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Chapter 1

INTRODUCTION

Control is a very common concept. This term is used to refer to certain specific
human-machine interactions, as in driving an automobile, where it is necessary to
control the vehicle if one is to arrive safely at a planned destination. Such sys-
tems are called manual controls. Automatic control involves machines only, as in
room-temperature control, where a furnace is turned on and off depending on a
thermostat reading to control the temperature in winter and a similarly-controlled
air conditionér is used to control the temperature in summer. An extensive body
of knowledge common to both manual and autonﬁatic control has evolved into the
discipline of control systems design. The list of variables subject to control is vast,
being virtually limited by only one’s imagination. In mechanisms such as robots,
control has been applied to, for example, position, speed and force. In the chemical
industry, control is applied to fluid flow and liquid level, to gas flow and gas pres-
sure, to chemical concentrations and to many other variables. Within the human
body, blood pressure, blood sugar, cell carbon dioxide and eye-pupil diameter are

only a few of the many variables controlled by automatic biological control mecha-



nisms that can be studied by methods of feedback control. The manifestaions of
control are very widespread, both in nature and as a result of enginecring design
and the methods of analysis and design required of control engineers can be very
uscful indeed [1].

The best-developed aspect of mathematical systems theory treats systems de-
fined by linear operators using well established techniques based on linear algebra,
complex variable theory and the theory of linear ordinary differential equations.
Since design techniques for dynamical systems are closely related to their stability
properties and since necessary and sufficient conditions for the stability of linear
time-invariant systems have been generated over the past decades. well-known de-
sign methods have been established for such systems [2].

Most control systems encountered in practice are nonlinear. Although it may
be possible to represent systems which are perturbed over a restricted operating
range, by a linear model, in general, nonlinear processes can only be adequately
characterized by a nonlinear model. The identification and control of nonlinear
systems is an interesting area and one in which much work remains to be done. While
in the past three decades, major advances have been made in adaptive identification
and control for identifying and controlling linear time-invariant plants with unknown
parameters very few results exist in nonlinear systems theory which can be directly
applied. Design procedures that simultanequsly meet the requirements of stability,
robustﬁess and good dynamical response are currently not available in the case of
the nonlinear systems. The reasons for this are the higher degree of complexity of,
and lack of a general structure for nonlincar systems.

Artificial ncural networks (ANN) show a great promise in the realm of nonlinear



control problems. This stems from their theoretical ability to approximate any arbi-
trary nonlinear mappings. In the same way that transfer functions provide a generic
representation for linear black box models, ANN's potentially provide a generic rep-
resentation for nonlinear black box models. The great diversity of nonlinear systems
is the primary reason why no systematic and generally applicable theory for nonlin-
ear control design has yet evolved. A range of traditional methods for the analysis
and synthesis of nonlinear controllers for specific classes of nonlinear systems exist:
phase plane methods, linearization techniques and describing functions are but a
few examples [3].

Artificial neural networks are biologically inspired; that is, they are composed
of elements that perform in a manner that is analogous to the most elementary
functions of a biological neuron. These elements are then organized in a way that
may (or may not) be related to the anatomy of the brain. Despite this superficial
resemblance, artificial neural networks exhibit a surprising number of the brain’s
characteristics. For example, they learn from experience, generalize from previous
examples to new ones, and abstract essential characteristics from inputs containing
irrelevant data [4].

The neural networks also have the capability of massive parallel processing in
contrast to the sequential execution of the conventional digital computers. Neural
networks also provide, in principle, significant fault tolerance, since damage to a few
links will not impair the overall performance.

The hardware implementation of ncural networks is currently a very active re-
search area. Some manufacturers such as Intel have produced a neural net chip

which is supposed to have more cffective throughput (for the neural net calcula-



tions) than even the Cray supercomputer. Another company, Oxford Computer in
Oxford, Connecticut, has developed an intelligent memory chip that can be used for
neural network implementation.

An artificial neural network is made of single elements called neurons arranged
in layers and these elements contribute to making the network learn over a period of
time. The neurons arranged in different layers are fully interconnected with different
connections having different weights that may be either positive or negative. The
inputs to the network are fed into the ncurons constituting the first layer, also called
the input layer, which send these inputs onto the next layer. The outputs of the
neurons in each layer are sent on to the neurons in the layer succeeding it. These
are then multiplied by the values of the weights of the interconnections between the
two neurons and algebraically summed. The resultant value is then used as an input
to an “activation function” which is more often than not a nonlinear function. The
output of this activation function serves as the node’s output activation level. In this
way a neural network can be used to model nonlincar relationships with an arbitrary
accuracy. In order to learn, the neural network is subjected to training whereby a
set of inputs is presented to it and some function of the error between its output and
the desired output is then minimized, according to some minimization criterion, the
most common one being the mean square one. This is called supervised training.
In contrast, in the case c_)f unsupervised training there is no target vector for the
outputs, and hence, no comparisons to predetermined output responses are made.
Rather, the network is taught to respond in a specified way when similar patterns
are presented at the input.

In order to control nonlincar systems, one has to first identify the dynamic re-
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lationship associated with the system and then design a controller based on that
model. Also, in many cases, because of various factors such as the effects of envi-
ronment, wear, tear, age etc., the plant dynamics may change with time and the
controller has to be updated accordingly and continuously. In the control literature.
this strategy is known as adaptive control.

Given a set of inputs and desired outputs, an ANN can be “trained” to pro-
duce consistent responses. Its modifies its behavior in response to its environment.
Once trained, a network’s response can be, to a certain degree, insensitive to minor
variations in its inputs [4].

Neural Networks have been considered for controlling nonlinear plants by various
investigators. The design of both fixed as well as adaptive controllers have already
been attempted. Most of the reported results are only applicable to inverse stable
plants. All of them suffer from long training times of the neural networks. In
the present research, we investigate the design of neural net controller through a
linearization technique. This strategy allows the use of powerful design methods
available in linear control systems. The design procedure allows control of inverse
unstable plants too. The design principle is applied to both adaptive as well as fixed
controllers. The use of improved training algorithms to speed up the training time

of neural networks is also considered and demonstrated.

Organization

A survey of literature in the field of application of Neural Networks in coutrol is given
in chapter 2. A bricf review of the structure and training of Neural Networks is given

in chapter 3. The development of the three-stage design for control of nonlincar



plants is presented in chapter 4. Simulation results are presented in chapter 35,
followed by chapter 6 which includes contributions, conclusions and prospects for

future research.



Chapter 2

LITERATURE SURVEY

Interest in artificial neural networks began in the early 1940s when pioneers, such as
McCulloch, Pitts and Hebb, investigated networks based on neurons and attempted
to formulate the adaptation laws which applied to such systems. During the 1950s
and 1960s several basic architectures were developed and a background body of
knowledge was built up from many diverse disciplines: biology, psychology, physiol-
ogy, mathematics and engineering. General interest in the subject waned after the
analysis of the perceptron by Minsky and Papert highlighting the limitations of sev-
eral of the models. However, several groups did continue their research and by the
mid 1980s the work of Hopfield and of Rumelhart gave renewed impetus to the area.
Since then, the number of papers published, conferences organized and journals de-
~ voted exclusively to neural network research greatly increased and is continuing to
do sof5].

Only a few years ago the area of ncural networks in control systems was in its
infancy of development. There were many hopes for the field, and fewer accomplish-

ments. Over the past two ycars the field has been developing, but not by surprising



leaps and bounds. Rather it has been cvolving through steady progress. Certain
views and approaches have now emerged to become accepted and popular. The field
is also moving away from blind applications of large ncural networks to applications
to more specific problems [6].

Neural networks have several important characteristics which are of interest to

control engineers:

Modelling. Because of their ability to learn using data records for the par-
ticular system of interest, the major problem of developing a realistic system

model is obviated.

o Non-linear systems. The networks possess the ability to ‘learn’ non-linear
relationships with limited prior knowledge about the process structure. This

is possibly the area in which they show the greatest promise.

e Multivariable systems. Neural networks, by their very nature, have many in-

puts and many outputs and so can be readily applied to multivariable systems.

e Parallel structure. The structure of neural networks is highly parallel in nature.
This is likely to give rise to three benefits: very fast parallel processing, fault

tolerance and robustness.

The great promise held out by these unique features is the main reason for the
enormous interest which is currently being shown in this field.

An excellent survey of the importance of neural networks from a control sys-
tems perspective and also the future areas for research have heen given in [3]. The
main focus is on the promise of artificial neural networks in the realm of modelling,

identification and control of nonlinear systems.



Fukuda and Shibata [7] have given a general overview of the theory and ap-
plications of NN for Industrial Control Systems. They have emphasized different
Intelligent Control Systems like the Neuromorphic Control. A more practical ap-
proach towards the application of NN’s in Industrial Control has been given in [8].
Tracking control of industrial drive systems has been carried out using NN’s. Simu-
lation results show that it is possible to achieve real time tracking of any arbitrarily
prescribed trajectory with high degree of accuracy.

