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Chapter 1

Introduction

1.1 Motivation

Elliptic Curve Cryptosystems (ECCs) [1] have been recently attracting increased

attention. Standards for ECCs have been adopted by IEEE, ANSI, NIST, SEC and

WTLS [2]–[8]. The ability to use smaller key sizes and the computationally more

efficient ECC algorithms are two main reasons why elliptic curve cryptosystems

are becoming more popular. They are considered to be particularly suitable for

implementation on platforms with constrained storage and/or battery specifications,

e.g. smart cards or mobile devices.

Power analysis attacks [11] on such devices are considered serious threats due

to the physical characteristics of these devices and their use in potentially hostile

environments. Power analysis attacks seek to break the security of these devices
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through observing their power consumption trace or computations timing. Careless

or naive implementations of cryptosystems may allow power analysis attacks to infer

the secret key or obtain partial information about it. Thus, designers of such systems

strive to introduce algorithms and architectures that are not only efficient, but also

power analysis attack resistant.

Several software implementations of elliptic curve cryptosystems have been re-

ported [13]–[18]. The advantages of software implementations include ease of use,

ease of upgrade, portability, low development cost and flexibility. Their main dis-

advantages, on the other hand, are their lower performance and limited ability to

protect private keys from disclosure compared to hardware implementations. These

disadvantages have motivated many researchers to investigate efficient architectures

for hardware implementations of elliptic curve cryptosystems.

Several hardware implementations of elliptic curve cryptosystems have been re-

ported. Most proposed hardware architectures were for elliptic curves cryptosystems

defined over GF (2m) [19]–[47]. Many elliptic curve implementations over GF (p)

have also been reported, e.g., [29, 36, 37, 50–54]. Hardware implementations offer

improved speed and higher security over software implementations, because they

cannot be read or modified by an outside attacker as easily as software implemen-

tations.

Application Specific Integrated Circuits (ASIC) implementations show lower

price per unit, high speeds, and low power dissipation. The main disadvantages
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of ASIC implementations, however, are higher development costs and the lack of

flexibility. Field Programmable Gate Array (FPGA) technology offers a good com-

promise between the speed of ASIC implementations, the short development times,

and adaptability of software implementations.

In this research, efficient elliptic curve cryptoprocessor architectures that are

resistant to known power analysis attacks have been developed. The proposed ar-

chitectures exploit parallelism and randomization to provide high performance and

resistance against power analysis attacks. These proposed architectures have been

modeled in VHSIC Hardware Description Language (VHDL) and implemented on

an FPGAs platform.

1.2 Organization of the Dissertation

This chapter provides the motivation for the work performed in this dissertation.

The remaining chapters of this dissertation are organized as follows.

Chapter 2 provides a brief introduction to GF (2m) finite field arithmetic. ECC

operations including scalar multiplication, encryption and discrete logarithm prob-

lem are also briefly explored in Chapter 2.

Chapter 3 reviews some of the most popular scalar multiplication algorithms.

Normal basis multiplication and inversion algorithms over GF (2m) are explained in

Chapter 4.

3



Chapter 5 surveys techniques for power analysis attacks and FPGA implemen-

tations of ECCs. The proposed power analysis attack-resistant cryptoprocessors are

detailed in Chapter 6.

Chapter 7 presents the results of synthesizing the various cryptoprocessors and

compares these cryptoprocessors in terms of delay and area. Finally, the conclusions

and future work are given in Chapter 8.
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Chapter 2

Background

This chapter provides a brief introduction to GF (2m) finite field arithmetic. ECC

operations including scalar multiplication, encryption and discrete logarithm prob-

lem are also briefly explored in this chapter.

2.1 Finite Field Arithmetic

In abstract algebra, a finite field is a field that contains only finitely many elements.

Finite fields are important in number theory, algebraic geometry, Galois theory,

coding theory, and cryptography [55]–[57].

A group is a set of elements G together with one binary operation, �, which have

the following properties:

1. Closure: ∀ a, b ∈ G, a � b ∈ G.
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2. Associativity: ∀ a, b, c ∈ G, (a � b) � c = a � (b � c).

3. Identity: The group contains an identity element e ∈ G such that

∀ a ∈ G, a � e = e � a = a.

4. Inverse: Every element a ∈ G has an inverse a−1 ∈ G such that a � a−1 =

a−1 � a = e.

Abelian groups are groups with commutative group operation; i.e., a � b = b � a

∀ a, b ∈ G. Cyclic groups are groups that have a generator element. An element

g ∈ G, is a generator of the group if each element a ∈ G can be generated by

repeated application of the group operation on g. Thus, ∀ a ∈ G,

a = g � g � g � ... � g︸ ︷︷ ︸
i times

(2.1)

Additive groups, are groups with the “ + ” group operator, denoted as:

ig = g + g + g + ... + g︸ ︷︷ ︸
i times

(2.2)

Similarly, multiplicative groups, are groups with the “ ∗ ” group operator, denoted

as:

gi = g ∗ g ∗ g ∗ ... ∗ g︸ ︷︷ ︸
i times

(2.3)

The order of a group G, represented by the symbol |G|, is the number of elements

6



in the group.

A field is a set of elements F with two binary operations, represented here as

addition “ + ” and multiplication “ ∗ ”, which have the following properties:

1. F is an abelian group with respect to the “ + ” operation.

2. The elements of the set F ∗ form an abelian group under the “ ∗ ” operation.

The set F ∗ is a set that contains all the elements in F except the additive

identity.

3. The distribution law applies to the two binary operations as follows:

∀ a, b, c ∈ F , a ∗ (b + c) = (a ∗ b) + (a ∗ c).

Finite fields or Galois field, so named in honor of Evariste Galois, are represented

by the symbol GF (q). For any prime p and positive integer m, there always exists

a Galois field of order q = pm. The prime p is called the characteristic of the finite

field GF (pm).

2.2 GF (2m) Arithmetic

The finite GF (2m) field, with characteristic 2, has particular importance in cryptog-

raphy since it leads to efficient hardware implementations. Elements of the GF (2m)
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field are represented in terms of a basis. Most implementations use either a Poly-

nomial Basis or a Normal Basis. For the implementations described in this disser-

tation, a normal basis is chosen since it leads to more efficient hardware. Normal

basis is more suitable for hardware implementations than polynomial basis since

operations mainly comprise rotation, shifting and exclusive-ORing which can be ef-

ficiently implemented in hardware. A normal basis of GF (2m) is a basis of the form

(β2m−1
, ..., β22

, β21
, β20

), where β ∈ GF (2m).

In a normal basis, an element A ∈ GF (2m) can be uniquely represented in the

form A =
∑m−1

i=0 αiβ
2i

, where ai ∈ {0, 1}. GF (2m) operations using normal basis

are performed as follows:

1. Addition. Addition is performed by a simple bit-wise exclusive-OR (XOR)

operation.

2. Squaring. Squaring is simply a rotate left operation. Thus, if

A = (am−1, am−2, ...a1, a0), then A2 = (am−2, am−3, ...a0, am−1).

3. Multiplication. ∀ A, B ∈ GF (2m), where

A =
m−1∑
i=0

aiβ
2i

and B =
m−1∑
i=0

biβ
2i
,

the product C = A ∗B, is given by:

C = A ∗B =
m−1∑
i=0

ciβ
2i
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Multiplication is defined in terms of a set of m multiplication matrices λ(k)

(k = 0, 1, ...,m− 1),

ck =
m−1∑
i=0

m−1∑
j=0

λ
(k)
ij aibj ∀ k = 0, 1, ...,m− 1

where, λ
(k)
ij ∈ {0, 1}.

The number of non-zero elements in the λ matrix defines the complexity of the

multiplication process and accordingly the complexity of its hardware imple-

mentation. This value is denoted as CN and is equal to (2m− 1) for optimal

normal basis (ONB) [58]. An optimal normal basis is one with the minimum

possible number of non-zero elements in the λij matrix. Such bases typically

lead to efficient hardware implementations since operations mainly comprise

rotation, shifting and exclusive-ORing.

Derivation of values of the λ matrix elements is dependent on the filed size

m. There are two types of optimal normal basis that are referred to as Type

I and Type II [58]. An ONB of Type I exists for a given field GF (2m) if:

(a) m + 1 is a prime

(b) 2 is a primitive in GF (m + 1)

On the other hand, a Type II optimal normal basis exists in GF (2m) if:

(a) 2m + 1 is prime
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(b) either 2 is a primitive in GF (2m + 1) or 2m + 1 ≡ 3 (mod 4) and 2

generates the quadratic residues in GF (2m + 1)

An ONB exists in GF (2m) for 23% of all possible values of m [58]. The λ(k)

matrix can be constructed by a k-fold cyclic shift to λ(0) as follows:

λ
(k)
ij = λ

(0)
i−k,j−k for all 0 ≤ i, j, k ≤ m− 1

The λ(0) matrix is derived differently for the two types of ONB. For the Type

I ONB, λ
(0)
ij = 1 iff i and j satisfy one of the following two congruences [59]:

(a) 2i + 2j ≡ 1 mod (m + 1)

(b) 2i + 2j ≡ 0 mod (m + 1)

For Type II ONB, λ
(k)
ij = 1 iff i and j satisfy one of the following four congru-

ences [59]:

(a) 2i + 2j ≡ 2k mod (2m + 1)

(b) 2i + 2j ≡ −2k mod (2m + 1)

(c) 2i − 2j ≡ 2k mod (2m + 1)

(d) 2i − 2j ≡ −2k mod (2m + 1)

Therefore, λ
(0)
ij = 1 iff i and j satisfy one of the following four congruences:

2i ± 2j ≡ ±1 mod (2m + 1)
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4. Inversion. Inverse of a ∈ GF (2m), denoted as a−1, is defined as follows.

aa−1 ≡ 1 mod 2m

Most inversion algorithms are derived from Fermat’s Little Theorem, where

a−1 = a2m−2

for all a 6= 0 in GF (2m).

2.3 Elliptic Curve Arithmetic

An elliptic curve E over the finite field GF (p) defined by the parameters a, b ∈ GF (p)

with p > 3, consists of the set of points P = (x, y), where x, y ∈ GF (p), that satisfy

the elliptic curve equation (Equation 2.4) together with the additive identity of the

group point O, known as the “point at infinity” [1].

y2 = x3 + ax + b (2.4)

where a, b ∈ GF (p) and 4a3 + 27b2 6= 0 mod p.

The number of points n on an elliptic curve over a finite field GF (q) is defined

by Hasse’s theorem [56]. The set of discrete points on an elliptic curve form an

abelian group, whose group operation is known as point addition. Elliptic curve
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point addition is defined according to the “chord-tangent process”. Point addition

over GF (p) is described as follows.

Let P and Q be two distinct points on E defined over GF (p) with Q 6= −P (Q is

not the additive inverse of P ). The addition of the two points P and Q is the point

R (R = P + Q), where R is the additive inverse of S, and S is a third point on E

intercepted by the straight line through points P and Q. The additive inverse of a

point P = (x, y) ∈ E, over GF (p), is the point −P = (x,−y) which is the reflection

of the point P with respect to the x-axis on E. The addition operation over GF (p)

is depicted in Figure 2.1.

When P = Q and P 6= −P, the addition of P and Q is the point R (R = 2P ),

where R is the additive inverse of S, and S is the third point on E intercepted by

the straight line tangent to the curve at point P . This operation is referred to as

point doubling, and is shown in Figure 2.2.

Equation 2.5 defines the non-supersingular elliptic curve equation for GF (2m)

fields. Only non-supersingular curves over GF (2m) are considered since supersin-

gular curves are not secure. Supersingular elliptic curves are special class of curves

with some special properties that make them unstable for cryptography [60].

y2 + xy = x3 + ax2 + b (2.5)

where a, b ∈ GF (2m) and b 6= 0.
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Figure 2.1: The point addition operation (R = P + Q) over GF (p).

Figure 2.2: The point doubling operation (R = 2P ) over GF (p).
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For a non-supersingular elliptic curve E defined over GF (2m), point addition

and point doubling operations are generally computed using the algebraic formulae

as follows:

• Identity: P +O = O + P = P for all P ∈ E.

• Negatives: If P = (x, y) ∈ E, then (x, y)+(x, x+y) = O. The point (x, x+y)

is called the negative of P , denoted as −P .

• Point Addition: Let P = (x1, y1), Q = (x2, y2) ∈ E, P 6= Q and Q 6= −P,

then P + Q = (x3, y3), where

x3 = ( y1+y2

x1+x2
)2 + ( y1+y2

x1+x2
) + x1 + x2 + a

y3 = ( y1+y2

x1+x2
) · (x1 + x3) + x3 + y1

• Point Doubling: If P = Q = (x1, y1), then 2P = P + P = (x3, y3), where

x3 = x2
1 + b

x2
1

y3 = x2
1 + (x1 + y1

x1
)x3 + x3

A major operation required by elliptic curve cryptosystems is the point scalar

multiplication. The scalar multiplication operation, denoted as kP , where k is an
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integer and P is a point on the elliptic curve represents the addition of k copies of

point P as given by Equation 2.6.

kP = P + P + ... + P︸ ︷︷ ︸
k times P

(2.6)

Elliptic curve cryptosystems are built over cyclic groups. Each group contains a

finite number of points, n, that can be represented as scalar multiples of a generator

point: iP for i = 0, 1, ..., n − 1, where P is a generator of the group. The order of

point P is n, which implies that nP = O and iP 6= O for 1 < i ≤ n− 1. The order

of each point on the group must divide n. Consequently, a point multiplication kQ

for k > n can be computed as (k mod n)Q.

Projective coordinate system defines points over the projective plane as triplets

(X, Y, Z). Projective coordinate systems are used to eliminate the number of in-

versions [60]. For elliptic curve defined over GF (2m), many different forms of

formulas may be used for point addition and doubling [61]–[64]. For the Homo-

geneous coordinate system, an elliptic curve point (x, y) takes the form (x, y) =

(X/Z, Y/Z) [62], while for the Jacobian coordinate system, a point takes the form

(x, y) = (X/Z2, Y/Z3) [63]. The Lopez-Dahab coordinate system takes the form

(x, y) = (X/Z, Y/Z2) [64] and requires 14 and 5 field multiplications for point ad-

dition and point doubling respectively. This is less than the number of field multi-

plications required by both Homogenous and Jacobian coordinate systems. Tables
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Table 2.1: The Homogeneous projective coordinate system.

Addition Multiplications Doubling Multiplications
A = X1Z2 1M A = X1Z1 1M
B = X2Z1 1M B= bZ 4

1 + X4
1 1M

C = A + B C= AX 4
1 1M

D = Y1Z2 1M D = Y1Z1 1M
E = Y2Z1 1M E = X2

1 + D + A
F = D + E Z3 = A3 1M
G = C + F X3=AB 1M
H = Z1Z2 1M Y3= C+BE 1M
I = C3+aHC 2

+HFG
5M

X3 = CI 1M
Z3 = HC 3 1M
Y3=GI+
C2[FX 1+CY 1]

4M

Total 16M 7M

2.1–2.3 show the different formulae for point operations and the required number of

field multiplications for different coordinate systems. The Mixed coordinate system

adds two points where one is given in some coordinate system while the other in

another coordinate system. The coordinate system of the resulting point, may be

in a third coordinate system [61].

2.4 Scalar Multiplication

Scalar multiplication is the basic operation for ECC process. Scalar multiplication

in the group of points of an elliptic curve is the analogous of exponentiation in
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Table 2.2: The Jacobian projective coordinate system.

Addition Multiplications Doubling Multiplications
A = X1Z

2
2 1M Z3 = X1Z

2
1 1M

B = X2Z
2
1 1M A = bZ 2

1 1M
C = A + B B = X1 +A
D = Y1Z

3
2 2M X3 = B4

E = Y2Z
3
1 2M C = Z1Y1 1M

F = D + E D = Z3 +
X2

1 + C
G = Z1C 1M E = DX 3 1M
H=FX2+GY 2 2M Y3 = X4

1Z3

+E
1M

Z3 = GZ 2 1M
I = F + Z3

X3= aZ 2
3+IF

+C3

3M

Total 15M 5M

the multiplicative group of integers modulo a fixed integer m. Computing kP can

be performed using a straightforward double-and-add approach based on the binary

representation of k = (km−1, ..., k0) where km−1 is the most significant bit of k. Other

scalar multiplication methods have been proposed in the literature. A good survey

has been conducted by Gordon in [65]. These scalar multiplication algorithms are

described in detail next chapter.
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Table 2.3: The Lopez-Dahab projective coordinate system.

Addition Multiplications Doubling Multiplications
A0 = Y 2

1 Z2
1 1M Z3 = Z2

1X
2
1 1M

A1 = Y1Z
2
2 1M X3 = X4

1+bZ 4
1 1M

B0 = X2Z1 1M Y3=bZ 4
1Z3+

X3(aZ 3 + Y 2
1

+bZ 4
1)

3M

B1 = X1Z2 1M
C = A0 + A1

D = B0 + B1

E = Z1Z2 1M
F=DE 1M
Z3 = F 2

G = D2(F
+aE 2)

2M

H=CF 1M
X3 = C2 +H
+G
I = D2B0E
+X3

2M

J = D2A0 +
X3

1M

Y3=HI+Z 3J 2M
Total 14M 5M
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2.5 Elliptic Curve Encryption

Several approaches were proposed to employ elliptic curves for encryption/decryption.

These include elliptic curve analogs of most popular public key protocols such as

elliptic curve Diffie-Hellman and elliptic curve ElGamal [59].

