification

The goal of this experimental validation is to verify whether the proposed

content-aware congestion control scheme over MPLS maintains reasonably

acceptable image quality even under high network congestion, i.e. achieving

graceful degradation compared to regular MPLS network.

The hypotheses of this validation can be stated as follows:

• Hypothesis H1: Image quality will be comparatively better under high

network congestion in case of content-aware congestion control over

MPLS.

• Hypothesis H2: Only important parts of the image will be preserved and

rest dropped by the router in case of high congestion.

93

• Hypothesis H3: Content-aware congestion control enabled MPLS will

show less delay, jitter and packet loss compared to regular MPLS and IP

with DiffServ.

The main metrics to be calculated for the experimental verification of the

proposed scheme are packet loss, received file size, delay and jitter. Image

quality is the only non-numeric measure of the efficacy of any congestion

control scheme.

6.3 Experimental Design and Parameters

As illustrated in Figure 6.1, the client is connected to the content server via

an MPLS backbone network. It requests for a DWT encoded image of size

64KB. This simple file transfer is conducted under several different levels of

network congestion by gradually increasing the rate of background IP traffic.

Characteristics of background traffic are kept very similar to those used for

the simulation based analysis. Packet size of background traffic is 1000B,

which is injected at a gradually increasing rate starting from 128 kbps up to

100 Mbps. Packet loss, jitter, delay and image quality are carefully measured

under each congestion level and then compared among different scenarios.

6.3.1 Metrics

Following are the response variables (metrics)

94

• Packet Loss

• Received File Size

• Average end-to-end delay

• Average jitter

6.3.2 Factors

The factors affecting the response variables are:

• The congestion level quantity is defined as

ρ = λ/µ

Where λ = rate of incoming background traffic

µ = the capacity of the network

• Type of network backbone : MPLS or IP or MPLS with IP

• Type of QoS technique: MPLS, MPLS with proposed scheme or IP

with DiffServ

6.3.3 Experimental Scenarios

In order to present a comprehensive experimental comparison, a number of

scenarios were carefully designed. The proposed content-aware congestion

control technique is compared for the above mentioned metrics with regular

MPLS and with DiffServ. Delay, jitter, packet loss and image quality is

95

compared to test the performance of the proposed scheme and verify results

obtained from the simulation based analysis presented in Chapter 4.

6.4 Analysis of Results

Transferring DWT encoded images over regular MPLS network results in

poor image quality when the network is experiencing high congestion. A

router cannot distinguish between packets of different applications and start

dropping them randomly when the buffers reach a maximum. In turn, the

important parts of the image are lost (packets that are first in the stream),

which results in poor quality image or even a corrupt file due to very high

packet loss rate. On the other hand, since DiffServ is classifying and

prioritizing DWT data packets, the overall packet loss rate is much less in

this case and hence a good quality of image is maintained. One drawback of

this, however, is that DiffServ at all times provides premium service to DWT

encoded data, which in turn leads to starvation for regular network traffic.

Also, delay and jitter values are more in case of DiffServ when compared to

MPLS and content-aware congestion control enabled MPLS due to the fact

that slower IP address lookups are the basis of routing in a pure DiffServ

network. Transferring the same file at the same rate over content-aware

congestion control enabled MPLS backbone shows that even under high

congestion, although the packet loss increases but overall image quality is

96

comparatively better than the previous case. This phenomenon can be

explained by the fact that under content-aware routing, the routers are

capable of distinguishing packets from the information within the header.

Thus under high congestion all packets that contain less important parts of

the image are dropped and only high priority packets are allowed into the

network. This results in achieving graceful degradation. It also allows

background traffic a fair chance at the network resources and efficient usage

of available bandwidth.

6.4.1 Comparison of Packet Loss

Packet loss of DWT traffic is calculated at each point by increasing the value

of ρ. Table 6.2 shows packet loss in all the three cases at the highest value of

ρ, when the background traffic is injected at a rate of 100 Mbps. At this

point, regular MPLS network halts and all packets are being dropped. Since

both DiffServ and MPLS with proposed scheme implement queuing for QoS,

DWT traffic is getting premium service and hence lesser packets are

dropped. However, since the proposed scheme is performing classification

and queuing on the basis of the content of the packet, a feature that is not

present in DiffServ, more packets are dropped after a point because the

packets with the less important DWT encoded data is prioritized low than

background traffic. This prevents from starvation of rest of the network

97

traffic. DiffServ is unable to divide one single stream of DWT encoded data

into two based on packet content.

Table 6.2. Comparison of packet loss between MPLS, MPLS using proposed

scheme and DiffServ at ρ = 1.

Network Type Packet
Size (B)

Packets
Sent

Packets
Received

% Packets
Received

DiffServ 576 116 68 58 %
MPLS 576 116 0 0 %
MPLS with proposed
scheme

576 116 36 31 %

The results of packet loss in case of MPLS with proposed scheme presented

in Table 6.2 are compared to the ones obtained from simulation tests. This

comparison shows that lesser packets were being dropped in simulation. This

phenomenon can be explained by the fact that simulation based routing and

queuing is faster compared to software routing and queuing. Also, hardware

and software platform of software routers play an important role in this

aspect.

Table 6.3. Comparison of packet loss of simulation and measurement based

tests when transmitted over content-aware MPLS.