Kuperstein and Rubinstein [9] use visual information and learning to control a
robot arm so that it grasps objects in space. An adaptive neural controller is devel-
oped and it is used to control a multijoint arm to reach objects. The controller can
learn, unsupervised, to accurately grasp an elongated object arbitrarily positioned
in space.

The classical control problem of the inverted pendulum is revisited in [10]. The
novelty here is that, in addition to having no a priori knowledge of the dynamics of
the cart and the pendulum, performance feedback is assumed to be unavailable at
each step; it appears only as a positive signal when the pendulum falls or reaches
the bounds of the track. Learning methods using reinforcement and temporal dif-
ferences are used to build the necessary knowledge base and balance the pendulum
for extended time periods.

Neural Networks also hold promise in some other branches of control like, IMC
(Internal Model Control) [11] and Optimal and Predictive Control {12},[13]. In
IMC, the trained NN forward model of the system is placed in parallel with the
actual system. The difference between the system and model outputs is fed back

which is processed by the NN controller trained as the inverse of the system. The
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implementation of IMC is limited to open-loop stable systems. In the realm of
Optimal & Predictive control methods the receding horizon technique has been
introduced as a natural, computationally feasible law. It has been proven that the
method has desirable stability properties for noulincar systems [12]. The application
of NN as a potential aid in the development of a nonlinear predictive controller as well
as an inferential estimator has been discussed in [13]. They have demonstrated that
the neural estimator could provide a fast inference of a difficult-to-measure process
output, from other easily measured variables. By using the estimates provided by
the NN as feedback signals, good regulation is shown to be achieved.

Various researchers have used NN’s for identification of inverse dynamics of non-
linear systems. In [14], both generalized or direct inverse modelling as well as special-
ized inverse modelling are considered. In specialized inverse modelling, the input
to the NN is the set point, while the error between the set point and the actual
system output is propagated back through a trained forward model of the actual
system. In [15], numerous examples have been given on the use of the inverse model
for controlling systems. The inverse model is simply cascaded with the controlled
system in order that the composed system results in an identity mapping between
desired response and the control system output. Thus the network acts directly as
the controller in such a configuration.

The Hopfield network may be utilized as a dynamical controller for a linear
system [16]. Elements of variable structure control theory have been utilized to
construct the controller and, as a result, the proposed controller is characterized
by its robustness. Adaptation has been included in [17] and [18]. In this case, the

network is included in the adaptation path and is used to minimize simultaneously
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the square crror rates of all the states. Here, the output of the network represents
the parameters of a linear model of the plant.

Neural Networks are also being used to adaptively control nonlinear plants. By
learning the inverse dynamics of the system on-line, the NN is used to adaptively
control the nonlinear plant in [19]. This method is based on the weak assumption
that the states of the system are measurable. In contrast to this approach, a NN is
trained as a forward model in [20]. This NN updates the controller to generate the
desired control input. Simulation results show that it takes quite a long time for the
system to follow the set point. In [21], a new neuron structure, called the Dynamic
Neural Unit (DNU), has been proposed for adaptive control of nonlinear systems.
However this approach suffers from its extremely complex structure.

The control of nonlinear plants have been considered in [22] and [2]. In [2], NN
identification and control of nonlinear plants are discussed in detail. The dynamic
back propagation technique has been introduced for training neural networks. Var-
ious methods of utilizing multilayer and recurrent networks for identification and
control have also been given therein as well as the use of neural networks as explicit
self-tuning controllers.

In [23], fast convergence algorithms have been proposed. These are ad hoc meth-
ods in which the weights of the plant emulator as well as those of the neural con-
troller are updated more than once in each sampling period. Simulation results of
one example show faster convergence of the proposed algorithms.

An attempt has been made at utilizing neural networks as implicit self tun-
ing controllers in [24]. While this approach can also be used to control non-lincar

systems, only examples of linear systems were provided.
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Feedback-error-learning of neural networks has been introduced in [25]. [26] and
[27]. They used the neural network as an add-on component to the conventional
linear controller. Further, their approach trains the neural controller to assume the
inverse dynamics of the plant. Therefore, the strategy cannot be used with inverse
unstable plant.

In [28], ANN’s haven been utilized in process engineering environment. Neural
network models were used to provide estimates of biomass concentration in industrial
fermentation systems and of top product composition of an industrial distillation
tower. In particular, NN's were used for nonlinear predictive controller.

Recurrent neural networks have been used for direct adaptive control of nonlinear
and non-minimum phase systems based on model predictive concepts [29]. Both off-
line and on-line procedures have been developed. The strategy has been particularly
applied for the water level control of a U-tube steam generator (UTSG).

Chen and Liu [30] have used multilayer artificial neural networks for adap-
tive control of nonlinear plants assuming them to be feedback-linearizable and in
continuous-time system. The plant has been decomposed into two parts, one being
controlled by NN's while the other is unobservable and is assumed to be stable. The
control law is defined in terms of the neural network model to control the plant to
track a reference command.

In [31}, multilayer artificial neural networks have been used to construct the
nonlinear learning control law for a class of unknown SISO nonlinear control systems.
Weight training algorithm with a dead zone function has been discussed. Theorems
have been provided to prove the convergence of the weight update law and stability

of closed loop system is shown.



Chapter 3

NEURAL NETWORKS

This chapter is intended to provide a general introduction to neural networks. Some
concepts of neural networks are introduced, with a background to biological aspects,
and their attributes are described. Conventional and improved backpropagation

algorithms for training neural networks are also presented.

3.1 Introduction

Artificial neural networks are a representation that attempts to mimic (albeit in an
extremely simplistic manner) the functionality of the brain. For several decades,
scientists have been trying to emulate the real neural structure of the brain, be-
lieving that the human process of learning might be reproduced by an algorithmic
equivalent. Initially the principal motivation behind this rescarch was the desire to
achieve the sophisticated level of information processing that can be achieved by
the brain. However, it is apparent that present research aims are not dirccted at

emulating the sheer complexity of the brain. Generally, the methodology is used on

13
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a more modest scale to develop nonlinear models [13].

3.2 The Biological Neuron

A human brain contains over one hundred billion computing elements called neurons.
Exceeding the stars in our Milky Way galaxy in number, these neurons communicate
throughout the body by way of nerve fibers that make perhaps one hundred trillion
connections called synapses. This network of neurons is responsible for all of the
phenomena that we call thought, emotion and cognition, as well as for performing
myriad of sensorimotor and autonomic functions. The exact manner in which this is
accomplished is little understood, but much of the physiological structure has been
mapped, and certain functional areas are gradually yielding to continued research.
The neuron is the fundamental building block of the nervous system. It is a cell
similar to all cells in the body; however, certain critical specializations allow it to
perform all of the computational and communication functions within the brain.
As shown in Figure 3.1, the neuron consists of three sections: the cell body, the
dendrites and the axon, each with separate but complementary functions. Functionally,
the dendrites receive the signals from other cells at connection points called synapses.
From there, the signals are passed on to the cell body where they are essentially
averaged with other such signals. If the average over a short time interval is suf-
ficiently large, the cell “fires,” producing a pulse down its axon that is passed on
to succeeding cells. Despite its apparent simplicity, this computational function ac-
counts for most of the known activity of the brain. Underlying it, however, is a

complex electrochemical system.
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Figure 3.1: The biological neuron

3.3 Artificial Neuron

Artificial neural networks are made up of individual models of the biological neuron
(artificial neurons or nodes) that are connected together to form a network. The
neuron models that are used are typically much simplified versions of the actions of
a real neuron. Information is stored in the network often in the form of different
connection strengths, or weights, associated with the synapses in the artificial neuron
models.

Conventional programming techniques are significantly better than humans at
performing tasks requiring a high degree of numerical computation and repeatable
steps that can be accurately pre-specified. However, humans still far exceed the per-
formance of these methods in applications that are poorly defined, either because
the problem is extremely complex or simply that exact solution rules are not known
(e.5. speech and image recognition, plant monitoring and fault diagnosis). The
above attributes of neural networks indicate their potential in solving these prob-
lems. Hence, the considerable interest in neural networks that has occurred in recent

years is not only due to significant advances in computer processing power that has
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Figure 3.2: Artificial neural network

enabled their implementation, but also due to the diversity in their application areas.

