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Abstract

In the first part of this thesis, some necessary and sufficient conditions for h-stability of a
class of interval matrices are developed. It is proved that the problem of determining the
h-stability of an interval matrix is related to that of existence and positiveness of the
inverse of a point matrix constructed from the given interval matrix. In the second part
some results on positive definiteness and stability of interval matrices are extended to h-
positive definiteness and h-stability. In the third part some verifiable necessary and
sufficient conditions for regularity of interval matrices are established. Based on these
conditions an algorithm for determining the regularity of interval matrices is developed
which lead to several algorithms for checking the stability and positive definiteness of

interval matrices.
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Chapter 1

Introduction



1.1 Interval Matrices

An interval matrix is a matrix whose elements are intervals, e.g., a real matrix whose
entries are known within certain closed intervals or a matrix whose entries are con-
tinuous functions of some parameter z € [a,b]. Thus an interval matrix, denoted by

Al =[B,C], is a set of real matrices defined as

Al={A=aj]: b5 < aj <cji,j=12,,...n}, (1.1)

where B = [b;;] and C = [c;;] are n x n real matrices [13].

A square matrix D = [d;;] is said to be a corner matrix of an interval matrix Al if
di; = bij or ¢;j for all i, j. An interval matrix A’ is said to be regular if each A € A’ is
nonsingular. A is said to be symmetric if both B and C are symmetric. Notice that
a symmetric interval matrix may contain nonsymmetric matrices. Thus a syminetric
interval matrix may have complex eigenvalues.

A square matrix A is said to be stable with stability margin h or h-stable if for
all eigenvalues X of A, Re[A\] < —h, h > 0. An interval matrix Al is said to be stable
with stability margin h or h-stable if each A € A’ is h-stable. Al is said to be stable
if it is h-stable with h = 0.

A non-singular M —matrix M is a real matrix of the form M = pI ~N,p>0. N2>
0 with p > p[N], where N > 0 means that all elements of N are nonnegative (such a
matrix N is called nonnegative matrix), and p[N] denotes the spectral radius of N.
i.e., absolute value of the eigenvalue of N of largest magnitude. It follows that the
diagonal elements of a non-singular M —matrix M are positive, while the off-diagonal

clements are nonpositive. There are more than fifty equivalent characterizations of



M —matrices (8].

An n x n matrix A is said to be positive definite if z7 Az > 0 for all z € R" such
that z # 0. An interval matrix A’ is said to be positive definite if cach A € Al is
positive definite.

A system of linear interval equations
Alx = (1.2)

where A/ is an interval matrix and b’ an interval vector, is a system of linear equations
in which the coefficients of variables and right-hand-side constants are not determined
exactly but are known only to lie within certain closed intervals (obtained for example
as a result of roundoff, truncation or data errors). Such a system of linear interval
equations represents a family of linear systems of equations which can be obtained
from it by fixing coefficients and right-hand values in the prescribed intervals. The
matrix of coefficients of a system of linear interval equations is an interval matrix A’
and such a system has a unique solution under the assumption that AT is regular [22].
Thus to check the solvability of such a system one has to determine the regularity of
the coefficients interval matrix A’.

Many practical problems require extensive numerical computations involving quan-
tities determined experimentally by approximate measurements with some estimate
of accuracy of the measured values. A typical calculation will begin with some num-
bers known only to a certain number of significant decimal digits. Results computed
from such an inexact initial data will also be of limited precision. It is of great

practical importance to be able to access the accuracy of such results. Uncertainties



enter the model in the form of linearizations, approximation measurement errors or
unmodelled dynamics. Some of the uncertainties may be removed by higher order
approximations. But it is inevitable to endup with some of the uncertainties. It is
therefore advantageous to be able to guarantee the stability and performance of the
system in the face of unknown uncertainties. This is generally achieved by specifying
bounds within which the parameters are allowed to vary and establishing conditions
under which the required stability or performance property is maintained for all values

of the system parameters in the specified range.

In the control system literature it has been recognized that a good control system
must be robust, i.e., it must remain stable for all values of the system parameters
within certain range. Interval matrices have recently been used to model parametric

variations in the linear time-invariant systems

X(t)=AX(t) (1.3)

described in state-space form under data perturbation [7], [9] and [11].

There are different approaches to check the stability of different types of interval
matrices. These approaches usually consist of checking that some test matrices, con-
structed from the original interval matrix, satisfy certain conditions. Some of these

approaches are discussed in the following sections.
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1.2 Stability: Gershgorin’s Theorem and its ex-
tension

Gershgorin’s Theorem is useful in determining regions containing eigenvalues of ma-
trices. Based on Gershgorin’s theorem, Heinen [1], gave some sufficient condition for
the stability of an interval matrix A’ = [B, C] which requires the upper limits of the
diagonal intervals to be all negative, i.e., ¢;; < 0 for all 7. Argoun [2] suggested an
extension of Gershgorin’s theorem based on which Juang and Shao [9] gave useful
sufficient conditions for the stability of interval matrices which removed the restric-
tion that the ¢;; < 0 for all . These conditions were improved by Chen (3]. Using
the fact that similar matrices have the same eigenvalues, some tightest sufficient con-
ditions based on Gershgorin’s theorem and its extension were given by Chen in (3]
(by tighter conditions, we mean that conditions which lead to reduced (Gershgorin's)
regions containing eigenvalues). In [3] it is also established that the stability of an in-
terval matrix A’ is related to the characterization of a certain non-singular A{-matrix
constructed from A’. Some properties of M-matrices were also used for testing stabil-
ity of interval matrices (3], [6], [7]. The numerical implementation of the conditions
given in [3] requirc finding the spectral radius of certain matrices constructed from
the given interval matrix. If these matrices have precisely one dominant eigenvalue,
one can find that eigenvalue using the power method [17], [18], {19]. In [8] several
conditions equivalent to the conditions in [3] are given which replace the problem
of finding the spectral radius by that of finding the inverses of some test matrices

constructed from the given interval matrix.
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1.3 Stability: Positive definiteness and Regularity

We can write an interval matrix A’ = [B,C] as
Al =[A™ — A A™ + 4], (1.4)

where A™ = 1(B + C) and A = }(C — B). Noticethat A’ = [A™ — A A™ + A]is
symmetric if both A™and A are symmetric.

