
�

An Architecture for Secure Document Flow
& Archival Systems

BY

Hussam Eddin Abdullah Al-Sawadi

sa.edu.kfupm. hussam@ccse

�

A Thesis Presented to the

DEANSHIP OF GRADUATE STUDIES

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

IN

COMPUTER SCIENCE

�

�

�

��������	����
�����

�

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

DHAHRAN �����, SAUDI ARABIA

DEANSHIP OF GRADUATE STUDIES

This thesis, written by

HUSSAM EDDIN ABDULLAH AL-SAWADI

under the direction of his thesis advisor and approved by his thesis committee, has been

presented to and accepted by the Dean of Graduate Studies, in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

Thesis Committee�

 �

Dr. Muhammad S. Al-Mulhem (Chairman)�
�

 �
Dr. Kanaan Faisal (Member)�

�
 �

Dr. Muhammad Shafique (Member)�
�

 �
Department Chairman, Dr. Kanaan Faisal�

 �
Dean of Graduate Studies , Dr. Mohammad A. Al-Ohali�

 �
Date

iii�

ACKNOWLEDGMENTS

First and foremost, all of my thanks and praises are to my god, Allah, for his

boons and helps during my life. He prepared the suitable circumstances for my

M.Sc. study and research that I did not expect. This research can not appear

without his desiring.

Second, since the Prophet once said “Who does not thank people, he does not

thank Allah”, I would like to express my deepest appreciations to the chairman of

the thesis committee, Dr. Muhammad Al-Mulhem, for his effective advice and

support. Also, it gives me great pleasure to appreciate the other committee

members, Dr. Kanaan Faisal and Dr. Muhammad Shafique, for their fruitful

remarks and comments. Moreover, I would like to acknowledge Dr. Subbarao

Ghanta for originating the idea of this thesis, reviewing the first draft of the

developed model and teaching me four courses during my master level. I also wish

to thank Dr. Jarallah Al-Ghamdi for his comments on this work.

Also, my warmest and most sincere thanks go to my family members,

especially my mother, father and wife. I am very appreciative for their care,

encouragement and sacrifice.

Last but not least, I would like to thank all those who helped me in this

research even though I did not mention their names. May Allah bless this work and

benefit humankind with it?

iv�

TABLE OF CONTENTS

ACKNOWLEDGMENTS______________________________________ iii
LIST OF TABLES __ viii
LIST OF FIGURES __ ix

THESIS ABSTRACT ___ xi
THESIS ABSTRACT (ARABIC)_______________________________ xii

��������	�- INTRODUCTION ________________________________�

 ��� BACKGROUND ...�
����� Document Procedural Definition ..�
����� Computerized Document Models ...�
����� Document Management Systems (DMS) ...�
����� Document Flow Types..�
����� Short History Of Markup Languages..�
����� XML..	
����	 Using XML for Structuring Documents ...��
����
 XML Document Templates ..��
����� XML Related Terminology...��
������ WebDAV..��

 ��� �PROBLEM DESCRIPTION...��

���� AIMS AND OBJECTIVES OF THIS THESIS..��

��	� ORGANIZATION OF THE REMAINING CHAPTERS.................................�

��������
�- LITERATURE SURVEY__________________________��

��� �ENGINEERING DOCUMENT MANAGEMENT SYSTEM (EDMS)��

���� ALLIANCE..��

���� DocMan ..��

��	� DReSS...��

v�

�.�� OXFORD RADCLIFFE HOSPITAL DOCUMENT MANAGEMENT��

���� BSCW...�

���� DOCUMENT FLOW USING SMARTCARD SYSTEM..................................��

���� EnAct..��

��
� DOCUMENT MANAGEMENT WITH INTRANET SETTINGS (AN
EXTENSION OF LOTUS NOTES) ...�	

���� �AllianceWeb...��

����� GroupWriter..��

����� Web-BASED GROUPWARE SYSTEM BASED on WebDAV PROTOCOL�

���� �
������������������������������
 ..�

���	� FORM FLOW MODEL ...	�

����� X-FOLDERS..	�

����� CONCLUSION..	�

����������- DFWDAV MODEL ______________________________		

���� THE SPECIFICATIONS OF DFWDAV..		

���� THE DFWDAV COMPONENTS..	�
����� The Server Subsystem...��
����� The Client Subsystem ...��

��� THE FUNCTIONS OF DFWDAV ...��
����� Creating the Documents..��
����� Updating the Documents...��
����� Defining the Document Flows ..��
����� Defining and Querying the Document Metadata ..��
����� Routing the Documents...��
����� Notifying the Users ...��
����	 Archiving the Documents ...��

��	� UTILIZING DFWDAV ..��
����� Applications ..��
����� Scenario...�

���� THE FULFILLMENT OF THE SPECIFICATIONS.......................................��

����������- WEBDAV AS AN INFRASTRUCTURE _____________��
	��� THE REQUISITES OF DISTRIBUTED WEB COOPERATIVE
APPLICATIONS..��

vi�

	�� �THE PROBLEMS FACED BY WEB COLLABORATIVE SYSTEMS USING
HTTP PROTOCOL...��

	��� WEBDAV OBJECTIVE AND GROUPS ...��

	�	� WEBDAV METHODS ...��
 ����� �HTTP Extensions for Distributed Authoring...	�
������ Versioning Extensions to WebDAV...	�
������ WebDAV�Access Control Protocol ..		
 ����� �WebDAV Search ...		

��������
�- IMPLEMENTATION ____________________________��

��� �WEBDAV PRODUCTS..��

���� IMPLEMENTATION OF A COLLABORATIVE AUTHORING SYSTEM �	

���� THE SERVER SUBSYSTEM..��
����� The WebDAV�Server..
�
����� The Document Repository ..��
����� The Routing And Reminding Agent ...��
����� The Flow Repository...��
����� The Mail Server ..���

��	� THE CLIENT SUBSYSTEM...���
����� WebDAV clients...���
����� The Document Flow Client...��

����� The Local Temporary Document Repository ...���
����� Non
WebDAV Document Editors..���
����� The Flow Definer..���
����� The Mail Client ...���

����������- COMPARISON AND ANALYSIS _________________���

���� COMPARISON ...���

���� ANALYSIS...���

���� COMPARISON BETWEEN THE DFWDAV MODEL AND OTHER
MODELS ..��	

����������- CONCLUSION ________________________________���

 ��� �CONTRIBUTION...��

���� FUTURE WORK ..���

vii�

APPENDIX A - EXAMPLES OF WEBDAV METHODS ___________���

��������������...���

����������������������
�����������������..................................���

�����������..�	�

��	�VERSIONING ...�		

������������������..�	�

�������������...�	

Nomenclature __���

Bibliography ___���

Vita __��

viii�

LIST OF TABLES

Table Page
��� Work Distribution of the Authoring Scenario……………….. ��
��� The Flow Properties of Chapter ��in the Scenario …………... �

	�� WebDAV Groups and Their Documents ……………………. ��
	�� The Methods of the Properties ………………………………. ��
	�� Collections and Namespace Methods ……………………….. ��
	�	 Locking Methods ……………………………………………. ��
	�� Versioning Methods …………………………………………. ��
	�� Access Control Methods …………………………………….. �

	�� Search Method ………………………………………………. �

��� System Entities ……………………………………………….

��� System Relationship Types …………………………………..

��� The Attributes of the Entities ………………………………... ���

��� Comparison between Different Models ……………………... ���
��� The DFWDAV Model Characteristics According to the

Comparison Factors ………………………………………….

���

ix�

LIST OF FIGURES

Figure Page
��� Document Flow Types ………………………………………. �

��� EDMS Architecture ………………………………………….. ��
��� An Example of EDMS Document States ……………………. ��
��� Alliance Architecture ………………………………………... ��
��	 Alliance Document Fragments………………………………. �	
��� DocMan Architecture ………………………………………... ��
��� DReSS Architecture …………………………………………. ��
��� The Document Flow in Oxford Radcliffe Hospital Document

Management System …………………………………………

�

��� Document Flow using Smartcard System ………………….... ��
��
 The Lifecycle of Producing Documents in the System

Extended Lotus Notes ………………………………………..

��

���� The Components of AllianceWeb System …………………... ��
���� GroupWriter Document Development Stages ……………….. ��
���� Office �����Annotation System ……………………………... 	�

��� The DFWDAV Model as an Infrastructure for Collaborative

Applications ………………………………………………….

	�

��� The Architecture for the DFWDAV …………………………. 	

��� Analyzing the Flows by the Routing and Reminding Agent ... ��

��� Implementation Components …………………….………….. �	
��� Apache Service Monitor Screen after Loading WebDAV

Module...…………………….…………………….………….

��

��� Accessing Tamino WebDAV Server From a Web Browser … ��
��	 Accessing SAP Portals from a Web Browser .………………. �

��� Accessing Sharemation Site by the Internet Explorer ..………
�
��� The Agent Processing Flowchart …………………………….
�

x�

��� GetNextUserInFlow Flowchart ……………………………....
�
��� Handle_Download Flowchart………………………………...
	
��
 Handle_Working Flowchart ………………………………….
�
���� Handle_Upload Flowchart …………………………………...
�
���� Period_Consumption Flowchart ……………………………...
�
���� Tracing Flow Progresses Screen ……………………………..
�
���� The State Diagram of the Flow Progress…………….……….
�
���	 The ER Diagram of the Document Flow Implementation …... ���
���� The DAV Explorer Interface .………….………….…………. ��	
���� Tamino WebDAV Basic Client ..………….………….……… ��	
���� Accessing WebDAV Repositories via Web Folders ………… ���
���� Direct Editing of WebDAV Documents using Microsoft

Office…………….………….………….…………………….

���

���
 Accessing WebDAV Repository via a Web Folder .………… ���
���� The JEdit with WebDAV plug-in ...………….………….…… ���
���� XML Spy Accessing WebDAV Repository …………….…… ���
���� The Documents Screen of the Flow Client ………………….. ��

���� The Notifications Screen in the Flow Client ………………… ��

���	 User Downloading Document Flowchart ……………………. ���
���� User Uploading Document Flowchart ……………………….. ���
���� Defining Users Screen ……………………………………….. ���
���� Defining Documents Screen …………………………………. ���
���� Defining Flows Screen ………………………………………. ��	
���
 An Email Generated by the Agent …………………………... ���

xi�

THESIS ABSTRACT

Name: HUSSAM EDDIN ABDULLAH ALSAWADI

Title: AN ARCHITECTURE FOR SECURE

DOCUMENT FLOW & ARCHIVAL SYSTEMS

Degree: MASTER OF SCIENCE

Major Field: INFORMATION & COMPUTER SCIENCE

Date of Degree: � �������

Most document collaborative systems enclose� implied document flow

models which are suitable only for their systems. Moreover, these systems can

concentrate on their foremost objectives if they utilizes generic document flow

model. In this research, I have investigated the development of a generic

architecture for Document Flow model based on WebDAV protocol (DFWDAV),

which are intended to overcome the limitations of the specialized models.

Moreover, this model can be utilized as an infrastructure for document systems.

Keywords: Document Flow model based on WebDAV protocol (DFWDAV),

Document Flow, Cooperative Systems, Office Automation, World Wide Web

Distributed Authoring and Versioning (WebDAV) Protocol.

King Fahd University of Petroleum and Minerals, Dhahran.

� �������

xii�

THESIS ABSTRACT (ARABIC)

���������	
��

�

���
���� ���������������������	
���
	��������

���������������������������������	�������� !"�

������������#��$%�&�'�

��	������()��* +�,����#���- �'�#.'�

��������� ��!����/�0��1��2����3"�
�

����������������	��45�6�7#����%8��!9��.%������������:�9���3�.'����:�90��;<=��:�>'���?���@ �5�7#��A�>��

�������������������������	%������45�6��'�- ���%+���5B��!+�+0���C��	"��7#��DEF��G��� H��:�90��;<3C��?���;<"�I��	J9

�������������7#��	:%.'���������	��45�:�������� !3=�F3
�K�����3+F��L�E���FM�������
N���O��P�Q�����RS�T��U !�V%���

���W !X��!T�.����!3��
 �.�������Y�Z��45�:����[�!��\>%
��?����������:�90��!%8��!�
E��]%�
�G��� H�45�:�����<C���̂_
B

�������?�

�"#$!�%�����������7#��	:%.T������������	��45�6L�E���FM����������!T�.����!��
 �.����
N���O��P�Q�����RS�T��U !�V%���`�

����������3������3�	�a�������:�90���!9��.%�����a���������* �� T���%b����a���L�E���FM��
N���O��P�Q�����RS�T��U !�V%���

�!T�.����!��
 �.��?�

����&���'���()�*�+*��,
����-�.
)���(���/�

�0*1��2��3�	���$4

��

�

���������

INTRODUCTION

The document flow across the Web has become an essential task in document

collaborative systems which serve distributed offices and working groups.

Moreover, documents are used as a means of information interchange and they are

designed to explicitly serve the function of effective communication. On the other

hand, computerized document collaborative systems are emerging technologies.

Furthermore, several such systems use built-in document flow functions. Some

examples of these applications are cooperative authoring, report evaluating and

proposal requesting.

�.� BACKGROUND

The selected subject deals with several issues and makes use of results from

several different areas. These include document management systems, XML

language and WebDAV protocol. This section includes brief descriptions of these

technologies as regards the background.

At the outset, several definitions of a document are considered. After that,

three main models for documents are stated. Then, brief discussions about

�

�

document management systems and document flow types are presented. Next, brief

information about XML is offered. This information includes a short history of

markup languages, provides a brief overview of XML, shows how a structured

document can be described by XML by providing different templates for several

document types, and defines some terminology related to XML. Finally, an

introduction to the contemporary communication protocol WebDAV is provided.

�.�.� Document Procedural Definition

There are many definitions of a document. The following are some views of

!"#$%&'(�!&)*'*(*"'+�,!,-(&!�)."%�/�01

- It is any container of coherent information which has been assembled for

human understanding.

- It is a notation that we have invented for storing information, so that we do

not forget it.

".&"2&.3�,�!"#$%&'(�*+�!&)*'&!�,+�/�01�

- It is a set of information pertaining to a topic, structured for human

comprehension, represented by a variety of symbols, stored and handled as a

unit.

A container and storage of information are very general phrases since they vary

in their formats (e.g. papers, videotapes, computer files, etc.). Yet, for the purpose of

this study, I will focus on computerized documents. From the low-level view of

computers, those documents are collections of binary digits. On the other hand, the

�

�

outside appearances of computerized documents can take several diverse shapes,

depending on their high level purposes. The following list includes different types of

-"++*45&�#"%-$(&.*6&!�!"#$%&'(+�/�03�/	03�/�03�/�03�/�03�/�03�/
01

- Articles.

- Source code.

- Request for proposals.

- Proposals.

- Evaluation reports.

- Mathematical equations.

- Scientific papers.

- Books.

- Contracts and agreements.

- Drawings, blueprints and photographs.

- Reports.

- Email and voicemail messages.

- Manuals and handbooks.

- Business forms.

- Presentations.

- Correspondence.

- Memos.

- Transcripts.

�

�

In spite of the fact that document types affect most document systems, it is

possible to develop a document flow model based on WebDAV protocol which will

not depend upon document types.

�.�.� Computerized Document Models

There are several models of computerized documents. Three main models have

been used according to /��0:

�- Unstructured sequence of text: The documents in this model are represented

as lengthy sequences of text.

�- Semi-structured data with nodes and links: The documents in this model are

treated as graphs with nodes and links with strange structure.

�- Fully structured data with known structure schema: The documents in this

model are represented by a well-defined structure.

�.�.� Document Management Systems (DMS)

The document management is defined as “the process of managing

documents through their lifecycle from inception through creation, review, storage

,'!�!*++&%*',(*"'�,55�(7&�8,9�("�(7&*.�!&+(.$#(*"'�:�/�0�

Document management systems encompass several key components, each of

which can be thought of as a stand-alone concept, but together they contribute to a

�

�

powerful inclusive system for the management of information. Document

%,',;&%&'(�)$'#(*"'+�*'#5$!&�/�03�/��03�/��01�

• Storage and retrieval.

• Status reporting.

• Access control.

• Indexing.

• Version control.

• Workflow management.

• Document conversion.

• Commenting.

• Link management.

• Linguistic analysis.

Moreover, since the Web attracts most application areas, document management

+9+(&%+�,.&�($.'*';�("�(7&�< &4�&'2*."'%&'(�/�03�/��0��

�.�.� Document Flow Types

There are several types of document flows such as sequential, parallel and

4.,'#7*';�)5"8+�,+�+7"8'�*'��*;$.&��������7&�+*%-5&+(�(9-&�")�(7&%�*+�(7&�+&=$&'(*,5�

flow in which documents route through linear steps. The second flow type is the

parallel flow where documents can route to several users at the same time as

illustrated in the same figure. Finally, the branching flow is a conditional path flow

�

�

based on some conditions which can be related to time, user operations or system

actions.

�.�.� Short History Of Markup Languages

Markup languages ,.&�$+&!�("�!&+#.*4&�!"#$%&'(+�/��0���5(7"$;7�(7&.&�,.&�

several markup languages, it is expected that eXtensible Markup Language (XML)

8*55�!"%*',(&�(7&�+#&'&�*'�(7&�#"%*';�9&,.+���'�(7&��
��+3��>
 �#.&,(&!�,�%,.?$-�

language that was called General Markup Language (GML). The purpose of that

language was to solve the problems resulted from interchanging documents between

!*))&.&'(� -5,()".%+�� �'� (7&� �
��+3� (7&� International Organization for

Standardization (ISO) used GML to produce the Standard Generalized Markup

Figure ������������������������

(a) Sequential Flow

(b) Parallel Flow

(c) Branching Flow ?�

�

	

L,';$,;&� /��
�0� ,+� ,'� "))*#*,5� +(,'!,.!� /���� ���
0�� ��
�� *+� ,� '"(,(*"'�)".�

representing documents and making their inherent structure explicit. Many large

organizations have used SGML for describing documents. SGML is a robust and

strong language; despite this fact it is complex and expensive to implement and

maintain and hence it is not suitable to be readily used.

Several languages are derived from SGML such as the ubiquitous Hypertext

Markup Language (HTML) and its generalizing descendent XML. HTML was

#.&,(&!�*'�(7&�5,(&��
��+���(+�-$.-"+&�8,+�("�$'*)9�(7&�8,9�")�+(".*';�,'!�.&(.*&2*';�

data between researchers. It has been built on the concept of hypertext in which one

can link documents and transfer between them by clicking parts of text. In the early

�

�+3���
��4&#,%&�,�%,@".�-5,9&.�*'�(7&�*')".%,(*"'�&A#7,';&�,%"';�-&"-5&�,55�

over the world because most documents on the World Wide Web (WWW) were

described by HTML. Since HTML was not originally designed to be used by WWW,

several limitations of HTML became noticeable limitations. The obvious suitable

,5(&.',(*2&�8"$5!�4&�B
��5,';$,;&�/��03�/�	0�

�.�.� XML

The eXtensible Markup Language is a meta-language defined by the World

Wide Web Consortium (W�C), derived from SGML, that can be used to describe a

broad range of hierarchical markup languages. It is described and defined as a W�C

�&#"%%&'!,(*"'� /��0�� B
�� 7,+� ,� +(,'!,.!� +9'(,A� (7,(� *+�)5&A*45&� &'"$;7� ("�

.&-.&+&'(�@$+(�,4"$(�,'9�?*'!�")�*')".%,(*"'�/�	0���7&�.*#7�(""5+�")�B
��#,'�4&�

�

operated together to provide modern software architectures (e.g. architecture for a

!"#$%&'(�%,',;&%&'(�+9+(&%0�/��0�

XML Features:

• It is an extensible syntax; hence it is not limiting anybody.

• XML is similar enough to HTML which enables one to learn its basics in

a short time.

• XML’s popularity and support from the industry means there is no

shortage of expertise and products to support its development.

XML Document Syntax:

An XML “document” consists of a prolog, processing instruction(s), a root

element (with optional attributes) and a hierarchy of sub-elements (optionally

with attributes), entities, and (parsed) character data. XML has no predefined

elements, and it is left to the author to define those elements that make sense for

7*+�,--5*#,(*"'�/�	0�

An XML Document starts with a prolog. The minimal prolog contains a

declaration that identifies the document as an XML document. The declaration

may also contain additional information. The prolog can also contain definitions

of entities and specifications. An entity is an item that is inserted when one

references it from within the document. A specification tells which tags are valid

�

�

in the document. Both the entities and the specifications are declared in a

Document Type Definition (DTD) that can be defined directly within the prolog,

as well as with pointers to external specification files.

An XML Document can also contain processing instructions that give

commands or information to an application that is processing the XML data.

Processing instructions have the following format: <?target

instructions?> where the target is the name of the application that is

expected to be doing the processing, and the instructions are a string of

characters that embodies the information or commands for the application to be

processed.

Each XML document has a root element that consists of elements

delimited by tags. Attributes can be attached to elements, as part of their opening

tag. Elements can be nested and thus form a nice hierarchical representation.

XML uses the HTML angular brackets (i.e. < and >) as tag delimiters but

XML tags specify what the data means, rather than how to display it. Also, XML

has an accurate syntax: every opening tag (e.g. <someTag>) must have its

corresponding closing tag (e.g. </someTag >). There should not be any cross (i.e.

which tag is opened first, should be closed first) between tags. Finally, XML tags

are case-sensitive and so <tag> is different from <TAG>. On the other hand,

empty tags use special delimiters (e.g. <someEmptyTag/>) that combine the

closing and opening tags.

XML supports two different types of documents: well-formed and valid.

Well-formed documents simply respect the syntax defined by the XML

�

��

specification. Valid documents not only respect the syntax but also define a

limited set of tags in a DTD. The DTD defines which elements are authorized

and where. For example, the DTD may prescribe that <alternate> elements

can appear in <email> elements but not in <name> elements.

Example:

Here is an example of some XML data which might be used in a messaging

application:

<message>

 <to>you@yourAddress.com</to>

 <from>me@myAddress.com</from>

 <subject>XML Is Really Nice</subject>

 <text>

 In how many ways is XML nice?

Let me count the ways...

 </text>

</message>

Applications of XML:

XML is being used for a broad variety of applications including:

• Vertical markup languages for mathematics, chemistry, and other

document-centric publishing applications.

• E-Commerce solutions.

�

��

• Intra-, extra-, and inter-enterprise application messaging.

Indeed the most popular applications for XML are not just as fancy

replacements of HTML but also as a general format for data-exchange. It is

expected that XML will become the standard for data interchange on the Web

/��0�

�.�.� Using XML for Structuring Documents

XML, like its parent SGML, is widely acceptable to be used for structured

!"#$%&'(+�/��0���(�*+�&A-&#(&!�(7,(�!"#$%&'(�,--5*#,(*"'+�8*55�(,?&�(7&�,!2,'(,;&+�

")� B
�� ('"5";*&+� /�03� /��0�� �&2&.,5� .&#&'(� ,--5*#,(*"'+� $(*5*6&� B
��)".�

+(.$#($.*';� (7&� !"#$%&'(+� /�03� /	03� /��0��
".&"2&r, there are several individual

experimental works to define XML document type definitions (DTD) for different

!"#$%&'(�(9-&+�5*?&�,.(*#5&3�4""?3�-."-"+,53�-,-&.3�&(#�/��0���(�(7&�+,%&�(*%&3�(7&�

!*.&#(*"'�")�+(,'!,.!*6*';�+&2&.,5����+�*+�;."8*';�),+(�/�	0�

�.�.� XML Document Templates

While XML represents data using tree-structures, XML can represent other

data structures because of its adaptability. Several templates for different data

+(.$#($.&+�,.&�-.&+&'(&!�'&A(�/�	01

Forms:

Using XML, a form can be represented using the following template:

�

��

<FormName>

 ��������	

 �
�
�

 ���������	

 �������
	

 �
�

 ��������
	

 .