The most commonly-used neuron model is depicted in Figure 3.2. Each neuron
input x,...,T,, is weighted by the values w,...,w,. A bias, or offset, in the node
is characterized by an additional constant input of 1 weighted by the value w,. The
output, y, is obtained by summing the weighted inputs to the neuron and passing

the result through a non-linear activation function, f(.):

NET = %wi:v,-+wo
i=1
N
and y = f(NET):f(Zw;x.'+wo) (3.1)
i=1

3.3.1 Activation Functions

Various types of nonlinear activation functions are possible. One of these may be a

simple threshold function,

y = K(NET) (3.2)
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Figure 3.3: Sigmoidal logistic function

where K is a constant threshold function, i.e.,

y = 1if NET>T

y = 0 otherwise

where T is a constant threshold value, or a function that more accurately simulates
the nonlinear transfer characteristics of the biological neuron and permits more
general network functions. If the activation block f(.) compresses the range of
NET, so that y never exceeds some low limits regardless of the value of NET, f is
called a squashing function. The squashing function is often chosen to be the logistic
function or “sigmoid” (meaning S-shaped) as shown in Figure 3.3. This function is
expressed mathematically as,

1
= ———— 3.3
y (1 4 e NET) (3.3)
Another commonly used activation function is the hyperbolic tangent. It is similar
in shape to the logistic function and is often used by biologists as a mathemati-

cal model of nerve-cell activation. Used as an artificial neural network activation

function, it is expressed by:

y = tanh(r)
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Figure 3.4: Hyperbolic tangent function

Figure 3.5: Gaussian function

1- e—NET

Like the logistic function, the hyperbolic tangent function is S shaped, but is sym-
metrical about the origin, resulting in y having the value 0 when NET is 0 (see
Figure 3.4) [4]. Another choice of the activation function can be the Gaussian func-

tion shown in Figure 3.5. Mathematically, it can be represented as,

y= ce~NET?/o?
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Figure 3.6: Various activation functions

where o is the standard deviation of the function.

Some other functions which can be used in the activation block are shown in

Figure 3.6.

3.3.2 Multilayer Feedforward Neural Networks

The neurons by themselves are not very powerful in terms of computation or rep-
resentation but their interconnections allow them to encode complex relations be-
tween variables, hence endowing them with powerful processing capabilities. The
connection of several layers gives the possibility of more complex nonlinear mapping
between the inputs and the outputs. The most popular multilayer neural network
architecture is shown in Figure 3.7. The network consists of an input layer, a number
of hidden layers (typically only one or two hidden layers are used) and an output
layer as shown in Figure 3.7. The output and hidden layers are made up of a number
of nodes as described in section 3.3. However the input layer is essentially a direct
link to the inputs of the first hidden layer and is included by convention. Tangent
hyperbolic activation functions for the nodes in the hidden and output layers are

the most common choice for control applications, although variants on this arc also



Figure 3.7: Multilayer neural network

possible. The outputs of each node in a layer are connected to the inputs of all of
the nodes in the subsequent layer. Data flows through the network in the forward

direction only, hence, making this type of network a feedforward one [3].

3.4 NN Training Using Backpropagation

The introduction of the backpropagation algorithm played a large part in the resur-
gence of interest in artificial neural networks. Backpropagation is a systematic
method for training multilayer artificial neural networks. It has a mathematical
foundation that is strong if not highly practical. Despite its limitations, backprop-
agation has dramatically expanded the range of problems to which artificial neural
networks can be applied, and it has generated many successful demonstrations of
its power.

The so-called backpropagation is a first order gradient scheme to minimize the
error between the actual and target output. Let y;. and yqu be the actual and desired

outputs of the network respectively and ey, the error, be the difference between them.
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Backpropagation gives a systematic procedure to compute the gradient J Jow

where,

1 -
J = -2-||ek||2 (3.5)

1
= §||yd,k - ull? (3.6)

The aim of the algorithm is to minimize this cost function J. The well known delta
rule for updating the weights is a first-order gradient descent algorithm moving in

the negative gradient direction. Using the delta rule we have,

a+J T .
Wha1 = Wi — N [Fu,_'l'”:'""] (3.7)

where 7, known as the “learning rate”, is a small positive quantity chosen arbitrarily
and 9% J/9w denotes the ordered derivative [32].

Using (3.6) (also see Figure 3.2),

atJ _ _0+yk
dw w "
O*y. ONET
~3NET 5 (38)

Using the hyperbolic tangent given by (3.4) as the activation function. it can be

sown that its derivative is simply given by

oty 1

aNET = o\t tuell = Yr) (3.9)
Also, from (3.1) we have,
+
FNET _ (3.10)
dw

Substituting (3.8), (3.9) and (3.10) in (3.7) we get,

1
Wt = W — N=(1 + ya)(1 — yr).1.0 (3.11)
2
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Backpropagation algorithm can be applied to networks with any number of layers,
equation (3.11) can be extended to update weights in other layers too[4]. But
no systematic way is available for the choice of the learning rate “n". With a
conservative choice of the learning rate, convergence to a local minima is guaranteed

but at the cost of a convergence time that is usually painfully long.

3.4.1 The Training Procedure

The objective of training the network is to adjust the weights so that application
of a set of inputs produces the desired set of outputs. For reasons of brevity, these
input-output sets can be referred to as vectors. Training assumes that each input
vector is paired with a target vector representing the desired output: together these
two vectors are called a training pair. Usually, a network is trained over a number
of training pairs.

Before starting the training process, all of the weights must be initialized to small
random numbers. This ensures that the network is not saturated by large values of
the weights, and prevents certain other training pathologies. For example, if all the
weights start at equal values and the desired performance requires uncqual values,
the network will not learn.

The network is trained in a supervised fashion. This means that during training,
both the network inputs and required (or target) outputs are used. A set of input and
corresponding output data to be learned by the network, is collected. The training
process consists of two steps: In the first step, an input pattern is applied to the
network and an output is generated. This output is compared to the corresponding

target output and an error is produced.
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In the second step, the error is propagated back through the network, from
output to input, and the network weights are adjusted in such a way as to minimize
a cost function, typically the sum of the squared errors.

The procedure is repeated through all the data in the training set and numerous
passes of the complete training data set are usually necessary before the cost function
is reduced to a sufficient value. Backpropagation gives a systematic procedure to
compute the gradient J/0w. This is achieved by following a two-step procedure

described below.

Step 1: (Forward Pass)

An input vector x is applied and an output vector y is produced, note that a 1
is included in x to represent the bias term. The input-target vector pair r and
Y4, comes from the training set. The calculation is performed on x to produce the
output vector y.

The weights between ncurons can be considered to be a matrix w. The NET
output vector N for a particular layer may be expressed as the inner product of z
and w. In vector notation N = 2Tw. Applying the function F to the NET vector
N, component by component, produces the output vector y. Thus, for a given layer,

the following expression describes the calculation process:
y = F(zTw) (3.12)

The output vector of one layer is the input vector for the next, so calculating the
outputs of the final layer requires the application of (3.12) to each layer, from the

network’s input to its output.



Step 2: (Reverse Pass)

Adjusting the weights of the output layer: In order to adjust the weights of the
output layer, the error between the desired and actual outputs is multiplied by the

derivative of the squashing function. If the hyperbolic tangent function is used as

the activation function, f'(z) is given by,

f@)=50= J@N 1+ f(a) = § (1= £2(x) (3.13)

In this way one gets ¢ for the kth neuron in the ith layer as shown below:

. 1
5 = S =g+ mes (3.14)
aJ
wh S
where 0 = FNETG)

This ¢ is then multiplied by the output from the preceding jth layer to obtain,

aJ

ok
0 Wy,

=55

The weight adjustment is then obtained as,

aJ

Aw,‘,'q =NgeE = 7;6(';'3;,’; (3.13)
Pq
Hence, the new value of the weight is given as,
wh (n+1) = wk (n) + Aw® (3.16)
P4 »q »q

where,
w;fq(n) = the value of a weight from neuron p in the kth hidden layer to neuron g
in the output layer at step n (before adjustment)

wl’;’q(n + 1) = value of the weight at step (n + 1) (after adjustment)
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Figure 3.8: Backpropagation of error in a multilayer neural network

5;‘ = the value of § for neuron q in the output layer k
yg; = the value of y for neuron p in the hidden layer j.
Adjusting the weights of the hidden layers: To adjust the weights of hidden layers,
the error from the output layer is propagated back to the hidden layer to obtain the
appropriate partial derivatives via the chain rule. For each neuron this value is mul-
tiplied by the weights connecting the output layer to the hidden layer. Summation

of all such quantities gives the desired §. Mathematically,

& = %(1 - )1 + ¥ ) (S8 wh) (3.17)

Now the weights in the hidden layer can be adjusted by using (3.16) and (3.17).

3.5 Choice of Learning Rates

‘Training may be classified as pattern learning or batch learning. In pattern learning,
the weights of the network are adjusted after the arrival of each pattern, whereas in
batch learning, the weights are adjusted after a complete sweep of the entire training

data. While pattern learning has the advantage of on-line implementation (hence
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applicable to adaptive control design), the batch learning has a hetter mathematical
validity in the sense that it exactly implements the gradient descent method [33].
The pattern learning can be considered as an approximation of the batch gradient
descent learning [34].

In this section, several algorithms for the computation of the learning rates which
have been used in this research are presented . These algorithms have been developed

by Ahmed ([33], [34] and [36]).