In {23], Z. C. Shi and W. B. Gao, proved some necessary and sufficient conditions
for the positive definiteness of an interval matrix using its corner matrices. The
number of test matrices in these results was 9™, Using the fact that a symmetric
matrix A is stable if and only if —A is positive definite, D. Hertz [16], proved that
every symmetric matrix in a symmetric interval matrix Al is stable if and only if
every test matrix in a finite subset of corner matrices of Al is stable. The cardinality
of this subset was 2"~L. These results were improved by Rohan [4]. Rohan proved that
stability (positive definiteness) of this subset implies stability (positive definiteness) of
the whole A’. Rohan also proved that A’ is positive definite if and only if A{ is positive
definite, where A! is a symmetric interval matrix constructed from Al In {4] it is also
proved that a symmetric interval matrix is positive definite if and only if it is regular
and contains at least one positive definite matrix. Since A! and the corresponding
Al are equivalently positive definite, one can verify positive definiteness of a general
interval matrix using corresponding symmetric interval matrix. However, this result
is not as simply implemented, because verifying the regularity of an interval matrix
is generally a difficult problem. For example see [22], where a number of necessary

and sufficient conditions for regularity are given, all of which require computations
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of at least 2"~ operations such as evaluating determinants, solving systems of linear
equations, inverting matrices and so on. Now we mention some results due to Rohan
(4] which relates stability, positive definiteness and regularity of interval matrices. In
contrast to the previous results, where an interval matrix Al and the corresponding
symmetric interval matrix A! are equivalently positive definite, here only stability
of A! implies stability of A’. Thus if A} is not stable one cannot comment on the
stability of A’. Therefore for stability, the investigation is restricted only to symmetric
interval matrices. Using positive definiteness, Rohan [4] proved that a symmetric
interval matrix A! is stable if and only if all matrices in a finite set of cardinality
9n=1f matrices in A’ are stable. Using a previous result for positive definiteness and
regularity, Rohan [4] also proved that a symmetric interval matrix A! is stable if and
only if it is regular and contains at least one stable matrix.

For the necessary and sufficient stability conditions of an interval matrix Al
formulated in terms of checking stability of a finite subset of matrices in Al given by
Soh [23], Hertz [16] and Rohan [4], the set of test matrices increases exponentially with
the matrix size. Therefore these conditions are hard to apply for higher order interval
matrices. In [14], Rohan proposed a branch-and-bound type algorithm for checking
the stability of a symmetric interval matrix, based on nccessary and/or sufficient
stability conditions. This algorithm cannot be expected to circumvent exponentially
in the verification process in general, but due to built-in branch-and-bound strategy
it drastically reduces the amount of computations in many cases. [n contrast to the
stability checks based on sufficient conditions only, this algorithm always yields a

result: in a finite number of steps it either verifies the stability of Al or finds an



unstable matrix in A.

In [11], Wang, Michel and Liu developed necessary and sufficient conditions for
the stability and using these conditions they developed an algorithm for checking
the stability of an interval matrix. This algorithm requires the solution of Lyapunov
equation. which is a matrix equation of order -"—(1'2—'—11 x 1(32"-'—11, where n is the size of
interval matrix A" [21].

In the present study, our plan is:

1. To examine the necessity of some of the sufficient conditions for h—stability of

interval matrices given by Chen(3] and their numerical implementations.

9 To extend the results given in [4] for positive definiteness and stability to
h—positive definiteness and h—stability for symmetric interval matrices and

develop some numerical algorithms based on these results.

3. To establish some verifiable necessary and sufficient conditions for the regularity
and stability of interval matrices and develop numerical algorithms based on

these conditions.



Chapter 2

Stability, Positive Definiteness and
Regularity of Interval Matrices:

Review of some existing results
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2.1 Introduction

In this chapter, we review some results that are generally used for stability analysis
of interval matrices. In section 2, several sufficient conditions for the h-stability of
interval matrices using Gershgorin’s theorem and its extension are presented. Some
important characterizations of nonsingular A/-matrices are also presented in this sec-
tion. Furthermore, as proved in [3], it turns out that the problem of determining
the stability of an interval matrix is related to that of characterizations of a certain
nonsingular A/-matrix. An important consequence of such conditions is that they
may potentially result in many more sufficient conditions, because a nonsingular M-
matrix is abundant in its characterizations [8]. In section 3, some characterizations
of positive definiteness and stability of interval matrices, due to Rohan [4], arc pre-
sented. In section 4, we present some necessary and/or sufficient stability conditions

and algorithms based on them {4].

2.2 Marginal Stability: Gershgorin’s Theorem and

its Extension

In this section we present the sufficient conditions for h—stability of interval matrices

based on Gershgorin’s Theorem and its extension, due to Heinen [1] and Chen (3]
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2.2.1 Gershgorin’s Theorem and its extension

In this subsection we state the well known Gershgorin’s theorem which has been used

in forming some sufficient conditions for the h—stability of interval matrices [1]. [3].

Theorem 1 (Gershgorin’s Theorem)[19] For ann xn matriz A, every eigenvalue

A of A must be contained in at least one of the discs characterized by rows of A as

I’\_aiils Z laijlx t=12..,n (21)

j=1j#
Remark 1 It follows from (2.1) that real part of each eigenvalue A of A must satisfy

one of the following conditions

L]
[Sv]
~

ReM] <asit+ >, layl, i=1,2.....n. (2.

j=Lj#i
Remark 2 Since eigenvalues are invariant under similarity transformations, inequal-

ity (2.2) can be tightened by using matriz scaling which is as follows. Let
R = {R = diag(ry,a,....Tn) : i > 0,i=1,2,...,n}. (2.3)

Then A and R™'AR have the same eigenvalues for all R € R, where

-1 o a;; ZfZ = j7
(RTAR); = {;{a,-,» ifi # j.

Thus for all R € R, the real part of each eigenvalue A of A must satisfy

R\ < awt Y %[aﬁl, i=1,2,..n. (2.4)
j=lj#i 't

It follows from (2.4) that

T; .
—% lail, i=1,2,...,n. (2.5)

1

Re[M] < aqa+ min >

j=Lj#i



Remark 3 Extension of Gershgorin’s Theorem [2]
Any matrit A € Al can be written in the perturbed form as A =A +6A where

|64] < AA. A and AA are given by

A= B—(b,-j + c,,)] . AA= B(c,j - b,-j)] )

&

Let T be a similarity transformation such that T-'' AT = Ay, where Ay is the Jordan

form of A. Let /\-1,):2, ...,/\-,, denote the eigenvalues of A, and A= diag[/\.i] and let
F=A;~A+|T"AA|T| = [f4]

It follows from Theorem 1 and the triangular inequality that every eigenvalue \ of A

must be contained in at least one of the discs

i/\'— Xll S i f,’j 1= 1,2, ey N

J=1j#

2.2.2 Sufficient Conditions, The Extreme Matrix

Based on Gershgorin’s Theorem, Heinen {1] and Chen {3] gave the following sufficient

conditions for the h—stability of interval matrices.
Theorem 2 Consider the interval matriz A" = [B,C] and let h > 0. Then
1. A! is h—stable if

ct S maz{lbyl,leyl} < —h. i=12..n (2.6)

j=li#
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9. Al is h—stable if there erists an R € R such that

n r
Cii+ Z ‘;J' ma:r:{[b,-jl . lc,»j!} < *‘h, 1= 1.2 . (27)

J=lg#e Ot

Now corresponding to A, define a matrix Wy, = [wy] by

0 if i = j.
= meslbaliel) ifit). 25)
i +h

Then as given in [3], the following Corollary is a compact version of Theorem 2.