2.5.1 Elliptic Curve Diffie-Hellman Protocol

In Elliptic Curve Diffie-Hellman Protocol, the base point P and the elliptic curve

equation are public. User’s A private and public keys are kA and PA = kAP respec-

tively. User’s B, on the other hand, private and public keys are kB and PB = kBP

respectively. The message to be encrypted is embedded into the x -coordinate of a

point on the elliptic curve (Pm = (xm, ym))[59]. The shared secret key S between

two parties A and B is easily calculated by

S = kA(kBP ) = kB(kAP )

Whenever one of the users need to send a message to the other party, he needs to

add the shared secret key to the message to produce the ciphertext point PC given

by

PC = Pm + S

To decrypt the ciphertext point, the secret key is subtracted from the ciphertext

point to give the plaintext point Pm given by

19



Pm = Pc − S

2.5.2 Elliptic Curve ElGamal Protocol

In elliptic curve ElGamal protocol, for some user to encrypt and send the message

point Pm to user A, he chooses a random integer “l” and generates the ciphertext

which consists of the following pair of points:

Cm = (lP, Pm + lPA)

The ciphertext pair of points uses A’ s public key, where only user A can decrypt

the plaintext using his private key. To decrypt the ciphertext Cm, the first point in

the pair of Cm, lP, is multiplied by A’ s private key to get the point: kA(lP ). This

point is subtracted from the second point of Cm to produce the plaintext point Pm.

The complete decryption operations are:

Pm = (Pm + lPA)− kA(lP ) = Pm + l(kAP )− kA(lP )

2.6 Elliptic Curve Discrete Logarithm Problem

The Elliptic Curve Discrete Logarithm Problem (ECDLP) is defined as follows:

Given a known elliptic curve and two known points on the curve P and Q, the

ECDLP is to find an integer 0 ≤ k ≤ m − 1, such that Q = kP if such a number

exists.
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P is called the base point while k is known as the elliptic curve discrete logarithm

of Q with respect to P (i.e., k = logP (Q)). The discrete logarithm problem is

an intractable problem if the parameters are carefully chosen. The most efficient

algorithm known to date for computing an elliptic curve discrete logarithm is the

Pollard–ρ algorithm [66].

The Pollard–ρ algorithm requires an average of O(
√

n), where n is the number

of points on the elliptic curve, to compute an elliptic curve discrete logarithm even

with its parallelized version given by Gallant et. al. [67]. Hence, the security of

elliptic curve cryptosystems is based on the intractability of ECDLP.

It is important to realize that well-chosen curves achieve the required degree

of security. Other curves may exhibit structures that facilitate cryptanalysis, e.g.,

curves defined over composite fields of characteristic two [50].

2.7 Summary

In this chapter a brief introduction to GF (2m) finite field arithmetic has been pro-

vided. Elements in GF (2m) are mainly represented using (1) normal basis, or (2)

polynomial basis. Normal basis is chosen for the implementations described in this

dissertation since field operations in normal basis mainly consist of rotation, shifting

and exclusive-ORing which can be efficiently implemented in hardware.

Elliptic curve point operations have also been defined including (1) point addi-
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tion, and (2) point doubling. The addition of k copies of a point P is called scalar

multiplication and is denoted as kP . Scalar multiplication is the basic operation

in ECC encryption/decryption process and therefore efficient scalar multiplication

algorithms are highly required.

Several projective coordinate systems have been proposed to reduce the number

of inversions in scalar multiplication to only one single inversion. Lopez-Dahab pro-

jective coordinate system requires less number of field multiplications as compared

to other existing projective coordinate systems. Accordingly, Lopez-Dahab projec-

tive coordinate system has been selected for the the implementations presented in

this dissertation.

Being the core of elliptic curve cryptosystems security, the intractability of the

elliptic curve discrete logarithm problem has been also discussed in this chapter.
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Chapter 3

Scalar Multiplication Algorithms

Most scalar multiplication algorithms are variants of similar algorithms employed for

exponentiation. This chapter describes some of the most popular scalar multiplica-

tion algorithms [3,17,65,68–71]. These algorithms can be categorized into two main

categories: (1) fixed space-time algorithms, and (2) flexible space-time algorithms.

3.1 Fixed Space-Time Scalar Multiplication Al-

gorithms

This category contains scalar multiplication algorithms that require fixed number of

point additions and doubles. These algorithms also require fixed space complexity

in terms of required storage number of points.
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3.1.1 Double-and-Add Scalar Multiplication Algorithm

The double-and-add scalar multiplication algorithm, so called the binary algorithm,

is the easiest straightforward scalar multiplication algorithm. It inspects the bits

of the scalar multiplier k, if the inspected bit ki = 0, only point doubling is per-

formed. If, however, the inspected bit ki = 1, both point doubling and addition

are performed. Algorithms 3.1 and 3.2 show the most-to-least and the least-to-most

versions of the double-and-add scalar multiplication algorithm respectively.

In Algorithm 3.1, point doubling is always performed in Step 2.1, while point

addition is performed in Step 2.2 only if ki = 1. Similarly, in Algorithm 3.2, point

addition is performed in Step 2.1 only if ki = 1, while point doubling is always

performed in Step 2.2.

The double-and-add scalar multiplication algorithm requires, m point doubles

and an average of m
2

point additions. This algorithm also requires the storage of

two points, P and Q.

Algorithm 3.1 Double-and-add scalar multiplication algorithm (most-to-least).

Inputs: P, k
Output: kP
Initialization:
1. Q = P
Scalar Multiplication:
2. for i = m− 2 down to 0 do

2.1. Q = 2Q
2.2. if ki = 1 then Q = Q + P
end for

3. return(Q)
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Algorithm 3.2 Double-and-add scalar multiplication algorithm (least-to-most).

Inputs: P, k
Output: kP
Initialization:
1. Q = O, R = P
Scalar Multiplication:
2. for i = 0 to m− 1 do

2.1. if ki = 1 then Q = Q + R
2.2. R = 2R
end for

3. return(Q)

3.1.2 Addition-Subtraction Scalar Multiplication Algorithm

Instead of performing only point doubles and additions as in the double-and-add

algorithm, the addition-subtraction scalar multiplication algorithm uses point sub-

tractions in addition to point doubles and additions operations (Algorithm 3.3).

Non-Adjacent Form (NAF) representation described in [71] is used in Algorithm

3.3. Using NAF representation, a multiplier k =
∑m−1

i=0 ki2
i is uniquely recoded as

k =
∑m

i=0 k′
i2

i with k′
i ∈ [−1, 1], where the recoded representation does not contain

contiguous nonzero digits. The NAF representation of an m-bit scalar multiplier k

is at most (m + 1) digits long and its average number of nonzero digits is m
3
. Thus,

the addition-subtraction algorithm requires m point doubles and an average of m
3

point additions.

Algorithm 3.3 shows the most-to-least version of the addition-subtraction algo-

rithm. In Algorithm 3.3, the NAF recoding step is performed in Steps 1-1.4. Scalar

multiplications of Algorithm 3.3 actually starts in Step 2. The number of iterations
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performed by Algorithm 3.3 is (m + 1) iterations. In Algorithm 3.3, point doubling

of the accumulated point is always performed in Step 2.1, while point addition is

performed in Step 2.2.1 only if the value of recoded digit k′
i = 1. While point

subtraction is performed in Step 2.3.1 only if k′
i = −1.

The addition-subtraction algorithm requires only the storage of two points, P

and Q.

Algorithm 3.3 Addition-subtraction scalar multiplication algorithm.

Inputs: P, k
Output: kP
Initialization:
Q = O
Recoding of k : k =

∑m
i=0 k′

i2
i, k′

i ∈ [−1, 1]
1. for i = 0 to m do

1.1. if k mod 2=1 then
1.1.1 k′

i = 2− (k mod 22)
1.2. else

1.2.1 k′
i = 0

1.3 k = k − k′
i

1.4 k = k/2
end for

Scalar Multiplication:
2. for i = m down to 0 do

2.1. Q = 2Q
2.2. if k′

i = 1 then
2.2.1. Q = Q + P

2.3. if k′
i = −1 then

2.3.1. Q = Q− P
end for

3. return(Q)
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3.1.3 Montgomery Scalar Multiplication Algorithm

The Montgomery algorithm [72] is based on the observation that the x-coordinate of

the sum of two points P1 and P2, whose difference is known to be P (P2−P1 = P ),

can be computed using the x-coordinates of the points P, P1, and P2. Consequently,

the y-coordinate of the point P1 can be recovered using the x-coordinates of P, P1,

and P2 together with the y-coordinate of P . This requires two inversions in each

iteration if affine coordinate system is used as illustrated in Algorithm 3.4.

Algorithm 3.4 Montgomery Scalar Multiplication Algorithm.

Inputs: P = (x, y), k
Output: kP
Initialization:
1. x1 = x, x2 = x2 + b

x2 .
Scalar Multiplication:
2. for i = m− 2 down to 0 do

2.1. t = x1

x1+x2

2.2. if ki = 1 then
2.2.1 x1 = x + t2 + t, x2 = x2

2 + b
x2
2

2.3. else
2.3.1 x1 = x2

1 + b
x2
1
, x2 = x + t2 + t

end for
3. r1 = x1 + x, r2 = x2 + x.

4. y1 = r1(r1r2+x2+y)
x+y

5. return((x1, y1).)

Alternatively, Lopez and Dahab [16] used projective coordinate to reduce the

number of inversions to only one single inversion at the end. More details on the

improved Montgomery algorithm is explained in [16].
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3.2 Flexible Space-Time Scalar Multiplication Al-

gorithms

This category contains flexible scalar multiplication algorithms that can be cus-

tomized according to the user need in terms of space and time complexities.

3.2.1 w-ary Scalar Multiplication Algorithm

The double-and-add algorithm is a special case of the w -ary scalar multiplication

algorithm. The w -ary algorithm processes w bits of the scalar multiplier k in each

iteration instead of only a single bit as in the double-and-add algorithm. The w -

ary algorithm requires recoding the scalar multiplier and precomputing some points

before starting scalar multiplication.

Algorithm 3.5 shows the most-to-least version of the w -ary algorithm. Steps

1-1.3 show the process of recoding the multiplier k using radix digits. The recoded

scalar multiplier has dm
w
e with each digit in the range [0, 2w): k =

∑dm
w
e−1

i=0 k′
i2

wi.

The points iP for i ∈ [2, 2w) are precomputed (Steps 2-2.2), and stored to be used

later as needed. The precomputed points require approximately 2w−1 point doubles

and 2w−1 point additions.

The scalar multiplication process starts at Step 3. The number of iterations

performed is dm
w
e. In Algorithm 3.5, w point doubles are always performed in Step

3.1, while point addition of is performed in Step 3.2 only if k′
i 6= 0.
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The scalar multiplication phase requires m point doubles and approximately an

average of m
w

point additions. The algorithm also requires the storage of approxi-

mately 2w points.

Algorithm 3.5 w -ary scalar multiplication algorithm.

Inputs: P, k
Output: kP
Initialization:
Q = O, P1 = P

Recoding of k : k =
∑dm

w
e−1

i=0 k′
i2

wi, k′
i ∈ [0, 2w)

1. for i = 0 to dm
w
e − 1 do

1.1. k′
i = k mod 2w

1.2. k = k − k′
i

1.3. k = k/2w

end for
Precomputations: Pi = iP, i ∈ [0, 2w)
2. for i = 1 to 2w−1 − 1 do

2.1. P2i = 2Pi

2.2. P2i+1 = P2i + P
end for

Scalar Multiplication:
3. for i = dm

w
e − 1 down to 0 do

3.1. Q = 2wQ
3.2. if k′

i 6= 0 then
3.2.1. Q = Q + Pk′i

end for
4. return(Q)

3.2.2 w-ary Addition-subtraction Scalar Multiplication Al-

gorithm

The addition-subtraction algorithm is a special case of the w -ary addition-subtraction

scalar multiplication algorithm. The w -ary addition-subtraction algorithm processes

29



w bits of the scalar multiplier k in each iteration instead of only a single bit as in the

addition-subtraction algorithm. The w -ary algorithm requires recoding of the scalar

multiplier and precomputing of some points before starting the scalar multiplication

process.

Algorithm 3.6 w -ary addition-subtraction scalar multiplication algorithm.

Inputs: P, k
Output: kP
Initialization:
Q = O, P1 = P

Recoding of k : k =
∑dm+1

w
e−1

i=0 k′
i2

wi, k′
i ∈ [−2w−1, 2w−1)

1. for i = 0 to dm+1
w
e − 1 do

1.1. k′
i = k mod 2w

1.2. if k′
i ≥ 2w−1 then

1.2.1 k′
i = −(2w − k′

i)
1.3. k = k − k′

i

1.4. k = k/2w

end for
Precomputations: Pi = iP, i ∈ [1, 2w−1]
2. for i = 1 to 2w−2 − 1 do

2.1. P2i = 2Pi

2.2. P2i+1 = P2i + P
end for

3. P2w−1 = 2P2w−2

Scalar Multiplication:
4. for i = dm+1

w
e − 1 down to 0 do

4.1. Q = 2wQ
4.2. if k′

i > 0 then
4.2.1. Q = Q + Pki

4.3. if k′
i < 0 then

4.3.1. Q = Q− P|ki|
end for

5. return(Q)

Algorithm 3.6 shows the most-to-least version of the w -ary addition-subtraction

algorithm. Steps 1-1.4 show the recoding of the multiplier k in radix 2w with dm+1
w
e
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digits in the range [−2w−1, 2w−1): k
∑dm+1

w
e−1

i=0 k′
i2

wi. Precomputations are performed

in Steps 2-3. The precomputed points are of the values iP for i ∈ [2, 2w−1] and

require approximately 2w−2 point doubles and 2w−2 point additions.

Scalar multiplications of Algorithm 3.6 actually starts in Step 4. The number

of iterations performed by Algorithm 3.6 is dm+1
w
e − 1 iterations. In Algorithm 3.6,

w point doubles of the accumulated point are always performed in Step 4.1, while

point addition of the point P|k′i| and the accumulated point is performed in Step

4.2.1 only if k′
i > 0. If k′

i < 0, the point P|k′i| is subtracted from the accumulated

point in Step 4.3.1.

The w -ary algorithm requires in scalar multiplication phase m point doubles

and an average of m
w

point additions. The algorithm also requires the storage of

approximately 2w−1 points.

3.2.3 Width-w Addition-Subtraction Scalar Multiplication

Algorithm

The width-w addition-subtraction scalar multiplication algorithm is an extension of

the addition-subtraction algorithm. It uses w -NAF recoding to recode the scalar

multiplier k as follows: k =
∑l

i=0 k′
i2

i where k′
i ∈ (−2w−1, 2w−1) and k′

i is odd. The

width-w addition-subtraction algorithm requires also precomputation in addition to

recoding before performing scalar multiplication.
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Algorithm 3.7 Width-w Addition-Subtraction Scalar Multiplication Algorithm.

Inputs: P, k
Output: kP
Initialization:
Q = O
Recoding of k : k =

∑m
i=0 k′

i2
i, k′

i ∈ (−2w−1, 2w−1)
1. for i = 0 to m do

1.1. if k mod 2 =1 then
1.1.1. k′

i = k mod 2w

1.1.2. if k′
i ≥ 2w−1 then

1.1.2.1 k′
i = −(2w − k′

i)
1.2. else

1.2.1. k′
i = 0

1.3. k = k − k′
i

1.4. k = k/2
end for

Precomputations:
2. P0 = P
3. T = 2P
4. for i = 1 to 2w−2 − 1 do

4.1 Pi = Pi−1 + T
end for
Scalar Multiplication:
5. for i = m down to 0 do

5.1. Q = 2Q
5.2. if k′

i > 0 then
5.2.1. Q = Q + Pbk′i/2c

5.3. if k′
i < 0 then

5.3.1. Q = Q− Pb|k′i|/2c
end for

6. return(Q)
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Algorithm 3.7 shows the most-to-least version of the width-w addition-subtraction

algorithm. In Algorithm 3.7, the w -NAF recoding step is performed in Steps 1-1.4.

Precomputation of the points iP for odd values of i in the range [3, 2w−1) are com-

puted in Steps 2-4.1. The precomputation phase of Algorithm 3.7 requires one point

double and 2w−2 − 1 point additions.

Scalar multiplications of Algorithm 3.7 actually starts in Step 5. The number of

iterations performed by Algorithm 3.7 is m + 1 iterations. In Algorithm 3.7, point

doubling of the accumulated point is always performed in Step 5.1. Point addition

is performed between the accumulated point and the point Pbk′i/2c in Step 5.2.1 only

if the value of recoded digit k′
i > 0. While the point Pb|k′i|/2c is subtracted from the

accumulated point in Step 5.3.1 only if k′
i < 0. Scalar multiplications require m

point doubles and on the average m
w+1

point additions/subtractions. The algorithm

also requires the storage of approximately 2w−2 points.

3.2.4 Signed BGMW Scalar Multiplication Algorithm

The signed BGMW scalar multiplication algorithm is based on the BGMW scalar

multiplication algorithm [73]. It recodes the scalar multiplier k using signed digit

representation as: k =
∑dm+1

w
e−1

i=0 k′
i2

wi with k′
i ∈ (−2w−1, 2w−1).

Algorithm 3.8 shows the signed BGMW scalar multiplication algorithm. In

Algorithm 3.8, recoding of the scalar multiplier k is performed in Steps 1-1.4.

The precomputation steps (Steps 2-3.1), require precomputing the points 2wiP for
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Algorithm 3.8 Signed BGMW Scalar Multiplication Algorithm.