Test Type Packet
Size (B)

Packets
Sent

Packets
Received

% Packets
Received

Simulation 576 116 59 50.8 %
Measurement 576 116 36 31 %

6.4.2 Comparison of Image Quality and Received File Size

The standard Barbara image in the pgm (portable grey map) format is used in

the experiments. As mentioned in Section 6.3, the size of the file transferred

98

is 64KB. Figure 6.2 illustrates the difference in quality and file size at the

receiver’s end at ρ = 0.5. The reason to choose this rate was that at this point

the regular MPLS backbone started to drop packets as can be seen from the

figure below (image a). Image b is the file transferred over MPLS network

using proposed scheme without any packet loss and hence a perfect image

quality at this point is achieved. Same is the case with DiffServ (image c). At

ρ = 0.7, nearly equal number of packets are dropped by content-aware

scheme as by regular MPLS network. In this case, as depicted in Figure 6.3,

only low priority packets are dropped by content-aware routers (less

important parts of the image). Hence a blur but comparatively better image

quality is maintained. It can also be seen that the sizes of the received files in

case of MPLS and content-aware MPLS are almost same but the quality is

much better in case of content-aware MPLS. On the other hand, DiffServ

still maintains a 100% image quality at the expense of background traffic and

a full 64KB file is received at the receiver’s end.

99

Figure 6.2: Comparison of image quality at ρ = 0.5.

It is clear from the images in Figure 6.3 that under high congestion, regular

MPLS routers drop packets randomly and hence important packets never

reach the receiver (image a).

At higher values of ρ, where regular MPLS chokes out, the proposed scheme

still continues the content-aware routing process and still maintains a better

image quality (image b). Figure 6.4 shows the difference in quality of 20KB

file received via content-aware MPLS (image b) and 40.2KB file received

via regular MPLS (image a).

100

Figure 6.3: Comparison of image quality at ρ = 0.7.

Figure 6.4: Comparison of image transferred at ρ = 0.9 over proposed scheme

(image b) and an image transferred at ρ = 0.7 over regular MPLS (image a).

101

At ρ = 0.9, regular MPLS network saturates and packet loss reaches a

maximum. The file size received through content-aware congestion control

MPLS at this point is much smaller than that which was received through

regular MPLS at ρ = 0.5. The reason for this behavior is that the proposed

scheme makes the router capable of intelligently using available resources

and route only those packets that are of extreme importance. Thus, although

the file size received is much smaller, still the image quality is relatively

better. At this point, in terms of image quality, DiffServ outperforms content-

aware MPLS because in DiffServ, the Type of Service ToS/DSMark field is

used for packet marking and QoS and DWT data is marked as Expedited

Forwarding (EF) class [73]. However, it can be seen that the received file

size in case of DiffServ is more than double of that received via proposed

scheme. There are both pros and cons of this result. Even under high levels

of congestion in the network, the quality of DWT content is not affected.

Less important parts of the image could have been dropped allowing other

data traffic to pass through. This results in starvation of other application

data and inefficient use of available bandwidth. This is certainly avoided by

content-aware MPLS.

102

Figure 6.5: Comparison of image transferred at ρ = 0.9 over DiffServ (image a)

and proposed scheme (image b).

6.4.3 Comparison of Average end-to-end Delay and Jitter

The average end-to-end delay and jitter is compared at different values of ρ.

Due to the fact that DiffServ is based on traditional IP routing with longest

prefix match lookups, there is a certain amount of delay during file transfer.

Moreover, packet marking, setting up of the EF class and configuring and

maintaining per-hop-behavior for the EF class also degrades performance in

terms of higher latency. This is one other point where the proposed scheme

excels DiffServ. Fast MPLS forwarding results in lesser jitter and delay

values. Figure 6.6 and Figure 6.7 illustrate the comparison.

103

0

20

40

60

80

100

120

0 0.01 0.03 0.05 0.07 0.1 0.3 0.5 0.7 1

p

Av
er

ag
e

jit
te

r
(m

s)

proposed scheme
regular MPLS
DiffServ

Figure 6.6: Comparison of average jitter.

The difference between the three schemes becomes obvious as the network

gets congested. At higher values of ρ, content-aware congestion control

enabled MPLS maintains comparatively low jitter and delay values.

Comparison with DiffServ shows that in terms of quality, there is not much

difference in performance from the proposed scheme.

0

200

400

600

800

1000

1200

0 0.01 0.03 0.05 0.07 0.1 0.3 0.5 0.7 1

p

A
ve

ra
ge

 e
nd

-to
-e

nd
 d

el
ay

 (m
s)

proposed scheme
regular MPLS
DiffServ

Figure 6.7: Comparison of average end-to-end delay

In fact DiffServ maintains comparatively better quality at higher congestion.

But in context of efficient bandwidth utilization and maintaining fairness

104

among different traffic flows, content-aware congestion control technique in

MPLS provides better and comparable results.

The results obtained from the simulation and measurement based

experiments show similar trend. Average end-to-end delay, jitter of DWT

encoded content and overall packet loss is maintained at a low level when

transmitted over MPLS with proposed scheme. In both the cases, content-

aware congestion control enabled MPLS restricts the metrics well within the

acceptable region as explained in [65][66]. The difference in the results of

simulation and measurement based experiments is in the numerical values of

the data sets obtained since measurement based testing was conducted using

slower hardware platform and software routing. Figure 6.8 clearly illustrates

the similarity in trend but difference in the values of average end-to-end

delay of DWT encoded data packets transferred over proposed scheme

enabled MPLS backbone.

Figure 6.9 shows the difference in values of average jitter at different values

of ρ in both simulation and measurement based tests. Here again the trend of

the graph is similar, i.e., the values rise as ρ increases.