Corollary 1 Suppose that for interval matric Al ci+h<0,i=12..n, for

some h > 0. Then
1. AT is hestable if W]l < 1.
2. A7 is h—stable if there exists an R € R such that ||RT'Wi Rl < 1.

It is now clear that the problem of finding the tightest condition for stability is
translated into that of finding the minimum of || R~!TV, R, over the set R. Chen (3]

solved this problem by using the following lemma from [§].
Lemma 1 Suppose that A is a nonnegative matriz. Then
—mi -1
plA] =min (B AR]. (2.9)

Since VR € R, A and R~'AR have the same eigenvalues. Chen [3] found the
following tightest condition for stability of interval matrices by applying Corollary 1

and Lemma 1 to the matrix Wj,.

Theorem 3 Suppose that c;; + h <0, i=1,2,...n and for some h > 0. Then the

interval matriz A’ is h—stable if p[W,] < 1.



14

An interesting consequence of this theorem, given by Chen (3], is that the condition
p[W4] < 1 coincides with the characterizations of a certain nonsingular M-matrix. In

what follows we present these results.

Theorem 4 The following statements are equivalent for a real matriz M = [r5]

withmy >0 fori=1,2,..,n,and m;; <0 fori#j, i, 7=12.....n
1. M is a nonsingular M —matriz.
2. There ezists an R € R such that

n
Mty > Z Tj !mijl ’ 1= 1-1 2,..,n. (2.10)
J=Lj#i

3. There exists an R € R such that MR+ RMT is positive definite.
4. The real part of each eigenvalue of M is positive.

Now define U, = [uy;] by

lC.'i + hl if 1 =7, 5
o =70 2.11
o {‘max{lbinCijl} if i # 7. (211)

Using this definition and Theorem 4, Chen [3] obtained the following result which
relates the problem of finding the tightest condition for h-stabiiity to the characteri-

zation of Uy, as being a nonsingular M —matrix.

Theorem 5 Let W, and Uy be as defined above. Then p[Wi] < 1 if and only if Uy

is a nonsingular M matriz.

Remark 4 [t follows that A' is h—stable if c;i + h <0, h 20, foralli and U, is a

nonsingular M —matriz.
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2.2.3 Sufficient Conditions, The Perturbed Matrix

The sufficient conditions given by the above results are rather restrictive because they
require ¢;; + h < 0, for all i. Using the extension of Gershgorin’s Theorem, given in
Remark 3, Chen [3] obtained the sufficient conditions given in the following theorem

that relax this restriction.
Theorem 6 Suppose that Re[):,-] < -h, i=1,2,...,n, h > 0. Then
1. Al is h—stable if

Reh+ Y. fy<—h, i=12,..n (2.12)

J=1j#

2. Al is h—stable if there exists an R € R such that

Rehl+ S Zfj<—h, i=12..n (2.13)
j=lg#i Tt
Define I'y, = [7;5] by
Yy = N (2.14)
|Re[A\;] + R

Then the following compact version of Theorem 6 was also given by Chen in [3].
Corollary 2 Suppose that Re[\j] +h < 0,i=1,2,...,n, h > 0. Then

1. Al is h—stable if ||Th]l, < 1.

9. Al is h—stable if there ezists an R € R such that |[R™'Tw R, < 1.

Again using Lemma 1 and Corollary 2, Chen [3] gave the tightest condition for

the h—stability of A as stated in the following theorem.
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Theorem 7 Suppose that Re[z\‘,-] +h<0,i=1,2,...n, h > 0. Then A’ is h—stable

pr[Fh] <1l

Chen [3] also proved that this result also coincides with the characterization of a

certain nonsingular M —matrix.

Corollary 3 Let [’ be defined as above. Then p{l's] < 1 if and only if I — Ty is a

nonsmgular M —matriz.

2.3 Positive Definiteness and Stability

Y

A summary of the results obtained in [4] for positive definiteness and stability of

interval matrices is as follows:

1. An interval matrix has one of these properties if and only if it is true for a finite

subset of test matrices constructed from the given interval matrix.

2. A symmetric interval matrix is positive definite ( stable) if and only if it is

regular and contains at least one symmetric positive definite (stable) matrix.

First we present some notations and a proposition used by Rohan to prove the
results stated above. Corresponding to any interval matrix Al =[A™ - A A™ + A]

one can construct a symmetric interval matrix

Al =A™ = A A™ + A (2.15)
where A™ and A’ are given by
m' 1 m mT 1 T
A =;)-(A + A™), and/_\.=-5(A+A ). (2.16)
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Clearly, if A € A, then 3(A+ AT) € Al and Al is symmetric if and only if A’ = AL

Define an indexing set
Y={z€R":|z|=1forj=12,..,n}, (2.17)

i.c., Y is the set of all vectors in R™ with components as £1 and hence its cardinality
is 2*. For each z € Y. let T. be an n x n diagonal matrix with diagonal vector z and

A. represents an n X n matrix defined by
A, =A™ - TAT.. (2.18)

It is clear that for each (3, j),

(Am - A)ij lf Zigj = 1

A).. = my Az = 2.
(A-'-)’J (‘4 )11 21A1]~J {(Am + A)U if Z{Zj = -1 ) ( 19)

Hence for each z € Y, A, € A!. Because A_. = A, the number of mutually different
matrices A. is at most 2. If A is symmetric then each A. is symmetric.

Define a function f : R**™ — R! by
f(A) =ﬁi1'i zT Az for Ae R™™. (2.20)

Since for any square matrix A, g(z) = z7 Az is continuous on the unit sphere in R™.
then f is well defined. The following Proposition sums up some basic properties of f

that were used by Rohan in {4] to prove the main results.

Proposition 1 The function f has the following properties:
() f(A) = f(3(A+ AT)) for each A € R™™™;

(ii) f(A) = Anin(A) for each symmetric A € R™™;
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(iti) | f(A+ D) — f(A)] < p(."li(D'*' DT)) for each A, D € R™
(vi) f is continuous in R™*™;

(v) for each interval matriz A" we have
min{f(A): A€ AT} =min{f(A:):z €Y}
(vi) for each interval matriz A' we have
min{f(A): A€ A’} =min{f(A): A€ Al
(vii) each interval matriz AT = [A™ — A, A™ + A] satisfies
min{f(A): A€ AT} > f(A™) — p(A");

(viii) if A is symmetric and f(A) =0, then A is singular.

2.3.1 Positive Definiteness of Interval Matrices

From (2.20) it is clear that A is positive definite if f (A) > 0 for all z € R™, such that
i|z|| = 1. As a consequence of Proposition 1, Rohan [4] obtained the following result
which relates the positive definiteness of an interval matrix Al and corresponding

symmetric interval matrix Af.

Theorem 8 Let A’ be a square interval matriz. Then the followings are equivalent:
(a) A" is positive definite,
(b) Al is positive definite,

(c) A. is positive definite for each z € Y.
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Remark 5 The assertion (c) shows that positive definiteness of an interval matriz
can be verified by testing 2"~ matrices, taken from A!, for positive definiteness. The
equivalence "(a) <> (b)" reveals another property that verification of positive definite-
ness of A’ can always be performed by inspecting the associated symmetric interval
matriz AL, Hence for positive definiteness we can restrict our attention to symmetric

interval matrices only.

The next result describes the relation between positive definiteness and regularity

of a symmetric interval matrix [4].

Theorem 9 A symmetric interval matrz Al is positive definite if and only if it is

reqular and contains at least one positive definite matric.

The necessary and sufficient condition in Theorem 9 requires only one matrix to
be checked for positive definiteness. However, the result is not as pleasant as it might
seem. Verifying regularity of an interval matrix is generally a difficult problem as can

be seen in [22].

2.3.2 Stability of Interval Matrices

In this subsection, we present the results given in [4] for stability of symmetric interval
matrices. These results turn out to be closely connected to the contents of the previous
section due to the well known result that a symmetric matrix A is stable if and only
if —A is positive definite. In contrast to the results for positive definiteness, where

the matrices A, = A™ — T.AT, were employed, Rohan [4] characterized the stability



in terms of the matrices
A= A"+ T.AT., z€Y.
Obviously, A.€ A’ and all A, are symmetric if Al is symmetric.

Theorem 10 Let Al = [A™— A, A™ + A] be a symmetric interval matriz. Then the
following assertions are equivalent:

(a) A! is stable,

(b) Al = [-A™ — A, —A™ + A] is positive definite,

(c) A, is stable for each z €Y.

In Theorem 8 it has been shown that problem of checking positive definiteness of
a general interval matrix can be equivalently formulated in terms of the problem of
checking the associated symmetric interval matrix. But this nice property is not true

for stability, where only one implication is true [4].
Theorem 11 If Al is stable then A" is stable.

Now we present the corresponding versions of Theorem 9 for the case of stability

as given in [4].

Theorem 12 A symmetric interval matric Al is stable if and only if it is regular

and contains at least one stable symmetric matrit.

2.4 Algorithm for Checking Stability

In this section a branch-and bound type algorithm for checking stability of symmetric

interval matrices is presented, which is based on necessary and/or sufficient stability
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conditions [14]. As proved in [14] this algorithm cannot be expected to circumvent
exponentially in the verification process in general, but due to the built-in branch-
and-bound strategy it essentially reduces the amount of computatious in many cases.
This algorithm always cither verifies the stability of a symumetric interval matrix Af
or finds an unstable matrix in A’.

Let A’ =[B.C] be an n. x n symmetric interval matrix. Define the set

o
A
—
p—

Y, ={z € R*: z; € {~1,0,1} for each j}. (2.

Using this set define two real matrices

%(bij +C,'j) if iz = 0and i # ]
(A)s =9 o if zzz;=lori=j (2.22)
L bij if Zig; = -1
and )
Ly —by) ifzzyj=0andi#]
3\Gij — 0i5) 1 2% 7 J o
(A:)i = 9 : (2.23)
. 0 if zz;#0ori=7

where i.j = 1.2....,n. Since Al is symmetric, therefore for cach z € Y,. both the
matrices A, and A, are symmetric, 4. € A" and A; 2 0.

Now consider the indexing set
Y ={z€ R":z € {~1.1} for cach i}

Clearly Y C Y,. Using ¥ and A. Rohan (14] proved the following necessary and

sufficient condition for stability of symmetric interval matrices.

Theorem 13 A symmetric interval matriz Al is stable if and only if A: is stable for

cachz €Y,z =1
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The following sufficient condition for stability of interval matrices is also given by

Rohan in [14].

Theorem 14 A symmetric interval matriz A’ = [A™ — A, A™ + A] is stable if the

matric A™ + ||Al};1] is stable.

Checking the stability of a symmetric matrix A can be performed by computing

Amaz(A) and checking its negativity. Now define a sign vector sgnz by

1 if I; > 0
(sgnz); = . (2.24)
-1 ifz, <0
Clearly sgnz € Y for each z. Rohan [14] used this definition to construct the al-
gorithm described below which generates a sequence of matrices A. with ascending
values of Amaz(A;) and verifies the instability of A'.
Problem 1: Check the instability of symmetric interval matrix A’ = [A™ — A, A™ +
Al.

Algorithm 1:

1. Compute Amqz(A:) and corresponding eigenvector .
2. repeat
z=sgnz
compute Apmqz(A.) and corresponding eigenvector =
until (Amez(A:) > 0 or A;jziziziz; > 0 for each i,7)

3. if Amax(A:) > 0 then { A’ is unstable} else {instability is not verified}, Stop.



The algorithm 2, which is the main algorithm, is described as follows [14]:

Starting from A’ it proceeds towards the matrices A., z € Y. z; = 1 used in the
necessary and sufficient conditions of Theorem 13. This is done by starting from
= = (1.0,....0)T and replacing zeros in the z's by -1 or 1. If for some z € Y, the
symmetric interval matrix [AT — A, AT+ A.] C Al is found to be unstable by using
Algorithm 1, then this algorithm terminates with the result that A" is unstable else
it checks the stability of A™ + [|AL|1. If A™ + [|A:h] is stable, then the interval
matrix [A™ — A., AT + A,] is stable and is removed from further considerations. If
A™ 4+ ||A|1] is not stable, then replace some zero entries in the current vector z

by -1 or 1. In order to do this, first find indices where perturbation is maximum in

[A™ — A, A™ + A.]. That is find (4, 7), ¢ < j, satisfying

(A:)ij =mar (A:)km- (225)

k<m

Since A™ is stable, A™+|| A.||;/ is not stable, and A, is symmetric, therefore (A.):; >
Oand z;z; =0.Set h =7if =0 and h = j otherwise, so that z; = 0. Construct

two new vectors z'and z2 € Y, by

-1 ifit=~h , 1 ifi=~h
- and z°= s (2.26)

z  otherwise z  otherwise

™
|

and put them into the set L of items to be tested.
Problem 2: Check the stability of symmetric interval matrix A’ = [A™—A, A7 +A].

Algorithm?2:

1. Put the vector (1,0,...,0)7 in the set L and make unstable = false.



2. repeat
remove the top most entry from L
compute AT and A,
verify the instability of [AT" — A AT + A.] by using Algorithm 1.
if [A" — A., AT + A.] is unstable then unstable = true
else
if A™ + || A.||1] is unstable then
find i, j satisfying (2.25)
if z;=0thenh=ielse h=7
construct z'tand 22 by (2.26)
insert z! and 2” into the set L

until (L = ® or unstable)

3. if unstable = true then { A’ is unstable} else {A! is stable}. Stop.



Chapter 3

Stability, Positive Definiteness and
Regularity of Interval Matrices:
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3.1 Introduction

This chapter is organized as follows. In section 2, based on some results from [3], we
prove the necessity of a sufficient condition for h-stability of an interval matrix and
establish a result which relates the problem of determining the stability of an interval
matrix A’ to that of the inversion of a point matrix constructed from A’. In section
3. we extend the results given by Rohan [4] for positive definiteness and stability to
h-positive definiteness and h-stability of interval matrices. In section 4, first we state
some well-known results for linear operators and establish some new necessary and
sufficient conditions for the regularity of interval matrices. Using these regularity
conditions, we establish necessary and sufficient conditions for stability of symmetric
interval matrices which are also sufficient conditions for any interval matrix. Based
on these conditions, we develop algorithms for checking the regularity and stability
of interval matrices. We demonstrate the effectiveness of our algorithms by some

numerical examples.

3.2 Gershgorin’s Theorem and Stability

Let A/ =[B,C] be an interval matrix and define the matrix E = [e;j] by

Cii fi=y
= (3.1)

max{|b;|,lc;1} Hi1#J

Remark 6 An interval matriz AT = [B,C] is h—stable for some h >0, if and only

i
if the interval matriz A = [B + hI,C + hl] is stable.



[
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Theorem 15 Let A’ = [B,C] be an interval matriz with¢;; <0 foralli=1.2.....n

and b;; + ¢;; > 0 for alli # j. Then Al is stable if and only if E is stable.

Proof. The condition b;; + ¢;; > 0 implies E' € A’ Therefore stability of A’ implies
stability of E.
To prove the converse suppose that E is stable. Then real part of cach eigenvalue of E
is negative, therefore real part of each eigenvalue of U is positive. Then by Theorem
4. U is a nonsingular M-matrix and by Theorem 5, p[I¥'] < 1. Hence by Theorem 3,
Al is stable. &

Using Remark6 and Theorem 15, we have the following corollary for h—stability.

Corollary 4 Let Al = [B,C] be an interval matriz with ¢;; + h < 0 for alli =
1.2....n and by + ¢;; = 0 for all i # j. Then Al is h—stable if and only if E is
h—stable.

- -1
Proof. Suppose that A’ is h—stable, then A is stable and E+h €A . Thus E+h

is stable and hence F is h—stable.
-1
Conversely if E is h—stable and E + h is stable and by Theoreml5 A 1s stable,
which implies A’ is h—stable.

From the interval matrix A’ defined by (1.1) for which ¢; + h <0, h >0, define

a matrix V4, = |v;] by

1 if i = j, .
Vi = . (32)
mesllbuliiesll if 4 # 5.

From this definition it is clear that »; < 0 for i # j.
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The next result relates the problem of checking the h—stability of an interval
matrix A! to that of checking the inverse of a point matrix constructed from Al Tts

proof is based upon the following lemma due to Verga 8]

Lemma 2 Let A > 0 be an n x n matriz. Then the following are equivalent:
1. p[A] < 1,
9. I — A is nonsingular and (I — A)™' > 0.

Theorem 16 Let A! be an interval matriz with ¢;; + h < 0 for all i = 1.2, ....n.

h > 0. Then A' is h-stable if Vi, is nonsingular and (Vx)~!' 2 0.

Proof. Since ¢;; +h < 0, therefore I — Vj, = W, and W, 2 0, where W, is defined by
(2.8). Then by Lemma 2, V,, = I —W, being nonsingular and (V) ™! = (I-W,)"t >0

implies that p[I4] < 1. Hence by Theorem 3, A is h—stable. W

3.3 h-Positive Definiteness and h-Stability

In this section, we prove some results which extend the results on the positive definite-
ness and stability of symmetric interval matrices, given in [4], to h-positive definitencss

and h-stability, h > 0.

Definition 1 A square matriz A is said to be positive definite with positive definite-
ness margin h, for some h > 0, or h-positive definite if T Az > h, for each z € R™

such that ||z|| = 1.
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Remark 7 Thus in view of function defined by (2.20), A is h-positive definite if
f(A) =||mll{§1 TAz > h. An interval matriz A’ is said to be h-positive definite if

each A € A! is h-positive definite.

3.3.1 h-Positive Definiteness

As a consequence of Proposition 1, we have the following characterizations of h-

positive definiteness of interval matrices.

Proposition 2 Let Al be a square interval matriz and b 2> 0. Then the following
assertions are equivalent:

(a) A! is h-positive definite,

(b) Al is h-positive definite,

(c) A, is h-positive definite for each z € Y.

Proof. By definition A’ is h-positive definite if and only if

min{f(A): A€ AlY > h

holds. Then equivalence of (a) and (b), and of (a) and (c) follows from assertion (vi)

and (v) of Propositionl respectively. B

Remark 8 Part (c) of Proposition 2 shows that h-positive definiteness of an interval
matriz can be verified by testing 2"~! matrices from Al for h-positive definiteness.
The equivalence of (a) and (b) reveals that h-positive definiteness of any interval

matrit Al can be checked by inspecting the associated symmetric interval matriz Al
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defined by (2.15). Hence for h—positive definiteness, we may restrict our attention

to symmetric interval matrices.

Theorem 17 An interval matriz A’ = [A™ — A, A™ + A] is h-positive definite, for
some h > 0, if and only if the interval matriz A’ = [A™ — hI — A, A™ — hl + Al is

positive definite.

Proof. For A€ A/, write A = A~ hl € Al. Then A’ is h-positive definite if and
only if

f(A) =umlzl'1zl TAz>h VAe Al

if and only if

F(A) = f(A=hI)=min z2TAz —h >0

Heil=1
if and only if A is h—positive definite if and only if Al is h—positive definite. B

Using Theorem 9 and 17, we have the following corollary.

Corollary 5 A symmetric interval matriz A" = [A™ — A, A™ + A] h-positive definite
if and only if the symmetric interval matriz Al = [AT—hI-AA-hI+ A] is regular

and contains at least one positive definite matriz.

The necessary and sufficient conditions of the above corollary require only one
matrix to check for positive definiteness. However verifying regularity of an interval
matrix is generally a difficult problem as it can be seen from [22], where a number of
necessary and sufficient regularity conditions are given, all of which require testing
at least 2"~! quantities of some sort (as evaluating determinant, solving systerns of

linear equations, inverting matrices etc.).
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3.3.2 h-Stability

We remark that a symmetric matrix A is h-stable if and only if —A is h-positive
definite. Also it follows from Corollary 5 that A’ = [A™ — A, A™ + A] is h—stable if
and only if Al = [—A™ — hI — A, —A™ — hI + A] is positive definite if and only if 4.
is h-stable for each z € Y, where A., z € Y are as defined in Section 2 of Chapter 2.

In Proposition 2, we showed that h-positive definiteness of a general interval ma-
trix A’ is equivalent to the h—positive definiteness of A!. Unfortunately this Propo-

sition does not hold for h-stability. For h—stability we have the following theorem.

Theorem 18 An interval matriz A! is h-stable if the corresponding symmetric in-

terval matriz AL is h-stable.

Proof. Let A be an eigenvalue of A € A’. Then 1(A+AT) € Al and by the Bandixon

theorem ([18}, pp.395), we have
Re[A] < Amas (é(A . AT)) < —h.

Hence 4! is h-stable. B

Exzample 1 : The interval matriz Al =[A™ - A A™ + Al where :
] ] i ]

-23 4.5 d 0.25 05 05 1 1.25

-35 =35 =35 1.5 05 0.5 0.5 0.5
A™ = and A=

—4.5 25 —~45 -05 05 0.5 05 0.5

—-0.45 0.5 1.9 -=3.25 055 0.0 0.5 0.75

is stable. The corresponding symmetric interval matriz Al = (A —A, A" +A] s
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2 1 1 08
1 -3 0 135
not stable because it contains which has a positive eigenvalue
1 0 -4 1

0.0631.

Theorem 19 A symmetric interval matriz A' = [A™ — A, A™ + A] is h-stable if and

only if the symmetric interval matriz Al=[A™+hl - A A"+ hI + A] is stable.

Proof. For z € Y, write A. =A, +hI, where A.c A!. Then A! is h-stable A.ls
h—stable if and only if A + h < 0 for all eigenvalues A of A.if and only if A. is stable

if and only if A’ is stable. B

Corollary 6 A symmetric interval matric Al =A™ — A A™ 4+ Al is h-stable if and
only if Al = [A™+hl - A, A"+ hl + A is regular and contains at least one h-stable

symmetric matriz.

Remark 9 The Algorithm £ given in Chapter 2 1s to verify the stability of a sym-
metric interval matriz. Using the same algorithm, we can verify the h—stability of a
symmetric interval matriz Al if we store eigenvalues computed in each iteration and
take mazimum of these eigenvalues. This mazimum will be the margin of stability if

it is negative otherwise A" will be unstable.
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3.4 Regularity and Stability

In this section, we first state and prove some well known results for bounded linear
operators [15]. These results are used in the proofs of the main results of the sec-
tion. These results provide necessary and sufficient conditions for the regularity and
stability of interval matrices.

For a bounded linear operator T on a normed linear space X. p(T’) denotes the
set of all numbers A in the complex plane for which R()\;T) = (\] — T)"' exist as a
bounded operator. p(T) is called the resolvent of T. The complement of p(T), denoted
by o(T), is called the spectrum of T In the case when X = R™ the spectrum of T

consists of all eigenvalues of T.

Lemma 3 [15] Let £(X) be the set of bounded linear operators on a normed linear
space X. Then the set G of elements in £(X), which have inverses in E(X), is an
open set with respect to the uniform topology on €(X) . Furthermore for A € G the
sphere

{B:llA-Bll < [lA7I"} (3.3)

is contained in G and the inverse of an element B of this sphere is given by

Bl'= A" \Zj (A - B)A™". (3.4)

n=0

Proof. Let ||I — B|| <1, so that the series S = § (I — B)"converges. Since
n=0

53:35:[1-([-3)]5:‘2(1-13)"-53(1-3)":1 (3.5)
n=0 n=1

It follows that B = S and {B: ||l - B|| <1} C G. Now let A € G, and let
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|4 = BI| < [IA™}[|"" Then
L= BA™| =[[(A=B) A < 1.

Hence BA™'has an inverse in £ (X), given by the series

o0

-1 , -1in «
(BA™") =§) [(A—B)A™"] (3.6)
and this in turn implies
Bl'=A"1Y [(A-B)A™" (3.7)
n=0

Corollary 7 [15/Let T, Ty be in £(X), A € p(T)and ||IT - T3] < HRNT) |7

Then X € p(T}) and

R(NTY) = R(GT) 3 (T~ T) RST)

n=0

Proof. A€ p(T) = R(MT) = (M- T)™! ezist as a bounded operator. Let A =

AM—T and B = M —Ty. Then A=t = (\I =T)"! ezist and R (X; T) = A™". Therefore
IT - Tl =1l (AL =T) = (M - T) || = 1B = Al <[lA7I™ (3.8)

= B has inverse in € (X) . That is B™' = (\[ =T})™' = R(MTh) emist as a bounded

operator. Therefore A € p(T).

Now
B = A~ io (A= B)A™]" (3.9)
-
R(NT) = R(NT) 2 (T, -T) ROT)I". (3.10)
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Remark 10 [t follows from above corollary that if A & o(A) and ||[A - Afl <
(AL — A)‘IH—1 then X ¢ o(A;). Hence if A is nonsingular and 1A = Al < HA‘IH"l

then A, is nonsingular.

3.4.1 Necessary and Sufficient Conditions for Regularity

We now establish some necessary and sufficient conditions for the regularity of an
interval matrix A/ = [B,C]. First we prove a sufficient condition that A! is regular if
it satisfies the following conditions:

(H.1) A™ = 3 (B + C) is nonsingular,

(H2) |C - Bllw < jmrmis

Lemma 4 If the interval matriz [B, C| satisfies assumptions (H.1) and (H.2), then

it is reqular.

Proof. To show that [B,C] is regular, we have to show that each A € [B.C]
is nonsingular. Let A € [B,C] be any point matrix and AA = A — A™. Then

AA = [Aa;;] satisfies
1 1 ..
|Aa; | = lai; — §(bij +¢;)| < :):(Cij —bij), 1<, 7<m,
which implies that
1A= AP = |AAlL, < S1C - Bl < T (3.11)
Al = 1841 = 3 <~ < AT |

It follows from (3.11) and Remark 10 that A is nonsingular. Since A € [B,C] is

arbitrary, [B, C] is regular. B
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In developing our necessary conditions for regularity of interval matrix A’ we will

need the following lemma.

Lemma 5 Suppose that {B,C] is regular. Then there erist a constant r > 0 such
that for any subinterval matriz [Bo, Co] C [B, Cl. [Bo. C,] satisfies assumptions (H.1)

and (H.2) as long as [|Co — Boll. <T-

Proof. By supposition [B, C] is regular, therefore each A € [B .C] is nonsingular.

Thus for cach A € [B, C| there exist a nonsingular matrix D = D(A) such that
AD =1I. (3.12)

Since [B, C} is a compact set in R™*" and since every continuous function on a compact
set assumes its minimurm value, there exist a constant r > 0 such that

< 1 2
"= DAL DAL

for all A € [B,C).
Any [B,,C.] C [B,C}, with {[C, — B,|l,, < T satisfies

1Co = Ball, <~
1Dl

where D = D(A™), AT = (B, + C,).
The regularity of [B, C] together with the above condition imply that [B,. C,| satisfies
assumptions (H.1) and (H.2). ®

Using Lemmas 3 and 4 we now prove the main results of this section. Theorem 20
provides a necessary and sufficient condition for the regularity of an interval matrix,
Theorem 21 gives some necessary and sufficient conditions for the stability of a sym-
metric interval matrix and Theorem 22 gives a sufficient condition for the stability of

any interval matrix.
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Theorem 20 An interval matriz [B, C] is reqular if and only if it contains at least
one nonsingular matriz and there are finitely many subinterval matrices [Bi.Ci] €

[B.C] , 1 <1<k, such that
(B,C] =‘L_le (B:,Ci), (3.13)
and for each 1 < i < k, [B,,Ci] satisfies assumptions (H 1) and (H.2).

Proof. (Sufficiency) Assume that [B:, Cy] satisfies assumptions (H.1) and (H.2) for
each 1 < i < k. Then by Lemma 4, [B;, C}] is regular for each 1 < i < k and equation
(3.13) implies that [B, C] is regular.

(Necessity) Given that [B, C] is regular. Then by Lemma 5, there exist a constant
> 0 such that any subinterval matrix [B,, Co] C [B,C], satisfies assumptions (£ 1)
and (H.2) as long as [|Co — Boll, < T

Since {B,C] is a hyperrectangle in R™ . we can subdivide it into a finite number
of hyperrectangles [B;, Ci], 1 < i < k such that IC; = Bill, <rforeach 1 < i<k
(Notice that each A € R™*" satisfies [|All, < n maez la;;|). Therefore by Lemma 3.
all the subinterval matrices [B;, Ci], 1 <1 < k satisfy assumptions (H.1) and (H.2).

3.4.2 Necessary and Sufficient Conditions for Stability

The proof of the following result uses Theorem 12.

Theorem 21 A symmetric interval matriz [B, C)] is stable if and only if it contains at

least one stable matriz and there are finitely many subinterval matrices [B;,Ci]. 1<
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i < k such that

[B.C] = [B Ci

and for each 1 < i < k, [B;, Cy] satisfies assumptions (H.1) and (H.2).

Proof. (Sufficiency) Since every stable matrix is nonsingular. It follows that if [B.C]
contains a stable matrix and [B;, C;] satisfies assumptions (H.1) and (H.2) for each
1 <i < k, then [B,C] is regular. Hence by Theorem 8 of [3] it follows that [B,C] is
stable.

(Necessity) If (B, C] is stable then it is regular and proof follows form Theorem

20. m

Remark 11 : Given any interval matriz A’ = [B, C|, we can construct a symmelric

interval matriz AL = [B',C’], where

p—t

B =-(B+BT) and C' ==(C+C7) (3.14)

l\DI —
N

Using a result given in (3] which states that stability of symmetric interval matriz Al

implies the stability of A’, the following result follows Theorem 21.

Theorem 22 If Al = [B', C'] contains at least one stable matriz and there are finitely

many subinierval matrices [B},Ci], 1 < i < k, such that

[B'.C'] = U (B, Ci

=1

and cach of [B!,C!] satisfy assumptions (H.1) and (H.2) then A! is regular.
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3.4.3 Necessary and Sufficient Conditions for Positive Defi-
niteness
The proof of the following result uses Theorem 9.

Theorem 23 A symmetric interval matriz [B, C) is positive definite if and only if it
contains at least one positive definite matriz and there are finitely many subinterval
matrices [B;,Ci], 1 < i < k such that

k

[B.C] =Y (B:, Ci
and for each 1 < i < k, [B:, Ci] satisfies assumptions (H.1) and (H.2).

Proof. (Sufficiency) Since every positive definite matrix is nonsingular. It follows
that if [B,C] contains a positive definite matrix and [B;, Ci] satisfies assumptions
(H.1) and (H.2) for each 1 < i <k, then [B,C] is regular. Hence by Theorem 9 it
follows that [B, C] is positive definite.

(Necessity) If [B,C] is positive definite then it is regular and proof follows form

Theorem 20. R

Remark 12 Since any interval matriz A’ and corresponding symmetric interval ma-
triz AL are equivalently positive definite, therefore using the above result one can verify

the positive definiteness of a general interval matriz.

3.4.4 Algorithms

In this section we develop three algorithms which are based on Theorem 20, 21 and 22

for testing regularity of interval matrices and stability of symmetric interval matrices.
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We demonstrate the effectiveness of our algorithms by some numerical examples.

The first algorithm is designed to check the regularity of a general interval ma-
trix A’ = [B,C]. This algorithm determines the regularity of Al by verifying the
assumptions (H.1) and (H.2). If these assumptions are satisfied, then the algorithm
terminates with the result that A’ is regular. If (H.1) is not satisfied. then the algo-
rithm terminates with the result that A’ is not regular. If (H.1) is satisfied but (H.2)
is not satisfied, then we subdivide the interval matrix A’ into two equal subinterval
matrices and repeat the above process for each subinterval matrix. The algorithm
continues in this manner until each subinterval matrix of [B, C] is determined to be
regular or at least one of the subinterval matrices is determined to be not regular.

Using the same algorithm with some modifications, we write second algorithm to
check the regularity of given symmetric interval matrix A/ and stability of one point
matrix in A’ to verify the stability A’.

Our third algorithm construct a symmetric interval matrix A/ from a given interval
matrix Al and then using the second algorithm checks the stability of Al

The first algorithm answers
Problem 1 Given an interval matrix A = [B,C} with B = [b: ;] and C = [ei].
determine its regularity under the assumption that B and C are nonsingular.

Algorithm 1

. Initialization: By = [B};] = B, C1 = [c};] = C and K1 = {1}.

(3]

. Let K'=K1.

w

. For every k € K, compute AT = L(B + C) = [afjlaxn and check its non-
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singularity. If for any k, AT is singular, terminate the algorithm with the mes-

sage that [B, C] is not regular.

4. If for every k, AT is nonsingular, find the inverse Vi of A}

'C"

For every k € K, compute P = Cy — Bx = [clnxn, 0k = [[Pill and 5, =

2
Vielloo

6. If for every k € K, aq < B, the interval matrix is regular. Stop. Otherwise,

determine K, = {k € K : ax > 8}

7. For every k € K,, find the maximal element pk, of the matrix Py and partition
[B, Ck] into two interval matrices [Dx., Ex] and [Fx, Gi] where Dy = By, G, =
Ck» B = [5], and Fi = [f§] with

x {afj ifi=randj=s

er. = .
1 c{‘] otherwise

and

fo= af, if i=randj=s
Y b, otherwise

8. Relabel the set {[Dy, Ei], [Fk,Gk], k € Ko} using {{Bx,C], k € K1} where

Ky ={1,2,...N}, N is the number of subinterval matrices in step 7.
9. Go to step 2.

The second algorithm answers deal with the following problem
Problem 2 Given a symmetric interval matrix A’ = [B,C] with B = [b;] and

C = [¢;], determine stability of A’ under the assumption that B and C are stable.



Algorithm 2

1. Check the stability of any point matrix in A/ = [B.C], e.g., A™ = 3(B + C).
If any eigenvalue of A™ is positive terminate the algorithm with the result that

[B,C] is not stable otherwise go to step 2.

o

Check the regularity of symmetric interval matrix [B, C|, using algorithm 1 with

step 7 replaced by step 7":

For every k € K, find the maximal element p¥, of the matrix Py and partition
[Bk, Ci] into two interval matrices (D, Ei] and [Fy, Gx] where Di = Bi. G =

Ci, Ex = [ef‘]], and Fi = [ ,‘3] with

k afj ifi=randj=sorifi=sandj=r
e.. = . )
7 ctj otherwise
and
k _ af; ffiz=randj=sorifi=sand j=r
K bfj otherwise

Remark 13 Algorithm 2 can also be used to verify the positive definiteness of a sym-
metric interval matriz A1 by checking one symmetric point matriz in A’ for positive

definiteness instead of checking for stability.

The third algorithm answers:
Problem 3. Given an interval matrix A! = [B, C] with B = [b;;] and C = [c;5]. Con-
struct corresponding symmetric interval matrix Al = [B’,C’] and determine stability
of AL,

Algorithm 3:



1. Compute B' = (B + B”) and C' = }(C + CT).
9. Check the stability of Al = [B’,C"] using Algorithm 2.

3. If Al turns out to be stable then A’ is also stable else no conclusion.
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44



-5 — 92
Example 1: For the interval matrix A’ = =53 L2l verify the stability
[4.5] [-6,—4]
by using Theorem 13.
—2.702 2 0 0.7402
Sol: For h = 0.298, we get E = € Aland W), =
5 -3.702 1.3506 0

with p[W,] = 0.9998598 < 1, which shows that A’ is stable.

Example 2: The interval matrix A" = [B,C], with B and C given by

-159 -39 4 -19 67 98 -135
~59 -247 -105 -34 -33 -83 71
4 —-105 —288 102 43 —179 106
B=| _19 -3¢ 102 -123 -52 25 -—129| @and
67 -33 43 —52 -253 -39 12

98 -8 -179 25 -39 -287 88

-135 -71 106 -120 12 88 271 |
-159 -36 85 —145 80.5 111.5 —129 W
-56 -244 -—1035 -325 -—24 77 —65
85 —103.5 —277.5 1065 52 —176 107.5
C=| -145 -3235 1065 -1155 =532 31 —11355
805 -4 52 -52 —250 -28.5 16.5
1115 -77 =176 31 -28.53 —275 1015

-129 -65 1075 -115.5 16.5 101.5 —262

is found to be stable. using Algorithm 2 of chapter 2. with stability margin A =

-5.6152.



Example 3: The interval matrix A = [B, C], where B and C are given by

-159 -39 4 -19 67
—59 —247 —-105 -34 -33
4 —105 —288 102 43
B=| 19 -34 102 -123 -52
67 —33 43 52 -253
98 83 —-179 25 -39
~135 -71 106 -129 12
-55 10 -13 85
—55 —243 —-103 -32 ~2I
10 -103 —-274 108 55
C=| -13 -32 108 -113 -52
85 -21 55 —52 —249
116 -75 -175 33 25

-127 —-63 108 111 18

is found to be unstable, using Algorithm 2 of Chapter 2, wit

-159 -39 10 -13 85
-39 —243 —105 -34 -33
10 -105 —274 108 55
U=| -13 -43 108 -113 -52
85 —33 55 —52 -249
116 —83 -175

-135 —-63 106 -129 12
having positive eigenvalue 1.6108.

98 —135
-83 71
—-179 106
25 -129
-39 12
—287 88
88 =271
116 -127
~75 -063
-175 108
33 ~—111
-25 18
—274 106
106 —-259
116 —135
-83 063
—-175 106
33 -129
-25 12
—-274 88
88 259

and

h a point matrix
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Example 4: The interval matrix A’ =

[
[

_3,-9]

5, 4]

~1,0.1]

[4,5]

[-4.-3] [-4,-3] [~4

[2.3)

[0,1]

(-5

1.2]

[-1.0]

[—4, —2.3]

L J
is determined to be regular by using Algorithm lof Chapter 3, which determines the

regularity of A’ by checking only 11 matrices A7

Example 5: The interval matrix A’ =

[L.3]
[-3.-1]
2.4]

[5.7]

[2.4]
[4.5]
[7.

8, 10]

8]

[0.2]

(~2.0]

[1.3]

[4.6]

(15,23 [1,2]

(2, 4]

6. 8]

]

is de-

termined to be not regular by using Algorithm 1 of Chapter 3, which determines the

nonregularity of A’ by checking 4098 matrices A and gives a singular matrix

[ 1
1.5 35 05 23
-15 45 —-15 45
440 =
25 75 2 1.5
6.5 95 25 7

Example 6: The symmetric interval matrix

[-3.-2] [0.1] [-05,1]

[~1,0.28] |

Al =

[0.1]

(-0.5. 1]

[—4.-3]

[-1.0]

[~1,0.28] [0.5.1.5]

[-1.0]
(-5, 4]

[0,1)

is regular and its mid point matrix

0.5, 1.3]

[0.1]

(—4, —2.5]



Am

- -25 05 025

0.5 =35 -05

) 025 -05 -4
-036 1 0.5

-0.36

1

0.5

-3.25

48

is stable with maximum eigenvalue —2.2773 .It follows that the symmetric interval

matrix A/ is stable.

Example 7: The symmetric interval matrix A’ = [B,C], with B and C given by

contains a singular point matrix

BI

0.851 -0.72 -—-8.48

0952 -~1.39 -5.61

1.0533 —-2.46 -2.74

Example 8: The symmetric interval matrix Al = [B',C"]
—05 -1 -2 1 1
-1 0.5 1 -3 0

, and C'=

-3 0 1 0 -4
0 -4 06 15 1

—2.149

—2.048

—1.947

3.851

3.952

-3 0

0 -4
-0.5 -1
-1 0.5

-3.72

—4.59

—5.46

2.280

1.41

4.053 0.540 0.260
is not stable. It is found to be

—11.48

~861 and

—5.740
-5.48

—2.61

not regular using Algorithm 2 of Chapter 3. and
i T

, where B' and C" given by

0.6

-2.5

-

is constructed

3

from the interval matrix A/ given in Examf)le 1 and is found to be stable using

Algorithm 3 of Chapter 3. Thus Al given in Example 1 is also stable.
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