An Architecture for Secure Document Flow
& Archival Systems

BY
Hussam Eddin Abdullah Al-Sawadi

hussam@ccse.kfupm.edu.sa

A Thesis Presented to the
DEANSHIP OF GRADUATE STUDIES

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE
IN
COMPUTER SCIENCE

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN 31261, SAUDI ARABIA

DEANSHIP OF GRADUATE STUDIES

This thesis, written by

HUSSAM EDDIN ABDULLAH AL-SAWADI

under the direction of his thesis advisor and approved by his thesis committee, has been
presented to and accepted by the Dean of Graduate Studies, in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

Thesis Committee

Dr. Muhammad S. Al-Mulhem (Chairman)

Dr. Kanaan Faisal (Member)

Dr. Muhammad Shafique (Member)

Department Chairman, Dr. Kanaan Faisal

Dean of Graduate Studies , Dr. Mohammad A. Al-Ohali

Date

ACKNOWLEDGMENTS

First and foremost, all of my thanks and praises are to my god, Allah, for his
boons and helps during my life. He prepared the suitable circumstances for my
M.Sc. study and research that I did not expect. This research can not appear
without his desiring.

Second, since the Prophet once said ‘“Who does not thank people, he does not
thank Allah”, I would like to express my deepest appreciations to the chairman of
the thesis committee, Dr. Muhammad Al-Mulhem, for his effective advice and
support. Also, it gives me great pleasure to appreciate the other committee
members, Dr. Kanaan Faisal and Dr. Muhammad Shafique, for their fruitful
remarks and comments. Moreover, I would like to acknowledge Dr. Subbarao
Ghanta for originating the idea of this thesis, reviewing the first draft of the
developed model and teaching me four courses during my master level. I also wish
to thank Dr. Jarallah Al-Ghamdi for his comments on this work.

Also, my warmest and most sincere thanks go to my family members,
especially my mother, father and wife. I am very appreciative for their care,
encouragement and sacrifice.

Last but not least, I would like to thank all those who helped me in this
research even though I did not mention their names. May Allah bless this work and

benefit humankind with it?

11

TABLE OF CONTENTS

ACKNOWLEDGMENTS iii
LIST OF TABLES viii
LIST OF FIGURES ix
THESIS ABSTRACT xi
THESIS ABSTRACT (ARABIC) xii
CHAPTER 1 - INTRODUCTION 1
1.1 BACKGROUNDcuiiiiiiiiiinisinncsnicssesssnisssnssses 1
1.1.1 Document Procedural Definitioncceeeviiieniieiniieiiiieeiee e 2
1.1.2 Computerized Document MOdelsccccueeriiiiniiieiiieeiieeiee e 4
1.1.3 Document Management Systems (DMS)coooiiiiiiiiiiiiiiiieceeceeeeen 4
1.1.4 Document FIOW TYPES...cccuiiiiuiieeiiieiiieeeiee ettt etee et e e sveeesvee e es 5
1.1.5 Short History Of Markup Languages..........ccocveevviiiniiinniiiiiienieeeeeeeieeeen 6
Lo1.6 XML ..ttt et et eas 7
1.1.7 Using XML for Structuring DOCUMENLScceeeeviieeiniieniiieniieeeiieeeiiee e 11
1.1.8 XML Document TempIatesccooecuuiiiiriiiiiiiniiiieeeriiiee et eeeiieee e 11
1.1.9 XML Related TerminolOgy........ccccueerueeeriieenieeeieeeniieeeiieeeieee s e e 14
L1100 WEDDAV L.ttt st e 15

1.2 PROBLEM DESCRIPTIONcooiininsensecsrissnnssncsanssnsssecssessasssesssssassssssssssssssece 17
1.3 AIMS AND OBJECTIVES OF THIS THESIS.......ccccevvivuinvurnsurisnncsencssencsanea 18
1.4 ORGANIZATION OF THE REMAINING CHAPTERS........ccccceeurvrurescerssann 19
CHAPTER 2 - LITERATURE SURVEY 20
2.1 ENGINEERING DOCUMENT MANAGEMENT SYSTEM (EDMS) 20
2.2 ALLTANCE...cuuiineiruicsensecssissncssecssecsssssessssssasssessssssssssesssessassssssssssssssesssssssssssssasssns 22
2.3 DOCMAN cuuueeeerunnecsnnecssnnecsneecssnnesssssessssssssssasssssessssssssssssssssesssssessssssssssssssssssssssssssssnes 25
2.4 DRESS ...uuutiitrciineensnicsnnssenssisncssesssissssssecsssssasssessssssssssesssesssssssssssssssssessssssssssassssssne 26

2.5 OXFORD RADCLIFFE HOSPITAL DOCUMENT MANAGEMENT 28

2.0 BSCW .uiitictinnnnicsnnssecssississecssisssssssssssssssssessssssssssesssessssssassssssssssessssssssssassasssne 29
2.7 DOCUMENT FLOW USING SMARTCARD SYSTEM.........cueveirsuecseecnee 31
2.8 ENACE uccueiiiisriiniinisnecsensncssnssscssncssecsssssecsssssasssessssssssssesssessassssssssssssssesssssssssssssssssne 32
2.9 DOCUMENT MANAGEMENT WITH INTRANET SETTINGS (AN
EXTENSION OF LOTUS NOTES) ..ccovieninsensensnecsensncssessncssnsssncsssssesssessssssssssessasssee 34
2.10 AllIANCEWEDuucicueiiniiiiiiniicnnisnicsecssicssnississsecsssissssssssssssessssssssssssssssssssssssssasss 35
2.11 GrOUPWIILET .ccccvueieiraricssanesssanesssnsessssscssanssssasesssasssssasessssssssassesssssessasssssasssssasssssanas 37
2.12Web-BASED GROUPWARE SYSTEM BASED on WebDAV PROTOCOL39
2.13 MS OFFICE 2000 ANNOTATION SYSTEM.....cccceereisuecsnnsencssessasssecssessassane 39
2.14 FORM FLOW MODELuucouiivinvnsicsnissenssnssasssssssnssssssessssssssssssssssssssssssssssssssss 41
215 X-FOLDERSuuoitiiiininsninsnisseissessnsssecssissssssessssssssssesssessassssssssssssssassssssssssasssssses 41
2.16 CONCLUSION....uuuiiviisuinsuissesssnssasssass 42
CHAPTER 3 - DFWDAYV MODEL 44
3.1 THE SPECIFICATIONS OF DEWDAYVuiiiinininsinsensecssnssscssessssssssssscssenes 44
3.2 THE DFWDAYV COMPONENTS.....ccocterirrensinserssenssnssansssssssssssssssssssssssssssssssssses 48
3.2.1 The Server SUDSYSIEML...ccc.utiiiiiiiiiieeitie ettt ettt e 49
3.2.2 The CHEent SUDSYSIEIMccuviiiiiieiiieeriieecieeesteeeiteeeaieeeareeeaeeeeareeenseeesnseeennnes 51
3.3 THE FUNCTIONS OF DFWDALV ...uuiniisiicsensnnssissnssesssecsssssssssessssssssssesssssane 53
3.3.1 Creating the DOCUMENLS.........c.eeiriiiieiiieeiiie et 53
3.3.2 Updating the DOCUMENLS..........eiiriiiiiiieiiiie ittt 54
3.3.3 Defining the Document FIOWSccccueeriiiiiiieiiiieeieeeieeeeeeee e 54
3.3.4 Defining and Querying the Document Metadata..............ccoooveiriieiniieennnennnne. 55
3.3.5 Routing the DOCUMENLS.......ccccuvieriieeriieeriieesieeeieeerieeeieeeeeeeeeareeeaeeesnseeenens 55
3.3.6 NotfyINg the USETSeieiiiiiiiiiiiiieeieeetee ettt 55
3.3.7 Archiving the DOCUMENLScccouiieiiieiiiieeiee et 56
3.4 UTILIZING DFEWDAV ...uinicininsensnisnnssssssscssissssssesssssssssssssssssssssesssssssssssessesss 56
R TR0 BN o) o) 1o o) 1 TSP 56
34,2 SCENATIO....ccuuiiiiiiiieeieette ettt ettt ettt et ettt e te e s e e e neee 58
3.5 THE FULFILLMENT OF THE SPECIFICATIONS......cccceecesversurcsunsessarcsanen 62
CHAPTER 4 - WEBDAV AS AN INFRASTRUCTURE 65
4.1 THE REQUISITES OF DISTRIBUTED WEB COOPERATIVE
APPLICATIONS....cootiiiiuicseissenssnssssssssssnssass 65

4.2 THE PROBLEMS FACED BY WEB COLLABORATIVE SYSTEMS USING

HTTP PROTOCOLuuiiiiinninninsnnissnicsnnssse 68
4.3 WEBDAYV OBJECTIVE AND GROUPSiieerirnsnnisnissnecssncssnsssnsssscssnns 70
4.4 WEBDAYV METHODScouiiniinnniinninsnncsssissscsse 72

4.4.1 HTTP Extensions for Distributed AuthOring...........ccecceeevvieerieeerieeniieeeiieens 72
4.4.2 Versioning Extensions to WebDAV ..o 76
4.4.3 WebDAYV Access Control Protocolccouvuiiiiiniiiiiiiniiiieeeiiee e 77
4.4.4 WEbBDAYV S€arChcoiiuiiiiiiiiiiiiieeeeee et 77
CHAPTER 5 - IMPLEMENTATION 81

5.1 WEBDAY PRODUCTS...cuuuiiiiiiitinsiinsnnisnisssncsssicsssssssessssssssssssssssssssssssssssssssss 81
5.2 IMPLEMENTATION OF A COLLABORATIVE AUTHORING SYSTEM 84
5.3 THE SERVER SUBSYSTEM......iiriinsnisninsnecsnnssnncsssssssncsssisssssssssssssssss 85

5.3.1 The WEDDAYV SEIVET....ccocuiiiiiiiiiiieiieeete ettt 85
5.3.2 The Document REPOSITOTYeeerviieriieeriieeiieeeieeeieeeiieeeireeeieeeeaeeesereeeeens 91
5.3.3 The Routing And Reminding Aentccooueerrieeriieeniieeniieeniieesiee e 91
5.3.4 The FIOW RePOSITOTY.....ccccuiiiiiiieiiieeiiie ettt ettt et e e etae e serae e 99
5.3.5 The Mail SETVETcooviiiiiiiiiiie ettt 101
5.4 THE CLIENT SUBSYSTEM.....ciiiiiniinininsnissnnssnssssncssnsssssssssssssssssssssssssss 102
5.4.1 WEDDAYV CHENLScoiiiiiiiiiieiteeiee ettt sttt e saee e 103
5.4.2 The Document FIOW CHENL........ccccceeriiiieriieeiiieeieeeiee et et sieeeeveeesaee e 108
5.4.3 The Local Temporary Document RepOSItOrYcccccueerviieeriiieeniiieeniieenieeenns 111
5.4.4 Non-WebDAV Document EditOrS.........cccveeriieeriieeniieeieeeieeeiieeeiee e 111
5.4.5 The FIOW DefNer........c.cooviiiiiiiiiiiiiiiiiceeteeee ettt 112
5.4.6 The Mail CIENt......ccc.ooiiiiiiiiiiiiieeeeeee ettt 114
CHAPTER 6 - COMPARISON AND ANALYSIS 116
6.1 COMPARISON ...ccuuiiiiniisnicsnissnnssncssnssssssecsssssassssssasssssssessssssasssassssssssssssssessassssss 116
0.2 ANALYSIS.uiiiictiiinitnnnnisssnsssnisssisssssssssssssssssssssssssssssssssssssssassssssssssssssssss 123
6.3 COMPARISON BETWEEN THE DFWDAV MODEL AND OTHER
MODELS uuiiiiiiiitinnnisnnisnissseessissssssssiss 124
CHAPTER 7 - CONCLUSION 128
7.1 CONTRIBUTIONccocuiiiiinininnninsancsssnsssnsss 129
7.2 FUTURE WORKoiiitiitintiinnisnisssnisssicsssssssnssssssssesssssssssssssssssssssssssssssss 133

vi

APPENDIX A - EXAMPLES OF WEBDAV METHODS

A.1 PROPERTIES ...uuuoirirrninneensnnnsnnssnnssnssssnsssnssssssssssssssssssssssssssssssasses
A.2 COLLECTIONS AND NAMESPACE OPERATIONS.......ccccccveuuee.
A3 LOCKING. ..cccutrreinsrensnssssnnsssssssnsssnsssssssssssssssssasssssssssssssssssssssssssassssassss
A4 VERSIONING ...uoeeenenninnnnnnnnsnnsanssessssssssessssssssassassasssssssssssssssssssssssass
A.5 ACCESS CONTROL....uuuieeernensunnssnnnsnnssanssnsssssssssssssssssasssssssassssasssns
A.6 SEARCHING.cuuieeninnenensnensnensaessnessessssssnessessassssssssssassssssssssssssassaess

Nomenclature

Bibliography

Vita

vii

Table
3.1

3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3

6.1
6.2

LIST OF TABLES

Page
Work Distribution of the Authoring Scenario.................... 58
The Flow Properties of Chapter 1 in the Scenario................ 59
WebDAV Groups and Their Documents 71
The Methods of the Propertiesc.ccvviiiiiiininn.. 73
Collections and Namespace Methodsoo.i. 75
Locking Methodscovviiiiiiiiiii e, 76
Versioning MethodsS..........cooviiiiiiiiiiiiiii e, 78
Access Control Methodscoooviiiiiiiiiii i, 79
SearchMethodcooiiiiiii e, 79
System ENtities.......ovuiiiiiiii i, 99
System Relationship Types........ccovviiiiiiiiiiiniiiiiiiennennn. 99
The Attributes of the Entitiescooiiiiiiii, 100
Comparison between Different Models........................... 117
The DFWDAV Model Characteristics According to the
Comparison Factorscooiiiiiiiiiiiiiiiiiiii i 125

viil

Figure

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7

2.8
2.9

2.10
2.11
2.12

3.1

3.2
33

5.1
5.2

5.3
5.4
5.5
5.6

LIST OF FIGURES

Document FIow Typesc.cvvviiiiiiiiiiiiiiiiiiiieiieenn,

EDMS Architecture.........oeviuiiiiiiiiiiii i
An Example of EDMS Document States
Alliance Architectureccovvviiiiiii e,
Alliance Document Fragments.................oooeviiiiinn...
DocMan Architecture.........ooovveiiiiiiiii e,
DReSS Architecture.........ooooviiiiiiiiiiii i
The Document Flow in Oxford Radcliffe Hospital Document
Management SYSIEIMoviiiiieeiiiiie i eaiaennss
Document Flow using Smartcard System
The Lifecycle of Producing Documents in the System

Extended Lotus NOESo.vvieiiiiiiiiiiiiiiiiiee
The Components of AllianceWeb System
GroupWriter Document Development Stages....................
Office 2000 Annotation SyStem.........covvuiiiriiiieinnieeennann.

The DFWDAY Model as an Infrastructure for Collaborative
APPHCALIONS ..ot
The Architecture for the DFWDAV ...,
Analyzing the Flows by the Routing and Reminding Agent ...

Implementation Componentsccevvviiiiiiieininnnennnn
Apache Service Monitor Screen after Loading WebDAV

Module........ooi
Accessing Tamino WebDAV Server From a Web Browser ...
Accessing SAP Portals from a Web Browser
Accessing Sharemation Site by the Internet Explorer...........
The Agent Processing Flowchartoooea.

X

21
22
23
24
25
27

29
32

35
36

38
40

45
49

61

84

5.7

5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18

5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29

GetNextUserInFlow Flowchart....
Handle _Download Flowchart......

Handle_Working Flowchart.......

Handle_Upload Flowchart.........
Period_Consumption Flowchart...

Tracing Flow Progresses Screen ..

.................................

The State Diagram of the Flow Progress..........................
The ER Diagram of the Document Flow Implementation

The DAV Explorer Interface.......

Tamino WebDAYV Basic Client....

.................................

.................................

Accessing WebDAYV Repositories via Web Folders.............
Direct Editing of WebDAV Documents using Microsoft

Office. oo

Accessing WebDAYV Repository via a Web Folder.............

The JEdit with WebDAYV plug-in..

XML Spy Accessing WebDAV Repository......................
The Documents Screen of the Flow Client
The Notifications Screen in the Flow Client.....................
User Downloading Document Flowchart.........................
User Uploading Document Flowchart.............................

Defining Users Screen..............

Defining Documents Screen........
Defining Flows Screen...............

An Email Generated by the Agent

.................................

................................

................................

.................................

93
94
95
95
96
97
98
102
104
104
105

106
106

107
108
109
109
110
110
113
113
114
115

THESIS ABSTRACT

Name: HUSSAM EDDIN ABDULLAH ALSAWADI

Title: AN ARCHITECTURE FOR SECURE
DOCUMENT FLOW & ARCHIVAL SYSTEMS

Degree: MASTER OF SCIENCE

Major Field: INFORMATION & COMPUTER SCIENCE

Date of Degree: JUNE 2005

Most document collaborative systems enclose implied document flow
models which are suitable only for their systems. Moreover, these systems can
concentrate on their foremost objectives if they utilizes generic document flow
model. In this research, I have investigated the development of a generic
architecture for Document Flow model based on WebDAV protocol (DFWDAV),
which are intended to overcome the limitations of the specialized models.

Moreover, this model can be utilized as an infrastructure for document systems.

Keywords: Document Flow model based on WebDAV protocol (DFWDAV),
Document Flow, Cooperative Systems, Office Automation, World Wide Web
Distributed Authoring and Versioning (WebDAV) Protocol.

King Fahd University of Petroleum and Minerals, Dhahran.

JUNE 2005

X1

THESIS ABSTRACT (ARABIC)

Al JI sk

@ gl Bl ol ol oS I

SO 2Ty 3 i S il ydl O i
P e prle eyl

GV el il g sl : paasdl
—1426 L5V st TOPRAF I

s e 5 ke y Azl odd 2aide 31Uy 335 23U e s a gl U Aelail o laes
sda (3 pds B0 3 ple 2358 e sl 13] Al Wbl e 5575 o S aaksl) i g
3Gt e)y ¢ A Gl S5 e ez Uy 35 3 ple IS b s AL)
MY e 38 ity OF K6 25yl Vg Ling) Aol 30l oo 3V ot b)) 35, Sl
U
— bl a5 Sl 32 e ey ¢ 5 G S s e deaad) U 305 238 e le
) e ey 5l G IS5y, — Sl Al — asldl adaW — LS s
Al 45, Sa)

O ygall (Oslall g J gl dgd S dsler

21426 LY eotn

X11

CHAPTER 1

INTRODUCTION

The document flow across the Web has become an essential task in document
collaborative systems which serve distributed offices and working groups.
Moreover, documents are used as a means of information interchange and they are
designed to explicitly serve the function of effective communication. On the other
hand, computerized document collaborative systems are emerging technologies.
Furthermore, several such systems use built-in document flow functions. Some
examples of these applications are cooperative authoring, report evaluating and

proposal requesting.

1.1 BACKGROUND

The selected subject deals with several issues and makes use of results from
several different areas. These include document management systems, XML
language and WebDAYV protocol. This section includes brief descriptions of these
technologies as regards the background.

At the outset, several definitions of a document are considered. After that,

three main models for documents are stated. Then, brief discussions about

document management systems and document flow types are presented. Next, brief
information about XML is offered. This information includes a short history of
markup languages, provides a brief overview of XML, shows how a structured
document can be described by XML by providing different templates for several
document types, and defines some terminology related to XML. Finally, an

introduction to the contemporary communication protocol WebDAYV is provided.

1.1.1 Document Procedural Definition

There are many definitions of a document. The following are some views of
document definitions adapted from (1):

- It is any container of coherent information which has been assembled for
human understanding.

- It is a notation that we have invented for storing information, so that we do
not forget it.

Moreover, a document is defined as (2):

- It is a set of information pertaining to a topic, structured for human
comprehension, represented by a variety of symbols, stored and handled as a
unit.

A container and storage of information are very general phrases since they vary

in their formats (e.g. papers, videotapes, computer files, etc.). Yet, for the purpose of
this study, I will focus on computerized documents. From the low-level view of

computers, those documents are collections of binary digits. On the other hand, the

outside appearances of computerized documents can take several diverse shapes,
depending on their high level purposes. The following list includes different types of

possible computerized documents (3), (4), (5), (6), (7), (8), (9):

Articles.

Source code.

- Request for proposals.

- Proposals.

- Evaluation reports.

- Mathematical equations.

- Scientific papers.

- Books.

- Contracts and agreements.

- Drawings, blueprints and photographs.
- Reports.

- Email and voicemail messages.
- Manuals and handbooks.

- Business forms.

- Presentations.

- Correspondence.

- Memos.

- Transcripts.

In spite of the fact that document types affect most document systems, it is

possible to develop a document flow model based on WebDAYV protocol which will

not depend upon document types.

1.1.2

Computerized Document Models

There are several models of computerized documents. Three main models have

been used according to (10):

1-

1.1.3

Unstructured sequence of text: The documents in this model are represented
as lengthy sequences of text.

Semi-structured data with nodes and links: The documents in this model are
treated as graphs with nodes and links with strange structure.

Fully structured data with known structure schema: The documents in this

model are represented by a well-defined structure.

Document Management Systems (DMS)

The document management is defined as ‘‘the process of managing

documents through their lifecycle from inception through creation, review, storage

and dissemination all the way to their destruction.” (1).

Document management systems encompass several key components, each of

which can be thought of as a stand-alone concept, but together they contribute to a

powerful inclusive system for the management of information. Document
management functions include (1), (10), (11):

e Storage and retrieval.

e Status reporting.

® Access control.

e Indexing.

¢ Version control.

¢ Workflow management.

e Document conversion.

e Commenting.

¢ Link management.

¢ Linguistic analysis.
Moreover, since the Web attracts most application areas, document management

systems are turning to the Web environment (6), (12).

1.1.4 Document Flow Types

There are several types of document flows such as sequential, parallel and
branching flows as shown in Figure 1.1 . The simplest type of them is the sequential
flow in which documents route through linear steps. The second flow type is the
parallel flow where documents can route to several users at the same time as

illustrated in the same figure. Finally, the branching flow is a conditional path flow

based on some conditions which can be related to time, user operations or system

actions.

O—>O—O—0O (a) Sequential Flow

(b) Parallel Flow

O_'<?>_’O (c) Branching Flow
BN

Figure 1.1: Document Flow Types

1.1.5 _Short History Of Markup Lanquages

Markup languages are used to describe documents (13). Although there are
several markup languages, it is expected that eXtensible Markup Language (XML)
will dominate the scene in the coming years. In the 1960s, IBM created a markup
language that was called General Markup Language (GML). The purpose of that
language was to solve the problems resulted from interchanging documents between
different platforms. In the 1980s, the International Organization for

Standardization (ISO) used GML to produce the Standard Generalized Markup

Language (SGML) as an official standard (ISO 8879). SGML is a notation for
representing documents and making their inherent structure explicit. Many large
organizations have used SGML for describing documents. SGML is a robust and
strong language; despite this fact it is complex and expensive to implement and
maintain and hence it is not suitable to be readily used.

