INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with smali overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6 x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Nifet sl Je ot e el e el el St Fed el ofel Sl e el ol el el ettt

Selel el e el el ol el ol e ol e ool ol el ol el ot el el el el el e 9 el e el e el el febel 7

}
I\

¥l

X

QoS-DRIVEN MULTICAST ROUTING
ALGORITHMS

BY
MUHAMMAD ATIF TAHIR

A Thesis Presented to the
DEANSHIP OF GRADUATE STUDIES

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

COMPUTER ENGINEERING

JULY 2001

SV

:’zﬁgﬁﬁfﬁﬁ%TWFPWW@W@%WWWWNWW@WH%T@*WTWH%

%

UMI Number: 1406102

®

UMI

UMI Microform 1406102

Copyright 2001 by Beil & Howell Information and Learning Company.

All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, Ml 48106-1346

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

DHAHRAN 31261, SAUDI ARABIA

DEANSHIP OF GRADUATE STUDIES

This thesis, written by

MUHAMMAD ATIF TAHIR
under the direction of his thesis advisor and approved by his thesis committee,
has been presented to and accepted by the Dean of Graduate Studies, in partial
fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER ENGINEERING

Thesis Committee

. Abdulaziz S. Almulhem (Co — chairman)

Dr. Sadiq M. Sait (Member)

(Fp

Department Chairman

Dean of Graduate Studies

‘f""f/'lp//
Date

Heartily dedicated to my family and especially to
my dear mother and father

whose prayers, love, and guidance

led to this accomplishment.

11l

Acknowledgements

This thesis would have never been completed without the will and blessing of
Allah, the most gracious, the most merciful. AL HAMDU LELLAH..

I acknowledge the support and facilities provided by King Fahd University of
Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia.

I would like to express my profound gratitude and appreciation to my thesis
committee chairman Dr. Habib Youssef and co-chairman Dr. AbdulAziz AlMulhem.
for their guidance, patience, and sincere advice throughout this thesis. Thanks are
also due to my thesis committee member, Dr. Sadiq M. Sait for his comments and
critical review of the thesis.

All my family members, especially my parents and grandfather, were constant
source of motivation and support. Their love and care carried me through some
difficult moments in my life. Their prayers, guidance and inspiration lead to this
accomplishment. I am also very thankful to both of my sisters, Aunt, and my only
loving brother for their kind support.

Last, but not least, I would like to thank my childhood friends from Karachi,
Pakistan. I would also like to thank the friends I made in KFUPM, Dhahran.
especially Salman, Junaid, Mahmood, Ahmer, Raslan, Shazli, AbdulAziz. Wasif,
Moin, Fareed, Asif, Sajid, Saad, Aamir, Ajmal, and Wasiq who provided a wonderful
company. Thanks are also due to Yassir for helping me in the Arabic abstract of
this thesis.

iv

Contents

Acknowledgements

List of Figures
Abstract (English)
Abstract (Arabic)

1 Introduction

1.1 Point-to-Point Unicast and Multicast Data Flow

1.2 TP Multicast Applications and Development
1.3 Multicast Routing

1.4 Research Objectives.

2 Problem Formulation

2.1 Definitions

iv

X1

xvii

xviii

2.2 Minimum Steiner Tree (MST) Problem 14
2.3 Delay Constrained Minimum Steiner Tree (CMST) Problem 14
2.4 Multiobjective Steiner Tree Optimization (MOST) Problem 15
2.5 Multiobjective Steiner Tree Optimization with Dynamic Membership
(DMOST) Problem 16
26 Conclusion 16
Literature Survey 17
3.1 Minimum Steiner Tree Algorithms 17
3.2 Delay Constrained Minimum Steiner Tree Algorithms 18
3.3 Dynamic Steiner Tree Algorithms 31
34 Conclusion 33
Tabu Search Based Multicast Tree Design 34
41 TabuSearch 35
4.1.1 Overviewof Tabu Search 36
4.2 Delay Constrained Minimum Steiner Tree (CMST) Design 38
4.2.1 Imitial Solution 38
4.2.2 Neighborhood Solutions 40
423 TabuMoves 42
4.2.4 Aspiration Criterion 43
4.2.5 TerminationRule, 43