 .

 .

 < fieldn>

 datan

 < /fieldn>

</FormName>

Tables:

Using XML, a table can be represented using the following template:

<TableName>

<row�	

 �����	

 �
�
�����

 ������	

 ����
	

 �
�
���
�

 �����
	

 .

 .

 <coln>

 �
�
�����

�

��

 </coln>

������	

����
	

 �����	

 �
�
�
���

 ������	

 ����
	

 �
�
�
�
�

 �����
	

 .

 .

 <coln>

 �
�
�
���

 </coln>

�����
	

.

.

.

<rowm>

 �����	

 �
�
�����

 ������	

 <���
	

 �
�
���
�

 �����
	

 .

 .

 <coln>

 data[m,n]

 </coln>

</rowm>

�

��

</TableName>

�.�.	 XML Related Terminology

This subsection identifies several terminologies which are related to XML,

such as DTD, XSL, CSS, SAX and DOM.

DTD:

A Document Type Definition (DTD) provides a specification for an

XML document. It specifies structural elements and markup definitions that

#,'�4&�$+&!�("�#.&,(&�!"#$%&'(+�/�	03�/��0�

XSL & CSS:

As stated above, one of the best features of XML is the separation of

the content from the display. Therefore, formatting attributes are not part of

XML documents or DTDs. Instead, XML can rely on either eXtensible Style

Language (XSL) or Cascading Style Sheets (CSS). Both XSL and CSS are

style-sheet mechanisms, which provide browsers with formatting and

displaying information. XSL is an advanced XML-specific style-sheet

mechanism whereas CSS applies the HTML style-+7&&(� %,'*+%� � /��),

/�
03�/��03�/��0.

�

��

SAX & DOM:

The most popular APIs (Application Program Interfaces) which are

used to process XML documents are SAX and DOM.

The Simple API for XML (SAX) is an event-driven API. It generates events

such as the start or the end of an element. Depending on its tasks, each

application uses the appropriate events.

The Documents Object Model (DOM) converts an XML document to

a hierarchical tree. The nodes of the tree represent the document’s elements

and content. The tree can be easily accessed and processed by an application

or programming language.

Since DOM provides the hierarchical trees of XML documents, it

requires more memory than SAX which does not need any data structure.

On the other hand, while DOM is more flexible because it is suitable for

applications which use an XML document as a whole, SAX is more efficient

because it can be used w*(7�;*,'(�!"#$%&'(+�87*#7�!"�'"(�)*(�*'�%&%".9�/��03�

/��03�/��0�

�.�.�
 WebDAV

The developed document flow model, namely Document Flow model based

on WebDAV protocol (DFWDAV), is completely established over the World Wide

�

��

Web Distributed Authoring and Versioning (WebDAV) protocol. This novel

protocol is under current development by the WebDAV working groups in the

Internet Engineering Task Force (IETF) and it is an extension to the Hypertext

Transfer Protocol (HTTP). The WebDAV extension defines a standard

infrastructure for collaboration across the Web. WebDAV makes the Web as a

writeable, collaborative medium. Today, collaborating people in geographically

distant locations interchange information through documents. Usually, they use

emails to notify each other of changes to documents, fill directories with revisions

and mail questions about what is finished and what is still under construction. It is

obvious that this method of collaborative work necessitates superfluous efforts and

consumes time. In contrast, WebDAV provides several features which simplify the

teamwork on the Web. Those features include supplying document properties like

author and creation date, editing Web documents in place, providing a locking

mechanism to prevent the lost update problem, applying access privileges and

+$--".(*';�2&.+*"'*';�/
03�/�	03�/��0��

Using WebDAV as an infrastructure for a document flow system provides

several advantageous features such as simplifying works, reducing efforts and

removing the bulk of responsibility�)."%�(7&�,--5*#,(*"'+�/�03�/��0�

Comprehensive but recapitulated information on WebDAV protocol is presented in

!&(,*5�*'��7,-(&.� 	� ,+�&A(.,�*')".%,(*"'�*+�.&=$*.&!�("�&%-,(7*6&�(7&�DFWDAV

model.

�

�	

��������	
���

��������

Most contemporary organizations use manual document flow systems. First,

an employee initiates a document. Then, such a document flows (routes) through a

specific path of other employees. These employees browse, revise, update, modify or

finalize the document. The result is several different versions originated from one

document. The problems of out-dated, incomplete, inaccurate, hard to maintain, lost

documents etc. are all attributed to manual document flow systems. Consequently, it

is difficult to keep track of changes or to compare different versions of a document.

Even the task of determining the current status of a document (current location,

authors, changing dates, etc.) can be a demanding task, especially in large

organizations. In summary, several users tend to collaborate to produce documents

/�03�/
03�/��0�

Several problems may be considered as special cases of the previous problem,

depending on the organizations, their users and the nature of the documents. For

&A,%-5&3�(7&�#"')&.&'#&�%,',;&%&'(�-."45&%�/�0�*+�4,+*#,559�,�+-&cial instance of

the described problem. The organization in the conference management problem is

a scientific community that manages conferences. The conference management

problem documents are the papers which are submitted to the conferences. The

documents in a conference flow between the authors, the referees, the conference

editor and the chair.

Another special case of the thesis problem is the production of documents in

the context of an electronic market application, namely a platform dealing with

�

�

req$&+(+�)".�-."-"+,5+�/�0���'�(7*+�-."45&%3�+&2&.,5�$+&.+�,(�(7&�4$9&.�+*!&�,'!�(7&�

supplier side collaborate to produce several kinds of documents. Those documents

include proposals, requests for proposals, evaluation reports and business

descriptions.

The final example of the document flow is the collaborative authoring

systems /�03�/��03�/��03�/�
0. The users of the collaborative authoring systems are the

authors, reviewers and editors. These users cooperate to create, check, improve and

confirm authoring documents such as books, scientific papers or even poems.

�������
��������
����

�������
���

�

Within the scope of the thesis work, the researcher aims to design and

provide a high-quality document flow model based on WebDAV protocol. This

model provides a document flow infrastructure for different document collaborative

systems which support multi-user works. The major functions of the model include:

• Creating flow definitions.

• Assigning flow definitions to documents.

• Automating document flows between users according to the assigned

flow definitions.

• Analyzing document flows.

• Notifying users by appropriate information via emails.

• Providing historical information about the actual flows of documents.

�

��

����������������������
��
�������������
�

The remaining chapters of this thesis are arranged as follows. Chapter two is

a brief presentation of several document flow models in different applications. The

DFWDAV�,.#7*(&#($.&�*+�+7"8'�*'��7,-(&.�����*'#&�(7&�DFWDAV architecture is

established over WebDAV pr"("#"53��7,-(&.�	�-.&+&'(+�,�+7".(�,'!�#"'#*+&�+($!9�")�

(+� 8".?;."$-+3�)$'#("'+3� ,'!� +(,($+�� �7,-(&.� ��)"#$+&+� "'� (7&� *%-5&%&'(,(*"'�

*++$&+�� �'� �7,-(&.� �3� ,� #"%-.&7&'+*2&� #"%-,.*+"'� 4&(8&&'� (7&� +($!*&!� ,'!�

DFWDAV� %"!&5+� *+� -.&+&'(&!�� �*',5593� �7,-(&.� �� #loses the thesis by the

conclusions and recommendations.

���

���������

LITERATURE SURVEY

In this chapter, I will present a summary of several document flow and

archival models in different groupware systems which have a strong relation to the

present study. Most of these groupware systems provide extensive functionality

because they were designed by great and impressive efforts extended for several

years by dedicated teams. However, for the purpose of this study I will concentrate

on the research subject of document flow and archival models. Fifteen different

models are discussed in a chronological order because time is an important factor in

the progress of this area. This will be settled in the Analysis and Comparison

chapter.

����
����

����������
����ANAGEMENT SYSTEM (EDMS)

This system was developed as a joint project between the department of

computer science in Helsinki University of Technology in cooperation with KONE

�5&2,(".+�87*#7�*+�,�5,.;&��*''*+7�&5&2,(".�%,'$),#($.&.�/��03�/��0���7&�"4@&#(*2e of

this system is to manage engineering documents such as engineering drawings. The

system architecture is based upon the client/server architecture, the Unix operating

�

��

system and the LAN network. The server manages a relational database that

contains the documents and their attributes. The clients require special software

(tool), which is used to read and write the documents from and to the server. A user

who wants to read or to modify a document must first lock it on the server and then

copy it to an ordinary local file using the software tool. When the user finishes the

%"!*)*#,(*"'3�7&�#"-*&+�(7&�)*5&�4,#?�("�(7&�+&.2&.�,'!�.&%"2&+�(7&�5"#?���*;$.&�����

shows the system plan. It is possible to restrict the user access (read and write) to the

documents by defining the access rights on the documents for each user.

The system provides several excellent features. For example, it is possible to

define a state graph for the document flows. When a new document is created, it is

moved to the first state. An ex,%-5&�")�(7&�+(,(&�;.,-7�*+�+7"8'�*'��*;$.&�������5+"3�

Document Database

EDMS Server

Administrator’s tool

User interface�

Object manager�

Design tool

EDMS C-lib

File system

X Window System�

Relational database system

���� �������!�"#�$ �%������ ���

�

��

this system can generate document versions explicitly by the users. A newly created

document version is the same as the original version and can be modified until it is

used as the parent of another version. Moreover, it is possible to send asynchronous

notifications from the server to the clients to inform them about recent changes.

�

�����		����

Alliance is a structured cooperative application which works on a WAN

(Wide Area Network). It allows authors on different Web sites to create and

-."!$#&�!"#$%&'(+�*'�,�+(.$#($.&!�%,''&.�/��03�/��0���".�&,#7�!"#$%&'(3�$+&.+�,.&�

assigned several roles. These roles are the manager, the writer, the reader and the

null roles. They can be assigned to a full document or part of it. The manager role is

the highest role because any user with this role can assign and change the user roles.

On the other hand, while a user with the writer role can update the document or

part of it, a user with reader role can only read it. Finally, the user with null role on

a document part does not have any access to it.

The assignment of the document roles to the users can be on any part of the

document. So, any user can have different roles on different parts of a document.

Each document is divided automatically to several fragments depending on the

Draft

Ready

Checked

Approved
���� �������$��!&'������(�!�"#����������#�'���

�

��

distribution of the user roles. Although any user may be given a particular role on a

certain document, this user will not be able to play it at any time. The reason behind

this drawback is that another user with the same or higher role used it in advance.

In other words, only one user at a time can play the writer or manager roles. A

document is represented by a set of files which contains document fragments, user

roles for each fragment, the order of the document fragments and the current state

for each fragment. Each fragment is saved in a separate file. Alliance works using

�����"2&.�#5*&'(C+&.2&.�,.#7*(&#($.&�8*(7�+-&#*,5�+#.*-(+�,+�+7"8'�*'��*;$.&�����

 A document passes via several phases before it reaches its final shape. First,

the document owner creates the list of the users who will work on the document.

Second, he sends them a notification message with the necessary information to

access the document. Thus, the users can reach the document and contact each

other. The document and all needed information are copied on each site where they

are required. The needed information includes the document fragments and

���� �������$���'����$ �%������ �

�

��

%,',;&%&'(�*')".%,(*"'���*;$.&� ��	� +7"8+�,'�&A,%-5&�")�(7&�!*+(.*4$(*"n of the

fragment copies of a document. To keep the consistency of the copies, updating a

copy should be reflected on the other copies but the updating process of the copies is

not necessary to be in the exact time.

Editing a document requires a special treatment to ensure that it is not

possible to update the same fragment simultaneously in two different sites. This

treatment is based on the notation of master and slave fragments. While there is

only one master copy among each set of fragment copies, the rest are slave copies. A

master copy is a fragment which a user with a manager or a writer role is working

on. Only one user can act with the manager or the writer role on a master copy

while several users with the reader or the null roles can work on slave copies. The

set of all master copies of the document fragments represents the current state of the

document. Therefore, it is obvious that master copies can migrate from one site to

another.

���� �������$���'�������������� '������

�

��

����������

DocMan is a document management system which supports distributed

#""-&.,(*2&�8".?�4,+&!�"'�(7&��'(&.'&(�,+�+7"8'�*'��*;$.&�����/��0���,#7�!"#$%&'(�

has an associated document folder (a document store) on a client. Document folders

are managed by the distribution and replication service. Each Document folder can

hold a set of the document revisions. A document revision is produced when a user

updates a document. Updating the document leads the system to mark the original

document as a new revision and to consider the updated document as the active

release. Revisions are always read-only and each document may be revised several

times.

date
creator
comment

Document Folders

Revisions

Client

Distribution &
Replication Service

Document store (Distributed)

Local document
directory

Local information
store

Domain information store
(replicated)

WAN

���� ����������"'��$ �%������ �

Server

�

��

 The document passes through several stages before it reaches its final shape.

Initially, the document folder contains the first revision of the document and the

access information. If a user has access to the document, he can fetch it or one of its

revisions from the document store to his local disk. The local disk copy is an editable

draft copy of the original fetched document. This copy is called a document draft

because it is a private working copy of the document. Creating the document draft

originates a lock on the document to prevent concurrent modifications. Releasing

the draft copy creates a new revision in the local document store and releases the

lock. Users can use emails and phones to coordinate their order in fetching the

document and making their modifications.

The distribution and replication service is distributed over the site servers. It

stores replicates and distributes information about the document folders, the

document revisions, the user accesses and the drafts under preparation. Moreover,

it stores the revisions in the distributed document store and generates URLs for

them. So it is possible to provide public access to the revisions through Web

browsers.

������

DReSS (Document Repository Service Station) is a small software system

87*#7�,55"8+�,'9�< &4�+&.2&.�("�+$--".(�#""-&.,(*2&�-$45*+7*';�/�	03�/��0���&+-*(&�

the fact that it is designed to be just a document repository by applying the

client/server model, it consists of Java programs on both the server and the client

sides. However, most of the functionality of the system is on the server side (i.e. the

�

�	

clients are thin). The client software is any Web browser with two special software

helpers to do the following tasks:

- Start the local suitable editor after downloading the file.

- Uploading the document to the server after the user finishes the

editing of the document.

�*;$.&�����+7"8+�(7&�+9+(&%�,.#7*(&#($.&�(7,(�*+�#"%-"+&!�")�(7&�'&A(�#"%-"'&'(+1

- At the client side: an editor, a Web browser and the client-helpers for the

purpose of managing the communication between the editor and the

browser.

- At the server side: a Web server, a repository (database) and the server-

helper.

At the server side, the repository maintains the documents, their meta-data

and histories. The documents are represented by ordinary files which exist in the file

system of the server. The meta-data contains creator, current author, lock status,

authorized authors and log file. Moreover, the server helper handles the

communication between the Web server and the repository.

 Updating a document requires several steps. These steps include: locking the

document, downloading it from the server to the client, editing it in the local

machine, uploading it back to the server and finally unlocking it.

����� �������)�##�$ �%������ �

�

�

One of the DReSS advantages is that it is possible to view the documents

from any Web browser when they are public. On the other side, DReSS does not

have any versioning capabilities.

��!�OXFORD RADCLIFFE HOSPITAL DOCUMENT MANAGEMENT

This system was implemented to exchange documents between interested

$+&.+� *'� (7&� �A)".!� �,!#5*))&� �"+-*(,5� ���� �.$+(� /�0�� �7&� +9+(&%� $(*5*6&+� (8"�

databases on a Web server where the databases represent the document repository.

They are the document database which holds the SGML (Standard Generalized

Markup Language) documents and the administration database which contains the

definition of the users, groups and subscription lists.

The document flow in this s9+(&%� *+� +7"8'� *'� �*;$.&� ����� �)(&.�,� +9+(&%�

administrator defines the users, groups and subscription lists and he sets up the

topics and subtopics, an author can post a document and define its reader

distribution list. A reader will receive a notification about a new document, either

because he is a member on an author distribution list or because he subscribes in a

topic subscription. There is no way to change the documents since the system is not

designed to update documents. The main objective of the system is to notify

interested users about new information, and so the system does not have any access

security. Therefore, all users can view all documents.

�

��

��"��
�#

The BSCW (Basic Support for Cooperative Work) system has been

developed at the German National Research Center for Information Technology

/�
03� /��03� /��03� /��0�� �7*+�+9+(&%�+$--".(+�#"55,4".,(*"'�"2&.�(7&��'(&.'&(3�+(".&+�

documents, retrieves them and provides users with awareness of the others’

activities. The system model is based on the client/server model. The server is an

Setups topics and subtopics

Document Database
Documents
Topics
Subtopics

Administration Database
Users
Groups
Subscriptions
Distribution lists

System Administrator

Author

Reader

Define Users, Groups and Subscriptions

Subscrips

Views Documents

Notification

�

�

�

	

Posts Documents

Figur�� ��	���%�������������������*&(� +�)'+���((��
Hospital Document Management System

�

��

extension of a Web server to provide the required functionality. In contrast, the

client is a Web browser without any modifications. The server provides widely used

services such as: document uploading, version management, group administration,

access control and document locking. Each group of users establishes a workspace

on the server for coordinating their work. The workspace is a repository for the

shared information. A user can be a member of several workspaces.

The document repository in this system combines a database and a file

system. While the information about the workspaces is stored in the database, the

documents are kept as files on the file system of the server.

A user can work on a BSCW system by connecting to BSCW sever using a

Web browser. The server generates a suitable HTML page according to the user

inputs and selections. At the beginning, he should connect to the server by entering

his login name and password. Then, the server returns an HTML page containing

all workspaces of which the user is a member. When the user selects a workspace,

the server returns an appropriate HTML page showing the content of the

workspace.

The document flow in this system is very simple. An author creates a

document and uploads it to a workspace. Another privileged user can download the

document and edit it locally. The document will be locked after the downloading.

After the user modifies the document, he uploads it to the server and unlocks it.

Finally the system provides several interesting facilities, such as version

management and event awareness. But the version management functions are too

simple. They only provide a linear version scheme on the user requests. The event

�

��

service provides useful customizable information about other users’ actions. The

actions include: reading, uploading and creating new versions of the documents.

The event information is generated to each user when he logons to one of his

workspaces.

��$������
����	�#��
����
���������
%
�
�

The objective of this system is to exchange official documents between

!*))&.&'(�;"2&.'%&'(�,;&'#*&+�*'��,*8,'�/��0�� �(�$+&+�(7&��'(&.'&(�,+�,�%&,'+�")�

communication. In this system, the flow of the documents is too simple because it is

only sending the documents from one party to another. But the strong feature of this

system is the public-?&9� &'#.9-(*"'� /�
0� ")� !"#$%&'(+�� �(� #"'2&.(+� ,'� "-&'�

environment (i.e. the Internet) to a secure means of communication. The system uses

XML documents since they can be easily exchanged between different platforms

even though it can work with any document.

�*;$.&�����+$%%,.*6&+�(7&�!"#$%&'(�)5"8�*'�(7*+�+9+(&%���(�(7&�+&'!&.�+*!&3�

the sender digital signature will be generated using his Smartcard, which will be

read by a Smartcard reader connected to his computer. The digital signature

requires the private key that is included in the Smartcard. The document which will

be sent and the digital signature will be encrypted together by the symmetric

encryption using a session key. The session key is randomly generated by a software

application. Finally, only the session key will be encrypted using the public key of

the receiver. The public key encryption will not take much time since the session key

�

��

is a short stream of bits. These operations ensure that nobody except the receiver

can decrypt the session key. The combination of the encrypted document and the

encrypted session key implements a digital envelope which can be sent to the

receiver using the simple mail transfer protocol (SMTP). At the receiver side, the

reverse of the sender side operations will be accomplished.

��&�
���'

EnAct is an application for drafting, producing and archiving legislation

documents which was designed for Tasmanian Department of the Premier and

SMTP

Public Key
Encryption

Symmetric
Encryption

Signature
Generation

SSttaattiioonn((SSeennddeerr))
XML Document

Sender’s
private key

Randomly
generated
session key

Receiver’s
public key

Internet

�

�

�

SMTP

Public Key
Decryption

Symmetric
Decryption

Signature
Verification

SSttaattiioonn((RReecceeiivveerr))
XML Document

Receiver’s
private key

Sender’s
public key

	

�

���� ����
����������������������#�' ��' +�#�����

�

��

C,4*'&(�*'��$+(.,5*,�/	�03�/	�03�/	�0���(�$(*5*6&+�#5*&'(C+&.2&.�-,.,!*;%�,'!�,'���
��

repository (namely Structured Information Manager (SIM)). The repository is

resident on the server. It holds the legislation documents as well as the workflow

definitions (i.e. process definitions).

The clients are PCs containing special software for communicating,

browsing, editing and searching the repository. While this software is a customized

version of MS Word, it checks and generates SGML documents.

The system needs special configuration to define the structure of each type of

SGML documents. That is to say, the document type definition (DTD) and its

elements should be defined for each SGML document type. Also, since the syntax of

EnAct documents is SGML format, they can be converted dynamically to HTML

format. Therefore, using a Web environment, it is possible to view the documents

created by the system using any Web browser.

EnAct provides document versioning capabilities. But it supports only linear

versioning as it was designed for legislation documents and only one version of a

legislation document should be valid at any time.

Finally, EnAct incorporates with workflow software to provide workflow

functionality. For example, once an administrator provides the privileges of

updating a document to a user, the user finds the document in his document list.

�

��

��(������
��������
�
���#����������
��

�����
�)���

EXTENSION OF LOTUS NOTES)

This system is a Web based document management system which is an extension

of Lotus Not&+�/	�0���7&�"4@&#(*2&�")�(7*+�+9+(&%�*+�!"#$%&'(+D�7,'!5*';�)."%�(7&�

creation up to the production and archiving. Therefore, it defines several stages for

(7&�5*)	#5&�")�-."!$#*';�!"#$%&'(+�,+�+7"8'�*'��*;$.&���
���7&+&�+(,;&+�*'#5$!&�

the following:

�- Creating the document.

�- Reviewing and approving the document.

�- Managing and archiving the document.

Most of the work of this system depends on Lotus Notes functions, except for

the second stage which consists of three phases. These phases are two review cycles

and one approval phase. The administrator of the system is responsible for defining

which phase should be considered and who is trustworthy about each phase.

The versions are kept in the system unless they are explicitly deleted. Also,

the versioning is used to solve the problem of concurrent document editing by

different users. Therefore, any user can edit any document at any time. Later on,

when he saves the modified document, it becomes a new version of the edited

document.