105

0

200

400

600

800

1000

1200

1400

1600

1800

0 0.01 0.03 0.05 0.07 0.1 0.3 0.5 0.7 1

p

A
ve

ra
ge

 e
nd

-to
-e

nd
 d

el
ay

 (m
s)

Measurement
Simulation

Figure 6.8: Comparison of delay values obtained from simulation and

measurement studies while transmitting DWT traffic over content-aware

MPLS.

0

20

40

60

80

100

120

140

160

180

0 0.01 0.03 0.05 0.07 0.1 0.3 0.5 0.7 1

p

Av
er

ag
e

jit
te

r (
m

s)

Measurement
Simulation

Figure 6.9: Comparison of jitter obtained from simulation and measurement

studies while transmitting DWT traffic over content-aware MPLS.

It can be seen from the figures above that under measurement based testing,

the observed metrics are much higher than that calculated under simulation

based experiments. The main reason for this performance degradation of the

system under study is lack of a dedicated processor for networking activities

and an operating system kernel that is overwhelmed with interrupts termed as

106

noise process [68]. Other than these two main factors, network interface

card’s speed and system memory also play an important role in software

router performance.

6.4.4 System level Measurements

This difference in the results obtained from the two modes of testing can be

supported by the system level measurements that were taken in order to

analyze metrics such as CPU utilization, interrupts per second and active

virtual memory during a complete file transfer. Results obtained from the

vmstat tests show that these metrics are highest in case of DiffServ compared

to content-aware congestion control enabled MPLS and regular MPLS. This

is because of IP address lookups from routing tables and PHB setups at the

DiffServ nodes. Results show that regular MPLS performs slightly better

than proposed scheme at the ingress and switch routers but is approximately

equal at the egress node. This is because in MPLS with proposed scheme, the

ingress and switch routers are performing extra processing as the crux of the

algorithm is implemented in these routers.

Figure 6.10 illustrates active virtual memory of user processes during a file

transfer at different values of ρ in all the three types of networks. It can be

seen from the figure below that in case of DiffServ, active virtual memory of

user processes in the system is highest. Refer to Appendix C for similar

107

results for active virtual memory of user level processes at LSR/core routers

and egress nodes.

29000

31000

33000

35000

37000

39000

41000

43000

45000

0 0.01 0.03 0.05 0.07 0.1 0.3 0.5 0.7 1

p

Ac
tiv

e
Vi

rtu
al

 M
em

or
y

(K
B)

Ingress using proposed
scheme
Ingress using regular MPLS

Ingress using DiffServ

Figure 6.10: Comparison of active memory of user processes at different values

of ρ at ingress router.

900

1100

1300

1500

1700

1900

2100

2300

2500

0 0.01 0.03 0.05 0.07 0.1 0.3 0.5 0.7 1

p

In
te

rr
up

ts
 p

er
 s

ec
on

d

Ingress using proposed
scheme
Ingress using regular MPLS

Ingress using DiffServ

Figure 6.11: Comparison of interrupts per second at different values of ρ at

ingress router.

Figure 6.11 shows that in case of regular MPLS, the total number of

interrupts per second are least compared to content-aware congestion control

108

enabled MPLS and DiffServ. Refer to Appendix C for similar results for

interrupts per second at LSR/core routers and egress nodes.

CPU utilization at ingress node during a single file transfer in all the three

cases is depicted in Figure 6.12. Refer to Appendix C for similar results for

CPU utilization at LSR/core routers and egress nodes. System level

measurements at obtained at MPLS LSRs and DiffServ enabled core routers

verify the fast forwarding attribute of label switching.

3

8

13

18

23

28

33

38

43

0 0.01 0.03 0.05 0.07 0.1 0.3 0.5 0.7 1

p

CP
U

Ut
ili

za
tio

n
(%

)

Ingress using proposed
scheme
Ingress using regular MPLS

Ingress using DiffServ

Figure 6.12: Comparison of CPU utilization at different values of ρ at ingress

router.

6.5 Heterogeneous Network Backbone

The real world scenario presented in Section 4.4.7 is emulated on the test-

bed to verify the performance of the proposed scheme in an hybrid backbone

by designing and configuring a heterogeneous network backbone that

includes MPLS along with IP routers as intermediate hops to the destination.

109

As shown in Figure 4.6. Results obtained from this scenario are compared

with those while using and end-to-end pure content-aware MPLS backbone.

6.5.1 Comparison of Packet Loss

Table 6.4 compares the packet loss between a file that is transferred over a

homogeneous content-aware congestion control enabled MPLS backbone

and that over a heterogeneous backbone with intermediate IP hops. It is

obvious from the results that in case of the heterogeneous backbone, due to

intermediate IP cloud that does not support any QoS or the proposed scheme,

packets are randomly dropped at times of congestion. This random dropping

of packets also includes the high priority “marked” packets since the IP

cloud does not recognize the marks on such packets.

Table 6.4. Comparison of packet loss at ρ = 1.

Backbone Type Packet
Size (B)

Packets
Sent

Packets
Received

% Packets
Received

End-to-end MPLS 576 116 36 31 %
Heterogeneous 576 116 0 0 %

The results of packet loss in case of a heterogeneous network backbone

presented in Table 6.4 are compared to the ones obtained from simulation

tests. This comparison shows that lesser packets were being dropped in

simulation as simulation does not account for the hardware platform

performance bottlenecks. Table 6.5 explains the comparison.

110

Table 6.5. Comparison of packet loss of simulation and measurement based

tests when transmitted over heterogeneous network backbone.