Inputs: P, k
Output: kP
Initialization:
A = O, B = O
Recoding of k : k =

∑dm+1
w

e−1

i=0 k′
i2

wi, k′
i ∈ [−2w−1, 2w−1)

1. for i = 0 to dm+1
w
e − 1 do

1.1. k′
i = k mod 2w

1.2. if k′
i ≥ 2w−1 then

1.2.1 k′
i = −(2w − k′

i)
1.3. k = k − k′

i

1.4. k = k/2w

end for
Precomputation: Pi = 2wiP, ∀i = 0, 1, ..., (dm+1

w
e − 1)

2. P0 = P
3. for i = 1 to dm+1

w
e − 1 do

3.1. Pi = 2wiPi−1

end for
Scalar Multiplication:
4. for j = 2w−1 down to 1 do

4.1. for each i for which k′
i = j do

4.1.1 B = B + Pi

4.2. for each i for which k′
i = −j do

4.2.1 B = B − Pi

4.3. A = A + B
5. return(A)
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i = 1, 2, ...(dm+1
w
e − 1).

In the scalar multiplication phase, point addition or subtraction is performed

between the accumulated point and the point 2wiP depending on the value of k′
i.

From the iteration at which the point 2wiP is added or subtracted till the last

loop iteration, the accumulated point is added to itself k′
i times; therefore, the

accumulated point incorporates the point k′
i(2

wiP ) in its result (Steps 4-4.3).

In Algorithm 3.8, scalar multiplication requires 2w−1+m
w

point additions/subtractions

and no point doubling is required. The algorithm also requires the storage of dm
w
e

points.

3.2.5 Lim-Lee Scalar Multiplication Algorithm

The Lim-Lee scalar multiplication algorithm, so called the comb scalar multiplication

algorithm, is proposed by Lim and Lee in [74]. Algorithm 3.9 shows the most-to-least

version of the Lim-Lee scalar multiplication algorithm.

In this algorithm, the scalar multiplier k is arranged into h blocks, each of length

a = dm
h
e. Furthermore, each block is subdivided into v blocks of size b = da

v
e. Thus,

the scalar multiplier k can be written as:

k =
h−1∑
r=0

v−1∑
s=0

b−1∑
t=0

kvbr+bs+t2
vbr+bs+t

The scalar multiplication expression is given as:

kP =
b−1∑
t=0

2t(
v−1∑
s=0

G[s][Is,t])
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Algorithm 3.9 Lim-Lee Scalar Multiplication Algorithm.

Inputs:
P, k
h - number of blocks of k = the number of rows in the precomputation array
a - length of the blocks
v - number of sub-blocks to which each block is divided
b - size of each sub-block
Output: kP
Initialization:
Q = O
Precomputation:
1. for i = 0 to h− 1 do

1.1. Pi = 2aiP
end for

Precomputation array:
2. for u = 1 to 2h − 1 do

2.1. G[0][u] =
∑h−1

s=0 usPs, where u =
∑h−1

s=0 us2
s, us ∈ [0, 1]

2.2. for s = 1 to v − 1 do
2.2.1. G[s][u] = 2sbG[0][u]
end for

end for
Scalar Multiplication:
3. for t = b− 1 down to 0 do

3.1. Q = 2Q
3.2. for s = v − 1 down to 0 do

3.2.1 Is,t =
∑h−1

t=0 kat+bs+t2
i

3.2.2 if Is,t 6= 0 then
3.2.2.1. Q = Q + G[s][Is,t]

end for
end for

4. return(Q)
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where the precomputation array G[s][u] for 0 ≤ s < v, 0 ≤ u < 2h, and u =

(uh−1...u0)2, is defined by the following equations:

G[0][u] =
h−1∑
r=0

ur2
rvbP ,

G[s][u] = 2sbG[0][u],

and the number Is,t, for 0 ≤ s < v − 1 and 0 ≤ t < b is defined by:

Is,t =
h−1∑
r=0

kvbr+bs+t2
r,

Algorithm 3.9 requires b− 1 point doubles and an average of a point additions.

This algorithm also requires the storage of v(2h−1) points. More details on Lim-Lee

algorithm is explained in [74].

Table 3.1 summarizes the average time complexity and storage requirement of

scalar multiplication algorithms. The average time complexity is specified in terms

of point additions and point doubles without including precomputations which can

be performed off-line. While the storage requirements are specified in terms of the

number of points that needs to be stored.

3.3 Summary

In this chapter, scalar multiplication algorithms have been surveyed. These algo-

rithms can be categorized into two main categories: (1) fixed space-time algorithms,
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Table 3.1: Complexity of scalar multiplication algorithms

Algorithm # doubles # additions # Stored points
double-and-add m m

2
2

addition-subtraction m m
3

2
w -ary m m

w
2w

w -ary addition-subtraction m m
w

2w−1

width-w m m
w+1

2w−2

addition-subtraction
Signed BGMW 0 2w−1 + m

w
m
w

Lim-Lee b− 1 a v(2h − 1)
(m = ah, a = vb)

and (2) flexible space-time algorithms. Most of these algorithms use scalar mul-

tiplier recoding and precomputed points to speedup the required time for scalar

multiplication.

The fixed space-time algorithms category contains scalar multiplication algo-

rithms that require fixed number of point additions and doubles. These algorithms

also require fixed storage requirements. These include (1) the double-and-add algo-

rithm, (2) the addition-subtraction algorithm, and (3) the Montgomery algorithm.

The flexible space-time algorithms category, on the other hand, contains flexible

scalar multiplication algorithms that can be customized according to user needs in

terms of space and time. These include (1) the w -ary algorithm, (2) the w -ary

addition-subtraction algorithm, (3) the width-w addition-subtraction algorithm, (4)

the Signed BGMW algorithm, and (5) the Lim-Lee algorithm.

For the implementations presented in this dissertation, the double-and-add al-
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gorithm is selected for one implementation and new algorithms are proposed for

the other implementations which use scalar multiplier recoding and precomputed

points.
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Chapter 4

Normal Basis GF (2m) Field

Arithmetic

Efficient computations in finite fields and their architectures are important in many

applications, including coding theory, and public-key cryptosystems (e.g., elliptic

curve cryptosystems (ECC) [1]). Although all finite fields of the same cardinality are

isomorphic, their arithmetic efficiency depends greatly on the choice of the basis used

for field element representation. The most commonly used bases are the polynomial

basis (PB) and the normal basis (NB)[60][75]. The normal basis [57] is more suitable

for hardware implementations than the polynomial basis since operations in normal

basis representation are mainly comprised of rotation, shifting and exclusive-ORing

which can be efficiently implemented in hardware. This chapter surveys GF (2m)

field multiplication and inversion algorithms. A more detailed survey with examples
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is found in our work in [76].

4.1 Multiplication

In finite field arithmetic, multiplication is a more complex operation than addition

and squaring. An efficient multiplier is the key for efficient finite field computations.

Finite filed multipliers using normal basis can be classified into two main categories:

(1) λ-matrix based multipliers and (2) Conversion based multipliers.

4.1.1 λ-Matrix Based Multipliers

Massey and Omura [77] proposed an efficient normal basis bit-serial multiplier over

GF (2m). The Massey-Omura multiplier requires only two m-bit cyclic shift registers

and combinational logic. The combinational logic consists of a set of AND and

XOR logic gates (see Figure 4.1). The first implementation of the Massey-Omura

multiplier was reported by Wang. et. al. [78]. The space complexity of the Massey-

Omura multiplier is (2m − 1) AND gates + (2m − 2) XOR gates, while the time

complexity is TA + (1 + log2(m − 1))TX , where TA and TX are the delay of one

AND gate and one XOR gate respectively. One advantage of the Massey-Omura

multiplier is that it can be used with both types of the optimal normal basis (Type

I and Type II). The bit-parallel version of the Massey-Omura multiplier requires

(2m2 −m) AND gates + (2m2 − 2m) XOR gates.
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Figure 4.1: GF (25) bit-serial Massey-Omura multiplier [77].

Hasan et. al. [79] proposed a modified version of the Massey-Omura parallel

multiplier which works only with ONB Type I. The basic idea is to decompose the

λm−1 matrix as a sum of two matrices P and Q.

λ(m−1) = P + Q (mod 2)

where the (i, j) entry of P is defined as follows:

pi, j =


1, if i = (m

2
+ j);

0 otherwise.

The product cm−1−k can be obtained as:

cm−1−k = A λ(k) Bt = A P Bt + A(k) Q B(k)t , ĉ + ĉm−1−k (mod 2)
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where A(k) and B(k) are the k-cyclic shifted vectors of A and B. Hasan et.

al. noticed that ĉ is independent of k and is present in each cm−1−k. Hence, it

can be precomputed once at the beginning thus reducing the multiplier’s hardware

complexity. Compared to the Massey-Omura parallel multiplier, this multiplier

requires only (m2 − 1) XOR gates and the same number of AND gates. However,

the time complexity of this modified parallel multiplier is the same as the Massey-

Omura parallel multiplier and the number of XOR gates is still O(m2).

Alternatively, Gao and Sobelman in [80] noticed that the Massey-Omura bit-

serial multiplier is constructed using an AND plane and an XOR plane. Gao and

Sobelman suggested to rearrange these planes into three planes: XOR-plane, AND-

plane and another XOR-plane as shown in Figure 4.2. This is achieved by rearrang-

ing the multiplication equation as:

ck =
m−1∑
i=0

m−1∑
j=0

aiλ
(k)
ij bj =

m−1∑
i=0

ai[
m−1∑
j=0

λ
(k)
ij bj]

The Gao and Sobelman multiplier [80] requires the same number of XOR gates

and has the same time complexity as the Massey-Omura multiplier. The only im-

provement was reducing the number of AND gates to only m2 AND gate compared

to (2m2 −m) AND gates for the Massey-Omura multiplier.

Reyhani-Masoleh and Hasan [81] presented another multiplier based on the same

idea of rearranging the multiplier’s XOR and AND planes as in [80] but with a

different formulation. The product terms are reformulated as:

43



Figure 4.2: Gao and Sobelman multiplier [80].

ck = akbk +
∑

(r, s)∈Φk

(ar + as)(br + bs), 0 ≤ k ≤ m− 1.

where Φk contains the coordinates of 1’s in the upper part of the λk matrix. The

space complexity is (m2) AND + (3m2− 3m) XOR gates while the time complexity

is TA + dlog2(2m − 1)eTX . This means that the Gao and Sobelman [80] multiplier

is more efficient than Reyhani-Masoleh and Hasan multiplier [81].

Reyhani-Masoleh and Hasan have also reported [82] a parallel multiplier that

takes advantage of the symmetry of the λ matrix and reduced redundancy in the λ

matrix. This is achieved by rewriting the λ matrix as λ = U + UT + D, where D is

the diagonal matrix and U is the upper triangular matrix having zeros at diagonal

entries. Thus, the multiplication product can be written as follows:

C = A× U ×BT + B × U × AT + A×D ×BT
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Table 4.1: The λ-based multipliers and their space and time complexities.

Multiplier Space Complexity Time Complexity Type
of ONB

Massey and Omura [77] (2m2 −m) AND TA + (1 + log2(m− 1))TX I & II
+ (2m2 − 2m) XOR

Hasan et. al. [79] (2m2 −m) AND TA + (1 + log2(m− 1))TX I
+ (m2 − 1) XOR

Gao and Sobelman [80] (m2) AND TA + (1 + log2(m− 1))TX I & II
+ (2m2 − 2m) XOR

Reyhani-Masoleh (m2) AND TA + dlog2(2m− 1)eTX I & II
and Hasan [81] + (3m2 − 3m) XOR
Reyhani-Masoleh (m2) AND TA + (1 + log2(m− 1))TX I & II
and Hasan [82] + (m2 − 1) XOR

The U matrix is reformulated according to the value of m (even or odd). How-

ever, the proposed multiplier’s space complexity is (m2) AND + (m2−1) XOR, and

the time complexity is TA + (1 + log2(m − 1))TX which represents minor gain as

compared to other multipliers.

Table 4.1 compares the λ-based multipliers space and time complexities. The

space complexity is specified by the number of AND and XOR gates. While the

time complexity is specified by time required by the critical path to produce the

results.
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4.1.2 Conversion Based Multipliers

Koc and Sunar in [83] proposed a new bit-parallel multiplier over GF (2m). The

multiplier was employed to perform Type I optimal normal basis multiplication by

converting the two operands into canonical basis 1. After multiplication, the result is

converted back to the normal basis. The proposed technique yields a slight improve-

ment in the number of XOR gates as compared to the Massey-Omura multiplier. The

number of required XOR gates is reduced down to (m2−1) as compared to (2m2−m)

for the Massey-Omura multiplier, while its time complexity TA+(2+ log2(m−1))TX

is slightly more than Massey-Omura’s time complexity. The main advantage of this

technique, however, is the opening of a new direction in multiplications based on

basis conversion which was first explored by Sunar and Koc in [84].

Sunar and Koc in [84] reported a new Type II optimal normal basis multiplier.

The main idea of their work is based on converting the two operands to equivalent

representations in another basis, perform the multiplication in that basis and convert

the product back to the normal basis. The conversion step requires only a single

clock cycle since it is nothing but a permutation of the normal basis.

Using optimal normal basis Type II and assuming that p (= 2m + 1) is prime,

another new basis which is obtained by simple permutation of the normal basis

elements was presented. Let β be γ+γ−1, where γ is the primitive pth root of unity,

1A basis of the form (αm−1, ..., α2, α1, 1), where α ∈ GF (2m) is a root of the generating poly-
nomial of degree m, is called a canonical basis.
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the new basis can be written in the form γ + γ−1, γ2 + γ−2, γ3 + γ−3, ..., γm + γ−m.

Two elements Â and B̂ ∈ GF (2m) can be represented in the new basis as:

Â =
m∑

i=1

âi(γ
i + γ−i) =

m∑
i=1

âiβi, and

B̂ =
m∑

i=1

b̂i(γ
i + γ−i) =

m∑
i=1

b̂iβi

The product Ĉ = Â · B̂ is written as:

Ĉ = (
m∑

i=1

âi(γ
i + γ−i))(

m∑
j=1

b̂j(γ
j + γ−j))

This product can transformed to the following form:

Ĉ =
m∑

i=1

m∑
j=1

âib̂j(γ
i−j + γ−(i−j)) +

m∑
i=1

m∑
j=1

âib̂j(γ
i+j + γ−(i+j))

= Ĉ1 + Ĉ2

The term Ĉ1 has the property that the exponent (i − j) of γ is already within the

proper range, i.e., −m ≤ (i − j) ≤ m for all i, j ∈ [1, m]. The term Ĉ2 should be

ensured to be in the proper range. Hence, Ĉ2 is computed as follows:

Ĉ2 =
m∑

i=1

m∑
j=1

âib̂j(γ
i+j + γ−(i+j))

=
m∑

i=1

m−i∑
j=1

âib̂j(γ
i+j + γ−(i+j)) +

m∑
i=1

m∑
j=m−i+1

âib̂j(γ
i+j + γ−(i+j))

= D̂1 + D̂2
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The exponents of the basis elements γi+j +γ−(i+j) in D̂1 are guaranteed to be in the

proper range 1 ≤ (i + j) ≤ m for i = 1, 2, ...,m and j = 1, 2, ...,m− i. If k = i + j,

then product âib̂j contributes to the basis element βk as i and j take these values.

The basis elements of D̂2, however, are all out of range. Thus, the identity γ2m+1 is

used to bring them to the proper range as:

D̂2 =
m∑

i=1

m∑
j=m−i+1

âib̂j(γ
i+j + γ−(i+j))

=
m∑

i=1

m−i∑
j=m−i+1

âib̂j(γ
2m+1−(i+j) + γ−(2m+1−(i+j)))

Therefore, if k = i + j > m, βk is replaced by β2m+1−k and thus the final product

can be found as:

Ĉ = Ĉ1 + D̂1 + D̂2

The hardware complexity of this bit-parallel multiplier is m2 AND gates+ 3
2
(m2−

m) XOR gates and the time complexity is TA +(1+dlog2me)TX . This represents an

improvement of about 25 percent less XOR gates compared to the Massey-Omura

multiplier but with slightly more delay. A major advantage of this method, however,

is the fact that there is no need to store the λ matrix to perform multiplications

which requires m3 locations if all λ matrices are stored or m2 if only λ(0) is stored.

This is a major advantage in area constrained environments since we only need to

store the permutation array which requires only m log2(m) storage locations.
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Alternatively, Wu et. al. in [85] extended the work described in [86] and pre-

sented a new Type II multiplier. The basic idea is the same as that of Sunar and

Hasan [84]. Multiplication is performed by converting the two operands into another

basis which is simply a permutation of the normal basis, perform the multiplication

and convert the product back to the original normal basis. The difference is only in

the multiplication part. The product can be found in the new basis as:

ĉj =
m∑

i=1

âi(b̂s(j+i) + b̂s(j−i)), j = 1, 2, ..., m.

where s(i) is defined as:

s(i) =


i mod 2m + 1, if 0 ≤ i mod 2m + 1 ≤ m;

2m + 1− i mod 2m + 1, otherwise.

The hardware complexity of this multiplier is m2 AND gates + (2m2−m) XOR

gates which is worse than the Sunar and Koc multiplier [84] as shown in Figure 4.3.

However, the time complexity is TA + (1 + dlog2me)TX which is the same as the

Sunar and Koc multiplier [84].

Table 4.2 summarizes the conversion based multipliers and their space and time

complexities. It is clear from Table 4.2 that Sunar and Koc multiplier provides the

best space and time complexities.
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Figure 4.3: The Wu et. al. multiplier [85].

Table 4.2: The conversion based multipliers and their space and time complexities.