3.5.1 Pattern Learning
Noise-Free Case (Algorithm 1)

The value of the weights in w that minimizes the sum of squared error for all the
training patterns, canunot be found analytically. Instead a numerical optimization
procedure must be performed. In order to derive a simple gain sequence for the
delta rule, some approximations need to be considered. \We assume that there exists

at least one value of w = w®° such that
y(w®,a;) = yalz;)) fori=1,....q. (3.18)
where q is the total number of training patterns. This assumption is of course valid
if the network is chosen to be large enough for the problem at hand.
Now the error in each iteration can be written as
er = ya(xi) — y(wk, v;) (3.19)
We further assume that wy lies in the vicinity of w°, such that y(w°..r;) can be

approximated by a first order approximation about wy as

y(w, 2;) = ylun, &;) + LTy (3.20)



where

iﬁksw"-wk

de T dy ’
Fk = - [%‘IL':IUL] - [a_lv'|w=wk]

Now combining (3.18),(3.19) and (3.20), one gets,
ex = I (3.21)

It may be emphasized here that many practically uscful optimization algorithms
such as Newton-Raphson and Gauss-Newton stem from lower order polynomial ap-
proximations of a nonlinear function under the same assumption.

Putting (3.14) in (3.15) and using the definition of I' (3.21) and (3.16), one gets,
We1 = W + k7 g (3.22)

Subtracting both sides of the above from w° and premultiplying both sides by their

corresponding transposes, one gets
@12 = (1 - 2mia + )| (3.23)
where
0<a < Amal[WIE] €7
0 <3< AmaelTETH] £ 7
v = tr[[Wf] = tr[Tf T4 = [Tl

Amazl]s II.| and tr[] respectively denote the maximum eigenvalue, trace and the
F-norm.

Now it may be verified from (3.22) that the following expression for

me = 0<u<? (3.24)

< I=



ensures that
Nt < llaBll?

Substituting (3.23) in (3.22), one also gets
- « - -
l@enll? < [1 ~(2- u)u;] 1Tl (3.25)

Further, differentiating the right and side of (3.24) with respect to g and setting it
to zero one gets the optimum value of p as 1. However, in the initial stages when
the linearization approximation will be poor, a more conservative expression for p

should be used which is,

mr+1)=1-pl—p(r));  p(0) <1 (3.26)

where p(7) indicates the value of u at the rth iteration and y controls the rate of
transition of (7) from £(0) to 1. The argument 7 may represent a pattern-iteration
or a sweep-iteration. u, normally ranges between 0.9 and 1.

A further problem may arise when I’y approaches zero causing 4 to be a very
small number. Numerical problem may arise in the computation of #; in (3.23) due

to division by 7. To alleviate such problem, (3.23) requires a modification as

m = 0<u<2 (3.27)

(e+7)
where € is a small quantity (=0.001). Hence, the weights will be updated using,

Wea1 = Wi + ML res (3.28)

Noisy Case (Algorithm 2)

The derivation in the previous section assumed that the training data is free from

measurement noise. This led to cquation (3.19) where the crror vanishes as wy
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approaches the target value w®. In the presence of noise e(w®.t) would approach
e"(t) which generally will be different than zero.

An expression for pattern learning rate can also be derived for this case based
on first order approximation of §(wi-;,t). The steps involved consist of (a) the
derivation of a scalar batch learning algorithm, where the terms including e"(t)
are eliminated using the optimality condition and (b) the conversion of the batch
learning algorithm into a pattern learning algorithm [36]. The resulting expression
is obtained as

15 (8) = ;M (t = 1) + ||ITH()|1? (3.29)

where 7, is the pattern learning rate, I', is —de/dw and X is a forgetting factor,

typical value being 0.9~0.99. 7,(0) is chosen as a small positive quantity (= 0.1).

3.5.2 Batch Learning
Scalar Learning Rate (Algorithm 3)

An expression for the scalar learning rate in batch update can be obtained following
i . . : ke icinity of w®. error
a similar approach to the one above. Assuming that w"® is in the vicinity of w®, error

linearization in the weight space gives the following equation,
e(t) = I'7 (t) @y, (3.30)

where,
Wrt1 = Wiy — @°

In the case of batch learning, the weights are updated as,

9 fde(t)]” ¢
Wty = Wy — 7702 = w, +m Z Cy(t)e(t) (3.31)
=1

(hL‘k =1
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where ¢ is the number of patterns in a batch. Substituting (3.29) in (3.30). one gets

q i N
Wier = Wi + 7 3 LDo()Ty (1) By (3.32)

t=1
Subtracting both sides of the above from w® and premultiplying both sides by their

corresponding transposes, one gets
Bes1lI? = (1 - 2ma + njalB)||@1? (3.33)

where
0 S Amin[fll S a, /3 S ’\ma:t[H] .<.. Yo
9 q
H=Y_Tyt)I7(t) and v =tr[H] =3 [ITe(t)|? (3.34)
t=1 t=1

The proof of (3.33) can be found in appendix B.

Following the derivation of (3.26) an expression for 1, may be obtained as

M=

0<u<? (3.35)

U
(€ +)

A comparison of (3.23) and (3.33) shows that the range of a and 3 in the latter
is much wider. Since both learning rates are derived based on inequalities, the batch
learning rate is relatively conservative. Another degree of conservativeness in (3.33)
comes from the fact that v, is a conservative upper bound of A,...[H] (i.e. generally
Amaz[H] would never attain v,). It is therefore expected that the application of
(3.35) for 1, will yield relatively slower convergence. A value of ¢ higher than 1 may

be needed to obtain faster training.

Matrix Learning Rate (Algorithm 4)

It follows from the above discussion that a scalar learning rate for the batch training

will be conservative causing slow convergence. The convergence however can be
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dramatically improved if a matrix learning rate is used. Assuming the learning rate
7 to be a matrix, subtracting both sides of (3.30) from w®° and premultiplying both

sides by their corresponding transposes, one may get
Bk = [ = 20, H + moH Hn] | ||wll® (3.36)

where H is defined following (3.33). Now it can be observed from (3.34) that if H is

invertible, the following choice of the matrix learning rate
m=pH™"; 0<p<2 (3.37)

ensures that

@41 l? < Nl (3.38)

To handle cases of singular or near-singular H, heuristics may be incorporated giving

the final expression of the matrix learning rate for the batch training as
m=pel +H)™ 0<p<2 (3.39)

Following the approach of (3.25), the optimum value of g ensuring (3.36) can be
shown to be 1.

The computation of the matrix learning rate involves solution of a set of linear
equation. In a large network, the dimension of H may become very large making the
matrix inversion (or solution of the linear system) prohibitive. Thus it may not be
possible to use the above matrix learning rate in all the cases. The dimension of H
is ny X n, where n,, is the total number of weights in the nctwork. If the available
computational facilities do not allow inversion of this matrix, one possibility is to

use the scalar learning rate and accept a slower convergence as pointed out carlier.
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Nevertheless, if a matrix learning rate is computable, extremely fast and accurate
training of the network is possible as has been observed in this research.
Since these batch algorithms have been derived based on a minimization of the

squared error ([34] and [36]), they both can be used in the presence or absence of

noise, without any modifications.



Chapter 4

NEURAL NET BASED
CONTROLLER DESIGN

This chapter describes the use of neural networks for the control of nonlinear plants.

A three-stage design procedure for the control of nonlinear plants using neural net-

works is presented.

4.1 Neural Net Modelling of Dynamic Systems

In recent years a number of authors have addressed issues such as controllability,
observability, feedback stabilization and observer design for nonlinear systems. In
spite of such attempts, constructive procedures, similar to those available for linear
systems, do not exist for nonlinear systems. Hence, the choice of identification
and controller models for nonlinear plants is a formidable problem and successful
identification and control has to depend upon several strong assumptions regarding

the input-output behavior of the plant [2].

33
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The ability of neural networks to approximate large classes of nonlinear func-
tions sufficiently accurately made them prime candidates for representing dynamic
nonlinear plants.

Nonlinear plants can be described using several representations. We present
four models of discrete-time plants described by the following nonlincar difference

equations [2].

Model I:

yp(k+1) = ga;yp(k — i) + glu(k),u(k = 1), -, u(k = m +1)] (4.1)
Model II:

Yplk +1) = f [yp(k), yp(k = 1), (b —n + 1)] + m;] diu(k — ) (4.2)
Model III:

Yp(k +1) = fyp(k) yp(k = 1)+« , yp(k — n+ 1)) + g [u(k), uw(k — 1),---, u(k —m + 1)}4.3)

Model IV:
Ypo(k +1) = fyp(k), yp(k = 1),- -+, yplk — n + 1);u(k), u(k = 1),-- -, u(k —m + 1){4.4)

where [u(k), yp(k)] represents the input-output pair of the SISO plant at time k,
and m < n. The functions f : R* — R in models I and IIl and f : R™*™ — R in
models I and IV are assumed to be differentiable function of their arguments. In all
of these four models, the output of the plant at the time k + 1 depends both on its
past n values y,(k —i)(i = 0,1,---,n — 1) as well as the past m values of the input
u(k—4§)j =0,1,---,m—1). The dependence on the past output values y,(k—1)is

linear in Model I while in Model II the dependence on the past input values u(k — j)
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is assumed to be linear. In Model III, the nonlinear dependence of y,(k + 1) on
yp(k = i)(i = 0,1,-+-,n — 1) and u(k — j)(j = 0,1,---,m —1) is assumed to be
separable. It is evident that Model IV in which y,(k + 1) is a nonlinear function
of y(k — i)(6 = 0,1,---,n — 1) and u(k — j)(j = 0,1,---,m — 1) subsumes Models
I-II1. In this research, we have used Model IV as the representation of our nonlincar
plant.