Several languages are derived from SGML such as the ubiquitous Hypertext
Markup Language (HTML) and its generalizing descendent XML. HTML was
created in the late 1980s. Its purpose was to unify the way of storing and retrieving
data between researchers. It has been built on the concept of hypertext in which one
can link documents and transfer between them by clicking parts of text. In the early
1990s, HTML became a major player in the information exchange among people all
over the world because most documents on the World Wide Web (WWW) were
described by HTML. Since HTML was not originally designed to be used by WWW,
several limitations of HTML became noticeable limitations. The obvious suitable

alternative would be XML language (13), (14).

1.1.6 XML

The eXtensible Markup Language is a meta-language defined by the World
Wide Web Consortium (W3C), derived from SGML, that can be used to describe a
broad range of hierarchical markup languages. It is described and defined as a W>C
Recommendation (15). XML has a standard syntax that is flexible enough to

represent just about any kind of information (14). The rich tools of XML can be

operated together to provide modern software architectures (e.g. architecture for a

document management system) (12).

XML Features:

¢ It is an extensible syntax; hence it is not limiting anybody.

e XML is similar enough to HTML which enables one to learn its basics in
a short time.

e XML’s popularity and support from the industry means there is no

shortage of expertise and products to support its development.

XML Document Syntax:

An XML “document” consists of a prolog, processing instruction(s), a root
element (with optional aftributes) and a hierarchy of sub-elements (optionally
with attributes), entities, and (parsed) character data. XML has no predefined
elements, and it is left to the author to define those elements that make sense for
his application (14).

An XML Document starts with a prolog. The minimal prolog contains a
declaration that identifies the document as an XML document. The declaration
may also contain additional information. The prolog can also contain definitions
of entities and specifications. An entity is an item that is inserted when one

references it from within the document. A specification tells which tags are valid

in the document. Both the entities and the specifications are declared in a
Document Type Definition (DTD) that can be defined directly within the prolog,
as well as with pointers to external specification files.

An XML Document can also contain processing instructions that give
commands or information to an application that is processing the XML data.
Processing instructions have the following format: <?target
instructions?> where the target is the name of the application that is
expected to be doing the processing, and the instructions are a string of
characters that embodies the information or commands for the application to be
processed.

Each XML document has a root element that consists of elements
delimited by tags. Attributes can be attached to elements, as part of their opening
tag. Elements can be nested and thus form a nice hierarchical representation.

XML uses the HTML angular brackets (i.e. < and >) as tag delimiters but
XML tags specify what the data means, rather than how to display it. Also, XML
has an accurate syntax: every opening tag (e.g. <someTag>) must have its
corresponding closing tag (e.g. </someTag >). There should not be any cross (i.e.
which tag is opened first, should be closed first) between tags. Finally, XML tags
are case-sensitive and so <tag> is different from <TAG>. On the other hand,
empty tags use special delimiters (e.g. <someEmptyTag/>) that combine the
closing and opening tags.

XML supports two different types of documents: well-formed and valid.

Well-formed documents simply respect the syntax defined by the XML

10

specification. Valid documents not only respect the syntax but also define a
limited set of tags in a DTD. The DTD defines which elements are authorized
and where. For example, the DTD may prescribe that <alternate> elements

can appear in <email> elements but not in <name> elements.

Example:

Here is an example of some XML data which might be used in a messaging
application:

<message>

<to>you@yourAddress.com</to>
<from>me@myAddress.com</from>
<subject>XML Is Really Nice</subject>
<text>

In how many ways is XML nice?

Let me count the ways...
</text>

</message>

Applications of XML:

XML is being used for a broad variety of applications including:
e Vertical markup languages for mathematics, chemistry, and other
document-centric publishing applications.

e E-Commerce solutions.

11

¢ Intra-, extra-, and inter-enterprise application messaging.

Indeed the most popular applications for XML are not just as fancy
replacements of HTML but also as a general format for data-exchange. It is
expected that XML will become the standard for data interchange on the Web

(16).

1.1.7 Using XML for Structuring Documents

XML, like its parent SGML, is widely acceptable to be used for structured
documents (17). It is expected that document applications will take the advantages
of XML technologies (6), (16). Several recent applications utilize XML for
structuring the documents (3), (4), (18). Moreover, there are several individual
experimental works to define XML document type definitions (DTD) for different
document types like article, book, proposal, paper, etc (12). At the same time, the

direction of standardizing several DTDs is growing fast (14).

1.1.8 XML Document Templates

While XML represents data using tree-structures, XML can represent other
data structures because of its adaptability. Several templates for different data

structures are presented next (14):

Forms:

Using XML, a form can be represented using the following template:

<FormName>
< fieldl>
datal
< /fieldl>
< field2>
dataZ?
< /field2>

< fieldn>
datan
< /fieldn>

</FormName>

Tables:

Using XML, a table can be represented using the following template:

<TableName>
<rowl>
<coll>
datall,1]
</coll>
<col2>
datall, 2]

</col2>

<coln>

datall,n]

</coln>
</rowl>
<row2>
<coll>
datal[2,1]
</coll>
<col2>
datal[2, 2]

</col2>

<coln>
datal[2,n]
</coln>

</row2>

<rowm>
<coll>
data[m, 1]
</coll>
<col2>
data[m, 2]

</col2>

<coln>
data[m, n]
</coln>

</rowm>

13

14

</TableName>

1.1.9 XML Related Terminology

This subsection identifies several terminologies which are related to XML,

such as DTD, XSL, CSS, SAX and DOM.

DTD:

A Document Type Definition (DTD) provides a specification for an
XML document. It specifies structural elements and markup definitions that

can be used to create documents (14), (16).

XSL & CSS:

As stated above, one of the best features of XML is the separation of
the content from the display. Therefore, formatting attributes are not part of

XML documents or DTDs. Instead, XML can rely on either eXtensible Style

Language (XSL) or Cascading Style Sheets (CSS). Both XSL and CSS are
style-sheet mechanisms, which provide browsers with formatting and
displaying information. XSL is an advanced XML-specific style-sheet
mechanism whereas CSS applies the HTML style-sheet mechanism (13),

(19), 20), (21).

15

SAX & DOM:

The most popular APIs (Application Program Interfaces) which are
used to process XML documents are SAX and DOM.

The Simple API for XML (SAX) is an event-driven APL It generates events
such as the start or the end of an element. Depending on its tasks, each
application uses the appropriate events.

The Documents Object Model (DOM) converts an XML document to
a hierarchical tree. The nodes of the tree represent the document’s elements
and content. The tree can be easily accessed and processed by an application
or programming language.

Since DOM provides the hierarchical trees of XML documents, it
requires more memory than SAX which does not need any data structure.
On the other hand, while DOM is more flexible because it is suitable for
applications which use an XML document as a whole, SAX is more efficient
because it can be used with giant documents which do not fit in memory (16),

(22), 23).

1.1.10 WebDAV

The developed document flow model, namely Document Flow model based

on WebDAYV protocol (DFWDAY), is completely established over the World Wide

16

Web Distributed Authoring and Versioning (WebDAYV) protocol. This novel
protocol is under current development by the WebDAV working groups in the
Internet Engineering Task Force (IETF) and it is an extension to the Hypertext
Transfer Protocol (HTTP). The WebDAV extension defines a standard
infrastructure for collaboration across the Web. WebDAV makes the Web as a
writeable, collaborative medium. Today, collaborating people in geographically
distant locations interchange information through documents. Usually, they use
emails to notify each other of changes to documents, fill directories with revisions
and mail questions about what is finished and what is still under construction. It is
obvious that this method of collaborative work necessitates superfluous efforts and
consumes time. In contrast, WebDAYV provides several features which simplify the
teamwork on the Web. Those features include supplying document properties like
author and creation date, editing Web documents in place, providing a locking
mechanism to prevent the lost update problem, applying access privileges and
supporting versioning (9), (24), (25).

Using WebDAYV as an infrastructure for a document flow system provides
several advantageous features such as simplifying works, reducing efforts and
removing the bulk of responsibility from the applications (8), (26).

Comprehensive but recapitulated information on WebDAYV protocol is presented in
detail in Chapter 4 as extra information is required to empathize the DFWDAV

model.

17

1.2 PROBLEM DESCRIPTION

Most contemporary organizations use manual document flow systems. First,
an employee initiates a document. Then, such a document flows (routes) through a
specific path of other employees. These employees browse, revise, update, modify or
finalize the document. The result is several different versions originated from one
document. The problems of out-dated, incomplete, inaccurate, hard to maintain, lost
documents etc. are all attributed to manual document flow systems. Consequently, it
is difficult to keep track of changes or to compare different versions of a document.
Even the task of determining the current status of a document (current location,
authors, changing dates, etc.) can be a demanding task, especially in large
organizations. In summary, several users tend to collaborate to produce documents
(8), (9), (26).

Several problems may be considered as special cases of the previous problem,
depending on the organizations, their users and the nature of the documents. For
example, the conference management problem (6) is basically a special instance of
the described problem. The organization in the conference management problem is
a scientific community that manages conferences. The conference management
problem documents are the papers which are submitted to the conferences. The
documents in a conference flow between the authors, the referees, the conference
editor and the chair.

Another special case of the thesis problem is the production of documents in

the context of an electronic market application, namely a platform dealing with

18

requests for proposals (3). In this problem, several users at the buyer side and the
supplier side collaborate to produce several kinds of documents. Those documents
include proposals, requests for proposals, evaluation reports and business
descriptions.

The final example of the document flow is the collaborative authoring
systems (8), (27), (28), (29). The users of the collaborative authoring systems are the
authors, reviewers and editors. These users cooperate to create, check, improve and

confirm authoring documents such as books, scientific papers or even poems.

1.3 AIMS AND OBJECTIVES OF THIS THESIS

Within the scope of the thesis work, the researcher aims to design and
provide a high-quality document flow model based on WebDAYV protocol. This
model provides a document flow infrastructure for different document collaborative
systems which support multi-user works. The major functions of the model include:

¢ C(Creating flow definitions.

¢ Assigning flow definitions to documents.

e Automating document flows between users according to the assigned
flow definitions.

¢ Analyzing document flows.

¢ Notifying users by appropriate information via emails.

¢ Providing historical information about the actual flows of documents.

19

1.4 ORGANIZATION OF THE REMAINING CHAPTERS

The remaining chapters of this thesis are arranged as follows. Chapter two is
a brief presentation of several document flow models in different applications. The
DFWDAYV architecture is shown in Chapter 3. Since the DFWDAYV architecture is
established over WebDAYV protocol, Chapter 4 presents a short and concise study of
its workgroups, functions, and status. Chapter 5 focuses on the implementation
issues. In Chapter 6, a comprehensive comparison between the studied and
DFWDAYV models is presented. Finally, Chapter 7 closes the thesis by the

conclusions and recommendations.

CHAPTER 2

LITERATURE SURVEY

In this chapter, I will present a summary of several document flow and
archival models in different groupware systems which have a strong relation to the
present study. Most of these groupware systems provide extensive functionality
because they were designed by great and impressive efforts extended for several
years by dedicated teams. However, for the purpose of this study I will concentrate
on the research subject of document flow and archival models. Fifteen different
models are discussed in a chronological order because time is an important factor in
the progress of this area. This will be settled in the Analysis and Comparison

chapter.

2.1 ENGINEERING DOCUMENT MANAGEMENT SYSTEM (EDMS)

This system was developed as a joint project between the department of
computer science in Helsinki University of Technology in cooperation with KONE
Elevators which is a large Finnish elevator manufacturer (30), (31). The objective of
this system is to manage engineering documents such as engineering drawings. The

system architecture is based upon the client/server architecture, the Unix operating
20

21

system and the LAN network. The server manages a relational database that
contains the documents and their attributes. The clients require special software
(tool), which is used to read and write the documents from and to the server. A user
who wants to read or to modify a document must first lock it on the server and then
copy it to an ordinary local file using the software tool. When the user finishes the
modification, he copies the file back to the server and removes the lock. Figure 2.1
shows the system plan. It is possible to restrict the user access (read and write) to the

documents by defining the access rights on the documents for each user.

X Window System
User interface Design tool
Object manager EDMS C-lib

File system

Administrator’s tool

EDMS Server

§

‘ Relational database system ‘

Document Database

Figure 2.1: EDMS Architecture

The system provides several excellent features. For example, it is possible to
define a state graph for the document flows. When a new document is created, it is

moved to the first state. An example of the state graph is shown in Figure 2.2. Also,

22

this system can generate document versions explicitly by the users. A newly created
document version is the same as the original version and can be modified until it is
used as the parent of another version. Moreover, it is possible to send asynchronous

notifications from the server to the clients to inform them about recent changes.

v

—» Draft—» Ready —®» Checked —¥» Approved
Figure 2.2: An Example of EDMS Document States

2.2 ALLIANCE

Alliance is a structured cooperative application which works on a WAN
(Wide Area Network). It allows authors on different Web sites to create and
produce documents in a structured manner (32), (33). For each document, users are
assigned several roles. These roles are the manager, the writer, the reader and the
null roles. They can be assigned to a full document or part of it. The manager role is
the highest role because any user with this role can assign and change the user roles.
On the other hand, while a user with the writer role can update the document or
part of it, a user with reader role can only read it. Finally, the user with null role on
a document part does not have any access to it.

The assignment of the document roles to the users can be on any part of the
document. So, any user can have different roles on different parts of a document.

Each document is divided automatically to several fragments depending on the

23

distribution of the user roles. Although any user may be given a particular role on a
certain document, this user will not be able to play it at any time. The reason behind
this drawback is that another user with the same or higher role used it in advance.
In other words, only one user at a time can play the writer or manager roles. A
document is represented by a set of files which contains document fragments, user
roles for each fragment, the order of the document fragments and the current state
for each fragment. Each fragment is saved in a separate file. Alliance works using

HTTP over client/server architecture with special scripts as shown in Figure 2.3.

Site A

P lliance Azzistant
Alliance Editox

Pocorn.| |HTTF foleI

Planag. | [Clicne .
CEI Scripts || HTTF ferver E
Do
| UMNIX Faie

Site B

Alliarce Azziztany
Alliance Editoz

Dacern | ([HTTE oo

EI'IPTS : 4 444 -
Doc
| UNIX Eute

Figure 2.3: Alliance Architecture

A document passes via several phases before it reaches its final shape. First,
the document owner creates the list of the users who will work on the document.
Second, he sends them a notification message with the necessary information to
access the document. Thus, the users can reach the document and contact each
other. The document and all needed information are copied on each site where they

are required. The needed information includes the document fragments and

24

management information. Figure 2.4 shows an example of the distribution of the
fragment copies of a document. To keep the consistency of the copies, updating a
copy should be reflected on the other copies but the updating process of the copies is

not necessary to be in the exact time.

Editing a document requires a special treatment to ensure that it is not

possible to update the same fragment simultaneously in two different sites. This

Drocwrment fragments
2zter | 2lave
copy | | copw
Sife A Size B

Irierned Neitwark ‘

B

Site O

Figure 2.4: Alliance Document Fragments

treatment is based on the notation of master and slave fragments. While there is
only one master copy among each set of fragment copies, the rest are slave copies. A
master copy is a fragment which a user with a manager or a writer role is working
on. Only one user can act with the manager or the writer role on a master copy
while several users with the reader or the null roles can work on slave copies. The
set of all master copies of the document fragments represents the current state of the
document. Therefore, it is obvious that master copies can migrate from one site to

another.

25

2.3 DocMan

DocMan is a document management system which supports distributed
cooperative work based on the Internet as shown in Figure 2.5 (11). Each document
has an associated document folder (a document store) on a client. Document folders
are managed by the distribution and replication service. Each Document folder can
hold a set of the document revisions. A document revision is produced when a user

updates a document. Updating the document leads the system to mark the original

Client

Document Folders

Local document
directory

Local information
store

Distribution &

Replication Service

Domain information store Document store (Distributed)
(replicated)

WAN

Figure 2.5: DocMan Architecture

document as a new revision and to consider the updated document as the active
release. Revisions are always read-only and each document may be revised several

times.

26

The document passes through several stages before it reaches its final shape.
Initially, the document folder contains the first revision of the document and the
access information. If a user has access to the document, he can fetch it or one of its
revisions from the document store to his local disk. The local disk copy is an editable
draft copy of the original fetched document. This copy is called a document draft
because it is a private working copy of the document. Creating the document draft
originates a lock on the document to prevent concurrent modifications. Releasing
the draft copy creates a new revision in the local document store and releases the
lock. Users can use emails and phones to coordinate their order in fetching the
document and making their modifications.

The distribution and replication service is distributed over the site servers. It
stores replicates and distributes information about the document folders, the
document revisions, the user accesses and the drafts under preparation. Moreover,
it stores the revisions in the distributed document store and generates URLs for
them. So it is possible to provide public access to the revisions through Web

browsers.

2.4 DReSS

DReSS (Document Repository Service Station) is a small software system
which allows any Web server to support cooperative publishing (34), (35). Despite
the fact that it is designed to be just a document repository by applying the
client/server model, it consists of Java programs on both the server and the client

sides. However, most of the functionality of the system is on the server side (i.e. the

27

clients are thin). The client software is any Web browser with two special software
helpers to do the following tasks:

- Start the local suitable editor after downloading the file.

- Uploading the document to the server after the user finishes the
editing of the document.

Figure 2.6 shows the system architecture that is composed of the next components:

- At the client side: an editor, a Web browser and the client-helpers for the
purpose of managing the communication between the editor and the
browser.

- At the server side: a Web server, a repository (database) and the server-

helper.

editors = client — WWW WWW [server [— repository
file system (= helpers = browser "V server [=— helpers = file system

Internet

Figuer 2.6: DReSS Architecture

At the server side, the repository maintains the documents, their meta-data

and histories. The documents are represented by ordinary files which exist in the file
system of the server. The meta-data contains creator, current author, lock status,
authorized authors and log file. Moreover, the server helper handles the
communication between the Web server and the repository.

Updating a document requires several steps. These steps include: locking the
document, downloading it from the server to the client, editing it in the local

machine, uploading it back to the server and finally unlocking it.

28

One of the DReSS advantages is that it is possible to view the documents
from any Web browser when they are public. On the other side, DReSS does not

have any versioning capabilities.

2.5 OXFORD RADCLIFFE HOSPITAL DOCUMENT MANAGEMENT

This system was implemented to exchange documents between interested
users in the Oxford Radcliffe Hospital NHS Trust (7). The system utilizes two
databases on a Web server where the databases represent the document repository.
They are the document database which holds the SGML (Standard Generalized
Markup Language) documents and the administration database which contains the
definition of the users, groups and subscription lists.

The document flow in this system is shown in Figure 2.7. After a system
administrator defines the users, groups and subscription lists and he sets up the
topics and subtopics, an author can post a document and define its reader
distribution list. A reader will receive a notification about a new document, either
because he is a member on an author distribution list or because he subscribes in a
topic subscription. There is no way to change the documents since the system is not
designed to update documents. The main objective of the system is to notify
interested users about new information, and so the system does not have any access

security. Therefore, all users can view all documents.

29

System Administrator

Define Users, Groups and Subscriptions

Setups topics and subtopic '\'\‘
W\
/\ A \
Document Database i_.._.._.! Administration Database
Documents Users
Topics Groups
Subtopics Subscriptions

Distribution lists

N

. e N
Views Documents Notification ", sts Documents

/ i Reader . : i i Author

Figure 2.7: The Document Flow in Oxford Radcliffe
Hospital Document Management System

2.6 BSCW

The BSCW (Basic Support for Cooperative Work) system has been
developed at the German National Research Center for Information Technology
(29), (36), (37), (38). This system supports collaboration over the Internet, stores
documents, retrieves them and provides users with awareness of the others’

activities. The system model is based on the client/server model. The server is an

30

extension of a Web server to provide the required functionality. In contrast, the
client is a Web browser without any modifications. The server provides widely used
services such as: document uploading, version management, group administration,
access control and document locking. Each group of users establishes a workspace
on the server for coordinating their work. The workspace is a repository for the
shared information. A user can be a member of several workspaces.

The document repository in this system combines a database and a file
system. While the information about the workspaces is stored in the database, the
documents are kept as files on the file system of the server.

A user can work on a BSCW system by connecting to BSCW sever using a
Web browser. The server generates a suitable HTML page according to the user
inputs and selections. At the beginning, he should connect to the server by entering
his login name and password. Then, the server returns an HTML page containing
all workspaces of which the user is a member. When the user selects a workspace,
the server returns an appropriate HTML page showing the content of the
workspace.

The document flow in this system is very simple. An author creates a
document and uploads it to a workspace. Another privileged user can download the
document and edit it locally. The document will be locked after the downloading.
After the user modifies the document, he uploads it to the server and unlocks it.

Finally the system provides several interesting facilities, such as version
management and event awareness. But the version management functions are too

simple. They only provide a linear version scheme on the user requests. The event

31

service provides useful customizable information about other users’ actions. The
actions include: reading, uploading and creating new versions of the documents.
The event information is generated to each user when he logons to one of his

workspaces.

2.7 DOCUMENT FLOW USING SMARTCARD SYSTEM

The objective of this system is to exchange official documents between
different government agencies in Taiwan (18). It uses the Internet as a means of
communication. In this system, the flow of the documents is too simple because it is
only sending the documents from one party to another. But the strong feature of this
system is the public-key encryption (39) of documents. It converts an open
environment (i.e. the Internet) to a secure means of communication. The system uses
XML documents since they can be easily exchanged between different platforms
even though it can work with any document.

Figure 2.8 summarizes the document flow in this system. At the sender side,
the sender digital signature will be generated using his Smartcard, which will be
read by a Smartcard reader connected to his computer. The digital signature
requires the private key that is included in the Smartcard. The document which will
be sent and the digital signature will be encrypted together by the symmetric
encryption using a session key. The session key is randomly generated by a software
application. Finally, only the session key will be encrypted using the public key of

the receiver. The public key encryption will not take much time since the session key

32

is a short stream of bits. These operations ensure that nobody except the receiver
can decrypt the session key. The combination of the encrypted document and the
encrypted session key implements a digital envelope which can be sent to the
receiver using the simple mail transfer protocol (SMTP). At the receiver side, the

reverse of the sender side operations will be accomplished.