Test Type Packet
Size (B)

Packets
Sent

Packets
Received

% Packets
Received

Simulation 576 116 35 30 %
Measurement 576 116 0 0 %

6.5.2 Comparison of Image Quality

Results show that the image quality is adversely affected since packets are

randomly dropped once entered into the IP cloud. Figure 6.13 demonstrates

the difference in the qualities in both the cases. Image a is received via

heterogeneous backbone at ρ = 0.5 whereas repeated experimentation

showed that at higher values of ρ nearly 75% of the time, a corrupt file was

received with no representation of the image. On the other hand, image b is

received via proposed scheme enabled MPLS backbone with 100%

representation of the image.

Figure 6.13: Comparison of image quality at ρ = 0.5.

111

6.5.3 Comparison of Average end-to-end Delay and Jitter

The average end-to-end delay and jitter is compared at different values of ρ.

Due to intermediate IP hops that do not support QoS and reprioritization and

reclassification at the subsequent MPLS ingress router, there is a certain

amount of delay during file transfer over the heterogeneous backbone. Figure

6.14 and 6.15 illustrate the comparison of delay and jitter respectively.

0

20

40

60

80

100

120

140

160

0 0.01 0.03 0.05 0.07 0.1 0.3 0.5 0.7 1

p

Av
er

ag
e

jit
te

r (
m

s)

proposed scheme
hybrid backbone

Figure 6.14: Comparison of average jitter.

0

200

400

600

800

1000

1200

1400

1600

1800

0 0.01 0.03 0.05 0.07 0.1 0.3 0.5 0.7 1

p

Av
er

ag
e

en
d-

to
-e

nd
 d

el
ay

 (m
s)

proposed scheme
hybrid backbone

Figure 6.15: Comparison of average end-to-end delay

112

Results obtained from this scenario support the proposal stated in Section 1.7

that the proposed content-aware congestion control scheme over MPLS

networks is well suited for EDNs administered by a single domain and

managed by one management authority with and end-to-end pure MPLS

network backbone. It does not show persuasive results in case of a network

backbone constituting of multiple carrier technologies and protocols with

intermediate hops that do not support content-awareness.

When measurement based results are compared with those obtained from

simulations, again similar trend is seen in this case as well. Figure 6.16 and

6.17 illustrate the difference in delay and jitter respectively of multimedia

traffic when simulated and measured.

0

500

1000

1500

2000

2500

3000

3500

0 0.01 0.03 0.05 0.07 0.1 0.3 0.5 0.7 1

p

A
ve

ra
ge

 e
nd

-to
-e

nd
 d

el
ay

 (m
s)

Measurement
Simulation

Figure 6.16: Comparison of delay values obtained from simulation and

measurement studies while transmitting DWT traffic on heterogeneous

network backbone.

113

0

50

100

150

200

250

300

0 0.01 0.03 0.05 0.07 0.1 0.3 0.5 0.7 1

p

Av
er

ag
e

jit
te

r
(m

s)

Measurement
Simulation

Figure 6.17: Comparison of jitter values obtained from simulation and

measurement studies while transmitting DWT traffic on heterogeneous

network backbone.

6.6 Summary

This chapter presents experimental validation of the proposed content-aware

congestion control scheme. It describes the experimental designs, metrics to

be measured, and the factors affecting these metrics. It provides in depth

analysis on results obtained from different experimental scenarios and

compares them with those obtained from simulation studies. Results show

that proposed scheme works better than regular MPLS and DiffServ in terms

of delay and jitter although DiffServ shows better packet loss ratio and hence

best image quality. This in turn proves that proposed scheme utilizes

available network bandwidth and also maintains fairness among different

flows of traffic. Another experiment proves that the proposed scheme works

well with an end-to-end MPLS backbone with no intermediate IP cloud.

114

These results confirm to the findings of the simulated based analysis. The

difference only comes in the numeric values of the data sets obtained due to

the fact that simulation does not take into account hardware bottlenecks and

performance degradation.

Chapter 7

Conclusion

In this chapter, a summary of the work is presented and ways of

improvement in future are suggested. The proposed content-aware

congestion control scheme over MPLS networks can prove useful for content

providers and content service providers alike. Multimedia content providers

can use such non-standard compression techniques and service providers can

implement the proposed scheme at their backbones for a better and QoS

aware network infrastructure. The proposed scheme is simple to implement

and eliminates the complexities and dependencies introduced by DiffServ for

QoS. It is also flexible to allow service providers to add more service classes

based on the needs and requirements of the customers. In short, the proposed

scheme can provide vast opportunities to content providers in increasing

their clientele. It enhances business for new carrier network providers as well

as the industry gurus [45].

7.1 Limitations and Further Work

This section provides some of the directions where this work can be taken to

and prove useful.

115

116

7.1.1 DWT compressed Video

The experimental verification of the proposed scheme was conducted by

transferring only DWT encoded still images. A better case study and

persuasive results can be provided by transferring DWT encoded video over

content-aware congestion control enabled MPLS backbone. This will require

an application that uses DWT compression to compress raw video, packetize

it, prioritize packets according to the order described in the EZW algorithm

and send the packets to the network. On the receiving end there must be a

decoder and a video player. So far other compression techniques have been

used for this purpose [48][49][50][51].

7.1.2 Support for Multicasting

The current setup works only with unicast transfer between client and server.

A better approach would be to introduce multicasting techniques especially

when incorporating video transmission [39].

7.1.3 Comparison with IPv6 and ATM

A good analysis would be to compare the proposed scheme with IPv6 [40]

and QoS giant ATM.