�

��

Repository Repository�

Create Review

Approve

Manage

Archive

���� ��������%��,�(��������(�- �+��������������������%��

System Extended Lotus Notes

The system interacts with two repositories. While the first repository is used

during the creation and the modification of the documents (i.e. in progress

documents), the second one archives the finished documents.

���*��++,��� # -

AllianceWeb is an extension and modification of Alliance system which is

-.&2*"$+59�&A-5,*'&!�*'�+&#(*"'�������(�*+�4,+&!�"'�(7&�)"55"8*';�-.*'#*-5&+�/��01

-Splitting each document into several fragments.

-Assigning the user roles (manager, writer, reader and null) to the users for

each fragment of a document.

�

��

-Managing of group awareness.

As Alliance, AllianceWeb is a client/server system. But AllianceWeb is

designed for the Web environment. It requires a special extended Web server and a

special editor. The editor is an extension to Amaya, which is a public Web-based

editor from W�
��/<".5!�< *!&�< &4��"'+".(*$%0�/		0���5+"3�(7&�#5*&'(�#,'�4&�,'9�

Web browser to view the documents since they are HTML and XML documents.

�*;$.&� ����� +7"8+� (7&� +9+(&%� #"%-"'&'(+� ")� �55*,'#&<&4�� �55*,'#&<&4�

combines both distributed architecture (e.g. Alliance) and cooperative editing model

using WebDAV. If there are sites which share a document, and they are connected

with unreliable network (i.e. the Internet), the shared document will be replicated

AllianceWeb
document�

Standard HTML
Documents�

Doc A�

Doc B�

Doc C�

�

�

�

AllianceWeb base�

('���

frag �
frag �

fragments�

Web
Browse

AllianceWe
bBrowser /

Editor

Extended
HTTP
Serve�

���� ���������he Components of AllianceWeb System

�

�	

on each site. In contrast, the sites connected with a reliable network (e.g. LAN)

share one copy of a document.

������.�/0#.,' .

GroupWriter is an application which supports the collaborative editing of

!"#$%&'(+� /��0�� �(� *+� 4,+&!� $-"'� !*2*!*';� ,� !"#$%&'(� ("� +&2&.,5� +&#(*"'+� An

authorized user can create new sections and merge several sections. After outlining

a document, the development of the document passes through the following stages as

+7"8'�*'��*;$.&�����1

- Defining the document sections and their owners (sub-team or

person).

- After the discussion, composing sections by their owners and

producing the first draft version.

- Reviewing the content of the sections by the team or the owners and

providing the suggestions in the form of annotations and revisions.

- Making verbal walkthrough by the team and accepting, rejecting or

merging the suggestions by the document owners to finalize the

document.

�

�

There are two types of users: local users and dial-up (distributed) users.

While the distributed users have limited functionality, the local users can utilize the

complete operations of the system. The system allows the users to read any section

any time. In contrast, users cannot edit a section simultaneously since it will be

locked when a user works with it. Using the table of contents at the edited document,

it is possible to know the current writers of all sections. The changes on the sections

can be committed on a time base or with checking in, but they will be saved as

revisions. If a user connects to the system by the dial-up, he can only provide

annotations on the sections. Before finalizing the document, the owners can accept

or reject the changes and review the annotations. The system provides several other

functions such as: word processing for editing the documents and built-in messaging

for communicating with others. It saves documents either in RTF or TXT formats.

Because there are plenty of commercial Delphi word processing components, the

current version of the system is implemented by Delphi. But there is another version

under development by Java to gain Java advantages like portability.

Outline
Document

Discuss
Content

Sub-team
Composition

Discuss
Content

Verbal
Walkthrough

���� ��������. ���/ ��� ������������0���������#�'���

�

��

�����# --BASED GROUPWARE SYSTEM BASED on WebDAV

PROTOCOL

The infrastructure of this system is based on WebDAV (Web Distributed

�$(7".*';�,'!�E&.+*"'*';0�/��0��< &4��E�&A(&'!+������ ����-.otocol by adding

new methods to support collaborative authoring. The system fully employs the

WebDAV protocol since it is a combination of a WebDAV server and an extension

of an Internet browser to be used as WebDAV clients.

The documents in this system flow between clients and server. The addition of a new

document to the server is represented by uploading the document via Put method.

The processes of initiating and editing the documents are done locally. After locking

and downloading the document using the appropriate methods, the user can edit the

document on a local machine. After completing the document modification, he

uploads the document to the server and unlocks it. While a document is locked by a

user, another user can download and view it if he has the required privileges.

However, he cannot download it for editing. The document repository is represented

by the file system on the WebDAV server. But the files are arranged in three

hierarchy levels: repository, folder and document levels.

������
������
��***������������
%
�
�

�7*+�+9+(&%�$(*5*6&+�,�'&8�)&,($.&�")�
#."+")(��))#&�����3�',%&59�F<&4�

�*+#$++*"'+F3� ("� -."2*!&� ,� !"#$%&'(� ,''"(,(*"'� +9+(&%� /	�0�� �7*+�)&,($.&�,55"8+�

�

��

team members to make annotations to Web pages. The system is based upon

client/server model. The client is a Web browser (the Internet explorer with an

annotation client). On the other hand, there are two servers: a Web server and an

annotation server. The annotation server contains a SQL Server database to

maintain the annotations. While the Web server communicates with clients using

HTTP protocol and contains the Web documents, the annotation server uses the

<&4��E�-."("#"5�,'!�7,'!5&+�(7&�!"#$%&'(�,''"(,(*"'+���*;$.&� �����+7"8+�(7&�

system architecture.

Using this system, the users can create annotations on any Web page in the

Web server. Besides that, every author can edit or delete any of his annotations.

There are two types of annotations: document annotations and paragraph

annotations. Both of them need the document URL (i.e. the document address) while

the latter requires also a unique signature for each paragraph. Moreover, the users

�

Annotation client�

Internet Explorer�

Web Server� Annotation Server�

&�
SQL Server�

���� ��������*((���������$����'�����#�����

Annotations over
WebDAV HTML over http

�

��

can subscribe to the notification system. The notification system informs each user

about the annotation creation or updating of his subscribed documents.

There are some limitations of the system. One of these limitations is the technical

orphaning of annotations, causing the system to fail in matching a paragraph

annotation in a particular document to the correct location after updating the

document. Another drawback is the absence of the access control. All annotations

are viewable for everybody in the team.

�����FORM FLOW MODEL

This system is a protocol based system which converts the requirements of a

document flow into an agent-based d"#$%&'(�)5"8� +9+(&%� /	�0�� �7*+� -."("#"5�

represents a design methodology which consists of several steps: identifying its

entities, identifying the system agents, building the agents, and implementing the

system. This model handles just specific kind of documents which is forms. It stores

the data of forms in a central database. Also, it uses KQML (Knowledge Query and

Manipulation Language) to exchange information between the agents. Finally, in the

implementation side, it uses JATLite which is a Java agent platform�and presents

the steps of the protocol for a course drop/add form.

���!�X-FOLDERS

X-Folders is a system composed of one or more peer sites where each site

#"'(,*'+� +&2&.,5� +&.2*#&+� ,'!� #,'� *'2"?&� "(7&.� +&.2*#&+� "'� "(7&.� +*(&+� /	�0�� �7&�

�

��

services include copying documents, sending email messages, handling documents as

web resources and so on. Thus, the application is distributed among sites. Moreover,

each site is considered as a servnet (i.e. a server and a client at the same time).

The documents can either flow between the folders or use document status

property. In the former case each folder represents a specific state. Moreover, the

documents are stored in special folders which are accessible via WebDAV and

SOAP.

Each folder contains documents and their properties including the status of

the documents. Furthermore, each folder is mapped by a folder status tree. The

folder status tree is an XML tree rooted at the folder and composed by subtrees

which represent the documents stored in the folders. Each subtree of a document

contains the properties of the documents.

Changing document status may fire specific tasks which consists of web

services. X-Folders system takes the appropriate actions depending on the status of

the folder. These actions are composed by web services. The tasks of X-Folders call

the appropriate web services. The tasks are triggered after modifying the document

repository.

���"�����	�
���

This chapter includes summaries of fifteen different document flow and

archival models. It is clear that several applications require document flow and

archival facilities. Furthermore, the objectives of these applications as well as the

�

��

technologies available during the period of the application developments influence

these models strongly. Consequently, the design of a structured frame of document

flow and archival model becomes a necessary matter of fact. But this frame should

be flexible so that different applications can utilize it.

���

���������

DFWDAV MODEL

 This chapter contains a full description of the Document Flow model based

on WebDAV protocol (DFWDAV) which we have developed. At the outset, the

requirements of the model are identified.� Then, the model components and

architecture are tackled in details. After that, the model functionalities are

elucidated� To clarify the roles of the model components and their operations, a

scenario of a collaborative application is provided. By applying the DFWDAV

model, the scenario shows the strength of the model. At the end of the chapter, the

researcher will justify the fulfillment of the model requirements according to the

provided scenario.

������
�
�
����������
������#���

While the model should be flexible to serve different document collaborative

applications, its flexibility should not affect its intensity and capability. The

foremost objective of the required architecture is to automate the routing of

documents among distributed collaborating users. Thus, the architecture deals with

cooperating users handling shared documents.

�

��

The model should be designed according to�the following specifications:

�- Managing the production of documents: The model should manage all the

stages of documents from the creation to the production passing through the

different phases of development. Usually, documents come across several

users before they reach their final shape. During the flows of documents, the

users either revise the documents or add more information to them. For

example, reviewers of a book typically update it but do not add more

information. Another different example, an employee vacation request flows

between several responsible people who add new information to the request.

In summary, the DFWDAV model should manage the documents during

their flow between different users.

�- Offering a document flow infrastructure: To perform their tasks, most

document collaborative applications need document flow functionality. On

the other hand, the main purposes of these applications can be emphasized

on if they are built on the top of a document flow infrastructure. Therefore,

the DFWDAV model should provide a document flow and archival

*').,+(.$#($.&�)".�(7&�#"55,4".,(*2&�,--5*#,(*"'+�,+�*(�*+�+7"8'�*'��*;$.&������

Collaborative Application

DFWDAV

Flow
Definitions

Document
Repository

���� ��������%����/�$1�"�+���'��'��2�('�� ���� ��(� �

Collaborative Applications

�

��

Moreover, this feature simplifies the design and the production of such

applications since they can utilize the DFWDAV model as a document flow

infrastructure. For example, a collaborative authoring system can be built on

the top of the developed document flow architecture. After an author initiates

a document using the authoring system, he can send it to the developed

architecture which handles the archive of the document� In the same manner,

the developed architecture helps the collaborative system to lock, download

and flow the documents. Therefore, collaborative applications can be more

simplified as a result of utilizing the DFWDAV document flow model because

they concentrate on their special businesses.

�- Presenting the necessary security: One of the most important features of the

DFWDAV model is its ability to share the documents between different

authorized users according to their privileges. For example, an author

initiates a document and other privileged users (e.g. reviewers) can check and

may maintain that document. Moreover, those users should not violate their

privileges on the document and unprivileged users should not access it.

	- Utilizing document repository: The DFWDAV model aims to utilize a

document repository because such repository is the key of an archival system.

The document repository can store and retrieve the documents and their

metadata which includes the definition of the document flow, the user

privileges and the document status.

�- Defining document flows: The DFWDAV model ought to provide an

automatic document flow between users according to the document

�

�	

definitions. Therefore, privileged users should define the flow paths of

documents in a structured way. Thus, the model manipulates the definitions

of the document flows to automatically route the documents among the users.

�- Providing automatic notification: An automatic notification is one of the most

important features of the document collaborative systems. This feature

allows the users to know when they should handle a document. Also, it

notifies late users to push them to perform their work.

�- Using recent and open technologies: The DFWDAV model should utilize

novel technologies. Moreover, it can be implemented without depending on a

specific commercial product. In other words, it can be developed using open

(i.e. noncommercial) products.

�- Supplying information about documents: Users need to know some

information about documents during their development and after their

production. This information includes current location and status in addition

to the flow definition of a document.

- Supporting the Internet environment: The Internet becomes an essential

basis� for contemporary applications since it provides a medium of

communication between distributed users across the world. Consequently,

the DFWDAV model should support the Internet in the best possible way.

In summary, it is required to provide a document flow model which can

represent an architecture of structured document flow systems that allow users on

different sites to manage the creation and the production of documents in a well-

�

�

structured manner. Thus, the above specifications aim to emphasize the document

flow functionality. So, several functions of document management systems are

excluded from the model scope. Most of these functions are listed previously in

+$4+&#(*"'�������

������
���#����������
��

Despite the fact that the DFWDAV model utilizes the client/server

architecture, it takes advantage of the Internet environment since it uses the

WebDAV protocol. The model consists of two subsystems; the first is the server

subsystem and the second is the client su4+9+(&%���*;$.&�����+7"8+�(7&�,.#7*(&#($.&�

of the model which contains the following components:

• On the server subsystem:

o WebDAV server.

o Document repository.

o Routing and reminding agent.

o Flow repository.

o Mail server.

• On the client subsystem:

o WebDAV clients.

o Document flow client.

o Local temporary document repository.

�

��

o Non-WebDAV document editors.

o Flow definer.

o Mail client.

�.�.� The Server Subsystem

�+� +7"8'� *'� �*;$.&� ���� (7&� ��<��E� %"!&5� *+� 4,+&!� %,*'59� "'� (7&�

WebDAV protocol which is an extension of the HTTP protocol. This protocol will be

WebDAV clients�

WebDAV server�

Document flow client�

Routing and reminding agent�

Non-WebDAV document editors�

Flow definer�

Mail client�

Mail server�

�

�

�

�

Client � Server �

Figure ���: The Architecture for the DFWDAV

Local temporary
document repository�

Flow repository�

Document repository�

�

��

&A-5,*'&!�*'�!&(,*5�*'��7,-(&.�	�,'!��--&'!*A�����5+"3�(7&�)*;$.&�+7"8+�(7,(�(7&�

server subsystem includes a WebDAV server attached to a document repository, a

special agent, a flow repository and a mail server.

 The first component of the server is a WebDAV server. The WebDAV server,

which is an extension of a web server, provides several functions to the DFWDAV

model. These functions include:

• Uploading documents from the clients to the server and downloading them

from the server to the clients.

• Storing and retrieving the metadata (including the routing definitions) of

documents to and from the repository.

• Defining the users’ privileges for the documents.

• Locking and unlocking documents to prevent the lost-update problem.

• Providing the search capability for the document in the repository.

The second component of the server is the document repository which holds

the documents as well as their metadata. The metadata are divided to two parts:

static metadata and dynamic metadata. The static metadata includes the attributes

which are generated and modified by the model via the WebDAV server such as the

author and the creation date. Moreover, the dynamic metadata contains also the

status of the flowing documents in addition to the historical document flow

information. In contrast, the dynamic metadata represents the document attributes

that are defined and can be updated by the users such as the document name and

the related document flow. According to the openness of the model, the repository

�

��

can be a database or a file system depending on the WebDAV server which is

responsible for reading from and writing to the document repository.

The third component of the server is the routing and reminding agent which

observes the user operations on the documents and their flow definitions. Then

according to the operations and the flow definitions, it takes the appropriate actions.

For example, if a user uploads a document to the server, which in turn should flow

to a second user, the agent sends an email to the second user using the email server.

This email asks him to download the document and to work with it. The functions of

(7&�,;&'(�8*55�4&�(,#?5&!�*'�!&(,*5�*'�(7&�'&A(�+&#(*"'�/*�&���&#(*"'����0�

The fourth component of the server is the flow repository which holds the

definitions of the flows. Each flow definition contains users who are involved in

#.&,(*';�+"%&�!"#$%&'(+�,+�8&55�,+�+&2&.,5�-."-&.(*&+�")�&,#7�$+&.���$4+&#(*"'���	���

explains these properties comprehensively.

The last component of the server is the mail server, which receives the

notifications from the routing and reminding agent via SMTP protocol. The server,

in turns, sends the emails to the users. These emails notify the users about their

turns in the document flows and remind them to download or upload the

documents.

�.�.� The Client Subsystem

The client of the DFWDAV model includes the following components:

WebDAV clients, the document flow client, a local temporary document repository,

�

��

non-WebDAV document editors, the document flow definer and a mail client. The

main component in the client subsystem is the WebDAV clients which are

responsible for communicating with the WebDAV server. In spite of the abundance

of WebDAV clients, they vary in their functionalities. Some WebDAV clients are

just an extension of a web client and other WebDAV clients provide wide

functionalities. For example, MS-Word is a WebDAV client while it is a well-known

word processor.

The second component of the client is the document flow client. The users use

it to download and upload documents between the document repository in the

server subsystem and the local document repositories. Also, this component

provides useful information to the users such as their responsibilities and

notifications.

The third component in the client subsystem is the local document repository

which can be used because of either two reasons. The primary reason is the non-

WebDAV editors which can not edit documents directly on the server subsystem.

The other reason is the unreliable communication media between the server

subsystem and the client subsystem. In either case, users download documents

locally where they edit them. After completing the modifications, users upload

documents back to the document repository in the server subsystem.

The fourth component of the client is the non-WebDAV document editors. As

shown earlier, some document editors (e.g. MS-Word) become WebDAV clients. But

to generalize the model, the non-WebDAV document editors are considered as a

�

��

separate component. This also helps to make the model applicable to any type of

documents and editors.

 The fifth component of the client is the flow definer. This component plays a

very important part of the model because users can use it to define the flow types of

the documents between the users according to the organizational procedures and

policies. A detailed explanation of this component and its responsibilities will be

handled in the next section.

 The final component of the client is the mail client which is part of the

mailing system. While the routing and reminding agent in the server subsystem

sends notifications to the server, mail clients deliver these notifications to the users.

�.� THE FUNCTIONS OF DFWDAV

This section provides an overview of the major functions of the model. These

functions include creating the documents, updating the documents, defining the

document flows, defining and querying the document metadata, routing the

documents, notifying the users and archiving the documents.

�.�.� Creating the Documents

Using the document editors, users can create new documents which are

usually initiated in the client subsystem. Then, their initiators upload them with

their initial metadata to the server. The initial metadata includes the definition of

�

��

the flow path. Moreover, some WebDAV clients such as MS-Office can create the

documents directly in the server.

�.�.� Updating the Documents

There are two ways to update documents. The first way is by using the

WebDAV clients in which users can edit documents directly on the server

subsystem. The other way is to update the documents locally after downloading

them from the server subsystem to the local document repositories in the client

subsystem. A user can only update a document if it is his turn in the definition of the

document flow. When he downloads it for updating, it will be locked on the server

until he finishes the modifications and uploads it back to the server.

�.�.� Defining the Document Flows

It is possible to define the flow of a document by using the document flow

definer. The definition of the flow is sent to the server as one of the metadata (i.e. the

properties) of the document. On the server, the routing and reminding agent

analyzes the flow definition and then takes the appropriate actions. The flow

definition includes the users who are supposed to handle the document and their

8".?�!$.,(*"'+��
".&�*')".%,(*"'�,4"$(�+$#7�!&)*'*(*"'+�,--&,.+�*'��&#(*"'���	�

�

��

�.�.� Defining and Querying the Document Metadata

The metadata of a document is the data which represents the document

properties such as the creator of the document, its current location and the related

flow definition. The metadata can be divided to two parts. The first part includes

static properties which are automatically defined and only changed by the system.

An example of such properties is the date of the creation. The second part is the

dynamic properties which can be defined and changed by users if they have the

sufficient privileges. The access privileges of a document and its related flow can be

considered as dynamic properties.

�.�.� Routing the Documents

One major role of the routing and reminding agent is to analyze the

definitions of the flow paths. Accordingly, the agent takes the appropriate actions

which include emailing the users to download the documents and skipping them if

they do not finish their work on the determined periods.

�.�.� Notifying the Users

The second major role of the routing and reminding agent is the user

notifications which provide the users by suitable information. This information

includes the actions which they should do as well as the current status of documents.

For example, the agent notifies a user to download a document when it is his turn in

�

��

the flow path. Another example, it reminds a late user to upload the document back

to the server.

�.�.� Archiving the Documents

When the server receives a document from a client, it sends the document to

the document repository where the document will be archived. In the same manner,

the metadata will be saved in the repository which can be either a database or a file

system. Following the clients’ requests, the server retrieves the documents and their

metadata from the repository and sends them back to the clients.

�������	��������#���

This section aims to clarify the work method of the DFWDAV model as well

as the functions of the model and the relationships between the model components.

It begins by browsing several possible applications that can employ the model. Then,

a full scenario of an authoring application is discussed in detail to show the

capability of the model.

�.�.� Applications

As in the specification section, the DFWDAV model can be considered as an

infrastructure of document collaborative applications. Although there are several

�

�	

collaborative applications, the following applications can be considered as the most

common ones:

• Collaborative authoring: Collaborative authoring application is the

activities involved in the production of a document by more than one

author. So, the process of this application leads to different publications

such as books, researches and articles. In a regular manner, several users

participate in the collaborative authoring chronologically. After the

authors write the documents, the reviewers revise them and then the

editors arrange them to produce the required publications.

• Request handling: A request is a kind of a document in which several

users add some information. Therefore, usually there is no updating on

the requests. For example, an employee can initiate a vacation request.

This request passes through a specific path of users. Each user in the path

appends some information to the request until it reaches its final stage.

• Distributing documents between the users: In several real applications,

the objective of the documents is to distribute some information to

particular users. For example, distributing instructions and

announcements is a daily process in our life. In this application, the

documents flow from the initiators to the readers.

�

�

�.�.� Scenario

To clarify the relationship between the components of the model and how

they work, we will describe how the model can be utilized as an infrastructure for

an authoring application.

Usually, an authoring system is operated by several authors, reviewers, and

editors. Let us discuss how can these users produce a book using the DFWDAV

model. First, the book should be divided into several parts according to the roles of

the users. Initially, each part can be considered as a separate document. This

consideration increases the system productivity, since it ensures the parallel work of

the users. Therefore, selecting a suitable document granularity helps the users to

work simultaneously. As a result, rather than assuming that the whole book as one

document, it is possible to divide it into several documents by selecting a very

delicate granularity.

For the purpose of this section, we will assume that the scenario will be

,##".!*';�("��,45&�������7&.&)".&3�&,#7�#7,-(&.�#,'�4&�#"'+*!&.&!�,+�(7&�!"#$%&'(�

granularity since it is written by one author and then will be reviewed serially by

several reviewers. Thus, each author can initiate his own document (i.e. chapter).

Chapter� Author Reviewers

�� Ali Ahmed, Saad and Selah

� Mohammed Saad, Ahmed and Ali

�� Selah Ahmed, Saad and Ali

	� Ahmed Saad, Ali and Selah

�'3��������/� 4����� �3�������(��%��$��%� ����#���' ���

�

��

����5+"3��,45&�����-."2*!&+�(7&�)5"8�!&)*'*(*"'�")�&,#7�#7,-(&.���+�*(�,--&,.+�

above, several users will review each chapter. For example, Ahmed, Saad and Selah

+7"$5!�.&2*&8�#7,-(&.���#"'+&=$&'(59. Moreover, for each person in the flow path,

(7&.&�,.&�+&2&.,5�-."-&.(*&+���,45&�����+7"8+�,'�&A,%-5&�")�(7&�)5"8�-."-&.(*&+�")�

the first chapter.