Station(Sender) Station(Receiver)

XML Document XML Document

Sender’s Sender’s
““private key public key

<+—generated
session key

Receiver’s Receiver’s
<“public key private key

Figure 2.8: Document Flow using Smartcard System

2.8 EnAct

EnAct is an application for drafting, producing and archiving legislation

documents which was designed for Tasmanian Department of the Premier and

33

Cabinet in Australia (40), (41), (42). It utilizes client/server paradigm and an SGML
repository (namely Structured Information Manager (SIM)). The repository is
resident on the server. It holds the legislation documents as well as the workflow
definitions (i.e. process definitions).

The clients are PCs containing special software for communicating,
browsing, editing and searching the repository. While this software is a customized
version of MS Word, it checks and generates SGML documents.

The system needs special configuration to define the structure of each type of
SGML documents. That is to say, the document type definition (DTD) and its
elements should be defined for each SGML document type. Also, since the syntax of
EnAct documents is SGML format, they can be converted dynamically to HTML
format. Therefore, using a Web environment, it is possible to view the documents
created by the system using any Web browser.

EnAct provides document versioning capabilities. But it supports only linear
versioning as it was designed for legislation documents and only one version of a
legislation document should be valid at any time.

Finally, EnAct incorporates with workflow software to provide workflow
functionality. For example, once an administrator provides the privileges of

updating a document to a user, the user finds the document in his document list.

34
2.9 DOCUMENT MANAGEMENT WITH INTRANET SETTINGS (AN

EXTENSION OF LOTUS NOTES)

This system is a Web based document management system which is an extension
of Lotus Notes (43). The objective of this system is documents’ handling from the
creation up to the production and archiving. Therefore, it defines several stages for
the lifecycle of producing documents as shown in Figure 2.9. These stages include
the following:

1- Creating the document.

2- Reviewing and approving the document.

3- Managing and archiving the document.

Most of the work of this system depends on Lotus Notes functions, except for
the second stage which consists of three phases. These phases are two review cycles
and one approval phase. The administrator of the system is responsible for defining
which phase should be considered and who is trustworthy about each phase.

The versions are kept in the system unless they are explicitly deleted. Also,
the versioning is used to solve the problem of concurrent document editing by
different users. Therefore, any user can edit any document at any time. Later on,
when he saves the modified document, it becomes a new version of the edited

document.

35

Figure 2.9: The Lifecycle of Producing Documents in the
System Extended Lotus Notes

The system interacts with two repositories. While the first repository is used
during the creation and the modification of the documents (i.e. in progress

documents), the second one archives the finished documents.

2.10 AllianceWeb

AllianceWeb is an extension and modification of Alliance system which is
previously explained in section 2.2. It is based on the following principles (28):

-Splitting each document into several fragments.

-Assigning the user roles (manager, writer, reader and null) to the users for

each fragment of a document.

36

-Managing of group awareness.

As Alliance, AllianceWeb is a client/server system. But AllianceWeb is
designed for the Web environment. It requires a special extended Web server and a
special editor. The editor is an extension to Amaya, which is a public Web-based
editor from W>C (World Wide Web Consortium) (44). Also, the client can be any
Web browser to view the documents since they are HTML and XML documents.

Figure 2.10 shows the system components of AllianceWeb. AllianceWeb

combines both distributed architecture (e.g. Alliance) and cooperative editing model

Web
Browse

"

llianceWeb base
AllianceWe Doc A
bBrowser / —
Editor Doc B
Doc C

frag 1
frag 2

Akl
I

fragment

1]

N

document

Figure 2.10: The Components of AllianceWeb System

using WebDAV. If there are sites which share a document, and they are connected

with unreliable network (i.e. the Internet), the shared document will be replicated

37

on each site. In contrast, the sites connected with a reliable network (e.g. LAN)

share one copy of a document.

2.11 GroupWriter

GroupWriter is an application which supports the collaborative editing of
documents (27). It is based upon dividing a document to several sections. An
authorized user can create new sections and merge several sections. After outlining
a document, the development of the document passes through the following stages as
shown in Figure 2.11:

- Defining the document sections and their owners (sub-team or

person).

- After the discussion, composing sections by their owners and

producing the first draft version.

- Reviewing the content of the sections by the team or the owners and

providing the suggestions in the form of annotations and revisions.

- Making verbal walkthrough by the team and accepting, rejecting or

merging the suggestions by the document owners to finalize the

document.

38

Outline
Document

Discuss
Content

Sub-team
Composition

Verbal
Walkthrough

Discuss
Content

Figure 2.11: GroupWriter Document Development Stages

There are two types of users: local users and dial-up (distributed) users.
While the distributed users have limited functionality, the local users can utilize the
complete operations of the system. The system allows the users to read any section
any time. In contrast, users cannot edit a section simultaneously since it will be
locked when a user works with it. Using the table of contents at the edited document,
it is possible to know the current writers of all sections. The changes on the sections
can be committed on a time base or with checking in, but they will be saved as
revisions. If a user connects to the system by the dial-up, he can only provide
annotations on the sections. Before finalizing the document, the owners can accept
or reject the changes and review the annotations. The system provides several other
functions such as: word processing for editing the documents and built-in messaging
for communicating with others. It saves documents either in RTF or TXT formats.
Because there are plenty of commercial Delphi word processing components, the
current version of the system is implemented by Delphi. But there is another version

under development by Java to gain Java advantages like portability.

39
2.12 Web-BASED GROUPWARE SYSTEM BASED on WebDAV

PROTOCOL

The infrastructure of this system is based on WebDAV (Web Distributed
Authoring and Versioning) (26). WebDAYV extends HTTP 1.1 protocol by adding
new methods to support collaborative authoring. The system fully employs the
WebDAYV protocol since it is a combination of a WebDAYV server and an extension
of an Internet browser to be used as WebDAYV clients.

The documents in this system flow between clients and server. The addition of a new
document to the server is represented by uploading the document via Put method.
The processes of initiating and editing the documents are done locally. After locking
and downloading the document using the appropriate methods, the user can edit the
document on a local machine. After completing the document modification, he
uploads the document to the server and unlocks it. While a document is locked by a
user, another user can download and view it if he has the required privileges.
However, he cannot download it for editing. The document repository is represented
by the file system on the WebDAYV server. But the files are arranged in three

hierarchy levels: repository, folder and document levels.

2.13 MS OFFICE 2000 ANNOTATION SYSTEM

This system utilizes a new feature of Microsoft Office 2000, namely "Web

Discussions', to provide a document annotation system (45). This feature allows

40

team members to make annotations to Web pages. The system is based upon
client/server model. The client is a Web browser (the Internet explorer with an
annotation client). On the other hand, there are two servers: a Web server and an
annotation server. The annotation server contains a SQL Server database to
maintain the annotations. While the Web server communicates with clients using
HTTP protocol and contains the Web documents, the annotation server uses the
WebDAYV protocol and handles the document annotations. Figure 2.12 shows the

system architecture.

Annotations over
HTML over http WebDAV

Figure 2.12: Office 2000 Annotation System

Using this system, the users can create annotations on any Web page in the
Web server. Besides that, every author can edit or delete any of his annotations.
There are two types of annotations: document annotations and paragraph
annotations. Both of them need the document URL (i.e. the document address) while

the latter requires also a unique signature for each paragraph. Moreover, the users

41

can subscribe to the notification system. The notification system informs each user
about the annotation creation or updating of his subscribed documents.

There are some limitations of the system. One of these limitations is the technical
orphaning of annotations, causing the system to fail in matching a paragraph
annotation in a particular document to the correct location after updating the
document. Another drawback is the absence of the access control. All annotations

are viewable for everybody in the team.

2.14 FORM FLOW MODEL

This system is a protocol based system which converts the requirements of a
document flow into an agent-based document flow system (46). This protocol
represents a design methodology which consists of several steps: identifying its
entities, identifying the system agents, building the agents, and implementing the
system. This model handles just specific kind of documents which is forms. It stores
the data of forms in a central database. Also, it uses KQML (Knowledge Query and
Manipulation Language) to exchange information between the agents. Finally, in the
implementation side, it uses JATLite which is a Java agent platform and presents

the steps of the protocol for a course drop/add form.

2.15 X-FOLDERS

X-Folders is a system composed of one or more peer sites where each site

contains several services and can invoke other services on other sites (47). The

42

services include copying documents, sending email messages, handling documents as
web resources and so on. Thus, the application is distributed among sites. Moreover,
each site is considered as a servnet (i.e. a server and a client at the same time).

The documents can either flow between the folders or use document status
property. In the former case each folder represents a specific state. Moreover, the
documents are stored in special folders which are accessible via WebDAYV and
SOAP.

Each folder contains documents and their properties including the status of
the documents. Furthermore, each folder is mapped by a folder status tree. The
folder status tree is an XML tree rooted at the folder and composed by subtrees
which represent the documents stored in the folders. Each subtree of a document
contains the properties of the documents.

Changing document status may fire specific tasks which consists of web
services. X-Folders system takes the appropriate actions depending on the status of
the folder. These actions are composed by web services. The tasks of X-Folders call
the appropriate web services. The tasks are triggered after modifying the document

repository.

2.16 CONCLUSION

This chapter includes summaries of fifteen different document flow and
archival models. It is clear that several applications require document flow and

archival facilities. Furthermore, the objectives of these applications as well as the

43

technologies available during the period of the application developments influence
these models strongly. Consequently, the design of a structured frame of document
flow and archival model becomes a necessary matter of fact. But this frame should

be flexible so that different applications can utilize it.

CHAPTER 3

DFWDAYV MODEL

This chapter contains a full description of the Document Flow model based
on WebDAYV protocol (DFWDAYV) which we have developed. At the outset, the
requirements of the model are identified. Then, the model components and
architecture are tackled in details. After that, the model functionalities are
elucidated. To clarify the roles of the model components and their operations, a
scenario of a collaborative application is provided. By applying the DFWDAYV
model, the scenario shows the strength of the model. At the end of the chapter, the
researcher will justify the fulfillment of the model requirements according to the

provided scenario.

3.1 THE SPECIFICATIONS OF DFWDAV

While the model should be flexible to serve different document collaborative
applications, its flexibility should not affect its intensity and capability. The
foremost objective of the required architecture is to automate the routing of
documents among distributed collaborating users. Thus, the architecture deals with

cooperating users handling shared documents.
44

45

The model should be designed according to the following specifications:

1-

Managing the production of documents: The model should manage all the

stages of documents from the creation to the production passing through the
different phases of development. Usually, documents come across several
users before they reach their final shape. During the flows of documents, the
users either revise the documents or add more information to them. For
example, reviewers of a book typically update it but do not add more
information. Another different example, an employee vacation request flows
between several responsible people who add new information to the request.
In summary, the DFWDAYV model should manage the documents during
their flow between different users.

Offering a _document flow infrastructure: To perform their tasks, most

document collaborative applications need document flow functionality. On
the other hand, the main purposes of these applications can be emphasized
on if they are built on the top of a document flow infrastructure. Therefore,
the DFWDAV model should provide a document flow and archival

infrastructure for the collaborative applications as it is shown in Figure 3.1.

Collaborative Application

A

A

DFWDAV
A A
A A
Document Flow
Repository Definitions

Figure 3.1: The DFWDAYV Model as an Infrastructure for
Collaborative Applications

4-

46

Moreover, this feature simplifies the design and the production of such
applications since they can utilize the DFWDAYV model as a document flow
infrastructure. For example, a collaborative authoring system can be built on
the top of the developed document flow architecture. After an author initiates
a document using the authoring system, he can send it to the developed
architecture which handles the archive of the document. In the same manner,
the developed architecture helps the collaborative system to lock, download
and flow the documents. Therefore, collaborative applications can be more
simplified as a result of utilizing the DFWDAY document flow model because
they concentrate on their special businesses.

Presenting the necessary security: One of the most important features of the

DFWDAYV model is its ability to share the documents between different
authorized users according to their privileges. For example, an author
initiates a document and other privileged users (e.g. reviewers) can check and
may maintain that document. Moreover, those users should not violate their
privileges on the document and unprivileged users should not access it.

Utilizing document repository: The DFWDAV model aims to utilize a

document repository because such repository is the key of an archival system.
The document repository can store and retrieve the documents and their
metadata which includes the definition of the document flow, the user
privileges and the document status.

Defining _document flows: The DFWDAV model ought to provide an

automatic document flow between users according to the document

47

definitions. Therefore, privileged users should define the flow paths of
documents in a structured way. Thus, the model manipulates the definitions
of the document flows to automatically route the documents among the users.

6- Providing automatic notification: An automatic notification is one of the most

important features of the document collaborative systems. This feature
allows the users to know when they should handle a document. Also, it
notifies late users to push them to perform their work.

7- Using recent and open technologies: The DFWDAYV model should utilize

novel technologies. Moreover, it can be implemented without depending on a
specific commercial product. In other words, it can be developed using open
(i.e. noncommercial) products.

8- Supplying information about documents: Users need to know some

information about documents during their development and after their
production. This information includes current location and status in addition
to the flow definition of a document.

9- Supporting the Internet environment: The Internet becomes an essential

basis for contemporary applications since it provides a medium of
communication between distributed users across the world. Consequently,

the DFWDAY model should support the Internet in the best possible way.

In summary, it is required to provide a document flow model which can
represent an architecture of structured document flow systems that allow users on

different sites to manage the creation and the production of documents in a well-

48

structured manner. Thus, the above specifications aim to emphasize the document

flow functionality. So, several functions of document management systems are

excluded from the model scope. Most of these functions are listed previously in

subsection 1.1.3.

3.2 THE DFWDAV COMPONENTS

Despite the fact that the DFWDAYV model utilizes the -client/server

architecture, it takes advantage of the Internet environment since it uses the

WebDAYV protocol. The model consists of two subsystems; the first is the server

subsystem and the second is the client subsystem. Figure 3.2 shows the architecture

of the model which contains the following components:

¢ On the server subsystem:

O

O

WebDAY server.

Document repository.
Routing and reminding agent.
Flow repository.

Mail server.

¢ On the client subsystem:

O

O

O

WebDAY clients.
Document flow client.

Local temporary document repository.

49

o Non-WebDAYV document editors.

o Flow definer.

o Mail client.

WebDAYV clients
4——\\
} > WebDAY server
_//
Document flow client nE
— % P —

Document repository

Local temporary
document repository

Routing and reminding agent

Non-WebDAYV document editors i
e —
T Flow repository
Flow definer "
\ 4
Mail server
Mail client ——
Client Server

Figure 3.2: The Architecture for the DFWDAV

3.2.1 The Server Subsystem

As shown in Figure 3.2 the DFWDAV model is based mainly on the

WebDAYV protocol which is an extension of the HT'TP protocol. This protocol will be

50

explained in detail in Chapter 4 and Appendix A. Also, the figure shows that the
server subsystem includes a WebDAYV server attached to a document repository, a
special agent, a flow repository and a mail server.

The first component of the server is a WebDAY server. The WebDAYV server,
which is an extension of a web server, provides several functions to the DFWDAYV
model. These functions include:

e Uploading documents from the clients to the server and downloading them
from the server to the clients.

e Storing and retrieving the metadata (including the routing definitions) of
documents to and from the repository.

¢ Defining the users’ privileges for the documents.

¢ Locking and unlocking documents to prevent the lost-update problem.

¢ Providing the search capability for the document in the repository.

The second component of the server is the document repository which holds
the documents as well as their metadata. The metadata are divided to two parts:
static metadata and dynamic metadata. The static metadata includes the attributes
which are generated and modified by the model via the WebDAYV server such as the
author and the creation date. Moreover, the dynamic metadata contains also the
status of the flowing documents in addition to the historical document flow
information. In contrast, the dynamic metadata represents the document attributes
that are defined and can be updated by the users such as the document name and

the related document flow. According to the openness of the model, the repository

51

can be a database or a file system depending on the WebDAV server which is
responsible for reading from and writing to the document repository.

The third component of the server is the routing and reminding agent which
observes the user operations on the documents and their flow definitions. Then
according to the operations and the flow definitions, it takes the appropriate actions.
For example, if a user uploads a document to the server, which in turn should flow
to a second user, the agent sends an email to the second user using the email server.
This email asks him to download the document and to work with it. The functions of
the agent will be tackled in detail in the next section (i.e. Section 3.3).

The fourth component of the server is the flow repository which holds the
definitions of the flows. Each flow definition contains users who are involved in
creating some documents as well as several properties of each user. Subsection 3.4.2
explains these properties comprehensively.

The last component of the server is the mail server, which receives the
notifications from the routing and reminding agent via SMTP protocol. The server,
in turns, sends the emails to the users. These emails notify the users about their
turns in the document flows and remind them to download or upload the

documents.

3.2.2 The Client Subsystem

The client of the DFWDAV model includes the following components:

WebDAYV clients, the document flow client, a local temporary document repository,

52

non-WebDAYV document editors, the document flow definer and a mail client. The
main component in the client subsystem is the WebDAV clients which are
responsible for communicating with the WebDAYV server. In spite of the abundance
of WebDAYV clients, they vary in their functionalities. Some WebDAYV clients are
just an extension of a web client and other WebDAV clients provide wide
functionalities. For example, MS-Word is a WebDAY client while it is a well-known
word processor.

The second component of the client is the document flow client. The users use
it to download and upload documents between the document repository in the
server subsystem and the local document repositories. Also, this component
provides useful information to the users such as their responsibilities and
notifications.

The third component in the client subsystem is the local document repository
which can be used because of either two reasons. The primary reason is the non-
WebDAYV editors which can not edit documents directly on the server subsystem.
The other reason is the unreliable communication media between the server
subsystem and the client subsystem. In either case, users download documents
locally where they edit them. After completing the modifications, users upload
documents back to the document repository in the server subsystem.

The fourth component of the client is the non-WebDAYV document editors. As
shown earlier, some document editors (e.g. MS-Word) become WebDAY clients. But

to generalize the model, the non-WebDAV document editors are considered as a

53

separate component. This also helps to make the model applicable to any type of
documents and editors.

The fifth component of the client is the flow definer. This component plays a
very important part of the model because users can use it to define the flow types of
the documents between the users according to the organizational procedures and
policies. A detailed explanation of this component and its responsibilities will be
handled in the next section.

The final component of the client is the mail client which is part of the
mailing system. While the routing and reminding agent in the server subsystem

sends notifications to the server, mail clients deliver these notifications to the users.

3.3 THE FUNCTIONS OF DFWDAV

This section provides an overview of the major functions of the model. These
functions include creating the documents, updating the documents, defining the
document flows, defining and querying the document metadata, routing the

documents, notifying the users and archiving the documents.

3.3.1 Creating the Documents

Using the document editors, users can create new documents which are
usually initiated in the client subsystem. Then, their initiators upload them with

their initial metadata to the server. The initial metadata includes the definition of

54

the flow path. Moreover, some WebDAYV clients such as MS-Office can create the

documents directly in the server.

3.3.2 Updating the Documents

There are two ways to update documents. The first way is by using the
WebDAV clients in which users can edit documents directly on the server
subsystem. The other way is to update the documents locally after downloading
them from the server subsystem to the local document repositories in the client
subsystem. A user can only update a document if it is his turn in the definition of the
document flow. When he downloads it for updating, it will be locked on the server

until he finishes the modifications and uploads it back to the server.

3.3.3 Defining the Document Flows

It is possible to define the flow of a document by using the document flow
definer. The definition of the flow is sent to the server as one of the metadata (i.e. the
properties) of the document. On the server, the routing and reminding agent
analyzes the flow definition and then takes the appropriate actions. The flow
definition includes the users who are supposed to handle the document and their

work durations. More information about such definitions appears in Section 3.4.

55

3.3.4 Defining and Querying the Document Metadata

The metadata of a document is the data which represents the document
properties such as the creator of the document, its current location and the related
flow definition. The metadata can be divided to two parts. The first part includes
static properties which are automatically defined and only changed by the system.
An example of such properties is the date of the creation. The second part is the
dynamic properties which can be defined and changed by users if they have the
sufficient privileges. The access privileges of a document and its related flow can be

considered as dynamic properties.

3.3.5 Routing the Documents

One major role of the routing and reminding agent is to analyze the
definitions of the flow paths. Accordingly, the agent takes the appropriate actions
which include emailing the users to download the documents and skipping them if

they do not finish their work on the determined periods.

3.3.6 Notifying the Users

The second major role of the routing and reminding agent is the user
notifications which provide the users by suitable information. This information
includes the actions which they should do as well as the current status of documents.

For example, the agent notifies a user to download a document when it is his turn in

56

the flow path. Another example, it reminds a late user to upload the document back

to the server.

3.3.7 Archiving the Documents

When the server receives a document from a client, it sends the document to
the document repository where the document will be archived. In the same manner,
the metadata will be saved in the repository which can be either a database or a file
system. Following the clients’ requests, the server retrieves the documents and their

metadata from the repository and sends them back to the clients.

3.4 UTILIZING DFWDAV

This section aims to clarify the work method of the DFWDAYV model as well
as the functions of the model and the relationships between the model components.
It begins by browsing several possible applications that can employ the model. Then,
a full scenario of an authoring application is discussed in detail to show the

capability of the model.

3.4.1 Applications

As in the specification section, the DFWDAYV model can be considered as an

infrastructure of document collaborative applications. Although there are several

57

collaborative applications, the following applications can be considered as the most

common ones:

Collaborative authoring: Collaborative authoring application is the

activities involved in the production of a document by more than one
author. So, the process of this application leads to different publications
such as books, researches and articles. In a regular manner, several users
participate in the collaborative authoring chronologically. After the
authors write the documents, the reviewers revise them and then the
editors arrange them to produce the required publications.

Request handling: A request is a kind of a document in which several

users add some information. Therefore, usually there is no updating on
the requests. For example, an employee can initiate a vacation request.
This request passes through a specific path of users. Each user in the path
appends some information to the request until it reaches its final stage.

Distributing documents between the users: In several real applications,

the objective of the documents is to distribute some information to
particular users. For example, distributing instructions and
announcements is a daily process in our life. In this application, the

documents flow from the initiators to the readers.

58

3.4.2 Scenario

To clarify the relationship between the components of the model and how
they work, we will describe how the model can be utilized as an infrastructure for
an authoring application.

Usually, an authoring system is operated by several authors, reviewers, and
editors. Let us discuss how can these users produce a book using the DFWDAYV
model. First, the book should be divided into several parts according to the roles of
the users. Initially, each part can be considered as a separate document. This
consideration increases the system productivity, since it ensures the parallel work of
the users. Therefore, selecting a suitable document granularity helps the users to
work simultaneously. As a result, rather than assuming that the whole book as one
document, it is possible to divide it into several documents by selecting a very
delicate granularity.

For the purpose of this section, we will assume that the scenario will be
according to Table 3.1. Therefore, each chapter can be considered as the document
granularity since it is written by one author and then will be reviewed serially by

several reviewers. Thus, each author can initiate his own document (i.e. chapter).