117

7.2 Summary and Contributions of Thesis

A method to improve QoS of multimedia traffic over the Internet using

MPLS is proposed. Design and implementation of a scheme that enables the

MPLS router to discard packets containing less important content when there

is congestion in the network is presented. By employing content-aware

congestion control, the overall quality of multimedia content is not affected

significantly even at times of congestion, enabling graceful degradation of

quality using a wavelet based compression technique.

This technique is modeled and simulated in J-Sim network simulator as well

as implemented as an extension to a public domain Linux-based MPLS

router. Simulation and measurement based testing is used to evaluate the

performance and QoS impact of this application-aware congestion control

scheme.

The contributions of this thesis can be summarized as follows:

• Proposed a content-aware congestion control method in MPLS

routers.

o Enables the MPLS router to make routing decisions based on

the content of the packet.

• Modeled and simulated the proposed scheme by modifying J-Sim.

118

o Added content-aware routing module.

o Added new packet header format.

o Added delay counter module.

• Implemented a server application that sends DWT/EZW encoded

images and performs application level prioritization of packets.

• Implemented a client application that receives DWT/EZW encoded

images, decodes the image and displays it on the picture viewer.

• Implemented the proposed content-aware congestion control scheme

in software based MPLS routers.

• Experimentally verified and tested the performance of the software

based content-aware congestion control enabled MPLS routers.

Appendix A: Network Traces

Figure A. 1: Network trace at the ingress router (packet type: MPLS).

Figure A. 2: Network trace at the egress router (packet type: IP).

119

120

Figure A. 3: Network trace at server (packet type: IP).

Figure A. 4: Network trace at client (packet type: IP)

Appendix B: MPLS Configuration Files

Figure B.1: MPLS configurations file at ingress. Values of EXP bits are set to 7

for high priority and 5 for low priority DWT packets.

Figure B.2: MPLS configurations file at LSR. Values of EXP bits are set to 7

for high priority and 5 for low priority DWT packets.

121

Appendix C: System Level Measurements

20000

22000

24000

26000

28000

30000

32000

34000

0 0.01 0.03 0.05 0.07 0.1 0.3 0.5 0.7 1

p

A
ct

iv
e

Vi
rtu

al
 M

em
or

y
(K

B
)

LSR using proposed scheme
LSR using regular MPLS
Core router using DiffServ

Figure C. 1: Comparison of active memory of user processes at different values

of ρ at LSR/core router.

0

5

10

15

20

25

30

35

40

0 0.01 0.03 0.05 0.07 0.1 0.3 0.5 0.7 1

p

C
PU

 U
til

iz
at

io
n

(%
)

Egress using proposed
scheme
Egress using regular MPLS

Egress using DiffServ

Figure C. 2: Comparison of active memory of user processes at different values

of ρ at egress router.

122

123

900

1000

1100

1200

1300

1400

1500

1600

1700

0 0.01 0.03 0.05 0.07 0.1 0.3 0.5 0.7 1

p

In
te

rr
up

ts
 p

er
 s

ec
on

d
LSR using proposed scheme
LSR using regular MPLS
Core router using DiffServ

Figure C. 3: Comparison of interrupts per second at different values of ρ at

LSR/core router.

900

1100

1300

1500

1700

1900

2100

2300

0 0.01 0.03 0.05 0.07 0.1 0.3 0.5 0.7 1

p

In
te

rr
up

ts
 p

er
 s

ec
on

d

Egress using proposed
scheme
Egress using regular MPLS

Egress using DiffServ

Figure C. 4: Comparison of interrupts per second at different values of ρ at

egress router.

124

0

5

10

15

20

25

30

0 0.01 0.03 0.05 0.07 0.1 0.3 0.5 0.7 1

p

C
PU

 U
til

iz
at

io
n

(%
)

LSR using proposed scheme
LSR using regular MPLS
LSR using DiffServ

Figure C. 5: Comparison of CPU utilization at different values of ρ at

LSR/core router.

3

8

13

18

23

28

33

38

0 0.01 0.03 0.05 0.07 0.1 0.3 0.5 0.7 1

p

C
PU

 U
til

iz
at

io
n

(%
)

Egress using proposed
scheme
Egress using regular MPLS

Egress using DiffServ

Figure C. 6: Comparison of CPU utilization at different values of ρ at egress

router.

Bibliography

[1] Andrew B. Watson, “Image Compression using the Discrete Cosine
Transform”, Mathematica Journal, Volume: 4, Issue: 1, page(s): 81-
88, 1994.J. Resnick and D. Halliday. Fundamentals of Physics.
Chapter 5, John Wiley and Sons, New York, third edition, 1988.

[2] Barani Subbiah and Zartash A. Uzmi, “Content Aware Networking in
the Internet: Issues and Challenges”, IEEE International Conference
on Communications, Volume: 4, Page(s): 1310 -1315, 11-14 June
2001.

[3] Jerome M. Shapiro, “Embedded Image Coding using Zerotrees of
Wavelet Coefficients”, IEEE Transaction on Signal Processing,
Volume: 41, Issue: 12, December 1993.

[4] “Multiprotocol Label Switching Architecture”, RFC 3031, January
2001.

[5] Uyless Black, “MPLS and Label Switching Networks”. Prentice Hall,
2001.

[6] Wei Sun et al., “Quality of Service using Traffic Engineering over
MPLS: An Analysis”, Proceedings of the 25th Annual IEEE
Conference on Local Computer Networks, Page(s): 238 -241, 8-10
November, 2000.