Property Ahmed Saad Selah

Number of downloading notifications ��(*%&+ 	�(*%&+ 	�(*%&+

Downloading notification period ��!,9 ½ day ½ day

Number of uploading notifications ��(*%&+ ��(*%&+ ��(*%&+

Uploading notification period ��!,9 ½ day ½ day

Working period ��!,9+ ��!,9+ ��!,9+

��'3���������%�������- ��� ������(�5%'��� �������%��#���' ���

There are five properties; the first two of them are related to the

downloading, the third and fourth are related to the uploading and the fifth

represents the working period, that is the period between downloading a document

and sending the first uploading notification. The properties of the downloading are

the number of downloading notifications and the downloading notification period.

The download notifications recommend the users to download the documents from

the server and to perform their work with the documents. The number of

downloading notifications of a user is the number of notifications which the agent

should send to the user to remind him to download the document. If the user does

�

��

not download the document before the end of the notifications, the agent will skip

him. The second property is the download notification period which represents the

period between two download notifications.

Similarly, there are two properties related to the uploading. These properties

are the number of uploading notifications and the uploading notification period. An

upload notification will be sent to the user if he does not upload the document after

the working period finishes. The upload notification requires him to end his work on

the document and to upload it back to the server. If the user does not upload the

document after the first notification, he will receive another notification after the

uploading notification period. When he does not upload the document and the

uploading notifications reach the number of uploading notifications, the agent will

+?*-�7*%���*;$.&� ����+7"8+�(7&�-."#&++&+�")�,',596*';�(7&�!"#$%&'(�)5"8+�49�(7&�

routing and reminding agent. Finally, after reviewing all chapters, the editor is

responsible to combine them together to produce one document which represents

the book.

�

��

START

�

�

Are there
more users in

the path?�

YES�

NO�

- Get the next user.
- Send him a notification.

�

�

�

Does the
user download

in time?�

NO�YES�

- Send a reminder to
download.

�

�

More
reminders to
download?�

YES�

NO�

�

�

Does the
user upload in

time?�

NO�

YES�

- Send a reminder to
upload.

�

�

More
reminders to

upload?�

YES�

NO�

END

Figure ���: Analyzing the Flows by the Routing and Reminding Agent.�

�

��

��!���
���	��		�
��������
�
�
����������

In this section I will verify the fulfillment of the model to the specifications

5*+(&!�*'�+&#(*"'�/���0���7&+&�+-&#*)*#,(*"'+�8&.&1

�. Managing the production of the documents: Several functions of the DFWDAV

model cooperate to manage the production of the documents. These functions

start by document creation and end by document archiving. Moreover, these

functions include defining document flow paths, updating documents and

routing them.

�. Offering a document flow infrastructure:��+�+7"8'�*'�+&#(*"'�/��	03�+&2&.,5�(9-&+�

of applications can utilize the DFWDAV model. Furthermore, the discussed

scenario shows how an authoring system can be built on the top of the DFWDAV

model.

�. Presenting the necessary security: The DFWDAV model applies WebDAV

protocol. This protocol provides a strong security as will be shown in the next

chapter. The implementation shows different levels of security. For example, it

is possible to define the allowed operations on the document level for each user.

Also, only the current user in the flow path can update the document.

	. Utilizing document repository: As previously explained in the model

components, the document repository is an important component which holds

the documents and their properties. The server is responsible for sending and

�

��

receiving the documents to and from the server. Since the document repository is

a standalone component, it is possible to use a database or a file system as the

document repository. Consequently, the model provides a wide flexibility of

choosing a document repository.

�. Defining document routing (i.e. flows): Defining the document flow paths is the

starting point of the document flows. The model allows the user to define the

flow paths when they have the sufficient privileges. The defined flow paths in

turn can be assigned to the documents. The agent analyzes the assigned flow

paths and accordingly takes the appropriate actions.

�. Providing automatic notification: The agent is responsible for sending the

notifications. There are several types of notifications, for example a user of a

document flow receives the notification of his order. This notification informs

him about his turn in the document flow and requests him to download the

document. Another example is the download notifications which also request

him to download the document when he does not do so in time. In contrast, the

upload notifications request the user to upload the document when his working

period is over. The last type of notifications is to inform the users of canceling

them from the flow when they do not download or upload the documents in the

specified periods.

�. Using recent and open technologies: The model utilizes WebDAV which is a

recent emerging network protocol. This protocol hides the bulk of the

complexity of the application implementation. Moreover, the model is open since

it does not require a specific document type and since it can work with any

�

��

document type. Wide possible implementations of the model are available as will

4&�-.&+&'(&!�*'��7,-(&.�����"%&�")�(7&�*%-5&%&'(,(*"'+�.&59�#"%-5&(&59�"'�(7&�

open (i.e. noncommercial) products.

�. Supplying information about documents: The model provides several kinds of

information related to a document, for example it is possible to browse the flow

path of the document. Also, the model provides history information about the

document operations of the users and about the notifications sent. Moreover,

since the DFWDAV model utilizes the WebDAV protocol, it supports complex

types of document properties.

. Supporting the Internet environment: The model supports the Internet because

it is built on the top of the WebDAV protocol. The WebDAV protocol is based on

the HTTP protocol, which is a well-known protocol in the Internet environment.

�7&� *%-5&%&'(,(*"'� 87*#7� *+� -.&+&'(&!� *'� �7,-(&.� �� +7"8+� (7,(� (7&� %"!&5�

widely supports the Internet work.

���

��������	

WEBDAV AS AN INFRASTRUCTURE

The objective of this chapter is to show how WebDAV, which is introduced in

�7,-(&.��3�#,'�*%-5&%&'(�(7e infrastructure of the collaborative applications such

as the DFWDAV. First, this chapter provides the requirements of Web-based

collaborative systems and highlights the problems faced by such systems using

HTTP protocol. Second, the objectives and the workgroups of the WebDAV are

listed. Finally, the WebDAV functions and methods are briefly explained.

������
��
1��
��

������
������
��#
������
�����
�

APPLICATIONS

The Web-enabled distributed collaborative systems involve diverse

requisites. Those requisites involve locking, security, properties, reservations,

2&.+*"'*';�,'!�#"55&#(*"'+�/	�0�

- Locking mechanisms to prevent overwrite conflicts:

Locking mechanisms prevent the lost update problem. In other words,

they prevent more than one user from modifying a document simultaneously

�

��

and ensure that only one person may modify it. A lock can be on multiple

documents but it should occur at the same action across the multiple

documents (i.e. the locking operation must be atomic throughout these

documents). This is vital to prohibit a collision between several people trying

to establish locks on the same set of documents. Removing a lock is an

obvious operation. Other locking operations include determining the active

locks and finding out who holds those locks.

- Security:

Several security aspects are compulsory obligated for distributed

document management systems. Those include authorization, access rights

and authentication. A document must be accessed by authorized people only.

If a person has no authorization on a specific document, he should not be

able to access it. Each authorized person should have defined access

privileges. Access privileges can be browsing, editing, and copying, etc. It is

possible to restrict modification of a document to a specific person.

Authentication ensures the identity of the users, the integrity of the messages

and the privacy of communication.

- Document Properties:

Document properties provide� descriptive information about

documents. They include bibliographic information such as author, title,

publisher, and subject, etc. These properties can be used for supporting

�

�	

searches on property values and enforcing copyrights. The properties

operations include creating, modifying, reading and deleting arbitrary

document properties.

- Reservations:

A reservation is a declaration that one aims to edit a resource. In the

server of a given resource, a person can register an intent to the resource, so

that other users can discover who intends to edit the resource. Reservation

operations include determining the active reservations of a given resource,

finding who currently holds reservations and releasing a reservation.

- Versioning

With versioning, the history and the evolution of a document can be

provided accurately. The versioning operations include many tasks such as:

reserve existing version, lock existing version, retrieve existing version,

request or suggest identifier for new version, write new version, release lock,

release reservation. Versioning systems combine reservation, locking, and

retrieval into an atomic checkout function or some subset of these tasks. They

combine writing, releasing the lock, and releasing the reservation into an

atomic checkin function or some subset of these tasks.

Each version typically stands in a "derived from" relationship to its

antecessor(s). It is possible to produce several different versions out of a

single version which is called branching. Also, it is possible to produce a

�

�

single version from several versions that is merging. Consequently, the

collection of related versions forms a directed acyclic graph which is called a

"version graph". Each node of this graph is a "version". The edges of the

graph denote the "derived from" relationships. Version graph operations

include referring to a version graph, referring to a specific member of a

version graph, determining the version graph of a given document if it is

available, navigating a version graph from a given node (document) to the

related members, and providing information about a version graph.

- Collections:

A collection is a resource that contains other resources. Collections

are useful for arranging documents. The collection operations include

creating, copying, deleting and reading the content of a collection.

������
�����	
�
����
���%�WEB COLLABORATIVE

SYSTEMS USING HTTP PROTOCOL

While the current functionality of the Hypertext Transfer Protocol

/����C���0�&',45&+�(7&�&!*(*';�")�(7&�< &4�#"'(&'(�,(�,�.&%"(&�5"#,(*"'�*'�,!!*(*"'�

to remote browsing of content, it contains a limited support for remote collaborative

applications. Consequently, HTTP does not provide sufficient functionality for

collaborative Web applications. Distributed Web systems that use HTTP suffer

�

��

)."%� -"(&'(*,5� -."45&%+� /��03� /	�0�� �"%&� ")� (7"+&� -."45&%+� ,.&� 5*+(&!� *'� the

following:

• HTTP provides limited support for preventing a user from

overwriting other users’ modifications. In other words, using HTTP

by distributed Web applications can lead to the "lost update

problem" or the "overwrite problem". Therefore, it is inadequate to

support efficient remote editing free of overwriting conflicts.

• Using HTTP, there is no way to discover whether someone else is

currently making modifications to a certain document.

• HTTP headers include the parameter information of methods.

Consequently, the length of parameters is bounded and so there is no

direct way to pass variable length parameters.

• HTTP does not support a sufficient level of security.

• The HTTP protocol contains functionality which enables the editing

of Web content at a remote location, without direct access to the

storage media via an operating system.

As a result of the previous mentioned points, the HTML applications and

tools have shown inability to meet the needs of their users while using the facilities of

the HTTP protocol. So, several Web collaborative systems try to overcome those

problems by adding extensions to the HTTP protocol. But since those extensions

were developed separately, they were not interoperable. Accordingly, the need to

provide a standard extension is an obvious matter.

�

	�

����#
��������
����
����������

The objective of the main WebDAV group is to define the WebDAV protocol,

which provides the following functionality:

• Locking: lock, lock status, unlock.

• Name space manipulation: copy, move/rename, and resource redirection.

• Containers: creation, access, modification, and container-specific semantics.

• Attributes: creation, access, modification, query and naming.

• Notification of intent to edit: reserve, reservation status and release

reservation.

• Use of existing authentication schemes.

• Access control.

• Versioning: checkin/checkout, history graph, differencing, automatic

merging, and accessing resource versions.

While the WebDAV group handles the generic issues of the WebDAV as well

as the base level of the WebDAV standards, several related groups and sub-groups

,.&�#.&,(&!�("�*'2&+(*;,(&�+-&#*)*#�-."45&%+�,'!�+$+(,*'�(7&�".*;*',5�;."$-�/	
03�/��0��

Those groups include:

• DASL (DAV Searching and Locating): This working group is functioning on

searching facilities for DAV repositories.

• Delta-V (Web Versioning and Configuration Management): WebDAV was

not able to finish versioning, so Delta-V is picking up where WebDAV group

�

	�

is left off. Thus, Delta-V group is responsible to extend the Web with

versioning and configuration management support.

• Access Control: This is a sub-working group of WebDAV, concerned with

developing a remote access control protocol.

These groups produced massive documentation related to their problems.

Consequently, we will select a subset of this documentation. This subset provides the

basic functionality required by the DFWDAV�� �,45&� 	��� 5*+(+� (7&� +&5&#(&!�

documentation.

�7*+�!"#$%&'(,(*"'�&A(&'!+�����C����%&(7"!+�,'!�7&,!&.+���'�,!!*(*"'3�*(�

specifies how to use the new extensions, how to format request and response bodies

and how existing HTTP behavior may change.

Workgroup Document Current

Status

Date

WebDAV HTTP Extensions for Distributed

�$(7".*';�/�	0

������� �&4���

Delta-V Versioning Extensions to WebDAV

/��0

�������
,.������

Access Control WebDAV Access Control Protocol

/��0

�����		
,9����	

DASL <&4��E��&,.#7�/��0 Internet

Draft

�&4�����	

�'3��������/�3�$1�. �����'�+��%�� �����������

�

	�

The next section summarizes most of the methods of the previous

documentation which is needed to provide the DFWDAV. In this section, the full

structures of the requests and responses are ignored. Meanwhile Appendix A

provides several examples of them.

For more information about WebDAV, one should consult www.webdav.org

+*(&���(�8,+�#.&,(&!�*'��&4.$,.9��

�("�-."2*!&�(7&�< &4��E�#"%%$'*(9�8*(7�,�

central location for "All Things WebDAV." The site provides pointers to many

types of information and materials, along with pointers to WebDAV software /�	0��

����#
������
����

The WebDAV protocol overcomes the HTTP protocol by means of providing

assorted methods which support the collaborative mechanisms. This section is

dedicated to most of the WebDAV methods divided according to the WebDAV

documents�,+�+7"8'�*'��,45&�	����

������
��������������������������������������� �

There are several essential WebDAV protocol methods that allow distributed

clients to perform remote web content authoring operations (�). This subsection

summarizes the methods of the properties, collections, namespace operations and

locks.

Properties:

�

	�

A property is a name/value pair that contains descriptive information about

any resource. There are two types of properties: live and dead. A live property is a

property whose semantics and syntax are enforced by the server. A dead property is

a property whose semantics and syntax are not enforced by the server. Since the

types of documents that people use vary, the list of possible property types becomes

infinite. XML is the type of extensible communication vehicle which is required by

WebDAV. XML properties provide storage for arbitrary metadata, such as a list of

authors on Web resources. These properties can be efficiently set, deleted, and

retrieved using the DAV protocol. Table�	���-.&+&'(+�(7&�%&(7"!+�")�(7&�-."-&.(*&+�

Method Description Input

PropFind Retrieves properties defined on a Resource or

a Collection with its internal members

(depend on Depth).

It is possible to request particular property

values, all property values, or a list of the

names of the resource's properties by setting

an XML element.

Resource (URI)

or Collection

Depth 6�7�� � �

infinity)

XML element

PropPatch Sets and/or removes properties on a resources

or a collection

Resource (URI)

or Collection

XML element

�'3���������%��"��%�+���(��%��- ��� ����

�

	�

Collections and Namespace Operations:

A collection is a resource that contains a set of URIs. WebDAV introduces

the notion of the collection (analogous to a file system folder), which can contain

resources. It is possible to create and list the collections like the directories in the file

systems. Namespace management provides the ability to copy and move resources,

and to receive a listing of resources at a particular hierarchy level (like a directory

listing in a file system). Since resources may need to be copied or moved as a Web

+*(&� &2"52&+3� ��E� +$--".(+� #"-9� ,'!� %"2&� "-&.,(*"'+�� �,45&� 	��� +7"8+� (7,(�

WebDAV includes the ability to create, move, copy, and delete collections, as well as

the ability to do the same things to the resources or files within the collection.

Locks:

Using a lock, an authoring client can provide a reasonable guarantee that

another principal will not modify a resource while it is being edited. In this way, a

client can prevent the "lost update" problem in which modifications are lost as first

one author, and then another writes their changes without merging the other

author's changes. Therefore, Lock ensures the ability to keep more than one person

away from working on a document at the same time.

A lock token is returned by every successful LOCK operation. A lock token

is a type of state token, represented as a URI, which identifies a particular lock.

�

	�

Method Description Input

MKCOL Create a new collection. URI

DELETE DELETE for Collections:

Removes the collection specified in the Request-

URI and all resources identified by its internal

member URIs.

DELETE for Non-Collection Resources:

Removes the Request-URI from all collections

containing that URI as a member.

URI

GET Retrieves whatever information is identified by

the Request-URI in the form of an entity.

URI

POST The semantics of POST are unmodified. URI, Entity

PUT Stores the enclosed entity under the supplied

Request-URI.

URI

Entity

COPY Creates a duplicate of the source resource in the

destination resource.

If a resource exists at the destination and the

Overwrite header is "T" then prior to performing

the copy the server MUST perform a DELETE

with "Depth: infinity" on the destination

resource. If the Overwrite header is set to "F"

then the operation will fail.

SourceURI

DestinatioURI

Overwrite(T/F)

Depth 6�7�� � �

infinity)

MOVE The MOVE operation on a resource is the logical

equivalent of a copy (COPY), followed by a

consistent maintenance processing, followed by a

delete of the source, where all three actions are

performed atomically.

SourceURI

DestinatioURI

Overwrite(T/F)

�'3��������5�����������'�+�8'����'���"��%�+�

�

	�

To achieve robust Internet-scale collaboration, where network connections

may be disconnected arbitrarily, and for scalability, since each open connection

consumes server resources, the duration of DAV locks are independent of any

*'!*2*!$,5�'&(8".?�#"''&#(*"'���,45&�	�	�+$%%,.*6&+�(7&�5"#?�%&(7"!+�

Method Description Input

LOCK Takes out a lock and returns a lock taken. A

lock on a resource must also lock the

properties of the resources.

If the Depth header is set to infinity then the

resource specified in the Request-URI along

with all its internal members in its hierarchy

are to be locked.

URI

Timeout

Depth 6�7�� � �

infinity)

UNLOCK Removes the lock identified by the lock token

from the Request-URI.

URI

lock token

�'3��������,��4����"��%�+�

������!�������� ���������������"����!�

Version management provides the ability to store important revisions of a

document for later retrieval. Version management can also support collaboration by

allowing two or more authors to work on the same document in parallel tracks.

�

		

WebDAV Versioning defines two levels of versioning functionality: basic

versioning and a!2,'#&!�2&.+*"'*';�/��0�� >,+*#�2&.+*"'*';�-."2*!&+�2&.+*"'*';�")�

largely independent resources. It allows authors to concurrently create, label, and

access distinct revisions of a resource, and provides automatic versioning for

versioning-unaware clients. Advanced versioning provides more sophisticated

capabilities such as logical change tracking, workspace management, and versioning

(7&� ���',%&+-,#&���,45&� 	��� 5*+(+�"'59�(7&�4,+*#�2&.+*"'*';�%&(7"!+�+*'#&�(7&9�

provide what the DFWDAV needs.

������"����! Access Control Protocol

Several requests provide the ability to set and clear access control lists

/���+0�87*#7�,.&�,++"#*,(&!�8*(7�.&+"$.#&+�/��0���'�����#"'(,*'+�,�+&(�")�F,##&++�

control entries" (ACEs), where each ACE specifies a principal and a set of rights

that are either granted or denied to that principal. A principal can be a user, a client

software, a server or a group. This functionality is crucial for allowing collaborators

to remotely add and remove people from the list of collaborators on a single

.&+"$.#&�87*#7�*+�+7"8'�*'��,45&�	���

������"����!�#�$�%��

It is required to search for DAV resources based upon a set of client-supplied

criteria. This will minimize the complexity of clients so as to facilitate widespread

�

	

deployment of applications which are capable of utilizing the WebDAV search

mechanisms /��0���7&�< &4��E��&,.#7�%&(7"!�*+�!&+#.*4&!�*'��,45&�	����

Method Description Input

VERSION-

CONTROL

Creates a version-controlled resource at the

request-URL

URL

CHECKOUT A CHECKOUT request can be applied to a

checked-in version-controlled resource to

allow modifications to the content and dead

properties of that version-controlled resource.

URL

CHECKIN A CHECKIN request can be applied to a

checked-out version-controlled resource to

produce a new version whose content and

dead properties are copied from the checked-

out resource.

URL

UNCHECKOUT An UNCHECKOUT request can be applied

to a checked-out version-controlled resource

to cancel the CHECKOUT and restore the

pre-CHECKOUT state of the version-

controlled resource.

URL

REPORT A REPORT request is an extensible

mechanism for obtaining information about

resources.

URL

Report type

�'3��������1� ��������"��%�+�

�

	�

Method Description Input

ACL Provides a mechanism to set ACL

information. Its request body is used to define

alternatives to the ACL of the resource

identified by the request-URI.

URI

ACLinformation

�'3��������Access Control Methods

Method Description Input

SEARCH Initiate a server-side search. It does not define

the semantics of the query. In contrast, the

type of the query defines the semantics.

URI

Query

�'3�����	��Search Method

The bulk of the WebDAV Search workgroup work is related to query

grammar. One can express the basic usage of the WebDAV search in the following

steps:

• The client constructs a query using the DAV:basicsearch grammar.

• The client invokes the SEARCH method on a resource that will perform the

search (the search arbiter) and includes a text/xml request entity that

contains the query.

• The search arbiter performs the query.

�

�

• The search arbiter sends the results of the query back to the client in the

response. The server sends a text/xml entity that matches the PROPFIND

response.

��

���������

IMPLEMENTATION

 This chapter provides an authoring system implementation based on the

DFWDAV model. At the outset, it shows that the computing environment provides

widespread support to the WebDAV protocol which represents the basis of the

model. Moreover, several of the famous WebDAV software products, which are

used in the implementation, are browsed. Next, the chapter contains the

implementation of a collaborative authoring system based on the DFWDAV model.

!���#
������������

While WebDAV protocol is still evolving, it is widely supported by the

computing environment. Several software products provide most of the WebDAV

methods’ functionality. Moreover, several Internet sites act as WebDAV servers and

-."2*!&� < &4��E� ,##"$'(� ("� (7&� -$45*#� /�	0�� �'� ,!!*(*"'3� +&2&.,5� ")� < &4��E�

software products are open source software and some of them provide API

(Application Program Interface) for WebDAV programmers.

�

�

WebDAV software products can be divided to WebDAV servers and

WebDAV clients. The WebDAV servers include Apache HTTP Server, Jigsaw,

Slide, Microsoft Exchange Server, Microsoft Internet Information Services (IIS),

�.,#5&�
� �'(&.-.+&� �!*(*"'3� �.,#5&� �'(&.'&(� �*5&� �9+(&%� /���03� ���� �".(,5+�

Enterprise Portal Server, Tamino WebDAV Server and Xythos WebFile Server.

Some of these servers are available to the public on the Internet as either test sites or

document repositories.

The Apache HTTP Server is a famous web server which is becoming the

%"+(�8*!&+-.&,!�8&4�+&.2&.�*'�(7&�8".5!�/��0���7&��-,#7&��."$-�*+�.&+-"'+*45&�

about managing and developing this server. The mod_dav module is the Apache

module which provides the WebDAV functions. On the other hand, Jigsaw is also a

web server but it is developed by Java language and is sponsored by W�C�/��0���(�

provides several interesting features including the support of WebDAV protocol.

Also, Slide is a content management project based on WebDAV using the Java

5,';$,;&�/��0��< 7*5&�*(�*+�+(*55�$'!&.�#"'+(.$#(*"'3�*(�*+�&A-&#(&!�("�#"'+*+(�")�+&2&.,5�

modules such as a content management system, a WebDAV client library, a

WebDAV command line client and a WebDAV server. Moreover, it provides Java

API which can be utilized by programmers to developed WebDAV applications.