4.3 Unconstrained Minimum Steiner Tree (MST) Design

4.4 Multiobjective Steiner Tree Optimization (MOST) Design

44.1

442

443

444

4.4.5

Membership Function for Cost

Membership Function for End-to-End Delay

Membership Function for Number of Steiner nodes

4.5 Time Complexity Analysis of Tabu Search . .

46 Conclusion

Experiments and Simulation Results

5.1

5.2

5.3

The Experimental Setup

Simulation Results for Unconstrained Multicast Tree Design Problem

5.2.1

5.2.2

Comparison of Tabu Search and KMB

Comparison of Tabu Search and RPM

Simulation Results for Delay Constrained Multicast Tree Design Prob-

Comparison of Tabu Search and CAO .

Comparison of Tabu Search and BSMA

9.3.5 Quality of Solution by Tabu Search 83
5.4 Simulation Results for Multiobjective Minimum Steiner Tree Problem 85
5.4.1 Comparison of KPPand Tabu 85
5.4.2 Comparison of CAOand Tabu. 87
5.4.3 Comparison of BSMA and Tabu 87
5.4.4 Quality of Solution by Tabu Search 89
5.5 Conclusion 04
Dynamic Multicast Routing 95
6.1 Proposed Approach 96
6.1.1 NodesLeaving_...... 96
6.1.2 NodesJoining 97
6.2 Experiment Setup and Simulation Results 98
6.3 Conclusion. 102
Conclusions and Future Work 103
71 Summary 103
72 Conclusions 105
73 Future Work 106
Bibliography 107

viii

List of Tables

5.1

5.3

5.4

Comparison of Tabu and KPP. N= Network size, D=Maximum end to
end delay in msec, C=Cost in Mbps, V=Delay variance in usec, and S =
Number of Steiner nodes. Groupsize =10.
Comparison of Tabu and KPP. G= Group size, D=Maximum end to end
delay in msec, C=Cost in Mbps, V=Delay variance in usec, and S =
Number of Steiner nodes. Network size =50.
Comparison of Tabu and CAQO. N= Network size, D=Maximum end to
end delay in msec, C=Cost in Mbps, V=Delay variance in usec, and S =
Number of Steiner nodes. Groupsize =10.
Comparison of Tabu and CAO. G= Group size, D=Maximum end to end
delay in msec, C=Cost in Mbps, V=Delay variance in usec, and S =
Number of Steiner nodes. Network size =50.
Comparison of tabu and BSMA. N= Network Size, D=Maximum end to

end delay in msec, C=Cost in Mbps, V=Delay variance in usec, and S =

Number of Steiner nodes. Group size =10.

ix

5.6 Comparison of Tabu and BSMA. G= Group size, D=Maximum end to
end delay in msec, C=Cost in Mbps, V=Delay variance in usec, and S =

Number of Steiner nodes. Network size = 50.

6.1 Comparison of Dynamic Greedy and KPP. E= Event, J=Join, L=Leave.
D=Maximum end to end delay in msec, C=Cost in Mbps, V =Delay vari-

ance in psec, and S = Number of Steiner nodes. Initial group size =

List of Figures

1.1

1.2

1.3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

4.1

4.2

The graph ofexample 1. -
The closure graph on D = {bd,c,f} with U=5and s=a.
(a)-(d) The four stages in constructing the spanning tree using fep. .
(a)-(d) The four stages in constructing the spanning tree using fc. . .
The constrained spanning tree using CSTep. - . . - o o o o o o o o .
The optimal constrained Steiner tree: cost = 20 with U =5.
Minimum delay Steiner tree: cost = 32 with delay U =5..
Example of Path replacement: path ab in Figure 3.7 is replaced by

path bc. Cost =24 withdelayU=5.