Multiplier Space Complexity Time Complexity Type
of ONB

Koc and Sunar [83] (2m2 −m) AND TA + (2 + log2(m− 1))TX I
+ (m2 − 1) XOR

Sunar and Koc [84] m2 AND TA + (1 + dlog2me)TX II
+ 3

2
(m2 −m) XOR

Wu et. al. [85] m2 AND TA + (1 + dlog2me)TX II
+ (2m2 −m) XOR
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4.2 Inversion

Inversion using normal basis consists of multiplications and cyclic shifts. Since cyclic

shifts require almost negligible time, the number of multiplications is the key param-

eter for efficient inversion. In the following subsections we survey existing algorithms

for inversion over GF (2m) using normal basis. These inversion algorithms can be

classified into three main categories: (1) Standard, (2) Exponent Decomposing and

(3) Exponent Grouping inversion algorithms.

4.2.1 Standard Inversion Algorithm

This category contains only one algorithm, which is the first proposed normal basis

inversion algorithm over GF (2m) by Wang et. al. [78]. The basic idea is derived from

Fermat’s Little Theorem where the inverse of a ∈ GF (2m) is given by a−1 = a2m−2.

Since 2m − 2 =
m−1∑
i=1

2i, we can express a−1 as:

a−1 = (a2).(a22
)...(a2m−1) = a2m−2

Algorithm 4.1 Wang’s et. al. inversion algorithm.

Inputs: a
Output: a−1

1. B = a2, C = 1 and k = 0
2. D = B × C and k = k + 1
3. if k = m− 1, a−1 = D Stop
4. if k < m− 1, B = B2 and C = D
5. Go back to 2
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This only requires multiplication and cyclic shift operations. The algorithm

procedure for computing a−1 as suggested by Wang et. al. [78] is shown in Algo-

rithm 4.1. It requires (m−2) multiplications + (m−1) cyclic shifts. The advantage

of this method is its simplicity while its disadvantage is the large O(m) number of

multiplications.

4.2.2 Exponent Decomposing Inversion Algorithms

Since the number of multiplications is the dominant factor in determining the com-

putation time of the inversion operation, several algorithms attempted to improve

the inversion speed by decomposing the exponent to reduce the required number

of multiplications and replace it with squaring operations which are much simpler

compared to multiplication.

In 1988 Itoh and Tsujii proposed a GF (2m) inversion algorithm derived from Fer-

mat’s Little Theorem using normal basis [87]. The basic idea used was to decompose

the exponent m− 1 as follows:

a−1 = a2m−2 = (a2m−1−1)2

The exponent 2m−1 − 1 is further decomposed as follows:

1. If m is odd, then

(2m−1 − 1) = (2
m−1

2 − 1)(2
m−1

2 + 1), and
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a2m−1
= (a2

m−1
2 −1)2

m−1
2 +1

2. If m is even, then

2m−1 − 1 = 2(2m−2 − 1) + 1 = 2(2
m−2

2 − 1)(2
m−2

2 + 1) + 1, and

a2m−1
= a2(2

m−2
2 −1)(2

m−2
2 +1)+1

The proposed algorithm by Itoh and Tsujii [87] is shown in Algorithm 4.2 and

it requires log2(m− 1) + v(m− 1)− 1 multiplications, where v(x) is the number of

1’s in the binary representation of x.

Algorithm 4.2 Itoh-Tsujii inversion algorithm.

Inputs: a
Output: l = a−1

1. set s← blog2(m− 1)c − 1
2. set p← a
3. for i = s down to 0 do

3.1. set r ← shift m− 1 to right by s bit(s)
3.2. set q ← p
3.3. rotate q to left by br/2c bit(s)
3.4. set t← p× q
3.5. if least bit of r = 1

3.5.1 rotate t to left by 1 bit
3.5.2 p← t× a

3.5. else
3.5.3 p← t

3.6. s← s− 1
4. rotate p to left by 1 bit
5. set l← p
6. return l
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Feng [88] has also proposed an inversion algorithm which requires the same

time complexity as the Itoh and Tsujii inversion algorithm, i.e. O(log2(m)). The

inversion algorithm was also derived from Fermat’s Little Theorem and is also based

on exponent decomposition as the Itoh and Tsujii inversion algorithm [87]. Feng

defined m− 1 as follows:

Let mqmq−1m1m0 be the binary representation of (m − 1), where mq = 1 and

mi is 0 or 1 for i = 0 to q− 1, i.e. m− 1 = mq2
q + mq−12

q−1 + + m12
1 + m02

0. The

inverse a−1 can be computed using Algorithm 4.3.

Algorithm 4.3 Feng’s inversion algorithm.

Inputs: a
Output: a−1

1. b = a
2. for i = q to 1 do

2.1. if mi = 1, then b = b2−2i

2.2. b = b× b2−2i−1

2.3. if mi−1 = 1, then b = b× a
3. a−1 = (b)2m−m0 , Stop

Only steps 2.2 and 2.3 in Algorithm 4.3 require multiplications. Step 2.1 and

3 need only cyclic shifts. Thus, the algorithm has (q + p) multiplications where

q = blog2(m)c and, p = #1s in the binary expression of (m − 1). Accordingly,

the proposed algorithm has the same complexity as the Itoh and Tsujii inversion

algorithm [87]. The difference is only that the Itoh and Tsujii algorithm performs

squaring during each iteration, while Feng’s algorithm computes the square roots

each iteration and squares at the end by 2m−m0 .
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Takagi et. al. in [89] proposed another inversion algorithm which was also based

on exponent decomposition. The main idea is as follows: Since

2m − 2 = 2m−1 + 2m−1 − 2 = 2m−1 + 2m−2.. + 2m−h + 2m−h − 2,

a−1 = a2m−2 = a2m−1
.a2m−2

...a2m−h+2m−h−2

Hence, the algorithm can use the inversion algorithm in [87] by replacing m by

(m − h). This method reduces the number of multiplications through performing

an exhaustive search for an optimal value of h. The time complexity, however, is

O(log2(m)).

4.2.3 Exponent Grouping Inversion Algorithms

Grouping exponent terms is another approach which attracted some researchers.

However, the resulting speed is O(m) which is worse than the O(log2(m)) of the

Itoh and Tsujii inverter [87]. The inversion algorithms in this category are based on

the idea of grouping exponent terms as follows:

Since a−1 = a2m−2 = (a2).(a4)...(a2m−1), this allows grouping exponent terms in

different ways. Fenn et. al. in [90] proposed an inversion algorithm which requires

m
2

multiplications. The basic idea was by dividing the exponent terms into two

equal groups. The first group contains a2, a4, .., ak, where k = 2
m−1

2 . The other

group contains the remaining terms till a2m
. By multiplying the first term in each
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group and repeated squaring by 22i
, the following formula can be applied to give

the inverse within m
2

multiplications.

a−1 =


m−1

2∏
i=1

[a · a2
m−1

2 ]2
i

m odd;

a2m−1 ·
m−1

2∏
i=1

[a · a2
m−1

2 ]2
i

m even.

A further improvement, however, have been reported by Calvo and Torres [91].

The Calvo and Torres [91] inversion algorithm uses a fixed seed a2 · a4 = a6, which

uses the same idea of grouping into two groups but in a different manner. This can

be shown as:

a−1 =


m−3

2∏
i=0

[a6]2
2i

m odd;

a2m−1 ·
m−4

2∏
i=0

[a6]2
2i

m even.

This method was generalized by choosing m′ and b such that m = bm′+r, where

r = [1, 2]. This is basically the same way trying to group more terms in the seed at

the beginning.

a−1 =


b−1∏
i=0

[a2m′−1−2]2
m′i

m = am′ + 1 ;

a2m−1 ·
b−1∏
i=0

[a2m′−1−2]2
m′i

m = am′ + 2.

This requires around m
m′ multiplications but still with the same O(m) time com-

plexity.

Yen proposed another approach for grouping terms which results in reduced

number of clock cycles [92], . Yen realized that the fundamental idea behind Fenn’s
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et. al. inverter is to rearrange all terms into m−1
2

groups and to extract the common

term (a.a2
m−1

2 ). Accordingly, Yen redefined the common term to contain p terms

and a−1 can be found as:

k=m−1
p∏

i=1

(X)2i

where the common part X is precomputed as:

p−1∏
j=0

a2
j m−1

p

The best case requires k + (p − 1) multiplications while the worst case requires

k + (p− 1) + (p− 2) = k + 2p− 3 multiplications and the optimal selection of p for

m = pk + 1 is
√

m . The time complexity, however, is still O(m).

Table 4.3 summarizes the inversion algorithms and their time complexities. It is

clear from Table 4.3 that exponent decomposition inversion algorithms provide the

best time complexity among other inversion classes which require O(m) multiplica-

tions.

4.3 Summary

In this chapter a brief survey of finite field arithmetic using normal basis over

GF (2m) has been presented. Addition in normal basis requires simple XOR opera-

tion while squaring requires only a cyclic shift. This is the most attractive property

of using normal basis as compared to using polynomial basis.
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Table 4.3: The inverters and their time complexities.

Inverter Class Time Complexity
(# of Multiplications)

Wang et. al. [78] Standard (m− 2) multiplications
Itoh and Tsujii [87] Exponent Decomposing log2(m− 1) + v(m− 1)− 1
Feng [88] Exponent Decomposing blog2(m)c+ p
Takagi et. al. [89] Exponent Decomposing log2(m)
Fenn et. al. [90] Exponent Grouping m

2

Calvo and Torres [91] Exponent Grouping m
2

Yen [92] Exponent Grouping m−1
p

+ (p− 1)

Normal basis multipliers are categorized in this dissertation into two main cat-

egories:(1) λ-matrix based multipliers, and (2) Conversion based multipliers. The

conversion based multipliers are more efficient since they don’t require storing the

λ-matrix. The comparisons show that the Type II Sunar-Koc multiplier is the best

multiplier with a hardware complexity of m2 AND gates + 3/2 m(m−1) XOR gates

and a time complexity of TA + (1 + dlog2me)TX . Accordingly, the Sunar-Koc multi-

plier has been selected for use in the cryptoprocessors proposed for implementations

in this dissertation.

Inversion algorithms, on the other hand, are categorized into three main cat-

egories: (1) Standard, (2) Exponent Decomposing, and (3) Exponent Grouping.

Exponent grouping inversion algorithms have better performance compared to the

standard with time complexity O(m). The exponent decomposing inversion algo-

rithm of Itoh and Tsujii, however, is found to be the best inverter requiring only

log2(m − 1) multiplications. Accordingly, the Itoh-Tsujii inverter has been chosen
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for the implementations presented in this dissertation.
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Chapter 5

Power Analysis Attacks and

GF (2m) FPGA Implementations

In this chapter we survey work on power analysis attacks. This chapter also surveys

existing elliptic curve cryptosystem implementations on FPGA over GF (2m) using

normal basis.

5.1 Power Analysis Attacks

Power analysis attacks are usually divided into two types. The first type, Simple

Power Analysis (SPA), is based on a single observation of power consumption, while

the second type, Differential Power Analysis (DPA) combines SPA attack with an

error-correcting technique using statistical analysis [11]. More importantly, classical
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DPA attacks have been extensively researched for each cryptosystem and new types

of DPA are continuously being developed. Many of the existing countermeasures

are vulnerable to the more recent attacks which include Refined Power Analysis

(RPA) [94], Zero Power Analysis (ZPA) [95], Doubling Attack [96] and Address-Bit

Differential Power Analysis (ADPA) [102]. In the next subsections, these attacks

are described in more detail.

5.1.1 Simple Power Analysis

A SPA attack consists of observing the power consumption during a single execution

of a cryptographic algorithm. The power consumption analysis may also enable one

to distinguish between point addition and point doubling in the double-and-add

algorithm.

Coron [97] showed that for Algorithm 3.1 to be SPA resistant, the instructions

performed during a cryptographic algorithm should not depend on the data being

processed, e.g. there should not be any branch instructions conditioned by the data.

This could be done by performing the addition and doubling each time and then at

the end of the loop decide whether to accept the result or to eliminate the addition

part according to ki value (see Algorithm 5.1). However, even though this scheme

is resistant to a SPA attack, it remains vulnerable to a DPA attack.
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Algorithm 5.1 Double-and-add-always Scalar Multiplication Algorithm.

1. input P, k
2. Q[0]← P
3. for i from m− 2 to 0 do

3.1. Q[0]← 2Q[0]
3.2. Q[1]← Q[0] + P
3.3. Q[0]← Q[ki]

4. output Q[0]

5.1.2 Differential Power Analysis

A DPA attack is based on the same basic concept as a SPA attack, but uses error

correction techniques and statistical analysis to extract very small differences in

the power consumption signals. To be resistant to a DPA attack, some system

parameters or computation procedures must be randomized. Coron suggested three

countermeasures to protect against DPA:

1. Randomization of the private exponent: Let #E be the number of points of

the curve. The computation of Q = kP is done as follows:

• Select a random m-bit number d.

• Compute k′ = k + d #E.

• Compute the point Q = k′P. We have Q = kP since #EP = O.

2. Blinding Point P : The point P to be multiplied is “blinded” by adding a secret

random point R for which we have know S = kR. Scalar multiplication is done

by computing the point k(R + P ) and subtracting S = kR to get Q = kP.
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3. Randomized Projective Coordinates: The projective coordinates of a point are

not unique because:

(X, Y, Z) = (λX, λY, λZ) (5.1)

for every λ 6= 0 in the finite field. The third countermeasure randomizes the

projective coordinate representation of a point P = (X, Y, Z). Before each

new execution of the scalar multiplication algorithm for computing Q = kP,

the projective coordinates of P are randomized with a random value λ. The

randomization can also occur after each point addition and doubling.

An enhanced version of Coron’s 3rd countermeasure has been proposed by Joye

and Tymen [98]. It uses an isomorphism of an elliptic curve, thereby transposing

the computation into another curve through a random morphism. The elliptic point

P = (X, Y, Z) and parameters (a, b) of the defined curve equation can be randomized

like (λ2X, λ3Y, Z) and (λ4a, λ6b). However, all of the above countermeasures add

computational overhead and are still vulnerable to differential power attacks as

described below.

Doubling Attack

The doubling attack obtains the secret scalar using binary elliptic scalar multi-

plication [96]. It only works for the most-to-least version of the double-and-add

algorithm. The main idea of this attack is based on the fact that, even if an adver-
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sary cannot see whether the computation being done is doubling or addition, he can

still detect when the same operation is done twice. More precisely, if 2A and 2B are

computed in any operations, the attacker is not able to guess the value of A or B

but he can check if A = B or A 6= B. This assumption is reasonable since this kind

of computation usually takes many clock cycles and depends greatly on the value of

the operands. If the noise is negligible, a simple comparison of the two power traces

during the doubling will be efficient to detect this equality.

Two of Coron’s three proposed countermeasures against DPA attacks fail to

protect against a doubling attack: randomizing the private scalar (exponent) and

blinding the point. However, his third countermeasure, the randomized projective

coordinate does protect against a doubling attack as does a randomized exponenti-

ation algorithm such as the Ha and Moon algorithm [99] which maps a given scalar

to one of various representations. Since the positions of the zeros in the Ha and

Moon algorithm vary in each representation, the doubling attack cannot detect the

positions of the zeros for the doubling operation.

Basically, to protect against a doubling attack, the random blinding point R

should be randomly updated. A regularly updated method shouldn’t be chosen.

A method similar to Coron’s 3rd countermeasure or a random field isomorphism

should be used.
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RPA and ZPA Attacks

Goubin proposed a new power analysis in 2003, namely the refined power analysis

(RPA), which works even if one of the three countermeasures with a SPA coun-

termeasure is applied [94]. The RPA attack assumes that the attacker can input

adaptively chosen messages or elliptic curve points to the victim exponentiation

algorithm. Smart [100] analyzed the RPA attack in detail and discounted its ef-

fectiveness in a large number of order. For the remaining cases Smart proposed a

defense against the RPA attack based on isogenies of small degree [100]. However,

the RPA attack is still a threat to most elliptic curve cryptosystems.

The zero-value point attack is an extension of the RPA attack [95]. In a RPA

attack, the attacker uses a special point which has a zero-value coordinate. In

a ZPA attack, on the other hand, an attacker utilizes an auxiliary register which

might take a zero-value in the definition field. As a result, Coron’s 3rd or random

field isomorphism countermeasures do not protect against ZPA attacks.

To protect against RPA and ZPA attacks, the base point P or the secret scalar

k should be randomized. For example, Coron’s first two countermeasures protect

against these attacks. Mamiya et. al. [101] recently proposed a countermeasure,

called BRIP, which uses a random initial point R. The proposed countermeasure

computes kP + R and then subtracts R to get kP . Thus, no special point or zero-

value register will appear during all operations and hence it is resistant against both
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RPA and ZPA attacks.

Address-Bit Differential Power Analysis Attack

In 1999, Messerges et. al. proposed a new attack against secret key cryptosystems,

the address-bit DPA (ADPA), which analyzes a correlation between the secret in-

formation and addresses of registers [102]. Itoh et. al. in 2002 extended this attack

to Elliptic Curve based Cryptosystems [103]. Basically, ADPA Attack is based on

the correlation between bit values of the scalar and the location (address) of the

variables used in a scalar multiplication algorithm. The countermeasures used to

protect against simple power analysis and differential power analysis that are based

on randomization of the base point or the projective coordinate do not provide coun-

termeasure against address-bit analysis attacks. Therefore, these countermeasures

do not remove the correlation between the bit values of a scalar and the location

(address) of the variables used in a scalar multiplication algorithm.