Several WebDAV servers can be tested directly on the Internet because they

are installed on test sites which can provide free accounts for anybody and can be

used for testing WebDAV protocol and WebDAV clients. For example, SAP Portals

Enterprise Portal Server, Tamino WebDAV Server and Xythos WebFile Server are

�

�

available on public sites which support WebDAV protocol as will be shown in the

next section.

On the other hand, the WebDAV clients are increasing rapidly. They include

DAV Explorer, Microsoft Web Folders, Microsoft Office, Microsoft Internet

Explore, Tamino WebDAV Basic Client, XML Spy, jEdit, SkunkDAV and IBM

<&4�-7&.&���E�)".��,2,�/��E	�0���+�,'�&A,%-5&�")�< &4��E�#5*&'(+3�(7&���E�

�A-5".&.�*+�,�< &4��E�#5*&'(�!&2&5"-&!�49��,2,�/��0���7&�%"+(�),'(,+(*#�)&,($.&�")�

DAV Explorer is its graphical user interface which is similar to the Explorer

program in the Windows operating system. In the next section, more information

about other clients will be given.

Furthermore plenty of open source software products support the WebDAV

protocol. Open source software products are software products that are not

developed for commercial benefits and whose source is available for anybody.

Apache HTTP Server, Jigsaw, Slide and DAV Explorer are some examples of the

open source software products that are WebDAV products.

In addition, some of WebDAV products provide WebDAV libraries as

Application Program Interface (API) which can be used by the programmers to

develop WebDAV applications. Some examples of such products are Slide,

�?$'?��E�,'!���E	��

�

�

!������	
�
���������������		��������
�����������

SYSTEM

In this section, I present a collaborative authoring system implementation as

a proof of the concept. This authoring system is based upon the DFWDAV model

87*#7�*+�&A-5,*'&!�*'�!&-(7�-.&2*"$+59�*'��7,-(&.�����7&�+9+(&%�&',45&+�!*+(.*4$(&!�

users to produce publications in a smooth and efficient way. The objectives of this

implementation include clarifying duties of authors and guaranteeing standardized

works.

As the model is based upon the client/server paradigm, the system consists of

(8"�%,*'�-,.(+�,+�+7"8'�*'��*;$.&�������7&�)*rst part is the server which contains

the WebDAV server, the document repository, the routing and reminding agent, the

WebDAV Protocol

WebDAV clients

Local temporary
document repository�

WebDAV server

Flow repository�

Client Side Server Side

���� �������2��������'�����5���������

Routing & reminding
agent

Flow definer

Non-WebDAV
document editors

Mail client

Document flow client

Document repository

Mail server�

�

�

flow repository, and the mail server. The second part is the client which consists of

WebDAV clients, the document flow client, the local temporary document

repository, non-WebDAV document editors, the flow definer and the mail client.

The following sections describe the system parts in detail.

!�����
�

��
��SUBSYSTEM

The server subsystem is the first part of the system. This subsystem includes

the WebDAV server, the document repository, the routing and reminding agent, the

flow repository, and the mail server.

�.�.� The WebDAV Server

The WebDAV server is responsible to get the requests from WebDAV clients

to handle them. According to the type of the requests, the server takes the

appropriate actions. Most of the requests are illustrated comprehensively in

Appendix A. For example, if a client sends a lock request for a specific document,

the server checks the user privileges on that document as well as its current state

and if there are no obstacles it locks the document for the user. Also, the WebDAV

server handles the document repository which holds the documents.

In the implementation, I tested several WebDAV servers including Apache

HTTP Server, Tamino WebDAV Server, SAP Portals Enterprise Portal Server,

B9(7"+�< &4�*5&��&.2&.�,'!��.,#5&�
��'(&.-.+&��!*(*"'���7&.&�,.&�+&2&.,5�.&,+"'+�

for testing several servers, such as showing the strength and the capability of the

�

�

model. Another reason is the ability to test as most as possible of WebDAV methods

because some servers do not implement some WebDAV methods yet. For example,

Apache HTTP Server implements only most of the core methods of the WebDAV

protocol whereas Tamino WebDAV Server and Xythos WebFile Server implement

some of the versioning and access controlling methods. Concisely, the description of

each server, the way of using it as well as its demonstrated characteristics will be

elaborated in the following paragraphs.

• Apache HTTP Server

I locally installed and configured the Apache HTTP Server, which is

an open-source product. The local installment of the server allows it to

communicate with the routing and reminding agent. Unfortunately, the

current last version of Apache HTTP Server implements only the core

WebDAV methods although the next versions of it may implement other

methods. After installation, the Apache HTTP Server needs some

configuration to support WebDAV. The minimal configuration includes the

following steps:

�- Enabling the WebDAV functionality by loading its module by adding

the next lines to the configuration file:

LoadModule dav_module modules/mod_dav.so

LoadModule dav_fs_module modules/mod_dav_fs.so

�- Specifying a web-server writable filename as the WebDAV lock

database by adding the following to the configuration file:

DavLockDB {FILENAME}

�

	

�- Adding the DAV directive in the WebDAV repository container in the

configuration file to enable the WebDAV methods, for example:

Alias /repository/ {PATHNAME}

<Directory {PATHNAME}>

����DAV On

<�Directory>

	- Restarting the Apache HTTP Server.

After configuring and restarting the server, it is possible to check the result

in the Apache Service Monitor screen. As shown in the bottom of the screen

'� �;$.&� ���3� (7&� +&.2&.� +(,.(&!� 8*(7� < &4��E� support. The WebDAV

repository on Apache HTTP Server becomes http://localhost/repository/.

���� �������$�'�%��#� 0����"����� �#� ����'(�� �
Loading WebDAV Module

Loading
WebDAV
Module

�

• Tamino WebDAV Server

Since Apache HTTP does not yet provide versioning support, I tested

several other servers directly on the Internet because they are commercial

products and they have copyrights. But working on the Internet limits the

connection with the agent. For example, Tamino WebDAV Server is one of

these servers which are installed in public sites. To test the Tamino Server, I

requested a testing account. Then, I received a WebDAV URL and a series of

user and password combinations and I became a registered user. My URL

was http://tamino.demozone.softwareag.com/taminowebdavserver/gemini/.

This URL can be accessed using web browsers with limited access as will be

!*+#$++&!�*'�< &4��E�#5*&'(�+$4+&#(*"'�,'!�,+�,--&,.+�*'��*;$.&�������

���� ��������$����������'�����/�3�$1�#� 0� �� ���'�/�3�9 ����

�

�

• SAP Portals Enterprise Portal Server

SAP Portals Enterprise Portal Server is another server which

implements WebDAV versioning methods which I tested on the Internet. The

address of my repository on SAP Portals Enterprise Portal Server page is

http://gre&'49(&+�!&1��C8#%C!"#+C#%C$�
C. Several functions of this server,

such as versioning and locking, can be accomplished by using web browsers

,+�-.&+&'(&!�*'��*;$.&���	�,'!�*'�(7&�< &4��E�#5*&'(�+&#(*"'�

• Xythos WebFile Server

Xythos WebFile Server is a WebDAV server which I tested on the

Internet. Fortunately, the Xythos WebFile Server on the Internet provides a

fruitful site. The name of this site is Sharemation which can provide its full

functionality through a web browser with a friendly graphical user interface.

���� ��������$���������#$-�-� �'���(���'�/�3�9 ����

�

��

�*;$.&� ���� +7"8+�(7&��'(&.'&(��A-5".&.�>."8+&.�,##&++*';�(7&� ���")�%9�

account on this site which is http://www.sharemation.com/wellxml/.

• �.,#5&
��'(&.-.+&��!*(*"'�

�.,#5&
*��,(,4,+& Enterprise Edition provides a novel feature, called

Oracle XML DB, that can also be accessed using WebDAV. Fortunately,

�.,#5&� B
�� �>� .&-.&+&'(+� ,� ',(*2&� B
�� !,(,4,+&� 8*(7*'� �.,#5&
*��

Therefore, it can be used as the XML document repository in the

implemented system. There are several ways to access the XML DB such as

HTTP and FTP protocols. Moreover, since it is a WebDAV repository, it can

be accessed via Web Folders.

Figure (���):����� �������� Accessing Sharemation Site by the Internet Explorer

�

��

�.�.� The Document Repository

The document repository depends fully on the WebDAV server. In other

words, usually WebDAV servers determine the document storage type. For

&A,%-5&3� �-,#7&� ����� �&.2&.� $(*5*6&+� (7&�)*5&� +9+(&%�� �'� #"'(.,+(3� �.,#5&
*�

Database Enterprise Edition stores the document inside the database. In summary,

it is possible to employ either file system of database as a document repository but

according to the WebDAV server.

�.�.� The Routing And Reminding Agent

The routing and reminding agent, developed by the researcher, represents

the heart or the engine of the system. The agent communicates with WebDAV

servers and manages the information of the document flows. According to this

information and to the actions of the users, the agent takes the appropriate

-."#&++&+�� ��*;$.&�����*55$+(.,(&+�(7&�,;&'(�!$(*&+�87*#7�,.&�&A&#$(&!�-&.*"!*#,lly.

Also, it shows that the agent checks all flow progresses and according to their

statuses, it takes the appropriate actions. The statuses of the flow progresses can be

Null, D, W, or U.

�

��

GetFlowProgress
Operation(Checking)

Status
=Null

Status
=D?

Status
=W?

Status
=U?

HandleDownload
(FALSE)

HandlWorking

HandleUpload
(FALSE)

Yes

Yes

No

Yes

No

Yes

No

Error Message
Unknown Status

End
Of

Operation (The End)
DeleteFlowProgress

More Flow
Progress

?

Yes

No

Yes

No

START

END

���� ��������%��$�����- ��������������%' �

GetNextUserInFlow

No

�

��

The first status is Null which means that the corresponding flowed document

starts the flow or that the current user uploads it. In either cases, the agent calls

�&(�&A(+&.�'�5"8�-."#&!$.&�+7"8'�*'��*;$.&�������7*+�-."#&!$.&3�*'�($.'3�;&(+�

the flow information of the next candidate in the flow and notifies him to download

the document.

The second status is D in which the flowed document waits for the current

user downloading. In this case, the agent calls HandleDownload procedure with

false input variable to notify the user when necessary. The false parameter means

START�

END

More
users in

flow?

- Get next user in the flow
- FlowProgressStatus = D
-Operation(GetNextUserInFlow)
-Handle_DownLoad(True)

Yes No

���� ����	��GetNextUserInFlow Flowchart

- EndOfFlow = True

�

��

that this download notification is not the first one for that user. This procedure is

55$+(.,(&!�'��*;$.&�����

In the same manner, the third document flow progress status (i.e. W status)

denotes that the current user downloaded the document and he does not consume

his working period. For this status, the agent calls HandleWorking procedure which

+�+7"8'�'��*;$.&���
�

Finally, the forth status is U which is similar to status D except that status U

is related to the uploading operations while status D is related to downloading

operations. For the U status, the agent calls HandleUpload procedure which is

+7"8'�49�(7&�)5"8#7,.(�,--&,.+�*'��*;$.&������

START

END

- Notify (download)
- NoDownload Notifications =
NoDownloadNotifications -��
- LastTime = NOW

Yes No

���� ����
���:'�+��;������'+������%' �

NoDownload
Notifications>

�

Yes No

- Notify (canceled download)
- GetNextUserInFlow

IsFirstNotify or
Period_Consumption
(download period)

�

��

START

END

- Notify (upload)
- NoUpload Notifications =
NoUpload Notifications -��
- LastTime = NOW

Yes No

���� ��������:'�+��;<���'+������%' �

NoUpload
Notification

�=��

Yes� No

- Notify (canceled upload)
- GetNextUserInFlow

IsFirstNotify or
Period_Consumption

(upload period)

START

END

- FlowProgressStatus = U
- Operation(change to upload)
- Handle_Upload(True)

Yes No

Figure �.���:'�+��;/� 4���������%' �

Period_Consumption
(working period)

�

��

Moreover, the HandleDownload, HandleWorking and HandleUpload

procedures utilize the Period_Consumption function which returns true if the

difference between the meantime and last operation is more than the specified

-&.*"!���7&�)5"8#7,.(�")�(7*+�)$'#(*"'�,--&,.+�*'��*;$.&������

�*;$.&������.&-.&+&'(+�(7&�+',-+7"(�")�(7&�,;&'(�+#.&&'���(�*+�$+&!�(o trace the

flow progresses.

�7&� +(,(&� !*,;.,%� *'� �*;$.&� ����� +7"8+� (7&� +(,(&+� ")� (7&�)5"8� -.";.&++��

Initially, when a document starts a flow, it enters into NULL state. In this state the

agent check if there are any more users in the flow. If there are no more users, the

flow is completed. Otherwise, the agent sends a download notification to the next

user and transfer the document to D state.

START

END

NOW -
LastTime
> Period

Return TRUE Return False

���� ��������-� ��+;5�������������owchart

Yes No

�

�	

State D means that the agent is waiting the user to download the document.

There are three possible inputs to this state. As shown in the figure, if the user does

not download the document in the appropriate time and he has more download

notifications, the document stay in state D and the agent sends a notification to the

user after decreasing his download notifications. The second input handles the case

of the user when he does not download the document after consumption his

notifications. With this input the agent notifies the user by his cancellation and

transfers the document to state NULL to consider the next user. The final input

represents the user when he downloads the document in which the state becomes W.

���� ��������Tracing Flow Progresses Screen

�

�

W state stands for the document after the user downloads it and before the

working period is over. The state is changed either because the user uploads the

document or because his working period is over. In the former case, the user

finalizes his work so the document returns back to the NULL state. The latter case

transfers the document to state U and sends the user the first upload notification.

The Final state is U which means that the user should complete his work and

upload the document back to the server. This state is similar to D state except that U

state takes care of uploading process.

���� ����������%��#�'�����'� '���(��%�������- �� ���

D

U

W

not download &
more download

notifications

user exists

no user

not download &
no more download

notifications

download

upload

not upload &
more upload
notifications

not upload & no
more upload
notifications

upload
the working period

is over

Null Done

start

�

��

�.�.� The Flow Repository

In this implementation, the flow information is represented and stored in a

relational database. This subsection contains the description of the flow entities,

.&5,(*"'+7*-�(9-&+�,'!�(7&�,((.*4$(&+�")�(7&�&'(*(*&+�87*#7�!&+#.*4&!�*'��,45&����3�

�,45&�����,'!��,45&�����.&+-&#(*2&59�

Entity Name Description
User A user is somebody who utilizes the system and associates in

creating and modifying documents.
Document A document is flowed between users according to a document

flow definition.
Flow A flow represents the definition of a possible document

routing between several users.
Flow Detail Each flow detail represents a flow definition for a user.
Flow Progress A flow progress is updated periodically by the agent to

provide the latest information about a specific document flow.
Operation Operation are actions on documents performed either by the

agent or by the users.
Notification Notifications are sent by the agent to the users in order to

encouraging them either to perform something or to provide
them by suitable information.

 �'3���������#������!��������

Entity
Name

Relationship
 type

Entity Name Cardinality Participation

User

Receives
Associates
Joins

Notification
Operation
FlowDetail

�1

�1

�1

P:T
P:T
P:T

Document

Relates to
Associates
Flows using
Traced by

Notification
Operation
Flow
FlowProgress

�1

�1

1�
�1�

P:T
P:T
P:P
P:T

Flow Includes FlowDetail �1
 P:P
FlowProgress Reaches FlowDetail
1� P:P

 �'3���������#������)��'�����%��������.

�

���

Entity Name Attribute Description
User Serial

ID
Name
Password
Email

Unique user identifier.
System logon name for user.
The user name.
The system password for user.
The electronic mail for user.

Document Serial
Name
Path

Uniquely identifies document.
Name of document.
The repository path of document.

Flow Serial
Name

Unique flow identifier.
Flow name.

FlowDetail FlowSerial
Order

UserSerial
No_Download_Notify
Download_Period

No_Upload_Notify
Upload_Period

Working_Period

The serial of the related flow.
Placing the flow detail within the rest
flow details of the same flow.
The serial of the user in the flow detail
Number of downloading notifications.
The period between two download
notifications.
Number of uploading notifications.
The period between two upload
notifications.
The period between user downloading
and first uploading notification.

FlowProgress DocSerial
FlowDetailOrder

Status

LastTime

No_Download_Notify

Download_Period

No_Upload_Notify

Upload_Period

Working_Period

The serial of the related document.
The current flow detail order in the
flow.
Status of flow progress which is either
Null, D, W or U.
The time of the last operation or
notification.
Number of remaining downloading
notifications.
The period between two download
notifications.
Number of remaining uploading
notifications.
The period between two upload
notifications.
The period between user downloading
and first uploading notification.

Table ���: The Attributes of the Entities (continued overleaf).�

�

���

Entity Name Attribute Description
Operation Serial

DocSerial
UserSerial
Time
Type

Uniquely identifies operation.
The related document serial.
The related user serial.
Operation time.
Operation type which is either
Checking, GetNextUserInFlow,
ChangeToUpload, EndOfFLow,
UserDownloading or UserUploading.

Notification Serial
DocSerial
UserSerial
Time
Type

Unique notification identifier.
The related document serial.
The related user serial.
Notification time.
Notification type which is either
 Download, CanceledDownload,
Upload or CanceledUpload.

 �'3�������continuation: The Attributes of the Entities.

�

�
".&"2&.3� �*;$.&� ���	� +7"8+� (7&� &'(*(9-relationship (ER) diagram of the

implemented system.

�.�.� The Mail Server

The mail server is responsible to receive the automatic notification messages

from the routing and reminding agent via the simple mail transfer protocol

(SMTP). These messages are the download and upload notifications. The download

notifications ask the users to download the documents from the server and to

perform their work with the documents. On the contrary, the upload notifications

require the users to end their work on the documents and to upload them back to

the server. Also, the mail server forwards the messages to the mail clients as will be

described in the mail client subsection.

�

���

�

!�����
��	�
���
��
%
�
�

The client subsystem includes WebDAV clients in addition to the document

flow client, the local temporary document repository, non-WebDAV document

editors, the flow definer and the mail client.�Each of these parts will be explained in

the following.

���� ����������%��!)���'� '���(��%����������������2��������'����

User�

Document

FlowProgress�

Operation

Flow

FlowDetail�

Receives

Flows
using�

Traced
by

Reaches

Includs

Notification�

Relates�

to
�

Joins
�

M

M

�

�

�

�

M

M

��

�

� M

M �

�

M

�

M

Associates
�

Associates
�

�

���

�.�.� WebDAV clients

�+�+7"8'�*'��7,-(&.�	�,'!��--&'!*A��3�< &4��E�#5*&'(+�#,'�#"%%$'*#,(&�

with WebDAV servers to perform remote authoring of the documents through a

coherent set of methods which containing request headers and request body

formats. Then, servers return appropriate responses enclosing response headers in

addition to response body formats. For example, WebDAV provides methods to

store and retrieve resources, to create and list contents of resource collections, to

lock resources for concurrent access in a coordinated manner, and to set and

retrieve resource properties. Thus, WebDAV clients are the main part of the client

subsystem of the system. In the implementation, I used several WebDAV clients

including DAV Explorer, Tamino WebDAV Basic Client, Web Folders, Microsoft

Office, Internet Explore, jEdit and XML Spy. These enormous products of

WebDAV clients make it possible to upload and access documents stored in

WebDAV repositories using standard, familiar interfaces as will be shown.

The WebDAV clients differ in their behavior and according to that can be

divided into four groups: dedicated WebDAV clients, WebDAV-enabled clients,

WebDAV document editors and web browsers. In the following, several WebDAV

clients are elaborated for each group.

 The first group represents the dedicated WebDAV clients which includes

DAV Explorer and Tamino WebDAV Basic Client. These clients send WebDAV

requests directly to the server. The DAV Explorer is similar to the Windows

�

���

�A-5".&.�*'�*(+�*'(&.),#&�,+�+7"8'�*'��*;$.&��������(�(.,'+5,(&+�(7&�$+&.�,#(*"'+�("�(7&�

proper requests which are sent to the server.

The Tamino WebDAV Basic Client allows its user to write the requests, send

them and check their responses from the server. The advantage of this client is that

it enables users to send any request type directly, including versioning requests.

�*;$.&������-.&+&'(+�(7&�*'(&.),#&�")�(7*+�#5*&'(�

���� ����������%���$1�!&��� � �2��� ('��

���� ����������'�����/�3�$1�9'����5�����

�

���

The second group represents the WebDAV-enabled clients, supporting the

WebDAV protocol via Web Folders. This group represents the most popular way of

accessing WebDAV servers on Microsoft Windows. A Web Folder represents an

interface to a WebDAV repository on the WebDAV server and so Web Folders can

act as an intermediate medium between WebDAV-enabled clients and WebDAV

+&.2&.+���*;$.&������+7"8+�+&2&.,5�!&)*'*(*"'+�")�< &4��E�.&-"+*(".*&+�$+&!�*'�(7&�

implementation.

Moreover, Microsoft Office is a WebDAV-enabled client which allows direct

editing of the documents in the WebDAV server repositories via Web Folders as

,--&,.+�*'��*;$.&� ������ �'"(7&.�*'(&.&+(*';�)&,($.&�")�< &4��"5!&.+�*+�(7&�+*%-5&�

deal with the WebDAV repository. It is possible to drag and drop files into and from

<&4��"5!&.+�+*'#&�(7&9�#,'�4&�7,'!5&!�,+�'".%,5�)"5!&.+�,+�+7"8'�*'���*;$.&����
�

���� ������	��$���������/�3�$1�)���sitories via Web Folders

�

���

���� ������
���� ����!+�������(�/�3�$1�����������������"�� ���(��*((���

���� ���������$���������/�3�$1�)������� ��0�'�'�/�3����+�

�

��	

 The third group of the WebDAV clients includes WebDAV clients which can

be used to edit documents directly on WebDAV servers without Web Folders. For

example, JEdit, which is Java-based open source text editor, can be extended to be a

WebDAV client using a WebDAV plug-*'�,+�+7"8'�*'��*;$.&��������7&'�49�$+*';�

locks to prevent lost updates, it can be used to edit text files directly on WebDAV

servers.

Also, XML Spy, which is an XML development environment, can communicate

directly with several XML WebDAV repositories. Moreover, it supports opening

and saving documents from and to WebDAV servers as shown i'��*;$.&������

 The fourth group of the WebDAV clients is the web browsers such as

Internet Explorer. But the web browsers may face some limitations when dealing

with WebDAV servers because the current web browsers do not support WebDAV

methods via HTTP protocol. In this case, the browsers can browse the documents on

(7&�.&-"+*(".9�,'!�!"8'5",!�(7&%�"'59�,+�-.&2*"$+59�+7"8'�*'��*;$.&�����")��,%*'"�

WebDAV Server. In contrast, some WebDAV servers provide web applications

which allow the web browsers to utilize the WebDAV repositories in a smart way

���� ����������%��>!+������%�/�3�$1�����-in

�

��

and friendly interface. For example, SAP Portals Enterprise Portal Server and

B9(7"+�< &4�*5&��&.2&.�#,'�4&�$(*5*6&!�2*,�8&4�4."8+&.+�,+�+7"8'�*'��*;$.&���	�,'!�

�*;$.&�����

�.�.� The Document Flow Client

I implement a special client which helps users to identify and handle their

8".?���*;$.&������+7"8+�(7&�)*.+(�+#.&&'�")�(7&�!"#$%&'(�)5"8�#5*&'(�*'�87*#7�$+&.+�

!"8'5",!�,'!�$-5",!�!"#$%&'(+�,##".!*';�("�(7&*.�-.*2*5&;&+�� ��5+"3��*;$.&������

shows the second screen of the client which inform each user with notifications sent

to him by the agent.