Algorithmic description of a short-term Tabu Search (TS) [1].

Anexamplenetwork. L.

4.3

4.4

4.6

4.7

4.8

4.13

4.14

5.1

5.2

5.3

5.4

5.5

5.6

p \
-3

Sink tree for source A, cost =22 with U =5.
Sink trees for destinations D={B,C,D,F}..
‘Two possible neighbors from current solution.
Final solutions from current solution.
Membership function fora fuzzy set A.
Basic components for a good topology.
Membership function forcost.
Membership function for end-to-end delay.
Membership function for Sielnernodes.
Membership function for delay variance.
Minimum delay tree. L.

Minimum cost tree.

A randomly generated network, 20 nodes, average degree 4.
Symmetric load. Cost comparison of KMB and Tabu. Group size =10. . .
Symmetric load. Cost comparison of KMB and Tabu. Network size =80. .
Asymmetric load. Cost comparison of KMB and Tabu. Group size =10.
Asymmetric load. Cost comparison of KMB and Tabu. Network size =100.
Number of multicast session versus cost between KMB and Tabu. Network
Size =20, Group size=5. e

Symmetric load. Cost comparison of RPM and Tabu. Group size =10.

5.8

5.9

5.10

5.14

5.15

5.16

5.18

5.19

Symmetric load. Cost comparison of RPM and Tabu. Network size =80.
Asymmetric load. Cost comparison of RPM and Tabu. Group size =10.
Asymmetric load. Cost comparison of RPM and Tabu. Network size=100.
Number of multicast session versus cost between RPM and Tabu. Network
size =20, Group size=5.
Symmetric load. Cost comparison of SC, MSC and Tabu. Group size =10
and U=0.05Sec.
Asymmetric load. Cost comparison of SC, MSC and Tabu. Group size
=10and U=0.04Sec.
Asymmetric load. Cost comparison of SC, MSC and Tabu. Group size
=10, Network size=100nodes.
Asymmetric load. Cost comparison of MSC and Tabu. U = 0.05 sec,
Network size=100 nodes.
Number of multicast session versus cost between SC, MSC, and Tabu.
Network size =20, Group size=5..
Symmetric load. Cost comparison of KPP2, KPP1 and Tabu. Group size
=10and U=0.05Sec..
Asymmetric load. Cost comparison of KPP2, KPP1 and Tabu. Group
size =10 and U=0.04Sec.
Asymmetric load. Cost comparison of KPP2, KPP1 and Tabu. Group

size =10, Network size=100nodes.

68

68

69

71

74

5.20 Asymmetric load. Cost comparison of KPP2, KPP1 and Tabu. U = 0.05
sec, Network size=100mnodes. _
9.21 Number of multicast session versus cost between KPP1 and Tabu. Network
size =20, Group size=5.
5.22 Number of multicast session versus cost between KPP2 and Tabu. Network
size =20, Group size=5.
5.23 Symmetric load. Cost comparison of CAO and Tabu. Group size =10 and
U=0.058ec. e
5.24 Asymmetric load. Cost comparison of CAG and Tabu. Group size =10
and U=0.04Sec.