Chapter | Author Reviewers
1 Ali Ahmed, Saad and Selah
2 Mohammed Saad, Ahmed and Ali
3 Selah Ahmed, Saad and Ali
4 Ahmed Saad, Ali and Selah

Table 3.1: Work Distribution of the Authoring Scenario.

59

Also, Table 3.1 provides the flow definition of each chapter. As it appears
above, several users will review each chapter. For example, Ahmed, Saad and Selah
should review chapter 1 consequently. Moreover, for each person in the flow path,
there are several properties. Table 3.2 shows an example of the flow properties of

the first chapter.

Property Ahmed | Saad Selah

Number of downloading notifications 3times | 4 times |4 times

Downloading notification period 1 day 2 day 2 day
Number of uploading notifications 3 times | 6 times | 6 times
Uploading notification period 1 day 2 day 2 day
Working period 7 days 5 days 3 days

Table 3.2: The Flow Properties of Chapter 1 in the Scenario.

There are five properties; the first two of them are related to the
downloading, the third and fourth are related to the uploading and the fifth
represents the working period, that is the period between downloading a document
and sending the first uploading notification. The properties of the downloading are
the number of downloading notifications and the downloading notification period.
The download notifications recommend the users to download the documents from
the server and to perform their work with the documents. The number of
downloading notifications of a user is the number of notifications which the agent

should send to the user to remind him to download the document. If the user does

60

not download the document before the end of the notifications, the agent will skip
him. The second property is the download notification period which represents the
period between two download notifications.

Similarly, there are two properties related to the uploading. These properties
are the number of uploading notifications and the uploading notification period. An
upload notification will be sent to the user if he does not upload the document after
the working period finishes. The upload notification requires him to end his work on
the document and to upload it back to the server. If the user does not upload the
document after the first notification, he will receive another notification after the
uploading notification period. When he does not upload the document and the
uploading notifications reach the number of uploading notifications, the agent will
skip him. Figure 3.3 shows the processes of analyzing the document flows by the
routing and reminding agent. Finally, after reviewing all chapters, the editor is
responsible to combine them together to produce one document which represents

the book.

START

Are there NO

more users in
the path?

YES

- Get the next user.
- Send him a notification.

YES Does the NO

Does the
user upload in
time?

YES

#—

user download
in time?

More
reminders to

NO

More
reminders to
upload?

NO

YES

- Send a reminder to

upload.

download?

YES

- Send a reminder to
download.

L |

61

Figure 3.3: Analyzing the Flows by the Routing and Reminding Agent.

62

3.5 THE FULFILLMENT OF THE SPECIFICATIONS

In this section I will verify the fulfillment of the model to the specifications
listed in section (3.1). These specifications were:

1. Managing the production of the documents: Several functions of the DFWDAYV

model cooperate to manage the production of the documents. These functions
start by document creation and end by document archiving. Moreover, these
functions include defining document flow paths, updating documents and
routing them.

2. Offering a document flow infrastructure: As shown in section (3.4), several types

of applications can utilize the DFWDAV model. Furthermore, the discussed
scenario shows how an authoring system can be built on the top of the DFWDAYV
model.

3. Presenting the necessary security: The DFWDAV model applies WebDAV

protocol. This protocol provides a strong security as will be shown in the next
chapter. The implementation shows different levels of security. For example, it
is possible to define the allowed operations on the document level for each user.
Also, only the current user in the flow path can update the document.

4. Utilizing document repository: As previously explained in the model

components, the document repository is an important component which holds

the documents and their properties. The server is responsible for sending and

63

receiving the documents to and from the server. Since the document repository is
a standalone component, it is possible to use a database or a file system as the
document repository. Consequently, the model provides a wide flexibility of

choosing a document repository.

. Defining document routing (i.e. flows): Defining the document flow paths is the

starting point of the document flows. The model allows the user to define the
flow paths when they have the sufficient privileges. The defined flow paths in
turn can be assigned to the documents. The agent analyzes the assigned flow

paths and accordingly takes the appropriate actions.

. Providing automatic notification: The agent is responsible for sending the

notifications. There are several types of notifications, for example a user of a
document flow receives the notification of his order. This notification informs
him about his turn in the document flow and requests him to download the
document. Another example is the download notifications which also request
him to download the document when he does not do so in time. In contrast, the
upload notifications request the user to upload the document when his working
period is over. The last type of notifications is to inform the users of canceling
them from the flow when they do not download or upload the documents in the

specified periods.

. Using recent and open technologies: The model utilizes WebDAYV which is a

recent emerging network protocol. This protocol hides the bulk of the
complexity of the application implementation. Moreover, the model is open since

it does not require a specific document type and since it can work with any

64

document type. Wide possible implementations of the model are available as will
be presented in Chapter 5. Some of the implementations rely completely on the

open (i.e. noncommercial) products.

. Supplying information about documents: The model provides several kinds of

information related to a document, for example it is possible to browse the flow
path of the document. Also, the model provides history information about the
document operations of the users and about the notifications sent. Moreover,
since the DFWDAYV model utilizes the WebDAYV protocol, it supports complex

types of document properties.

. Supporting the Internet environment: The model supports the Internet because

it is built on the top of the WebDAY protocol. The WebDAYV protocol is based on
the HTTP protocol, which is a well-known protocol in the Internet environment.
The implementation which is presented in Chapter 5 shows that the model

widely supports the Internet work.

CHAPTER 4

WEBDAYV AS AN INFRASTRUCTURE

The objective of this chapter is to show how WebDAYV, which is introduced in
Chapter 1, can implement the infrastructure of the collaborative applications such
as the DFWDAY. First, this chapter provides the requirements of Web-based
collaborative systems and highlights the problems faced by such systems using
HTTP protocol. Second, the objectives and the workgroups of the WebDAYV are

listed. Finally, the WebDAYV functions and methods are briefly explained.

4.1 THE REQUISITES OF DISTRIBUTED WEB COOPERATIVE

APPLICATIONS

The Web-enabled distributed collaborative systems involve diverse
requisites. Those requisites involve locking, security, properties, reservations,
versioning and collections (48).

- Locking mechanisms to prevent overwrite conflicts:
Locking mechanisms prevent the lost update problem. In other words,

they prevent more than one user from modifying a document simultaneously

65

66

and ensure that only one person may modify it. A lock can be on multiple
documents but it should occur at the same action across the multiple
documents (i.e. the locking operation must be atomic throughout these
documents). This is vital to prohibit a collision between several people trying
to establish locks on the same set of documents. Removing a lock is an
obvious operation. Other locking operations include determining the active

locks and finding out who holds those locks.

- Security:

Several security aspects are compulsory obligated for distributed
document management systems. Those include authorization, access rights
and authentication. A document must be accessed by authorized people only.
If a person has no authorization on a specific document, he should not be
able to access it. Each authorized person should have defined access
privileges. Access privileges can be browsing, editing, and copying, etc. It is
possible to restrict modification of a document to a specific person.
Authentication ensures the identity of the users, the integrity of the messages

and the privacy of communication.

- Document Properties:
Document properties provide descriptive information about
documents. They include bibliographic information such as author, title,

publisher, and subject, etc. These properties can be used for supporting

67

searches on property values and enforcing copyrights. The properties
operations include creating, modifying, reading and deleting arbitrary

document properties.

- Reservations:

A reservation is a declaration that one aims to edit a resource. In the
server of a given resource, a person can register an intent to the resource, so
that other users can discover who intends to edit the resource. Reservation
operations include determining the active reservations of a given resource,

finding who currently holds reservations and releasing a reservation.

- Versioning

With versioning, the history and the evolution of a document can be
provided accurately. The versioning operations include many tasks such as:
reserve existing version, lock existing version, retrieve existing version,
request or suggest identifier for new version, write new version, release lock,
release reservation. Versioning systems combine reservation, locking, and
retrieval into an atomic checkout function or some subset of these tasks. They
combine writing, releasing the lock, and releasing the reservation into an
atomic checkin function or some subset of these tasks.

Each version typically stands in a '"derived from' relationship to its
antecessor(s). It is possible to produce several different versions out of a

single version which is called branching. Also, it is possible to produce a

68

single version from several versions that is merging. Consequently, the
collection of related versions forms a directed acyclic graph which is called a
"version graph''. Each node of this graph is a '"version'. The edges of the
graph denote the 'derived from' relationships. Version graph operations
include referring to a version graph, referring to a specific member of a
version graph, determining the version graph of a given document if it is
available, navigating a version graph from a given node (document) to the

related members, and providing information about a version graph.

- Collections:
A collection is a resource that contains other resources. Collections
are useful for arranging documents. The collection operations include

creating, copying, deleting and reading the content of a collection.

4.2 THE PROBLEMS FACED BY WEB COLLABORATIVE

SYSTEMS USING HTTP PROTOCOL

While the current functionality of the Hypertext Transfer Protocol
(HTTP/1.1) enables the editing of the Web content at a remote location in addition
to remote browsing of content, it contains a limited support for remote collaborative
applications. Consequently, HTTP does not provide sufficient functionality for

collaborative Web applications. Distributed Web systems that use HTTP suffer

69

from potential problems (25), (48). Some of those problems are listed in the

following:

HTTP provides limited support for preventing a wuser from
overwriting other users’ modifications. In other words, using HTTP
by distributed Web applications can lead to the '"lost update
problem'" or the "overwrite problem''. Therefore, it is inadequate to
support efficient remote editing free of overwriting conflicts.

Using HTTP, there is no way to discover whether someone else is
currently making modifications to a certain document.

HTTP headers include the parameter information of methods.
Consequently, the length of parameters is bounded and so there is no
direct way to pass variable length parameters.

HTTP does not support a sufficient level of security.

The HTTP protocol contains functionality which enables the editing
of Web content at a remote location, without direct access to the

storage media via an operating system.

As a result of the previous mentioned points, the HTML applications and

tools have shown inability to meet the needs of their users while using the facilities of

the HTTP protocol. So, several Web collaborative systems try to overcome those

problems by adding extensions to the HTTP protocol. But since those extensions

were developed separately, they were not interoperable. Accordingly, the need to

provide a standard extension is an obvious matter.

70

4.3 WEBDAV OBJECTIVE AND GROUPS

The objective of the main WebDAYV group is to define the WebDAYV protocol,
which provides the following functionality:

¢ Locking: lock, lock status, unlock.

¢ Name space manipulation: copy, move/rename, and resource redirection.

¢ Containers: creation, access, modification, and container-specific semantics.

e Attributes: creation, access, modification, query and naming.

e Notification of intent to edit: reserve, reservation status and release

reservation.

¢ Use of existing authentication schemes.

® Access control.

eVersioning: checkin/checkout, history graph, differencing, automatic

merging, and accessing resource versions.

While the WebDAY group handles the generic issues of the WebDAYV as well
as the base level of the WebDAYV standards, several related groups and sub-groups
are created to investigate specific problems and sustain the original group (49), (50).
Those groups include:

*DASL (DAYV Searching and Locating): This working group is functioning on

searching facilities for DAYV repositories.

eDelta-V (Web Versioning and Configuration Management): WebDAV was

not able to finish versioning, so Delta-V is picking up where WebDAYV group

71

is left off. Thus, Delta-V group is responsible to extend the Web with

versioning and configuration management support.

e Access Control: This is a sub-working group of WebDAYV, concerned with

developing a remote access control protocol.

These groups produced massive documentation related to their problems.

Consequently, we will select a subset of this documentation. This subset provides the

basic functionality required by the DFWDAV. Table 4.1 lists the selected

documentation.

This documentation extends HTTP/1.1 methods and headers. In addition, it

specifies how to use the new extensions, how to format request and response bodies

and how existing HTTP behavior may change.

Workgroup Document Current Date
Status

WebDAV HTTP Extensions for Distributed | RFC2518 | Feb. 1999
Authoring (24)

Delta-V Versioning Extensions to WebDAYV | RFC3253 | Mar. 2002
(5D

Access Control | WebDAV Access Control Protocol | RFC3744 | May 2004
(32)

DASL WebDAYV Search (53) Internet Feb. 2004

Draft

Table 4.1: WebDAV Groups and Their Documents.

72

The next section summarizes most of the methods of the previous
documentation which is needed to provide the DFWDAY. In this section, the full
structures of the requests and responses are ignored. Meanwhile Appendix A
provides several examples of them.

For more information about WebDAY, one should consult www.webdav.org

site. It was created in February 1999 to provide the WebDAV community with a
central location for "All Things WebDAYV." The site provides pointers to many

types of information and materials, along with pointers to WebDAYV software (54).

4.4 WEBDAV METHODS

The WebDAY protocol overcomes the HT'TP protocol by means of providing
assorted methods which support the collaborative mechanisms. This section is
dedicated to most of the WebDAV methods divided according to the WebDAV

documents as shown in Table 4.1.

4.4.1 HTTP Extensions for Distributed Authoring

There are several essential WebDAYV protocol methods that allow distributed
clients to perform remote web content authoring operations (24). This subsection
summarizes the methods of the properties, collections, namespace operations and

locks.

Properties:

73

A property is a name/value pair that contains descriptive information about

any resource. There are two types of properties: live and dead. A live property is a

property whose semantics and syntax are enforced by the server. A dead property is

a property whose semantics and syntax are not enforced by the server. Since the

types of documents that people use vary, the list of possible property types becomes

infinite. XML is the type of extensible communication vehicle which is required by

WebDAYV. XML properties provide storage for arbitrary metadata, such as a list of

authors on Web resources. These properties can be efficiently set, deleted, and

retrieved using the DAV protocol. Table 4.2 presents the methods of the properties.

Method Description Input

PropFind Retrieves properties defined on a Resource or | Resource (URI)
a Collection with its internal members | or Collection
(depend on Depth). Depth (0,1 or
It is possible to request particular property | infinity)
values, all property values, or a list of the | XML element
names of the resource's properties by setting
an XML element.

PropPatch Sets and/or removes properties on a resources | Resource (URI)

or a collection

or Collection

XML element

Table 4.2: The Methods of the Properties

74

Collections and Namespace Operations:

A collection is a resource that contains a set of URIs. WebDAYV introduces
the notion of the collection (analogous to a file system folder), which can contain
resources. It is possible to create and list the collections like the directories in the file
systems. Namespace management provides the ability to copy and move resources,
and to receive a listing of resources at a particular hierarchy level (like a directory
listing in a file system). Since resources may need to be copied or moved as a Web
site evolves, DAV supports copy and move operations. Table 4.3 shows that
WebDAYV includes the ability to create, move, copy, and delete collections, as well as

the ability to do the same things to the resources or files within the collection.

Locks:

Using a lock, an authoring client can provide a reasonable guarantee that
another principal will not modify a resource while it is being edited. In this way, a
client can prevent the ''lost update'' problem in which modifications are lost as first
one author, and then another writes their changes without merging the other
author's changes. Therefore, Lock ensures the ability to keep more than one person
away from working on a document at the same time.

A lock token is returned by every successful LOCK operation. A lock token

is a type of state token, represented as a URI, which identifies a particular lock.

75

Method

Description

Input

MKCOL

Create a new collection.

URI

DELETE

DELETE for Collections:

Removes the collection specified in the Request-
URI and all resources identified by its internal
member URIs.

DELETE for Non-Collection Resources:

Removes the Request-URI from all collections

containing that URI as a member.

URI

GET

Retrieves whatever information is identified by

the Request-URI in the form of an entity.

URI

POST

The semantics of POST are unmodified.

URI, Entity

PUT

Stores the enclosed entity under the supplied
Request-URI.

URI

Entity

COPY

Creates a duplicate of the source resource in the
destination resource.

If a resource exists at the destination and the
Overwrite header is ""T'' then prior to performing
the copy the server MUST perform a DELETE
with ''Depth:

infinity"" on the destination

resource. If the Overwrite header is set to "F"

then the operation will fail.

SourceURI
DestinatioURI
Overwrite(T/F)
Depth (0,1 or

infinity)

MOVE

The MOVE operation on a resource is the logical
equivalent of a copy (COPY), followed by a
consistent maintenance processing, followed by a
delete of the source, where all three actions are

performed atomically.

SourceURI
DestinatioURI

Overwrite(T/F)

Table 4.3: Collections and Namespace Methods

76

To achieve robust Internet-scale collaboration, where network connections

may be disconnected arbitrarily, and for scalability, since each open connection

consumes server resources, the duration of DAV locks are independent of any

individual network connection. Table 4.4 summarizes the lock methods.

Method

Description

Input

LOCK

Takes out a lock and returns a lock taken. A
lock on a resource must also lock the
properties of the resources.

If the Depth header is set to infinity then the
resource specified in the Request-URI along
with all its internal members in its hierarchy

are to be locked.

URI
Timeout
Depth (0,1

infinity)

or

UNLOCK

Removes the lock identified by the lock token

from the Request-URI.

URI

lock token

Table 4.4: Locking Methods

4.4.2 Versioning Extensions to WebDAV

Version management provides the ability to store important revisions of a

document for later retrieval. Version management can also support collaboration by

allowing two or more authors to work on the same document in parallel tracks.

77

WebDAYV Versioning defines two levels of versioning functionality: basic
versioning and advanced versioning (51). Basic versioning provides versioning of
largely independent resources. It allows authors to concurrently create, label, and
access distinct revisions of a resource, and provides automatic versioning for
versioning-unaware clients. Advanced versioning provides more sophisticated
capabilities such as logical change tracking, workspace management, and versioning
the URL namespace. Table 4.5 lists only the basic versioning methods since they

provide what the DFWDAY needs.

4.4.3 WebDAV Access Control Protocol

Several requests provide the ability to set and clear access control lists
(ACLs) which are associated with resources (52). An ACL contains a set of "access
control entries'" (ACEs), where each ACE specifies a principal and a set of rights
that are either granted or denied to that principal. A principal can be a user, a client
software, a server or a group. This functionality is crucial for allowing collaborators
to remotely add and remove people from the list of collaborators on a single

resource which is shown in Table 4.6.

4.4.4 WebDAV Search

It is required to search for DAYV resources based upon a set of client-supplied

criteria. This will minimize the complexity of clients so as to facilitate widespread

78

deployment of applications which are capable of utilizing the WebDAYV search

mechanisms (53). The WebDAYV Search method is described in Table 4.7.

Method Description Input
VERSION- Creates a version-controlled resource at the | URL
CONTROL request-URL

CHECKOUT A CHECKOUT request can be applied to a | URL
checked-in version-controlled resource to
allow modifications to the content and dead

properties of that version-controlled resource.

CHECKIN A CHECKIN request can be applied to a | URL
checked-out version-controlled resource to
produce a new version whose content and
dead properties are copied from the checked-

out resource.

UNCHECKOUT | An UNCHECKOUT request can be applied | URL
to a checked-out version-controlled resource
to cancel the CHECKOUT and restore the
pre-CHECKOUT state of the version-

controlled resource.

REPORT A REPORT request is an extensible | URL
mechanism for obtaining information about | Report type

resources.

Table 4.5: Versioning Methods

79

Method

Description

Input

ACL

Provides a mechanism to set ACL
information. Its request body is used to define
alternatives to the ACL of the resource

identified by the request-URI.

URI

ACLinformation

Table 4.6: Access Control Methods

Method

Description

Input

SEARCH

Initiate a server-side search. It does not define
the semantics of the query. In contrast, the

type of the query defines the semantics.

URI

Query

Table 4.7: Search Method

The bulk of the WebDAV Search workgroup work is related to query

grammar. One can express the basic usage of the WebDAYV search in the following

steps:

¢ The client constructs a query using the DAV:basicsearch grammar.

¢ The client invokes the SEARCH method on a resource that will perform the

search (the search arbiter) and includes a text/xml request entity that

contains the query.

¢ The search arbiter performs the query.

80

e The search arbiter sends the results of the query back to the client in the
response. The server sends a text/xml entity that matches the PROPFIND

response.

CHAPTER 5

IMPLEMENTATION

This chapter provides an authoring system implementation based on the
DFWDAY model. At the outset, it shows that the computing environment provides
widespread support to the WebDAYV protocol which represents the basis of the
model. Moreover, several of the famous WebDAYV software products, which are
used in the implementation, are browsed. Next, the chapter contains the

implementation of a collaborative authoring system based on the DFWDAY model.

5.1 WEBDAV PRODUCTS

While WebDAV protocol is still evolving, it is widely supported by the
computing environment. Several software products provide most of the WebDAV
methods’ functionality. Moreover, several Internet sites act as WebDAYV servers and
provide WebDAV account to the public (54). In addition, several of WebDAV
software products are open source software and some of them provide API

(Application Program Interface) for WebDAYV programmers.

81

82

WebDAV software products can be divided to WebDAV servers and
WebDAYV clients. The WebDAYV servers include Apache HTTP Server, Jigsaw,
Slide, Microsoft Exchange Server, Microsoft Internet Information Services (IIS),
Oracle 9i Enterprise Edition, Oracle Internet File System (IFS), SAP Portals
Enterprise Portal Server, Tamino WebDAV Server and Xythos WebFile Server.
Some of these servers are available to the public on the Internet as either test sites or
document repositories.

The Apache HTTP Server is a famous web server which is becoming the
most widespread web server in the world (55). The Apache Group is responsible
about managing and developing this server. The mod_dav module is the Apache
module which provides the WebDAYV functions. On the other hand, Jigsaw is also a
web server but it is developed by Java language and is sponsored by W>C (56). It
provides several interesting features including the support of WebDAV protocol.
Also, Slide is a content management project based on WebDAYV using the Java
language (57). While it is still under construction, it is expected to consist of several
modules such as a content management system, a WebDAYV client library, a
WebDAV command line client and a WebDAYV server. Moreover, it provides Java
API which can be utilized by programmers to developed WebDAYV applications.

Several WebDAY servers can be tested directly on the Internet because they
are installed on test sites which can provide free accounts for anybody and can be
used for testing WebDAYV protocol and WebDAYV clients. For example, SAP Portals

Enterprise Portal Server, Tamino WebDAYV Server and Xythos WebFile Server are

83

available on public sites which support WebDAYV protocol as will be shown in the
next section.

On the other hand, the WebDAYV clients are increasing rapidly. They include
DAV Explorer, Microsoft Web Folders, Microsoft Office, Microsoft Internet
Explore, Tamino WebDAYV Basic Client, XML Spy, jEdit, SkunkDAV and IBM
WebSphere DAYV for Java (DAV4J). As an example of WebDAYV clients, the DAV
Explorer is a WebDAYV client developed by Java (58). The most fantastic feature of
DAYV Explorer is its graphical user interface which is similar to the Explorer
program in the Windows operating system. In the next section, more information
about other clients will be given.

Furthermore plenty of open source software products support the WebDAV
protocol. Open source software products are software products that are not
developed for commercial benefits and whose source is available for anybody.
Apache HTTP Server, Jigsaw, Slide and DAV Explorer are some examples of the
open source software products that are WebDAYV products.