���� ���������?",�#���$���������/�3�$1�)������� �

�

���

���� ��������The Documents Screen of the Flow Client

���� ���������%��8���(��'������#� ��������%����ow Client

�

���

�*;$.&� ���	� -.&+&'(� (7&�)5"8#7,.(� ")� (7&� $+&.� !"8'5",!*';� -."#&++&+��

According to this figure, when a user downloads a document, its flow progress status

becomes W which makes the agent waits for the document working period before

'"(*)9*';� (7&� $+&.� ("� $-5",!� (7&� !"#$%&'(�� �*%*5,.593� �*;$.&� ����� +7"8s the

flowchart of the uploading processes, in which the flow progress status is set Null to

provide an indication for the agent to deal with the next user in the flow.

START

END

- FlowProgressStatus = Null
- Last_Time = Now
- Operation(UserUploading)

���� ���������User Uploading Document Flowchart

START

END

- FlowProgressStatus = W
- Last_Time = Now
- Operation(UserDownloading)

���� ��������<�� �������'+������������������%' �

�

���

�.�.� The Local Temporary Document Repository

The local temporary document repository is an optional component on the

client subsystem. It can be used either because the editors do not support WebDAV

protocol or because the communication media is not reliable. In both cases, users

can download the documents from the WebDAV server to their local temporary

document repository where than can edited the document. After finalizing the

editing, they upload the documents back to the server.

�.�.� Non-WebDAV Document Editors

Any document editor can be used in the implemented authoring system. But

document editors differ in the mode of editing documents in WebDAV repositories.

As shown in the WebDAV clients’ subsection, several document editors can edit

documents directly in WebDAV repositories without downloading them. Moreover,

any editor can be used to edit documents locally after downloading them from the

servers.

Several document editors can communicate with WebDAV repositories

either directly or via Web Folders as shown in the previous section. In both cases, it

is possible to edit documents in WebDAV repositories directly by using the editors.

Thus, wide applications can be used as document editors in the implemented system

including: Microsoft Office, JEdit and XML Spy.

�

���

Moreover, the system can get benefits from non-WebDAV editors by editing

documents locally in the client subsystem after downloading them from servers. To

prevent the lost update problem, documents are locked before they are downloaded.

After editing them locally, they can be uploaded back to the server where they are

unlocked. In summary, any document editor can be utilized in the authoring system

by employing a lock-download-work-upload-unlock authoring process.

�.�.� The Flow Definer

The document flow definer is responsible to define document flows. As

-.&2*"$+59�+7"8'�*'��7,-(&.��3�(7&�)5"8�")�,�!"#$%&'(�*'#5$!&+�(7&�$+&.+�87"�,.&�

responsible to work with the document. Also, the flow defines for each user five

attributes: the number of downloading notifications, the downloading notification

period, the number of uploading notifications, the uploading notification period and

the working period. The number of downloading notifications and the number of

uploading notifications of a specific user are the number of the notifications which

the agent should send to the user remind him to download or to upload the

document. The download notification period and the upload notification period

represent the period between two download or upload notifications. The working

period is the period between downloading the document and sending the first

$-5",!*';�'"(*)*#,(*"'���7&�."5&+�")�(7&+&�,((.*4$(&+�,.&�#5,.*)*&!�&,.59�*'��*;$.&������

In the implementation, the flow information is saved in a database system in the

+&.2&.�+$4+9+(&%�,+�+(,(&!�*'�+$4+&#(*"'�����	���"%&�+',-+7"(+�")�(7&�)5"8�!&)*'&.�

�

���

+#.&&'+�,--&,.�*'��*;$.&�����3��*;$.&������,'!��*;$.&��������7&+&�+#.&&'+�,.&�$+&!�

to define users, documents and document flows respectively.

���� �������� Defining Users Screen

���� �����	��Defining Documents Screen

�

���

�.�.� The Mail Client

The mail client in the client subsystem is used in the system to receive the

agent notifications in the picture of emails. The email notifications provide users

with appropriate information including the actions which they should do as

&A-5,*'&!�-.&2*"$+59�*'��7,-(&.�����7&�&%,*5�'"(*)*#,(*"'+�*'#5$!&�!"8'5",!3�$-5",!�

and cancel notifications. A download notification notifies a user to edit a document

when it is his turn in the flow path or when he does not do so in time. This

notification informs him about his turn in the document flow and requests him to

download the document to perform his work with it. In contrast, an upload

���� �����
��Defining Flows Screen

�

���

notification prompts a late user to finish his work with a document and upload it

back to the server. It will be sent to him if he does not upload the document after the

working period is over. Furthermore, a cancel notification informs a lazy user of

canceling him from the flow when he does not do his work by downloading or

uploading a document� *'� (7&� +$*(,45&� (*%&�� �*;$.&� ���
� +7"8+� ,'� ,$("%,(*#�

generated email notifying a user to download a document.

Figure ����: An Email Generated by the Agent�

����

���������

COMPARISON AND ANALYSIS

This chapter compares the literature survey systems according to a set of

comparison criteria. Next an analysis of the comparison is provided. Finally, it

presents an evaluation of the DFWDAV model using the same comparison criteria.

The objective of this comparison is to show the improvements which the DFWDAV

model provides.

"����������
��

Each of the literature survey applications contains a document flow and

archival model. These document flow and archival models vary in their

architectures and techniques. Several factors contribute to this variation. The most

important factors are the objectives of their applications and the technologies

available at the time when they were developed. This section briefly points out the

differences between these models.

�7&� %"!&5+� ,.&� 4.*&)59� #"%-,.&!�)."%� +&2&.,5� -7,+&+� *'� �,45&� ����� �7*+�

comparison is divided into two parts: first, document flow, and second, document

archival.

�

��	

 Model

Factor

EDMS Alliance DocMan DReSS

Editing
Lock, download
and edit locally

By holding a
master copy
and edit it
locally

Lock, download
and edit locally

Lock, download
and edit locally

Flow
mechanism

Between the
server and the
clients Using
state graph

Fragment
migration
between sites

Between the
distributed
store and local
disks.

Between the
server and the
clients

Document
syntax

Various
engineering
Documents

Special format Miscellaneous Any documents

System
platform

Unix &
X Windows

Unix Server: Solaris
Client Windows

Unix or
Windows NT

Network LAN WAN WAN The Internet

Dependency
Database &
special
software

Special
software

Special
software

Special
software

Document
repository

Relational
database

File system File system Database & file
system

Document
location

Centralized Distributed &
replicated
between sites

Distributed
between the
sites

Centralized

Automatic
Notification

Internal
asynchronous
notification
between the
server and the
clients

Internal
notification to
update the
fragments

Two type:
- Automatically
reflect the
changes of the
document
folders.
- Subscribing to
email
notification.

Not available

Versioning

Available Not available By creating a
copy of the
updated
document after
finishing the
updating

Not available

Access
Control

On operation
level using
privileges

On fragment
level using the
roles

By defining
user access

Available

Handling
Collaborative

functions

In the
application

In the
application

In the
application

In the
application

�����'3��������5���' �����3���������((� ����"�+����6��������+��0� ��'(@�

�

��

 Model

Factor

Oxford

Radcliffe
Hospital

document
management

system

BSCW Smartcard
system EnAct

Editing
Not available Lock, download

and edit locally
Not Available By MS Word

directly to the
repository

Flow
mechanism

Between
authors and
readers

Between the
server and the
clients

From a sender
to a receiver

By Assigning a
document to
the users

Document
syntax

SGML Any document XML SGML

System
platform

Not mentioned Unix Or NT Any system Unix Or NT with
PCs

Network Intranet The Internet The Internet The Internet

Dependency

Database Extension to a
Web server and
database

Smartcard &
Smartcard
reader

SIM (Structured
Information
Manager) and
customized
MS Word

Document
repository

Database Database & file
system

Not Available SGML
Repository

Document
location

Centralized Centralized Distributed
between the
sites

Centralized

Automatic
Notification

Using author
distribution lists
and reader
subscriptions

By event
service

Not Available Not Mentioned

Versioning Not available Linear
versioning

Not Available Linear
versioning

Access
Control

Not available On workspace
level

Only the
receiver can
access the
document

On the
document level

Handling
Collaborative

functions

In the
application

In the
application

In the
application

In the
application

�'3��������������'������5���' �����3���������((� ����"�+���

(continued overleaf).

�

���

 Model

Factor

An extension
of Lotus
Notes

AllianceWeb GroupWriter WebDAV
system

Editing
Any time by
creating new
revisions before
the editing

By holding a
master copy
and edit it
locally

Using Check
out and check
in

Lock, download
and edit locally

Flow
mechanism

Depending on
Lotus Notes

Fragment
migration
between sites

Direct updating
or by
annotations

Between server
and clients

Document
syntax

HTML HTML and XML TXT or RTF Any document

System
Platform

Any one
supports Lotus
Notes

Any system Windows Any platform

Network Intranet The Internet LAN and dial
up

The Internet

Dependency

Lotus Notes Extended
WebDAV
server and
Amaya

Special
software tools

WebDAV
server (Apache
and mod_dav)
and an
extension to a
Web browser

Document
repository

Lotus Notes
repository

File system File system File system

Document
location

Centralized Distributed &
replicated
between the
servers

Centralized Centralized

Automatic
Notification

Not Mentioned Internal
notification to
update the
fragments

Not Mentioned Not available

Versioning After every
modification

Not Available Available
temporarily

Not available

Access
Control

On the
document level

On document
fragment level

On documents
level

On document
level

Handling
Collaborative

functions

In the
application

In the
application

In the
application

At Network
Layer

�'3��������������'������5���' �����3���������((� ����"�+�����

(continued overleaf).

�

���

 Model

Factor

MS Office
�����

Annotation
System

Form Flow

Model

X-Folders

Editing
Each user can
update his
annotations

By updating
database field

Directly on the
repository

Flow
mechanism

Adding and
reading
annotations

Not Mentioned

Either by
transferring the
documents
between the
folders or by
chaining the
status of
documents

Document
syntax

HTML
Forms only Any document

System
Platform

Windows
Any platform Any platform

Network Intranet Based upon
TCP/IP Internet

Dependency

MS Office
����������	
�

Server, SQL
Server and
annotation
client

JATLite (An
agent platform)
and KQML

WebDAV
servers

Document
repository

Database for
annotations
and file system
for documents

Database File system

Document
location

Centralized
Centralized Centralized

Automatic
Notification

By subscription
Not mentioned Not mentioned

Versioning Not available Not available Not available

Access
Control

Each user can
update only his
annotations but
can read all
annotations

Depends on
database
privileges

Depends on
database
privileges

Handling
Collaborative

functions

In the
application

In the
application

At Network
Layer

 �'3��������������'������5���' �����3���������((� ����"�+��s.

�

���

The first part of the comparison includes three tasks: document editing, flow

mechanism and automatic notification. Some models do not allow the first task (i.e.

document editing) because their applications do not require this task. The other

models accept different editing methods. Most models, for example, apply a locking

mechanism which allows the user who locks and downloads a document to edit this

document. The lock will be held for him until he uploads the document. In contrast,

the extension of Lotus Notes and MS �))*#&�����,''"(,(*"'�%"!&5+�,--59�!*))&.&'(�

kinds of methodologies. The extension of Lotus Notes mode allows any user at any

time to update a document by initiating and saving a new version of it after the

modifications have been accomp5*+7&!���7&�
���))*#&������,''"(,(*"'�%"!&5�!"&+�

not allow its users to modify any annotation except for its initiator.

The next task is the flow mechanisms in which models imply wide variations.

Some models do not have a structured manner to handle the document flow because

the actions of the users determine the document flow. Thus, the privileged user who

firstly locks a document is the only one who can download and update it in his local

machine. In contrast, EDMS innovates the document flow state graph. Also,

Alliance and AllianceWeb apply the document fragments flow automatically.

Similarly, the Smartcard system determines the receiver of each document, and the

EnAct system assigns each document to the users.

The final document flow task is the automatic notification which enhances

the flow since the users can take the right decision based on the notifications. While

most models do not provide any notification mechanism, some of them (e.g. EDMS

and Alliance) have an internal notification between the model components. This

�

���

internal notification updates the components information. In addition, some models

provide high-level notification. For example, the Oxford system notifies the users of

any new concerned document because they subscribe in its subject or because its

author adds them in the document distribution list. Also, BSCW offers a thorough

event service which allows any member in any workspace to define several

!"#$%&'(+�".�8".?+-,#&�&2&'(+���*',5593��))*#&������,''"(,(*"'�+9+(&%�,55"8+�*(+�

users to subscribe in a document to receive information about its annotations.

The second part of the model comparison (i.e. document archival) consists of

the document repository and document format. Most models rely on a centralized

repository, while other models have either a distributed or a replicated or no

repository. DocMan, for instance, is based upon a distributed repository, whereas

Alliance is based upon a replicated repository, and finally the Smartcard system

does not have a repository at all. In addition to the above mentioned, the repository

can be divided into several groups based on the storage method: database

repositories, file system repositories and mixed database and file system

.&-"+*(".*&+�� �,45&� ���� +7"8+� (7&� .&-"+*(".9� (9-&� ")� &,#7� %"!&5�� Finally, some

models rely on a ready repository such as EnAct that uses a SGML repository and

the extension of Lotus Notes model which depends on the Lotus Notes repository.

 The other factor which contributes to comparing document archival part is

the document format. Several models do not enforce the users to use a specific

document format such as EDMS, DReSS, BSCW and WebDAV system. In contrast,

some models work with their own special document format, like Alliance. The rest

�

���

are based upon a known document format such as text format or markup languages

(i.e. SGML, HTML and XML).

"������	%
�

Several reasons lead to the inconsistency between the literature survey

document flow and archival models. The most influential reasons are the objectives

of their applications and the available technologies when they were developed.

The first factor which has the major effect is the impact of the application

objectives. These objectives include cooperative authoring, document managing,

Internet document publishing, interested document acquiring, secure document

sending and document annotation exchanging. The distinctive objectives yield

distinctive functionality. The models, for example, which support cooperative

authoring handle the document updating issues, and most of these models provide

versioning faculties. In contrast, the Oxford system is designed to inform its users

about the availability of novel interest documents. Therefore, this model does not

bother itself with the updating or versioning functions. Also, the Smartcard system

does not handle these two issues because its objective is just the secure document

exchange over the Internet.

The second influential factor on the document flow and archival models is

the effect of the technologies used in their app5*#,(*"'+���(�*+�#5&,.�)."%��,45&�����

which is ordered by the development year of the models that most models are

affected by the technologies available during the period of their development. For

�

���

&A,%-5&3�,55�%"!&5+�!&+*;'&!�,)(&.� �

��+$--".(�(7&��'(&.'&t environment except

GroupWriter because its objective is justified without the Internet. Moreover, most

of these models utilize at least one of the recent markup languages (i.e. HTML and

XML). Also, the recent models support the Windows operating system while the

%"!&5+� 4&)".&� �

�� 8".?� "'59� "'� (7&� '*A� &'2*."'%&'(�� �'"(7&.� &A,%-5&3� (7&�

system�&A(&'!&!��"($+��"(&+�,'!�(7&��))*#&������,''"(,(*"'�+9+(&%�.&59�"'�8&55-

?'"8'� #"%%&.#*,5� -."!$#(+� /*�&�� �"($+� �"(&+� ,'!� �))*#&� ����0�� �*',5593� +&2&.,5�

recent systems3�+-&#*)*#,559��55*,'#&<&43�< &4��E�+9+(&%3��))*#&������,''"(,(*"'3�

utilize the novel protocol WebDAV that transfers the complexity of handling the

collaborative issues from the application level to the communication protocol level.

"����������
����
�#

��THE DFWDAV MODEL AND

OTHER MODELS

The implementation shows that the DFWDAV model overcomes some of the

5*%*(,(*"'+� ")� (7&� 5*(&.,($.&� +$.2&9� %"!&5+� 87*#7� ,.&� *'2&+(*;,(&!� *'� �7,-(&.� ����

Moreover, the implementation demonstrates several of the robust features of the

DFWDAV model. The objective of this section is to compare the literature survey

models with the DFWDAV model. This comparison will illuminate some of the

DFWDAV model characteristics.

Since the literature survey models are compared previously in �,45&� ����

according to several different factors, the DFWDAV model is compared with other

�

���

%"!&5+� $+*';� (7&+&�),#(".+�� �,45&� ���� +$%%,.*6&+� (7&� ��<��E� %"!&5�

characteristics according to the comparison factors.

 Model

Factor

DFWDAV

Editing
Either direct editing of documents in the repositories or

by downloading documents locally where they can be

edited.

Flow mechanism
The flow of the documents between users is a structured

and automated flow but according to the document flow

definitions.

Document syntax Any document syntax.

System platform Any platform.

Network The Internet.

Dependency WebDAV server and clients.

Document repository
Can be a database repository or a file system repository

depending on the WebDAV server.

Document location Centralized

Automatic

notification

Available to the users in the flow definitions to remind

them to download or upload documents.

Versioning Available via WebDAV protocol.

Access Control On the document level.

Handling

Collaborative

functions

At Network Layer (i.e. via WebDAV protocol)

�'3���������The DFWDAV Model Characteristics According to the
Comparison Factors

�

���

In addition, the comparison will depend on the comparison parts presented

'� +&#("'� ���� 87*#7� ,.&� !*2*!&!� *'("� (8"� -,.(+1� !"#$%&'(�)5"8� ,'!� !"#$%&'(�

archival.

The document flow part includes three factors: document editing, flow

mechanism and automatic notification. According to the first factor, the DFWDAV

model is very flexible since it allows two different document editing methods

depending on the document editors: direct document editing and lock-download-

work-upload-unlock editing. As shown several document editors can edit documents

directly in the repository if they are WebDAV clients such as XML Spy and

Microsoft Office. Moreover, if they do not support WebDAV protocol or the

commutation media is not reliable, it is possible to lock and download documents

from the repository to the clients where they are edited. Then, they can be uploaded

back to the repository where they are unlocked. The second factor of the document

flow comparison is the flow mechanism in which the DFWDAV model handles the

flow of documents in a structured manner. The model relies on document flow

definitions to determine the flow of documents. At any time only one user is allowed

to edit a specified document. On other side, documents may flow physically between

server and clients if they are edited locally. The third and final document flow factor

is the automatic notification. Clearly, the DFWDAV model provides high level user

notifications which enhance the flow of documents and increase the speed of

producing documents. As shown, there are three notification types: downloading,

uploading and canceling notifications.

�

��	

On the other hand of the comparison, the document archival part consists of

two factors: the document repository and the document format. With respect to the

former factor, the document repository of the DFWDAV model is centralized.

Furthermore, it depends completely on the WebDAV server. Although several

WebDAV servers provide file system repositories, other servers provide database

repositories. This variety offers more flexibility in the implementation wise. The

latter factor (i.e. document format) shows the reliability of the DFWDAV model. As

shown, the model does not enforce a specific kind of document formats as it

supports numerous textual documents. Moreover, it also applicable to non-textual

documents such as drawing documents.

In summary, the DFWDAV model promises flexible editing methods and

distinctive document repositories. It is independent of document syntax and applied

software products (i.e. editors, clients and servers). Moreover, it ensures structure

document flows, high level notifications and document versions. Most of these

features result from the full utilization of the WebDAV protocol. This utilization

transfers the complexity of handling collaborative issues from the application side to

the network layer, and so the DFWDAV model concentrates on the flow issues such

as flow defining, analyzing and processing.

��
�

���������

CONCLUSION

 Most of the available document collaborative applications lack a systematic

document flow module. In these applications, the document flow functions are

incorporated within other functions. Therefore, it is very important to design a

document flow model which can be used as an infrastructure for such applications.

 In this research, I have developed DFWDAV (a document flow model) that

can support modern web cooperative applications. I believe that the primary value

of this work comes from the modularity and the systematically of DFWDAV

whereas most other applications combine this functionality with other functions.

Despite the fact that this research has a strong structure flavor, the work

presented in this thesis strongly surpasses most of the applications that handle

documents in collaborative environments. While these applications provide wide

functionality, they do not consider the document flow as a standalone function. In

contrast, this research has provided a generic and systemic document flow model

which utilizes innovative technologies. Through the examination of existing systems,

the model reported in this thesis has sought to reflect a generic infrastructure for

collaborative applications. The reflection is used to design a generic systematic

document flow model.

�

���

 �7&�.&+(�")�(7*+�#7,-(&.�*+�".;,'*6&!�,+�)"55"8+���&#(*"'�����+$%%,.*6&+�(7&�

%,*'� ,#7*&2&%&'(+� ")� (7&� .&+&,.#7� -.&+&'(&!�*'� (7*+�(7&+*+�� �&#(*"'� ���� *!&'(*)*&+�

relevant issues of the future work.

$���CONTRIBUTION

This section focuses on the contribution concerns of the DFWDAV model. It

includes the problems in the literature survey models which are avoided in the

DFWDAV model. Moreover, the features which are introduced or emphasized in

the DFWDAV model are listed. In contrast, the features of the survey models, which

are not available in the DFWDAV model, are discussed.

The significant contributions of this thesis include:

• Proposing a systematic document flow model.

• Designing an agent which handles the linear document flow.

• Providing a proof of concept implementation of the model by applying

it on a cooperative authoring system.

• Comparing several possible implementations.

• Showing the wide support of the model by open and commercial

software.

 Moreover, the DFWDAV model has several features such as:

• Offering an infrastructure for the document cooperative applications

in a modular fashion.

�

���

• Utilizing several modern computing technologies that came into the

picture due to the WebDAV protocol.

• Providing platform independent model.

• Offering systematic document flow model.

In spite of the fact that the model is well structured, it is very flexible in

several aspects including the editing modes, the document types used, the flow

mechanisms, the document repositories and the supported platforms. These

directions are elaborated concisely in the following:

• The editing modes: The model supports two different possible editing modes.

The first mode is the editing in place. In other words, the users can edit the

document directly in the document repositories. Several clients support these

editing mode as explained previously. This editing mode is suitable for reliable

networks and for documents which are supported by WebDAV clients. The

second mode of editing applies lock-download-update-upload-unlock

methodology. In detail, the model allows the user who intend to modify a

document to lock and download it so he can modify it locally by his favorite

editors. When he completes his work, he uploads it back to the server and

unlocks it. The locking and unlocking are necessary to prevent the lost update

problem. This editing methodology is applicable with any document type and

document editor, but it is more suitable for unreliable networks or with

document editors which do not support WebDAV protocol.