[7] Reza Adhami, “Video Compression Technique using Wavelet
Transform”, Proceedings of the IEEE Aerospace Applications
Conference, Volume: 4, Page(s): 449 -455, 3-10 February 1996.

[8] Pao Chi Chang and Ta-Te LU, “A Scalable Video Compression
Technique based on Wavelet Transform and MPEG Coding”, IEEE
Transaction on Consumer Electronics, Volume: 45, Issue: 3, August
1999.

[9] Detlev Marpe and Hans L. Cycon, “Very Low Bit-Rate Video Coding
using Wavelet-Based Techniques”, IEEE Transaction on Circuitsand
Systems for Video Technology, Volume: 9, Issue: 1, Page(s): 85 -94,
February 1999.

[10] Zhiqan Zhang et al., “MPLS ATCC: An Active Traffic and
Congestion Control Mechanism in MPLS”, Proceedings of the
International Conferences on Info-tech and Info-net, Volume: 5,
Page(s): 205 -210, October – November, 2001.

[11] F. Holness and C. Philips, “Dynamic Congestion Control Mechanism
for MPLS Networks”, In SPIE’s International Symposium on Voice,

125

 126

Video and Data Communications, Internet Performance and Control
Network Systems, Page(s): 1001-1005, November, 2000.

[12] Raj Jain, “Congestion Control in Computer Networks: Issues and
Trends”, IEEE Network Magazine, Page(s): 24-30, May 1990.

[13] Xipeng Xiao and Lionel M. Ni, “Internet QoS: The Big Picture”,
IEEE Network Magazine, pages 8-18, March/April 1999.

[14] Xipeng Xiao et al., “Traffic Engineering with MPLS in the Internet”,
IEEE Network Magazine, Volume: 14, Issue: 2, March-April 2000,
Page(s): 28 -33.

[15] Mohammad M. Shahsavari and Adnan A. Al-Tunsi, “MPLS
Performance Modeling using Traffic Engineering to improve QoS
Routing on IP Networks”, Proceedings of the IEEE Southeast
Conference, Page(s): 152 -157, 5-7 April 2002.

[16] “An architecture for Differentiated Services”, RFC 2475, December
1998.

[17] Tarek Saad et al., “Diffserv Enabled Adaptive Traffic Engineering
over MPLS”, Proceedings of the International Conferences on Info-
tech and Info-net, Volume: 2, Page(s): 128 -133, October-November,
2001.

[18] “RTP: A Transport Protocol for Real-Time Applications”, RFC 1889,
January 1996.

[19] Geng-Sheng Kuo and C.T. Lai, “A new Architecture for Transmission
of MPEG-4 Video over MPLS Networks”, IEEE Communications
Magazine, Volume: 40, Issue: 12, Page(s): 114 -119, December, 2002.

[20] “Requirements for Traffic Engineering over MPLS”, RFC 2702,
September 1999.

[21] “J-Sim Homepage”, www.j-sim.org
[22] “Autonomous Component Architecture”,

 www.j-sim.org/whitepapers/aca.html
[23] “Inet Tutorial”, www.j-sim.org/drcl.inet/inet_tutorial.html
[24] “MPLS for J-Sim”, www.info.ucl.ac.be/~bqu/jsim/mpls_desc.html
[25] “SKC Communications”

www.skccom.com/1.888.734.4438/polyvideo/h323networking.pdf
[26] “netfilter/iptables project homepage”, www.netfilter.org
[27] “Linux IP Firewalling Chains”,

www.people.netfilter.org/~rusty/ipchains/
[28] “netfilter/iptables patch-o-matic system”,

www.netfilter.org/patch-o-matic/index.html
[29] “iptables Tutorial 1.1.19”,

 www.iptables-tutorial.frozentux.net/iptables-tutorial.html
[30] “Linux Traffic Shaping”, www.knowplace.org/shaper

http://www.j-sim.org/
http://www.j-sim.org/whitepapers/aca.html
http://www.j-sim.org/drcl.inet/inet_tutorial.html
http://www.info.ucl.ac.be/~bqu/jsim/mpls_desc.html
http://www.skccom.com/1.888.734.4438/polyvideo/h323networking.pdf
http://www.netfilter.org/
http://www.people.netfilter.org/~rusty/ipchains/
http://www.netfilter.org/patch-o-matic/index.html
http://www.iptables-tutorial.frozentux.net/iptables-tutorial.html
http://www.knowplace.org/shaper

 127

[31] “MPLS for Linux”, www.sourceforge.net/projects/mpls-linux
[32] W. Almesberger, "Linux Network Traffic Control − Implementation

Overview", February 2001.
[33] “NetX: Networking research without a better home”, University of

Cambridge, UK, www.cl.cam.ac.uk/research/srg/netos/netx/
[34] “NIST Switch - NIST MPLS research platform”, National Institute of

Standards and Technology, information technology laboratory,
www.snad.ncsl.nist.gov/nistswitch/

[35] “iptables/libipq”, www.cvs.netfilter.org/iptables/libipq
[36] “Iperf”, http://dast.nlanr.net/Projects/Iperf/
[37] “RTP Parameters” www.iana.org/assignments/rtp-parameters
[38] “An Implementation of EZW”,
 www.pesona.mmu.edu.my/~msng/EZW.html
[39] Hong Man and Yang Li, “Multi-Stream Video Transport over MPLS

Networks”, IEEE Workshop on Multimedia Signal Processing,
Page(s): 384 -387, 2002.