In addition, some of WebDAV products provide WebDAYV libraries as
Application Program Interface (API) which can be used by the programmers to
develop WebDAYV applications. Some examples of such products are Slide,

SkunkDAYV and DAVA4J.

84
5.2 IMPLEMENTATION OF A COLLABORATIVE AUTHORING

SYSTEM

In this section, I present a collaborative authoring system implementation as
a proof of the concept. This authoring system is based upon the DFWDAYV model
which is explained in depth previously in Chapter 3. The system enables distributed
users to produce publications in a smooth and efficient way. The objectives of this
implementation include clarifying duties of authors and guaranteeing standardized
works.

As the model is based upon the client/server paradigm, the system consists of
two main parts as shown in Figure 5.1. The first part is the server which contains

the WebDAYV server, the document repository, the routing and reminding agent, the

WebDAYV clients

Document flow client WebDAV server

Local temporary

document repository Document repository

Non-WebDAV Routing & reminding
document editors agent
Flow definer Flow repository
Mail client Mail server
Client Side Server Side
WebDAV Protocol

Figure 5.1: Implementation Components

85

flow repository, and the mail server. The second part is the client which consists of
WebDAYV clients, the document flow client, the local temporary document
repository, non-WebDAV document editors, the flow definer and the mail client.

The following sections describe the system parts in detail.

5.3 THE SERVER SUBSYSTEM

The server subsystem is the first part of the system. This subsystem includes
the WebDAYV server, the document repository, the routing and reminding agent, the

flow repository, and the mail server.

5.3.1 The WebDAV Server

The WebDAYV server is responsible to get the requests from WebDAYV clients
to handle them. According to the type of the requests, the server takes the
appropriate actions. Most of the requests are illustrated comprehensively in
Appendix A. For example, if a client sends a lock request for a specific document,
the server checks the user privileges on that document as well as its current state
and if there are no obstacles it locks the document for the user. Also, the WebDAYV
server handles the document repository which holds the documents.

In the implementation, I tested several WebDAYV servers including Apache
HTTP Server, Tamino WebDAYV Server, SAP Portals Enterprise Portal Server,
Xythos WebFile Server and Oracle 9i Enterprise Edition. There are several reasons

for testing several servers, such as showing the strength and the capability of the

86

model. Another reason is the ability to test as most as possible of WebDAYV methods
because some servers do not implement some WebDAV methods yet. For example,
Apache HTTP Server implements only most of the core methods of the WebDAV
protocol whereas Tamino WebDAYV Server and Xythos WebFile Server implement
some of the versioning and access controlling methods. Concisely, the description of
each server, the way of using it as well as its demonstrated characteristics will be
elaborated in the following paragraphs.
e Apache HTTP Server
I locally installed and configured the Apache HTTP Server, which is
an open-source product. The local installment of the server allows it to
communicate with the routing and reminding agent. Unfortunately, the
current last version of Apache HTTP Server implements only the core
WebDAV methods although the next versions of it may implement other
methods. After installation, the Apache HTTP Server needs some
configuration to support WebDAYV. The minimal configuration includes the
following steps:
1- Enabling the WebDAY functionality by loading its module by adding

the next lines to the configuration file:

LoadModule dav_module modules/mod _dav.so

LoadModule dav_fs module modules/mod_dav_fs.so
2- Specifying a web-server writable filename as the WebDAV lock

database by adding the following to the configuration file:

DavLockDB {FILENAME}

87

3- Adding the DAYV directive in the WebDAY repository container in the

configuration file to enable the WebDAYV methods, for example:

Alias /repository/ {PATHNAME}
<Directory {PATHNAME}>
DAV On

</Directory>

4- Restarting the Apache HTTP Server.
After configuring and restarting the server, it is possible to check the result
in the Apache Service Monitor screen. As shown in the bottom of the screen
in Figure 5.2, the server started with WebDAV support. The WebDAV

repository on Apache HTTP Server becomes http://localhost/repository/.

Apache Service Monitor = IDIE

Service Status

ol &pache?

Stop |
Restart |
j Services |
""""" =

The ApacheZ service is restarting. .- ~<
The Apaches service has restarted. Ve Loading AN Connect

i WebDAV)
-7 Module

-~ - 7
- -=7N P Exi
T - ~o _- - it
LT Se—e - I =
et

Figure 5.2: Apache Service Monitor Screen after
Loading WebDAYV Module

[MEtommnett

{hpachez.0.44 (Win32) Davz"

88

¢ Tamino WebDAYV Server

Since Apache HTTP does not yet provide versioning support, I tested
several other servers directly on the Internet because they are commercial
products and they have copyrights. But working on the Internet limits the
connection with the agent. For example, Tamino WebDAYV Server is one of
these servers which are installed in public sites. To test the Tamino Server, 1
requested a testing account. Then, I received a WebDAYV URL and a series of
user and password combinations and I became a registered user. My URL

was http://tamino.demozone.softwareag.com/taminowebdavserver/gemini/.

This URL can be accessed using web browsers with limited access as will be

discussed in WebDAYV client subsection and as appears in Figure 5.3.

; Directory listing for /gemini - Microsoft Internet Explorer 2 |EI|1|
File Edit ‘iew Favorites Tools Help |-
GBack ~ = - @) (2] 4| @search GaFavortes GhMeda (4 | By S B - 5 9
Address l@ http: ffkamino, demozone, softwareag, comytaminowebdavserver fgeminif LI 6>G0 | Links **

=
Directory listing
for /gemini
UpTo/
Filename Size Last Modified
Tue, 11 Mar 2003
INTERNAL/ !
Ll 14:16:01 GMT
: Thu, 13 Mar 2003
PictureDemo/ ’
PicturebDemo 08:54:34 GMT
I b
|&] Done [[|4 miemet 4

Figure 5.3: Accessing Tamino WebDAYV Server From a Web Browser

&9

e SAP Portals Enterprise Portal Server
SAP Portals Enterprise Portal Server is another server which
implements WebDAYV versioning methods which I tested on the Internet. The
address of my repository on SAP Portals Enterprise Portal Server page is

http://greenbytes.de:81/wem/docs/cm/u39/. Several functions of this server,

such as versioning and locking, can be accomplished by using web browsers

as presented in Figure 5.4 and in the WebDAYV client section.

=alx]
File Edit Wiew Favortes Tools Help |
GBack » = ~ @[] 4| @search [EFaverites Ehvedia (4| By S B - 5] (9
Address |ié:] http:/{areenbytes. de:a 1 fwemidocsfcrmfu39 ThesisDoc) LI @G ILinks 2
7
| . Locked Version
= Hame Size Type Date (UTC) Created by 5
ThesisDoc by info
{one folder
2003-03-09 up)
AEEE [y versiont 20030301 Savesd,
180955 Huszam
docd doc 19456 applicationinsword 2003-03-00 Sawadi; B g
16:29:40 Huszam ﬁ versions J
.
@] T —

Figure 5.4: Accessing SAP Portals from a Web Browser

¢ Xythos WebFile Server
Xythos WebFile Server is a WebDAYV server which I tested on the
Internet. Fortunately, the Xythos WebFile Server on the Internet provides a
fruitful site. The name of this site is Sharemation which can provide its full

functionality through a web browser with a friendly graphical user interface.

90

Figure 5.5 shows the Internet Explorer Browser accessing the URL of my

account on this site which is http://www.sharemation.com/wellxml/.

3 http:/ /www.sharemation.com;xythoswis /webui/wellzml - Microsoft;:l'nt'étnéék = | Ellll
File Edit Wiew Favorites Tools Help ﬁ
GBack ~ = - (D) at ‘ Qhsearch [GelFavorites GlMedia &4 | - S5 B
Address I@ htkp: S, sharemation, comxythoswk s fuebuifwellml j @Go | Lirks **
(Sharemation 3 Powered by Xythos

neio wellxml (Log ® - @ | & cF B X B o

OUt) Up %o To \ifeb Folder | Upload HNew Directory | Mowe Copy Delete Rename Email

EI\@ fwellxml 1] ..', ctory. / J E @Refresh Directory Llstmg
£Add bookmark... Hame _ Modied
MySearches 10 Opdf @ @ = 3)"9;"'03 11:15: 06§S-MI-19K

No Saved Searches

Qsearch for files... | m@docl.doc @ & M SO0 BM

 Utilities I AST
Preferences Choose all Clear all Total size: 38K (Quota: Mone, Available: 4.94M)
Contacts
Empty Trash
® Help

4 |
& ’_l_l_ # Internet v

Figure 5.5: Accessing Sharemation Site by the Internet Explorer

¢ Oracle9i Enterprise Edition
Oracle9i Database Enterprise Edition provides a novel feature, called
Oracle XML DB, that can also be accessed using WebDAYV. Fortunately,
Oracle XML DB represents a native XML database within Oracle9i.
Therefore, it can be used as the XML document repository in the
implemented system. There are several ways to access the XML DB such as
HTTP and FTP protocols. Moreover, since it is a WebDAYV repository, it can

be accessed via Web Folders.

91

5.3.2 The Document Repository

The document repository depends fully on the WebDAYV server. In other
words, usually WebDAV servers determine the document storage type. For
example, Apache HTTP Server utilizes the file system. In contrast, Oracle9i
Database Enterprise Edition stores the document inside the database. In summary,
it is possible to employ either file system of database as a document repository but

according to the WebDAY server.

5.3.3 The Routing And Reminding Agent

The routing and reminding agent, developed by the researcher, represents
the heart or the engine of the system. The agent communicates with WebDAV
servers and manages the information of the document flows. According to this
information and to the actions of the users, the agent takes the appropriate
processes. Figure 5.6 illustrates the agent duties which are executed periodically.
Also, it shows that the agent checks all flow progresses and according to their
statuses, it takes the appropriate actions. The statuses of the flow progresses can be

Null, D, W, or U.

92
START

GetFlowProgress
Operation(Checking)

Operation (The End)
DeleteFlowProgress

GetNextUserInFlow
HandleDownload
(FALSE)
HandlWorking
HandleUpload
“1 (FALSE)

Error Message
Unknown Status

Yes More Flow

Progress

Figure 5.6: The Agent Processing Flowchart

93

The first status is Null which means that the corresponding flowed document
starts the flow or that the current user uploads it. In either cases, the agent calls
GetNextUserInFlow procedure shown in Figure 5.7. This procedure, in turn, gets
the flow information of the next candidate in the flow and notifies him to download

the document.

START

Yes More No
users in
l flow?

- Get next user in the flow - EndOfFlow = True
- FlowProgressStatus = D
-Operation(GetNextUserInFlow)
-Handle_DownLoad(True)

Figure 5.7: GetNextUserInFlow Flowchart

The second status is D in which the flowed document waits for the current
user downloading. In this case, the agent calls HandleDownload procedure with

false input variable to notify the user when necessary. The false parameter means

94

that this download notification is not the first one for that user. This procedure is

illustrated in Figure 5.8.

START

Yes IsFirstNotify or No
Period_Consumption
W
YCS NoDownload NO
Notifications>

- Notify (download) - Notify (canceled download)
- NoDownload Notifications = - GetNextUserInFlow
NoDownloadNotifications - 1
- LastTime = NOW

Figure 5.8 : Handle Download Flowchart

In the same manner, the third document flow progress status (i.e. W status)
denotes that the current user downloaded the document and he does not consume
his working period. For this status, the agent calls HandleWorking procedure which
is shown in Figure 5.9.

Finally, the forth status is U which is similar to status D except that status U
is related to the uploading operations while status D is related to downloading
operations. For the U status, the agent calls HandleUpload procedure which is

shown by the flowchart appears in Figure 5.10.

Yes

START

'

- FlowProgressStatus = U

- Handle_Upload(True)

- Operation(change to upload)

Period_Consumption

(working period)

END

Figure 5.9: Handle Working Flowchart

Yes

'

- Notity (upload)

- NoUpload Notifications =
NoUpload Notifications - 1
- LastTime = NOW

START

Yes IsFirstNotify or

NoUpload
Notification
s>0

95

Period_Consumption

(upload period),

!

- Notify (canceled upload)
- GetNextUserInFlow

Figure 5.10: Handle Upload Flowchart

96

Moreover, the HandleDownload, HandleWorking and HandleUpload
procedures utilize the Period_Consumption function which returns true if the
difference between the meantime and last operation is more than the specified

period. The flowchart of this function appears in Figure 5.11.

START

Yes NOW -

LastTime
l > Period l

Return TRUE Return False

Figure 5.11: Period Consumption Flowchart

Figure 5.12 represents the snapshot of the agent screen. It is used to trace the
flow progresses.

The state diagram in Figure 5.13 shows the states of the flow progress.
Initially, when a document starts a flow, it enters into NULL state. In this state the
agent check if there are any more users in the flow. If there are no more users, the
flow is completed. Otherwise, the agent sends a download notification to the next

user and transfer the document to D state.

97

H Document Flow Agent -[] ~1&x]
Users l Documents Flows Flow Status
Gurrent DOWHLOAD UPLOAD goosng
Order Document Hame Username Status Last Operation Time #Notify Pariod #Notify Period Period
1 boc [Eussan o 17-DEC-Z003 21:13:12 |2 .07 El .05 .05
1 FIPST DOCUMENT [T D 17-DEC-2003 21:13:12 |1 24 3 24 100
[
[

[Recard: 143 l<DSC> KDEG> | |

Figure 5.12: Tracing Flow Progresses Screen

State D means that the agent is waiting the user to download the document.
There are three possible inputs to this state. As shown in the figure, if the user does
not download the document in the appropriate time and he has more download
notifications, the document stay in state D and the agent sends a notification to the
user after decreasing his download neotifications. The second input handles the case
of the user when he does not download the document after consumption his
notifications. With this input the agent notifies the user by his cancellation and
transfers the document to state NULL to consider the next user. The final input

represents the user when he downloads the document in which the state becomes W.

98

W state stands for the document after the user downloads it and before the
working period is over. The state is changed either because the user uploads the
document or because his working period is over. In the former case, the user
finalizes his work so the document returns back to the NULL state. The latter case
transfers the document to state U and sends the user the first upload notification.

The Final state is U which means that the user should complete his work and
upload the document back to the server. This state is similar to D state except that U

state takes care of uploading process.

not download &
more download
notifications

download

user exists
not download &
no more downloa
notifications

no user

start

the working period
is over

not upload &
more upload
notifications

not upload & no
more upload
notifications

Figure 5.13 : The State Diagram of the Flow Progress

99

5.3.4 The Flow Repository

In this implementation, the flow information is represented and stored in a
relational database. This subsection contains the description of the flow entities,
relationship types and the attributes of the entities which described in Table 5.1,

Table 5.2 and Table 5.3 respectively.

Entity Name Description

User A user is somebody who utilizes the system and associates in
creating and modifying documents.

Document A document is flowed between users according to a document
flow definition.

Flow A flow represents the definition of a possible document
routing between several users.

Flow Detail Each flow detail represents a flow definition for a user.

Flow Progress A flow progress is updated periodically by the agent to

provide the latest information about a specific document flow.

Operation Operation are actions on documents performed either by the
agent or by the users.

Notification Notifications are sent by the agent to the users in order to
encouraging them either to perform something or to provide
them by suitable information.

Table 5.1 : System Entities.
Entity Relationship | Entity Name | Cardinality | Participation
Name type
User Receives Notification 1:M P:T
Associates Operation 1:M P:T
Joins FlowDetail 1:M P:T
Document Relates to Notification 1:M P:T
Associates Operation 1:M P:T
Flows using Flow M:1 P:P
Traced by FlowProgress 1:1 P:T
Flow Includes FlowDetail 1:M P:P
FlowProgress | Reaches FlowDetail M:1 P:P

Table 5.2 : System Relationship Types.

100

Entity Name Attribute Description
User Serial Unique user identifier.
ID System logon name for user.
Name The user name.
Password The system password for user.
Email The electronic mail for user.
Document Serial Uniquely identifies document.
Name Name of document.
Path The repository path of document.
Flow Serial Unique flow identifier.
Name Flow name.
FlowDetail FlowSerial The serial of the related flow.
Order Placing the flow detail within the rest
flow details of the same flow.
UserSerial The serial of the user in the flow detail
No_Download_Notify | Number of downloading notifications.
Download_Period The period between two download
notifications.
No_Upload_Notify Number of uploading notifications.
Upload_Period The period between two upload
notifications.
Working_Period The period between user downloading
and first uploading notification.
FlowProgress | DocSerial The serial of the related document.
FlowDetailOrder The current flow detail order in the
flow.
Status Status of flow progress which is either
Null, D, W or U.
LastTime The time of the last operation or

No_Download_Notify
Download_Period
No_Upload_Notify
Upload_Period

Working_Period

notification.

Number of remaining downloading
notifications.

The period between two download
notifications.

Number of remaining uploading
notifications.

The period between two upload
notifications.

The period between user downloading
and first uploading notification.

Table 5.3: The Attributes of the Entities (continued overleaf).

101

Entity Name Attribute Description
Operation Serial Uniquely identifies operation.
DocSerial The related document serial.
UserSerial The related user serial.
Time Operation time.
Type Operation type which is either
Checking, GetNextUserInFlow,
ChangeToUpload, EndOfFLow,
UserDownloading or UserUploading.
Notification | Serial Unique notification identifier.
DocSerial The related document serial.
UserSerial The related user serial.
Time Notification time.
Type Notification type which is either
Download, CanceledDownload,
Upload or CanceledUpload.

Table 5.3 continuation: The Attributes of the Entities.

Moreover, Figure 5.14 shows the entity-relationship (ER) diagram of the

implemented system.

5.3.5 The Mail Server

The mail server is responsible to receive the automatic notification messages
from the routing and reminding agent via the simple mail transfer protocol
(SMTP). These messages are the download and upload notifications. The download
notifications ask the users to download the documents from the server and to
perform their work with the documents. On the contrary, the upload notifications
require the users to end their work on the documents and to upload them back to
the server. Also, the mail server forwards the messages to the mail clients as will be

described in the mail client subsection.

102

User Joins

Receives

M M

Notification Operation

M M

Relates
to

M Flows 1
Document L Flow
using
1

M
FlowProgress Reaches FlowDetail
M 1

Figure 5.14 : The ER Diagram of the Document Flow Implementation

5.4 THE CLIENT SUBSYSTEM

The client subsystem includes WebDAYV clients in addition to the document
flow client, the local temporary document repository, non-WebDAV document
editors, the flow definer and the mail client. Each of these parts will be explained in

the following.

103

5.4.1 WebDAV clients

As shown in Chapter 4 and Appendix A, WebDAYV clients can communicate
with WebDAYV servers to perform remote authoring of the documents through a
coherent set of methods which containing request headers and request body
formats. Then, servers return appropriate responses enclosing response headers in
addition to response body formats. For example, WebDAYV provides methods to
store and retrieve resources, to create and list contents of resource collections, to
lock resources for concurrent access in a coordinated manner, and to set and
retrieve resource properties. Thus, WebDAYV clients are the main part of the client
subsystem of the system. In the implementation, I used several WebDAYV clients
including DAV Explorer, Tamino WebDAYV Basic Client, Web Folders, Microsoft
Office, Internet Explore, jEdit and XML Spy. These enormous products of
WebDAYV clients make it possible to upload and access documents stored in
WebDAYV repositories using standard, familiar interfaces as will be shown.

The WebDAYV clients differ in their behavior and according to that can be
divided into four groups: dedicated WebDAYV clients, WebDAV-enabled clients,
WebDAYV document editors and web browsers. In the following, several WebDAYV
clients are elaborated for each group.

The first group represents the dedicated WebDAYV clients which includes
DAV Explorer and Tamino WebDAV Basic Client. These clients send WebDAYV

requests directly to the server. The DAV Explorer is similar to the Windows

104
Explorer in its interface as shown in Figure 5.15. It translates the user actions to the
proper requests which are sent to the server.

E‘%DAV Explorer]| = |EI|1|
File Edit View Help

SCIE SR

(55 Joe |

[Dav Explorer §§ | | Mame Display | Type Size
% [hitpeiiwww. sharemation.comiwelbeml 2 1stdoc 1stdoc ~application/ms... 19456
®] docs i docs does | a
% [nttpigreenbytes.de:31 wemidocsiemiu39ThesisDoc 1° IEditInk IEditInk applicationfoctet.. 1521

@ [versiont :
&

Figure 5.15: The DAV Explorer Interface

The Tamino WebDAYV Basic Client allows its user to write the requests, send
them and check their responses from the server. The advantage of this client is that

it enables users to send any request type directly, including versioning requests.

Figure 5.16 presents the interface of this client.

Tamino WebDAY Basic Client

=lElx]
File Reguest Response Options Help

e |0 | B | mnE| BB S|P
ontent (80,114, UTF-8) |
=< ?xml version="1.0"7= =?xmlversion="1.0"7=
=D:propfind xmins:D="DAV"= - =multistatus xmins="DAWV:" xmins:5=" ta. i) =
=Duallprops= - =tesponses=
=iD:propfind= =href=i=ihrafs
- =propstats
- =prop=
- =zupportedlock=
- =lockentrys
- =lockscopes
=exclusivel=
[fockscopes|
- =lockiypes=
=writel=
=iockiype=
=ilockentry=
+ =lockentry=
=isupportediocks
+ =zupported-privilege-set=
E: + i 4 =
e i s
R History
Y PROFFIND dwellaml HTTRI 1 |~
D PROPFIMD f HTTPM A =

computername: 8081

Figure 5.16: Tamino WebDAYV Basic Client

105

The second group represents the WebDAV-enabled clients, supporting the

WebDAYV protocol via Web Folders. This group represents the most popular way of

accessing WebDAYV servers on Microsoft Windows. A Web Folder represents an

interface to a WebDAY repository on the WebDAYV server and so Web Folders can

act as an intermediate medium between WebDAV-enabled clients and WebDAV

servers. Figure 5.17 shows several definitions of WebDAYV repositories used in the

implementation.

File Edit Wiew Favorites

EX My Network Places m

Tools Help

=0l x|

‘Back v = - | hsearch I%Folders | be X e | B

Address Iy Metwork Places

j .PGU |N0rt0n Antivirus E' -

Folders x
@ Desktop =
E28 @ My Documents

@, My Computer

5 3.5 Floppy (A1)

[LOCAL DISK (C:)
]--@ Carmpact Disc (D)
:'J"]@ Compact Disc (E:)
£ Control Panel

Iy Metwork Places

-‘,32 Entire: Metwork
J& Computers Mear Me
@ greenbytes G
L§_;! sharemation

| SlideServer

é_:_l tarning

Recycle Bin

Mame

| Comment

@ Add MNetwork Place
{) Entire Metwork
&Computers Mear Me
L& greenbytes
Use this Folder b open files and Folders [sharemation
on other computers and to instal 'é_]slideServer
nietwark printers, ST

& kaming

My Network Places

To set up networking on your

computer, click Metwork and Dial-up
Connections.