5.25 Cost comparison of CAO and Tabu. Group size =10, Network size=100

5.26 Cost comparison of CAO and Tabu. U = 0.05 Sec, Network size=100 nodes. 7

5.27 Number of Multicast Session versus cost between CAO and Tabu. Network
size =20, Group size=5.

5.28 Symmetric load. Cost comparison of BSMA and Tabu. Group size =10
and U=0.05Sec. o i i i

5.29 Asymmetric load. Cost comparison of BSMA and Tabu. Group size =10

and U=0.04 Sec. e e e e,

(X9

76

5.31

5.32

w
o
(S0}

5.36

Cost comparison of BSMA and Tabu. U = 0.05 Sec, Network size=100

Number of multicast session versus cost between BSMA and Tabu. Net-
work size =20, Group size=5.
Total number of solutions evaluated by tabu search during 500 iterations
for different cost ranges. Network size = 100 nodes, Group size = 10 and
U=0.058ec.
Total number of solutions evaluated by tabu search versus iteration number
for different cost ranges. Network size == 100 nodes, Group size = 10 and
U=0.05Sec. e e e e
Cost of best solution found by tabu search versus iteration number for 3
networks. Group size = 10 and U=0.05Sec
Four different objective functions versus iterations. Network size = 30
Nodes. Groupsize =20.
Four different objective functions versus iterations. Network size = 100
Nodes. Groupsize =10.
Total number of solutions evaluated by tabu search during 1000 iterations

for different membership ranges. Network size = 100 nodes, Group size =

Xv

5.39 Total number of solutions evaluated by tabu search as a function of time
(Iteration number) for different membership intervals. Network size = 100

nodes and Groupsize =10. 93

6.1 Network size = 30 nodes, Initial group size =10. (a) Cost versus
Event number between KPP and Greedy. (b) Delay variance versus
Event number between KPP and Greedy. (c) Steiner nodes versus

Event number between KPP and Greedy. 100

xvi

THESIS ABSTRACT

Name: Muhammad Atif Tahir
Title: QoS-Driven Multicast Routing Algorithms
Major Field: COMPUTER ENGINEERING

Date of Degree: July 2001

The research and industrial communities have recently been striving to make the
Internet capable of supporting unicast and multicast traffic sources with Quality of
Service (QoS) guarantees. QoS parameters targeted are guaranteed throughput, end-
to-end delay, and delay variation. A multicast tree for a given multicast source is a
tree rooted at the source and all its leaves being members in the multicast group. Tree
cost is measured by the utilization of tree links. Also tree cost is highly correlated with
the number of Steiner tree nodes, i.e., nodes which are not members of the multicast
group. In this thesis, a tabu search algorithm is proposed for three different multicast
routing problems involving the above QoS parameters. Our proposed algorithms are
then compared with other proposed techniques on numerous sample networks. On all
tests, the proposed tabu search algorithms were able to find better multicast trees than
those reported in the literature. Also, a greedy algorithm is proposed for multicast
routing problem with dynamic membership.

MASTER OF SCIENCE DEGREE

King Fahd University of Petroleum and Minerals, Dhahran.
July 2001

xvit

:Ul..a:,]l wals

ol Uble caxs L Y
g.‘al.‘:ﬁl Gl Sl obhlld! waadl Lasdl Les Ligaes byl Dyl o s
SN Ll e el

2001 L5, ST

o Sloslall plas s (e 5,505 Sllall Slaglall A Jand 5,531 Ty¥l § Lliall 3 Gandl Jlone § ulalall sagnr cunailt
Ll 1 ume Slis plad (gn Bp2ill Dsil Qe olic Tyttt (QOS) Teasll Tusgis S 5 ssla V1l s
P sLasi Leeayd US g yrall ga Lelol 5pas b ame el SEEY cadl By ub i o3 (o el g ¢ JS a3
) I SEay 559 B! U5 Tadll WS ol LS Lglage oo pamiall Sl pat BlS Wi L SEEY el 5t
JSLts &35 Ladlas g (Tabu Search) o pus woms 3uilas 131 5 U1 030 5 . SEEY el 5t 50 3
2is Tylks (5 p5 Doy . WS 3yeSall Loasll Loy poliny U old SESY cdl @it B ollull JL3s) 4 s
Jopall ol o5 Blajyles <Ol SLLE Y JS 5 UGN fo aas pladdaly ol 5,53 @lugladl ol lesi
i salal el LB 5 LA 5ptill a3 Laslat (5 1 A5 pa Sl S Sy By slayl e 5,06