In this section neural net modelling of dynamic nonlinear system is presented.
Neural net modelling of dynamic relationships is needed in various stages of the
proposed control design. Consider a dynamic nonlinear relationship described by

Model IV, i.e., (equation (4.4)

y(t) = f{a(t)} (4.3)

where y(t) is the output and ¢(t) is a (n4 x 1) vector composed of past outputs and
inputs and f(.) is a nonlinear function that represents the dynamic input-output
relationship. A feedforward neural network may be trained to approximate the
function f. Upon completion of training, the nonlinear relationship can then be
expressed by the trained neural network.

The feedforward neural network is assumed to have multiple layers including one
or more hidden layers. Units in each layer feed the units into the following layer
through a set of weights and a nonlinear differentiable activation function. Each
activation function may also have a bias term. The (n,, X 1) vector w is assumed to
contain all the concatenated weights of the network. We further denote the output

of the feedforward neural network for a given weight w and input pattern oft) as

NN{w,o(t)} (4.6)
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Figure 4.1: Identification using equation error method

The neural net modeling of a dynamic plant requires past values of input and
output data as current inputs to the neural network. Based on whether the past
outputs are taken from the actual plant or from the neural net model itself, the
modelling of the plant is known as series-parallel modelling (equation error method)
or parallel modelling (output error method) respectively. Both the configurations
are described in Figures 4.1 and 4.2. However, series-parallel model is preferred over
parallel model for identification of dynamic systems because of stability problems
associated with the parallel model. If a continuous stability check is performed with
the parallel model, it may make the algorithm stagnant. Also, parallel modelling is

found to be less flexible.

4.2 Neural Net Based Controller

Control design based on lincar plant models is well developed. A vast number of

robust, reliable, easy to compute design techniques are available. They include
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Figure 4.2: Identification using output error method

pole placement, optimal control, pole restriction and the likes. It is natural to
make use of these techniques in nonlinear plants under suitable assumptions. In
this section we propose a three-stage design technique that is primarily based upon

plant linearization at each operating point.

4.2.1 Plant Identification (Stage 1)

The objective of this stage is plant identification, which may be used to obtain
the linearized plant model at every operating point. If the plant model is already
available from which a linearized model can be computed at each operating point,
then this stage may be skipped.

For the identification experiment, it is assumed that the plant order is known
and further that the plant is cither open loop stable or stabilizable in closed loop.

Moreover, the equation error method has been used for identification. Consider the
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discrete time nonlinear plant described by

y(t) = gly(t = 1),...,y(t —n),u(t = 1),...,u(t — n)] (4.7)

where n is the known order. Defining the equation error as

e(t) = y(t) — 9(t) (4.8)
where §(t) = NN{w,y(t - 1),...,y(t — )u(t = 1),...,u(t — n)} (4.9)

a feedforward neural network may be trained to approximate the function g. The
training can be performed off line using the series parallel scheme as shown in Figure
4.1. The batch algorithm presented in section 3.5.2 can also be applied for the offline
identification.

The iterative training can be stopped either when the total training error reaches
a bottom threshold or when training error ceases to decrease any further. Usually a
neural network with one hidden layer is sufficient. However, the number of neurons
in the hidden layer should be chosen through trial and error. Starting from a small
number of neurons, the number can be gradually increased until an accepted training
error is achieved.

Once the neural network is trained, it can be used to obtain a linearized model
of the plant from the available input and output values. The linearized model is

given as

AgHy(t) = Blg ")u(t) (4.10)

where Al = l+ag+,..,+ag"

B(q_l) = blq—l'i;a---a'i'brlq—n
A )
Ayt =iy 7 T Ou(t—i)

a; =
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and ¢! is a unit delay operator. The ordered partial derivatives [37] can be com-
puted from the neural net model using one forward and a backward pass of the
backpropagation. First, y(t — i),u(t — i), ¢ = 1,...,n are forward passed. To
obtain a particular row of partial derivatives a 1 is back propagated from the out-
put terminal all the way back to the corresponding input terminal and a zero ‘s

backpropagated from all other output terminals. The implicit assumption is that

J(wo,t) = y(t).

4.2.2 Time Varying Controller Design (Stage 2)

The objective of this stage is to generate training data for the ultimate neural
controller. However, this stage may also be converted into a completely adaptive
scheme. If the nonlinear plant is known to be truly time-varying such adaptive
scheme may be preferred instead of designing a fixed neural controller. The control
scheme is shown in Figure 4.3. As shown in the figure the input and output of
the plant are fed to the feedforward neural net model, which at every time instant
provides the controller with a linearized model of the plant. The controller at every
instant of time computes a linear control law using any of the standard design
techniques and the linearized model. This results in a linear time varying controller.
In our simulation study, we considered pole placement, optimal control and pole
restriction control strategies. However, other strategies may well be used. The
proposed control scheme may be made fully adaptive by incorporating further on
line (pattern) training of the forward model by minimizing the error between y(t)
and §(t) as shown in Figure 4.4. The back propagation algorithm proposed in section

3.5.1 along with the learning rates derived can be used for this purpose.
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On the other hand, if a fixed neural controller is desired, the data i.e. y(t).u(1),
Au(t) and e(t) generated in this stage can be stored to train a neural controller. If
the control scheme of this stage can be implemented in real time and the plant is
accessible to implement the scheme, data may be collected from the real plant as

shown in Figure 4.3. However, if this is not the case, the plant in Figure 1.3 may

be substituted by its model.

Pole Placement Controller Design

In this method the pole positions of the closed loop system are stipulated beforehand.
Once the system parameters are estimated, the controller parameters are computed
so as to achieve the desired closed loop performance. The positions of the poles
are decided upon based on various factors such as for example the desired transient
performance and the system limitations.

Let the system be described by,

_ B(g™)
G = ] (4.11)

where A(q‘l) = l1+aq'+,...,+a,¢""

B(g™") = big'+,...,+b.g”"

and a;’s and b;’s are computed using the backpropagation as described in section

4.2.1.

Assume that the linear controller is given by,

p = Sl) (4.12)

where S(¢”") = so+slq’1+,...,+slq“'

R(q™")

I
s
+
-
—
-3
i
—
x
+
-
P
=
>
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From equation (4.11) and (4.12), the closed loop transfer function can be found as,

- -1

Alg™Y)R(¢™") + B(¢7)S(¢™!)

Let the polynomial describing the desired closed loop poles be,
T(g)=1+a1¢g7 +....,+a,q0""

The controller polynomials for the desired closed loop poles can be obtained by

solving the following identity
A(gHR(G +B(g")S(g") =T(g™) (4.14)

which is known as the Diophantine equation. The controller polynoniials R(g™') and
S(g™1) can be obtained from the solution of the following linear system of equations

[38]

( 1 0 ... 0 b O ... 0 \
ag 1 . f b by o ( T \ ( o) —a \
as Q) . 0 b2 b1 .0 :

1 : ¢ "-.0b Tk Qp, —a
° o " (4.15)
an : ay bn bl So Qg
0 an i 0 b,

k s ) \ Q141 )

KO... 0 a,,O...Ob,,}

If an integrator is to be used with the controller, the above system of equations is
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modified to

(1 0...0b10...0\

a 1 1)2 b1 (0'1-(11
(Tl\ \
a a - 0 by b o 0
) N Y . Qap — Oy
Tk
a, : a by, by = Q41 (4.16)
So
0 Qn 0 bn . :
Qpti+1
ey
0 ... 0 am 0 ... 0 b \ -1

\1 1 ... 1 0 0...0)
Quadratic Optimal Controller Design

In this technique, the closed loop poles of the plant are determined such that they

minimize the following performance index

Jo= ¥ [12(0) + puP(t) (417)

t=1

The solution of which is obtained by solving a closed loop pole placement problem

where the closed loop characteristic polynomial P(z) is obtained by solving [39]
pA(2)A™(z) + 27 B(2)B"(z) = pP(:)P7(z) (4.18)

where 4*(2) is the reciprocal polynomial of A(z) and p is used to penalize the control
input. The closed loop characteristic polynomial can be obtained through transfor-
mation to state space and solving a steady state Riccati cquation. An alternative
method is to find a polynomial P(z) through Spectral Fuctorization which will sat-
isfy equation (4.18) dircctly. A feedback that gives the desired closed loop poles can

then be determined by pole placement strategy using the procedure stated above.
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Solution through Riccati equation: Consider the following lincar discrete-

time plant

z(k + 1)

Ax(k) + Bu(k) (4.19)
y(k) = Cx(k) (4.20)
where z(k), u(k) and y(k) are the state, control input and measured output respec-
tively. A, B and C are the system matrices.
The objective is to find suitable values of the feedback matrices F(k) such hat
the control input given by
u(k) = - F(k)a(k) (4.21)

minimizes the loss function

i [47(6)Qua(k) + uT (k) Qau(k)] (422)

where Q; and Q, are symmetric and positive definite with, Q; = C TCand Q= p
Control design: The state feedback law [40]

u(k) = —(R+B"PB)" B PA(k) (4.23)

= —Fz(k) : (4.24)

ensures that the value of J defined above is a minimum, where P is a positive definite

symmetric solution of the algebraic Riccati equation

— _— —_ _ =1 -
P=A"PA+H"H-A"PB(R+B PB) B Pi (1.25)

where R is an arbitrary positive definite matrix and H is a matrix such that the

pair (A4, H) is observable. The desired characteristic polynomial is obtained as

Det(zI — A+ BF)



Controller Design Based on Pole Restriction Principle

In this approach, the user defines the allowable region for the closed loop poles
instead of their exact location. In the optimal control approach, the control design
specification cannot be made directly in terms of the overshoot and settling time. On
the other hand, although such specification can be adopted in pole placement control,
the input amplitude is often quite large because of stringent pole specification. Using
pole restriction, the user has the flexibility of placing the closed loop poles within a
specified disc inside the z-plane. For example, in the pole restriction principle, the

performance specifications at the output may assumed to be

e damping coefficient of at least 0.5 (which corresponds to at most 16% over-

shoot) and

e a time constant of at most 5 samples (which corresponds to a 2% settling time

of at most 20 samples).