[40] El-Bahlul Fgee et al., “Implementing QoS capabilities in IPv6
networks and comparison with MPLS and RSVP”, IEEE Canadian
Conference on Electrical and Computer Engineering, Volume: 2,
Page(s): 851 -854, May, 2003.

[41] Tamrat Bayle et al., “Performance Measurement of MPLS Traffic
Engineering and QoS”, Technical Report, Hiroshima University,
Japan, 2001.

[42] “MPLS Label Stack Encoding”, RFC 3032, January, 2001.
[43] Petr Pavlu, “Basics of MPLS Technology and VPN Applications”,

Technical Presentation, Cisco Systems, 1999.
[44] Robert Pulley and Peter Christensen, “A Comparison of MPLS Traffic

Engineering Initiatives”, NetPlane Systems Inc., 2000.
[45] “IP Traffic Engineering for Carrier Networks: Using Constraint-Based

Routing to Deliver New Services”, White paper, Nortel Networks.
[46] Victoria Fineberg, “QoS Support in MPLS Networks”, MPLS/Frame

Relay Alliance White Paper, May, 2003.
[47] Wei Sun, “QoS/Policy/Constraint Based Routing”, Survey paper,

Computer and Information Science Department, Ohio State
University, July, 2000.

[48] Gregory J. Conklin et al., “Video Coding for Streaming Media
Delivery on the Internet”, IEEE Transactions on Circuits and Systems
for Video Technology, Volume: 11, Issue: 3, Page(s): 269 -281,
March 2001.

http://www.sourceforge.net/projects/mpls-linux
http://www.cl.cam.ac.uk/research/srg/netos/netx/
http://www.snad.ncsl.nist.gov/nistswitch/
http://www.cvs.netfilter.org/iptables/libipq
http://dast.nlanr.net/Projects/Iperf/
http://www.iana.org/assignments/rtp-parameters
http://www.pesona.mmu.edu.my/~msng/EZW.html

 128

[49] Borko Furht et al., “Multimedia Broadcasting over the Internet: Part
II-Video Compression”, IEEE Multimedia Magazine, Volume: 6,
Issue: 1, Page(s): 85-89, January – March, 1999

[50] Bernd Girod et al., “Recent Advances in Video Compression”, IEEE
International Symposium on Circuits and Systems, Volume: 2,
Page(s): 580 -583, 12-15 May 1996.

[51] Dapeng Wu et al., “MPEG-4 Compressed Video over the Internet”,
Proceedings of the IEEE International Symposium on Circuits and
Systems, Volume: 4, Page(s): 327-331, May 30–June 2, 1999.

[52] H. Sharif and B. Chen, “End-to-End QoS requirements for real-time
video streaming in Internet2”, Technical Report, Department of
Computer and Electronics Engineering, University of Nebraska-
Lincoln, 2001.

[53] Manish Mahajan and Manish Parashar, “Managing QoS for
Multimedia Applications in Differentiated Services Environment”,
Proceedings of the 4th IEEE Annual International Workshop on
Active Middleware Services, 2002.

[54] Victoria Fineberg et al., “An End-to-End QoS Architecture with the
MPLS-Based Core”, IEEE Workshop on IP Operations and
Management, Page(s): 26 -30, 2002.

[55] “Simulation-Based Analysis of MPLS Traffic Engineering”, Model
Research and Development, OPNET Technologies Inc.

[56] Dapeng Wu, “Streaming Video over the Internet: Approaches and
Directions”, IEEE Transaction on Circuits and Systems for Video
Technology, Volume: 11, Issue 3, March 2001.

[57] Sean Harnedy, “An introduction to MPLS”, Prentice Hall PTR,
November 2001

[58] Robert Prandolini, “Use of UDP for Efficient Imagery
Dissemination”, DSTO C3 Research Centre, IT Division, Defense
Science and Technology Organization, Department of Defense,
Australia, 2001.

[59] G. Rosenbaum, S. Jha and M. Hassan, “Empirical study of traffic
trunking in Linux-based MPLS test-bed”, International Journal of
Network Management, Page(s): 277-288, 2003.

[60] Lin Y-D, Hsu N-B, Hwang RH, “Granularity of QoS routing in MPLS
networks”, International Workshop on Quality of Service (IWQoS).
Page(s): 140–154, June 2001.

[61] Viswanathan A, Feldman N, Wang Z, Callon R, “Evolution of
Multiprotocol Label Switching”, IEEE Communications Magazine,
Page(s): 165–173, May 1998.

 129

[62] Muhammad Rehan Sami and Abdul Waheed, “Content-Aware
Congestion Control in MPLS Networks for Video and Compressed
Images”, to appear in the 3rd ACS/IEEE International Conference on
Computer Systems and Applications, Cairo, Egypt, January 3-6, 2005.

[63] Sanda Dragos and Radu Dragos, “Bandwidth Management in MPLS
Networks”, School of Electronic Engineering – DCU, Broadband
Switching and Systems Laboratory, November 2001.

[64] P. Van Heuven, S. Van den Berghe, J. Coppens, P. Demeester,
“RSVP-TE daemon for DiffServ over MPLS under Linux”,
www.dsmpls.atlantis.rug.ac.be

[65] James F. Kurose and Keith W. Ross, “Computer Networking – A
Top-Down Approach Featuring the Internet”, Pearson Education,
2003.

[66] Cox et al., “On the Applications of Multimedia Processing to
Communications”, Proceedings of the IEEE: 86(5), May, 1998.

[67] Raj Jain, “The Art of Computer Systems Performance Analysis”,
Wiley, April, 1991.