�

���

• The document types used: The model does not force the users to use any specific

document type. Thus, any document type can be used in the model even though

the documents hold textual information or non-textual information (i.e. images,

sound…ect). If the document type can be edited by a WebDAV client, the

previous two editing methodologies are appropriate. In contrast, for the

document types which cannot be edited by a WebDAV client, they are only

applicable by the second editing methodology.

• The flow mechanisms: The linear flow is tackled in detail in the provided

implementation. Furthermore, the model represents general document flow

model which supports any flow mechanism including complicated flow types

such as parallel, branching (i.e. conditional) and iterative flows. To apply such

flow, the implementation should consider twofold main concerns. The first is

related to the agent which is responsible for analyzing the flow definitions and

therefore care should be taken for the agent implementation of complicated flow

types. The second is related to the document flow definer which is used by

privileged users to define flow definitions. The document flow definer should

support the selected flow mechanisms in the implementation.

• The document repositories: Any document repository works with the model if it

supports WebDAV protocol. As shown in the model implementation, two

different document repositories are supported: file systems and databases.

Moreover, some repositories provide more facilities such as supporting FTP and

HTTP protocols and providing native XML repositories. In brief, with regard

the implementation, wide possible repositories types are available.

�

���

• The supported platforms: As stated previously in the implementation, the model

is built on the WebDAV protocol, which is widely supported by both the open

and commercial software. In addition, the WebDAV software is rabidly

increasing. Thus gives the implementers wide choices of suitable software over

almost any platform. Moreover the model supports the Internet which increases

the model independence of the platform. In sum, the model supports portable

implementation.

Furthermore, The DFWDAV model eliminates several shortages in the

literature survey models. These shortages include:

• Most of the survey document flow models are part of complicated

application. This leads to handle the flow issues poorly.

• Most models require explicit user actions to arrange the document flow

either by phone or email.

• Several models are tackled with either special document format or just

specific public format.

On the other hand, the DFWDAV model introduced or emphasis several new

features, including:

• Providing generic document flow frame which can be utilized by different

collaborative applications.

• Removing the complexity of handling collaborative issues from the

application side to the network layer by utilizing the WebDAV protocol

which is a novel network protocol.

�

���

• The ability to choose the editing mode. The edit mode can be either

directly on the server or locally by downloading the documents to the

client where they are edited.

• Defining the document flows in systematic way which are handled by the

routing agent.

Finally, there are some features in the literature survey models which are not

considered in the DFWDAV model because these features are not incorporated

directly with the document flows. These features include:

• The annotations capability.

• The BSCW event services that allows users to register for several

advanced events.

$��������
�#��2

 The research presented in this thesis has been applicable for the collaborative

applications and has been implemented successfully. However, further research and

development are still possible in several directions, which include the flow definition,

the document types and the WebDAV protocol.

 It is possible to enhance the method of the flow definition by using organized

flow definitions as well as graphical definitions. For example, eXchangeable Routing

Language (XRL) is an emerging organized flow definition which defines flow paths

using XML s9'(,A�/�
03�/��03�/��0���(�&'7,'#&+�(7&�%"!&5�*'�+&2&.,5�-7,+&+���*.+(3�

since XRL uses XML which is becoming an international standard, it is possible to

parse the flow definitions using the XML parsers. Second, this language allows the

�

���

users to define complex flows which include flexible sequences and include routing

4,+&!�"'�#"'!*(*"'+�/��0���'�(7&�"(7&.�7,'!3�(7&�)5"8�!&)*'*(*"'�#,'�4&�*%-."2&!�49�

describing the flow paths graphically which offer a friendlier user interface.

 Another direction to extend the functionality of the model is related to the

document type. As shown the model can handle any document type but it is possible

to enhance the model for specific kind of documents. We recommend extending the

model for XML documents because XML is becoming a public standard language

for the structured documents. Moreover, XML documents are capable of achieving

several improvements. First, the version management can be achieved for the XML

!"#$%&'(+�8*(7�=$*#?�.&(.*&2,5�,'!�&#"'"%*#,5�+(".,;&�/��0���&#"'d, it is possible to

enhance the search features for XML document by utilizing the studies related to

(7&�+&,.#7�")�B
��!,(,�#"'(&'(+�/�	03�/��03�/��03�/��03�/��0�� �7*.!3�B
��#"'(&'(�

management systems which include XML repositories are becoming more

wides-.&,!� /��03� /�
0� ,'!� +"� (7&� %"!&5� #,'� 4&� &A(&'!&!� 49� &%-5"9*';� ,'� B
��

repository which ensures fast data access of the XML documents.

 The final worthwhile and most crucial enhancement of the model is the entire

utilizing of the WebDAV protocol. As previously made clear, the WebDAV protocol

is still evolving and under construction. When it becomes a mature protocol, the

model can be improved rapidly, especially in the searching and data accessing areas

/��03�/��0��

�

���

APPENDIX A

EXAMPLES OF WEBDAV METHODS

This Appendix provides several examples related to the WebDAV methods

87*#7�,.&�%&'(*"'&!�*'��7,-(&.�	�)".�(7&�-$.-"+&�")�#5,.*)9*';�(7&*.�$+,;&+��The

general structure of WebDAV methods’ requests follows the format of the HTTP

and comprises of the follow*';�(7.&&�#"%-"'&'(+�/��01�

• The method: States the method to be executed by the client.

• Headers: Describe instructions about how the task is to be completed.

• A body (optional). Defines the data used in the instruction, or additional

instructions, about how the method is to be executed. In the body component,

XML becomes a crucial element in the overall picture of WebDAV.

��������
���

�A,%-5&����1��&(.*&2*';��,%&!��."-&.(*&+�/�	01

 >>Request

�������������C)*5&�����C���
 Host: www.foo.bar
 Content-type: text/xml; charset="utf-�F
 Content-Length: xxxx

���GHA%5�2&.+*"'IF���F�&'#"!*';IF$()-�F�HJ
 <D:propfind xmlns:D="DAV:">
 <D:prop xmlns:R="http://www.foo.bar/boxschema/">

�

���

 <R:bigbox/>
 <R:author/>
 <R:DingALing/>
 <R:Random/>
 </D:prop>
 </D:propfind>

 >>Response

�������C��������
$5(*-Status
 Content-Type: text/xml; charset="utf-�F
 Content-Length: xxxx

���GHA%5�2&.+*"'IF���F�&'#"!*';IF$()-�F�HJ
 <D:multistatus xmlns:D="DAV:">
 <D:response>
 <D:href>http://www.foo.bar/file</D:href>
 <D:propstat>
 <D:prop xmlns:R="http://www.foo.bar/boxschema/">
 <R:bigbox>
 <R:BoxType>Box type A</R:BoxType>
 </R:bigbox>
 <R:author>
 <R:Name>J.J. Johnson</R:Name>
 </R:author>
 </D:prop>
��������������G�1+(,($+J����C����������GC�1+(,($+J
 </D:propstat>
 <D:propstat>
 <D:prop><R:DingALing/><R:Random/></D:prop>
���������������G�1+(,($+J����C����	����".4*!!&'GC�1+(,($+J
 <D:responsedescription> The user does not have access to the DingALing property.
 </D:responsedescription>
 </D:propstat>
 </D:response>
 <D:responsedescription> There has been an access violation error.
 </D:responsedescription>
 </D:multistatus>

�'� �A,%-5&� ���3� (7&� ��������� %&(7"!� *+� &A&#$(&!� "'� ,� '"'-collection

resource http://www.foo.bar/file. The propfind XML element specifies the name

of four properties whose values are being requested. In this case only two properties

were returned, since the principal issuing the request did not have sufficient access

rights to see the third and fourth properties.

�

��	

�A,%-5&����1�����������/�	01

 >>Request

�������������C4,.�7(%5�����C���
 Host: www.foo.com
 Content-Type: text/xml; charset="utf-�F
 Content-Length: xxxx

���GHA%5�2&.+*"'IF���F�&'#"!*';IF$()-�F�HJ
 <D:propertyupdate xmlns:D="D�E1F�A%5'+1KIF7((-1CC888�8��#"%C+(,'!,.!+C6�
���CJ
 <D:set>
 <D:prop>
 <Z:authors>
 <Z:Author>Jim Whitehead</Z:Author>
 <Z:Author>Roy Fielding</Z:Author>
 </Z:authors>
 </D:prop>
 </D:set>
 <D:remove>
 <D:prop><Z:Copyright-Owner/></D:prop>
 </D:remove>
 </D:propertyupdate>

 >>Response

�������C��������
$5(*-Status
 Content-Type: text/xml; charset="utf-�F
 Content-Length: xxxx

 <?xml versi"'IF���F�&'#"!*';IF$()-�F�HJ
 <D:multistatus xmlns:D="DAV:"
���A%5'+1KIF7((-1CC888�8��#"%C+(,'!,.!+C6�
���J
 <D:response>
 <D:href>http://www.foo.com/bar.html</D:href>
 <D:propstat>
 <D:prop><Z:Authors/></D:prop>
 ����������G�1+(,($+J����C����	�	��,*5&!��&-&'!&'#9GC�1+(,($+J
 </D:propstat>
 <D:propstat>
 <D:prop><Z:Copyright-Owner/></D:prop>
���������������G�1+(,($+J����C����	�
��"')5*#(GC�1+(,($+J
 </D:propstat>
 <D:responsedescription> Copyright Owner can not be deleted or altered.
 </D:responsedescription>
 </D:response>
 </D:multistatus>

�'� �A,%-5&� ���3� (7&� #5*&'(� .&=$&+(+� (7&� +&.2&.� ("� +&(� (7&� 2,5$&� ")� (7&�

7((-1CC888�8��#"%C+(,'!,.!+C6�
���C�$(7".s property, and to remove the property

�

��

7((-1CC888�8��#"%C+(,'!,.!+C6�
���C�"-9.*;7(-Owner. Since the Copyright-Owner

-."-&.(9� #,''"(� 4&� .&%"2&!3� '"� -."-&.(9� %"!*)*#,(*"'+� "##$.�� � �7&� 	�	� /�,*5&!�

Dependency) status code for the Authors property indicates this action would have

succeeded if it had not conflicted with removing the Copyright-Owner property.

������		
�����
��������

���
���
������

�A,%-5&����1�
�����/�	01

 >>Request

���
�����C8&4!*+#CA)*5&+C�����C���
 Host: www.server.org

 >>Response

�������C���������.&,(&!

�A,%-5&� ���� #.&,(&+� ,� #"55&#(*"'� #,55&!� C8&4!*+#CA)*5&+C� "'� (7&� +&.2&.�

www.server.org.

�A,%-5&���	1��������/�	01

 >>Request

�����������C#"'(,*'&.C�����C���
 Host: www.foo.bar

 >>Response

�������C��������
$5(*-Status
 Content-Type: text/xml; charset="utf-�F
 Content-Length: xxxx
���GHA%5�2&.+*"'IF���F�&'#"!*';IF$()-�F�HJ
 <d:multistatus xmlns:d="DAV:">
 <d:response>
����������G!17.&)J7((-1CC888�)""�4,.C#"'(,*'&.C.&+"$.#&�GC!17.&)J
����������G!1+(,($+J����C����	�� Locked</d:status>
 </d:response>
 </d:multistatus>

�

���

���������'��A,%-5&���	�(7&�,((&%-(�("�!&5&(&�7((-1CC888�)""�4,.C#"'(,*'&.C.&+"$.#&��

failed because it is locked, and no lock token was submitted with the request.

Consequently, the attempt to delete http://www.foo.bar/container/ failed too. The

client knows that the attempt to delete http://www.foo.bar/container/ had failed

since the parent cannot be deleted unless its child has also been deleted.

�A,%-5&����1������8*(7��2&.8.*(&�/�	01

 >>Request

��������CL)*&5!*';C*'!&A�7(%5�����C���
 Host: www.ics.uci.edu
 Destination: http://www.ics.uci.edu/users/f/fielding/index.html

 >>Response

�������C������	��"��"'(&'(

�A,%-5&� ���� +7"8+� .&+"$.#&� 7((-1CC888�*#+�$#*�&!$CL)*&5!*';C*'!&A�7(%5�

being copied to the location http://www.ics.uci.edu/users/f/fielding/index.html. The

��	�/�"��"'(&'(0�+(,($+�#"!&�*'!*#,(&+�(7&�&A*+(*';�.&+"$.#&�,(�(7&�!&+(*',(*"'�8,+�

overwritten.

�A,%-5&����1������")�,��"55&#(*"'�/�	01

 >>Request

 COPY /containerC�����C���
 Host: www.foo.bar
 Destination: http://www.foo.bar/othercontainer/
 Depth: infinity
 Content-Type: text/xml; charset="utf-�F
 Content-Length: xxxx

������GHA%5�2&.+*"'IF���F�&'#"!*';IF$()-�F�HJ
 <d:propertybehavior xmlns:d="DAV:">

�

���

 <d:keepalive>*</d:keepalive>
 </d:propertybehavior>

 >>Response

����������C��������
$5(*-Status
 Content-Type: text/xml; charset="utf-�F
 Content-Length: xxxx

������GHA%5�2&.+*"'IF���F�&'#"!*';IF$()-�F�HJ
 <d:multistatus xmlns:d="DAV:">
 <d:response>
�������������G!17.&)J7((-1CC888�)""�4,.C"(7&.#"'(,*'&.C��CGC!17.&)J
�������������G!1+(,($+J����C����	����.&#"'!*(*"'��,*5&!GC!1+(,($+J
 </d:response>
 </d:multistatus>

�'��A,%-5&����3�(7&�Depth header is unnecessary as the default behavior of

COPY on a collection is to act as if a "Depth: infinity" header had been submitted.

Also in this example most of the resources, along with the collection, were copied

successfully. However the collect*"'����),*5&!3�%"+(�5*?&59�!$&�("�,�-."45&%�8*(7�

maintaining the liveness of properties (this is specified by the property behavior

B
��&5&%&'(0��>&#,$+&�(7&.&�8,+�,'�&..".�*'�#"-9*';���3�'"'&�")���M+�%&%4&.+�

were copied. However, no errors were listed for those members due to the error

minimization rules.

�A,%-5&����1�
�E��")�,��"'-�"55&#(*"'�/�	01

 >>Request

���
�E��CL)*&5!*';C*'!&A�7(%5�����C���
 Host: www.ics.uci.edu
 Destination: http://www.ics.uci.edu/users/f/fielding/index.html

 >>Response

�������C���������.&,(&!
 Location: http://www.ics.uci.edu/users/f/fielding/index.html

�

���

�A,%-5&� ���1� +7"8+� .&+"$.#&� 7((-1CC888�*#+�$#*�&!$CL)*&5!*';C*'!&A�7(%5�

being moved to the location http://www.ics.uci.edu/users/f/fielding/index.html. The

contents of the destination resource would have been overwritten if the destination

resource had been non-null. In this case, since the operation was successful, the

.&+-"'+&�#"!&�*+�����/�.&,(&!0�

�A,%-5&����1�
�E��")�,��"55&#(*"'�/�	01

 >>Request

 MOVE /c"'(,*'&.C�����C���
 Host: www.foo.bar
 Destination: http://www.foo.bar/othercontainer/
 Overwrite: F
����)1�/G"-,=$&5"#?("?&'1)&��)�&-�&&#-	�!�-#���-��,!#��&�44	J0
�������/G"-,=$&5"#?("?&'1&	�)�)�-acdc-	��,-��#�-��,�#
�&	4��J0
 Content-Type: text/xml; charset="utf-�F
 Content-Length: xxxx

���GHA%5�2&.+*"'IF���F�&'#"!*';IF$()-�F�HJ
 <d:propertybehavior xmlns:d='DAV:'>
 <d:keepalive>*</d:keepalive>
 </d:propertybehavior>

 >>Response

�������C��������
$5(*-Status
 Content-Type: text/xml; charset="utf-�F
 Content-Length: xxxx

���GHA%5�2&.+*"'IF���F�&'#"!*';IF$()-�F�HJ
 <d:multistatus xmlns:d='DAV:'>
 <d:response>
����������G!17.&)J7((-1CC888�)""�4,.C"(7&.#"'(,*'&.C��CGC!17.&)J
����������G!1+(,($+J����C����	����"#?&!GC!1+(,($+J
 </d:response>
 </d:multistatus>

�'��A,%-5&�����(7&�#5*&'(�7,+�+$4%*((&!�,�'$%4&.�")�5"#?�("?&'+�8*(7�(7&�

request. A lock token will need to be submitted for every resource, both source and

destination, anywhere in the scope of the method, that is locked. In this case the

�

���

proper lock token was not submitted for the destination

7((-1CC888�)""�4,.C"(7&.#"'(,*'&.C��C���7*+�%&,'+�(7,(�(7&�.&+"$.#&�C#"'(,*'&.C��C�

#"$5!�'"(�4&�%"2&!��>&#,$+&�(7&.&�8,+�,'�&..".�#"-9*';�C#"'(,*'&.C��C3�'"'&�")�

/container/C�M+� %&%4&.+� 8&.&� #"-*&!�� � �"8&2&.� '"� &..".+� 8&.&� 5*+(&!�)".� (7"+&�

members due to the error minimization rules. User agent authentication has

previously occurred via mechanism outside the scope of the HTTP protocol, in an

underlying transport layer.

����	OCKING

�A,%-5&���
��*%-5&��"#?��&=$&+(�/�	01

 >>Request

��������C8".?+-,#&C8&4!,2C-."-"+,5�!"#�����C���
 Host: webdav.sb.aol.com
 Timeout: Infinite, Second-	���������
 Content-Type: text/xml; charset="utf-�F
 Content-Length: xxxx
 Authorization: Digest username="ejw",
 realm="ejw@webdav.sb.aol.com", nonce="...",
 uri="/workspace/webdav/proposal.doc",
 response="...", opaque="..."

���GHA%5�2&.+*"'IF���F�&'#"!*';IF$()-�F�HJ
 <D:lockinfo xmlns:D='DAV:'>
 <D:lockscope><D:exclusive/></D:lockscope>
 <D:locktype><D:write/></D:locktype>
 <D:owner>
 <D:href>http://www.ics.uci.edu/~ejw/contact.html</D:href>
 </D:owner>
 </D:lockinfo>

 >>Response

�������C����������
 Content-Type: text/xml; charset="utf-�F
 Content-Length: xxxx

���GHA%5�2&.+*"'IF���F�&'#"!*';IF$()-�F�HJ

�

���

 <D:prop xmlns:D="DAV:">
 <D:lockdiscovery>
 <D:activelock>
 <D:locktype><D:write/></D:locktype>
 <D:lockscope><D:exclusive/></D:lockscope>
 <D:depth>Infinity</D:depth>

 <D:owner>
 <D:href>
 http://www.ics.uci.edu/~ejw/contact.html
 </D:href>
 </D:owner>
 <D:timeout>Second-��	���G/D:timeout>
 <D:locktoken>
 <D:href>
���������������"-,=$&5"#?("?&'1&��!),&-�!&#-��!�-)&,�-��,�#
�&�4&	
 </D:href>
 </D:locktoken>
 </D:activelock>
 </D:lockdiscovery>
 </D:prop>

�A,%-5&� ��
� +7"8+� (7&� +$##&++)$5� #.&,(*"'� ")� ,'� &A#5$+*2&� 8.*(&� 5"#?� "'�

resource http://webdav.sb.aol.com/workspace/webdav/proposal.doc. The resource

http://www.ics.uci.edu/~ejw/contact.html contains contact information for the owner

of the lock. The server has an activity-based timeout policy in place on this

.&+"$.#&3�87*#7�#,$+&+�(7&�5"#?�("�,$("%,(*#,559�4&�.&%"2&!�,)(&.�"'&�8&&?�/��	����

seconds). The nonce, response, and opaque fields have not been calculated in the

Authorization request header.

�A,%-5&������ ������/�	01

 >>Request

��� ������C8".?+-,#&C8&4!,2C*')"�!"#�����C���
 Host: webdav.sb.aol.com
 Lock-�"?&'1�G"-,=$&5"#?("?&'1,���#),	-�!,	-��&�-)�4�-��,�	��&�4)�J
 Authorization: Digest username="ejw",
 realm="ejw@webdav.sb.aol.com", nonce="...",
 uri="/workspace/webdav/proposal.doc",
 response="...", opaque="..."

�

���

 >>Response

�������C������	��"��"'(&'(

�'� &A,%-5&� ����3� (7&� 5"#?� *!&'(*)*&!� 49� (7&� 5"#?� ("?&'�

F"-,=$&5"#?("?&'1,���#),	-�!,	-��&�-)�4�-��,�	��&�4)�F�*+ successfully removed

from the resource http://webdav.sb.aol.com/ workspace/webdav/info.doc. If this

lock included more than just one resource, the lock is removed from all resources

87*#7�*'#5$!&!�*'�(7&�5"#?����7&���	�/�"��"'(&'(0�+(,($+�#"!&�*+�$+&!�*'+(&,!�")�����

(OK) because there is no response entity body. In this example, the nonce, response,

and opaque fields have not been calculated in the Authorization request header.

�����
�
������

�A,%-5&�����1�E�������–���������/��01

>>REQUEST

VERSION-CONT����C)*5&�7(%5�����C���
Host: www.webdav.org

>>RESPONSE

�����C����������

�'� &A,%-5&� ����3� C)*5&�7(%5� *+� -$(� $'!&.� 2&.+*"'� #"'(."5�� �� '&8� 2&.+*"'�

history is created for it, and a new version is created that has a copy of the content

and dead properties of /file.html. The DAV:checked-in property of /file.html

identifies this new version.

�

���

�A,%-5&�����1������� ��/��01

>>REQUEST

�������� ��C�)*5&�7(%5�����C����
 Host: www.webdav.org

>>RESPONSE

�������C����������

�A,%-5&����1����������/��01

>>REQUEST

����������C�)*5&�7(%5�����C����
 Host: www.webdav.org

>>RESPONSE

������C���������.&,(&!
����"#,(*"'1�7((-1CC.&-"�8&4!,2�".;C7*+C��C2&.C��

�A,%-5&�����1� ������� ���/��01

>>REQUEST

�� ������� ��C�)*5&�7(%5�����C����
 Host: www.webdav.org

>>RESPONSE

������C����������

�A,%-5&�����1��&-".(�8*(7���E1,2,*5,45&-.&-".(�/��01

>>REQUEST

���������C%9�"55&#(*"'�����C���
 Host: www.webdav.org
 Content-Type: text/xml; charset="utf-�F
 Content-Length: xxxx

��GHA%5�2&.+*"'IF���F�&'#"!*';IF$()-�F�HJ
 <DAV:available-report/>

>>RESPONSE

������C����������
 Host: www.webdav.org

�

���

 Content-Type: text/xml; charset="utf-�F
 Content-Length: xxxx

��GHA%5�2&.+*"'IF���F�&'#"!*';IF$()-�F�HJ
 <D:report-set xmlns:D="DAV:">
 <D:available-report/>
 <D:property-report/>
 </D:report-set>

�A,%-5&� ����� $+&+� (7&� ��E1,2,*5,45&-report, which lists the reports

supported at the request-URL.