The damping coefficient constraint confines the closed loop poles within the heart-
* shaped region shown in Figure 4.5, while the time constant confines the closed loop
poles within the dotted circle, which together require that all the closed loop poles
must lie within the hatched region. The hatched region is approximated by the
inner solid circle in the z-plane as shown in Figure 4.5 [40]. The modified design,
therefore, would be based upon overshoot and settling time requirements, but the
input amplitude will not be too large because of the less stringent requirement on
the closed loop pole locations. The design rule consists of finding the characteristic

cquation of the closed loop system by solving [40}

pA()AT () + 27 1B(")B(2") = pP(2)P(z) (4.26)
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z-planc

unit circle

Figure 4.5: Pole restriction region approximated by a circle

where 2’ = (2 — a)/B and p > 0. a and J specify the center and radius of the
specified circle that approximates the hatched region (see Figure 4.5. Equation
(4.26) can also be solved through transformation to state space aud a steady state
Riccati equation.

Solution through Riccati equation: Consider the discrete time plant defined
by equations (4.19) and (4.20). The objective here is to find suitable values of the
feedback matrix F(k) such that the control input given by equation (4.21) confines
all the closed loop poles inside a disc in the z-plane with center a and radius 3.

Control design: The state feedback law [40]

w(k) = —(8°R+B"PB)" B'P (A~ al)x(k) (4.27)

= —Fa(k) (4.28)
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ensures that all the closed loop poles of the system given by cquation (4.19) lie
inside a disc in the z-plane having the center at a and radius ;3, where P is a

positive definite symmetric solution of the algebraic Riccati equation

2 T A A A _ AT\T A

o (Azal) pld of) pry_A-al) PB(s*R+ B PE)- B P _of)
B B B 3

(4.29)

P

where R is an arbitrary positive definite matrix and H is a matrix such that the

pair (4, H) is observable. The design steps involved can be summarized as follows:

From the linearized model, get the numerator polynomial B(:z) and denomi-

nator polynomial .4(z) of the plant.

Transform the system into a state space form.

Substitute B and 4 by B/ and A — al by choosing appropriate a and 3.

Solve the Riccati equation (4.25) and transform back to the input/output

representation to get the desired closed loop polynomial.

4.2.3 Training of the Neural Controller (Stage 3)

In this stage, the data from stage 2 is used to train a specialized-structure neural
network to act as the final controller. The trained network is required to replicate
the time-varying controller of the previous stage. The inputs to this network include
the input-output of the time varying controller i.e. e(t) and Au(t). However, the
neural controller must also know the operating point in order to figure out the
appropriate control law. The information about the operating point is buried in the

plant input-output. Thercfore the neural controller must receive y(t) and u(t) as
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inputs too. The neural controller may be expressed as .

Au(t) = h{e(t),...,e(t—m)|Au(t-1),... JAu(t—m)|y(t), ..., y(t—n)u(t-1)..... u(t—n)}
(4.30)
where m is the controller order, n is the plant order and h(.) is a nonlincar function.

Once the data become available, a neural network is then used to approximate
the function h(.). However, for proper set point following, it is also needed that a
zero steady-state error e(t) in the set point produces a zero value of Au(t). Although,
this has been guaranteed in the time varying controller in stage 2 due to its linear
structure, the function h(.) may not ensure that unless some restriction is applied
to its structure.

We propose a specialized neural net structure for this purpose. This consists of
two modifications, (a) the network contains no bias terms and (b) the neurons in
the first hidden layers are replaced by special structure neurons as shown in Figure
4.6(b). A comparison of Figure 4.6(a) and 4.6(b) reveals that although zero values
of e(k)'s and Au(k)'s do not ensure a zero neuron output in the conventional neuron
structure, the same ensures a zero neuron output into the modified network. This
special neuron structure in the first hidden layer and absence of bias terms in the
neural controller ensures proper set point tracking.

The training of the neural network can be done using the batch algorithm pro-
posed in section 3.5.2 and in a similar way to the identification of the forward model
in stage 1. However, both the forward and backward passes must consider the spe-
cialized structure of Figure 4.6(b). Usually a network with one hidden layer would
be sufficient. The number of neurons in the hidden layer can be gracdually increased

until an accepted training error is achieved. After successful training of the neural
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Figure 4.7: Plant control using neural network as the controller

controller, it can be implemented to control the nonlinear plant as shown in Figure

4.7.

4.3 Neural Net Based Controller For Multi-input

Multi-output Plants

The three-stage design technique can also be applied to multi-input multi-output
(MIMO) plants. The plant identification stage (stage 1) is the same as that for
single-input single-output systems except that now the neural network model has
as many néurons in the output layer as the number of outputs of the actual plant.

However, the control of MIMO plants needs some special considerations as described

below.



4.3.1 Pole Placement Controller Design For MIMO Plants

(Stage 2)

Once the neural network is trained, it can be used to obtain a linearized model for

given input and output values. The linearized model for a MIMO plant is given as

D(g™HY () = N(gHU(t)

or  Y(t) = G(g~U(t)

where G(g—-1) DY g " )N(¢™") (4.31)

and D(q¢71) D,+ Diyg7 +,...,+Dag™"

J\r(q—l) = No + qu-]'*'a sevn +‘]\an-n

D's and N!s are now matrices obtained through linearization.

Assume that the linear controller is given by

C

N(g™")D7'(g™") (4.32)
where Dc(q—l) = Dco + Dclq-l"}', Y +Dcnq—m

Nc(q_l) = NCO + ]Vcl q—l;'-’ LA | +‘Ncmq—m

N!;s and D.;s are all matrices.

Let G, be the transfer matrix of the overall system. Then we have [41} ¢
Gylg™) = I+ G(g™")C(g'G(a™)C (™) (4.33)
Substituting equations (4.31) and (4.32) in equation (4.33),

Gilg™") = [I+D g )N(g™)Nelg™ D7 (g™ )™ %

In [41], all the equations are given in terms of continmous time systems. We have converted
them for discrete time systems.
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(S]]

D Y g )N(g " )N(g™)D (g™Y)
= D(g"")D(g7")Delg™") + N(g™ )Nl x
N(g™"YN(g7")D M g™) (4.34)

Define Dy(g7") D(g~")De(g™") + N(¢7")Ne(g™")

where D is the polynomial matrix describing the desired closed loop poles. then

Gy becomes
Gy = D¢ )D5 (¢ )Ds(g7") — D(g7")Delg™")]Delg™")
= I-D(q")D;'(¢")D(¢g™") (4.33)
The design hinges on solving the Diophantine equation given by (4.35). The con-

troller polynomial matrices D(¢~!) and N.(g~!) can be obtained from the solution

of the following linear system of equations

[Dco J\rcoEDcl -"!\rclE v Dcm -'\rcm]Sm = [Fo Fl Fl e Fm+n] (436)
where
( D, D, ... D, 0 0 0 \
N, Ny ... N, 0 0 e 0
0 1)0 ljn—l -Dn 0 0
0 N, ... Noyy N, 0O ... O )
Sm = (4.37)
0 0 1)0 ‘Dn—l ljn
\ 0 0 ‘\To -1\ n~1 \ n }

o Y
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and F)s are the coefficient matrices of the desired closed loop polynomial matrix Dy.
The control scheme is shown in Figure 4.8. Unlike the SISO plants, the intcgrator has
been placed before the controller. This is to ensure that the input to the controller

is constant only when all the errors are zero.