A hardware-based DPA countermeasure proposed by May et. al. [104] is based on

Randomized Register Renaming (RRR). RRR is supposed to be implemented on a

processor called NDISC, which can execute instructions in parallel. In other words,

it requires a special hardware to work. Itoh et. al. gave several countermeasures

against the ADPA attack in [103]. But those countermeasures double the computing

time.

In 2003, Itoh et. al. proposed a countermeasure [105], called randomized address-
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ing method (RA), which is similar to RRR but does not require special hardware. In

RA, the addresses of registers are randomized by a random number for each scalar

exponentiation. Thus, all addresses of registers are randomized and hence the side

channel information are also randomized.

5.2 GF (2m) FPGA Implementations

Reconfigurable FPGAs were used in [21,22,25–36,38–40,42,44–47]. These implemen-

tations can be classified according to their arithmetic basis representations into two

classes: Optimal Normal Basis (ONB) based implementations [22, 25, 27, 30, 36,

45, 47] and Polynomial Basis (PB) based implementations [21,26,28,29,31–35,38–

40,42–44]. We are interested in optimal normal basis implementations only which

are described briefly below.

The first implementation of GF (2m) elliptic curves on FPGAs using optimal

normal basis was reported by Gao et. al. [22] in 1999 (Figure 5.1). Two FIFOs

(Figure 5.1) are used to serve as input/output buffers and the dual-port register file is

used to save input parameters and intermediate data. Gao et. al. [22] implemented

the same multiplier that Gao has developed earlier [80], while the implemented

inverter was that of Itoh and Tsujii [87]. The implementation was carried out on a

Xilinx XC4044XL FPGA with m = 53 bits.

Leung et. al. [25] reported an elliptic curve cryptosystem implementation on
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Figure 5.1: Gao et. al. ECC coprocessor [22].

a Xilinx FPGA XCV300 device with m = 113, 155, 281 bits. Point operations

were implemented as sequences of micro-coded field operations. This allows many

algorithmic optimization without changing the hardware. The entire design was

described by a module generator, which is a program written in Perl that takes the

key size m as an input parameter and produces a VHDL code of the elliptic curve

cryptoprocessor as an output. Thus, an arbitrary size of the cryptosystem can be

generated.

Leong et. al. [30] have reported another cryptoprocessor with a parallel version

of the field multiplier presented in [25] using a Xilinx Virtex XCV1000 FPGA device.

The architecture of the cryptoprocessor used in [25] and [30] is shown in Figure 5.2.

Ernst et. al. presented a generator-based design and validation methodology

for rapid prototyping of an elliptic curve cryptosystem hardware (Figure 5.3) [27].
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Figure 5.2: ECC processor architecture used by Leung et. al. [25] and Leong et. al.
[30]

A generator program accepts the two main parameters, key size and multiplier

radix, and generates a highly efficient RTL description, which can be synthesized

onto an FPGA. This approach allows the design to effortlessly exploit the available

resources on the FPGA for variable security and performance requirements. The

proposed generator approach on top of a VHDL based design flow has lead to a 270-

bit Cryptoprocessor design including three Massey and Omura serial multipliers.

The implementation used Xilinx FPGA XC4085XLA with m = 151, 191 and 270

bits.

The use of hybrid projective coordinates and hybrid basis representations over

GF (2m) was proposed by Bednara et. al. [36]. The main idea is to utilize attractive

features such as mixed coordinates as well as either of the polynomial or the normal

basis. The structure of the datapath architecture used is shown in Figure 5.4.
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Figure 5.3: Ernst et. al. ECC architecture [27].

Bednara et. al. used two squarers, two adders and four sequential multipliers. Each

of these arithmetic units (AU) can get operands from a dual-port operand memory,

a register, or directly from the output of another arithmetic unit. The arithmetic

control unit (ACU) generates control signals for all AUs, the operand memory and

the register. The second port of the operand memory is used by a host interface,

thus allowing for host data transfer while a point multiplication is being performed.

The AUs consist of one or two operand registers, one output register and the core

functional unit. The prototype implementation used a Xilinx FPGA XCV1000 with

m = 191 bits, Massy-Omura multiplier for normal basis and LFSR multiplier for

polynomial basis. The question arises here as to how efficient is such hybrid system

since we need conversion modules between polynomial and normal basis and vice

versa.
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Figure 5.4: Bednara et. al. ECC architecture [36].

Cheung et. al., presented a design generator for producing hardware designs for

elliptic curve cryptosystems over the finite field GF (2m) [45]. The design generator

can automatically produce implementations with different speed, size and level of

security. The major customizable elements of a cryptosystem are: the key size,

the degree of parallelism, and the protocols of the system. Parallel field multipliers

were used to exploit the inherent parallelism within point operations in projective

coordinate [16] to speedup scalar multiplication. The architecture of the proposed

cryptoprocessor is shown in Figure 5.5. The cryptoprocessor was implemented on

Xilinx FPGA XC2V6000 with m = 113 and 270 bits.

Recently, Al-Somani and Ibrahim in [47], presented an elliptic curve cryptopro-

cessor with resistance against timing attacks [93]. The proposed cryptoprocessor

is based on optimal normal basis representation and uses three multipliers to per-

form parallel field multiplications as shown in Figure 5.6. Point operations are

performed using Mixed coordinate system to increase the performance and the im-
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Figure 5.5: Cheung et. al. ECC architecture [45].

munity against timing attacks. The basic idea was to select a combination of point

addition and point doubling from Mixed coordinate system such that both point

operations take the same number of multiplication cycles. Thus, an attacker can-

not distinguish between point doubling and point addition and therefore it is not

possible to extract the key pattern using a timing attack. The implementation used

Xilinx XC2V8000 FPGA with m = 173 bits.

5.3 Remarks on the reviewed implementations

Reviewing these FPGA based implementations, several remarks need to be pointed

out:

• Most of the existing implementations were for prototyping purpose and FPGA

was only used as a vehicle.
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Figure 5.6: Al-Somani and Ibrahim ECC architecture [47].

• All of the existing implementations used existing FPGAs and none of them

proposed new FPGA architecture that targets such applications for higher

performance.

• Most of the implementations use polynomial basis (PB) representation, while

it is well known that optimal normal basis (ONB) is more suitable for hardware

implementations than polynomial basis.

• The comparisons between these implementations is somewhat difficult because

of their different objectives, constraints and FPGA implementation technology.

Table 5.1 summarizes reported ECC implementations on FPGAs over GF (2m).

It is clear from Table 5.1 that only one polynomial and another optimal normal

basis implementations among those reported have provided resistance to some power

analysis attack.
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Table 5.1: GF (2m) Implementations on FPGAs.

Ref. No. Year Platform Rep. Power Analysis
Attacks Resistance

Rosner [21] 1998 Xilinx XC4062 PB –
Gao [22] 1999 Xilinx XC4044XL ONB –
Leung [25] 2000 Xilinx XCV300 ONB –
Orlando [26] 2000 Xilinx XCV400E PB –
Ernst [27] 2001 Xilinx XC4085XLA ONB –
Smart [28] 2001 Xilinx XC4000XL PB –
Orlando [29] 2002 Xilinx XCV1000E PB –
Leong [30] 2002 Xilinx XCV1000 ONB –
Ernst [31] 2002 Atmel AT94K40 PB –
Gura [32, 33] 2002 Xilinx XCV2000E PB –
Jung [34] 2002 Atmel AT94K40 PB –
Kerins [35] 2002 Xilinx XCV2000 PB –
Bednara [36] 2002 Xilinx XCV1000 PB –
Lutz [38] 2004 Xilinx XCV2000E PB –
Mentens [39] 2004 Xilinx XCV800 PB –
Jarvinen [40] 2004 Xilinx XC2V8000 PB –
Saqib [42] 2004 Xilinx XCV3200 PB –
Batina [44] 2005 Xilinx XCV800 PB Simple Power Attacks
Cheung [45] 2005 Xilinx XC2V6000 ONB –
Al-Somani [47] 2006 Xilinx XC2V8000 ONB Timing Attacks
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5.4 Summary

In this chapter, power analysis attacks and their existing countermeasures have been

described. Power analysis attacks are usually divided into two types: (1) simple

power analysis attacks, and (2) differential power analysis attacks. Simple power

analysis attacks are based on a single observation of power consumption.

Differential power analysis attacks, on the other hand, combines simple power

analysis attacks with error-correcting techniques using statistical analysis tools.

Many of the existing countermeasures are vulnerable to the more recent differen-

tial power analysis attacks which include (1) refined power analysis attack, (2) zero

power analysis attack, (3) doubling attack, and (4) address-bit differential power

analysis attack.

Elliptic curve cryptosystem implementations on FPGA over GF (2m) using nor-

mal basis have been also surveyed in this chapter. Only one polynomial and an-

other optimal normal basis implementations among those reported have provided

resistance to some power analysis attack.
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Chapter 6

Secure ECC Cryptoprocessor

Architectures

Several elliptic curve cryptoprocessors have been proposed and implemented on FP-

GAs using optimal normal basis over GF (2m). None of the reported implementations

provides security against all known power analysis attacks. In this dissertation we

propose two GF (2m) ECC cryptoprocessors that are secure against all known DPA

attacks. One cryptoprocessor sequentially processes randomized key partitions in

random order, while the other is a parallel cryptoprocessor with each key partition

processed by an independent scalar multiplier.

The merits of these two cryptoprocessors are compared to a regular sequential

ECC single processor which is used as a reference for such comparison. The follow-

ing sections provide details of these three elliptic curve architectures; namely: (1)
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Figure 6.1: The proposed architecture

ECCNS: a non-secure elliptic curve cryptoprocessor architecture used as a reference

design for comparison, (2) ECCSS: the sequential cryptoprocessor architecture with

resistance against power analysis attacks and (3) ECCPS: the parallel cryptopro-

cessor architecture with resistance against power analysis attacks.

6.1 The ECCNS Cryptoprocessor

This section presents the architecture of a regular GF (2m) elliptic curve cryptopro-

cessor which does not provide security against power analysis attacks. The proposed

cryptoprocessor architecture is modeled using VHDL and is fully parameterized.

The basic units of this architecture are: (1) the main controller, (2) the data em-

bedding unit, (3) the point addition and doubling units and (4) the field arithmetic

units (adder, multiplier and inverter). In the following subsections, these units are

described in detail (Figure 6.1).
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6.1.1 Main Controller

The double-and-add algorithm has been selected for scalar multiplication (Algo-

rithm 3.1). For the encryption/decryption process, the selected encryption protocol

is the elliptic curve Diffie-Hellman protocol. The pseudocode of the ECCNS cryp-

toprocessor is given in Algorithm 6.1.

The inputs of Algorithm 6.1 are: (1) the base point P , (2) the elliptic curve

parameters a, b, (3) the secret key k, (4) the encryption/decryption mode and

(5) the plaintext/ciphertext. The output is either the ciphertext or the plaintext

depending on the encryption/decryption mode.

Referring to the cryptoprocessor pseudocode (Algorithm 6.1, scalar multiplica-

tion starts at Step 1 by executing the double and and algorithm. The encryption

process starts at Step 2 by embedding the plaintext into a random point on the el-

liptic curve. The scalar multiplication result (kP ) is added to this point to produce

a ciphered point. The decryption process (Step 3), however, subtracts (kP ) from

the ciphered point.

6.1.2 Data Embedding

Data embedding is performed within the x-coordinate of a point on the elliptic curve.

A random number is picked to fill the 5 most significant bits and the remaining bits

will contain the data to be encrypted. If this x-coordinate is not a valid point on
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Algorithm 6.1 Pseudocode of the ECCNS cryptoprocessor.

Inputs: P : Base Point, k: Secret key, a, b: Elliptic curve parameters.
Plaintext/Ciphertext, Encryption/Decryption.
Outputs: Ciphertext/Plaintext.
Scalar Multiplication (kP ):

1. Algorithm 3.1(P, k).
Encryption/Decryption Process:

2. if (Encrypt) then
2.1. Embed the plaintext in random points on the elliptic curve.
2.2. ADD (kP ) to data points.
2.3. Output (ciphertext).

3. else
3.1. ADD (−kP ) to ciphered points.
3.2. Extract the plaintext from the data points.
3.3 Output (plaintext).

the elliptic curve, another random number is picked until a valid elliptic curve point

is obtained. The checking procedure is as follows [106]:

• Recall the elliptic curve equation defined over GF (2m):

y2 + xy = x3 + ax2 + b (6.1)

where a, b ∈ GF (2m) and b 6= 0.

• Rewrite Equation 6.1 as

y2 + xy + f(x) = 0 (6.2)

where f(x) = x3 + ax2 + b.
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• Let y = zx, Equation 6.2 becomes:

z2 + z + c = 0 (6.3)

where

c = f(x) · x−2 (6.4)

• Find the trace of c, the trace function is simply the parity function which can

be easily implemented by computing the XOR of all the bits.

• If the trace is 1, try another random number and repeat the check again. If the

trace is 0, this is a valid x-coordinate and proceed to recover the y-coordinate.

• By taking the square root of Equation 6.3, it can be rewritten as:

z1/2 = z + c1/2 (6.5)

which can be also rewritten as:

zi = zi−1 + ci (6.6)

• Since z + 1 is actually the complement of z in a normal basis, in one of the

two solutions the least significant bit will be 0 and the other one will be 1. We

then further compute all the other bits one by one.
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• To compute the y value, simply multiply z by x.

6.1.3 Point Addition and Doubling

Point addition and doubling are performed using Lopez-Dahab projective coordinate

system which takes the form (x, y) = (X/Z, Y/Z2) [64]. Point addition and point

doubling require only 14 and 5 field multiplications respectively (Table 2.3). The

projective elliptic curve equation of the affine Equation (6.1) is given by

Y 2 + XY Z = X3Z + aX2Z2 + bZ4 (6.7)

If Z = 0 in Equation 6.7, then Y 2 = 0, i.e., Y = 0. Therefore, (1, 0, 0) is the only

projective point that satisfies the equation for Z = 0. This is the point at infinity

O [64]. To convert an affine point (x, y) into Lopez-Dahab projective coordinate,

set X = x, Y = y, Z = 1. Similarly, to convert a projective point back to

affine coordinate, we compute x = X/Z, y = Y/Z2. The additive inverse of a point

P = (X,Y, Z) is the point (X, XZ +Y, Z) which is used at the end of the decryption

process [59].

The projective point operations formulas of the Lopez-Dahab coordinate system

[64] has been reported only for the most-to-least version of the scalar multiplica-

tion algorithm. Alternatively, point doubling and point addition formulas that are

suitable for both versions of the scalar multiplication algorithm are proposed here
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(Table 6.1). Clearly, the doubling formula requires only 5 field multiplications, 5

field squarings and 5 storage registers. The point addition formula requires 14 field

multiplications, 6 field squarings and 8 storage registers.

6.1.4 Field Operations

One key advantage of optimal normal basis representation is the simplicity of the

squaring operation. Field squaring is simply a cyclic shift operation. Field addition

is a Boolean XOR operation and is implemented using an m-bit XOR unit. Thus,

only one clock cycle is required to perform either of the two operations, i.e., field

squaring or field addition.

Multiplication is more complicated than addition and squaring. An efficient

multiplier is highly needed and is the key for efficient finite field computations. The

Sunar–Koc mulriplier has been selected since it provides the best space and time

complexities reported thus far [84].

The main idea of Sunar–Koc mulriplier is based on converting the two operands

to equivalent representations in another shifted basis, performing the multiplication

in that basis and converting the product back to the normal basis. The conversion

step requires only a single clock cycle since it is nothing but a permutation of the

normal basis. As explained in Chapter 4, two elements Â and B̂ ∈ GF (2m) are

represented in the shifted basis as:
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Â =
m∑

i=1

âi(γ
i + γ−i) =

m∑
i=1

âiβi, and B̂ =
m∑

i=1

b̂i(γ
i + γ−i) =

m∑
i=1

b̂iβi

The product Ĉ = Â · B̂ is written as:

Ĉ = (
m∑

i=1

âi(γ
i + γ−i))(

m∑
j=1

b̂j(γ
j + γ−j))

=
m∑

i=1

m∑
j=1

âib̂j(γ
i−j + γ−(i−j)) +

m∑
i=1

m−i∑
j=1

âib̂j(γ
i+j + γ−(i+j))

+
m∑

i=1

m−i∑
j=m−i+1

âib̂j(γ
2m+1−(i+j) + γ−(2m+1−(i+j)))

= Ĉ1 + D̂1 + D̂2

Sunar and Koc [84] precompute and store the results of âib̂j ∀ i, j ∈ 1, 2, ...,m

which requires m2 storage bits. Combination of these bits are then added modulo 2

using XOR gates to generate the m product bits. Assuming that the operands and

the resulting product are registered, 3m storage bits will be further required. Thus,

the space complexity of Sunar–Koc parallel multiplier is m2 AND gates+ 3
2
(m2−m)

XOR gates + (m2 + 3m) storage bits.

Since we are using FPGA as implementation technology to evaluate our proposed

architectures, we have opted for implementing a sequential version of the Sunar–Koc

multiplier to save on available FPGA resources. The proposed sequential multiplier

requires only three barrel shifters and three other registers alleviating the need for

precomputing and storing âib̂j ∀ i, j ∈ 1, 2, ...,m. The dataflow of the sequential
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multiplier is shown in Figure 6.2.

In Figure 6.2, the two operands A and B are passed to the conversion box to

convert A and B from normal basis to the shifted basis. The conversion box is used

for (1) converting the two operands A and B to the shifted basis and (2) converting

the product Ĉ, which is represented in the shifted basis, back to normal basis.