Select an item to view its description,

See also:
My Documents
My Computer

o

el

Connects to shared Folders, Web folders, and FTP sites,

Displays computers in your workgroup

http: figreenbytes,de:81 fwenfdocsfomfu39 ThesisDoc)
http: v, sharemation, comwellxmly
http:ffcomputername: 5051}

http: fitamino, demozone, softwareag. comftaminowebdayse

I? ohject{s)

N2

Figure 5.17: Accessing WebDAYV Repositories via Web Folders

Moreover, Microsoft Office is a WebDAV-enabled client which allows direct

editing of the documents in the WebDAYV server repositories via Web Folders as

appears in Figure 5.18. Another interesting feature of Web Folders is the simple

deal with the WebDAY repository. It is possible to drag and drop files into and from

Web Folders since they can be handled as normal folders as shown in Figure 5.19.

106

=1l

IR

JJQ| E—— ahv£|v®lv =
DEEa Ry | 2ad oo - eO@P= & BT - E).
clods gl desz olal Gwees ghal whie wJ-gll|
82 U= =

JNormaI = Times Mew Roman - 12 =

=- ===wwn

G R I e S - S I A R RIS U IR PRI -SRI E - RN IR PRI -y |) g

=] 21x|
; I@ greenbytes j = | @ b + olgal v

+ wersionl

f docil.doc

=

=

=

i 1 E=
olslall gloif [l Fies (*,%) d| bl slil] |
=] ElE K r

Lefofn |4

[[[onasesi [00R [Eir [TRE REC | 1 seas ¥ opbow powlelf a8 | 1IF/AT Bogkdo WY dwbe
Figure 5.18: Direct Editing of WebDAYV Documents using Microsoft Office

i =]
File Edit ‘iew Favorites Tools Help |
Back - = - | Qhsearch [Folders ¢4 | g 0z vy | E-
Agdressl http: fenana, sharemation, com fwellxml} j oGo |Links 2
ok (= = Mame / | Internet Address | Size | Type |
l—i Cddacs hikp: f v, sharemation, comfwellzmlfdocs ‘Weh Folder
= @lst.doc http: S, sharemation, comjwellmlf 15k, doc 19.0KB sic.o Microsoft Word
sharemation @ JEdit. Ink. http: S, sharemation, comwellmlfEit. Ink 1.48 KB Shortcut
Select an item ko view its
description.
< I o
|@ 3 objeckis) 4

Figure 5.19: Accessing WebDAYV Repository via a Web Folder

107

The third group of the WebDAYV clients includes WebDAYV clients which can
be used to edit documents directly on WebDAYV servers without Web Folders. For
example, JEdit, which is Java-based open source text editor, can be extended to be a
WebDAYV client using a WebDAYV plug-in as shown in Figure 5.20. Then by using
locks to prevent lost updates, it can be used to edit text files directly on WebDAV
servers.

-l

File Edit Search Markers Folding ¥iew LUtilities Macros Blugihs|ﬂelp

_Lrij &]ﬁ OO+E E q d Flugin Manager. . E ;_J:j 9

Check jEdit Wersion

< readme b (hitpa1 27.0.0 1irepositon -
CodeZHTML
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Tranait — = —
<!-- zaved from url={0040)http://computernane /namisg Day Open fram DAY Server..
<HTML><HEAD>. Error List Save to DAYV Server...
<META content="text/html; charset=i=z0-5859-1" http- Infotiewer

<META content="MSHTML 5.00.2520.0" name=GENEFRATOR- eanboc g Bl

<BODY>< /BODY>< /HTHL> .

JTidy
GuickMotepad
SideKick

HML

HELT =i
1] D]

[1,1 40 {text none, Cp1 256) - - - WilNEEL

Specify Local Warking Directory
Forget Remote Passwords

* v v v v v v w|w

Figure 5.20: The JEdit with WebDAYV plug-in

Also, XML Spy, which is an XML development environment, can communicate
directly with several XML WebDAYV repositories. Moreover, it supports opening
and saving documents from and to WebDAYV servers as shown in Figure 5.21.

The fourth group of the WebDAV clients is the web browsers such as
Internet Explorer. But the web browsers may face some limitations when dealing
with WebDAYV servers because the current web browsers do not support WebDAV
methods via HTTP protocol. In this case, the browsers can browse the documents on
the repository and download them only as previously shown in Figure 5.3 of Tamino
WebDAV Server. In contrast, some WebDAV servers provide web applications

which allow the web browsers to utilize the WebDAYV repositories in a smart way

108

and friendly interface. For example, SAP Portals Enterprise Portal Server and
Xythos WebFile Server can be utilized via web browsers as shown in Figure 5.4 and

Figure 5.5.

D2l HE S| @)oo~ |(sadsy el |y mom | BRER D [3: @mep
P00 |49 @ F | DR e
P .8 . g

=7xml version="1.0" encoding="UTF-3"7=

20

SIDOCTYPE main SYSTEM "examplesite dtd"s (R = Rl [t computername repositoryfintroduchion, <m = oK l
=main xmins:xsi="http: fAeenene w3 .org/20010 MMLSchema-ir
=dictionariess i Open as: File load Cancel I
&inc_klocks, | i Auto 8 EML O DTD | [= Use cache/prosy ¢ Reload |
&inc_navigation;

=fdictionaries=

Identification
=idref=welcomepage<idref=
i rtrocuction i User: Iwellxml Paszsward: I ““““““““““““ ™ zave
=content=
<page.fragmfen.t><header>An HML Example webh s — tweailable Fil
This site iz intended to be an example of develt
=hold=atylevision S=bold= <fparas==paras= Server URL: Ihllp.//cUmpulername/repusllury/lnlruducllun.xml LI Erowse l
The documentation for this iz the exa - -
hierarchical navigation structure and reusable page fragm wi] introduction.xml

dynatic site
=fpara==/pagefragment=
=icaortent=
=hmain=

Hew Folder | Delete |

I htkp: ffcomputernamejrepository fintroduckion, zml | |
®MLSPY 5 rel. 4 U Registered ko hussam {amse) ©1998-2003 Altova GmbH & Altova, Inc. lLn&, Col 28 o |

Figure 5.21: XML Spy Accessing WebDAYV Repository

5.4.2 The Document Flow Client

I implement a special client which helps users to identify and handle their
work. Figure 5.22 shows the first screen of the document flow client in which users
download and upload documents according to their privileges. Also, Figure 5.23
shows the second screen of the client which inform each user with notifications sent

to him by the agent.

109

Figure 5.22: The Documents Screen of the Flow Client

Tt Flow Application -[HUSSAM]

Figure 5.23: The Notifications Screen in the Flow Client

110

Figure 5.24 present the flowchart of the user downloading processes.
According to this figure, when a user downloads a document, its flow progress status
becomes W which makes the agent waits for the document working period before
notifying the user to upload the document. Similarly, Figure 5.25 shows the
flowchart of the uploading processes, in which the flow progress status is set Null to

provide an indication for the agent to deal with the next user in the flow.

START

i

- FlowProgressStatus = W
- Last_Time = Now
- Operation(UserDownloading)

Figure 5.24: User Downloading Document Flowchart

START

i

- FlowProgressStatus = Null
- Last_Time = Now
- Operation(UserUploading)

END

Figure 5.25 : User Uploading Document Flowchart

111

5.4.3 The Local Temporary Document Repository

The local temporary document repository is an optional component on the
client subsystem. It can be used either because the editors do not support WebDAV
protocol or because the communication media is not reliable. In both cases, users
can download the documents from the WebDAYV server to their local temporary
document repository where than can edited the document. After finalizing the

editing, they upload the documents back to the server.

5.4.4 Non-WebDAV Document Editors

Any document editor can be used in the implemented authoring system. But
document editors differ in the mode of editing documents in WebDAYV repositories.
As shown in the WebDAYV clients’ subsection, several document editors can edit
documents directly in WebDAYV repositories without downloading them. Moreover,
any editor can be used to edit documents locally after downloading them from the
servers.

Several document editors can communicate with WebDAV repositories
either directly or via Web Folders as shown in the previous section. In both cases, it
is possible to edit documents in WebDAYV repositories directly by using the editors.
Thus, wide applications can be used as document editors in the implemented system

including: Microsoft Office, JEdit and XML Spy.

112

Moreover, the system can get benefits from non-WebDAYV editors by editing
documents locally in the client subsystem after downloading them from servers. To
prevent the lost update problem, documents are locked before they are downloaded.
After editing them locally, they can be uploaded back to the server where they are
unlocked. In summary, any document editor can be utilized in the authoring system

by employing a lock-download-work-upload-unlock authoring process.

5.4.5 The Flow Definer

The document flow definer is responsible to define document flows. As
previously shown in Chapter 3, the flow of a document includes the users who are
responsible to work with the document. Also, the flow defines for each user five
attributes: the number of downloading notifications, the downloading netification
period, the number of uploading notifications, the uploading notification period and
the working period. The number of downloading notifications and the number of
uploading notifications of a specific user are the number of the notifications which
the agent should send to the user remind him to download or to upload the
document. The download notification period and the upload netification period
represent the period between two download or upload notifications. The working
period is the period between downloading the document and sending the first
uploading notification. The roles of these attributes are clarified early in Figure 3.3.
In the implementation, the flow information is saved in a database system in the

server subsystem as stated in subsection 5.3.4. Some snapshots of the flow definer

113

screens appear in Figure 5.26, Figure 5.27 and Figure 5.28. These screens are used

to define users, documents and document flows respectively.

£ Document Flow Agent-[1 el =]

MERL

Users || Documents ﬂ Flows “ Flow status]
Serial User ID User Hame Password mai
1 1 [HUSS A1 = [HUSS AMAL S AWAD TRHOTMATL . COM =
2 2 [aLT [+ [ALTEHOTHATL . COM
i3, 3 Eeleh i Saleh@HOTHATL . COM

Document Hame

Refresh
Focod 377 I I 50 <080 |
Figure 5.26: Defining Users Screen
58 Document Flow Agent-[] LBl
MEML
users | Documents | Flows | Flow status |
R |
) ‘Serial Document Hame Document Path Document Flaw

F 1 [FIRST DOCUMENT [Feport.brp QUICK FLOW £

Flow [z [DoC [Cest1/Thesisds.doc FLOUZ

o

[a

ELi -

— Wotifications

Hot ,liate _ e) Username

Fizcord 147 I [<DSC> <DBG= |
Figure 5.27: Defining Documents Screen

114

1 QUICK FLOW =]
B FLoWe

Order User Hame #Hotify Period #Notify Period Period
I LT z 22 g B 100 = |
B HUSSLH 3 24 2 B a8

[Record 141 I [<OSC> kOBG> | |

Figure 5.28: Defining Flows Screen

5.4.6 The Mail Client

The mail client in the client subsystem is used in the system to receive the
agent notifications in the picture of emails. The email notifications provide users
with appropriate information including the actions which they should do as
explained previously in Chapter 3. The email notifications include download, upload
and cancel notifications. A download notification notifies a user to edit a document
when it is his turn in the flow path or when he does not do so in time. This
notification informs him about his turn in the document flow and requests him to

download the document to perform his work with it. In contrast, an upload

115

notification prompts a late user to finish his work with a document and upload it
back to the server. It will be sent to him if he does not upload the document after the
working period is over. Furthermore, a cancel notification informs a lazy user of
canceling him from the flow when he does not do his work by downloading or
uploading a document in the suitable time. Figure 5.29 shows an automatic

generated email notifying a user to download a document.

B% DOWNLOAD - &JLw; - Rich Text =] LI_
| Gl Ols] oleal Eewd zha) ohe uu-g|
= !
o (H| 5 2@ 0] &y Eloone | @ 3 [0 FlAlB|=E w2
| HUSSAMALSAWADI@HOTMALL .COM cesdl |
[s |
|pownLoaD {2 gusnol]
Document Mame : FIRST DOCUMENT =]
Automatically Generated by the Docurment Flove Agent.[
I

Figure 5.29: An Email Generated by the Agent

CHAPTER 6

COMPARISON AND ANALYSIS

This chapter compares the literature survey systems according to a set of
comparison criteria. Next an analysis of the comparison is provided. Finally, it
presents an evaluation of the DFWDAYV model using the same comparison criteria.
The objective of this comparison is to show the improvements which the DFWDAV

model provides.

6.1 COMPARISON

Each of the literature survey applications contains a document flow and
archival model. These document flow and archival models vary in their
architectures and techniques. Several factors contribute to this variation. The most
important factors are the objectives of their applications and the technologies
available at the time when they were developed. This section briefly points out the
differences between these models.

The models are briefly compared from several phases in Table 6.1. This
comparison is divided into two parts: first, document flow, and second, document

archival.

116

117

Model
EDMS Alliance DocMan DReSS
Factor
Lock, download | By holding a Lock, download | Lock, download
”» and edit locally | master copy and edit locally | and edit locally
Editing and edit it
locally
Between the Fragment Between the Between the
Flow server and the | migration distributed server and the
mechanism clients Using between sites store and local | clients
state graph disks.
Document Varilous . Special format | Miscellaneous | Any documents
engineering
syntax Documents
System Unix & Unix Server: Solaris | Unix or
platform X Windows Client Windows | Windows NT
Network LAN WAN WAN The Internet
Database & Special Special Special
Dependency | special software software software
software
Document Relational File system File system Database & file
repository database system
Document Centralized Distributed & Distributed Centralized
. replicated between the
location between sites | sites
Internal Internal Two type: Not available
asynchronous notification to - Automatically
notification update the reflect the
Automatic between the fragments changes of the
o server and the document
Notification | qjignts folders.
- Subscribing to
email
notification.
Available Not available By creating a Not available
copy of the
. updated
Versioning document after
finishing the
updating
Access On operation On fragment By defining Available
level using level using the user access
Control privileges roles
Handling In the In the In the In the
Collaborative | application application application application
functions

Table 6.1: Comparison between Different Models (continued overleaf).

118

Oxford
Radcliffe
Model .
Hospital BSCW Smartcard EnAct
document system
Factor
management
system
Not available Lock, download | Not Available By MS Word
Editing and edit locally directly to the
repository
Flow Between Between the From a sender | By Assigning a
. authors and server and the to a receiver document to
mechanism | oaqers clients the users
Document SGML Any document XML SGML
syntax
System Not mentioned Unix Or NT Any system Unix Or NT with
platform PCs
Network Intranet The Internet The Internet The Internet
Database Extension to a Smartcard & SIM (Structured
Web server and | Smartcard Information
Dependency database reader Manager) and
customized
MS Word
Document Database Database & file | Not Available SGML
repository system Repository
Document Centralized Centralized Distributed Centralized
. between the
location sites
Using author By event Not Available Not Mentioned
Automatic distribution lists | service
Notification | and reader
subscriptions
Versioning Not available Linegr . Not Available Linegr .
versioning versioning
Not available On workspace | Only the On the
Access level receiver can document level
Control access the
document
Handling In the In the In the In the
Collaborative | application application application application
functions

Table 6.1 continuation: Comparison between Different Models
(continued overleaf).

119

Model

An extension

of Lotus AllianceWeb | GroupWriter Web?AV
Factor Notes system
Any time by By holding a Using Check Lock, download
Editing creating new master copy out and check and edit locally
revisions before | and edit it in
the editing locally
Flow Depending on Fragment Direct updating | Between server
. Lotus Notes migration or by and clients
mechanism between sites | annotations
Document HTML HTML and XML | TXT or RTF Any document
syntax
System Any one Any system Windows Any platform
supports Lotus
Platform Notes
Network Intranet The Internet LAN and dial The Internet
up
Lotus Notes Extended Special WebDAV
WebDAV software tools server (Apache
Dependency server and and mod_dav)
Amaya and an
extension to a
Web browser
Document Lotus Notes File system File system File system
repository repository
Centralized Distributed & Centralized Centralized
Document replicated
location between the
servers
Not Mentioned | Internal Not Mentioned | Not available
Automatic notification to
Notification update the
fragments
Versioning After every Not Available Available Not available
modification temporarily
Access On the On document On documents | On document
Control document level | fragment level level level
Handling In the In the In the At Network
Collaborative | application application application Layer
functions

Table 6.1 continuation: Comparison between Different Models
(continued overleaf).

Model MS Office
2000 Form Flow X-Folders
Annotation Model
Factor
System
Each user can . .
” . By updating Directly on the
Editing :ﬁgﬁ:gtgis database field repository
Adding and Either by
reading transferring the
annotations documents
FIOW. Not Mentioned between the
mechanism folders or by
chaining the
status of
documents
HTML
D(S);E:Z;nt Forms only Any document
Windows
PSthslf(f):rmm Any platform Any platform
Intranet Based upon
Network TCPIP Internet
MS Office
2000, WebDAV .
Dependenc Server, SQL ;A(-arr%tlteléﬁgrm) WebDAV
p y Server and agd KSML servers
annotation
client
Database for
Document annotations ;
repository and file system Database File system
for documents
Centralized
Dl?)(c:z:in(f;lt Centralized Centralized
i By subscription
1\'?:) lg%gi;gsn y P Not mentioned | Not mentioned
Versioning Not available Not available Not available
Each user can
Access update only his | Depends on Depends on
C 1 annotations but | database database
ontro can read all privileges privileges
annotations
Handling In thg . In thg . At Network
Collaborative | application application Layer
functions

Table 6.1 continuation: Comparison between Different Models.

120

121

The first part of the comparison includes three tasks: document editing, flow
mechanism and automatic notification. Some models do not allow the first task (i.e.
document editing) because their applications do not require this task. The other
models accept different editing methods. Most models, for example, apply a locking
mechanism which allows the user who locks and downloads a document to edit this
document. The lock will be held for him until he uploads the document. In contrast,
the extension of Lotus Notes and MS Office2000 annotation models apply different
kinds of methodologies. The extension of Lotus Notes mode allows any user at any
time to update a document by initiating and saving a new version of it after the
modifications have been accomplished. The MS Office 2000 annotation model does
not allow its users to modify any annotation except for its initiator.

The next task is the flow mechanisms in which models imply wide variations.
Some models do not have a structured manner to handle the document flow because
the actions of the users determine the document flow. Thus, the privileged user who
firstly locks a document is the only one who can download and update it in his local
machine. In contrast, EDMS innovates the document flow state graph. Also,
Alliance and AllianceWeb apply the document fragments flow automatically.
Similarly, the Smartcard system determines the receiver of each document, and the
EnAct system assigns each document to the users.

The final document flow task is the automatic notification which enhances
the flow since the users can take the right decision based on the notifications. While
most models do not provide any notification mechanism, some of them (e.g. EDMS

and Alliance) have an internal notification between the model components. This

122

internal notification updates the components information. In addition, some models
provide high-level notification. For example, the Oxford system notifies the users of
any new concerned document because they subscribe in its subject or because its
author adds them in the document distribution list. Also, BSCW offers a thorough
event service which allows any member in any workspace to define several
documents or workspace events. Finally, Office 2000 annotation system allows its
users to subscribe in a document to receive information about its annotations.

The second part of the model comparison (i.e. document archival) consists of
the document repository and document format. Most models rely on a centralized
repository, while other models have either a distributed or a replicated or no
repository. DocMan, for instance, is based upon a distributed repository, whereas
Alliance is based upon a replicated repository, and finally the Smartcard system
does not have a repository at all. In addition to the above mentioned, the repository
can be divided into several groups based on the storage method: database
repositories, file system repositories and mixed database and file system
repositories. Table 2.1 shows the repository type of each model. Finally, some
models rely on a ready repository such as EnAct that uses a SGML repository and
the extension of Lotus Notes model which depends on the Lotus Notes repository.

The other factor which contributes to comparing document archival part is
the document format. Several models do not enforce the users to use a specific
document format such as EDMS, DReSS, BSCW and WebDAY system. In contrast,

some models work with their own special document format, like Alliance. The rest

123

are based upon a known document format such as text format or markup languages

(i.e. SGML, HTML and XML).

6.2 ANALYSIS

Several reasons lead to the inconsistency between the literature survey
document flow and archival models. The most influential reasons are the objectives
of their applications and the available technologies when they were developed.

The first factor which has the major effect is the impact of the application
objectives. These objectives include cooperative authoring, document managing,
Internet document publishing, interested document acquiring, secure document
sending and document annotation exchanging. The distinctive objectives yield
distinctive functionality. The models, for example, which support cooperative
authoring handle the document updating issues, and most of these models provide
versioning faculties. In contrast, the Oxford system is designed to inform its users
about the availability of novel interest documents. Therefore, this model does not
bother itself with the updating or versioning functions. Also, the Smartcard system
does not handle these two issues because its objective is just the secure document
exchange over the Internet.

The second influential factor on the document flow and archival models is
the effect of the technologies used in their applications. It is clear from Table 6.1
which is ordered by the development year of the models that most models are

affected by the technologies available during the period of their development. For

124

example, all models designed after 1997 support the Internet environment except
GroupWriter because its objective is justified without the Internet. Moreover, most
of these models utilize at least one of the recent markup languages (i.e. HTML and
XML). Also, the recent models support the Windows operating system while the
models before 1995 work only on the Unix environment. Another example, the
system extended Lotus Notes and the Office 2000 annotation system rely on well-
known commercial products (i.e. Lotus Notes and Office 2000). Finally, several
recent systems, specifically AllianceWeb, WebDAYV system, Office 2000 annotation,
utilize the novel protocol WebDAYV that transfers the complexity of handling the

collaborative issues from the application level to the communication protocol level.

6.3 COMPARISON BETWEEN THE DFWDAV MODEL AND

OTHER MODELS

The implementation shows that the DFWDAYV model overcomes some of the
limitations of the literature survey models which are investigated in Chapter 2.
Moreover, the implementation demonstrates several of the robust features of the
DFWDAY model. The objective of this section is to compare the literature survey
models with the DFWDAYV model. This comparison will illuminate some of the
DFWDAY model characteristics.

Since the literature survey models are compared previously in Table 6.1

according to several different factors, the DFWDAY model is compared with other

125

models using these factors. Table 6.2 summarizes the DFWDAV model

characteristics according to the comparison factors.

Model
DFWDAYV
Factor
Either direct editing of documents in the repositories or
Editing by downloading documents locally where they can be

edited.

Flow mechanism

The flow of the documents between users is a structured
and automated flow but according to the document flow

definitions.

Document syntax

Any document syntax.

System platform Any platform.
Network The Internet.
Dependency WebDAV server and clients.

Document repository

Can be a database repository or a file system repository
depending on the WebDAYV server.

Document location

Centralized

Automatic Available to the users in the flow definitions to remind
notification them to download or upload documents.
Versioning Available via WebDAV protocol.

Access Control

On the document level.