Byaiall Lpaall ol SEY Gl oIt 3 ol jlas] U Ll

paladl B yuealll Ay

Solall g Jg sall agd Sl daal>
GG eandll i yall ASLall ¢ ol il

xviii

Chapter 1

Introduction

Internet is widely recognized to deliver connectivity to the data world. The mon-
etary investment in the Internet is enormous. Many Internet applications involve
one-to-many or many-to-many (multipoint) communications, where one or more
sources send data to multiple receivers. It is possible to provide transmissions to
multiple receivers in three different ways: unicast, where a separate copyv of the
data is delivered to each recipent; broadcast, where a data packet is forwarded to
all portions of the network even if only a few of the destinations are intended re-
cipients; and multicast, where a single packet is addressed to all intended recipients
and the network replicates packet only as needed. Internet applications that use
unicast include Email and Web browsers. Potential applications of multicasting are
in the business world, to help to increase the ability of organizations to commu-

nicate and collaborate, leveraging more value from network investment. Examples

[RV]

of multicasting are the transmission of corporate messages to employvees, video and
audio conferencing for remote meetings and teleconferencing, replicating databases
and web site information, live transmission of multimedia training and university
courses, communication of stock quotes to brokers, updates on the latest election
results, collaborative computing, transmission over networks of live T\" or radio
news and entertainment programs, and many more. These new applications are
compelling the need for advances in traffic handling to overcome bottlenecks [2].
IP Multicast is an efficient, standard based solution with broad industry support.
It is an extension of IP, the internetworking protocol that is used on the Internet. It
is an important advancement in IP networking where applications are able to send
a copy of the information to a group of addresses, reaching all registered recipients.
Without multicasting, the same information must be either carried over the net-
work multiple times, one time for each recipient, or broadcasted to evervone on the
network, consuming unnecessary bandwidth and processing power. IP Multicast
technologies address the needed mechanisms at different levels in the network and

internetworking infrastructure to efficiently handle group communications.

1.1 Point-to-Point Unicast and Multicast Data Flow

Figures 1.1 and 1.2 show the difference between unicast and multicast data flows [2].

In Figure 1.1, four copies of the same data (D) are sent point-to-point as D1, D2,

D3 and D4 to Receivers 1, 2, 3 and 4 in the same application. These are unicast
transmissions, where point-to-point communication is set from one sender to a single
receiver. In Figure 1.2, one copy of the same data (D) is sent to Receivers 1, 2. 3 and
4 using the same application. Copies of the data is generated only where necessary.
In this example, the edge router makes four copies, one for each receiver. It is
needless to mention the significant saving in the bandwidth locally and across the
network. Even more bandwidth saving could be achieved if a very large number of

receivers are involved in the communication session.

Dz___’ Dy eceiver
D3—> @ — pr
DH \Dz d D2 Receiver2

D7 ;
Sender \°’D‘ @
InternetWork ; D3 Receivers

T D4 Receivers

.

Receivers

Receiver:

/ D Receiver2

D Recewver3

Router

D Receiverc
e Receivers

Figure 1.2: Multicast dataflow.

1.2 IP Multicast Applications and Development

Demand for multimedia, combining audio, video and data streams over a network.
is rapidly increasing. Some of the most popular uses of multimedia are real-time
- interactive applications such as desktop video and audio conferencing, collaborative
engineering, shared white boards, transmission of university lectures to a remote au-
dience, and animated simulations. Even when data compression is used, multimedia
applications occupy substantial portion of the available bandwidth. IP Multicast
will help in the realization of the full potential of these exciting new applications.
For example, consider the transmission of a corporate presentation to workers within
a company. Using unicast transmission, it would be possible to support only a small
numbers of recipients, because transmission of multiple copies of the multimedia
stream would quickly strain the available network bandwidth besides it would lin-
early increase monetary cost. On the other hand, with TP Multicast it would be
easy to support thousands of recipients, each sitting at his or her own desk. An-
other important type of multimedia application involves the transmission of stored
data streams. Examples include updates of web caches, video server to video server
updates, corporate announcements to employees, etc.