The pseudocode of the conversion box is given in Algorithm 6.2. To convert from

normal basis to the shifted basis and from the shifted basis to normal basis, the β

conversion vector is generated to keep the permutation order (Steps 1-2). The β

vector depends only on m and is computed only once at system startup. Steps 3-4

show the conversion process of the two operands A and B from normal basis to the

shifted basis. The conversion process of the product Ĉ from the shifted basis back

to normal basis is performed at Steps (5-6).

The circuits of the Ĉ1, D̂1 and D̂2 units are shown in Figures 6.3, 6.4 and 6.5

respectively. Figure 6.3 shows that we only need 2 AND gates and 1 XOR gate to

produce a bit to the barrel shifter. Accordingly, (m − 1) copies of these gates are

required to produce the required bits to the barrel shifter in each iteration. The

barrel shifter is controlled by the index i which is incremented by one each clock

cycle. In each clock cycle, the barrel shifter content is accumulated into the Ĉ1

register. A total of (m − 1) clock cycles is required for Ĉ1 to be computed. The

pseudocode of Ĉ1 is given in Algorithm 6.3.

The circuit of D̂1 (Figure 6.4) is much simpler than Ĉ1 since it requires only
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Algorithm 6.2 Pseudocode of the conversion box unit.

Inputs: A, B/Ĉ, to–shifted–basis/to–normal–basis.

Outputs: Â, B̂/C.
β Conversion vector:
1. for i in 0 to m− 1 do

1.1. if (2i ≤ m) then
1.1.1. βi = 2i

1.2. else if (2i mod 2m + 1) ≤ m then
1.2.1. βi = 2i mod 2m + 1

1.3. else
1.3.1. βi = 2m + 1− 2i mod 2m + 1

2. end for
Conversion to Shifted Basis:
3. if (to–shifted–basis) then

3.1. for i in 0 to m− 1 do
3.1.1. Âβi

= Ai

3.1.2. B̂βi
= Bi

3.2. end for
4. Output (Â, B̂).
Conversion Back to Normal Basis:
5. if (to–normal–basis) then

5.1. for i in 0 to m− 1 do
5.1.1. Ci = Ĉβi

5.2. end for
6. Output (C).

1 AND to produce 1 bit for the barrel shifter which is controlled by the index i.

Similarly, (m − 1) copies of these gates are needed to produce the required bits to

the barrel shifter in each iteration. It takes (m−1) clock cycles to compute D̂1. The

circuit of D̂2 (Figure 6.5) has the same circuitry as D̂1, but the difference is that it

requires m copies of the gates and accordingly requires m clock cycles to complete.

Since both Ĉ1 and D̂1 require (m − 1) clock cycles, the content of Ĉ1 and D̂1 are

added together and the result is added to the content of D̂2 to produce Ĉ. The
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pseudocode of D̂1 and D̂2 are given in Algorithms 6.4 and 6.5 respectively.

Finally, Ĉ is passed to the conversion box to convert it from the shifted basis

back to normal basis. Thus, the multiplication process requires two extra clock

cycles for conversion in each multiplication; one clock cycle for converting A and B

to the shifted basis and another clock cycle for converting Ĉ back to normal basis.

The time complexity of the proposed sequential multiplier in the shifted basis is

(m− 1)(TA + 2TX) + 2TX , while the space complexity is:

• m storage bits for the β conversion vector.

• 3m storage bits for the converted operands and result.

• (2m− 2) AND gates + (2m− 1) XOR gates + 2m storage bits for C1.

• (m− 1) AND gates + m XOR gates + 2m storage bits for D1.

• m AND gates + m XOR gates + 2m storage bits for D2.

• m XOR gates used between C1 and D1.

• m XOR gates used between D2 and shifted C register.

Thus, the space complexity of the proposed serial multiplier is (4m − 3) AND

gates+ (6m− 1) XOR gates + 10m storage bits.

The incryption/decryption process requires only one inversion since we are using

projective coordinate, while an inversion per trial is required for data embedding
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Figure 6.2: Dataflow of the proposed sequential multiplier.
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in a valid x-coordinate (Equation 6.4). Thus, an efficient inverter is required. The

selected inverter is the Itoh and Tsujii inverter [87]. The dataflow of the Itoh–Tsujii

inverter is shown in Figure 6.6. Figure 6.6 shows that Itoh–Tsujii inverter requires

three cyclic shift registers, one barrel shifter, one down counter and one multiplier

(note that only one multiplier is used while two are drawn in the dataflow diagram

for the purpose of clarity).

In Figure 6.6, the down counter s controls the barrel shifter r in each iteration.

The barrel shifter r, accordingly, controls the required number of squarings by the

cyclic shift register q. The least bit of the barrel shifter r0, on the other hand, decides

if the multiplication of the content of the cyclic shift register t by a is required or

not. The Itoh–Tsujii inversion algorithm is given in Algorithm 6.6. Clearly, the

inverter depends a lot on the field multiplier. The Itoh–Tsujii inversion algorithm

requires only O(log2(m)) multiplications, which is the best among other inversion

algorithms reported thus far [76].
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Figure 6.3: Circuit of C1, i = [1, m− 1], j = [2, m].

Algorithm 6.3 Pseudocode of Ĉ1.

Inputs: Â, B̂.
Outputs: Ĉ1.
1. for i in 1 to m− 1 do

1.1. for j in 1 to m− 1 do in Parallel
1.1.1. t̂j−1 = (âi AND b̂j) XOR (âj AND b̂i)

1.2. end for
1.3. Shift Right T̂ by i− 1
1.4. Ĉ1 = Ĉ1 XOR T̂

2. end for
3. Output (Ĉ1).
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Figure 6.4: Circuit of D1, i = [1, m− 1], j = [1, m− 1].

Algorithm 6.4 Pseudocode of D̂1.

Inputs: Â, B̂.
Outputs: D̂1.
1. for i in 1 to m-1 do

1.1. for j in 1 to m− 1 do in Parallel
1.1.1. t̂j+1 = âi AND b̂j

1.2. end for
1.3. Shift Left T̂ by i− 1
1.4. D̂1 = D̂1 XOR T̂

2. end for
3. Output (D̂1).
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Figure 6.5: Circuit of D2, i = [1, m], j = [1, m].

Algorithm 6.5 Pseudocode of D̂2.

Inputs: Â, B̂.
Outputs: D̂2.
1. for i in m to 1 do

1.1. for j in m to 1 do in Parallel
1.1.1. t̂m−j+1 = âj AND b̂i

1.2. end for
1.3. Shift Left T̂ by m− i
1.3. D̂2 = D̂2 XOR T̂

2. end for
3. Output (D̂2).
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Figure 6.6: Dataflow of the Itoh and Tsujii inverter [87].
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Algorithm 6.6 Itoh–Tsujii inversion algorithm.

Inputs: a
Output: l = a−1

1. set s← blog2(m− 1)c − 1.
2. set p← a.
3. for i = s down to 0 do

3.1. set r ← shift m− 1 to right by s bit(s)
3.2. set q ← p
3.3. rotate q to left by br/2c bit(s)
3.4. set t← p× q
3.5. if least bit of r = 1,

3.5.1 rotate t to left by 1 bit.
3.5.2 p← t× a

3.5. else
3.5.3 p← t

3.6. s← s− 1
4. rotate p to left by 1 bit.
5. set l← p.
6. return l.
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Table 6.1: Lopez-Dahab Projective Coordinate System.

Point Doubling Point Addition
T1 ← X1 T1 ← X0

T2 ← Y1 T2 ← Y0

T3 ← Z1 T3 ← Z0

T4 ←
√

b T4 ← X1

T3 ← T 2
3 T5 ← Y1

T4 ← T3 × T4 T6 ← Z1

T4 ← T 2
4 T7 ← T3 × T6 = E

T1 ← T 2
1 T1 ← T1 × T6 = B1

T3 ← T1 × T3 = Z2 T4 ← T3 × T4 = B0

T1 ← T 2
1 T1 ← T1 + T4 = D

T1 ← T1 + T4 = X2 T3 ← T 2
3

T2 ← T 2
2 T6 ← T 2

6

if a 6= 0 then T3 ← T3 × T5 = A0

T5 ← a T6 ← T2 × T6 = A1

T5 ← T3 × T5 T6 ← T3 + T6 = C
T2 ← T2 + T5 T2 ← T1 × T7 = F

T2 ← T2 + T4 T1 ← T 2
1

T2 ← T1 × T2 T8 ← T 2
7

T4 ← T3 × T4 T8 ← a× T8

T2 ← T2 + T4 = Y2 T8 ← T2 + T8

T5 ← T1 × T8 = G
T8 ← T2 × T6 = H
T6 ← T 2

6

T6 ← T6 + T8

T6 ← T5 + T6 = X2

T4 ← T1 × T4

T4 ← T4 × T7

T4 ← T4 + T6 = I
T3 ← T1 × T3

T3 ← T3 + T6 = J
T4 ← T4 × T8

T2 ← T 2
2 = Z2

T2 ← T2 × T3

T8 ← T3 + T4 = Y2

94



6.2 The ECCSS Cryptoprocessor

This section presents an original sequential elliptic curve cryptoprocessor which pro-

vides resistance against power analysis attacks at different levels. The private key

is divided into a number of partitions that are processed independently. Security

measures against power analysis attacks are provided at several levels: the key level,

the key partition level and the individual bit level.

At the key level, the key is divided into a number of partitions which are sequen-

tially processed in a randomized order. The points resulting from processing these

key partitions are accumulated to produce the scalar product kP . Each key parti-

tion is associated with a precomputed point to keep its significance [73, 74]. The

precomputed points are computed off-line and stored to be reused as needed. To

increase the resistance against power analysis attacks, the key partitioning process,

i.e. defining new key partition sizes and computing the corresponding values of the

precomputed points, is performed from time to time.

Increasing the number of key partitions increases immunity against power anal-

ysis attacks since more key partitions provides more permutations. Increasing the

number of key partitions, however, requires more storage for the precomputed points

and more point additions to assimilate the partial computations into the final scalar

product kP .

At the key partition level, two security countermeasures are adopted. The en-
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coding of each key partition is randomly selected to be either in binary form or in

Non-Adjacent-Form (NAF)[107]. Furthermore, at the key partition level, the di-

rection of bit inspection for each key partition is randomly assigned to be either

most-to-least or least-to-most if binary encoding is selected.

Finally, at the bit level, each zero in the key, may randomly perform a dummy

point addition operation in addition to the doubling operation. Such zeros random-

ization increases the security and saves an average of 50% of the extra dummy point

additions used in the double-and-add-always algorithm (Algorithm 5.1).

The multilevel protection scheme fully confuses any relation between the secret

key and any leaked information resulting in a fairly secure system with minimal area

and delay overhead. An attacker of such system will be totally confused with leaked

information in such multilevel resistance secure environment.

6.2.1 Key Partitioning

The key is divided into u partitions as:

k = k(u−1)||k(u−2)||...||k(1)||k(0)

To compute the scalar product kP , these partitions are associated with a set of pre-

computed points to keep the significance of each key partition, thus these partitions
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can be processed independently either sequentially or in parallel.

kP = (k(u−1)||k(u−2)||...||k(1)||k(0)).P

= (2size(u−1).k(u−1) + 2size(u−2).k(u−2) + ... + 2size(1).k(1) + k(0)).P

= (2size(u−1)P ).k(u−1) + (2size(u−2)P ).k(u−2) + ... + (2size(1)P ).k(1) + (P )k(0)

= Pu−1.k
(u−1) + Pu−2.k

(u−2) + ... + P1.k
(1) + P0k

(0)

= Pu−1.k
(u−1) + Pu−2.k

(u−2) + ... + P1.k
(1) + Pk(0)

where Pi (i = 1, 2, ..., u− 1) is the precomputed point associated with key partition

k(i) and size(j)=(
j−1∑
i=0

size of key partition k(i)). Thus, each partition k(i) is associated

with a precomputed point Pi forming the pair:

(k(i), Pi)

where P0 = P .

The key partition sizes may be equal or different. For equal sizes, the key par-

tition size is equal to dm
u
e for u key partitions. While equal sizes allow for simpler

design, different size key partitions provides more security. In this work, different

key sizes are used and the key partition sizes are randomly adjusted to avoid future

attacks on equal key partition sizes.

Precomputed points are computed using a sequence of doubling operations of
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the base point P . For u key partitions, the required number of precomputed points

is (u− 1). The resulting points of processing these key partitions are assimilated at

the end to produce the scalar multiplication product kP =
u−1∑
i=0

k(i)Pi where P0 = P .

A new set of precomputed points should be generated whenever the base point P

or the number or sizes of key partitions are changed. In elliptic curve Diffie-Hellman

protocol (Section 2.5.1), precomputations are performed off-line only once at the

beginning since the base point of the two parties are not changed. Precomputations,

however, should be performed whenever the number or sizes of key partitions are

changed.

Alternatively, in elliptic curve ElGamal protocol (Section 2.5.2), the public point

of the receiver is considered as the sender’s base point. Accordingly, the sender uses

this point together with his own key partitions to compute the required precomputed

points once off-line. If another session is established between the two parities, new

precomputed points need to be generated only if the sender changes his/her private

key, the number of key partitions or the sizes of these partitions. The receiver, on the

other hand, needs to generate a new set of precomputed points whenever the sender

changes his/her private key or the number or sizes of the receiver key partitions are

changed.
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6.2.2 Multilevel Resistance Measures

To protect against power analysis attacks several resistance measures have been

adopted to render the scalar multiplication process secure against these attacks. The

private key consists of a group of bits with every bit having a particular position and

a particular bit value. The adopted resistance measures depend on confusing not

only the bit values but also the key bit positions. Thus, even if leaked information

can identify the type of performed operation, e.g. point doubling or point addition,

attackers can neither be sure of the corresponding key bit value nor its position.

Several resistance measures are proposed at different levels; the key level, the

key partition level and the bit level. These resistance measures are described below.

Resistance Measures at The Key Level

The objective of the resistance measures at the key level is to confuse the key

bit positions, thus leaked information cannot be associated with a known key bit

position. The key is divided into u partitions which are sequentially processed in

a randomized order to increase the resistance against power analysis attacks. The

number of key partitions and their sizes are changed from time to time, which

would require computing new associated precomputed points. Such computation is

performed off-line.
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Resistance Measures at The Key Partition Level

At this level, two resistance measures against power analysis attacks are proposed.

First, to confuse the bit value, the encoding of each key partition is randomized to

use either binary encoding or NAF encoding. In a NAF encoding, signed binary digit

representation is used, i.e., each bit may be 0, 1 or 1. NAF has the property that

no two consecutive bits are nonzero. Every integer has a unique NAF encoding.

Moreover, NAF encoding has the fewest nonzero bits of any binary signed digit

representation of an integer (Algorithm 6.7).

Second, to confuse the bit position, if binary encoding is selected in a particu-

lar key partition, the direction of bit inspection for this key partition is randomly

assigned to be either most-to-least or least-to-most. This adds another level of re-

sistance even if an attacker guessed correctly that a certain bit belongs to a certain

key partition.

Algorithm 6.7 NAF encoding algorithm.

Inputs: A positive integer k.
Output: NAF(k).
Initialization:
1. i = 0.
2. While k ≥ 1 do

1.1. if k mod 2 = 1 then
1.1.1. k′

i = 2− (k mod 22)
1.1.2. k = k − k′

i

1.2. else
1.2.1. k′

i = 0
1.3. k = k/2
1.4. i = i + 1

3. Output (k′)

100



Resistance Measures at The Bit Level

In the double-and-add-always algorithm (Algorithm 5.1), point doubling and addi-

tion are performed in each iteration regardless of the key bit value ki. In Algorithm

5.1, the value of ki is inspected such that:

• if ki = 1, the results of doubling and addition are committed, otherwise

• if ki = 0, only the result of doubling is committed while that of addition is

ignored.

This simple approach caused the scalar multiplication to be resistant against

SPA only. The drawback of this approach, however, is the delay overhead due to

the extra dummy point additions and its vulnerability to DPA. In this work, another

resistance technique is introduced at the bit level where a dummy point addition

is randomly performed if ki = 0. Thus, if the value of ki is zero, a dummy point

addition operation may or may not be performed based on the value of some random

bit r as follows:

• if r = 1, perform the doubling operation together with a dummy addition

operation.

• otherwise if r = 0, only the doubling operation is performed.

The most-to-least version of the proposed randomized bit algorithm is given

in Algorithm 6.8. In Algorithm 6.8, point doubling is always performed in Step
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2.1. Point additions are performed according to the value of ki and the random

bit r at Step 2.2.1. Similarly, Algorithm 6.9 shows the least-to-most version of the

randomized bit algorithm. In Algorithm 6.9, point addition is performed according

to the value of ki and the random bit r at Step 3.1.1 while point doubling is always

performed at Step 3.2.

Algorithm 6.8 The Randomized bit Algorithm (most-to-least)

Inputs: P :A precomputed point, k:A key partition, ksize.
Output: kP : Partial scalar product.
Initialization:
1. Q[0] = P · k(ksize−1)

Scalar Multiplication:
2. for i from ksize − 2 to 0 do

2.1. Q[0] = 2Q[0]
2.2. if (ki = 1 or r = 1) then

2.2.1. Q[1] = Q[0] + P
2.3. Q[0] = Q[ki]

3. Output (Q[0])

Algorithm 6.9 The Randomized bit Algorithm (least-to-most)

Inputs: P :A precomputed point, k:A key partition, ksize.
Output: kP : Partial scalar product.
Initialization:
1. Q[0] = P
2. Q[1] = O
3. for i from 0 to ksize − 1 do

3.1. if (ki = 1 or r = 1) then
3.1.1. Q[2] = Q[1] + Q[0]

3.2. Q[0] = 2Q[0]
3.3. Q[1] = Q[1 + ki]

4. Output (Q[1])
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Example

Figure 6.7 shows an example of key partitioning and execution scheduling. In the

example of Figure 6.7, the key length is 16-bit. The first step is to partition the key

k into a number of partitions (4 in this example), i.e.,

k = k(3)‖k(2)‖k(1)‖k(0) (6.8)

The second step is to randomly arrange the key partitions to form the new

randomized key.

knew = k(2)‖k(0)‖k(1)‖k(3) (6.9)

The third step is to randomly encode each key partition either in binary or

NAF representation and randomly assign the direction of inspection of key partition

bits (most-to-least or least-to-most) if binary encoding is selected. Note that key

partition k(3) is encoded in NAF representation. Finally, the fourth step shows how

the randomized zeros algorithm behaves.