Handling
Collaborative

functions

At Network Layer (i.e. via WebDAV protocol)

Table 6.2: The DFWDAYV Model Characteristics According to the

Comparison Factors

126

In addition, the comparison will depend on the comparison parts presented
in section 6.1 which are divided into two parts: document flow and document
archival.

The document flow part includes three factors: document editing, flow
mechanism and automatic notification. According to the first factor, the DFWDAYV
model is very flexible since it allows two different document editing methods
depending on the document editors: direct document editing and lock-download-
work-upload-unlock editing. As shown several document editors can edit documents
directly in the repository if they are WebDAV clients such as XML Spy and
Microsoft Office. Moreover, if they do not support WebDAV protocol or the
commutation media is not reliable, it is possible to lock and download documents
from the repository to the clients where they are edited. Then, they can be uploaded
back to the repository where they are unlocked. The second factor of the document
flow comparison is the flow mechanism in which the DFWDAYV model handles the
flow of documents in a structured manner. The model relies on document flow
definitions to determine the flow of documents. At any time only one user is allowed
to edit a specified document. On other side, documents may flow physically between
server and clients if they are edited locally. The third and final document flow factor
is the automatic notification. Clearly, the DFWDAYV model provides high level user
notifications which enhance the flow of documents and increase the speed of
producing documents. As shown, there are three notification types: downloading,

uploading and canceling notifications.

127

On the other hand of the comparison, the document archival part consists of
two factors: the document repository and the document format. With respect to the
former factor, the document repository of the DFWDAV model is centralized.
Furthermore, it depends completely on the WebDAV server. Although several
WebDAYV servers provide file system repositories, other servers provide database
repositories. This variety offers more flexibility in the implementation wise. The
latter factor (i.e. document format) shows the reliability of the DFWDAY model. As
shown, the model does not enforce a specific kind of document formats as it
supports numerous textual documents. Moreover, it also applicable to non-textual
documents such as drawing documents.

In summary, the DFWDAYV model promises flexible editing methods and
distinctive document repositories. It is independent of document syntax and applied
software products (i.e. editors, clients and servers). Moreover, it ensures structure
document flows, high level notifications and document versions. Most of these
features result from the full utilization of the WebDAYV protocol. This utilization
transfers the complexity of handling collaborative issues from the application side to
the network layer, and so the DFWDAY model concentrates on the flow issues such

as flow defining, analyzing and processing.

CHAPTER 7

CONCLUSION

Most of the available document collaborative applications lack a systematic
document flow module. In these applications, the document flow functions are
incorporated within other functions. Therefore, it is very important to design a
document flow model which can be used as an infrastructure for such applications.

In this research, I have developed DFWDAYV (a document flow model) that
can support modern web cooperative applications. I believe that the primary value
of this work comes from the modularity and the systematically of DFWDAYV
whereas most other applications combine this functionality with other functions.

Despite the fact that this research has a strong structure flavor, the work
presented in this thesis strongly surpasses most of the applications that handle
documents in collaborative environments. While these applications provide wide
functionality, they do not consider the document flow as a standalone function. In
contrast, this research has provided a generic and systemic document flow model
which utilizes innovative technologies. Through the examination of existing systems,
the model reported in this thesis has sought to reflect a generic infrastructure for
collaborative applications. The reflection is used to design a generic systematic

document flow model.

128

129

The rest of this chapter is organized as follows. Section 7.1 summarizes the
main achievements of the research presented in this thesis. Section 7.2 identifies

relevant issues of the future work.

7.1 CONTRIBUTION

This section focuses on the contribution concerns of the DFWDAYV model. It
includes the problems in the literature survey models which are avoided in the
DFWDAYV model. Moreover, the features which are introduced or emphasized in
the DFWDAY model are listed. In contrast, the features of the survey models, which
are not available in the DFWDAY model, are discussed.

The significant contributions of this thesis include:

¢ Proposing a systematic document flow model.

¢ Designing an agent which handles the linear document flow.

e Providing a proof of concept implementation of the model by applying
it on a cooperative authoring system.

¢ Comparing several possible implementations.

e Showing the wide support of the model by open and commercial
software.

Moreover, the DFWDAY model has several features such as:

e Offering an infrastructure for the document cooperative applications

in a modular fashion.

130

e Utilizing several modern computing technologies that came into the
picture due to the WebDAYV protocol.
¢ Providing platform independent model.

e Offering systematic document flow model.

In spite of the fact that the model is well structured, it is very flexible in

several aspects including the editing modes, the document types used, the flow

mechanisms, the document repositories and the supported platforms. These

directions are elaborated concisely in the following:

The editing modes: The model supports two different possible editing modes.
The first mode is the editing in place. In other words, the users can edit the
document directly in the document repositories. Several clients support these
editing mode as explained previously. This editing mode is suitable for reliable
networks and for documents which are supported by WebDAYV clients. The
second mode of editing applies lock-download-update-upload-unlock
methodology. In detail, the model allows the user who intend to modify a
document to lock and download it so he can modify it locally by his favorite
editors. When he completes his work, he uploads it back to the server and
unlocks it. The locking and unlocking are necessary to prevent the lost update
problem. This editing methodology is applicable with any document type and
document editor, but it is more suitable for unreliable networks or with

document editors which do not support WebDAY protocol.

131

The document types used: The model does not force the users to use any specific
document type. Thus, any document type can be used in the model even though
the documents hold textual information or non-textual information (i.e. images,
sound...ect). If the document type can be edited by a WebDAV client, the
previous two editing methodologies are appropriate. In contrast, for the
document types which cannot be edited by a WebDAYV client, they are only
applicable by the second editing methodology.

The flow mechanisms: The linear flow is tackled in detail in the provided
implementation. Furthermore, the model represents general document flow
model which supports any flow mechanism including complicated flow types
such as parallel, branching (i.e. conditional) and iterative flows. To apply such
flow, the implementation should consider twofold main concerns. The first is
related to the agent which is responsible for analyzing the flow definitions and
therefore care should be taken for the agent implementation of complicated flow
types. The second is related to the document flow definer which is used by
privileged users to define flow definitions. The document flow definer should
support the selected flow mechanisms in the implementation.

The document repositories: Any document repository works with the model if it
supports WebDAV protocol. As shown in the model implementation, two
different document repositories are supported: file systems and databases.
Moreover, some repositories provide more facilities such as supporting FTP and
HTTP protocols and providing native XML repositories. In brief, with regard

the implementation, wide possible repositories types are available.

132

¢ The supported platforms: As stated previously in the implementation, the model
is built on the WebDAYV protocol, which is widely supported by both the open
and commercial software. In addition, the WebDAV software is rabidly
increasing. Thus gives the implementers wide choices of suitable software over
almost any platform. Moreover the model supports the Internet which increases
the model independence of the platform. In sum, the model supports portable

implementation.

Furthermore, The DFWDAV model eliminates several shortages in the
literature survey models. These shortages include:
e Most of the survey document flow models are part of complicated
application. This leads to handle the flow issues poorly.
e Most models require explicit user actions to arrange the document flow
either by phone or email.
e Several models are tackled with either special document format or just
specific public format.
On the other hand, the DFWDAYV model introduced or emphasis several new
features, including:
¢ Providing generic document flow frame which can be utilized by different
collaborative applications.
e Removing the complexity of handling collaborative issues from the
application side to the network layer by utilizing the WebDAYV protocol

which is a novel network protocol.

133

e The ability to choose the editing mode. The edit mode can be either
directly on the server or locally by downloading the documents to the
client where they are edited.

¢ Defining the document flows in systematic way which are handled by the
routing agent.

Finally, there are some features in the literature survey models which are not
considered in the DFWDAYV model because these features are not incorporated
directly with the document flows. These features include:

¢ The annotations capability.

e The BSCW event services that allows users to register for several

advanced events.

7.2 FUTURE WORK

The research presented in this thesis has been applicable for the collaborative
applications and has been implemented successfully. However, further research and
development are still possible in several directions, which include the flow definition,
the document types and the WebDAYV protocol.

It is possible to enhance the method of the flow definition by using organized
flow definitions as well as graphical definitions. For example, eXchangeable Routing
Language (XRL) is an emerging organized flow definition which defines flow paths
using XML syntax (59), (60), (61). It enhances the model in several phases. First,
since XRL uses XML which is becoming an international standard, it is possible to

parse the flow definitions using the XML parsers. Second, this language allows the

134

users to define complex flows which include flexible sequences and include routing
based on conditions (62). On the other hand, the flow definition can be improved by
describing the flow paths graphically which offer a friendlier user interface.

Another direction to extend the functionality of the model is related to the
document type. As shown the model can handle any document type but it is possible
to enhance the model for specific kind of documents. We recommend extending the
model for XML documents because XML is becoming a public standard language
for the structured documents. Moreover, XML documents are capable of achieving
several improvements. First, the version management can be achieved for the XML
documents with quick retrieval and economical storage (63). Second, it is possible to
enhance the search features for XML document by utilizing the studies related to
the search of XML data contents (64), (65), (66), (67), (68). Third, XML content
management systems which include XML repositories are becoming more
widespread (17), (69) and so the model can be extended by employing an XML
repository which ensures fast data access of the XML documents.

The final worthwhile and most crucial enhancement of the model is the entire
utilizing of the WebDAYV protocol. As previously made clear, the WebDAYV protocol
is still evolving and under construction. When it becomes a mature protocol, the
model can be improved rapidly, especially in the searching and data accessing areas

(70), (71).

135

APPENDIX A

EXAMPLES OF WEBDAV METHODS

This Appendix provides several examples related to the WebDAV methods
which are mentioned in Chapter 4 for the purpose of clarifying their usages. The
general structure of WebDAV methods’ requests follows the format of the HTTP
and comprises of the following three components (51):

¢ The method: States the method to be executed by the client.

¢ Headers: Describe instructions about how the task is to be completed.

*A body (optional). Defines the data used in the instruction, or additional

instructions, about how the method is to be executed. In the body component,

XML becomes a crucial element in the overall picture of WebDAYV.

A.1 PROPERTIES

Example A.1: Retrieving Named Properties (24):

>>Request

PROPFIND /file HTTP/1.1

Host: www.foo.bar

Content-type: text/xml; charset=""utf-8"
Content-Length: xxxx

<?xml version="1.0" encoding=""utf-8" ?>
<D:propfind xmins:D="DAV:'">
<D:prop xmlns:R=""http://www.foo.bar/boxschema/''>

136

<R:bigbox/>
<R:author/>
<R:DingALing/>
<R:Random/>
</D:prop>
</D:propfind>

>>Response

HTTP/1.1 207 Multi-Status
Content-Type: text/xml; charset=""utf-8"
Content-Length: xxxx

<?xml version="1.0" encoding=""utf-8" ?>
<D:multistatus xmlns:D="DAV:"">
<D:response>
<D:href>http://www.foo.bar/file</D:href>
<D:propstat>
<D:prop xmlns:R=""http://www.foo.bar/boxschema/''>
<R:bigbox>
<R:BoxType>Box type A</R:BoxType>
</R:bigbox>
<R:author>
<R:Name>].J. Johnson</R:Name>
</R:author>
</D:prop>
<D:status>HTTP/1.1 200 OK</D:status>
</D:propstat>
<D:propstat>
<D:prop><R:DingALing/><R:Random/></D:prop>
<D:status>HTTP/1.1 403 Forbidden</D:status>
<D:responsedescription> The user does not have access to the DingALing property.
</D:responsedescription>
</D:propstat>
</D:response>
<D:responsedescription> There has been an access violation error.
</D:responsedescription>
</D:multistatus>

In Example A.1, the PROPFIND method is executed on a non-collection
resource http://www.foo.bar/file. The propfind XML element specifies the name
of four properties whose values are being requested. In this case only two properties
were returned, since the principal issuing the request did not have sufficient access

rights to see the third and fourth properties.

137

Example A.2: PROPPATCH (24):

>>Request

PROPPATCH /bar.html HTTP/1.1
Host: www.foo.com

Content-Type: text/xml; charset='"utf-8"
Content-Length: xxxx

<?xml version="1.0" encoding=""utf-8" ?>
<D:propertyupdate xmlns:D=""DAV:" xmlns:Z="http://www.w3.com/standards/z39.50/>
<D:set>
<D:prop>
<Z:authors>
<Z:Author>Jim Whitehead</Z:Author>
<Z:Author>Roy Fielding</Z:Author>
</Z:authors>
</D:prop>
</D:set>
<D:remove>
<D:prop><Z:Copyright-Owner/></D:prop>
</D:remove>
</D:propertyupdate>

>>Response

HTTP/1.1 207 Multi-Status
Content-Type: text/xml; charset=""utf-8"
Content-Length: xxxx

<?xml version="1.0" encoding=""utf-8" ?>
<D:multistatus xmlns:D="DAV:"
xmlins:Z=""http://www.w3.com/standards/z39.50>
<D:response>
<D:href>http://www.foo.com/bar.html</D:href>
<D:propstat>
<D:prop><Z:Authors/></D:prop>
<D:status>HTTP/1.1 424 Failed Dependency</D:status>
</D:propstat>
<D:propstat>
<D:prop><Z:Copyright-Owner/></D:prop>
<D:status>HTTP/1.1 409 Conflict</D:status>
</D:propstat>
<D:responsedescription> Copyright Owner can not be deleted or altered.
</D:responsedescription>
</D:response>
</D:multistatus>

In Example A.2, the client requests the server to set the value of the

http://www.w3.com/standards/z39.50/Authors property, and to remove the property

138

http://www.w3.com/standards/z39.50/Copyright-Owner. Since the Copyright-Owner
property cannot be removed, no property modifications occur. The 424 (Failed
Dependency) status code for the Authors property indicates this action would have

succeeded if it had not conflicted with removing the Copyright-Owner property.

A.2 COLLECTIONS AND NAMESPACE OPERATIONS

Example A.3: MKCOL (24):

>>Request

MKCOL /webdisc/xfiles/f HTTP/1.1
Host: www.server.org

>>Response

HTTP/1.1 201 Created

Example A.3 creates a collection called /webdisc/xfiles/ on the server

WwWw.Server.org.

Example A.4: DELETE (24):

>>Request

DELETE /container/ HTTP/1.1
Host: www.foo.bar

>>Response

HTTP/1.1 207 Multi-Status
Content-Type: text/xml; charset=""utf-8"
Content-Length: xxxx
<?xml version="1.0" encoding=""utf-8" ?>
<d:multistatus xmlns:d="DAV:'">
<d:response>
<d:href>http://www.foo.bar/container/resource3</d:href>
<d:status>HTTP/1.1 423 Locked</d:status>
</d:response>
</d:multistatus>

139

In Example A.4 the attempt to delete http://www.foo.bar/container/resource3
failed because it is locked, and no lock token was submitted with the request.
Consequently, the attempt to delete http://www.foo.bar/container/ failed too. The
client knows that the attempt to delete http://www.foo.bar/container/ had failed

since the parent cannot be deleted unless its child has also been deleted.

Example A.5: COPY with Overwrite (24):

>>Request

COPY /~fielding/index.html HTTP/1.1
Host: www.ics.uci.edu
Destination: http://www.ics.uci.edu/users/f/fielding/index.html

>>Response

HTTP/1.1 204 No Content

Example A.5 shows resource http://www.ics.uci.edu/~fielding/index.html
being copied to the location http://www.ics.uci.edu/users/f/fielding/index.html. The
204 (No Content) status code indicates the existing resource at the destination was

overwritten.

Example A.6: COPY of a Collection (24):

>>Request

COPY /container/ HTTP/1.1

Host: www.foo.bar

Destination: http://www.foo.bar/othercontainer/
Depth: infinity

Content-Type: text/xml; charset=""utf-8"
Content-Length: xxxx

<?xml version="1.0" encoding=""utf-8" ?>
<d:propertybehavior xmins:d="DAV:">

140

<d:keepalive>*</d:keepalive>
</d:propertybehavior>

>>Response

HTTP/1.1 207 Multi-Status

Content-Type: text/xml; charset=""utf-8"

Content-Length: xxxx

<?xml version="1.0" encoding=""utf-8" ?>

<d:multistatus xmins:d=""DAV:'">

<d:response>

<d:href>http://www.foo.bar/othercontainer/R2/</d:href>
<d:status>HTTP/1.1 412 Precondition Failed</d:status>

</d:response>
</d:multistatus>

In Example A.6, the Depth header is unnecessary as the default behavior of
COPY on a collection is to act as if a ""'Depth: infinity'' header had been submitted.
Also in this example most of the resources, along with the collection, were copied
successfully. However the collection R2 failed, most likely due to a problem with
maintaining the liveness of properties (this is specified by the property behavior
XML element). Because there was an error in copying R2, none of R2's members
were copied. However, no errors were listed for those members due to the error

minimization rules.

Example A.7: MOVE of a Non-Collection (24):

>>Request

MOVE /~fielding/index.html HTTP/1.1
Host: www.ics.uci.edu
Destination: http://www.ics.uci.edu/users/f/fielding/index.html

>>Response

HTTP/1.1 201 Created
Location: http://www.ics.uci.edu/users/f/fielding/index.html

141

Example A.7: shows resource http:/www.ics.uci.edu/~fielding/index.html
being moved to the location http://www.ics.uci.edu/users/f/fielding/index.html. The
contents of the destination resource would have been overwritten if the destination
resource had been non-null. In this case, since the operation was successful, the

response code is 201 (Created).

Example A.8: MOVE of a Collection (24):

>>Request

MOVE /container/ HTTP/1.1

Host: www.foo.bar

Destination: http://www.foo.bar/othercontainer/

Overwrite: F

If: (<opaquelocktoken:fel84f2e-6eec-41d0-c765-01adcS6e6bb4>)
(<opaquelocktoken:e454f3f3-acdc-452a-56¢7-00a5c91e4b77>)

Content-Type: text/xml; charset=""utf-8"

Content-Length: xxxx

<?xml version="1.0" encoding=""utf-8" ?>

<d:propertybehavior xmins:d='DAV:'>
<d:keepalive>*</d:keepalive>

</d:propertybehavior>

>>Response

HTTP/1.1 207 Multi-Status
Content-Type: text/xml; charset=""utf-8"
Content-Length: xxxx

<?xml version="1.0" encoding=""utf-8" ?>
<d:multistatus xmlns:d="DAV:'>
<d:response>
<d:href>http://www.foo.bar/othercontainer/C2/</d:href>
<d:status>HTTP/1.1 423 Locked</d:status>
</d:response>
</d:multistatus>

In Example A.8 the client has submitted a number of lock tokens with the
request. A lock token will need to be submitted for every resource, both source and

destination, anywhere in the scope of the method, that is locked. In this case the

142

proper lock token was not submitted for the destination
http://www.foo.bar/othercontainer/C2/. This means that the resource /container/C2/
could not be moved. Because there was an error copying /container/C2/, none of
/container/C2's members were copied. However no errors were listed for those
members due to the error minimization rules. User agent authentication has
previously occurred via mechanism outside the scope of the HTTP protocol, in an

underlying transport layer.

A.3 LOCKING

Example A.9 Simple Lock Request (24):

>>Request

LOCK /workspace/webdav/proposal.doc HTTP/1.1

Host: webdav.sb.aol.com

Timeout: Infinite, Second-4100000000

Content-Type: text/xml; charset=""utf-8"

Content-Length: xxxx

Authorization: Digest username=""ejw"',
realm="ejw@webdav.sb.aol.com'', nonce="..."",
uri="'/workspace/webdav/proposal.doc"’,
response="...", opaque=""..."

<?xml version="1.0" encoding=""utf-8" ?>

<D:lockinfo xmlns:D="DAV:'>
<D:lockscope><D:exclusive/></D:lockscope>
<D:locktype><D:write/></D:locktype>
<D:owner>

<D:href>http://www.ics.uci.edu/~ejw/contact.html</D:href>

</D:owner>

</D:lockinfo>

>>Response
HTTP/1.1 200 OK
Content-Type: text/xml; charset='"utf-8"

Content-Length: xxxx

<?xml version="1.0" encoding=""utf-8" ?>

<D:prop xmins:D="DAV:">
<D:lockdiscovery>
<D:activelock>
<D:locktype><D:write/></D:locktype>
<D:lockscope><D:exclusive/></D:lockscope>
<D:depth>Infinity</D:depth>

<D:owner>
<D:href>
http://www.ics.uci.edu/~ejw/contact.html
</D:href>
</D:owner>
<D:timeout>Second-604800</D:timeout>
<D:locktoken>
<D:href>
opaquelocktoken:e71d4fae-5dec-22d6-fea5-00a0c91e6bed
</D:href>
</D:locktoken>
</D:activelock>
</D:lockdiscovery>
</D:prop>

143

Example A.9 shows the successful creation of an exclusive write lock on

resource http://webdav.sb.aol.com/workspace/webdav/proposal.doc. The resource

http://www.ics.uci.edu/~ejw/contact.html contains contact information for the owner

of the lock. The server has an activity-based timeout policy in place on this

resource, which causes the lock to automatically be removed after one week (604800

seconds). The nonce, response, and opaque fields have not been calculated in the

Authorization request header.

Example A.10 UNLOCK (24):

>>Request

UNLOCK /workspace/webdav/info.doc HTTP/1.1

Host: webdav.sh.aol.com

Lock-Token: <opaquelocktoken:a515cfa4-5da4-22e1-fSb5-00a0451e6bf7>

Authorization: Digest username=""ejw"',
realm="ejw@webdav.sb.aol.com'', nonce="..."",
uri="'/workspace/webdav/proposal.doc"’,
response="...", opaque=""..."

144

>>Response

HTTP/1.1 204 No Content

In example A.10, the lock identified by the lock token
"opaquelocktoken:a515cfa4-5da4-22e1-f5b5-00a0451e6bf7" is successfully removed
from the resource http://webdav.sb.aol.com/ workspace/webdav/info.doc. If this
lock included more than just one resource, the lock is removed from all resources
which included in the lock. The 204 (No Content) status code is used instead of 200
(OK) because there is no response entity body. In this example, the nonce, response,

and opaque fields have not been calculated in the Authorization request header.

A.4 VERSIONING

Example A.11: VERSION —CONTROL (51):

>>REQUEST

VERSION-CONTROL /file.html HTTP/1.1
Host: www.webdav.org

>>RESPONSE

HTTP/1.1 200 OK

In example A.11, /file.html is put under version control. A new version
history is created for it, and a new version is created that has a copy of the content
and dead properties of /file.html. The DAV:checked-in property of /file.html

identifies this new version.