4.3.2 Training of the Neural Controller for MIMO Plants
(Stage 3)

In this stage, the data from stage 2 is used to train a neural network to act as
the final controller. The trained network is required to replicate the time-varying
controller of the previous stage. The inputs to this network include the input-output
of the time varying controller i.e. AE(t) and U(t). However, the ncural controller

must also know the operating point in order to figure out the appropriate control
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law. The information about the operating point is buried in the plant input-output.
Therefore the neural controller must receive Y(t) and its delayed values as inputs

too. The neural controller may be expressed as
Ut) = h{V(t),...,V(t=m=p)|U(t-1),..., Ut—m=p)|Y(t),..., Y (t=n)} (4.38)

where m is the controller order, n is the plant order, p is the number of outputs of
the plant and h(.) is a nonlinear function. Once data is available, the neural network
may be used to assume the function h(.). The training of the neural network can
be done using the batch algorithm proposed in section 3.5.2.

However, since the required neural network size is going to be very large, it is
better to do some preliminary sweeps of pattern learning until the ecrror ceases to
change. Starting from these values of the weights, batch learning can then be used.
This has a twofold advantage. First the computation time may be reduced. Secondly,
and more importantly, because the pattern learning algorithm presented in section

3.5.1 is known to be capable of bypassing any local minima [34], this preliminary
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training is likely to bring the neural weights closer to the global minima. The batch
learning of section 3.5.2 can then be used to improve on the accuracy of training
(fine tuning). The batch learning with matrix learning rate, being a second order
method, is capable of fast convergence to the nearest minima. Usually a network
with one hidden layer is sufficient. The number of neurons in the hidden layer can
be gradually increased until an accepted training error is achieved. After successful
training of the neural controller. it can be implemented to control the nounlinear

plant as shown in Figure 4.9.
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Chapter 5

SIMULATION RESULTS

The proposed design approach has been applied to various noulinear plants. The
results obtained are presented in this chapter. In order to investigate the effect of

noise on the proposed strategy, simulation results for a noisy plant are also reported.

5.1 Introduction

We have used the Model IV representation of nonlinear plants presented in section
4.1. In order to carry out the identification, we have assumed that the model order
is known and the plant is either open loop stable or stabilized in closed loop.

Both for the plant and controller representations, two layer ncural networks (i.e.
one hidden layer) have been found to be adequate.

All the simulations have been carried out using MATLAB on PC i486 (33 MHz).
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5.2 A First Order Nonlinear Plant

The plant is assumed to be described by the following equation

_ —09y(t—=1)+u(t—1)

y(t) = T+ =1) (5.1)

The model is taken from [42]. Figure 5.1 shows the open loop step response with
u(t) = 0.8. The step response of the plant is very oscillatory for low amplitude
input and shows limit cycle oscillation for u(t) > 0.7 as shown in the above figure.
A neural net with one hidden layer of three neurons has been trained to model
the plant. Batch training has been performed along with the matrix learning rate
given in section 3.5.2. The parameters €, p(0), ptr and p, in equations (3.26) and
(3.27) have been set to 0.1, 0.1, 0.9 and 1.0 respectively. The training error as a

function of the sweep iteration is displayed in Figure 3.2. The rapid convergence of
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the prediction error (pe) algorithm can be observed from this figure. The figure also
shows a comparison of the NN model output and the desired plant output. It can be
seen that it is very difficult to differentiate betwcen these two outputs. The forward
neural net model has been used to compute the linearized model. Control of the plant
based on this model and the linear time varying controller using the coufiguration
of Figure 4.3 has been implemented. Figure 5.3 shows a typical output and input
when pole placement control is used. The closed loop pole has been placed at 0.675.
The controller parameters are calculated by solving the diophantine equation [39] at
every time step. It can be observed that satisfactory control and set point tracking
are achieved. The transient response however does not reflect a first order response
with the closed loop pole at 0.675. This is to be expected as the plant is nonlinear
and the control is achieved by successive linearization.

In order to train a neural controller to replicate the time varying controller,
1000 training data have been generated. For these training data, the set point is
varied between +0.45 in a random fashion as shown in Figure 5.4. In stage 3, these
data are used to train the neural controller having no bias term and specialized
neuron structure in the first layer as shown in Figure 4.6(b). The matrix learning
rate of section 3.5.2 has been used, with €, p(0), g, and po being 0.1, 0.1, 0.9
and 1 respectively. One hidden layer with four neurons is observed to adequately
capture the controller characteristics. Since both n and m are equal to 1, the neural

controller has a structure (see equation(4.30))
Au(t) = hie(t),e(t — 1), Au(t — 1), y(t - 1), u(t — 1)} (5.2)

The training error as a function of sweep iterations is shown in Figure 3.5 along with

a plot of the desired control input (Au) and the neural net controller output. After
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successful training of the ncural controller, the latter has been uscd to control the
plant through the configuration of Figure 4.4. Figure 5.6 shows the plant output
and input. A comparison of Figures 5.3 and 5.6 shows the capability of the neural
controller in replicating the time-varying controller behavior. Figures 5.7 and 5.8
show the plots when optimal control, instead of pole placement. has been used as the
control strategy with p = 1. Figures 5.9 and 5.10 show the simulation results with
pole restriction control. Here p, a and 3 (see equation(4.33)) have been chosen as 1,
0.3 and 0.5 respectively. This corresponds to a damping coefficient (€) of at least 0.5
and a time constant () of at most 5 samples. From Figures 5.8 and 5.10, it can be
seen that with optimal and pole restriction control the outputs attain the set point
rapidly without much oscillations. This is not the case with pole placement control
as seen from Figure 5.3. The similarity in set point tracking capability between the
optimal control and pole restriction control of the plant, can also be observed from

these figures.

5.2.1 Effect of Noise

In order to investigate the effect of noise on the proposed strategy, some simulation
has also been conducted by adding noise to the plant output. Noise has also been
added to the training data for identification (stage 1), during training data genera-
tion in stage 2 and during plant control using the neural controller (stage 3). The
standard deviation of the noise has been 0.01. Batch learning rate of section 3.5.2
has been used for identification with (0), fte and 7 being 0.1, 1 and 0.9 respectively.
Figure 5.11 shows the output of the noisy plant. Other than the presence of noise,

the control performance looks satisfactory.
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Figure 5.13: The Hammerstein model

We also investigated the effect of deterministic disturbance by adding a step
disturbance of 0.1 and -0.1 to the plant output. This disturbance was added at the
40th and 140th iterations and removed at the 70th and 170th iteration respectively.
It can be seen from Figure 5.12 that the neural net controller quickly recovers the

effect of this disturbance.

5.3 A Second Order Hammerstein Model

A second-order Hammerstein Model shown in Figure 5.13 is considered. The non-
linearity represents a typical dead zone. The training of the forward model for this
plant has been done using one hidden layer with seven neurons. The three control
design methods, namely pole placement, optimal control and pole restriction, have
been simulated using the time-varying controller. All the neural controllers have
been trained using 2000 data points and a set point varying randomly between +6
in a similar way as in section 5.1. The control of the plant by the time varying
linear controller and neural controller based on pole plapement principle is shown
in Figures 5.14 and 5.15 respectively. The closed loop poles have been specified as
0.6290 £ ;0.2316. This corresponds to a damping of 0.75 and time constant of

2.5 samples. The satisfactory control and set point tracking can be observed from
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these figures. The control of the plant using the optimal control principle was
found to be unsatisfactory as shown in Figure 5.16 when p was chosen as 1. The
primary reason for this has been bad location of the closed loop poles as specified
by the optimal control law. With p=1 and the plant output level being around
6, the pole locations were -0.4077 and 0.3129. Although such pole location could
be satisfactory for a certain linearized model, due to estimation error and/or drift
in the operating point it may not be suitable for the plant. In order to overcome
this problem, we applied pole restriction control, where the closed loop poles are
restricted to lie within a region specified by a circle with p, @ and /3 being 1, 0.3 and
0.5 respectively. This corresponds to ¢ (at least) = 0.5 and 7 (at most) = 3 samples.
The training data used for the neural net controller are shown in Figure 5.17. A
comparison of Figures 5.16 and 5.18 shows that pole restriction principle can over-
come the problems associated with optimal control. A comparison of Figures 5.15
and 5.18 also shows the superior performance of the pole restriction principle. It
can be shown that the former scheme has superior robustness properties compared
to the latter one [40]. When the plant is adaptively controlled using the strategy
of Figure 4.4 and the pole restriction principle, the output and input have been as
shown in Figure 5.19. A comparison of Figure 5.18 and Figure 5.19 shows slightly

better performance of adaptive control strategy.

5.4 A Second Order Weiner Model

A second order Weiner Model shown in Figure 5.20 is considered. The training of
the forward model for this plant has been done using one hidden layer with seven

neurons. Plant control using the linearized model and the time varying controller
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based on pole placement and pole restriction have been implemented. The neural
controllers have been trained using 2000 data points where the set point was ran-
domly varied between £6. The control of the plant by time varying lincar controller
and the neural controller based on pole placement principle is shown in Figures 5.21
and 5.22. The closed loop poles have been specified as 0.6290 £ ;0.2316. This
corresponds to a damping ratio of 0.75 and a time constant of 2.5 samples. The
satisfactory control and set point tracking performance of this scheme can be ob-
served from these figures. Figures 5.23 and 5.24 show the output and input of the
plant when the pole restriction principle was used. The parameters p, a and J (see

equation (4.33)) for this case have been 1, 0.3 and 0.5 respectively.