Security, Space and Time Analysis

Although an attacker may be able to distinguish the double and add point op-

erations, the adopted multi-level resistance measures do not allow the attacker to

associate this operation with a specific key bit position on one hand, nor to ascertain

a particular binary bit value to it on the other.
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Figure 6.7: Multilevel resistance measures.
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The multi-level resistance measures will confuse prospective attackers regarding

the exact bit positions of the key since:

1. Key partitions are processed in a randomized order.

2. The inspection direction of key partitions that are encoded in binary is ran-

domized (either most-to-least or least-to-most).

3. Key partitions that are NAF encoded may have a size that is greater by 1 bit

than its corresponding binary encoded partition size.

Furthermore, key bit values cannot be definitely ascertained by prospective at-

tackers. Even if a given bit appears to an attacker as if it is a binary 1 its true value

cannot be ascertained since this bit may (1) have a true binary 1 value, (2) have a

true binary 0 value with a dummy add operation or (3) have a 1 value in case of

NAF encoding. Likewise, a recognized zero-bit, may be (1) a true zero in the binary

form or (2) a zero in a NAF encoding.

Resistance against the double attack [96] is achieved because double attack tar-

gets the most-to-least version of the double-and-add algorithm. The proposed cryp-

toprocessor is designed to perform both versions of the double-and-add algorithm

even at the key partition level.

Furthermore, the proposed sequential architecture is also secure against RPA and

ZPA. To protect against RPA and ZPA, either the base point P or the secret scalar

k should be randomized. The proposed key partitioning with random processing
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order scheme, random partition encoding, random partition bits inspection direction

and random dummy additions makes the secret scalar k appear as if it is totally

randomized.

The proposed multilevel randomization techniques make it very difficult to estab-

lish a correlation between the secret information and addresses of registers. Thus,

the proposed cryptoprocessor is secure against ADPA.

Even though increasing the number of key petitions provides more security, an

increased number of key partitions (u) results in more space overhead since the

number of precomputed points (u− 1) will increase accordingly. Likewise, the delay

overhead will also increase by increasing the number of key partitions since (u− 1)

extra point additions are required to assimilate the partial results to produce the

scalar product kP .

NAF encoding requires, on the average, m
3

point additions and hence provides

better time performance than binary encoding which requires, on the average, m
2

point additions. NAF encoding, however, requires signed bit representation and

may increase the size of key partition by at most 1 bit.

The inspection direction does not cause any delay overhead since the time re-

quired to perform scalar multiplication using Algorithm 6.8 is the same time required

by Algorithm 6.9 which requires one more point storage than what Algorithm 6.8

requires.

While dummy computations caused by the randomized bit algorithms (Algo-
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rithms 6.8 and 6.9) increases the degree of confusion, it does increase the number

of point additions. Although this may significantly increase the time overhead, it is

still a more attractive approach compared to the double-and-add-always algorithm

(Algorithm 5.1).

6.2.3 ECCSS Architecture and Operation

Both of the ECCNS and the ECCSS cryptoprocessors use the same basic blocks

which include: (1) the point addition and doubling units, (2) the field arithmetic

units (multiplier and inverter) and (3) the data embedding unit. The two cryptopro-

cessors differ only in the control path and the number of extra registers used by the

the ECCSS cryptoprocessor to store the precomputed points and the accumulation

point.

The pseudocode of ECCSS is given in Algorithm 6.10. Algorithm 6.10 uses the

same inputs/outputs as Algorithm 6.1. Key partitioning, precomputations, precom-

puted point association with key partitions are assumed to be performed off-line.

The key is partitioned into u partitions. Sizes of key partitions may be equal or

different. Different key partition sizes provides more security. Thus, the size of key

partitions are randomly adjusted to avoid future attacks on equal key partition sizes.

If NAF encoding is selected, the key partition size may be increased by up to one

bit since NAF encoding requires at most one extra bit.

Precomputations are performed by repeated double operations in Steps 1-3 ac-
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cording to key partition sizes. The number of required precomputed points are

(u − 1). Each key partition k(i) is associated with a particular precomputed point

Pi to keep the significance of each key partition (Step 4).

Scalar multiplication starts at Step 5 after random arrangement of key partitions.

The inspection direction is randomly selected if a key partition is binary encoded.

Steps 5.1-5.1.1 show the steps if the inspection direction is most-to-least with binary

encoding. If NAF encoding is used, each bit of the scalar multiplier k′(i) is recoded

in NAF representation and accordingly point operations are performed (Steps 5.2.1-

5.2.3). Each partition is processed as if it is a key itself. The partial points resulting

from processing the individualized key partitions are accumulated in the point R

(Step 5.3) which requires (u− 1) extra point additions.

6.3 The ECCPS Cryptoprocessor

This section describes our proposed high performance parallel elliptic curve cryp-

toprocessor with resistance against power analysis attacks. The main idea is to

partition the secret key into a number of partitions, as described in Section 6.2.1,

that are processed in parallel by independent scalar multiplication units. Key parti-

tions inspection direction (most-to-least or least-to-most) are independently selected

for each scalar multiplication unit in a randomized manner.

Parallel inspection of the key bits cause point operations being executed by the
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Algorithm 6.10 Pseudocode of the ECCSS cryptoprocessor.

Inputs: P : Base Point, k: Secret key, a, b: Elliptic curve parameters,
Plaintext/Ciphertext, Encryption/Decryption.
Outputs: Ciphertext/Plaintext.
Key Partitioning: k = k(u−1)||k(u−2)||...||k(1)||k(0), for u key partitions.
Initialization: Q = P , R = O.
Precomputation:
1. P0 = Q.
2. for i = 1 to u− 1 do

2.1. for j = 0 to k
(i−1)
size − 1 do

2.1.1 Q = 2Q
2.2. end for
2.3. Pi = Q

3. end for
Key Partitions Association with Precomputed Points:
4. for i = 0 to u− 1 do (k′(i), Pi).
Key after random rearrangement: k′ = k′(u−1)||k′(u−2)||...||k′(1)||k′(0).
Scalar Multiplication (R = kP ):
5. for i = 0 to u− 1 do

5.1 if (Binary) then

5.1.1. if (most-to-least) then Q = Algorithm 6.8 (k′(i), Pi, k
′(i)
size)

5.1.2. else Q = Algorithm 6.9 (k′(i), Pi, k
′(i)
size)

5.2. else (NAF)
5.2.1. j = 0, t = k′(i), Q[0] = P , Q[1] = O
5.2.2. While t ≥ 1 do

5.2.2.1. if t mod 2 = 1 then
5.2.2.1.1. k

′(i)
j = 2− (t mod 22)

5.2.2.1.2. t = t− k
′(i)
j

5.2.2.2. else
5.2.2.2.1. k

′(i)
j = 0

5.2.2.3. t = t/2, j = j + 1

5.2.2.4. if (k
′(i)
j = 1 or r = 1) then Q[2] = Q[1] + Q[0]

5.2.2.5. else if (k
′(i)
j = −1 or r = 1) then Q[2] = Q[1]−Q[0]

5.2.2.6. Q[0] = 2Q[0]

5.2.2.7. Q[1] = Q[1+ | k′(i)
j |]

5.2.3. Q = Q[1]
5.3. R = R + Q

6. end for
Encryption/Decryption Process: Same as in Algorithm 6.1.
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scalar multiplication units to overlap at various stages of point and individual field

operations. Thus, multiple field operations are fused together causing the power

trace of these simultaneous operations to confuse the nature of point operations

being performed by the parallel scalar multiplication units. Furthermore, the ran-

domized inspection order of each key partition increases immunity against power

analysis attacks. This adds another layer of security and confuses attackers moni-

toring power trace.

The number of key partitions is limited by the number of available scalar multi-

plication units. Each key partition is associated with a precomputed point to keep

its significance. Precomputed points are computed off-line and stored to be reused

as needed. For u key partitions, (u− 1) precomputed points are are required. The

selection of these points depends on the number and sizes of the key partitions.

Each partition is associated with a precomputed point Pi as:

(k(i), Pi) (6.10)

where P0 = P .

The sizes of key partitions may be equal or different. For u key partitions, u

scalar multiplication units are required since each key partition requires an individual

scalar multiplication unit. An extra scalar multiplication unit is also required to

accumulate the partial computations into the final scalar product kP . Different key
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partition sizes allows for optimizing the required number of scalar multiplication

units. The scalar multiplication unit with the smallest key partition size can be

utilized to accumulate the partial computations into the final scalar product kP .

This saves the need for extra scalar multiplication unit which is needed for points

accumulation.

Using different key partition sizes also increases the immunity against power

analysis attacks and future attacks on fixed key partition size. Thus, different key

partitions sizes are used in this work. To increase the resistance against power

analysis attacks more, the key partitioning process and accordingly precomputation

process of the required precomputed points are performed from time to time.

The ECCPS cryptoprocessor does not need extra dummy operations as per-

formed in the ECCSS cryptoprocessor. Hence, high performance is achieved while,

at the same time, improving the resistance against power analysis attacks. Leaked

information, in this case, are quite confusing since it will be a combination of different

point operations being performed at the same time. The proposed cryptoprocessor

requires several scalar multipliers to perform scalar multiplications in parallel as

depicted in Figure 6.8.

Example

Figure 6.9 shows an example of the parallel execution of key partitions. In the

example of Figure 6.9, the key length is 16-bits. The first step is to precompute
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Figure 6.8: The proposed parallel architecture.
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several points and store them in registers. Each of these precomputed points is

associated with exactly one key partition.

The second step is to partition the key k into u key partitions (u = 4 in this

example). Thus,

k = k(3)‖k(2)‖k(1)‖k(0) (6.11)

The third step is to randomly assign the direction of inspection of key parti-

tion bits (most-to-least or least-to-most). The fourth step is the parallel execution

of scalar multiplications as illustrated in Figure 6.9. In Lopeaz–Dahab projective

coordinate system, point addition requires mainly 14 multiplications while point

doubling requires only 5 multiplications (Table 6.1). Thus, point addition requires

around three times as many multiplications required by point doubling. Accord-

ingly, leaked information at a certain point in time will be a combination of field

operations of point doubling, additions and no operations (Figure 6.9). This makes

it very difficult to infer the key from any leaked information. Finally, the resulting

points of all partition are assimilated to produce the final scalar product kP (note

that an extra scalar multiplication unit is used in Figure 6.9 to accumulate to partial

products for the purpose of clarity).
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Figure 6.9: Key partitioning and parallel execution.
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6.3.1 ECCPS Architecture and Operation

As shown in Figure 6.8, the architecture of the ECCPS cryptoprocessor is different

from the architecture of the ECCSS cryptoprocessor. The ECCPS cryptoprocessor

uses parallel scalar multiplication units. The number of these scalar multiplication

units depends on the number of the key partitions. Each scalar multiplier consists

of: (1) a field multiplier, (2) a point addition unit, and (3) a point doubling unit.

The field arithmetic units (adder and inverter) and the data embedding unit are

identical to those used in the ECCNS and the ECCSS cryptoprocessors.

The pseudocode of ECCPS is given in Algorithm 6.11. Key partitioning, pre-

computations, precomputed point association with key partitions are assumed to

be performed off-line. The key is partitioned into u partitions. Different key par-

tition sizes are used and the sizes of these key partitions are adjusted randomly.

Precomputations are performed by repeated doubles in Steps 1-3 according to sizes

of key partitions and the number of required precomputed points are (u− 1). Each

key partition k(i) is associated with a particular precomputed point Pi to keep the

significance of each key partition (Steps 4-5).

Parallel scalar multiplications start at Step 6. The inspection direction of each

key partition is randomly selected. Modified versions of the double-and-add al-

gorithms (Algorithms 6.12 and 6.13) are proposed here to be used by each scalar

multiplier since key partitions have different sizes. Each partition is processed as
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if it is a key itself. The resulting points of each execution of Algorithms 6.8 and

6.9 are accumulated in the point R (Step 6.3) which requires (u − 1) extra point

additions. The time required to perform these extra additions is not significant since

the accumulation process is performed as soon as a point is produced by a scalar

multiplication unit. Finally, the encryption/decryption process is exactly the same

as performed in the ECCNS cryptoprocessor.

6.3.2 Security, Space and Time Analysis

In addition to high speed operation, the proposed parallel architecture provides a

built-in countermeasure against power analysis attacks which ensures that attackers

can not distinguish between point operations or their boundaries. The overlapped

parallel point and field operations and random key partition inspection order confuse

attackers about which bits of which partitions of the key are being processed.

Increasing the number of key partitions increases the immunity against power

analysis attacks as well as the speedup factor. The required space, however, increases

significantly as more key partitions are used since each key partition requires an in-

dividual scalar multiplier. Accordingly, there is tradeoff between speed and security

on one hand and area on the other with different resistance strength against power

analysis attacks.

The double attacks [96] cannot be applied to the ECCPS cryptoprocessor because

double attacks only target the most-to-least version of the sequential double-and-
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add algorithm. The proposed cryptoprocessor architecture performs parallel scalar

multiplications and implements both versions of the double-and-add algorithm ran-

domly.

Furthermore, the proposed cryptoprocessor is also secure against RPA and ZPA

since leaked information about the key are both overlapped and randomized. It is

very difficult for an attacker to infer the secret key.

Finally, correlations between the secret information and addresses of registers

are extremely hard to be analyzed since parallelism and randomization are employed

together. Thus, the proposed cryptoprocessor is also secured against ADPA.

6.4 Summary

In this chapter, three elliptic curve cryptoprocessor architectures for curves defined

over GF (2m) have been proposed. Two of these architectures are designed to be

secure against power analysis attacks, while the third non-secure one is designed to

be used as a reference model for area and delay comparisons.

The proposed power analysis attack resistant cryptoprocessors include one se-

quential and another parallel cryptoprocessor architectures. The sequential cryp-

toprocessor architecture uses multilevel resistance measures against power analysis

attacks. These include resistance measures at the key level, the key partition level,

and at the bit level.
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At the key level, the key is divided into a number of partitions which are se-

quentially processed in a randomized order. The encoding of each key partition is

randomly selected to be either in binary or in Non-Adjacent-Form (NAF) at the

key partition level. Furthermore, at the key partition level, the direction of bit

inspection for binary encoded key partitions is randomly assigned to be either most-

to-least or least-to-most. Finally, the zeros, at the bit level, are randomized to

appear sometimes as ones by performing dummy point additions.

The proposed parallel cryptoprocessor provides high speed through using parallel

scalar multipliers that operate in parallel on different key partitions. Parallel scalar

multiplications of different key partitions are exploited as a countermeasure against

power analysis attacks. Furthermore, the inspection order of each key partition is

randomly decided to increase the immunity against power analysis attacks. The

parallel cryptoprocessor does not need extra dummy operations as performed in the

sequential processor.
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Algorithm 6.11 Pseudocode of the ECCPS cryptoprocessor.

Inputs: P : Base Point, k: Secret key, a, b: Elliptic curve parameters,
Plaintext/Ciphertext, Encryption/Decryption.
Outputs: Ciphertext/Plaintext.
Key Partitioning:
k = k(u−1)||k(u−2)||...||k(1)||k(0), where u is the number of key partitions.
Initialization:
Q = P , R = O.
Precomputation:
1. P0 = Q.
2. for i = 1 to u− 1 do

2.1. for j = 0 to k
(i−1)
size − 1 do

2.1.1 Q = 2Q
2.2. end for
2.3. Pi = Q

3. end for
Key Partitions Association with Precomputed Points:
4. for i = 0 to u− 1 do

4.1. (k(i), Pi).
5. end for
Parallel Scalar Multiplication (R = kP ):
6. for i = 0 to u− 1 do in Parallel

6.1 if (most-to-least) then

6.1.1. Q = Algorithm 6.12 (k(i), Pi, k
(i)
size)

6.2 else
6.2.1. Q = Algorithm 6.13 (k(i), Pi, k

(i)
size)

6.3. R = R + Q.
7. end for
Encryption/Decryption Process: Same as in Algorithm 6.1.
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Algorithm 6.12 Modified double-and-add scalar multiplication algorithm (most-
to-least).

Inputs: P : A precomputed point, k: A key partition, ksize.
Output: kP : Partial scalar product.
Initialization:
1. Q = P · k(ksize−1)

Scalar Multiplication:
2. for i = ksize − 2 down to 0 do

2.1. Q = 2Q
2.2. if ki = 1 then Q = Q + P
end for

3. return(Q)

Algorithm 6.13 Modified double-and-add scalar multiplication algorithm (least-
to-most).