Example A.12: CHECKOUT (51):

>>REQUEST

CHECKOUT/ file.html HTTP/1.1
Host: www.webdav.org

>>RESPONSE

HTTP/1.1 200 OK

Example A.3: CHECKIN (51):

>>REQUEST

CHECKIN / file.html HTTP/1.1
Host: www.webdav.org

>>RESPONSE

HTTP/1.1 201 Created
Location: http://repo.webdav.org/his/23/ver/32

Example A.15: UNCHECKOUT (51):

>>REQUEST

UNCHECKOUT/ file.html HTTP/1.1
Host: www.webdav.org

>>RESPONSE

HTTP/1.1 200 OK

Example A.16: Report with DAV:available-report (51):

>>REQUEST

REPORT /myCollection HTTP/1.1

Host: www.webdav.org

Content-Type: text/xml; charset=""utf-8"
Content-Length: xxxx

<?xml version="1.0" encoding=""utf-8" ?>
<DAV:available-report/>

>>RESPONSE

HTTP/1.1 200 OK
Host: www.webdav.org

145

146

Content-Type: text/xml; charset=""utf-8"
Content-Length: xxxx

<?xml version="1.0" encoding=""utf-8" ?>

<D:report-set xmins:D="DAV:'">
<D:available-report/>
<D:property-report/>

</D:report-set>

Example A.16 uses the DAV:available-report, which lists the reports

supported at the request-URL.

Example A.17: Report with DAV :property-report (51):

>>REQUEST

REPORT /file HTTP/1.1

Host: www.webdav.org

Target-Selector: versioned-resource
Content-Type: text/xml; charset=""utf-8"
Content-Length: xxxx

<?xml version="1.0" encoding=""utf-8" ?>
<D:property-report xmins:D="DAV:">
<D:revisions>
<D:revision-id/>
<D:author/>
</D:revisions>
</D:property-report>

>>RESPONSE

HTTP/1.1 207 Multi-Status
Content-Type: text/xml; charset=""utf-8"
Content-Length: xxxx

<?xml version="1.0" encoding=""utf-8" ?>
<D:multistatus xmlns:D="DAV:">
<D:response>
<D:href>http://www.webdav.org/file</D:href>
<D:propstat>
<D:prop>
<D:revisions>
<D:response>
<D:href>http://repo/rev/id182<D:href>
<D:propstat>
<D:prop>
<D:revision>id182</D:revision>
<D:author>Fred</D:author> </D:prop>
<D:status>HTTP/1.1 200 OK</D:status>

147

</D:propstat> </D:response>
<D:response>
<D:href>http://repo/rev/id263<D:href>
<D:propstat>
<D:prop>
<D:revision>id263</D:revision>
<D:author>Sally</D:author> </D:prop>
<D:status>HTTP/1.1 200 OK</D:status>
</D:propstat> </D:response>
</D:revisions> </D:prop>
</D:status>HTTP/1.1 200 OK</D:status>
</D:propstat> </D:response>
</D:multistatus>

A.5 ACCESS CONTROL

Example A.18: Retrieving Access Control information (52):

>>Request

PROPFIND /top/container HTTP/1.1
Host: www.foo.bar

Content-type: text/xml; charset=""utf-8"
Content-Length: 0

Depth: 0

<?xml version="1.0">

<D:propfind xmlns:D="DAV:">
<D:allprop/>

</D:propfind>

>>Response

HTTP/1.1 200 Success
Content-Type: text/xml
Content-Length: xxxxx

<?xml version="1.0" encoding=""utf-8" ?>

<?namespace href = “http://www.ietf.org/standards/webdav/ AS =D"?>

<D:response>

<D:propstat>
<D:creationdate>1997-12-01T17:42:21-08:00</D:creationdate>
<D:displayname>Example collection</D:displayname>
<D:resourcetype><D:collection/></D:resourcetype>
<D:supportedlock> XXXXX</D:supportedlock>
<D:owner>http://www.rational.com/principals/users/gclemm</d:owner>
<D:owner-name>Geoffrey Clemm</d:owner-name>
<D:rights>
<D:read/><D:readacl/>

148

</D:rights>
<D:acl>
<D:ace>
<D:grant><D:read/><D:write/><D:readacl/></D:grant>
<D:principal-id>
<D:href>http://www.foo.com/users/esedlar</D:href>
</D:principal-id>
<D:principal>
<D:principal-type>User</D:principal-type>
<D:principalname>esedlar</D:principalname>
<D:displayname>Eric Sedlar</D:displayname>
</D:principal>
</D:ace>
<D:ace>
<D:grant><D:read/><D:readacl/></D:grant>
<D:deny><D:writeacl/></D:deny>
<D:principal-id>
<D:href>http://www.foo.com/groups/marketing</d:href>
</D:principal-id>
<D:principal>
<D:principal-type>Group</D:principal-type>
<D:displayname>Fo0o0.Com marketing department</D:displayname>
<D:principalname>mktdept</D:principalname>
</D:principal>
</D:ace>
<D:ace>
<D:grant><D:read/></D:grant>
<D:principal-id><d:all/></D:principal-id>
</D:ace>
</D:acl>
<D:propstat>
<D:response>

Example A.19: Setting ACLs (52):

>>Request

ACL /top/container HTTP/1.1
Host: www.foo.com
Content-Type: text/xml
Content-Length: xxxx

<?namespace href = “http://www.ietf.org/standards/webdav/ AS = D" ?>
<D:acl-info>
<D:acl>
<D:ace>
<D:grant><D:read/><D:write/><D:readacl/></D:grant>
<D:principal-id>
<D:href>http://www.foo.com/users/esedlar</D:href>
</D:principal-id>
</D:ace>

149

<D:ace>
<D:grant><D:read/> </D:grant>
<D:principal-id>
<D:href>http://www.foo.com/groups/marketing</D:href>
</D:principal-id>
</D:ace>
</D:acl>
</D:acl-info>
>>Response

HTTP/1.1 200 Success
Content-Length: 0

In example A.19, an ACL request body is an acl-info XML element. The
<dav:acl-info> element contains properties that can be set by the ACL method
(currently just <acl>). This example changes the group ACE to disallow read access

to the ACL for the marketing group.

A.6 SEARCHING

Example A.20: Query Example (53):

<d:searchrequest>
<d:basicsearch>
<d:select>
<d:prop><d:getcontentlength/></d:prop>
</d:select>
<d:from>
<d:scope>
<d:href>/container1/</d:href>
<d:depth>infinity</d:depth>
</d:scope>
</d:from>
<d:where>
<d:gt>
<d:prop><d:getcontentlength/></d:prop>
<d:literal>10000</d:literal>
</d:gt>
</d:where>
<d:orderby>
<d:order>
<d:prop><d:getcontentlength/><d:prop>
<d:ascending/>

150

</d:order>
</d:orderby>
</d:basicsearch>
</d:searchrequest>

Example A.20 provides a query which retrieves the content length values for
all resources located under the server's '"/container1/" URI namespace whose length

exceeds 10000.

Nomenclature

ACE Access Control Entry

ACL Access Control Lists

API Application Program Interface
BSCW Basic Support for Cooperative Work
CSS Cascading Style Sheets

DASL DAY Searching and Locating

DAV Distributed Authoring and Versioning
DAV4) DAY for Java

DFWDAV Document Flow model based on WebDAYV protocol

DMS Document Management Systems

DOM Documents Object Model

DReSS Document Repository Service Station

DTD Document Type Definition

EDMS Engineering Document Management System
ER Entity Relationship

GML General Markup Language

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

ISO International Organization for Standardization

IETF
IFS

1S
KQML
SAX
SGML
SIM
SMTP
wC
WAN
WebDAV
WWW
XML
XRL

XSL

152

Internet Engineering Task Force

Oracle Internet File System

Microsoft Internet Information Services
Knowledge Query and Manipulation Language
Simple API for XML

Standard Generalized Markup Language
Structured Information Manager

Simple Mail Transfer Protocol

World Wide Web Consortium

Wide Area Network

World Wide Web Distributed Authoring and Versioning protocol
World Wide Web

eXtensible Markup Language

eXchangeable Routing Language

eXtensible Style Language

10

153

Bibliography

Document Management Avenue Frequently Answered Questions V1.1,
http://www.documentmanagement.org.uk/pages/faq.htm, Sep. 2001.

R. Sprague, "Electronic Document Management: Challenges and
Opportunities for Information Systems Managers", MIS Quarterly,
Mar. 1995.

F. Bapst and C. Vanoirbeek, "XML Documents Production for an
Electronic Platform of Requests For Proposals", Proceedings of the
18" IEEE Symposium on Reliable Distributed Systems, 330-335, 1999.

P. Ciancarini, F. Vitali and C. Mascolo, "Managing Complex
Documents Over the WWW: A Case Study for XML", [EEE
Transaction on Knowledge and Data Engineering, Vol. 11, No. 4, 629-
638, July/August 1999.

H. Kanemoto, H. Kato, H. Kinutani and M. Yoshikawa, "An
Efficiently Updatable Index Scheme for Structured Documents", The
9" International IEEE Workshop on Database and Expert Systems
Applications (DEXA'98), 991-996, Aug. 1998.

D. Rossi and F. Vitali, “Internet-Based Coordination Environments
and Document-Based Applications: a Case Study”, Proceedings: The
International Conference on Coordination Models and Languages,
259-274, Apr. 1999.

R. Summers, J. J. L. Chelsom, D. R. Nurse and J. D. S. Kay,
"Document Management — an Intranet Approach", [8" Annual

International Conference of the IEEE Engineering in Medicine and
Biology Society, 1236-1237 vol.3, 1997

D. Sussman, "WebDAV: A Panacea for Collaborative Authoring?",
IEEE Multimedia, Vol. 6 2, 76-79, April/June 1999.

E. Whitehead and M. Wiggings, "WebDAV: IETF Standard for
Collaborative Authoring on the Web", IEEE Internet Computing, Vol.
2 5, 34-40, September/October 1998.

I. Sengupata, "Toward the Union of Database and Document
Management: The Design of DocBase", Proceedings: Conference on
Management of Data (COMAD'98), Dec. 1998.

11

12

13

14
15

16

17

18

19

20

21

22

154

A. Backer and U. Busbach, "DocMan: A Document Management
System for Cooperation Support', Proceedings of the 29" IEEE
International Conference on System Sciences, 82-91, 1996.

J. Robie, "XML and Modern Software Architectures", SGML/XML
‘97, http://www.texcel.no/sgml97.tml, 1997.

H. Lie and J. Saarela, “Multipurpose Web Publishing Using HTML,
XML and CCS”, Communications of The ACM, Vol. 42, No. 10, 95-
101, Oct. 1999.

N. Pitts, XML in Record Time, SYBEX, 1999.

T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau,
"Extensible Markup Language, (XML) 1.0 (Third Edition)", W3C
Recommendation 4-February-2004,
http://www.w3.0rg/TR/2004/REC-xml-20040204.

E. Xavier P., "Applying XML Architecture to Web Applications",
White Paper, Infosys Technologies Ltd., Apr. 2000.
http://www.inf.com/corporate/thought-papers/XML_April20.htm

T. Arnold-Moore, M. Fuller, A. Kent, R. Sacks-Davis, and N.
Sharman, "Architecture of a Content Management Server for XML
Document Applications", Proceedings of the Ist International
Conference on Web Information Systems Engineering (WISE2000),
Hong Kong, June 19-20, 2000.

C. Yang, S. Ju and T. Rao, "A Smartcard-based Framework for Secure
Document Exchange", Proceedings of the 32™ IEEE International
Carnahan Conference on Security Technology, 93-96, 1998.

S. Adler, A. Berglund, J. Caruso, S. Deach, T. Graham, P. Grosso,
E. Gutentag, A. Milowski, S. Parnell, J. Richman and S. Zilles,
"Extensible Stylesheet Language (XSL) Version 1.0", W3C
Recommendation 15 October 2001,
http://www.w3.0rg/TR/2001/REC-xs1-20011015.

B. Bos, H. Lie, C. Lilley and I. Jacobs, "Cascading Style Sheets, level
2 CSS2 Specification", W3C Recommendation 12-May-1998,
http://www.w3.0rg/TR/1998/REC-CSS2-19980512

H. Lie and B. Bos, "Cascading Style Sheets, level 1", W3C
Recommendation revised 11-Jan-1999,
http://www.w3.0rg/TR/1999/REC-CSS1-19990111

V. Apparao, S. Byrne, M. Champion, S. Isaacs, 1. Jacobs, A. Le Hors,
G. Nicol, J. Robie, T. Research, R. Sutor, C. Wilson and L. Wood,
"Document Object Model, (DOM) 1.0", W3C Recommendation 1-
October-1998,
http://www.w3.0rg/TR/1998/REC-DOM-Level-1-19981001

23

24

25

26

27

28

29

30

31

32

33

155

A. Hors, P. Hégaret, L. Wood, G. Nicol, J. Robie, M. Champion and S.
Byrne, "Document Object Model, (DOM) Level 2 Core Specification
Version 1.0", W3C Recommendation 13-November-2000,
http://www.w3.0org/TR/2000/REC-DOM-Level-2-Core-20001113

Y. Goland, E. Whitehead, A. Faizi, S. Carter and D. Jensen, "HTTP
Extensions for Distributed Authoring", REC2518, IETF, Feb. 1999.

E. Whitehead, “World Wide Web Distributed Authoring and
Versioning (WEBDAYV): An Introduction”, ACM StandardView, Vol.
5, No. 1, 3-8, March 1997.

F. Dridi and G. Neumann, "How to implement Web-based Groupware
Systems based on WebDAV", Proceedings: International Workshops
on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WET ICE'99), 114-119, 1999.

M. Adkins, J. Reinig, J. Kruse and D. Mittleman, "GSS Collaboration
in Document Development: Using GroupWriter to Improve the
Process", Thirty - Second Annual Hawaii International Conference on
System Sciences, Maui, Hawaii, 5 - 8 January, 1999.

D. Decouchant, A. Enriquez and E. Gonzédlez, "AllianceWeb:
Cooperative Authoring on the WWW", Proceedings of the String
Processing and Information Retrieval Symposium <& International
Workshop on Groupware, September 21-24, 1999, Cancun, Mexico.

T. Horstmann and R. Bentley, "Distributed Authoring on the Web with
the BSCW Shared Workspace System", ACM Standards View 5(1),
March 1997.

H. Peltonen, "EDMS engineering data management system—
architecture and concepts", Helsinki University of Technology,
Laboratory of Information Processing Science, 1993.

H. Peltonen, T. Minnisto, K. Alho and R. Sulonen, "An Engineering
Document Management System", The Winter Annual Meeting of the
American Society of Mechanical Engineers, Paper 93-WA/EDA-1,
1993.

D. Decouchant, V. Quint and M. Romero Salcedo, "Structured
Cooperative Authoring on the World Wide Web", World Wide Web
Journal, Fourth International World Wide Web Conference
Proceedings, USA, December 11-14, 1995.

D. Decouchant and M. Romero Salcedo, "Alliance: A Structured
Cooperative Editor on the Web", Proceedings of the ERCIM workshop
on CSCW and the Web, Germany, February 7-9, 1996.

34

35

36

37

38

39

40

41

42

43

44

45

156

P. De Bra and A. Aerts, "Multi-User Publishing in the Web: DReSS, A
Document Repository Service Station", Proceedings of the ERCIM
workshop on CSCW and the Web, Sankt Augustin, Germany, February
7-9, 1996

A. Aerts, P. De Bra and M. Timmermans, "DReSS 2.0: Lightweight
groupware for hypertext publishing on the Web", Proceedings of the
AACE WebNet'98 Conference, pp. 20-25, Orlando, FI., 1998.

R. Bentley and W. Appelt, "Designing a System for Cooperative Work
on the World-Wide Web: Experiences with the BSCW System",
Proceedings of HICSS'30: The Hawaii International Conference on the
System Sciences, Maui, Hawaii, January 7-10, 1997.

R. Bentley, T. Horstmann and J. Trevor, "The World Wide Web as
enabling technology for CSCW: The case of BSCW", Computer
Supported Cooperative Work: The Journal of Collaborative
Computing. Special issue on CSCW and the Web, Vol. 6, 1997.

W. Appelt, "WWW Based Collaboration with the BSCW System",
Proceedings of SOFSEM'99, Springer Lecture Notes in Computer
Science, p.66-78; November 26 - December 4, Milovy, Czech
Republic.

J. Kurose and K. Ross, Computer Networking A Top-Down Approach
Featuring the Internet, Addison-Wesley, August 2000,
http://www.awlonline.com/kurose/

T. Arnold-Moore, Information systems for legislation, Doctoral Thesis,
Royal Melbourne Institute of Technology, Melbourne, 1998.

T. Arnold-Moore, M. Fuller and R. Sacks-Davis, "Approaches for
Structured Document Management", Markup Technologies '99,
Philadelphia, PA, U.S.A, December 7-9,1999.

EnAct: User’s Guide, The Quill Consultancy Pty Ltd, Australia, Jul.
1999.

M. Petterson and G. Lysén, Document Management within Intranet
Settings, Master Thesis, Department of Computer Science, Lund
Institute of Technology, Swede, 1999.

R. Guetari, V. Quint and L. Vatton, "Amaya: an Authoring Tool for the
Web", MCSEAI'98 International Conference, Tunisie, December 1998.

J. Cadiz, A. Gupta and J. Grudin, "Using Web Annotations for
Asynchronous Collaboration Around Documents", CSCW 2000 ACM

2000 Conference on Computer Supported Cooperative Work,
Philadelphia, Pennsylvania, USA, December 2 - 6, 2000.

46

47

48

49

50

51

52

53

54
55
56
57
58
59

60

157

P. Juell and M. Habib, "A Protocol to Develop Agent-Based Form
Flow Systems", The 37th Annual Midwest Instruction and Computing
Symposium (MICS04), University of Minnesota, Morris, 16-17th April
2004.

D. Rossi, "Orchestrating document-based workflows with X-
Folders", Proceedings of the 2004 ACM Symposium on Applied
Computing (SAC 2004), Nicosia, Cyprus, 14-17 March 2004,
pp-503-507.

J. Slein, F. Vitali, E. Whitehead and D. Durand, "Requirements for
Distributed Authoring and Versioning Protocol for the World Wide
Web", REC2291, IETF, Feb. 1998.

WWW Distributed Authoring and Versioning (WebDAV) Home Page,
http://www .ietf.org/html.charters/webdav-charter.html , Feb. 2005.

E. Whitehead, IETF WEBDAV Working Group Home Page,
http://www.ics.uci.edu/pub/ietf/webdav/, Jul 2003.

G. Clemm, J. Amsden, C. Kaler and J. Whitehead, "Versioning
Extensions to WebDAV (Web Distributed Authoring and
Versioning))", RFC3253, IETF, Mar. 2002.

G. Clemm, J. Reschke, E. Sedlar and J. Whitehead, "WebDAV Access
Control Protocol", REC3744, IETF, May 2004.

J. Reschke, S. Reddy, J. Davis and A. Babich, "WebDAV Search",
Internet-Draft, IETF, Feb. 2005.

G. Stein, WebDAYV Resources, http://www.webdav.org/ , Sep. 2004.

The Apache HTTP Server Project, http://httpd.apache.org/, 2004.

Jigsaw - W3C('s Server, http://www.w3.org/Jigsaw/, Nov. 2004.

Slide, http://jakarta.apache.org/slide/index.html, 2004.

DAYV Explorer, http://www.ics.uci.edu/~webdav/, Feb. 2005.

W. Aalst and A. Kumar, "XML Based Schema Definition for Support
of Inter-organizational Workflow.", 21st International Conference on
Application and Theory of Petri Nets (ICATPN 2000), Aarhus,
Denmark, June 26-30, 2000.

A. Kumar and J. Zhao, "XRL: An Interoperable Routing Standard for
E-Commerce Applications", International Workshop on Component-
based Electronic Commerce, Berkerley, California, July 25, 1998.

61

62

63

64

65

66

67

68

69

70

71

158

A. Kumar and J. Zhao, "Dynamic Routing and Operational Controls in
Workflow Management Systems", Management Science, Vol. 45, No.
2,253-272, Feb 1999.

A. Kumar and J. Zhao, "XRL: An Extensible Routing Language for
Electronic Commerce Applications", Proceedings of the First
International Conference on Telecommunications and Electronic
Commerce, Nashville, USA, Nov 20-22, 1998.

S. Chien, V. Tsotras and C. Zaniolo, "Version Management of XML
Documents”, WebDB 2000 Workshop, Dallas, TX, 2000.

S. Boag, D. Chamberlin, M. Fernandez, D. Florescu, J. Robie and J.
Siméon, "XQuery: An XML Query Language", W3C Working Draft
11 February 2005,
http://www.w3.0org/TR/2005/WD-xquery-20050211/.

K. Bohm, "On Extending the XML Engine with Query-Processing
Capabilities", Proc. of IEEE Advances in Digital Libraries, Bethesda,
Maryland, May, 2000.

S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi and L.
Tanca, "XML-GL: a graphical language for querying and
restructuring XML documents", Computer Networks, Vol. 31, No. 11-
16, 1171-1187, 1999.

J. Miller and S. Sheth, "Querying XML documents", IEEE Potentials,
Volume 19, Issue 1, 24 —26, Feb.-March 2000.

A. Deutsch, M. Fernandez, D. Florescu, A. Levy and D. Suciu "A
Query Language for XML", Computer Networks 31(11-16), 1999.

T. Freter, "XML: Document and Information Management", Sun Inc.,
http://www.sun.com/980908/xml/, Sep. 1998.

S. Kim, K. Pan, E. Sinderson and E. Whitehead, "Architecture and
Data Model of a WebDAV-based Collaborative System", Proceedings
of The 2004 International Symposium on Collaborative Technologies
and Systems (CTS 2004), San Diego, California, 18-23 January 2004.

S. Kim, M. Slater, E. Whitehead, "WebDAV-based Hypertext
Annotation and Trail System", Proceedings of the Fifteenth ACM
Confereence on Hypertext and Hypermedia (Hypertext 2004), Santa
Cruz, California, pp. 87-88, 9-13 August 2004.

Personal information

Name:
Date of birth:
Email:

Current Position:

Qualifications

June 2005:

July 1993:

Research experience

1995:

1993:

159

Vita

Hussam Eddin Abdullah Al-Sawadi

1971

hussam @ccse.kfupm.edu.sa

and

hussamalsawadi @hotmail.com

Information Technology Expert in Ministry of Justice

M.Sc. degree in information and computer science with
high honor (G.P.A. of 3.91/4.00).

Information and Computer Science Department, College of
Graduate Studies, King Fahd University of Petroleum and
Minerals, Dhahran, Saudi Arabia.

B.Sc. degree in computer engineering with high honor
(G.P.A. 0f 4.64/5.00).

Department of Computer Engineering, Computer and
Information Sciences, King Saud University, Riyadh, Saudi
Arabia.

Advanced Arabic Authoring Language (CATIB) for
Computer Assisted Instructions (CAI). King Abdul Aziz
City for Science and Technology (KACST)

Arabic character recognition using Backpropagation
Neural Network. King Saud University (KSU).