5.5 A 2-input 2-output Plant

The plant is assumed to be described by the following equations

k) = nlk-1)-007y3(k —1) = 0.07[pa(k = 1)+ 1] ya(k - 1) +

1.05us(k — 1) — 0.7ya(k — 1) — 0.33252(k - 1)
1+0.1y(k —1)

wk) = pkk-1)+ (3.3)

The model is originally taken from [43] in continuous time and is discretized using

a sampling time of 0.7. Since for the identification stage, it is required that the
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plant be open loop stable and the continuous-time plant is originally unstable, a
parameter has been modified to stabilize the plant. Figures 5.25 and 3.26 show the
open loop response of the system for unit step input. The response when input 1 is
a unit step and input 2 is zero is very oscillatory and shows limit cycles. A neural
net consisting of one hidden layer with 7 neurons was trained to model the plant.
Batch training was performed along with the matrix learning rate given in section
3.5.2. The learning parameters €, 1£(0), g, and o in equation (3.26) were given the
values 0.1, 0.1, 0.9 and 1.0 respectively.

The forward neural net model was used to compute the lincarized model. Control
of the plant based on this model and the linear time varying controller as shown
in Figure 4.3 were implemented. Figures 5.27 and 5.28 show typical outputs and

inputs when pole placement control is used. The closed loop poles were placed at
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Figure 5.26: Response of the MIMO plant for input 2 as the unit step

0.7,0.36 and 0. The controller parameters are calculated by solviug the diophantine
equation [39] at every time step. It can be observed from figures 5.27 and 5.28 that
both satisfactory control and set point tracking are achieved.

In order to train a neural controller to replicate the time varying controller
6400 training data were generated. For this training data. the set point was varied
between +1.1 in a random fashion. In stage 3, this data is used to train the neural
controller. One hidden layer with 10 neurons was used to replicate the linear time
varying controller. Due to the large size of the neural network, the training time
is expected to be quite high. In order to reduce the training timme and avoid local
minima, few preliminary sweeps of pattern learning were done before using the
matrix learning rate of section 3.5.2 with €, p(0), g, and p,, being 0.1, 0.1, 0.9 and

1 respectively. But still, it took more than 72 hours of 1486 PC time, for the neural
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network to adequately capture the controller characteristics. Figure 5.29 shows the
average sum squared error while Figure 5.30 shows the desired control inputs aud
neural net outputs after successful training. After successful training of the neural
controller, the latter was used to control the plant through the configuration of
Figure 4.9. Figures 5.31 and 5.32 show the plant outputs and inputs. A comparison
of Figures 5.27, 5.31 and 5.28, 5.32 shows the capability of the ncural controller in

replicating the time varying controller behavior.
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1)
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Chapter 6

CONTRIBUTIONS,
CONCLUSIONS AND
RECOMMENDATIONS

In this work, we have concentrated upon the methods of utilizing neural networks to
control nonlinear plants. The design principle is based upon successive linearization.
Both adaptive control and fixed control have been considered. The strategy also
works well for noisy planté. The control performance of SISO as well as MIMO
plants using three control schemes, pole placement, quadratic optimal control and
pole restriction were found to be satisfactory. The contributions, conclusions and

recommendations for future works are described below.

a3
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6.1 Contributions

[

. Linearization of nonlinear plant utilizing neural net model and an improved

backpropagation algorithm was proposed.

Nonlinear controller design method using the neural network and employing

the plant linearization strategy was proposed and studied.

. Use of pole-placement, pole restriction and quadratic optimal control strategies

in the design of time varying linear controller were studied. Both adaptive and

fixed control strategies were developed.

. A specialized neural net structure was proposed and implemented to act as

the controller in order to replace the linear time varying controller.

. A new scheme was proposed for the training of large neural networks, that

avoids local minima and as well provide small learning error by applying two

different kinds of learning rate.

Simulation studies were carried out to establish the feasibility of the proposed
approaches. The plants considered were both of the SISO and MIMO types.

Further, both deterministic as well as noisy plants were considered.

6.2 Conclusions

Based on our limited simulation study, the following may be concluded.

1.

Neural networks can be effectively used to obtain linearization of nonlinear

plants.
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2. Techniques from linear systems theory can be effectively utilized to control the

nonlinear plants.

3. Nonlinear plant of unknown structure can be effectively described by a dy-
namic neural network. Further, a state dependent time-varying controller can

be represented arbitrarily well by Neural Networks.

4. In the proposed control strategy, pole-placement and pole restriction principles

provided better control compared to optimal control design.

5. The proposed strategy is applicable to SISO as well as MIMO nonlinear plants,

and deterministic as well as noisy plants.

6.3 Recommendations

1. Other control strategies in linear control theory such Ho, IMC and predictive
control can also be accommodated in the proposed strategy. They will however

significantly increase the computational requirement.

2. Instead of designing the controller through linearization, the neural controller
can be directly trained to optimize some desired performance criterion. Such

approach may provide faster and less oscillatory system response.

3. A few neural net chips are becoming available in the market. The proposed
algorithms can be applied for controlling real-time nonlinear plants employing

the neural net chips.

4. The time-varying linearization approach proposed here can also be extended

to other fields for example, nonlinear signal processing.



Appendix A

In this appendix expressions for the scalar pattern (on-line) learning rates for the
noisy case are derived. When these expressions are used in conjunction with the back
propagation algorithm given by (3.28), the training algorithm becomes considerably
simpler compared to the RPE algorithm.
Consider minimization of a modified criterion function
t t

J(w,t) = Z} X?le(w, s)? = SZ_:I A=*|ly(s) = §(s)II? (A.1)
where g(t) is the predicted neural network output. A (< 1) is known as a forgetting
factor the purpose of which is to gradually discount the effect of past data. The
batch updating algorithm developed in the last section with this modified criterion

function becomes (see (3.31), (3.33) and (3.35))

w(t) = w(0)+ n(t)F(t) (A.2)
t ¢
where  F(t) = )_ AN'™°Ty(s)es(s) , 7;;’(1) =y AIT(s))12 (A.3)
s=] s=1

" T
Ty(s) = [((ili—((so))] and ey(s) = y(s) — g(w(0),s) (Ad)

The argument t in w indicates the use of data for s = 1,...,¢. jt is set to 1 as it’s

96
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effect can be absorbed in the choice of \. It can also be verified that

F(t) - AF(t — 1) + Ty(t)ey(t) (A.5)
and 77t = Anpl(t—1) +|Ty(0)|? (A.6)
Using (A.2), (A.5) and (A.6), subtracting w(t — 1) from w(t) one gets
w(t) = w(t ~ 1)+ {7, (¢t - Du(t)es(t) = ITLOIPF(E = 1)} mp(t)mp(t = 1) (A7)
Now define (and also compare with (A.3) and (A.4))
T,(t) = [%JT and e,(t) = y(t) — §(w(t —1),1) (A.8)

and use a first order approximation to 3(t) in order to obtain

Ly(t) = Tp(t) (A.9)
and  ey(t) = ep(t) — [ (t)[w(0) — w(t - 1)] (A.10)
= e(t) + m(t — IT()F(t — 1) (A.11)

The last expression follows from (A.2). Using (A.9) and (A.10) in (A.7) one gets

w(t) = w(t — 1)+ n,(t)Cp(t)ep(t) — [[T(1)T,(8)] — Tt T3 ()] ma(t)mp(t = 1)F(t ~ 1)

(A.12)
The last term in the right hand side makes the algorithm computationally some what
unattractive. Since the bracketed term is at least positive semidefinite, dropping
this term is equivalent to put less weight on the current data, which may well
be compensated through proper choice of the weighting factor A. Our simulation
experiment confirmed this conjecture [36). Thus ignoring the last term in (A.12),

and using (A.6) and (A.9) one gets the pattern learning algorithm as

w(t) = w(t—1)+n,(t),(t)e,(t) (A.13)

Il

and ;! At = 1) + |0, ()]
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mp(0) can be taken as a small positive quantity (= 0.1). Suitable value of A lics

between 0.9 and 0.99. a



Appendix B

This appendix contains the following lemma which has been used in deriving (3.33).
Lemma: Let x be an arbitrary vector and .4 be a real symmetric positive definite

matrix of compatible dimension such that

T
0 < ’\min < z -41' S Ama:r fOT T 75 0 (Bl)
- = 1Tz
zT A%¢
, . < Aaz B.2
then Amin < TAp = (B.2)

Proof: Since A is symmetric and real it can be written in terms of its diagonal

form as

A=CTAC (B.3)
where A is a diagonal matrix with all cigenvalues of A as diagonal elements and C
is a real orthogonal matrix. Thus

aTA%r  aTCTA’Cz _ y"A% _ T AW
TAz ~ zTCTACz ~ yTAy T Ay?

(B.4)

where s are the eigenvalues of A which are real and positive. Now (B.2) dircctly

follows from (B.4). O
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