Inputs: P : A precomputed point, k: A key partition, ksize.
Output: kP : Partial scalar product.
Initialization:
1. Q = O, R = P
Scalar Multiplication:
2. for i = 0 to ksize − 1 do

2.1. if ki = 1 then Q = Q + R
2.2. R = 2R
end for

3. return(Q)
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Chapter 7

Results and Discussions

To evaluate our proposed secure ECC architectures (ECCSS and ECCPS) against

the reference non-secure architecture (ECCNS), the three architectures were mod-

eled using VHDL and synthesized on Xilinx FPGA. The developed VHDL models

are parameterized to allow synthesizing the cryptoprocessors with different archi-

tectural features. The developed VHDL allow for flexible definition of the following

parameters:

1. The elliptic curve parameters a and b.

2. The underlying field GF (2m).

3. The base point P .

4. The secret key k.

5. The number of key partitions for the secure ECCSS cryptoprocessor.
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6. The number of parallel scalar multiplication units for the secure ECCPS cryp-

toprocessor.

This chapter presents the results of synthesizing the various cryptoprocessors and

compares these three cryptoprocessors in terms of delay and area. Xilinx (xc2v8000)

FPGA has been used for prototyping. The reason for selecting such high capacity

FPGA is to use the same FPGA chip with the three cryptoprocessors. This is essen-

tial to ensure that delay and area comparisons are done for the same technology and

FPGA architecture and resources. The voltage trace of the ECCPS cryptoprocessor

is also illustrated and discussed in this chapter.

7.1 The ECCNS Cryptoprocessor

The three cryptoprocessors were designed to use the same field operation algorithms,

e.g., multiplication and inversion. Thus, performance difference between these cryp-

toprocessors is mainly a function of their control strategy and architectural differ-

ences independent of field operations. For example, field multiplication requires

(m + 2) clock cycles because of the sequential version of Sunar and Koc multiplier

(Section 6.1). Two clock cycles are required for conversion from and back to optimal

normal basis. Multiplication in the shifted basis requires m clock cycles. Point dou-

bling requires 5 field multiplications, 4 field additions and 6 squarings. Each field

addition and squaring requires only one clock cycle as a result of using optimal nor-
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mal basis. The total number of clock cycles required for performing point doubling

is 5(m + 2) + 10, i.e., (5m + 20) clock cycles.

Point addition, on the other hand, requires 14 field multiplications, 8 field addi-

tions and 6 squarings which requires 14(m + 2) + 14, i.e. (14m + 42) clock cycles.

Scalar multiplication requires, on the average, m point doubles and bm
2
c point addi-

tions, using the double-and-add algorithm. Thus, the required time to perform scalar

multiplication, on the average, is m(5m + 20) + bm
2
c(14m + 42), i.e. (12m2 + 41m)

clock cycles.

The ECCNS cryptoprocessor has been synthesized on the Xilinx FPGA (xc2v8000)

which contains 46592 Slices. Table 7.1 shows the synthesis results of scalar multipli-

cation with m = 14, 30, 65, 90 and 173 bits. As expected, these results show a linear

increase in area.

Table 7.1: The ECCNS Cryptoprocessor Synthesis Results.

m DBLs Adds Clock(MHz) Delay(µsec) Area Area
(Slices) Usage

14 14 7 93.954 31.14 1602 3%
30 30 15 74.235 162.05 3380 7%
65 65 32 64.595 826.15 8445 18%
90 90 45 60.055 1679.96 11933 25%
173 173 86 53.454 6851.52 27504 59%
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7.2 The ECCSS Cryptoprocessor

The ECCSS cryptoprocessor, presented in Chapter 6, has also been synthesized on

the same Xilinx FPGA (xc2v8000) with m = 14, 30, 65, 90 and 173 bits. For the

ECCSS cryptoprocessor, the number of point doubles remains the same as with

the ECCNS cryptoprocessor which is equal to m. The ECCSS cryptoprocessor

randomly encodes each key partition either in binary or NAF encoding.

Binary encoding requires, on the average, m
2

point additions, while NAF encoding

requires, on the average, only m
3

point additions. Thus, an average of 5
12

m point

additions will be performed due to the 1’s in the key partitions encoding (binary &

NAF). At the bit level, in the ECCSS cryptoprocessor, zeros of the key partitions

may randomly cause dummy point additions. Since key partitions may be encoded

either in binary or in NAF representation, an average of 7
24

m dummy point additions

are also required. Thus, the total number of point additions, on the average, is

17
24

m ' 0.7m.

The accumulation process of u partitions requires (u− 1) extra point additions.

Thus, the average total number of point additions required by the ECCSS cryp-

toprocessor is approximately (0.7m + u − 1). Table 7.2 shows the synthesis result

for u = 2, 3 and 4 key partitions for m = 14, 30, 65, 90 and 173 bits. Clearly, the

required time to perform scalar multiplication increases by increasing the number

of key partitions u since (u − 1) extra point additions are required for points ac-
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cumulation. The space, in terms of required number of slices on the Xilinx FPGA

(xc2v8000), also increases by increasing the number of key partitions u because of

the need to store more precomputed points.

To evaluate the performance of the secure cryptoprocessors ECCSS and ECCPS,

we will use the normalized area overhead and normalized delay overhead as measures

of performance.

The delay and area overhead of both processors are measured by the normalized

delay and area of both processors with respect to the sequential non-secure reference

cryptoprocessor ECCNS. Accordingly, the delay and area overheads are defined as:

Delay Overhead = ECCXS Delay
ECCNS Delay

and

Area Overhead = ECCXS Area
ECCNS Area

where ECCXS represents either the ECCSS or ECCPS cryptoprocessor.

For the ECCSS, Figure 7.1 shows that increasing the size of the underlying

field GF (2m) decreases the delay overhead since the number of required extra point

additions is only (u − 1) for u = 2, 3 and 4. Thus, if u is selected to be very large,

the delay overhead is going to increase significantly.

Likewise, the area overhead decreases as m is increased since the common mod-

ules are not changed. Figure 7.1 also shows that for m ≥ 65, increasing u does not

significantly increase the area overhead. Accordingly, more security against power
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analysis attacks can be attained by increasing u at the expense of more area and

delay overhead.

Table 7.2: The ECCSS Cryptoprocessor Synthesis Results.

m u DBLs Adds Clock Delay Delay Area Area
(MHz) (µsec) Overhead (Slices) Overhead

14 2 14 11 93.954 40.77 1.31 1873 1.169
14 3 14 12 93.954 43.30 1.39 1973 1.232
14 4 14 13 93.954 45.83 1.47 2002 1.249
30 2 30 22 74.172 205.79 1.27 3934 1.164
30 3 30 23 74.108 212.20 1.31 4110 1.216
30 4 30 24 74.108 218.44 1.35 4228 1.251
65 2 65 47 64.295 1037.29 1.25 9696 1.148
65 3 65 48 64.295 1052.10 1.27 10091 1.195
65 4 65 49 64.295 1066.91 1.29 10278 1.217
90 2 90 64 60.055 2091.88 1.24 13496 1.128
90 3 90 65 60.055 2113.56 1.26 14015 1.174
90 4 90 66 60.055 2135.24 1.27 14323 1.200
173 2 173 122 53.454 8492.52 1.24 31053 1.129
173 3 173 123 53.454 8538.62 1.25 31660 1.151
173 4 173 124 53.114 8639.67 1.26 32757 1.191
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Figure 7.1: The ECCSS Cryptoprocessor Delay and Area Overheads.
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7.3 The ECCPS Cryptoprocessor

As expected, since the ECCPS cryptoprocessor uses u parallel scalar multipliers,

it requires more hardware resources. Thus, for the Xilinx FPGA (xc2v8000), the

synthesis report shows that the ECCPS cryptoprocessor cannot fit with two or more

parallel scalar multiplication units with m = 173 bits. Thus, only GF (2m) fields

of m = 14, 30, 65 and 90 bits have been synthesized with up to four parallel scalar

multipliers.

Table 7.3 shows synthesis results of the ECCPS cryptoprocessor. Obviously,

increasing the number of key partitions u decreases the execution time of scalar

multiplication since all key partitions are processed in parallel. The required number

of FPGA slices, on the other hand, increases significantly by increasing u since the

number of scalar multiplication units also equals u.

Figure 7.2 shows the normalized delay and area overheads of the ECCPS cryp-

toprocessor with respect to the ECCNS cryptoprocessor. The efficiency, in terms of

delay and area overheads, clearly increases as the number of bits in the underlying

field GF (2m) increases.

The ECCPS cryptoprocessor has been implemented on Xilinx (xcv300) FPGA

with m = 11-bits on XESS XSV V1.1 board. In order to measure the trace of the

core logic power supply, a 1.2 Ω resistor has been placed in series with the core logic

power supply. Figure 7.3 shows the voltage ranges of the ECCPS cryptoprocessor
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with up to three parallel scalar multipliers. If only a single scalar multiplier is used,

point addition and point doubling can be easily distinguished, while with two scalar

multipliers, the voltage ranges are overlapped as shown in Figure 7.3.

Further, using three parallel scalar multipliers makes it very difficult to distin-

guish between different cases that may occur such as 2 doubling + 1 addition or 2

additions + 1 doubling. Parallel scalar multiplications also overlap field operations

across different scalar multipliers. The results depicted in Figure 7.3 clearly show

that parallelism is an effective countermeasure.

Table 7.3: The ECCPS Cryptoprocessor Synthesis Results.

m u DBLs Adds Clock Delay Delay Area Area
(MHz) (µsec) Overhead (Slices) Overhead

14 2 14 8 94.413 16.76 0.538 2902 1.812
14 3 14 9 94.311 12.02 0.386 4264 2.662
14 4 14 10 93.099 9.77 0.314 4837 3.0193
30 2 30 16 73.982 84.43 0.521 6091 1.802
30 3 30 17 73.700 58.59 0.362 8865 2.623
30 4 30 18 73.607 45.57 0.281 10089 2.985
65 2 65 33 63.127 426.96 0.521 14365 1.701
65 3 65 34 63.127 289.67 0.353 20423 2.418
65 4 65 35 62.990 221.50 0.270 23198 2.747
90 2 90 46 64.660 790.23 0.470 18467 1.548
90 3 90 47 64.998 530.84 0.316 27032 2.265
90 4 90 48 65.023 402.92 0.239 32113 2.691
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Figure 7.2: The ECCPS Cryptoprocessor Delay and Area Overheads.

7.4 ECCSS vs. ECCPS Comparison

The lower bound on the area-time cost of a given design is usually employed as a

performance metric (area) x (time)2α, 0 ≤ α ≤ 1, where the choice of α determines

the relative importance of area and time [108]. Such lower bounds have been ob-

tained for several problems, e.g., discrete Fourier transform, matrix multiplication,

binary addition, and others [108]. Once the lower bound on the chosen performance

metric is known, designers attempt to devise algorithms and designs which are op-

timal for a range of area and time values. Even though a design might be optimal

for a certain range of area and time values, it is nevertheless of interest to obtain

designs for minimum values of time, i.e., maximum speed performance, as well as

designs for minimum area. In order to make a more meaningful comparison between

the two secure cryptoprocessor architectures, both the AT and AT2 measures are
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Figure 7.3: The ECCPS Cryptoprocessor Voltage Trace with m = 11.

evaluated for both architectures.

The AT and AT2 performance metrics were studied for both secure architectures.

In one case, AT and AT2 of both designs are studied for various key sizes with a

fixed number of key partitions (u = 4) and in another case for a fixed key size

(m = 173) and variable number of key partitions. For the first case, the number

of key partitions is fixed at u = 4 while the values of m = 14, 30, 65, 90 and 173

were considered. Table 7.4 shows the normalized AT and AT2 for the ECCSS
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and the ECCPS cryptoprocessors for u = 4 key partitions since it provides more

resistance against power analysis attacks. Figures 7.4 and 7.5 show the AT and AT2

complexities respectively. The results shown in Figures 7.4 and 7.5 indicate that the

ECCPS cryptoprocessor has better AT and AT2 performance metrics compared to

the ECCSS cryptoprocessor.

For the second case, the key size is fixed at m = 173 while several values for the

number of key partitions (u = 10, 20, 30, 40, 50 and 60) were considered. The delay

overhead of the ECCSS and the ECCPS cryptoprocessors can be approximated as:

ECCSS Delay Overhead = (m)DBLCC+(0.7m+u−1)ADDCC

(m)DBLCC+m
2

ADDCC

and

ECCPS Delay Overhead =
(m)DBLCC+ m

2 ADDCC
u

(m)DBLCC+m
2

ADDCC

where DBLCC and ADDCC are the required clock cycles for performing point dou-

bling and point addition respectively. Tables 7.2 and 7.3 show that the normalized

area overhead of the ECCSS and the ECCPS cryptoprocessors increases at an ap-

proximately rate of 5% and 50% respectively per each additional key partition. The

AT and AT2 measures over GF (2173), with variable number of key partitions u,

are depicted in Figures 7.6 and 7.7 respectively. The results of Figures 7.6 and 7.7

show that the ECCPS cryptoprocessor also enjoys better AT and AT2 with more

key partitions than the ECCSS cryptoprocessor.
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Table 7.4: Area-Time Complexity Comparison for u = 4.

m
ECCss ECCps

AT AT2 AT AT2

14 1.84 2.71 0.947 0.297
30 1.68 2.27 0.839 0.236
65 1.57 2.03 0.742 0.201
90 1.53 1.94 0.645 0.155

Figure 7.4: The Area-Time Complexity for u = 4.

7.5 Summary

In this chapter, three elliptic curve cryptoprocessor architectures for curves defined

over GF (2m) have been modeled using VHDL. The developed VHDL models are

parameterized to allow synthesizing the cryptoprocessors with different architectural

features.

Synthesis results for the proposed secure sequential cryptoprocessor show that
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Figure 7.5: The Area-Time2 Complexity for u = 4.

increasing the number of key partitions slightly increases the area. In contrast,

increasing the number of key partitions for the proposed parallel cryptoprocessor

significantly increases the space requirements since several scalar multipliers are

employed.

The sequential cryptoprocessor requires more point additions than the reference

non-secure cryptoprocessor so as to accumulate the results of the key partitions. For

the parallel cryptoprocessor, however, a significant overall speedup is obtained since

several scalar multipliers are used.

The AT and AT2 performance measures for the proposed secure cryptoprocessors

show that the parallel cryptoprocessor has better AT and AT2 compared to the

sequential cryptoprocessor.
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Figure 7.6: The Approximated Area-Time Complexity for m = 173.

The three cryptoprocessor has been implemented on a Xilinx FPGA and the

voltage trace of the core logic of the parallel cryptoprocessor has been measured for

different parallel point operations to demonstrate resistance against power analy-

sis attacks. The results show that using the parallel cryptoprocessor significantly

confuses leaked information without performing extra dummy point operations.
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Figure 7.7: The Approximated Area-Time2 Complexity for m = 173.

136



Chapter 8

Conclusions and Future Research

In this dissertation, three elliptic curve cryptoprocessor architectures for curves de-

fined over GF (2m) have been modeled using VHDL. The developed VHDL models

are parameterized to allow synthesizing the cryptoprocessors with different archi-

tectural features. The proposed architectures allow designers to tailor performance

and hardware requirements according to their performance and cost objectives.

Two of these architectures are proposed as being secure against power analy-

sis attacks, while the non-secure one has been used as a reference model for area

and delay comparisons. The proposed power analysis attack resistant cryptoproces-

sors include one sequential and another parallel cryptoprocessor architectures. The

sequential cryptoprocessor architecture uses multilevel resistance measures against

power analysis attacks. These include resistance measures at the key level, the key

partition level, and at the bit level.
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At the key level, the key is divided into a number of partitions which are se-

quentially processed in a randomized order. The encoding of each key partition is

randomly selected to be either in binary or in Non-Adjacent-Form (NAF) at the key

partition level. Furthermore, at the key partition level, the direction of bit inspection

for binary encoded key partitions is randomly assigned to be either most-to-least or

least-to-most. Finally, the zeros, at the bit level, are randomized to appear some-

times as ones by performing dummy point additions. The sequential cryptoprocessor

architecture certainly makes it very difficult for cryptanalysts to infer the key from

leaked information in such multilevel resistance secure environment.

The proposed parallel cryptoprocessor provides high speed through using parallel

scalar multipliers that operate in parallel on different key partitions. Parallel scalar

multiplications of different key partitions are exploited as a countermeasure against

power analysis attacks. Furthermore, the inspection order of each key partition is

randomly decided to increase the immunity against power analysis attacks. The

parallel cryptoprocessor does not need extra dummy operations as performed in the

sequential processor. Hence, high performance gain is achieved while at the same

time providing adequate resistance against power analysis attacks.

For the proposed secure sequential cryptoprocessor, synthesis results show that

increasing the number of key partitions slightly increases the area. In contrast,

increasing the number of key partitions for the proposed parallel cryptoprocessor

significantly increases the space requirements since parallel scalar multipliers are
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employed. The time complexity of the sequential cryptoprocessor requires more

point additions than the reference non-secure cryptoprocessor so as to accumulate

the results of various key partitions. However, for the parallel cryptoprocessor, a

significant overall speedup is obtained.

Furthermore, the AT and AT2 performance measures for the proposed secure

cryptoprocessors have been evaluated. The results show that the proposed paral-

lel cryptoprocessor has better AT and AT2 compared to the proposed sequential

cryptoprocessor.

In order to demonstrate resistance against power analysis attacks, the parallel

cryptoprocessor has been implemented on a Xilinx FPGA and the voltage trace

of the core logic has been measured for different parallel point operations. The

results have shown that using the parallel cryptoprocessor significantly confuses

leaked information.

Future research may further investigate the following:

1. Exploring the sequential-parallel mixed design.

2. Finding an optimal configuration with the best number of key partitions.

3. Evaluating both architectures on other ASIC platforms (e.g. standard cells).

4. Extending the same ideas to hyper-elliptic curves which require less number

of bits (80-bits).
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