[68] Oscar-Ivan Lepe-Aldama and Jorge Garcia-Vidal, “A Performance
Model of a PC based IP Software Router”, IEEE International
Conference on Communications, Volume: 2, Page(s):1230 – 1235, 28
April-2 May, 2002.

[69] Dimitri Bertsekas and Robert Gallager, “Data Networks”, Second
Edition, Prentice Hall, 1992.

[70] Evi Nemeth, Garth Snyder and Trent R. Hein, “Linux Administration
Handbook”, Prentice Hall, 2002.

[71] Alberto L. Garcia and Indra Widjaja, “Communication Networks –
Fundamental Concepts and Key Architectures”, McGraw Hill, 2004.

[72] “Differentiated Services on Linux”, www.diffserv.sourceforge.net
[73] Hoon Lee et al., “Guaranteeing Multiple QoSs in Differentiated

Services Internet” Seventh International Conference on Parallel and
Distributed Systems: Workshops, Page(s):233 – 238, 4-7 July, 2000.

[74] “Characterization of Multimedia Streams of an H.323 Terminal”,
www.developer.intel.com/technology/itj/q21998/articles/art_5.htm

http://www.dsmpls.atlantis.rug.ac.be/
http://www.diffserv.sourceforge.net/
http://www.developer.intel.com/technology/itj/q21998/articles/art_5.htm

Vita

Muhammad Rehan Sami is a Graduate student of COE Department pursuing

Masters Degree in Computer Networking. He did his Bachelors of Science in

Computer Engineering from Sir Syed University of Engineering and

Technology (SSUET), Karachi, Pakistan in 2002. He has served as an

internee at the Cisco Network Lab of SSUET and holds Cisco Certified

Network Associate (CCNA) title. As Research Assistant in KFUPM, he

worked with the CCSE Network group on network upgrade and trouble

shooting projects and in Research Institute on network research/consultancy

projects. His major areas of research are Network Design, Network

Management and QoS issues in the Internet.

130

	Acknowledgments
	List of Tables
	List of Figures
	Thesis Abstract
	خلاصة الرسالة
	Introduction
	Content Service Model
	Discrete Wavelet Transform based Compression
	Multiprotocol Label Switching
	Sequence of MPLS Operations
	MPLS Forwarding Information Base
	Traffic Aggregation
	Traffic Engineering

	Advantages of MPLS
	Quantitative QoS Evaluation
	Bandwidth
	End-to-end Delay and Delay Jitter
	Packet Loss

	Problem Statement
	Practicality of Proposed Scheme
	Contributions
	Organization of Thesis
	Summary

	Literature Survey
	Compression using DWT
	Congestion Control in MPLS Networks
	Using MPLS-TE to Improve QoS
	QoS Approach in Ipv4 Networks
	Summary

	Problem Definition and Solution Methodology
	Problem Definition
	Solution Methodology
	Bit Mapping and Quality of Service Routing
	End-to-end Flow
	Packet Identification using RTP
	Packet order and Prioritization
	EXP bits Encoding Scheme
	MPLS Router Operations
	Buffer Management at Router

	Summary

	Simulation and Analysis
	J-Sim Network Simulator
	The J-Sim Autonomous Component Architecture
	J-Sim Network Modeling and Simulation
	The J-Sim Core Service Layer (CSL)

	MPLS Support in J-Sim
	MPLS Model within J-SIM

	Implementation of Content-Aware MPLS Routing in J-Sim
	New Packet Header for DWT Encoded Packets
	Enhanced MPLS Router with Content-Aware Routing Functionalit
	Additional Changes

	Simulation Experiments
	Experimental Design
	Experimental Parameters
	Metrics
	Factors
	Network Model
	Simulation-Based Evaluation
	Comparison of Average end-to-end Delay and Jitter
	Comparison of Packet Loss

	Heterogeneous Network Model
	Comparison of Average end-to-end Delay and Jitter
	Comparison of Packet Loss

	Service Ratings

	Summary

	Implementation of Content-Aware MPLS Router
	The Linux iptables and netfilter
	Life of a packet within the Linux Box
	Matching Packets
	Targets/Jumps

	QoS and Traffic Shaping
	Traffic Shaping Strategies
	Packet Queues
	QoS Guarantees

	Queue Disciplines
	Classless Queuing Disciplines
	Classful Queuing Disciplines
	The PRIO qdisc
	Stochastic Fairness Queuing (SFQ)

	The MPLS-Linux Project
	Implementation of FIB in MPLS-Linux

	Content-Aware MPLS Router Architecture
	Ingress Mode
	Marker – Content-Aware Routing Module
	Classifier – QoS Module
	MPLS Module

	Switch Mode
	Egress Mode

	Summary

	Measurement Based Performance Evaluation
	Experimental Test-bed
	Hardware/Software Platform
	Traffic Generation Tools

	Goals and Hypotheses of Experimental Verification
	Experimental Design and Parameters
	Metrics
	Factors
	Experimental Scenarios

	Analysis of Results
	Comparison of Packet Loss
	Comparison of Image Quality and Received File Size
	Comparison of Average end-to-end Delay and Jitter
	System level Measurements

	Heterogeneous Network Backbone
	Comparison of Packet Loss
	Comparison of Image Quality
	Comparison of Average end-to-end Delay and Jitter

	Summary

	Conclusion
	Limitations and Further Work
	DWT compressed Video
	Support for Multicasting
	Comparison with IPv6 and ATM

	Summary and Contributions of Thesis

	Appendix A: Network Traces
	Appendix B: MPLS Configuration Files
	Appendix C: System Level Measurements
	Bibliography
	Vita