�A,%-5&�����1��&-".(�8*(7���E1-."-&.(9-.&-".(�/��01

 >>REQUEST

���������C)*5&�����C���
 Host: www.webdav.org
 Target-Selector: versioned-resource
 Content-Type: text/xml; charset="utf-�F
 Content-Length: xxxx

��GHA%5�2&.+*"'IF���F�&'#"!*';IF$()-�F�HJ
 <D:property-report xmlns:D="DAV:">
 <D:revisions>
 <D:revision-id/>
 <D:author/>
 </D:revisions>
 </D:property-report>

 >>RESPONSE

������C��������
$5(*-Status
 Content-Type: text/xml; charset="utf-�F
 Content-Length: xxxx

��GHA%5�2&.+*"'IF���F�&'#"!*';IF$()-�F�HJ
 <D:multistatus xmlns:D="DAV:">
 <D:response>
 <D:href>http://www.webdav.org/file</D:href>
 <D:propstat>
 <D:prop>
 <D:revisions>
 <D:response>
��������������G�17.&)J7((-1CC.&-"C.&2C*!���G�17.&)J
 <D:propstat>
 <D:prop>
������������������G�1.&2*+*"'J*!���GC�1.&2*+*"'J
 <D:author>Fred</D:author> </D:prop>
����������������G�1+(,($+J����C����������GC�1+(,($+J

�

��	

 </D:propstat> </D:response>
 <D:response>
��������������G�17.&)J7((-1CC.&-"C.&2C*!���G�17.&)J
 <D:propstat>
 <D:prop>
������������������G�1.&2*+*"'J*!���GC�1.&2*+*"'J
 <D:author>Sally</D:author> </D:prop>
����������������G�1+(,($+J����C����������GC�1+(,($+J
 </D:propstat> </D:response>
 </D:revisions> </D:prop>
 ��GC�1+(,($+J����C����������GC�1+(,($+J
 </D:propstat> </D:response>
 </D:multistatus>

��!����

�������	

�A,%-5&�����1��&(.*&2*';��##&++��"'(."5�*')".%,(*"'�/��01

>>Request

���������C("-C#"'(,*'&.�����C���
Host: www.foo.bar
Content-type: text/xml; charset="utf-�F�
Content-�&';(71��
�&-(71��

GHA%5�2&.+*"'I:���:J
<D:propfind xmlns:D=”DAV:”>
 <D:allprop/>
</D:propfind>

>>Response

����C���������$##&++
Content-Type: text/xml
Content-Length: xxxxx

GHA%5�2&.+*"'IF���F�&'#"!*';IF$()-�F�HJ
<?namespace href = “http://www.ietf.org/standards/webdav/ AS = D"?>
<D:response>
 <D:propstat>
����G�1#.&,(*"'!,(&J�

�-��-�����1	�1��-��1��GC�1#.&,(*"'!,(&J
 <D:displayname>Example collection</D:displayname>
 <D:resourcetype><D:collection/></D:resourcetype>
 <D:supportedlock> XXXXX</D:supportedlock>
 <D:owner>http://www.rational.com/principals/users/gclemm</d:owner>
 <D:owner-name>Geoffrey Clemm</d:owner-name>
 <D:rights>
 <D:read/><D:readacl/>

�

��

 </D:rights>
 <D:acl>
 <D:ace>
 <D:grant><D:read/><D:write/><D:readacl/></D:grant>
 <D:principal-id>
 <D:href>http://www.foo.com/users/esedlar</D:href>
 </D:principal-id>
 <D:principal>
 <D:principal-type>User</D:principal-type>
 <D:principalname>esedlar</D:principalname>
 <D:displayname>Eric Sedlar</D:displayname>
 </D:principal>
 </D:ace>
 <D:ace>
 <D:grant><D:read/><D:readacl/></D:grant>
 <D:deny><D:writeacl/></D:deny>
 <D:principal-id>
 <D:href>http://www.foo.com/groups/marketing</d:href>
 </D:principal-id>
 <D:principal>
 <D:principal-type>Group</D:principal-type>
 <D:displayname>Foo.Com marketing department</D:displayname>
 <D:principalname>mktdept</D:principalname>
 </D:principal>
 </D:ace>
 <D:ace>
 <D:grant><D:read/></D:grant>
 <D:principal-id><d:all/></D:principal-id>
 </D:ace>
 </D:acl>
 <D:propstat>
<D:response>

�A,%-5&����
1��&((*';����+�/��01�

>>Request

����C("-C#"'(,*'&.�����C���
Host: www.foo.com
Content-Type: text/xml
Content-Length: xxxx

<?namespace href = “http://www.ietf.org/standards/webdav/ AS = D"?>
<D:acl-info>
 <D:acl>
 <D:ace>
 <D:grant><D:read/><D:write/><D:readacl/></D:grant>
 <D:principal-id>
 <D:href>http://www.foo.com/users/esedlar</D:href>
 </D:principal-id>
 </D:ace>

�

���

 <D:ace>
 <D:grant><D:read/> </D:grant>
 <D:principal-id>
 <D:href>http://www.foo.com/groups/marketing</D:href>
 </D:principal-id>
 </D:ace>
 </D:acl>
</D:acl-info>

>>Response

����C���������$##&++
Content-�&';(71��

�'�&A,%-5&����
3�,'�����.&=$&+(�4"!9�*+�,'�,#5-info XML element. The

<dav:acl-info> element contains properties that can be set by the ACL method

(currently just <acl>). This example changes the group ACE to disallow read access

to the ACL for the marketing group.

��"�

�������

�A,%-5&�����1�N$&.9��A,%-5&�/��01

<d:searchrequest>
 <d:basicsearch>
 <d:select>
 <d:prop><d:getcontentlength/></d:prop>
 </d:select>
 <d:from>
 <d:scope>
��������G!17.&)JC#"'(,*'&.�CGC!17.&)J
 <d:depth>infinity</d:depth>
 </d:scope>
 </d:from>
 <d:where>
 <d:gt>
 <d:prop><d:getcontentlength/></d:prop>
��������G!15*(&.,5J�����GC!15iteral>
 </d:gt>
 </d:where>
 <d:orderby>
 <d:order>
 <d:prop><d:getcontentlength/><d:prop>
 <d:ascending/>

�

���

 </d:order>
 </d:orderby>
 </d:basicsearch>
</d:searchrequest>

�A,%-5&������-."2*!&+�,�=$&.9�87*#7�.&(.*eves the content length values for

,55�.&+"$.#&+�5"#,(&!�$'!&.�(7&�+&.2&.M+�FC#"'(,*'&.�CF� ���',%&+-,#&�87"+&�5&';(7�

&A#&&!+��������

�

Nomenclature

ACE Access Control Entry

ACL Access Control Lists

API Application Program Interface

BSCW Basic Support for Cooperative Work

CSS Cascading Style Sheets

DASL DAV Searching and Locating

DAV Distributed Authoring and Versioning

DAV	J DAV for Java

DFWDAV Document Flow model based on WebDAV protocol

DMS Document Management Systems

DOM Documents Object Model

DReSS Document Repository Service Station

DTD Document Type Definition

EDMS Engineering Document Management System

ER Entity Relationship

GML General Markup Language

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

ISO International Organization for Standardization

�

���

IETF Internet Engineering Task Force

IFS Oracle Internet File System

IIS Microsoft Internet Information Services

KQML Knowledge Query and Manipulation Language

SAX Simple API for XML

SGML Standard Generalized Markup Language

SIM Structured Information Manager

SMTP Simple Mail Transfer Protocol

W�C World Wide Web Consortium

WAN Wide Area Network

WebDAV World Wide Web Distributed Authoring and Versioning protocol

WWW World Wide Web

XML eXtensible Markup Language

XRL eXchangeable Routing Language

XSL eXtensible Style Language

�

���

Bibliography

� ���������"'�'�������$0������ �A�������$���� �+�B���������1���7�

http://www.documentmanagement.org.uk/pages/faq.htm7�#���������

� R. Sprague, "Electronic Document Management: Challenges and
Opportunities for Information Systems Managers", MIS Quarterly,
"' �������

� F. Bapst and C. Vanoirbeek, "XML Documents Production for an
Electronic Platform of Requests For Proposals", Proceedings of the
��

th IEEE Symposium on Reliable Distributed Systems7����-���7������

� P. Ciancarini, F. Vitali and C. Mascolo, "Managing Complex
Documents Over the WWW: A Case Study for XML", IEEE
Transaction on Knowledge and Data Engineering7�1������7�8����7����-
��
7�>���C$�����������

� H. Kanemoto, H. Kato, H. Kinutani and M. Yoshikawa, "An
Efficiently Updatable Index Scheme for Structured Documents", The
�

th International IEEE Workshop on Database and Expert Systems
������	
���
����������7����-���7�$�������
�

� D. Rossi and F. Vitali, “Internet-Based Coordination Environments
and Document-Based Applications: a Case Study”, Proceedings: The
International Conference on Coordination Models and Languages,
���-�	�7�$� �������

	 R. Summers, J. J. L. Chelsom, D. R. Nurse and J. D. S. Kay,
"Document Management – an Intranet Approach", ��th Annual
International Conference of the IEEE Engineering in Medicine and
Biology Society7�����-���	�0����7����	

 D. Sussman, "WebDAV: A Panacea for Collaborative Authoring?",
IEEE Multimedia7�1�������7�	�-	�7�$� ��C>���������

� E. Whitehead and M. Wiggings, "WebDAV: IETF Standard for
Collaborative Authoring on the Web", IEEE Internet Computing, Vol.
���7���-��7�#�����3� C*���3� ����
�

�� I. Sengupata, "Toward the Union of Database and Document
Management: The Design of DocBase", Proceedings: Conference on
�	�	�����
�����	
	�����������7���������
�

�

���

�� A. Backer and U. Busbach, "DocMan: A Document Management
System for Cooperation Support", ����������
����
��� �th IEEE
International Conference on System Sciences7�
�-��7������

�� J. Robie, "XML and Modern Software Architectures", SGML/XML
!�", %����CC������&������C�����	����7����	�

�� H. Lie and J. Saarela, “Multipurpose Web Publishing Using HTML,
XML and CCS”, Communications of The ACM7�1������7�8�����7���-
���7�*���������

�� N. Pitts, XML in Record Time7�#D9!?7������

�� T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau,
E!&�����3��� "' 4��� ,'���'��7� 6?",@� ���� 6�%� +� !+�����@E7� / �5�

)�������+'������-February-����7
 %����CC�������� �C�)C����C)!5-xml-��������.

�� E. Xavier P., "Applying XML Architecture to Web Applications",
/%����-'�� 7�2�(��������%���������,�+�7�$� �������
http://www.inf.com/corporate/thought-�'�� �C?",;$� �����%��

�	 T. Arnold-Moore, M. Fuller, A. Kent, R. Sacks-Davis, and N.
Sharman, "Architecture of a Content Management Server for XML
Document Applications", ����������
����
����

�#�
���	
���	��
��������������$�%�#�����	
����&'

��
��������������$#&� (((�,
:����F���7�>������-��7������

�
 C. Yang, S. Ju and T. Rao, "A Smartcard-based Framework for Secure
Document Exchange", ����������
����
���) nd IEEE International
Carnahan Conference on Security Technology7���-��7����
�

�� S. Adler, A. Berglund, J. Caruso, S. Deach, T. Graham, P. Grosso,
E. Gutentag, A. Milowski, S. Parnell, J. Richman and S. Zilles,
E!&�����3��� #�����%���� ,'���'��� 6?#,@� 1� ����� ���E7� / �5�

)�������+'��������*���3� �����7
 %����CC�������� �C�)C����C)!5-xsl-��������.

�� B. Bos, H. Lie, C. Lilley and I. Jacobs, "Cascading Style Sheets, level
�� 5##�� #����(��'����E7� / �5�)�������+'����� ��-May-���
7�
%����CC�������� �C�)C���
C)!5-5##�-���
����

�� H. L��� '�+� 9�� 9��7� E5'��'+���� #����� #%����7� ��0��� �E7� / �5�
)�������+'����� �0���+���-Jan-����7
 %����CC�������� �C�)C����C)!5-5##�-��������

�� V. Apparao, S. Byrne, M. Champion, S. Isaacs, I. Jacobs, A. Le Hors,
G. Nicol, J. Robie, T. Research, R. Sutor, C. Wilson and L. Wood,
E��������� *3G���� "�+��7� 6�*"@� ���E7� / �5�)�������+'����� �-
October-���
7�
%����CC�������� �C�)C���
C)!5-DOM-Level-�-���
����

�

���

�� A. Hors, P. Hégaret, L. Wood, G. Nicol, J. Robie, M. Champion and S.
Byrne, E���������*3G����"�+��7�6�*"@�,�0�����5� ��#����(��'�����
1� ����� ���E7� / �5�)�������+'����� ��-November-����7�
%����CC�������� �C�)C����C)!5-DOM-Level-�-Core-��������

�� Y. Goland, E. Whitehead, A. Faizi, S. Carter and D. Jensen, "HTTP
Extensions for Distributed Authoring",)�5���
7�2!��7���3�������

�� E. Whitehead, “World Wide Web Distributed Authoring and
Versioning (WEBDAV): An Introduction”, ACM StandardView, Vol.
�7�8����7��-
7�"' �%����	��

�� F. Dridi and G. Neumann, "How to implement Web-based Groupware
Systems based on WebDAV", Proceedings: International Workshops
on Enabling Technologies: Infrastructure for Collaborative
��
�����
�
��$�*�#������7����-���7������

�	 M. Adkins, J. Reinig, J. Kruse and D. Mittleman, "GSS Collaboration
in Document Development: Using GroupWriter to Improve the
Process", Thirty - Second Annual Hawaii International Conference on
System Sciences7�"'��7�:'�'��7���-�
�>'��' �7������

�
 D. Decouchant, A. Enríquez and E. González, "AllianceWeb:
Cooperative Authoring on the WWW", Proceedings of the String
Processing and Information Retrieval Symposium & International
Workshop on Groupware7�#�����3� ���-��7�����7�5'����7�"�&����

�� T. Horstmann and R. Bentley, "Distributed Authoring on the Web with
the BSCW Shared Workspace System", ACM Standards View� �6�@7�
"' �%����	�

�� H. Peltonen, "EDMS engineering data management system—
architecture and concepts", Helsinki University of Technology,
Laboratory of Information Processing Science7������

�� H. Peltonen, T. Männistö, K. Alho and R. Sulonen, "An Engineering
Document Management System", The Winter Annual Meeting of the
American Society of Mechanical Engineers7� -'�� � ��-WA/EDA-�7�
�����

�� D. Decouchant, V. Quint and M. Romero Salcedo, "Structured
Cooperative Authoring on the World Wide Web", World Wide Web
Journal, Fourth International World Wide Web Conference
Proceedings7�<#$7������3� ���-��7������

�� D. Decouchant and M. Romero Salcedo, "Alliance: A Structured
Cooperative Editor on the Web", Proceedings of the ERCIM workshop
on CSCW and the Web7�.� �'��7���3 �' ��	-�7������

�

���

�� P. De Bra and A. Aerts, "Multi-User Publishing in the Web: DReSS, A
Document Repository Service Station", Proceedings of the ERCIM
workshop on CSCW and the Web, Sankt Augustin, Germany, February
	-�7�����

�� A. Aerts, P. De Bra and M. Timmerma��7�E�)�##������,��%�����%��
groupware for hypertext publishing on the Web", Proceedings of the
�����$�%+�
��������������7�������-��7�* �'�+�7����7����
��

�� R. Bentley and W. Appelt, "Designing a System for Cooperative Work
on the World-Wide Web: Experiences with the BSCW System",
����������
����,#�&&�)(-�*���,	.	���#�
���	
���	����������������
���

System Sciences7�"'��7�:'�'��7�>'��' ��	-��7����	��

�	 R. Bentley, T. Horstmann and J. Trevor, "The World Wide Web as
enabling technology for CSCW: The case of BSCW'', Computer
Supported Cooperative Work: The Journal of Collaborative
Computing��#����'�����������5#5/ �'�+��%��/�37�1�����7����	�

�
 W. Appelt, "WWW Based Collaboration with the BSCW System",
����������
����&�/&�����, Springer Lecture Notes in Computer
Science7� ����-	
H� 8�0��3� � ��� -� �����3� � �7� "���0�7� 5I��%�
Republic.

�� J. Kurose and K. Ross, Computer Networking A Top-Down Approach
Featuring the Internet, Addison-/�����7�$����������7�
http://www.awlonline.com/kurose/

�� T. Arnold-Moore, Information systems for legislation, Doctoral Thesis,
)��'��"��3�� ���2����������(����%������7�"��3�� ��7����
�

�� T. Arnold-Moore, M. Fuller and R. Sacks-Davis, "Approaches for
Structured Document Management", Mar01��*����������
����,
-%��'+���%�'7�-$7�<�#�$7������3� �	-�7�����

�� EnAct: User’s Guide, The Quill Consultancy Pty Ltd, Australia, Jul.
�����

�� M. Petterson and G. Lysén, Document Management within Intranet
Settings, Master Thesis, Department of Computer Science, Lund
2����������(����%������7�#��+�7������������

�� R. Guetari, V. Quint and I. Vatton, "Amaya: an Authoring Tool for the
Web'', ��&��#����#�
���	
���	������������7��������7������3� ����
�

�� J. Cadiz, A. Gupta and J. Grudin, "Using Web Annotations for
Asynchronous Collaboration Around Documents", �&�$� (((�����
 (((�������������������1
���&1����
���������	
�2��$��0,
-%��'+���%�'7�-������0'��'7�<#$7������3� ���-��7������

�

��	

�� P. Juell and M. Habib, "A Protocol to Develop Agent-Based Form
Flow Systems", *���)"
�����1	�����.�

�#�

�1�
����	�������1
����
&'���
�1����#�&(3�7�<��0� ������(�"�������'7�"� ��7���-�	�%�$� ���
�����

�	 D. Rossi, "Orchestrating document-based workflows with X-
Folders", ����������
����
��� ((3�����&'���
�1�������������
Comp1
�����&��� ((3�7� 8�����'7� 5�� ��7� ��-�	� "' �%� ����7�
������-��	�

�
� J. Slein, F. Vitali, E. Whitehead and D. Durand, "Requirements for
Distributed Authoring and Versioning Protocol for the World Wide
Web",)�5����7�2!��7���3�����
�

�� WWW Distributed Authoring and Versioning (WebDAV) Home Page,
http://www.ietf.org/html.charters/webdav-charter.html�7���3�������

�� E. Whitehead, IETF WEBDAV Working Group Home Page,
http://www.ics.uci.edu/pub/ietf/webdav/7�>��������

�� G. Clemm, J. Amsden, C. Kaler and J. Whitehead, "Versioning
Extensions to WebDAV (Web Distributed Authoring and
Versioning))",)�5����7�2!��7�"' �������

�� G. Clemm, J. Reschke, E. Sedlar and J. Whitehead, "WebDAV Access
Control Protocol",)�5�	��,�2!��7�"'��������

�� J. Reschke, S. Reddy, J. Davis and A. Babich, "WebDAV Search",
Internet-Draft7�2!��7���3��������

�� G. Stein, WebDAV Resources, http://www.webdav.org/�7�#����������

�� The Apache HTTP Server Project, http://httpd.apache.org/7������

�� Jigsaw -�/ �5J��#� 0� 7�%����CC�������� �C>���'�C, Nov.������

�	 Slide, http://jakarta.apache.org/slide/index.html7������

�
 DAV Explorer, http://www.ics.uci.edu/~webdav/7���3�������

�� W. Aalst and A. Kumar, "XML Based Schema Definition for Support
of Inter-organizational Workflow.", �

�#�
���	
���	����������������
������	
����	���*����'������
���+�

��#��*�+� (((�, Aarhus,
����' 47�>������-��7������

�� A. Kumar and J. Zhao, "XRL: An Interoperable Routing Standard for
E-Commerce Applications", International Workshop on Component-
based Electronic Commerce7�9� 4� ���7�5'��(� ��'7�>������7����
�

�

��

�� A. Kumar and J. Zhao, "Dynamic Routing and Operational Controls in
Workflow Management Systems", Management Science7�1������7�8���
�7����-�	�7���3������

�� A. Kumar and J. Zhao, "XRL: An Extensible Routing Language for
Electronic Commerce Applications", Proceedings of the First
International Conference on Telecommunications and Electronic
Commerce7�8'�%0����7�<#$7�8�0���-��7����
�

�� S. Chien, V. Tsotras and C. Zaniolo, "Version Management of XML
Documents45�$�%�6� (((�$��0
���7��'��'�7��?7������

�� S. Boag, D. Chamberlin, M. Fernandez, D. Florescu, J. Robie and J.
#��K��7�E?B�� ���$��?",�B�� ��,'���'��E7�/ �5�/� 4����� '(��

�����3 �' ������7�
%����CC�������� �C�)C����C/�-xquery-��������C.

�� K. Böhm, "On Extending the XML Engine with Query-Processing
Capabilities", Proc. of IEEE Advances in Digital Libraries, Bethesda,
"' ��'�+7�"'�7������

�� S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi and L.
Tanca, "XML-GL: a graphical language for querying and
restructuring XML documents", Computer Networks7�1������7�8�����-
��7���	�-��
	7������

�	 J. Miller and S. Sheth, "Querying XML documents", IEEE Potentials,
1��������7�2������7����–��7���3�-"' �%������

�
 A. Deutsch, M. Fernandez, D. Florescu, A. Levy and D. Suciu "A
Query Language for XML", Computer Networks���6��-��@7������

�� T. Freter, "XML: Document and Information Management", Sun Inc.,
%����CC�����������C�
���
C&��C7�#�������
��

	� S. Kim, K. Pan, E. Sinderson and E. Whitehead, "Architecture and
Data Model of a WebDAV-based Collaborative System", Proceedings
���*��� ((3�#�
���	
���	��&'���
�1���������	%��	
�2��*����������
�

	���&'

��
���*&� ((3�7�#'�������7�5'��(� ��'7��
-���>'��' ��������

	� S. Kim, M. Slater, E. Whitehead, "WebDAV-based Hypertext
Annotation and Trail System", Proceedings of the Fifteenth ACM
���������������,'���
�7
�	���,'�������	��,'���
�7
� ((3�5 Santa
5 �I7�5'��(� ��'7�����
	-

7��-���$�����������

�

���

Vita

Personal information

Name: Hussam Eddin Abdullah Al-Sawadi
Date of birth: ��	�
Email: hussam@ccse.kfupm.edu.sa

and
hussamalsawadi@hotmail.com

Current Position: Information Technology Expert in Ministry of Justice

Qualifications

�$'&�����1� M.Sc. degree in information and computer science with
%��%�%��� �6.�-�$���(�����C����@��
Information and Computer Science Department, College of
Graduate Studies, King Fahd University of Petroleum and
Minerals, Dhahran, Saudi Arabia.

July �

�1 B.Sc. degree in computer engineering with high honor
6.�-�$���(�����C����@��
Department of Computer Engineering, Computer and
Information Sciences, King Saud University, Riyadh, Saudi
Arabia.

Research experience

�

�1 Advanced Arabic Authoring Language (CATIB) for

Computer Assisted Instructions (CAI). King Abdul Aziz
City for Science and Technology (KACST)

�

�1 Arabic character recognition using Backpropagation
Neural Network. King Saud University (KSU).

�

�

