INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UM! films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deietion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

%

—

{8l e el el el el 9 b e e e b el e e el el e e b e e e e e o

lofel e e e ! cis%hki#ia%Mi@i@’fi&%&iﬁf&i&i&i&&%ﬁ&&%ﬁ

AN EFFICIENT TEST-PATTERN
RELAXATION TECHNIQUE FOR

SYNCHRONOUS SEQUENTIAL CIRCUITS

BY

KHALED ABDUL-AZIZ AL-UTAIBI

A Thesis Presented to the
DEANSHIP OF GRADUATE STUDIES

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN, SAUD!I ARABIA

In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

COMPUTER ENGINEERING

NOVEMBER 2002

KRR S R SR SE S8 3E S E SF 3E SE 9P SE B IR S8 SE SN

®)

%
§
:

UMI Number: 1411740

®

UMI

UMI Microform 1411740

Copyright 2003 by ProQuest Information and Leamning Company.

All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, M| 48106-1346

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

DHAHRAN 31261, SAUDI ARABIA

DEANSHIP OF GRADUATE STUDIES

This thesis, written by KHALED ABDUL-AZIZ AL-UTAIBI under the direction of
his thesis advisor and approved by his thesis committee, has been presented to and
accepted by the Dean of Graduate Studies, in partial fulfillment of the requirements
for the degree of MASTER OF SCIENCE IN COMPUTER ENGINEER-

ING.

Thesis Committee

s

Dr. Aiman El = Maleh (Chairman)

~

Dr. Alaa;idin Amin (Member)

/}\ Dr. Atef Ali—Najjar (Member)

DepaYtmentjChairman

Dean of Graduate Studies

7—\/(9’207._

Date

Dedicated
to
the memory of my father
and

to my mother.

Acknowledgments
Acknowledgement due to King Fahd University of Petroleum and Minerals for sup-
porting this research.

I would like to express my appreciation to my thesis committee chairman Dr.
Aiman El-Maleh for his guidance, patience, and sincere advice throughout this the-
sis. I acknowledge him for his valuable time, constructive criticism, and stimulating
discussions. Thanks are also due to my thesis committee members, Dr. Alaaeldin
Amin and Dr. Atef Al-Najjar for their comments and critical review of the thesis.

I 'am very thankful to the department chairman Dr. Sadiq Sait, for his coopera-
tion and support.

I am also thankful to my fellow graduate students and all my friends especially

Mr. Ali Al-Suwaiyan.

i

Contents

Acknowledgments ii
List of Tables v
List of Figures vi
List of Algorithms viii
Abstract (English) ix
Abstract (Arabic) X

1 Introduction 1
1.1 Testing Systems-on-a-Chip (SOC) 1

1.2 Motivation 3

1.3 Problem Definition 5
1.4 Thesis Organization 6

2 Literature Review 8
2.1 Compression/Decompression Techniques 9
2.1.1 Line-Feed-Shift-Register-Reseeding (LFSR-Reseeding) 10

212 Run-lengthCoding 16

2.1.3 Statistical Coding 26

2.2 Compaction Techniques 29
2.2.1 Compaction by Overlapping Self-Initializing Test Sequences . 29

2.2.2 Compaction Based on Insertion, Omission, and Selection . . . 33

2.23 Compaction Based on Vector Restoration 37

2.24 Compaction Based on Inert Subsequence Removal 40

2.3 Test-Pattern Relaxation Techniques for Combinational Circuits . . . 45

3 Proposed Test-Relaxation Technique 52

3.1 Illustrative Examples 53

iii

3.1.1 Single Value Justification 54

3.1.2 Limitations of Single Value Justification 57
3.1.3 Two Values Justification 59
3.2 Formal Description 62
3.2.1 Single-Value Justification 64
3.2.2 Two-Values Justification 70
3.3 Selection Criteria 79
34 Worst Case Analysis 86
34.1 SpaceComplexity 86
34.2 Time Complexity 88
Experimental Results 90
4.1 Comparison with Bitwise-Relaxation 91
4.2 Experiments on Cost Functions 94

4.3 Examining Different Aspects of the Two-Values Justification Technique 95

Conclusion 100

BIBLIOGRAPHY 103

iv

List of Tables

21
2.2
23
24
2.5
2.6
2.7
28
29
2.10
2.11
2.12

4.1
4.2

4.3
44
4.5
4.6
4.7
4.8

Transition table for run-length coding. 19
Variable to fixed length coding. 20
Golombcodes (m=4). 23
FDRcode. 26
Extended FDRcode. 27
The test sequence of Example 2.1. 34
The fault detection of the test sequence in Example 2.1.. 34
The test sequence of Example 2.1 after insertion. 34
The fault detection of Example 2.1 after insertion. 35
Fault detection of Example 2.2. 38
Test subsequences of Example 2.2. 38
Fault detection of Example 2.3. 39
Benchmark circuits. L L oL oL 91
Test relaxation comparison between the two-values justification (TVJ)

technique and the bitwise-relaxation method. 93
Cost function effect on the extracted percentage of X's. 94
Percentage of X's obtained by SVJ using different weights. 97
Test relaxation comparison between TVJand SVJ. 98
Percentage of X’s obtained by GVCF using different weights. 98
Test relaxation comparison between TVJ and GVCF. 98
Percentage of X’s obtained by UACF using different weights. 99

List of Figures

1.1 An example of test-sequence relaxation in sequential circuits. 5
2.1 General structure of the single-polynomial LFSR. 12
2.2 Decompression using a single-polynomial LFSR. 13
2.3 An example of seed-computation in a single-polynomial LFSR. 14
2.4 General structure of the multiple-polynomial LFSR. 15
2.5 An example of a Burrows-Wheeler transformation. 17
2.6 Preparation of the matrix tobeencoded. 18
2.7 An example of the modified run-length coding. 20
2.8 Structure of the cyclical scan chain. 22
2.9 Anexampleofa Golombcoding. 23
2.10 Structure of the decoder used in the Golomb coding technique. 25
2.11 Construction of a Huffman tree. 28
2.12 Merging of two test sequences. 31
2.13 Examples of merging two test sequences. 32
2.14 Subsequence removal (Criterion 1). 41
2.15 Subsequence removal (Criterion 2). 42
2.16 Subsequence removal (Criterion 3). 43
2.17 Circuit of Example 2.4. 45
2.18 Circuit of Example 2.5. 47
2.19 Circuit of Example 2.6. 49
2.20 Limitation of the extended implication/justification. 49
2.21 Circuit of Example 2.7. 51
3.1 Iterative array model for asynchronous sequential circuits. 54
3.2 An example of the single-value relaxation. 56
3.3 Limitations of the single-value relaxation. 59
3.4 An example of the two-value relaxation. 60
3.5 Circuit of Example 3.13. 81
3.6 Circuitof Example3.14. 82
3.7 Illustration of the effect of reconverging fanouts on the regular cost. . 84
3.8 Circuit of Example 3.16. 85

4.1 Effect of PO’s selection on test vector relaxation.

vii

List of Algorithms

3.1
3.2
3.3
34
3.5
3.6
3.7
3.7
3.8

Main Algorithm o 65
MarkReachableLines(f,t) 67
JustifyFault(f, ¢t) 69
Main Algorithmo 71
ComputeFaultyValues(f,t) 72
JustifyFault(f,poit) 73
JustifyGate(g,f.t) 74
(Cont.) JustifyGate(g,f,t) 75
GetCorrespondingValue(g.h,uy,v9) 78

vili

THESIS ABSTRACT

Name: KHALED ABDUL-AZIZ AL-UTAIBI

Title: AN EFFICIENT TEST-PATTERN RELAXATION
TECHNIQUE FOR SYNCHRONOUS SEQUENTIAL
CIRCUITS

Major Field: COMPUTER ENGINEERING

Date of Degree: NOVEMBER 2002

Testing systems-on-a-chip (SOC) involves applying huge amounts of test data, which
ts stored in the tester memory and then transferred to the circuit under test (CUT)
during test application. Therefore, practical techniques, such as compression and
compaction, are required to reduce the amount of test data in order to reduce both
the total testing time and the memory requirements for the tester. Some of the exist-
ing compression/compaction techniques require the test data to be partially specified,
while others can benefit from partially specified test sets either directly or by speci-
fying the don’t care values in these test sets in a way that improves their efficiency.
One obvious way to extract the don’t care values in the test sets is to test for the
possibility of changing every bit in the test set to an X based on fault simulation.
This is called bitwise relazation. In this thesis, we propose a novel and efficient test
relazation technique for synchronous sequential circuits. The proposed technique is
faster than the bitwise relazation method by several orders of magnitude.

MASTER OF SCIENCE DEGREE

King Fhad University of Petroleum and Minerals, Dhahran.
NOVEMBER 2002

) Jaile
giiad 505l 2e s S [P, {|
Mﬂﬁﬂ)@&Y|QUL3“§3M|J;HmM Ay Y yic
qﬂlwm ‘e addll
—A YEYY lias) :e_)__i'ﬂlc'._uu

& LY Sl e dadud dael Gadad Gl saaly B e daad LY sl o
23a aa Jaladl 3 llily clguand d)all gl o Gl Jb LIV 5 el 3800 B LAl
Ay lgailliy UL hivaS (@ad LB Hladiud calhly JLEY) Gl e dadeal SLaSH
oasliflaie U an of By sl Ganil Gyl S0 Ay JLESY) iy palil
SaliinY) L) o34 e AV aaall (iS4 Lain ol ja 3aae SLEAYY Gy (685 of D cilild
§ hial Ll Ll go up Lo Slled o3 yaad Dla e W saaad LY Sy o
* aaliil

Sy e 322y IS ad igad ¢Uia Saadll SLEY) Gl el Ll Gl i
elad¥l 2 o Usedd saa gl 520 U jedd 300 LG S ey Giae pe dad I LY
2 pailly LAl cladYl e e S5 4 A0 Claa g Jadiad JLGAYD A e el cdiiSdl
Aol Lpad kS clad) 33 o i Al Cilaa gl aied Wiy Gasad

Ll Alubiall i gl U5 Banaad UEAYE iy padaiuY sans A pali day kYl 02
sl Cllbdl padiiid Gl adlS ol AP Jede 4 Lull Gol) e (3505 da il

ool (i piiualad dn
el g g sull s llal Znala
30 yaud Ayl ASID < pplil

— VEYY e,

Chapter 1

Introduction

1.1 Testing Systems-on-a-Chip (SOC)

Rapid advancement in VLSI technology has lead to a new paradigm in designing
integrated circuits where a system-on-ae-chip (SOC) is constructed based on pre-
designed and pre-verified cores such as CPUs, digital signal processors, and RAMs.

Testing SOC is a major challenge due to limited access to the input and output
lines of each core during test application. The test vectors for each core must be
applied to the core inputs and the test responses must be observed at the core’s
outputs. A straightforward solution is to have full access to the input and output
lines of all cores by multiplexing these lines to the chip pins. However, the complexity
of this solution could be enormous. A more efficient way for providing test access to

the cores is to use scan chains. The number and organization of these scan chains

determine the test data bandwidth (i.e., the rate of scanning in and scanning out
test vectors and test responses respectively).

Another challenging problem in testing SOC is to deal with a large amount of
test data that must be loaded from the tester memory, transferred to the SOC,
and applied to the individual cores. The amount of time required to test a chip
depends on the size of the test data that needs to be transferred and the speed
of this transfer operation (i.e., test data bandwidth). The cost of automatic test
equipments (ATE’s) increases significantly with the increase in their speed, channel
capacity, and memory size. Thus reducing the amount of test data and test time is
a major concern in testing SOC [1].

One solution to this problem is to use built-in self-test (BIST) where on-chip
hardware is added to enable the chip to test itself. The scheme has many advantages,
especially the ability of self-testing at normal clocking rates (i.e., test at-speed),
the ability for testing systems on-line, and reducing or eliminating the need for
the expensive external ATE’s. However, BIST has several drawbacks such as the
complexity of designing test tools and degradation of the system performance that
may occur due to the added hardware. In addition to that, BIST tools, which depend
only on pseudo random generators, can’t achieve high fault coverage because some
faults are hard-to-detect using random test vectors.

Another alternative is to reduce the amount of test data using compression and

compaction techniques. The objective of test set compression is to reduce the num-

ber of bits needed to represent the test set. Several test compression techniques
have been proposed [2, 3, 4, 5, 6, 7, 8, 9]. In test compaction, the number of test
vectors is reduced into a smaller number that achieves the same fault coverage. Test
compaction techniques can be classified into two categories: dynamic compaction
and static compaction. Dynamic compaction schemes such as [10, 11, 12, 13] try
to reduce the number of test vectors during test vector generation. Static com-
paction schemes, on the other hand, perform compaction on test sequences after
they are generated. Several static test compaction techniques have been proposed
for synchronous sequential circuits. The techniques proposed in [14] use overlapping
of self-initializing test sequences. Four compaction techniques based on insertion,
omission, selection and restoration have been proposed by Pomeranz and Reddy
(15, 16]. The technique in [17] compacts test sequences by removing inert subse-

quences under certain conditions.

1.2 Motivation

Compression techniques can achieve better results if the test set is composed of test
cubes (i.e., if the test set is partially specified). In fact, some compression techniques
such as, Line-Feed-Shift-Register-Reseeding (LFSR-Reseeding) [2, 3|, require the
test vectors to be partially specified. Even those techniques which require fully

specified test data can benefit from the unspecified bits in the test set. For example,

variable-to-fixed-length coding (4] and variable-to-variable-length coding [5, 6] are
known to perform better for long runs of 0’s. Hence, assigning 0’s to the don't
care values in the test set will improves the efficiency of these techniques. Similarly,
run-length coding techniques [7] can specify the don’t care values in a way that will
reduce test vector activity (i.e., the number of transitions from 0 to 1 and vice versa),
which in tern improves the compression efficiency. On the other hand, the amount
of compression that can be achieved with statistical coding techniques depends on
degree of variation in the occurrences of unique test patterns (i.e., code words). If
all test patterns occur with equal frequency, then no compression is achieved at all
(18]. Thus, using partially specified test vectors adds more flexibility to statistical
coding techniques in a sense that test patterns containing don’t care values can be
encoded with various possibilities.

Compaction techniques can also benefit from partially specified test sets. For
example, when merging two test sequences using the overlapping compaction tech-
niques described in [14], a don't care value, ‘X’, can be merged with any one of the
values: ‘0’, ‘1’, and ‘X’. Therefore, increasing the number of X's in a test set will
reduce the number of conflicts that may occur when merging two test sequences,

and hence, improves the efficiency of compaction.

17 BB

Figure 1.1: An example of test-sequence relaxation in sequential circuits.

1.3 Problem Definition

The problem of test set relaxation, i.e., extracting a partially specified test set from
a fully-specified one, has not been solved effectively in the literature. This problem,
which is targeted in this thesis, can be defined as follows. Given a synchronous
sequential circuit and a fully specified test set, generate a partially specified test set
that maintains the same fault coverage as the fully specified one while mazrimizing
the number of unspecified bits. As an example, consider the circuit shown in Fig-
ure 1.1 (a) and the test set ab={00, 10, 11}. Under this test set 5 faults are detected:
e/1, e/0, d/0, b/1 and b/0. These faults are shown as bold lines in Figure 1.1 (b).
Notice that it is enough to set either a = 0 or b = 0 in the first test vector in order
to detect the fault e/1. Hence, either one of these two bits can be set to ‘X’ and
the fault is still detected. Also, the assignment a = 1 in the second test vector does
not affect the detection of any one of the 5 faults. Therefore, this bit can be set to
‘X" as well. As a result, the five faults can be detected under the relaxed test set
ab={X0, X0, 11}.

One obvious way to solve the problem of test set relaxation is to use the bitwise-

relaxation method, where we test for every bit of the test set whether changing it
to ‘X’ reduces the fault coverage or not. Obviously, this technique is O(nm) fault
simulation runs, where n is the width of one test vector, m is the number of test
vectors. Obviously, this technique is impractical for large circuits.

In this thesis, we propose an efficient test relaxation technique for synchronous
sequential circuits that maximizes the number of unspecified bits while maintaining
the same fault coverage as the original test set. Our technique uses fault simulation
to collect information about faults detected in every time frame (i.e., test vector)
and faults propagating from one time frame to another. This information is used
during a back-tracing phase starting from the last time frame all the way to the first
time frame. The purpose of this phase is to mark all lines whose values are necessary
to detect all the faults detected during the fault simulation phase. Obviously, any
primary input that is not marked during the back-tracing phase is not required for
fault detection, and hence can be relaxed. As compared to the bitwise-relaxation

method, out technique is faster by several orders of magnitude.

1.4 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, literature survey is
presented. This chapter reviews several compression and compaction techniques

proposed for synchronous sequential circuits. In addition to that, this chapter dis-

cusses some of the techniques proposed in the literature for solving the problem of
test pattern relaxation for combinational circuits.

Chapter 3 covers implementation details of the proposed test-pattern relaxation
algorithm for synchronous sequential circuits. This chapter starts with illustrative
examples that explain the general behavior of the proposed algorithm. Then, it
discusses the implementation details on different phases of the relaxation algorithm.

In Chapter 4 experimental results for the proposed technique are compared to

the bitwise-relaxation method. The thesis ends with conclusion and future work.

Chapter 2

Literature Review

One of the challenges in testing SOC is to deal with a large amount of test data
that must be loaded from the tester memory and transferred to the CUT during
test application time. Reducing this amount of test data will significantly reduce
the total test time, which in turn reduces the time-to-market. Test compression and
compaction are known to be practical solutions for this problem. The efficiency of
the test compression and compaction schemes depends on the test data itself. For
most of the schemes that will be shown in this chapter, it is more efficient to work
with a partially specified test set rather than a fully-specified one. Therefore, an
efficient relaxation scheme is required to improve the efficiency of test compression
and compaction techniques.

In this chapter, we review several test compression and compaction techniques

proposed for synchronous sequential circuits, as well as some of the existing test-

pattern relaxation techniques for combinational circuits.

2.1 Compression/Decompression Techniques

The objective of test data compression is to compress (encode) a given test set
Tp to a much smaller test set Ty that is stored in the tester memory. During test
application, Tg is loaded from the tester memory and decompressed (decoded) using
some decompression mechanism to obtain the original test set Tp before applying it
to the required core. In order to guarantee the correctness of all applied test vectors
and achieve a reduction in the overall testing time, a test compression/decompression
scheme should meet two characteristics: lossless and simple decompression. The first
characteristic must be met to guarantee the correctness of all applied test vectors.
The second characteristic is important to guarantee a reduction in the overall testing
time. Moreover, the decompression circuitry, residing at the core side, must be
small so that it doesn’t add significant area overhead. In addition to that, test
compression/decompression schemes, designed for sequential circuits, must preserve
the order of test vectors in every individual test set.

Compression/decompression schemes for deterministic test vectors can be clas-

sified, based on the type of test data they require, into three categories.

1. Schemes that require test data to be in the form of test cubes. Examples

include LFSR reseeding (2, 3.

10

2. Schemes that require fully specified test vectors such as variable-to-fixed-length
codes [4], variable-to-variable-length codes, and Extended frequency-directed

run-length codes (EFDR) [5, 6, 19)].

3. Schemes that have no specific requirements about the type of the test data.
They compress test data regardless of their type. Run-length coding [7] and

Huffman coding [8] are among the examples of this category.

Next, we will review some of the compression/decompression schemes targeting de-
terministic test vectors generated by ATPGs (schemes based on pseudo-random test

vectors are out of the scope of this work).

2.1.1 Line-Feed-Shift-Register-Reseeding (LFSR-Reseeding)

Pseudo-random techniques (i.e., LFSRs) used in BIST designs for test generation
don’t need storage memories, and can be implemented with a small amount of
hardware. However, they require long test sets to achieve high fault coverage because
some faults are hard-to-detect using random vectors. Thus, LFSRs may generate
several millions of test patterns before detecting these faults [20].

Several techniques have been proposed to address this problem. One approach
involves the insertion of test-points in the CUT to enhance its random testability
[14]. The disadvantage of this technique is that it requires modification of the

CUT with possible performance degradation. Mixed-mode test pattern generation

11

is an alternative solution to this problem. The key idea in this approach is to use
some mechanism to generate deterministic vectors that are known to cover hard-to-
detect faults, while covering the remaining faults using pseudo-random test vectors.
The additional cost of this approach depends on the logic required to include the
deterministic test vectors, and more importantly, the storage capacity of these test
vectors.

Below we review two approaches to reduce the storage requirements for the
mixed-mode designs by encoding test cubes of the hard-to-detect faults using fixed-

length seeds.

Single-Polynomial-LFSR Reseeding (SP-LFSR)

Koenemann [2] has proposed a compression/decompression technique for mixed-
mode designs based on an intelligent reseeding of a single-polynomial LFSR. The
technique uses short-length seeds to encode the test cubes. The resulting seeds are,
then, stored in a ROM or a finite-state-machine (FSM). During test application
time, the same LFSR is used to generate pseudo-random test vectors as well as
deterministic test vectors.

The general structure of this technique is shown in Figure 2.1, where a determin-
istic test vector is generated by, first, resetting the LFSR. Then, the corresponding
seed is loaded into the LFSR (reseeding). Finally, enough clocks are applied to shift

the seed into the scan register, which will hold the desired pattern.

12

BIST-LFSR SCAN REGISTER

f

Shift Reset

Figure 2.1: General structure of the single-polynomial LFSR.

Figure 2.2 illustrates an example of generating a test pattern “X0X11X” from
the seed “110”. The decompression hardware, for this example, consists of a 4-bit
LFSR formed using an existing 3-bit LFSR and one flip-flop from the scan register.

The seeds are computed based on the specified bits of the corresponding test
cubes. As an example consider the LFSR represented by the polynomial h(z) =
2%+ 1. If the LFSR is to generate a test cube “X0X10X", then a corresponding seed
can be determined, as shown in Figure 2.3 (a), by solving the following system of

equations:

a+a;=0
a2=1
G.1=0

The resulting seed is (az, a;, ag) = (101), which will subsequently produce the test

pattern “001101” as shown in Figure 2.3 (b).

Desired Test Cube [xJolx[1][1]x]
Reset LFSR SME?—-)OIO]OI—-{OI NN

Seed 1jrjo—to] | [| []

Shift

DeComPresion Geea 11Jo)—o] [T [[]
s 1 11 00
011 100
001 1100
000 11100
100 011100
110 [ofo[t]1]1]0]

Figure 2.2: Decompression using a single-polynomial LFSR.

13

Shift a, a, a, a,
aqa, a, a, a, a,
ayeara, | ayea, a, a, a, a,
a,«a, d,+a,+a, a,+a, a, a, a, a,
2,+3,+4, a,+3, a,+a,+a, a,0d, a, a, a, a,
a, 2,08,43, a,%3, 8,08,08, | a,¢8, s, 8, a, a2,

Desired Test Cobe [xloJxl‘llolxl

Systems of Equations a,08,=0 a=1 =0

1 1 0 1 [}
Shift
0 1 1 0 1 0
0 V] 1 1] 1 0
1 0 0 1 1 0 1 Q
0 1 "] 0 1 1 "] 1]

o
o
p—
o
—_—
(-]
j—
-
j—
-
jn
o
1
-
==

(b)

Figure 2.3: An example of seed-computation in a single-polynomial LFSR.

15

Decoding N

R = R S]

1
Polynomial ID

£|E

Polynomuat ID

Figure 2.4: General structure of the multiple-polynomial LFSR.

Multiple-Polynomial-LFSR Reseeding

The reseeding approach described in [3] uses multiple primitive polynomials instead
of a single polynomial to encode the test cubes as shown in Figure 2.4. The LFSR
can operate according to one out of many primitive polynomials. Each test cube is
encoded as a polynomial identifier and an initial seed. This process involves solving
systems of equations similar to the one shown in Figure 2.2 (a). For each test cube,
the process tries to find a suitable seed by checking all the available polynomials one
after the other, and stops when finding the first encoding.

It is clear that the SP-LFSR approach requires less computational effort than
the MP-LFSR. However, it requires an LFSR with (s + 20) bits in order to reduce
the probability of not finding a seed for a test cube with s specified bits to less than
108, while a MP-LFSR with 16 polynomials can achieve the same probability using

only (s + 4) bits.

16

2.1.2 Run-length Coding

Many compression techniques are based on a well-known compression technique
referred to as run-length coding. The basic idea of this technique is to encode a
sequence of equal symbols (run) with a certain codeword depending on the length
of that run. In this section, we will discuss three compression techniques which are

based on run-length coding.

Run-length Coding with Burrows-Wheeler Transformation (BWT)

The original run-length coding technique compresses data by representing each run
into two elements, the repeating-symbol and the run-length. For example, the string
“aaabbbbd’ is encoded as: (a, 3), (b, 4), and (d, 1). This technique is simple in
compression and decompression. However, its efficiency depends on a feature of the
encoded string called “activity”’. The activity of a string is the number of transitions
in the string from one symbol to another. For example, the string “aaabbbbd” has
an activity of two. Thus, run-length encoding is more efficient for strings with low
activity.

In [7], Burrows-Wheeler transformation (BWT) was used to improve the effi-
ciency of run-length coding. BWT transforms a string S into another string S’ by
rearranging its symbols in a way that may reduce the string activity. The first step
in the BWT is to form an n x n matrix, where the n'* row is obtained by rotating

the original string (n — 1) times to the left. Then, the rows of the matrix are sorted

17

S = abraca S’ = caraab L
aabra?w
bracaa abracia
racaab acaab|r
acaabr bracajla
caabra caabrija
aabrac r a c a a|b|
Initial Matrix Sorted Matrix

Figure 2.5: An example of a Burrows-Wheeler transformation.

lexicographically. Finally, the symbols in the last column L are grouped together to
form the transformed string. Figure 2.5 shows an example of the BWT.

The BWT, as shown above, is simple and usually results in a better compres-
sion using run-length coding. Also, retrieving the original string from the resulting
transformation is a simple operation that does not require sorting.

The procedure proposed by Yamaguchi, Tilgner and Ishida [7] works as follows.
Given a test set D represented as a matrix P x Q, where P is the number of test
patterns and @ is the number of PI's, partition D into several equal size submatrices
D; each of size M x Q. This is to reduce the processing time. The BWT is,
then, applied on individual columns of every test set D; to get an intermediate
test set D]. Next, the activity, a’(k) of every column k in intermediate test set

D, is compared with some threshold activity a, and with the activity, a(k), of the

18

D;: original test set D: intermediate test set E;: transformed test set

1 2 3 4 S5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 x 1 x 0 1 1 1 x 1 x x 1 1 1 x 1 x 0 1 1

x 1 x 1 x 0 O x x 1 1 x 1 1 x x x 1 x 1 1

0 x x 1 x x 1 X x x 1 x x 1 0 x x 1 x x 1

x 1 1 1 x 1 0 0 1 0 1 x x 0 x 1 1 1 x x 0

1 x 1 1 x 0 1 1 1 x x x 0 0 1 1 1 1 x 0 O

0 0 0 x x x 0 0 01 1 0 0 0 0 0 0 x x 0 O

ak) 5 5 3 2 1 5 5 4 2 ¢4 3 1 2 1 5 2 3 2 1 2 1

Figure 2.6: Preparation of the matrix to be encoded.

corresponding column in the original test set. If the activity of that column is less
than both a; and a(k), the column is copied in the final test set E;. Otherwise,
the corresponding column from original test set is copied into E;. This will save
the reverse transformation time for those columns whose BWT will not improve the
run-length compression much. Finally, run-length encoding is applied to E;.

Figure 2.6 shows an example for constructing an E; for some test set D;. The last
row of each table in the figure indicates the activity of the columns. After applying
BWT on D;, the activity of the columns: 1, 2, 6, and 7, has decreased. However the
activity of column 1, which is 4, is still above the threshold value (a = 3). Hence,
column 1 is copied from the original test set. Note that copying column 3 from D;
is trivial since its activity has increased after the BWT.

The transformed test set can be encoded using a straightforward run-length
coding that encodes a run using two tuples, (s, L), where s is the repeating symbol
and L is the length of the run. However, a more efficient run-length coding scheme

was used in [7]. The main idea of this scheme is to combine the run lengths of two

19

Table 2.1: Transition table for run-length coding.

Symbol t
Transition(s — t) 0 1 x
0 - L L+M
Symbol s 1 L+ M - L
x L L+M -

consecutive runs into a single integer using some predefined transition table. As an
example, consider the string “0000XX"”. This string has two runs: s=“0000" and
t="“XX". One possible transition table for combining the lengths of two consecutive
runs with three logic values (‘0’, ‘1’, ‘X’) is shown in Table 2.1, where M is the
length of the whole string (which is 6 in this example) and L is the length of the
first run (4 in this case). Thus, the lengths of the two runs can be combined into a
single integer (L + M =4 + 6 = 10).

In the above scheme, a string is encoded by giving the first symbol, the activity
of the string, and the integers corresponding to the combined run lengths using the
transition table. Figure 2.7 (a) shows a complete example for encoding a test set
E;.

‘The decompression procedure is done as follows. Start with the symbol given in
the encoded data. The integer ¢, corresponding to the current run, is decoded by
computing (i%M) to obtain the length of the current run. The symbol of the next
run is the j** character (j = [i/M]) following the current symbol in the circular

fashion shown in Figure 2.7 (b).

20

1 2 3 4 M =5
2 x g x column 1: (0, 3, 1, 7,6)
1 : o 1 column 2: (x, 3, 2, 1, 1}
01 0 x column 3: (0, 0) O 1 x
column 4: (x, 2, 7, 1)
x x 0 x ‘\——/
E Encoded Data

(@) (b)
Figure 2.7: An example of the modified run-length coding.

Table 2.2: Variable to fixed length coding.

Data Block | Codeword
1 000
01 001
001 010
0001 011
00001 100
000001 101
0000001 110
0000000 111

Variable-to-Fixed-Length Codes

In this scheme, fully specified test data is compressed using variable-to-fized-length
codes, where a fired-length codeword is used to encode a block of data based on the
number of 0’s in that block. Table 2.2 shows a variable-to-fixed-length coding with
3-bits codewords. Using this encoding scheme, the vector “0000010000001100001”
can be encoded as follows. The block “000001” is encoded as 101, “0000001" is
encoded as 110, “1” is encoded as 000, and “00001” is encoded as 100. Hence, the
resulting vector is “101110000100”.

The decompression for this scheme can be implemented simply using a counter

21

that counts down to 0 and outputs a “0” each time it decrements, and outputs a
“1” (except for 7 0's) at the end of the count.

This scheme was used in [4] to compress the difference vector, Tyss, which is
given by (¢, t; ® s, t2 P ts, , t,—1 ®t,), instead of compressing the test sequence Tp
itself. This is motivated by the fact that successive test vectors in a test sequence
often differ in a small number of bits. Hence, compressing the difference vector is
more efficient since it contains more 0’s than the original test vectors. In [4], the
compressed difference vectors are used as an input to a 3-bit run-length decoder
followed by a cyclical scan chain with a feedback to an XOR gate as shown in
Figure 2.8 (a). The run-length decoder decompresses the encoded difference vectors,
while the cyclical scan chain retrieves the original test vectors. These vectors are
passed to a second cyclical scan chain that applies them to the CUT as illustrated

in Figure 2.8 (b).

Golomb Codes

A drawback of the compression scheme described in [4] is that it uses variable-to-
fized-length codes, which are less efficient than the more general variable-to-variable-
length codes. In [5] Golomb codes are used to map variable-length runs of 0’s in a
difference vector to variable-length codewords. This scheme works for both full-scan
and non-scan (sequential) circuits. For full-scan circuits, the test vectors in a given

test set can be reordered to maximize the number of 0’s. On the other hand, the

22

Channel
from
tester

3-Bit
1 Run-Length Cyclical Scan Cahain —>
Decoder

(@)

Circuit Under Test

Test Scan Chain

Cyclical Scan Cahain

(b)

Figure 2.8: Structure of the cyclical scan chain.

order of test vector is preserved for non-scan circuits.

This scheme divides the codewords into g groups each of size m. Each one of
these groups, as shown in Table 2.3, has a unique prefix, and m members each
having log, m bit sequence (tail) that distinguishes it from other members of the
group. The prefix of the k** group consists of (k — 1) 1’s followed by a 0.

The first step in encoding a test set Tp is to generate its difference-vector test
set Tairs. The next step is to determine the number of groups, g, and the group size
m. The number of groups is determined by the length of the longest run, and the
size m is dependent on the distribution of the test data. However, an optimal group
size can be determined through actual experiments. Once g and m are determined,
the runs of 0’s in Ty4;;; are mapped to the g groups, according to their lengths, as

follows. The set of run-lengths {0, 1, 2, ... , m — 1} belongs to group 1; the set {m,

Table 2.3: Golomb codes (m = 4).

23

Group | Run-Length | Group Prefix | Tail | Codeword
0 00 000
1 1 0 01 001
2 10 010
3 11 011
4 00 10000
2 5 10 01 10001
6 10 10010
7 11 10011
8 00 110000
3 9 110 01 110001
10 10 110010
11 11 110011
TM
0001 |L=3 Codeword= 011
oootong | | 00002 |ixt codevra: 20m
0011000 00001 [L=4 Codeword= 1000
0100001 00001 |L=4 Codeword= 1000
gg‘l’gggé 0000001 |L=6 Codeword= 1010
0001001 oooooggi ,L:j gﬁgxig; g:::.
001 |L=2 cCodeworda= 010
T, =011 1001 000 1000 1000 1010 010 1011 010
Figure 2.9: An example of a Golomb coding.
m+1, ..., 2m — 1} belongs to group 2, and so on. The final codeword for a run

of length L that belongs to group & consists of the prefix of group k followed by the

tail corresponding to the j** (j = L — (k — 1)m + 1) member of group k. Figure 2.9

illustrates the encoding of a difference vector test set consisting of 6 vectors using

the Golomb codes of Table 2.3. Notice that only the first two groups of this table

are required since the length of longest run is 7.

The decompression operation can be implemented using a log, m bit counter that

24

counts up to m and a finite-state-machine as shown in Figure 2.10. The en signal
synchronizes the input of the decoder. When en is high the next bit of the current
codeword is shifted into the FSM through bit_in. The inc signal is used to increment
the counter, and the rs signal indicates that the counter has finished counting. The
v signal synchronizes the decoder output. When v is high one decoded bit is shifted
out through bit_out.

The decoder starts by decoding the prefix of the codeword. For every 1 in the
prefix, the counter counts up to m (the en signal is low while the counter is busy
counting). During this operation, the decoder outputs m 0’s. When the last 1 in
the prefix gets decoded (i.e., a 0 is shifted in), the FSM starts decoding the tail
sequence of the codeword. The number of 0’s generated during this operation is
equivalent to value of the tail sequence. Finally, the decoder outputs a 1 at the end

of the decoding operation.

Frequency-Directed Run-Length Code

Frequency-directed run-length (FDR) code (5] is another variable-to-variable coding
technique based on encoding runs of 0's. In FDR code, the prefix and tail of any
codeword are of equal size. In any group A;, the prefix is of size i bits. The prefix
of a group is the binary representation of the first member of that group. When
moving from group A; to group A;;1, the length of the code words increases by two

bits, one for the prefix and the other for the tail. Runs of length i are mapped to

25

bie_in, rssen, bic_out, inc, v

--/1-00

bit_i
e = logm
FSM
en — COUNTER
AN AN
clk I I

(a)

(b)

Figure 2.10: Structure of the decoder used in the Golomb coding technique.

group A;, where j = [log,(i + 3)] — 1. The size of the " group is equal to 2'. The
FDR code for the first three groups is shown in Table 2.4.

Since the FDR technique considers only runs of 0’s, it is not efficient for test sets
that contain large numbers of runs of 1's. As an example, consider the test T =
{0110001111111000000001}, which contains 10 runs of 0’s. Encoding this test using
FDR code results in the encoded test Trpg = {01 00 1001 00 00 00 00 00 00 110010}.
This is larger than the original test.

The FDR technique was extended in [19] to encode both runs of 0’s and 1’s by
adding an extra bit to the begging of a codeword to indicate the type of run. If

the bit is 0, this indicates that the codeword is encoding a run of 0’s, otherwise it

26

Table 2.4: FDR code.

Group | Run-Length | Group Prefix | Tail | Codeword

A 0 0 0 00
1 1 01
2 00 1000

As 3 10 01 1001
4 10 1010
5 11 1011
6 000 110000
7 001 110001
8 010 110010

Az 9 110 011 110011
10 100 110100
11 101 110101
12 110 110110
13 111 110111

encodes a run of 1’s. This code, called Extended FDR (FDR), is shown in Table 2.5.
As with the FDR code, in this code when moving from group A; to group A;;,, the
length of codewords increases by two bits, one for the prefix and the other for the
tail. Runs of length i are mapped to group A;, where j = [log,(: + 2)] — 1.

If we apply the EFDR on the test T = {0110001111111000000001}, we find
that it contains 5 runs of 0’s and 5 runs of 1's. This can be encode as Terpr =
{000 100 001 11011 0110000}, which contains 21 bits. Obviously, for this example

EFDR is performing better than the FDR code.

2.1.3 Statistical Coding

Statistical coding methods minimize the average length of a codeword by assigning

short codewords to frequently occurring patterns, while assigning longer codewords

27

Table 2.5: Extended FDR code.
Group | Run | Group | Tail | Codeword | Codeword
Length | Prefix Runs of 0’s | Runs of 1’s
A 1 0 0 000 100
2 1 001 101
3 00 01000 11000
As 4 10 01 01001 11001
5 10 01010 11010
6 11 01011 11011
7 000 0110000 1110000
8 001 0110001 1110001
9 010 0110010 1110010
Aj 10 110 011 0110011 1110011
11 100 0110100 1110100
12 101 0110101 1110101
13 110 0110110 1110110
14 111 0110111 1110111

to less frequently occurring patterns. Examples of statistical encoding methods
include Huffman coding, Shannon-Fano coding, and Lempel-Ziv coding [21, 22, 23].

The scheme proposed in [8] uses Huffman coding to compress the test patterns
in a test set Tp. It starts by computing the frequency (number of occurrences) of
every unique test pattern in Tp. Then, it builds a Huffman tree out of these test
patterns. The edges of the Huffman tree are labeled either with 0 or 1, while every
leaf in the tree represents one unique pattern. The codeword of every unique pattern
is obtained by traversing the path from the root to the corresponding leaf noting
the sequence of 0’s and 1's along the edges of this path.

Figure 2.11 illustrates the procedure for constructing the Huffman tree for a test

set with five unique patterns z,, z, 3, z4, and =5 having frequencies of occurrence

28

00060 0dbdt

Ist lteration 2nd lteration

Figure 2.11: Construction of a Huffman tree.

flz) =7, f(z2) = 3, f(z3) = 2, f(z4) = 2, and f(zs) = 2. The procedure
iteratively selects two nods v; and v, with the lowest frequencies, and generates a
parent node v for v, and v,. The edges (v, v;) and (v, v,) are labelled 0 and 1
respectively, and the node v is assigned the frequency f(v) = f(v;) + f(v2). The
codewords are obtained, as explained previously, by traversing the tree from the
root to every leaf. Thus, the codewords for z,, z,, =3, =4, and z5 are 0, 100, 101,
110, and 111 respectively.

The encoded test set Tg is stored in the tester’s memory, and is read out one
bit at a time during test application. Tg can be decoded using a simple finite-
state-machine (FSM) with n — 1 states, where n is the number of leaves in the

corresponding Huffman tree.

29

2.2 Compaction Techniques

Test set compaction is the process of reducing the length of a test set while achieving
the desired fault coverage. Test compaction procedures can be classified into two
categories: dynamic compaction and static compaction. Dynamic compaction pro-
cedures try to reduce the length of the test set during the generation of test vectors.
Static compaction, on the other hand, performs compaction after the generation
process. Hence, it does not require any modification to the test generation proce-
dures. In addition to that, static compaction can be used after dynamic compaction,
to further reduce the length of the test sequence [24].

In testing sequential circuits the order in which a test sequence is applied to
the CUT is critical and can’t be altered. This complicates the issue of compacting
test data for sequential circuits than that for combinational circuits because any
technique based on reordering of test vectors can’t be applied here.

In this section we will review some of the static compaction procedures proposed

for sequential circuits (dynamic compaction is out of the scope of our work).

2.2.1 Compaction by Overlapping Self-Initializing Test Se-
quences

In a combinational circuit, two test vectors are compatible if they do not specify

opposite values for any primary input (PI). Two compatible test vectors ¢; and ¢,

30

can be combined into one test t;; = t;(}¢; using the intersection operation defined

below.

% o= oD
o o|o
= | e
A= O

Since the order of applying test vectors in combinational circuits is not important,
test vectors can be compacted in any order. However, this is not the case with
sequential circuits where the memory elements must be set to a specific state in
order to excite, propagate or detect certain fault(s). A test sequence (with a strict
order) is used to set the memory elements in the required state. Hence, two patterns
can’t be compacted arbitrary.

Self-initializing test sequence: In a test set containing self-initializing sequences,
any test sequence does not depend on the state at which the sequential circuit arrives
due to the application of previous sequences. Thus, the set of test sequences may
be applied in any order without affecting the fault coverage. Such test sequences
can be overlapped as long as they are compatible with each other, and the order of
test vectors in each test sequence is preserved.

Compatibility of a test sequences: Consider two test sequences T; and T; of
lengths [, and [, respectively, and /; > l;. Originally the total test length due to
Ty and T3 is l; + > as shown in Figure 2.12 (a). There are four ways in which T

can be skewed from the start of T} as shown in Figure 2.12 (b)-(e). In the first

31

TSZ f k k
L|f s, TS, TS, 1S, TS, TS,
TS,
L, TS,
(a) No Merging (b) Skew =0 (c) Skew =k (d) Skew = -k (e) Skew = k

Figure 2.12: Merging of two test sequences.

group, the two test sequences are aligned with each other such that they start at
the same time (skew = 0). These two sequences will be compatible if the i** vector
in T} is compatible with the i** vector in T for (i = 1, 2, ...,). In the second
group, the two sequences will be compatible if every vector in T is compatible with
its corresponding vector in T, (note that the 1* vector in T, corresponds to the k'
vector T;). The reduction in total test length in this case is [. The compatibility
of the test sequences in the third and fourth groups can be handled in a similar
manner, where the reductions in the total test length due to compaction are (I — k)
and (I, — k) respectively.

In [14], three algorithms were given to merge self-initializing test sequences.
The first algorithm merges aligned test sequences as shown in Figure 2.13 (a). If
aligning two sequences will result in a conflict between one or more vectors, a second
algorithm is used to merge two sequences with a skew as shown in Figure 2.13 (b).
The third algorithm improves the compatibility of test sequences using stretching.

A sequence is stretched if some of its vectors are repeated several times without

32

010 xlx 010
xx0 x00 _ x00
wx | 0|01 = 101
1xx 1xx

(a) Merging of aligned test sequences

/ conflict
skew =1

e ’_\

q x0x 010 010
xx0 x00 xx0 X0 x00
10x {N] 201 10x O] %00 | =| 100
1xx 1xx 101 101

(b) Merging of two sequences with a skew

010 skew =1 skew = |
010
xx0 x0x x0x x00
1ox 1A xo0 x00 100

n -

| Lo 101 | 101 |7 101
e SCCIN 100 P 100 100
000

conflict stretch

(c) Merging of two sequences with a stretch

Figure 2.13: Examples of merging two test sequences.

changing their order. For example the sequence (101x, 1x01, 111x) can be replaced
by (101x, 1x01, 1x01, 111x). This will add one more degree of freedom to the process
of compaction as shown in Figure 2.13 (c). Merging two test sequences using the
last two algorithms may affect the fault coverage. Therefore, a fault simulation step

is performed after the merging process.

33

2.2.2 Compaction Based on Insertion, Omission, and Selec-
tion

Three compaction algorithms were proposed in [15]. These algorithms are insertion,
omission and selection. The following definitions and notations will be used to

describe these algorithms.
e T[i] is the i** test vector in the test sequence T.
o Tlu;,u] is a subsequence of T between the two time units u; and wu.
e S; is the state of the fault-free circuit at time u;.
) S{ is the state of the faulty circuit at time unit u; for some fault f.

o The effective test length of T, L.s , is the minimum length of a subsequence
of T that starts at time 0 and include the detection time of every detected

fault.

Compaction Based on Insertion

Consider a fault f detected at time unit u, by the test vector T'[d]. If there exist
two time units u; and ux such that u; < ux < u4 and S,-/SJ-I = Si/S{, then f can be
detected earlier by duplicating and inserting the subsequence T[uk,u4] at u;. The
insertion operation increases the total length of the test sequence, however, it reduces

the effective length L.;; by reducing the highest detection time. The insertion

Table 2.6: The test sequence of Example 2.1.

0

1

2

3

4

5

6

7 8

9

:
Tf] | 0011

1101

0001

0011

1110

1011

0001

0010 |{ 0000

0110

Table 2.7: The fault detection of the test sequence in Example 2.1.

1

0

1

2

3

4

5

6 7

8

9

Detected Faults

¢

fi.falo

f3 f47f57f6

fr

@ | fs, fo, fio

¢

fu

34

operation is applied iteratively, until no additional improvements in effective test

length or in the fault coverage can be obtained. The following example demonstrates

the insertion operation.

Example 2.1: Consider the test sequence shown in Table 2.6. The corresponding

fault detection of this test sequence is shown in Table 2.7. Assume that the combined

fault-free/faulty states are identical at times u; and ug. Then, f); can be detected

at earlier time by duplicating and inserting T'[8,9]=(0000, 0110) at u7 as shown in

Table 2.8. After inserting the subsequence, fault simulation is performed to see the

effect of the insertion operation on the faults detected in time units following us.

Table 2.9 shows a possible fault detection due to the insertion operation, where the

detection time of f;; has been shifted from ug to ug.

Table 2.8: The test sequence of Example 2.1 after insertion.

i] 0| 1] 2] 3] 4]5
T[i] | 0011 | 1101 | 0001 | 0011 | 1110 | 1011
i | 6 | 7| 8 9 10]11
T[i] | 0001 | 0000 | 0110 | 0010 | 0000 | 0110

35

Table 2.9: The fault detection of Example 2.1 after insertion.
i 0| 1 2|3 4 516 7 8 9

Detected Faults | ¢ | fi,fo |0 | | fa, s fo | fz | @ | fs, fo | fro, f11

o

Compaction Based on Omission

This algorithm is based on the omission of redundant test vectors from the test
sequence. The omission of a test vector ¢; at time unit u; may affect faults detected
in the time units following u;. Also, it may result in detecting new faults. Hence,
a fault simulation is performed after every omission operation to check the fault
coverage. Test vectors are considered for omission in the order in which they appear
in the test sequence. After omitting a test vector t;, a fault simulation is performed
for all faults detected in time units following u; and for all undetected faults. If the
fault coverage after omission is not lower than the fault coverage before omission,

the change is accepted, otherwise, ¢; is restored.

Compaction Based on Selection

This technique works as follows. For every detected fault f, it first collects all subse-
quences that detect the fault f, such that each subsequence starts from unspecified
states (i.e., all memory elements set to X's). Next, it uses a covering procedure to se-
lect a minimal subset of the collected subsequences that detect all the faults detected
by the original test set. During this selection phase, a newly selected subsequence

is combined with the previously selected subsequences in the order by which they

36

appear in the original test set. Then the new sequence is simulated to identify the
faults that still need to be detected. This can expressed by means of the following
example.

Example 2.2: Assume that we are given a circuit with 8 test vectors (¢; to tg)
which detect 10 faults (f; to fio). First, the circuit is fault simulated starting from
every test vector with all states set to X'’s. Thus, the circuit is simulated starting
from ¢, up to ts, then from ¢, up to tg, and so on. Suppose that the fault detections
shown in Table 2.10 represent the result of the above fault simulations. From this
table we can obtain the subsequences that detect a given fauit. For example, the
fault f; is detected in ¢3 of the first fault simulation. Thus, it can be detected by
any one of the subsequences (1,3), (1,4), (1,5), (1,6), (1,7) and (1,8). Table 2.11
shows all the subsequences that detect every one of the 10 faults.

Next, a minimal subset of these subsequences is selected to detect all the faults
detected by the original test set as follows. Starting from f;, we find that this
fault can be detected by any one of the subsequences (1,3), (1,4), (1,5), (1,6), (1,7)
and (1,8). However, the subsequence (1,3) is selected because it is the shortest
among the 6 subsequences. Notice that this sequence detects the faults f, f3, and
fs as well. Therefore, no need to consider these faults in the next selection. The
next fault to be consider is f; which is detected by 7 subsequences. The shortest
sequence among these subsequences is (7,8). This subsequence is combined with

the subsequence (1,3) to form the sequence T = {t,,t,,t3,%7,t3}. Notice the new

37

sequence may detect additional faults other than those detected by the individual
subsequences.Therefore, we should fault simulate the circuit under the new test
sequence before selecting a new subsequence.

Suppose that after simulating the circuit under the test sequence T’ we found
that the faults fy, fo, f3, fs, fo and fo are detected (i.e., f; is missing). In this case,
fa is considered again and the next choice is the subsequence (6,8). This subsequence
is combined with T” to form the test sequence T = {t,¢2, t3,ts,t7,t3}. Then, the
circuit is fault simulated under the new test sequence. Suppose that T” detects all
the 10 faults (i.e., the fault fs is accidently detected). In this case, the selection

process stops and the compacted test set will be in T".

2.2.3 Compaction Based on Vector Restoration

For many test sequences considered in (15], the test length after compaction is less
than half of the original test length. This suggests that it may be faster to decide
which test vectors must be restored in the test sequence in order to maintain the
fault coverage, instead of deciding on the test vectors that may be omitted. The
technique in [16] restores test vectors for each fault starting from the hardest-to-
detect to the easiest. In this way, some faults can be detected by sequences of other
faults. The technique is illustrated by the following example.

Example 2.3: Consider the fault detection shown in Table 2.12. The technique

starts by omitting (almost) all test vectors in the test sequence (test vectors that

Table 2.10: Fault detection of Example 2.2.

| Starting From | TV(s) Detected Faults

ty 4y, & ¢

t3 flr f21 f31 f5

ty, ts, to ®

tr fe

ts fa, fr, fs, fo, fro
ts to, b3, ..., t: | @

tg fa, fo. fz, fs. fo, fr0
t3 t3, by, ..., t7 | @

ts f1, fo, fz, f8, fo, f10
ty ta, s, ..., t7 | @

ts f4, fo, fr, fs, fo. f1o
ts ts, ts, t7 o]

ts fa, fe. fr, fs, fo, f10
te te, L7 o)

ts fa, f2, fs, fo, fro
t7 124 ¢

ts f1, fa, fro
ts ls)

Table 2.11: Test subsequences of Example 2.2.

| Fault | Subsequences |
fr | (13) (14) (1,5) (1,6) (1,7) (1,8)
f2 (113) (1:4) (115) (116) (117) (178)
fs [(1,3) (1,4) (15) (1,6) (1,7) (1,8)
fa_ | (1,8) (2,8) (3.8) (4,8) (58) (6,8) (7.8)
fs | (1.3) (1,4) (1,5) (1,6) (1,7) (1,8)
Jo | (1,7) (1,8) (28) (3,8) (48) (5,8)
fr | (1,8) (2,8) (3,8) (4,8) (5.8) (6:8)

38

39

Table 2.12: Fault detection of Example 2.3.
Fault | Subsequence to detect the fault

fi [(t,ts)
f2 (t21 tS)
fz | (ts, t12)

fa (t11,t16) Or (t1s,t20)
fs (t17, t0)

synchronize the circuit by taking it from an unspecified state to a fully specified
one are not omitted). Starting from the last detected fault (i.e., fs), the algorithm
restores test vectors one at a time until the required fault is detected. For instance,
too is simulated first and since it does not detect fs, t;9 is added to the sequence.
Now, the sequence (t,9, t2) is simulated, and so on, until the sequence (¢,7, ty) is
restored. Notice that any fault that is detected by this sequence is dropped from
the current fault list. For example, f; is removed from the list since it is detected
by (tis, tao). After restoring fs5, the algorithm starts from the last yet-undetected
fault and repeats the process until all detected faults are covered.

We can speed-up the process of vector restoration in the above technique by
considering several faults in parallel during the restoration process. In [25], faults
are grouped together according to their detection times by the original test sequence.
Specifically, all the faults detected by the original test sequence at time unit u; are
considered together during the restoration process.

The restoration techniques we have seen so far restore the test vectors in the

same order in which they appear in the original test sequence. For example, if the

40

compacted test sequence is T, = {t;, t2, to}, then the compacted test sequence after
restoring ts becomes T, = {t;, t, ts, to}. Notice that in this example, the faults
detected after restoring ¢y may not be detected after restoring ts. Thus, all faults
detected at a certain test vector need to be resimulated when a new vector is re-
stored into the compacted test sequence. The technique proposed in [26] avoids this
problem by reversing the order of the vectors during restoration. In this technique,
every time a subsequence of the original test sequence is restored to detect a subset
of faults, the subsequence is placed at the end of the compacted test sequence (T.).
In this way, a fault detected by T is guaranteed to remain detected by at the end

of the compaction process.

2.2.4 Compaction Based on Inert Subsequence Removal

The technique proposed in [17] is based on the observation that test sequences tra-
verse through a small set of states and some states are frequently revisited through-
out the application of a test set. Subsequences that start and end on the same states
may be removed if sufficient conditions are met. Before going over these conditions,
the following two definitions are given to help in explaining the inert subsequence

removal technique.

Definition 2.1 A state-recurrence subsequence T,.. is a subsequence of test vectors

such that the fault-free states reached at the beginning of T,.. and those reached at

41

PI, PI, PI,,, ez, PI,,, eI, .
Sy T S e gL L
[o] (D]] / D
/D\] . D R | D |
o] D] -
L3 (D]] D
PO PO PO PO PO PO
—i
Inert Subsequence Identical State After removing the inert subsequence

Figure 2.14: Subsequence removal (Criterion 1).

the end of it are identical.

Definition 2.2 An inert recurrence subsequence Tiners is a state-recurrence subse-

quence such that no additional faults are detected within this subsequence.

Inert subsequences can be removed, in order to compact a test sequence, given that
certain criteria are satisfied. These criteria are discussed below.

Criterion 1: Consider the situation in Figure 2.14. If the faulty state before and
after the inert subsequence T;,.,: are identical for every undetected fault f that is
activated by this subsequence, then T, can be removed without affecting the fault
coverage.

Criterion 2: For an inert subsequence Tin., if the faulty state after the subse-
quence covers the faulty state before the subsequence for every activated fault, and
any additional fault effects propagated at the end of the subsequence do not lead to
detection, then Tin.,; can be removed. This criterion is illustrated in Figure 2.15.
Criterion 3: For an inert subsequence T, if the faulty state before the subse-

quence covers the faulty state after the subsequence and the additional fault effects

Inert Subsequence Additional fault effect After removing the inert subsequence
does not lead 1o detection

PO

Inert Subsequence Additional fault effect The fault is no longer detected after
leads to detection removing the inert subsequence

(b)

Figure 2.15: Subsequence removal (Criterion 2).

42

43

PI, PI, P, 2
J JL 2 JL JL
D] (b H-_|[]
] - . B
D M—] || -
L] [] []
<55 L <5
PO PO PO PO
————>
Inert Subsequence
(@)
PL,.. PI,.2
]
D
\ 5] \
oH (] -
[_]
< 5>
PO PO
Additional fault effect doe not Additional fauit effect
lead to fault masking leads to fault masking

Figure 2.16: Subsequence removal (Criterion 3).

propagated before the subsequence do not cause fault-masking in time frames fol-
lowing the subsequence, then T;,.,. can be removed. This situation is shown in
Figure 2.16.
Criterion 4: For an inert subsequence Tinere, if neither of the faulty states before
and after the subsequence cover the other, then conditions imposed on activated
faults in both Criterion 2 and Criterion 3 must be satisfied in order to remove Ti,.y;.
The above criteria can identify subsequences that may be removed in order to
compact a given test sequence. However, this technique will not be able to compact
test sequences that do not contain state-recurrence subsequences. In such cases,
state relaxation can be used to identify state-recurrence subsequences that may be
removed. For example, assume that the test set T transfer the circuit through the

states S; = 10110, S; = 00100, S; = 01110, Sy = 00110 and S5 = 11001 without

44

repeating any state. It is possible that not all specified bits in S; are necessary to
reach Ss. Therefore, if S; can be relaxed to “X0110”, then there exists a state-
recurrence subsequence between S; and S;. The technique proposed in [27] extends
the subsequence removal technique using state relaxation to identify more cycles
in a test set. In state relaxation, logic simulation is performed for all test vectors
in the test set. For every test vector, the state of the circuit (i.e., values of the
memory-elements) is analyzed to identify those bits that have no effect on the next
state or primary outputs, and relax them. This process is illustrated in the following
example.

Example 2.4: Consider the circuit shown in Figure 2.17. This circuit has two
primary inputs (A, B), one primary output (G5), and three memory-elements (G7,
G8, G9). If the initial state of the circuit is (G7, G8, G9)=(0, 0, 1) and the input is
(A, B)=(1, 0), then the output circuit becomes 0 and the circuit is transferred to the
state (G7, G8, G9)=(0, 1, 1). Notice that a fault effect on G7 can’t be propagated to
the primary output or the memory-elements because of the controlling value A = 1.
Therefore, the value on G7 can be relaxed to ‘X’. Similarly, G8 can be relaxed
without affecting the primary output or the memory-elements because of the the
controlling value B = 0. Thus the initial state can be relaxed to (G7, G8, G9)=(X,

X, 1).

45

1 0 G6 a
l_ G9 GS

Figure 2.17: Circuit of Example 2.4.

2.3 Test-Pattern Relaxation Techniques for Com-

binational Circuits

In this section, we discuss two test-pattern relaxation techniques proposed for com-
binational circuits [28, 29]. The main idea of both techniques is to determine logic
values in the fully-specified test set that are necessary to cover (i.e., detect) all faults
which are detectable by this test set. Unnecessary logic values are set to X's. Before
we go into details of the two techniques, we define some of the terminologies used
in each technique. Given a test set T, if any fault detected by test vector t in T
is detected by at least one test vector in T — {t}, t is called redundant test vector.
If a fault, f, is detected by ¢ in T, but not detected by any test vector in T — {¢t},
f is called an essential fault of . To indicate that a line [is stuck-at value v, the
notation //v is used. The notation | = v/¥ indicates that the fault-free value of line

l is v, and the faulty value of line [l is .

46

Relaxation Using Implication/Justification Procedures

The technique proposed in [28] uses fault simulation and implication/justification
procedures similar to those used by ATPG algorithms. The technique consists
of three phases. The first phase starts by fault-simulating the circuit under the
original test set to determine essential faults of every test vector. Then, implica-
tion/justification procedures are used to specify logic values necessary to detect these
essential faults. The resulting relaxed test set is still an intermediate test set. In the
second phase, the circuit is fault-simulated under the intermediate test set. Then,
implication/justification are used again to specify logic values necessary to detect
any fault that is detected by the original test set but not detected by the intermedi-
ate test set. After all, if the second phase fails to detect any of the detectable faults,
a more restricted implication/justification (call ertended implication/justification)
is used in third phase to specify logic values necessary to detect all faults missed
by the previous phases. The general behavior of this technique is illustrated by the
following example.

Example 2.5: Consider the combinational circuit shown in Figure 2.18 under the
test set abedef ={010100, 010001}. The first test vector, ¢,, can detect three faults:
a/1, ¢/1 and j/1. The second test vector, ¢z, can detect the fault e/1 in addition
to the faults a/1 and j/1. Therefore, c/1 is considered as an essential fault for ¢,

while e/1 is an essential fault for ¢,.

47

-
.-|°

8
—|°

<

=R

a,

“
’— |°

f—— oy N\ e o 0
Y R

S

Figure 2.18: Circuit of Example 2.5.

In the first phase, the algorithm proposed in [28] will specify logic values neces-
sary to detect the essential faults in each test vector using implication/justification
as follows. In t,, the assignments ¢ = 0,d = 1, g = 0 and ¢z = 0 are necessary to
excite and propagate the fault ¢/1 to the primary output h. In another word, exci-
tation and propagation of c/1 implies these four assignments. Next, the algorithm
justifies the assignments g = 0 and ¢ = 0. The assignment g = 0 must be satisfied
by the assignment a = 0 (i.e., g = 0 implies a = 0), while ¢ = 0 can be satisfied
(i.e., justified) by either e = 0 or f = 0. Since the technique does not specify any
mechanism to select a specific assignment when there are more than one choice, the
first assignment (i.e., e = 0) is selected. Notice that unnecessary assignments, i.e.,

= 0 and f = 0, are set to don’t care. The second test vector, t,, is handled in a
similar manner. The resulting intermediate test set is abcde f ={0X010X, 0X0X01}.

In the second phase, the algorithm fault simulates the circuit under the inter-
mediate test set to determine undetected faults. Since a/1 is not detected under

the intermediate test set, the algorithm will use implication/justification in order

48

to specify logic values that are necessary to detect the missing fault. In ¢;, the
assignments a = 0 and b = 1 are necessary to excite and propagate the fault to the
line g. The assignments h = 0, and ¢ are necessary to propagate the fault to the
primary output j. These two assignments are already justified in the previous phase.
Notice that any bit that is specified as either ‘0’ or ‘1’ in one phase will maintain its
value in the next phase. (i.e., can’t be set back to ‘X’). Since no further faults need
to be detected, the second test vector will not be processed by the second phase
and the third phase is not needed. Thus, the relaxed test set is abcdef ={01010X,
0X0X01}.

The implication/justification used in the first two phases are based on 3-valued
logic (‘0", ‘', ‘X’). Hence, it takes only fault-free values into account, and ignores
faulty values. Due to this, the obtained test set may miss some detectable faults,
even though the faults have been treated explicitly. This situation is shown in the
following example.
Example 2.6: Consider the combinational circuit shown in Figure 2.19. The test
vector abc = 000 detects the fault /1. The assignments b = 0, c=0and d = 0
are required to detect this fault. The assignment d = 0 can be satisfied by b = 0
and a = 0 is not needed. However, as shown in Figure 2.19 (b), if we set a = the
detection of b/1 is not guaranteed, i.e., it is not detected when a = 1.

In order to a void this problem, a more restricted (eztended) implication/justification

procedures are used in the third phase to detect any fault that is missed by the second

49

0 xx
 eenene— 0 a] o/x
b =2 p] l p Y1 p ll.x
J j
| I> 10
e [4
0 L 00
(b)

Figure 2.19: Circuit of Example 2.6.

00
0 2 , e BN R .
DD R DR
| L
= L e

(a)

oa

~

(a)

Figure 2.20: Limitation of the extended implication/justification.

phase. In the extended implication/justification, when a fault effect is propagated
to at least one fan-in line of a gate, values of all fan-in lines of the gate are specified.
In Figure 2.19, a is set to 0 since the fault b/1 is propagated to the second fan-in of

the AND gate.

Relaxation by Marking Required/Nonrequired Lines

The main drawback of the previous technique is the way it handles fault masking
using extended implication/justification. This technique may specify unnecessary
values as shown in Figure 2.20. Since the fault-effect of ¢/1 reaches one of the fan-in
lines of the AND gate, the extended implication/justification will specify all input
lines of this gate (i.e., a, b, and c). However, as shown in Figure 2.20 (b), it is enough

to specify one input line in addition to c in order detect the fault c/1.

50

A more clever way is used in [29] to avoid the problem of fault masking. Unlike
the previous technique which requires 2 to 3 fault simulations per test vector, the
algorithm proposed in [29] requires only 1 fault simulation per test vector. In brief
words, the algorithm does the following for every test vector t of the test set. First,
it fault simulates the circuit under the test vector ¢t and generates a list of newly
detected faults. Then, for every newly detected fault f, it marks all the lines whose
values are required for f to be detected (i.e., excited and propagated to a primary
output). Obviously, the unmarked input lines are not required for fault detection,
and thus they are relaxed. These steps are illustrated in the following example.
Example 2.7: Consider the circuit shown in Figure 2.21 and the test vector abcde =
00000. Under this test vector, the faults m/0, {/0, k/1, i/0, g/1, and b/1 are
detected. Assume that the newly detected fault is only b/1, i.e., other faults are
either previously detected by an earlier test vector, or not part of the fault list. The
assignment b = 0 is required to excite the fault, while the assignments j = 0 and
k = 0 are required propagate it to the primary output. The assignment j = 0 can
be satisfied by either one of the two assignments ¢ = 0, or de = 00. If we choose
to satisfy j = 0 by the assignment ¢ = 0, then the assignment de = 00 is no longer
necessary, and this implies that we can relax cde to “0XX”. Similarly, if we choose
to satisfy j = 0 by the assignment de = 00, then cde can be relaxed to “X00". This
shows that a test vector can be relaxed in more than one way, and some ways might

have more relaxed bits than others. In [29], some sort of cost functions are used to

51

Figure 2.21: Circuit of Example 2.7.

guide the selection when there are more than one choice.

The other requirement for fault propagation, which is k£ = 0, can’t be satisfied
by the assignment b = 0 because this will result in an incorrect relaxation of the
input a. To show this, assume that stem b is faulty, i.e., b = 0/1. In this case, if
line a is relaxed, the fault on the stem will not propagate to the output. It will be
masked by the ‘X’ value on line a, producing the value 1/z on the output m. The
problem occurs because we justified the requirement on line k from line f, which is
reachable from the fault on the stem b. Justifying a required value from a reachable
line guarantees that the required value is satisfied in the fault-free machine but not
in the faulty machine. This problem can be avoided by justifying the required value
from an unreachable line. This guarantees that the value will be satisfied for both
the fault-free and the faulty machines. For this example, the required value on
line k has to be satisfied by marking line a as required, resulting in the test vector
abede =100xx, or abcde =10x00. Therefore, lines that are reachable from faulty
stems should be identified before justifying the required values. In Figure 2.21,

reachable lines from stem b are f, g, 1, [, and m.

Chapter 3

Proposed Test-Relaxation

Technique

In this chapter, we discuss our proposed test relaxation technique for synchronous
sequential circuits that maximizes the number of unspecified bits in a given test set
while maintaining the same fault coverage as the original test set. This technique
uses fault simulation to collect information about faults detected in every time frame
(i.e., test vector) and faults propagating from one time frame to another. This
information is used during a back-tracing phase starting from the last time frame
all the way to the first time frame. The purpose of this phase is to mark all the
lines whose values are necessary to detect all the faults detected during the fault
simulation phase. Obviously, any primary input that is not marked during the

back-tracing phase is not required for fault detection, and hence can be relaxed.

52

53

During our work, we have implemented two versions of test-pattern relaxation:
single-value justification and two-values justification. The first version uses a tech-
nique similar to the one used in [29]. In this technique, faults are justified based on
the fault-free values of the circuit. It also uses some rules based on fault-reachabillity
analysis to avoid fault masking. However, these rules, as will be shown in the next
section, have some limitations. Therefore, we have extended the justification process

in the second version to handle both the fault-free and faulty values of the circuit.

3.1 Illustrative Examples

In this section, we demonstrate the two versions of our proposed technique by a num-
ber of examples. The following conventions are assumed. A synchronous sequential
circuit can be represented as a linear iterative array of combinational cells as shown
in Figure 3.1. Each cell represents one time frame in which the current states of
the flip-flops become pseudo-inputs (y;), and the next states become pseudo-outputs
(Y:). A fault in this model can be represented by multiple identical faults (one in
every cell). To indicate that a line { is stuck at value v, we use the notation [/v.
The notation ! = v/7 is used to indicate that the fault-free (good) value of line [
is v, and the faulty value of line ! is 7. When we say that a line [is required, we

mean that the value on [is required.

54

— y,—» —d

e '

-t <

Figure 3.1: Iterative array model for asynchronous sequential circuits.

3.1.1 Single Value Justification

The general behavior of this technique can be explained as follows. At any time
frame ¢, all logic values which are necessary to excite a newly detected fault and
propagate it to some primary output p are marked as required. Next, these logic val-
ues are justified backwards starting from p towards primary inputs and/or memory-
elements. At the end, unmarked primary inputs are not required and can be relaxed.
On the other hand, required values on the memory-elements are justified when the
next time frame, ¢ — 1, is processed.

The justification process in this technique is based on logic values only (single-
value justification), which may result in masking some of the detected faults as will
be shown int the next example. Therefore, the technique uses some rules based on
fault-reachability analysis to avoid fault masking. These rules can be summarized
as follows. Assume that a value on a line [is to be justified. If { is a primary input
(PI), then it is required. If { is a single-input, XOR or XNOR gate, then all the
values on !’s inputs are required. Similarly, if [is an AND, OR, NAND or NOR gate

with a non-controlling value, then all the values on its inputs are required. However,

95

if [has a controlling value, then we need to check if it has an unreachable input
with a controlling value. In this case, it is sufficient to justify the value using that
unreachable input. Otherwise, we check whether [is reachable or not. If it is not
reachable, then we justify only the reachable lines. Otherwise, all the values on the
inputs will be justified.

Example 3.8: Consider the iterative-array-model shown in Figure 3.2 (a). This
model represents two time frames of a synchronous sequential circuit under two test
vectors: t; = 110 and ¢, = 000. In the first time frame, the fault G5/0 is excited and
propagated to the memory element (i.e., D-flip-flop), but no fault is detected yet.
In the second time frame, three faults are excited: G7/0, G7b/0 and G6/0. These
faults are propagated together with the fault G5/0 to the primary output G6 where
they get detected. So, in order to relax ¢, and ¢, in a correct manner, we should
take into account not to relax any test bit that is necessary to excite/propagate any
one of the four faults: G5/0, G7/0, G76/0 and G6/0. Starting from the second time
frame, we find that the assignment G7 = 1 is required to excite the faults G7/0,
G7b/0 and G6/0. The assignment G4 = 0 is required to propagate the faults G5/0,
G7/0 and G7b/0 to the primary output. Notice that the fault G6/0 is excited at
the primary output, and hence does not require any propagation. Next, we need to
justify the two assignments G7 = 1 and G4 = 0. Since G7 is a memory element,
its value can’t be justified in the current time frame. The assignment G4 = 0, on

the other hand, can be satisfied only by one assignment which is G2 = 0. Notice

A 1@_1_ Time Frame 1
1] B
B G2

c 0 [0
x G7a
67) X
G7b
A 9 0 Time Prame 2
0
B G2
c 0 [o
- 0 1
1 a| 0 G4
G7 l(;3 C
1
G7b G6
(a)
Time Frame 2
G2
-]
x/x

170 G7a 0/1
G? rEZ\sr

(b)

Figure 3.2: An example of the single-value relaxation.

57

that the assignment G3 = 0 is reachable from the faults G5/0 and G7/0. Therefore,
G3 = 0 can’t be chosen to justify G4 = 0 otherwise it will result in masking the
faults G5/0 and G7/0 as shown in Figure 3.2 (b). In the presence of the fault
G7/0 (or G5/0), the value of G3 is 0 in the fault-free machine and 1 in the faulty
machine. Therefore, if we relax the value at G2 (i.e., G2 =X), then a value of ‘X’
will propagate through G4 to the first input of G6 causing the faulty value at the
second input to be masked.

The assignment G2 = 0 can be satisfied by either one of the two assignments
AB =00 or C = 0. The first assignment will result in relaxing one input which is
C, while the second assignment will result in relaxing the two inputs A and B.

In the first time frame, the assignment G4 = 0 is required to excite the fault
G5/0 as well as to justify the assignment on the memory element (i.e., G7 = 1) that
has not been justified in the second time frame. Next, G4 = 0 is satisfied by the
assignment G2 = 0, which is satisfied in turn by the assignment C = 0. The two
inputs A and B are not required in this time frame, and hence can be relaxed. The

resulting relaxed test set is {XX0, XX0}.

3.1.2 Limitations of Single Value Justification

The technique shown in the previous section depends on justifying logical values of
the good machine that are necessary to excite/propagate those faults detected during

the fault-simulation phase. During the justification process, it avoids justifying a

58

required value from a reachable line to account for fault masking. However, there
are situations, as will be shown in the next example, where it is possible to justify
the required value from a reachable line without masking any of the detected faults.
Example 3.9: Consider the model shown in Figure 3.3 (a) which represents one
time frame of a synchronous sequential circuit. Assume that the fault G4/1 is
newly detected in this time frame. The two assignments G4 = 0 and G2 = 0
are necessary to excite the newly detected fault and propagate it to the primary
output G3. According to the single-value justification, G2 = 0 can be satisfied only
from A since G1 is reachable from the fault G4/1. However, if we choose G1 = 0
to justify the assignment G2 = 0 and relax A, as shown in Figure 3.3 (b), then the
fault G4/1 is still detected. This is because the faulty value at G4 is considered as a
controlling value for the gate G3, and hence can’t be masked by an ‘X’ propagating
through G2.

Another limitation of the single-value justification technique is that it doesn’t
take advantage of some situations in which the fault can be propagated by justifying
only its faulty value. This limitation is discussed in the following example.
Example 3.10: Consider the model shown in Figure 3.3 (c). Assume that the
only newly detected fault is G4/0. The assignment G4 = 1 is required to excite the
newly detected fault. It seems that the assignment G2 = 0 is required to propagate
the fault G4/0 to the primary output, and hence A = 0 is required to satisfy this

assignment. However, if we relax A, as shown in Figure 3.3 (d), the fault G4/0 still

59

G4b
(a) (b)

G4 Gl

G4b G4b

(c) (d)

Figure 3.3: Limitations of the single-value relaxation.

can propagate to G3. This can be explained as follows. The value of G4 in the good
machine (i.e., 1) can propagate to the output of G3 regardless of the value at G2.
In the faulty machine, the value of G4 is 0 which requires another 0 at G2 in order
to propagate to the output of G3. This requirement can be satisfied by G1 since its

value in the faulty machine is 0.

3.1.3 Two Values Justification

The limitations discussed in the previous section can be avoided if we justify both
good and faulty values of the circuit that are necessary to excite/propagate every
newly detected fault. This is illustrated by the following examples.

Example 3.11: Consider the model shown in Figure 3.4 (a). Assume that the

fault G4/1 is newly detected. Under this fault, the circuit lines have the following

60

G4b

(a) (b)

2} Gl

G4b

(c) ()

Figure 3.4: An example of the two-value relaxation.

combinations of good/faulty values: A =0/0, G4 =0/1, G1 =0/1, G2 = 0/0, and
G3 = 0/1. In order to detect the fault G4/1, as shown in Figure 3.4 (b), it is enough
to justify the good/faulty values on the primary output G3. The good value of G3,
which is 0, requires the good values on both G2 and G4 to be 0’s. On the other
hand, the faulty value on G4, which is 1, is enough to justify the faulty value on G3.
Since only the good value of G2 is required, it can be justified by either the good
value of A or the good value of G1. However, choosing the second assignment allows
us to relax the input A. Notice that, we could justify the required value on G2
through G1 although it is reachable from the fault G4/1. This is because the faulty
value on G2 has no effect on the fault detection. Now, we have two requirements on
the stem G4: 0/X from G1 and 0/1 from G3. Therefore, G4 need to justify a good

value of 0 and faulty value of 1. Since the fault that need to be justified is excited

61

at G4, only the good value of G4 is required.

Example 3.12: Consider the model shown in Figurie 3.4 (c) under the fault G4/0.
To justify the good/faulty values on the primary output G3, we need a 1 in the
fault-free machine and 0 in the faulty machine. These requirements can be satisfied
by the two assignments G4 = 1/0 and G2 =X/0 as shown in Figure 3.4 (d). Notice
that the good value of G2 is not required to propagate the fault G4/0 to the primary
output. This is because the value of G4 in the fault-free machine is 1 which can
propagate to the output of G3 regardless of the value on the second input. The
assignment G2 =X/0 can be satisfied by either one of the two assignments A =X/0
or G1 =X/0. However, choosing the second assignment allows us to relax the
primary input A. Now, the line G4 needs to justify a value of 1 in the fault-free
machine and a value of 0 in the faulty machine. Since the fault that needs to be
justified is excited at G4, only the good value of G4 is required.

Unlike the single value justification technique, the two-values justification tech-
nique needs to justify the newly detected faults one by one because the second value
(i.e., faulty value) is fault-dependent. However, the advantages gained by this ap-
proach is worth paying the price of fault-by-fault justification. In the next section,

we describe our technique in a formal way.

62

3.2 Formal Description

Before describing the proposed techniques, we give the following definitions and

lemmas.

Definition 3.1 The value of an input is said to be controlling if it determines the

value of the gate output regardless of the values of the other inputs.

Definition 3.2 The good value of a gate g, denoted by goodvalue(g), is the value

of the gate under the fault-free machine.

Definition 3.3 The faulty value of a gate g, denoted by faultyvalue(g). is the

value of the gate under the faulty machine.

Definition 3.4 The justify value of a gate g, denoted by justifyvalue(g), is the

fault-free/faulty assignment that needs to be justified by g.

Lemma 3.1 If the fault-free/faulty values of one or more memory-elements are
required to justify a fault f during some time frame t, then f can’t be completely
Jjustified during that time frame. Hence, the justification of f has to continue during

the time frame t-1.

Lemma 3.2 A gate g is said to satisfy the value v in the fault-free machine iff v="X’
or goodvalue(g) =v. Similarly, a gate g is said to satisfy the value v in the faulty

machine iff v="X’ or faultyvalue(g) =v.

63

Lemma 3.3 If a line | is stuck-at some value v, then the faulty value of this line is

not required, and it is enough to justify its good value.

Due to the nature of sequential circuits (i.e., feedback from memory-elements),
a fault excited in one time frame may propagate through several time farms before
it gets detected. Hence, several time frames need to be traced back to justify such
faults. Therefore, we need to store enough information about fault propagation,
detection and justification in order to perform the justification process frame by
frame. Four lists are used to store the the required information: POJustificationList,
FF JustificationList, FaultJustificationList, and FaultPropagationList. In addition to
these four lists, a fifth list, RelazedTestSet, is used to store the relaxed test set. The

purpose of each list is explained bellow.

e Faults which are newly detected in time frame ¢ are stored in POJustification-

List[t] in order to justify them starting from that time frame backwards.

o If a fault f can’t be completely justified during time frame ¢, it is added to
the FFJustificationList[t — 1] in order to continue its justification process

from ¢t — 1 backwards.

e All memory elements whose good/faulty values are required to justify the
fault f, which has not been completely justified, are added to the Fault-

JustificationList(f).

64

e During fault simulation, if a fault f propagates to one or more memory-

elements, then these memory elements are added to the FaultPropagation-

List(f).

e The RelaxedTestSet represents the test set after relaxation. Initially, all the
bits in this set are X’s. However, more bits will be specified throughout the

relaxation process in order to justify the detected faults.

3.2.1 Single-Value Justification

Algorithm 3.1 shows an outline of the single-value justification technique which
consists of three phases. The first phase initializes the lists: POJustificationList,
FFJustificationList, FaultPropagationList, FaultJustificationList and RelazedTest-
Set.

Fault simulation is performed in the second phase to identify newly detected
faults in every time frame. Every newly detected fault in time frame ¢ is stored
in POJustificationList|t]. During fault simulation of test vector t, whenever a fault
[propagates to a memory-element d, the tuple (¢t + 1, d, faultyvalue(d)) is added
to the FaultPropagationList[f]. The information in this list will be used to mark
reachable lines of the circuit during the justification phase. It is important to point
out here that during this phase, all logic values of the memory-elements are stored

in a separate list. This will enable the third phase to perform logic simulation in a

65

Algorithm 3.1 Main Algorithm

(*Initialization phase*)

for every fault, f, in the fault list of the given circuit do
Let FaultPropagationList(f] — ¢
Let FaultJustificationList[f] — ¢

end for

for every test vector t do
Let POJustificationList(t] — ¢
Let FFJustificationList[t] — ¢
for every primary input ¢ do

Let RelazedTestSet|t][i] —X’

end for

end for

(*Fault simulation phase*)
for t —1tondo
Fault simulate the circuit under test vector ¢
for every fault, f, newly detected at primary output po do
Add (f, po) to POJustificationList|t]
end for
for every fault f propagating to flip-flop d do
Add (t + 1, d, faultyvalue(d)) to FaultPropagationList|f]
end for
end for

(*Fault justification phase*)
for t < n downto 1 do
Logic simulate the circuit under the test vector ¢
while FFJustificationList|t] # ¢ do
Remove f from FFJustificationList|t]
MarkReachableLines(f, t)
while FaultJustificationList[f]# ¢ do
Remove FlipFlop from FaultJustificationListf]
Let ¢ be the input of FlipFlop
Add i to the EventList|level()]
end while
Justify(f, t)
end while
while POJustificationList[t] # ¢ do
Remove (f, po) from POJustificationList[t]
MarkReachableLines(f, t)
Add po to the EventList[level(po))
Justify(f, t)
end while
end for

66

given time frame independent of the other time frames.

The third phase starts from the last time frame down to the first one. In every
time frame, ¢, the algorithm performs the following. First, it logic simulates the
circuit under the test vector ¢ to determine the good value of every gate. Then, it
checks the FFJustificationList|t] for any fault that has not been completely justified
in time frame ¢+ 1. Such a fault is justified by justifying all memory-elements whose
values are required to detect this fault in time frame ¢ + 1. These memory-elements
and their corresponding values are stored in FaultJustificationList(f]. Next, it checks
the POJustificationListt] for newly detected faults and justify them. Justifying a
fault, f, involves two operations: marking reachable lines and backward justification,
which are described in Algorithm 3.2 and Algorithm 3.3 respectively.

Algorithm 3.2 marks all the gates which are reachable from given fault f. It
starts by injecting the fault f at its corresponding line in the circuit, and adds
the gate of that faulty line to an event list. Then, it sets the faulty values of the
memory-elements in the circuit according to the faulty values propagating from the
previous time frame ¢ — 1. These values are stored in the FaultPropagationList|f]
in a descending order of the test vectors (i.e time frames). The outputs of every
memory-element that receives a propagation of the fault f is added to the event
list. Next, the event list is processed level by level starting from the minimal one.
The faulty values of the gates in the current level are evaluated based on the faulty

values of their inputs. If the faulty value of a gate g is found to be different from

67

Algorithm 3.2 MarkReachableLines(f,t)

(*Inject the fault®)
Inject the fault f at its corresponding line a
Add g (i.e., the gate of the faulty line a) to the EventList{level(g)]

(* Set the faulty values of the memory-elements according *)
(* to the faulty values stored in the FaultPropagationList{f] *)
while FaultPropagationList[f]# ¢ do
Get(Test Vector, FlipFlop, FaultyValue) from FaultPropagationList[f)
if TestVector< t then
exit while loop
else
Remove (TestVector, FlipFlop, FaultyValue)
from FaultPropagationList|f]
if TestVector =t then
Let faultyvalue(FlipFlop)— Faulty Value
for every output ¢ of FlipFlop do
Add i to the EventList[level(z)]

end for
end if
end if
end while

(*Process the event list level by level starting from the minimal one*)
for every level [of the circuit do
while EventList|l]# ¢ do
Remove gate g from EventList|l]
Fault evaluate g
if goodvalue(g) # faultyvalue(g) then
Set g as reachable
for every output i of g do
Add i to the FventList{level(i)]
end for
end if
end while
end for

68

its good value, then g is marked as reachable and all its outputs are added to the
event list. Notice that the gates are added to the event list according to their levels
in the circuit, and hence a gate will not be processed before its inputs.

Algorithm 3.3 gives the justification process of a given fault, f, at time frame ¢.
In this algorithm, the event list is processed level by level starting from the maximum
one. In each level, all the logical values of the stored gates are justified as follows. If
g is a primary input (PI), then the logical value of g is required to detect the fault
f. Therefore, the corresponding bit in the Relared TestSet is set to the logical value
of g. If g is a memory-element (DFF), then the logical value of g can not be justified
in the current time frame. Therefore, the fault f is added to the justification list of
time frame ¢t — 1 (FFJustificationListt — 1]), and the memory-element is added to
the FaultJustificationList(f]. If g is a single-input, XOR, or an XOR gate, then all
its inputs need to be justified. Hence, all the inputs of g are added to the event list
according to their levels in the circuit. If g is an AND, OR, NAND or NOR gate
with a non-controlling value, then we need to justify all the inputs of g. However, if
g has a controlling value, then we need to check if it has an unreachable input with
a controlling value. If it has, then it is sufficient to justify that input. Otherwise, we
check whether g is reachable or not. If it is not reachable, then we need to justify

only the reachable inputs of g. Otherwise, all the inputs of g need to be justified.

69

Algorithm 3.3 JustifyFault(f, t)

(* Process the event list level by level starting from the maximum one. *)
for every level, [, of the circuit do
while EventList[l]# ¢ do
Remove gate g from the EventList[l]
case g is
(1) PIL
Let RelazedTestSet|t)[g]— goodvalue(g)
(2) DFF:
Add g to the FaultJustificationList|f]
Add f to the FFJustificationList[t — 1]
(3) BUF, NOT, XOR, XNOR:
for every input, ¢, of g do
Add i to the the EventList[i]
end for
(4) AND, OR, NAND, NOR:
if g has a non-controlling value then
for every input, ¢, of g do
Add ¢ to the the EventList[t]
end for
else if there is an unreachable input, Z, of g with controlling
value then
Add i to the the EventList[i]
else if g is unreachable then
for every reachable input, i, of g do
Add ¢ to the the EventList[t]
end for
else
for every input, 7, of g do
Add ¢ to the the EventList[i]
end for
end if
end case
end while
end for

70

3.2.2 Two-Values Justification

Algorithm 3.4 shows an outline of the two-values justification technique which
is almost the same as Algorithm 3.1. The two algorithms differ slightly in the third
phase. Instead of marking reachable lines, Algorithm 3.4 computes only the faulty
values of the circuits lines under the current fault. Then, it justifies good and faulty
values that are necessary to detect the current fault. Faulty value computations and
two-values justification are described in Algorithm 3.5 and Algorithm 3.6 respec-
tively.

Algorithm 3.5 computes the faulty value of every gate in the circuit under a
given fault f. It is exactly the same as Algorithm 3.2 except that it does not mark
reachable gates.

Algorithm 3.6 gives the justification process of a fault f in time frame ¢. There are
two possible scenarios to justify the fault f. First, f is not completely justified in the
time frame t+1. In this case the justification of the fault will continue throughout the
current time frame by satisfying the required values of all memory-elements stored in
the FaultJustificationList[f]. Notice that, if the fault-free and/or the faulty values of
one or more memory-elements are required to justify a fault f during the time frame
t+1, then, the required memory-elements are added to the FaultJustificationList[f].
In the second scenario, the fault f is newly detected through primary output po.

In this case it is justified by satisfying the fault-free/faulty values of po. In either

71

Algorithm 3.4 Main Algorithm

(*Initialization phase*)

for every fault, f, in the fault list of the given circuit do
Let FaultPropagationList[f] — ¢
Let FaultJustificationList[f] — ¢

end for

for every test vector ¢t do
Let POJustificationList[t] — ¢
Let FFJustificationList{t] — ¢
for every primary input i do

Let RelazedTestSet[t][i] —:X

end for

end for

(*Fault simulation phase*)
fort —1tondo
Fault simulate the circuit under test vector ¢
for every fault, f, newly detected at primary output po do
Add (f, po) to POJustificationList[t]
end for
for every fault f propagating to flip-flop d do
Add (t + 1, d, faultyvalue(d)) to FaultPropagationList(f]
end for
end for

(*Fault justification phase*)
for t — n downto 1 do
Logic simulate the circuit under the test vector ¢
while FFJustificationList[t] # ¢ do
Remove (f, po) from FFJustificationList(t]
ComputeFaulty Values(f, t)
Justify(f, po, t)
end while
while POJustificationList[t] # ¢ do
Remove (f, po) from POJustificationList|t]
ComputeFaulty Values(f, t)
Justify(f, po, t)
end while
end for

72

Algorithm 3.5 ComputeFaultyValues(f,t)

(*Inject the fault*)
Inject the fault f at its corresponding line a
Add g (i.e., the gate of the faulty line a) to the EventList|level(g)]

(* Set the faulty values of the memory-elements according *)
(* to the faulty values stored in the FaultPropagationList[f] *)
while FaultPropagationList[f]# ¢ do
Get(TestVector, FlipFlop, FeultyValue) from FaultPropagationList(f]
if TestVector< t then
exit while loop
else
Remove (TestVector, FlipFlop, FaultyValue)
from FaultPropagationList(f]
if TestVector =t then
Let faultyvalue(FlipFlop)«— FaultyValue
for every output ¢ of FlipFlop do
Add i to the EventList[level())

end for
end if
end if
end while

(*Process the event list level by level starting from the minimal one*)
for every level ! of the circuit do
while EventList[l]# ¢ do
Remove gate g from FventList|l]
Fault evaluate g
if goodvalue(g) # faultyvalue(g) then
for every output : of g do
Add 7 to the EventList[level(7)]
end for
end if
end while
end for

73

Algorithm 3.6 JustifyFault(f,po,t)

if po=¢ then
(* f has not been completely justified in time frame ¢ + 1. In this *)
(* case, inputs of the memory-elements stored in *)
(* FaultJustificationList[f] are scheduled for justification. *)
while FaultJustificationList[f]# ¢ do
Remove (FlipFlop,Justify Value) from FaultJustificationList|f]
Let ¢ be the input of FlipFlop
Let justifyvalue(i)— Justify Value
Add i to the EventList[level(i)]
end while
else
(* f is newly detected in this time frame. In this case, the primary *)
(* output at which the fault get detected is scheduled for justification. *)
Justifyvalue(po)«—(goodvalue(po), faultyvalue(po))
Add po to the EventList[level(g)]
end if

(* Start justifying the scheduled gates. *)
(* Process the event list level by level starting from the maximum one. *)
for every level, [, of the circuit do
while EventList[l]# ¢ do
Remove gate g from the EventListl]
if justifyvalue(g)#(‘X’,X’) then
JustiyGate(g,f,t)
end if
end while
end for

74

Algorithm 3.7 JustifyGate(g, f,t)
case g is
(1) PI
GetCorresponding Value(g,¢,vy ,v2)
if v; #X’ then
Let RelazedTestSet|t][g]— v
else if v, #'X’ and ¢ is not stuck-at v, then
Let RelazedTestSet|t|[g]— v2
end if
(2) DFF:
GetCorresponding Value(g,p,v1,v2)
Add (g, (v1,v2)) to FaultJustificationList|f]
Add (f, ¢) to the FFJustificationList[t — 1]
(3) BUF|NOT:
GetCorresponding Value(g,p,v ,v2)
Let 7 be the input of g
Let justifyvalue(i)—(v),vs)
Add i to the EventList|level(i)]
(4) XOR|XNOR:
for every input, ¢, of g do
GetCorresponding Value(g,i,v,,v2)
Let justifyvalue(i)e—(v;,vs)
Add i to the EventList{level(z)]
end for

case, the required gate(s) are added to an event list. Then, the list is processed
level by level starting from the maximum one. The gates in every level are justified
according to Algorithm 3.7.

In Algorithm 3.7, the required values on a gate g (i.e., justifyvalue(g)) are satis-
fied according to the following procedure. First, the algorithm determines the cor-
responding values (v;/v2) on the input(s) of the gate g. For example, if the required

values on the output of an inverter are 0/1, then the corresponding requirements on

Algorithm 3.7 (Cont.) JustifyGate(g,f,t)

(5) AND|OR|NAND|NOR:
GetCorresponding Value(g,¢,vy,v)
if both v; and v, are controlling values of g then
Find an input, ¢, of g that satisfy v;
Find an input, j, of g that satisfy v,
if i=j then
Let justifyvalue(i)«—(vy,v2)
else
Let justifyvalue(i)—(v,,'X’)
Let justifyvalue(j)«—(‘X’,v2)
end if
Add ¢ to the EventList[level(i)]
Add j to the EventList{level(j)]
else if v, is a controlling value of g then
Find an input, 7, of g that satisfy v;
Let justifyvalue(z)«—(vy,vs)
Add i to the FuventList[level(i)]
for every input, j, of g such that j # ¢ do
Let justifyvalue(j)—(‘X’,v2)
Add j to the EventList[level(j)]
end for
else if v, is a controlling value of g then
Find an input, ¢, of g that satisfy v,
Let justifyvalue(i)—(v,,vs)
Add i to the EventList[level(:)]
for every input, j, of g such that j # i do
Let justifyvalue(j)—(v;,'X’)
Add j to the EventList[level(j)]
end for
else
for every input, i, of g do
Let justifyvalue(i)«—(vy,v;)
Add i to the EventList[level(i)]
end for
end if
end case

76

the input of this gate are 1/0. These values are determined using the procedure in
Algorithm 3.8. The next step is to justify v; /v, through the input(s) of g as follows.
If g is a primary-input (PI), then we should specify its value whenever the good
value is required (i.e not ‘X’), or when the faulty value is required and there is no
stuck-at fault on g. A requirement on a memory-element (DFF) can’t be justified in
the current time frame ¢t. Therefore, the fault f is added to the justification list of
time frame ¢t — 1, FFJustificationList[t — 1], and the DFF together with the required
values vy /v, are added to the FaultJustificationList[f]. If g is an INVERTER or
a BUFFER, then its input is required to justify vi/v;. Hence, the input of g is
added to the proper level in the event list of Algorithm 3.6. If the fault-free and/or
the faulty value of an XOR or an XNOR gate is required, then the corresponding
values (v;/v2) on every input of the gate are required as well. If g is an AND, OR,
NAND or NOR gate, then we have four different possibilities. First, both v; and
v are controlling values of g. In this case, the algorithm searches for an input that
satisfies both values and adds it to the event list. If v;/v; can’t be satisfied by a
single input, then it will be justified through two different inputs. In case only vy
is a controlling value of g, the algorithm will find an input ¢ with a fault-free value
that satisfies v;. Since v, is a non-controlling value {or an ‘X’), then all inputs of
g are required to justify this value. Therefore, input i is added to the event list to
justify the value v, /v,, while other inputs are added to the event list to justify the

value X/v,. Notice that if v, ='X’, then the justify value of all inputs, except input

77

i, is X/X. Hence, these inputs will not be processed when they are removed from
the event list in Algorithm 3.6. In the third case, only v, is controlling value of g.
This can be handled exactly as done in the previous case except that v, is justified
through one input, while v, is justified through all the inputs of g. Finally, if neither
vy nor vy is a controlling value of g, then all the inputs of g are required to justify
the value v, /v2. Hence, all inputs of g are added to the event list.

Algorithm 3.8 determines the input values corresponding to a required fault-
free/faulty value on the output of a given gate g. If g is an AND, OR, DFF or
BUFFER, then v, /v, is the same as the required fault-free/faulty value unless the
output of g is faulty. In this case, only v, is required since it is enough to satisfy the
fault-free value of g and excite the faulty value on its output line. In the same way,
the algorithm determines v, /v, for NOT, NAND and NOR gates, except that v, /v,
are the complements of the fault-free/faulty values. For XOR and XNOR gates, the
values vy /v, may differ from one input to the other depending on the good/faulty
values of that input. For input ¢ of g, v; equals to the fault-free value of ¢ unless the
required fault-free value of g is ‘X’. In this case, v; becomes ‘X’. Similarly, v, equals
to the faulty value of i unless the required faulty-value of g is ‘X’ or the output line

of g is faulty, where v, becomes ‘X’ as well.

78

Algorithm 3.8 GetCorrespondingValue(g,h,v;,v;)

case g is
(1) PL:
Let (vi,va)—justifyvalue(g)
(2) DFF|BUF|AND|OR:
Let (v1,ve)—justifyvalue(g)
if g is stuck-at v, then
Let v, «X’
end if
(3) NOT|NAND|NOR:
Let (vy,v0)—justifyvalue(g)
if v; #X’ then
Let v, — 1 -1,
end if
if g is stuck-at v, then
Let v, X’
else if v, #'X’ then
Let Vg 1- U2
end if
(4) XOR|XNOR:
if v; #X’ then
Let v; «—goodvalue(h)
end if
if g is stuck-at v, then
Let vp «‘X’
else if vy #X’ then
Let v, «—faultyvalue(h)
end if
end case

79

3.3 Selection Criteria

When justifying a controlling value through the inputs of a given gate, there could be
more than one choice. In this case, the priority is given to the input that is already
selected to justify other gates. Otherwise, cost functions are used to guide the
selection. The cost functions give a relative measure on the number of primary inputs
required to justify a given value. Hence, they can guide the relaxation procedure to
justify the required values with the smallest number of assignments on the primary
inputs.

The cost functions proposed in [29] combine the regular recursive controllability
cost functions [30] with new cost functions called fanout-based cost functions. The
regular cost functions are computed as follows. For every gate g, we compute two
cost functions C.g0(g) and C.., (g). For example, if g is an AND gate with i inputs,

then the cost functions are computed as:

Crego(9) = min Ceg0(7) (3.1)

Creal(g) = Zcreyl(i) (3.2)

These costs functions are computed for other gates in a similar manner. The
fanout-based cost functions can be computed for an AND gate as follows. Let g be

an AND gate with i inputs. Let F(g) denotes the number of fanout branches of g.

80

Then, the fanout-based cost functions are computed as:

Cram(g) = TR L) (3.3)

Cram(9) = Z—PC—,{#(’) (3.4)

The regular cost functions are accurate for fanout-free circuits. However, when
fanouts exist, regular cost functions do not take advantage of the fact that a stem
can justify several required values. This is illustrated in the following example.
Example 3.13: Consider the circuit shown in Figure 3.5. In order to justify the
assignment on G3, the two assignments G1 = 0 and G2 = 0 are required. The first
assignment, G1 = 0, can be justified by either one of the two assignments A = 0
or B = 0. Similarly, the assignment G2 = 0 can be justified by B = 0 or C = 0.
If the regular cost functions are used, then C.g0(A) = Crego(B) = Crego(C) = 1.
According to these values any one of the following four assignments is possible:
{A=0,B=0},{A=0,C =0}, {B=0,C =0}, and {B = 0}. However, the
last possibility, {B = 0}, requires only one assignment on the primary inputs, while
other possibilities require two assignments. Now, if the fanout-based cost functions
are used, then Ci.0(A) = 1, Crpo(B) = 1/2, and C,ee0(C) = 1. It is clear that
B = 0 is the proper choice to justify both G1 = 0 and G2 = 0 since its cost is less
than the costs of the other two inputs.

In general, the fanout-based cost functions provide better selection criterion than

81

A ‘ 0
Gl ‘
0 ‘ 0
B G3
0
0 G2
c ‘

Figure 3.5: Circuit of Example 3.13.

the regular fanout cost functions. However, there are some cases where the regular
fanout cost functions can perform better than the fanout-based cost functions as
shown in the following example.
Example 3.14: Consider the circuit shown in Figure 3.6. To justify the required
value on G8, we could either select G7 = 0 or G = 0 because their fanout-based
cost functions are equal (Cfano(G7) = 1 and Cfuno(G) = 1). However, if GT = 0
is selected, then two primary input assignments are required, namely B = 0 and
E = 0. On the other hand, using the regular cost functions will result in selecting
G = 0 because its cost, i.e., Crego(G) = 1, is less than that of G7 = 0 which is
Creq0(G7) = 2. Thus, in this example using the regular cost functions has led to a
better relaxation.

To take advantage of both cost functions, a weighted sum cost function of the
two cost functions was proposed in [29]. The combined cost functions are defined

as follows, where A is the weight of the regular cost function and B is the weight of

82

0

Gl
0

0 G2
C L
0
0
G8

0

G3
0

G4

O

Figure 3.6: Circuit of Example 3.14.

the fanout-based cost function:

Co(g) =A- Creyo(g) +B- CfaﬂO(g) (35)

Cl(g) =A- Cregl(g) + B - Cfaﬂl(g) (36)

In synchronous sequential circuits, the controllability values of the circuit in one
time frame depend on the controllability values computed in the current frame as
well as the values computed in the previous frames. Therefore, the controllability
values should be computed in an iterative manner starting from the first time frame.
However, the iterative computation of the controllability values may cause the regu-
lar cost function to grow much faster than the fanout-based cost function such that
the effect of the second cost function in the weighted sum becomes negligible. This

is illustrated in the following example.

83

Example 3.15: Consider the iterative model shown in Figure 3.7. The controllabil-
ity values of each gate are shown as a tuple of two values. The first value represents
the regular cost, while the second value represents the fanout-based cost. Let the
regular and fanout-based costs of all primary inputs equal to 1. Assume that the
regular and fanout-based costs of the flip-flop in the first time frame equal to 1 and
1/2 respectively. Then, in the first time frame, the regular and fanout-based costs
of G3 = 1 are 4 and 3 respectively. After 10 time frames, the regular cost of G3 = 1
becomes 3070, while the fanout-based cost becomes % = 2.

The huge difference between the two costs in the previous example is due to
the reconverging fanout branches of the flip-flop G5. Therefore, the regular cost
of a flip-flop with reconverging fanout branches should be adjusted to reduce the
difference between the two costs. This can be done as follows. Let g be a flip-flop
with n fanout branches. Assume that m out of the n fanout branches reconverge at
some gate in the circuit, then the regular cost of every one of these branches equals
to the regular cost of g divided by m. In Figure 3.7, both branches of the flip-flop G5
reconverge at the gate G3. Therefore, the regular cost of each branch is computed
as the regular cost of the flip-flop divided by 2. After adjusting the regular costs on
the fanout branches of G5, the regular cost of G3 = 1 becomes 3 in the first time
frame and 21 in the 10th time frame.

The cost functions described so far assume equal probability of a gate having

a value of 0 or 1. Computing the controllability with this assumption is less accu-

84

Time Frame 1

2,372)
1 — 1
, 172) Gl
1
G5
G2
1 1
2,32
Time Frame 2
(5, 7/4)
1 — 1
4, 3/49) Gl (10, 7/4)
1
GS
G2 (10, 7/%)
1 _J 1
(5, 7/14)
Time Frame 10
(1535, 204711024)
1 — L (3070, 2047/1024)
Gl
1 \ 1
GS —-{ G3 } g
G2
1] 1 0
(1535, 2047/1024) a

Figure 3.7: Illustration of the effect of reconverging fanouts on the regular cost.

85

Figure 3.8: Circuit of Example 3.16.

rate than computing the controllability based on the actual logical values. This is
illustrated in the following example.
Example 3.16: Consider the circuit shown in Figure 3.8. If we compute the regular
costs assuming equal probability of a line being 0 or 1, then we will get the following
costs: Cregi(Gl) = 3, Cregi(G2) = 1, Creq1(G3) = 2, and Creq1(G4) = 1. These
costs suggest to justify the assignment G4 = 1 through G2 which results in three
assignments on the primary inputs. However, if the regular costs were computed
based on the actual logical values, then we have the following costs: Cyeg(G1) = 3,
Creg1i(G2) = 3, Cre1(G3) = 2, and Creqi1(G4) = 2. In this case, G3 = 1 will
be selected to justify the assignment G4 = 1. This assignment requires only two
assignments on the primary inputs.

Based on the results of Example 3.15 and Example 3.16, we decided to use a
weighted sum cost function of the adjusted regular cost function and the fanout-
based cost function such that both cost functions are computed based on the actual

logical values.

86

3.4 Worst Case Analysis

This section gives a worst case analysis for both space and time complexities of the
proposed technique. In this analysis, we assume that the test set, fault list, and
circuit structure are given as inputs. Thus, their memory and time requirements are
not considered in the analysis.

Before giving the analysis, lets start with the following notations. The total
number of test vectors, gates, memory elements, faults for a given circuit are given
by n, G, D, and F respectively. The symbol NDF represents the number of faults
detected by the given set out of the total number of faults F. The number of
undetected faults up to time frame ¢ is denoted by UDF;. Finally, the number of

unjustified faults in a time frame i is denoted by UJF;.

3.4.1 Space Complexity

During fault simulation, the following lists are constructed: PPInputList, FaultProp-
agationList, and POJustificaitonList. The first list stores the logical values of the
memory-elements in every time frame. The second list stores faults propagating
from one time frame to the other. The third list stores the faults newly detected in
every time frame.

The memory space needed for the first list is proportional to the number of

memory-elements by the number of test vectors (nx D). The memory space required

87

by the FaultPropagationList is proportional to the number of undetected faults in
every time frame. For example, if we consider one time frame %, then the space
required is at most UDF;. Thus, the memory space needed for the whole list is
proportional to (UDF, + UDF, +---+UDF,). Since F > UDF, > UDF, > --- >
UDF,, we can say that the memory space required by the FaultPropagationList
is proportional to the number of faults (F). The memory space needed for the
POJustificationList is proportional to the number of detected faults (NDF). Since
F > NDF, we can say that the memory space required by this list is proportional
to the number of faults F.

During fault justification, the following lists are constructed. RelazedTestSet,
FFJustificationList and FaultJustificationList. The first list is used to store the
relaxed test set. The second list is used to store the faults that could not be justified
during any time frame. The third list is used to store memory elements whose values
are required by the unjustified faults.

The memory space required by the RelazedTestSet is proportional to the number
to test vectors (n). The memory space required by the FFJustificationList at any
time frame ¢ is proportional to the number of faults that could not be justified in that
time frame (UJF;). Since the number of unjustified faults in any time frame can’t
exceed the total number of faults (F'), we can say that the memory space required by
the FFJustificationList is proportional to F. Similarly, the memory space required

by the FaultJustificationList is proportional to the number of memory-elements by

88

the number of faults (D x F). This is because the number of unjustified faults

during any time frame is less than the number of faults (F’), and the number of

memory-element whose values are required by the unjustified faults is at most D.
Based on the above analysis, we observe that the memory space required by the

proposed technique is proportional to max(nD, DF).

3.4.2 Time Complexity

As can be seen from Algorithm 3.4, the proposed technique consists of three main
phases. In the first phase, the two lists FaultPropagationList and FaultJustifica-
tionList are processed for every fault, while the lists POJustificationList, FFJusti-
ficationList and RelazedTestSet are processed for every test vector. Thus, the time
complexity of this phase is proportional to the max(n, F).

In the second phase, the circuit is fault simulated for every test vector i in the test
set. The time required to fault simulate the circuit in time frame ¢ is proportional
to UDF; x G;, where UDF; is the number of undetected faults up to time frame z,
and G; is the maximum number of gates processed by the fault simulated for any
one of the undetected faults. Notice that the undetected faults at any time frame
is at most F', and the maximum number of gates is G. Thus, the time complexity
of the fault simulation phase is proportional to (n x F x G).

The justification phase consists of three main parts. For every test vector, start-

ing from the last one, the circuit is first simulated logically. Next, all faults that

89

could not be justified during the previous time frames are processed during the cur-
rent time frame. Then, all newly detected faults are justified. In logic simulation,
at most G gates are processed. Thus, the time complexity of the logic simulation at
any time frame is proportional to G.

The main operations in the second and third parts are ComputeFaulty Values
and Justify. The time complexity of each one of these operations is proportional
to the maximum number of gates processed for a given fault. Therefore, the time
complexity of these operations is also proportional to G. Notice that the number
of unjustified faults at any time frame in the second part is at most F. Similarly,
the number of newly detected faults at any time frame in the third part is bounded
by F as well. Therefore, the time complexity of the fault justification phase is
proportional to (n x F x G).

In conclusion, the time complexity of the proposed technique is proportional to
(n x F x G), where n is the number of test vectors, F' is the number of detectable

faults, and G is the number of gates in the given circuit.

Chapter 4

Experimental Results

In order to demonstrate the effectiveness of the two-values justification technique, we
have preformed some experiments on a number of the ISCAS89 benchmark circuits
shown in Table 4.1. The first column gives the name of the benchmark circuit.
Columns 2 to 4 give the number of primary inputs, number of primary outputs,
number of D flip-flops, and the total number of gates respectively.

The experiments were run on a SUN Ultra60 (UltraSparc II 450MHz) with a
RAM of 512MB. We have used test sets generated by HITEC[31]. In addition to
that, we have used the fault simulator HOPE[32] for fault simulation purposes.

This chapter is organized as follows. Next, we compare the two-values justifica-
tion technique with the bitwise-relaxation technique. Then, we investigate the effect
of the cost functions used in the two-values relaxation technique on the percentage

of X’s. After that, we examine different aspects of the two-values justification tech-

90

91

Table 4.1: Benchmark circuits.

Circuit | No. No. No. No.
Name | Inputs | Outputs | Flip-Flops | Gates
s1423 17 5 7 490
s1488 8 19 6 550
s1494 8 19 6 558
s3271 26 14 116 1035
s3330 40 73 132 815
s3384 43 26 183 1070
s4863 49 16 104 1600
sb378 35 49 179 1004

nique such as single-value verses two-values justification, computation of the cost
functions using actual and general values, and the effect of using the modified regular

cost function on the consistency of the solutions.

4.1 Comparison with Bitwise-Relaxation

In Table 4.2, we compare the two-values justification technique with the bitwise-
relaxation method. The two techniques are compared in terms of the percentage of
X’s extracted, and the CPU time taken for relaxation. It is important to point out
here that in order to have a fair comparison between our technique and the bitwise-
relaxation method, we have implemented the bitwise-relaxation method such that
all faults detected at a particular time frame remain detected in the same time frame
after relaxation. The percentage of X's are shown in Table 4.2 for both constrained
and unconstrained bitwise-relaxation respectively.

It is clear that, for all the circuits, the CPU time taken by our technique is less

92

than that of the bitwise-relaxation method by several orders of magnitude. The
bitwise-relaxation method requires enormous CPU times, and hence is impractical
for large circuits.

The percentage of X's obtained by our technique is also close to the percentage
of X’s obtained by the bitwise-relaxation method for most of the circuits. The
difference in the percentage of X's ranges between 1% and 7% (3% and 11% when
compared with the unconstrained bitwise-relaxation technique), while the average
difference is about 3% (6% when compared with the unconstrained bitwise-relaxation
technique).

It should be observed that when justifying a fault that is detected through more
than one output, the two-values justification technique will select one of these pri-
mary output to justify the detected fault without taking into consideration that some
primary outputs can lead to more relaxation than others. As an example consider
the circuit shown in Figure 4.1 under the fault e/1. This fault is detected through
the primary outputs g and h. If we justify the fault through g, then only the as-
signment ab = 11 is required. Hence, the test vector can be relaxed to abed =11XX.
However, if we choose h to justify the fault, then we need at lease three assignments
on the primary inputs (i.e., abcd =110X or abcd =11X0). The bitwise-relaxation
method, on the other hand, implicitly chooses the output for detecting a fault that
maximizes the number of X’s according to the order used. For the circuit in Fig-

ure 4.1, the bitwise-relaxation method starts by setting a =X, then it fault simulates

93

Table 4.2: Test relaxation comparison between the two-values justification (TVJ)
technique and the bitwise-relaxation method.

Percentage of X’s CPU Time (seconds)
Bitwise- TVJ] Bitwise- | Proposed
Circuit | Relaxation | Technique Diff. Relaxation | Technique
s1423 | 69.922/74.392 63.020 6.902/11.37 943 1.750
s1488 | 76.154/81.090 72.244 3.910/8.846 12553 2417
s1494 | 76.295/82.962 72.741 3.554/10.22 13146 3.100
s3271 | 83.894/85.527 81.908 1.986/3.619 87726 8.033
s3330 | 87.738/90.082 85.506 2.232/4.576 115585 5.633
s3384 | 78.579/81.655 77.755 0.824/3.900 16549 2.533
s4863 | 84.832/87.542 81.735 3.097/5.807 162894 7.800
s5378 | 87.738/88.969 86.056 1.682/2.913 218137 20.35
Avg. | 80.644/84.027 77.621 3.023/6.406

Figure 4.1: Effect of PO’s selection on test vector relaxation.

the circuit under the test vector abcd =X100. Since the fault e/1 is not detected

under this test vector, a is set back to 1. Next, it tries to relax b, and fails. Then, it

sets ¢ =X and fault simulates the circuit under the test vector abcd =11X0. Since

the fault e/1 is detected at g, c remains as ‘X’. The same thing happens when we

set d =X. Thus, the resulting test vector is abcd =11XX.

94

Table 4.3: Cost function effect on the extracted percentage of X's.

A=0 | A=0 =1 A=1 A=1 | A=1 A=1 A=1
Circuit | B=0 | B=1 =0 | B=10 { B=30 | B=50 | B=70 | B=90

s1423 | 37.882 | 50.863 | 57.059 | 62.431 | 63.686 | 63.961 | 64.093 | 63.020

s1488 | 44.448 | 72.457 | 56.624 | 66.218 | 69.968 | 71.767 | 71.571 | 72.244

s1494 | 43.515 | 72.661 | 57.410 | 66.687 | 70.502 | 71.767 | 72.098 | 72.741

s3271 | 57.361 | 78.860 | 82.060 | 82.017 | 82.033 | 81.979 | 81.892 | 81.908

s3330 | 66.548 | 85.251 | 84.805 | 85.446 | 85.407 | 85.484 | 85.506 | 85.506

s3384 |69.247 | 71.703 | 77.755 | 77.799 | 77.784 | 77.755 | 77.755 | 77.755

s4863 | 72.114 | 78.934 | 83.406 | 82.846 | 82.582 | 82.393 | 82.038 | 81.735

s5378 | 77.788 | 85.692 | 82.130 | 84.110 | 85.053 | 85.085 | 85.094 | 86.056

Avg. | 58613 | 74.553 | 72.656 | 75.944 | 77.127 | 77.459 | 77.499 | 77.621

4.2 Experiments on Cost Functions

Table 4.3 shows the effect of varying the weights of the regular and fanout-based
cost functions on the percentage of X’s. The weight A is for the adjusted regular
cost function and the weight B is for the fanout-based cost function. As can be
seen from the table, the use of cost functions results in higher percentage of X's.
Notice that the second column in the table shows the percentage of X's obtained
when no selection criteria (i.e., no cost functions) are used at all. Also, it is worth
mentioning here that neither the adjusted regular cost function nor the fanout-based
cost function consistently performs better for all the circuits. However, when both
cost functions are combined, better results are obtained. The table, also, shows
that a weight of 1 for the adjusted regular cost function and a weight of 90 for
the fanout-based cost function seems to be a good heuristic as it gives the highest

percentage of X's on average.

95

4.3 Examining Different Aspects of the Two-Values

Justification Technique

In this section, we will investigate the the following aspects. First, we will investigate
the effect of two-values justification on the percentage of X’s as compared to single-
value justification. Single-value justification will be denoted by SV J. Then, we will
show the effect of using cost functions based on actual logic values on the percentage
of X's. For this purpose, we will compare the percentage of X’s obtained by the two-
values justification technique with those obtained by a modified version that uses
general values when computing the cost functions. The modified version will be
denoted by GVCF'. Finally, we will show the effect of using the adjusted regular
cost functions on the percentage of X’s. Again we will use a modified version of
the two-values justification technique, denoted by UACF, which uses unadjusted
regular cost functions without modification.

Each one of the above versions were applied on the circuits of Table 4.1 using
the following weights of A and B respectively: {(0, 1), (1, 0), (1, 5), (1,10), ---, (1,
100)}. Among these 22 combinations of A and B, we will show only 8 snap-shots for
each version. These snap-shots represent the best results of each version in terms of
the average percentage of X's.

Table 4.4 shows the percentage of X's obtained by the SVJ. As can be seen from

the table, the highest percentage of X's on average is obtained using the weights

96

{A =1, B =95}. Table 4.5 gives a comparison between the results in this column
and those obtained by the two-values justification technique (see Table 4.2) using
the weights {A =1, B = 90}. It is clear that the percentage of X’s obtained by the
poposed technique, which uses two-values justification, is higher than the percentage
of X's obtained by single-value justification for all the 8 circuits. The difference in
terms of the percentage of X's varies between 0% and 7%, and the average difference
is about 2%.

Table 4.6 shows the percentage of X's obtained by the GVCF. By looking to
the average percentage of X’s at each column, we find that the GVCF achieves the
highest percentage of X's on average under the weights {A = 1, B = 0}. Table 4.7
compares the percentage of X's obtained by the two-values justification technique
using the weights {A = 1, B = 90} with those obtained by the GVCF using the
weights {A = 1, B = 0}. As can be seen from this table, the two-values justification
technique performs better than the GVCF for most of the circuits, especially the
first circuit where the difference in percentage of X's is more than 17%. The average
difference between the two technique is about 3%.

Table 4.8 shows the percentage of X's obtained by the UACF. Consider the
results in the second and fifth columns with the weights {4 = 0, B = 1} and
{A = 1, A = 50} respectively. These two columns give inconsistent results for
the second and third circuits, namely s1488 and s1494. Although the weights

{A =1, A =50} improve most of the results in the second column, they cause an

97

Table 4.4: Percentage of X's obtained by SVJ using different weights.

A=1 | A=1 | A=1 | A=1 | A=1 | A=1 | A=1 A=1
Circuit | B=65 { B=70 | B=75 | B=80 | B=85 | B=90 | B=95 | B=100
s1423 | 56.275 | 56.275 | 56.275 | 56.314 | 56.275 | 56.196 | 56.275 | 55.882
s1488 | 69.765 | 69.765 | 69.957 | 70.000 | 70.064 | 70.182 | 70.310 | 70.374
s1494 | 69.950 | 70.030 | 70.161 | 70.171 | 70.211 | 70.311 | 70.412 | 70.512
s3271 | 78.160 | 78.111 | 78.051 | 78.030 | 78.008 | 78.003 | 77.997 | 77.883
s3330 | 85.441 | 85.450 | 85.506 | 85.519 | 85.536 | 85.506 | 85.436 | 85.541
s3384 | 77.235 | 77.192 | 77.192 | 77.178 | 77.178 | 77.178 | 77.178 | 77.178
s4863 | 82.141 | 82.125 | 82.042 | 81.928 | 81.806 | 81.719 | 81.672 | 81.637
s5378 | 84.480 | 84.449 | 84.539 | 84.583 | 84.615 { 84.624 | 84.586 | 84.612
Avg. | 75431 | 75.425 | 75.465 | 75.465 | 75.462 | 75.465 | 75.483 | 75.452

enormous drop in the percentage of X's obtained for the circuits s1488 and s1494.

To investigate this problem, we compared the values of the regular and fanout-based

cost functions on the memory-elements of the two circuits, and we found that the

values of the fanout-based cost functions are negligible compared to those of the

regular cost functions. This indicates that the memory-elements of the two circuits

have lots of reconverging fanouts, such that the regular cost function grows much

faster the fanout-based cost function. This problem can be solved by modifying the

regular cost function to account for reconverging fanout-branches as explained in

Chapter 3. Columns 3 and 9 in Table 4.2 show how the results remain consistent

with different weights (i.e., 0 and 1) for the modified-regular cost function.

Table 4.5: Test relaxation comparison between TVJ and SVJ.

Circuit

TV]

SVJ

Diff.

s1423

63.020

56.275

6.745

s1488

72.244

70.310

1.934

s1494

72.741

70.412

2.329

s3271

81.908

77.997

3.911

s3330

85.506

85.436

0.070

s3384

77.755

77.178

0.577

s4863

81.735

81.672

0.063

s5378

86.056

84.586

1.470

Avg.

77.621

75.483

2.137

98

Table 4.6: Percentage of X’s obtained by GVCF using different weights.

A=1 [A=1 | A=1 | A=1 | A=1 | A=1 | A=1 | A=1
Circuit | B=0 | B=5 | B=10 | B=15 | B=20 | B=25 | B=30 | B=35
s1423 | 45.569 | 49.412 | 49.569 | 49.686 | 49.725 | 49.255 | 48.863 | 48.667
s1488 | 70.150 | 68.846 | 68.365 | 68.355 | 68.355 | 68.355 | 68.301 | 68.301
s1494 | 72.339 | 70.542 | 70.633 | 70.633 | 70.633 | 70.582 | 70.592 | 70.592
s3271 | 82.174 | 80.921 | 80.975 | 81.089 | 80.281 | 80.200 | 78.024 | 77.970
s3330 | 84.619 | 85.143 | 84.931 | 84.771 | 84.585 | 83.045 | 83.382 | 83.400
s3384 | 77.842 | 77.784 | 77.784 | 76.383 | 74.014 | 74.014 | 74.014 | 74.014
s4863 | 83.102 | 80.754 | 79.009 | 78.174 | 76.960 | 76.842 | 76.759 | 76.637
s5378 | 82.303 | 84.179 | 84.207 | 84.737 | 85.066 | 85.063 | 85.069 | 85.078
Avg. | 74.762 | 74.698 | 74.434 | 74.228 | 73.702 | 73.419 | 73.126 | 73.082

Table 4.7: Test relaxation comparison between TVJ and GVCF.

Circuit | TVJ | GVCF | Diff.
s1423 | 63.020 | 45.569 | 17.451
s1488 | 72.244 | 70.150 | 2.094
s1494 | 72.741 | 72.339 | 0.402
s3271 | 81.908 | 82.174 | -0.266
s3330 | 85.506 | 84.619 | 0.887
s3384 | 77.755 | 77.842 | -0.087
s4863 | 81.735 | 83.102 | -1.367
s5378 | 86.056 | 82.303 | 3.753

Avg. [77621 | 74.762 | 2.858

99

Table 4.8: Percentage of X's obtained by UACF using different weights.

A=0 | A=1 | A=1 | A=1 | A=1 | A=1 | A=1 | A=1

Circuit | B=1 | B=40 | B=45 | B=50 | B=55 | B=60 | B=65 =70
s1423 | 50.863 | 66.549 | 66.667 | 66.784 | 66.745 | 66.863 | 66.863 | 66.902
s1488 | 72.521 | 48.921 | 48.921 | 48.942 | 48.900 | 48.771 | 48.750 | 48.622
s1494 | 72.671 | 51.396 | 51.396 | 51.396 | 51.355 | 51.235 | 51.255 | 51.084
s3271 | 81.062 | 82.462 | 82.462 | 82.478 | 82.489 | 82.489 | 82.494 | 82.494
s3330 | 85.251 | 85.467 | 85.458 | 85.476 | 85.493 | 85.519 | 85.541 | 85.536
s3384 | 71.790 | 77.799 | 77.770 | 77.755 | 77.755 | 77.755 | 77.755 | 77.755
s4863 | 77.630 | 83.153 | 83.165 | 83.169 | 83.169 | 83.153 | 83.130 { 83.126
s5378 | 85.692 | 86.350 | 86.344 | 86.347 | 86.347 | 86.357 | 86.303 | 86.269
Avg. 74.685 | 72.762 | 72.773 | 72.793 | 72.782 | 72.768 | 72.761 | 72.724

Conclusion

Testing systems-on-a-chip (SOC) involves applying huge amounts of test data, which
must be stored in the tester memory and transferred during test application to the
circuit under test (CUT). Therefore, practical techniques, such as compression and
compaction, are used to reduce the amount of test data in order to reduce both
the total testing time and the memory requirements for the tester. Some of the
existing compression/compaction techniques require the test data to be partially
specified, while others can benefit from partially specified test sets either directly or
by specifying the don’t care values in these test sets in a way that improves their
efficiency.

In this thesis, we have proposed a new technique for relaxing test-patterns in
synchronous sequential circuits. The proposed technique is faster than the bitwise-
relaxation method by several order of magnitude. The percentage of X’s obtained
by our technique is also close to the percentage of X's obtained by bitwise-relaxation
for most of the circuits. The difference in the percentage of X'’s ranges between 1%
and 7%, and the average difference is about 3%. It should be observed that the

100

101

bitwise-relaxation method, as explained in Chapter 4, implicitly chooses the output
for detecting a fault that maximizes the umber of X’s according the order used.
However, our technique does not do any optimization in selecting the best output
for detecting a fault. This can be investigated in future work.

Having an efficient test relaxation technique is crucial for improving the effi-
ciency of compression and compaction. To see this, consider the compression and
compaction techniques described in Chapter 2. The need for test relaxation for
LFSR-reseeding (2, 3] is obvious since these techniques require the test vectors to be
partially specified. However, compression techniques which require fully specified
test data can benefit from relaxed test sets by specifying the don’t care values in a
way that improves their efficiency. For example, variable-to-fixed-length coding [4]
and variable-to-variable-length coding [5, 6] are known to perform better for long
runs of 0’s. Hence, assigning 0’s to the don't care values in the test set will improve
the efficiency of these techniques. Compaction techniques can also benefit from par-
tially specified test sets. For example, increasing the number of X's in a test set will
reduce the number of conflicts that may occur when we overlap two test sequences.
This is because a don’t care value, ‘X’, can be merged with any one of the values: ‘0’,
‘I’, and ‘X’. More importantly, the proposed test relaxation technique allows us to
extract self-synchronizing test sequences which start from all unspecified states (i.e.,
all memory-elements have don't care values). Since self-synchronizing test sequences

can be reordered without affecting their fault coverage, they can be used to improve

102

the efficiency of test sequence compaction by reverse-order fault simulation. The
self-synchronizing test sequences can be extracted by our technique as follows. All
memory-elements which have no effect on detected faults will not be selected during
the justification process. Thus, we can relax the values of all unselected memory-
elements. Then, any time frame with all memory-elements set to X’s is considered
as the start of a new self-synchronizing test sequence. Application of test relaxation
in achieving more effective test compression and compaction will be investigated in

future work.

Bibliography

(1] Y. Zorian, E. J. Marinissen and S. Dey. Testing Embedded-Core Based System

Chips. In Proc. International Test Conference, pages 130~143.

(2] B. Koenemann. LFSR-Coded Test Patterns for Scan Designs. In Proc. European

Test Conference, pages 237-242, 1991.

[3] S. Hellebrand, S. Tarnick, J. Rajski, and B. Courtois. Generation of Vector
Patterns Through Reseeding of Multiple-Polynomial Feedback Shift Registers.

In IEEE International Test Conference, pages 120-129, Sep. 1992.

[4] A. Jas and N. Touba. Test Vector Decompression via Cyclical Scan Chains
and Its Application to Testing Core-Based Designs. In Proc. International Test

Conference, pages 458—464, 1998.

[5] A.Chandra and K. Chakrabarty. Test Data Compression for System-On-a-Chip

using Golomb Codes. In Proc. of IEEE VLSI Test Symposium, 2000.

103

[6]

[7]

[8]

[9l

[10]

[11]

104

A. Chandra and K. Chakrabarty. Frequency-directed run-length (FDR) codes
with application to system-on-a-chip test data compression. In 19th IEEE

Proceedings on. VTS, pages 42-47, 2001.

T. Yamaguchi, M. Tilgner, M. Ishida and D. S. Ha. An Efficient Method for
Compressing Test Data. In Proc. International Test Conference, pages 79-88,

Nov. 1997.

V. Iyengar, K. Chakrabarty and B. Murray. Huffman Encoding of Test Sets
for Sequential Circuits. IEEE Trans. on Instrumentation and Measurement,

47(1):21-25, Feb. 1998.

A. El-Maleh, S. Zahir, and E. Khan. A Geometric-Primitive-Based Compression
Scheme for Testing Systems-on-a-Chip. In Proc. IEEE VLSI Test Symposium,

Apr. 2001.

[. Pomeranz and S. M. Reddy. On Generating Compact Test Sequences for
Synchronous Sequential Circuits. In Proc. EURODAC, pages 105-110, Sep.

1995.

S. Chakradhar and A. Raghunathan. Bottleneck Removal Algorithm for Dy-
namic Compaction and Test Cycle Reduction. In Proc. EURODAC, pages

98-104, Sep. 1995.

[12]

[13]

[14]

[15]

[16]

[17]

105

I. Pomeranz and S. M. Reddy. Dynamic Test Compaction for Synchronous
Sequential Circuits using Static Compaction Techniques. In Proc. 26th Fault-

Tolerant Computing Symp., pages 5361, June 1996.

E. M. Rudnick and J. H. Patel. Simulation-based Techniques for Dynamic Test
Sequence Compaction. In Proc. Intl. Conf. on Computer Aided Design, Nov.

1996.

R. Roy, T. Niermann, J. Patel, J. Abraham, and R. Saleh. Compaction of
ATPG-Generated Test Sequences for Sequential Circuits. pages 382-385, Nov.

1988.

[. Pomeranz and S. M. Reddy. On static compaction of test sequences for
synchronous sequential circuits. In Proc. Design Automation Conf., pages 215~

220, 1996.

. Pomeranz and S. M. Reddy. Vector Restoration Based Static Compaction
of Test Sequences for Synchronous Sequential Circuits. In Proc. Int. Conf. on

Computer Design, pages 360-365, Oct. 1997.

M. S. Hsiao, E. M. Rudnick, and J. H. Patel. Fast Static Compaction Al-
gorithms for Sequential Circuit Test Vectors. IEEE Trans. on Computers,

48(3):311-322, March 1999.

106

(18] A. Jas, J. G. Dastidar and N. Touba. Scan Vector Compression/Decompression

Using Statistical Coding. In Proc. [EEE VLSI Test Symposium, pages 114-120,

1999.

[19] A. El-Maleh and R. Al-Abaji. Extended Frequency-Directed Run-Length Code
with Improved Application to System-on-a-Chip Test Data Compression. In

Proc. IEEE ICECS 2002, Sep. 2002.

[20] K. Chakrabarty, B. T. Murray, J. Liu and M. Zhu. Testing Width Compression
for Built-In-Self Tesing. In Proc. IEEE International Test Conference, pages

328-337, Nov. 1997.

[21] T. Cover and J. Thomas. Elements of Information Theory. New York: John

Wiley, 1991.

[22] G. Held. Data Compression: Techniques and Applications. Chichester, U.K.:

Willey, 1991.

[23] M. Jakobssen. Huffman Coding in Bit-vector Compression. Inf. Process. Lett.,

7:304-307, Oct. 1978.

[24] 1. Pomeranz and S.M. Reddy. Procedures for Static Compaction of Test Se-
quences for Synchronous Sequential Circuits. /[EEE Transactions on Comput-

ers, 49(6), June 2000.

[25]

[26]

[27]

[28]

[29]

[30]

[31]

107

R. Guo, I. Pomeranz and S.M. Reddy. On Speeding-Up Vector Restoration

Based Static Compaction for Sequential Circuits. pages 467-471, Nov. 1998.

R. Guo, 1. Pomeranz and S.M. Reddy. Procedures for Static Compaction of

Test Sequences for Synchronous Sequential Circuits. pages 583-587, Feb. 1998.

M. S. Hsiao and S. T. Chakradhar. State Relaxation Based Subsequence Re-
moval for Fast Static Compaction in Sequential Circuits. In Proc. Design Au-

tomation and Testing Europe Conf., pages 577-582, Feb. 1998.

S. Kajihara and K. Miyase. On Identifying Don’t Care Inputs of Test Patterns

for Combinational Circuits. In Proc. IEEE ICCAD, pages 364-369, Nov. 2001.

A. El-Maleh and A. Al-Suwaiyan. An Efficient Test Relaxation Technique for

Combinational & Full-Scan Sequential Circuits. In Proc. IEEE VLSI Test Sym-

postum, 2002.

M. Abramovici, M. Breuer and A. Friedman. Digital System Testing and

Testable Design. IEEE Press, 1990.

Thomas M. Niermann and Janak H. Patel. HITEC: A test generation pack-
age for sequential circuits. In Proc. of the European Conference on Design

Automation (EDAC), pages 214-218, 1991.

108

[32] H. K. Lee and D. S. Ha. HOPE: An Effecient Parallel Fault Simulator for
Synchronous Sequential Circuits. IEEE Trans. on Computer Aided Design,

15(9):1048-1058, Sep. 1996.