IP Multicast will enable these applications to scale to very large numbers of recip-
ients. Although multimedia applications are bandwidth intensive, non-multimedia

applications that involve the transfer of large databases of information will also

(S]]

benefit immensely from IP Multicast. Examples of real-time applications of this
type include stock/commodities quotes and trading information, and shared white
boards. Non-real time applications include multicast file transfer and web caching.

IP multicasting depends on three components: (1) protocols for establishing
and controlling multicast groups, (2) a router infrastructure for distribution of mul-
ticast traffic, and (3) application protocols and APIs (Application Programming
Interfaces). Figure 1.3 depicts, at a high level, components that must be multicast-
enabled which are marked with an asterisk [2]. The direction of traffic shown is for
multicast datagrams. Traffic needed to communicate host group membership and

routing information is not shown.

1.3 Multicast Routing

To support multicast communication efficiently, one of the key issues that needs to
be addressed is routing. Routing primarily refers to the determination of a set of
paths to be used for carrying the messages from source nodes to destination nodes.
In multicasting, the routing function mainly finds the best route from source to all
destinations in a multicast group. It is important that the routes used for such
communications consume a minimal amount of resource. In order to use network
resources as little as possible while meeting the network service requirements, the

highly recommended solution involves the generation of a multicast tree spanning

. Sending Multicast . Receiver Multicast

: Application* : S Appiication® :
et EELETEE PP PP PR multicast application protoco! e T TR
UDP (e.g. video conference, muiticast file transfer) uDP :
1P, ICMP, IGMP * 1 b, icHP, IGMP

! TCPAP Protocol : Addressing: : TCP/IP Protocol

: Stack* : source port and destination port, : Stack®

' ; sender address (unicast) and :

: Network : multicast receiver address : Network

: Driver* : : Driver

: Network : Network

: Intertace* : : Interface*

A
Receiver's
subnet

Sender's

Figure 1.3: Multicast-Enabled components.

-~

the source and destination nodes.

Minimum Steiner tree (MST) algorithms attempt to minimize the total cost of
the multicast tree. Total cost of the multicast tree is generally defined as the sum
of costs of all edges in the multicast tree. The cost is usually measured as the
bandwidth consumed by the tree. The minimum Steiner problem is known to be
NP-Complete.

With the advent of the real-time interactive applications, minimizing delay of
the multicast tree is also an important objective along with minimizing cost. The
delay corresponds to the time required to deliver a packet from the source to any
member of the multicast group. These two goals can be used in the multicast
routing algorithm to determine what constitutes a good tree. However, the cost
and delay measures individually are insufficient to characterize a good multicast
routing tree for interactive multimedia communication. For example, when the
optimization objective is only to minimize the total cost of the tree, we will have
a minimum cost tree. Although total cost as a measure of bandwidth efficiency is
certainly an important parameter, it is not sufficient to characterize the quality of
the tree as perceived by interactive multimedia and real time applications. This
is because, networks supporting real-time traffic need to provide certain quality of
service guarantees in terms of the end-to-end delay along the individual paths from
sources to each destination nodes. Therefore, both cost optimization and delay

optimization goals are important for the multicast routing tree construction. The

o

problem of minimizing tree cost under the constrained that all path delavs are
within a user-specified delay bound is referred to as the delay constrained Steiner
tree problem.

There are also certain classes of applications in which minimizing delay varia-
tion and minimizing number of Steiner nodes are important parameters along with
minimizing cost and minimizing delay. For example, with humans at the end-user.
providing a minimum delay variation would be extremely helpful in maintaining the
feeling of a face-to-face discussion for interactive applications. Also, with video and
audic conferencing now available on the Internet, it is desirable for all the viewers
to see and hear the speaker at (almost) the same time. A hop or relay node is
defined as a node excluding the source and destination nodes in the multicast tree.
Minimizing number of Steiner nodes is important in multicast routing. For certain
applications, security is an important issue. By minimizing the number of Steiner
nodes, unnecessary visits of traffic across the network can be avoided. We refer to
this problem that minimizes cost, maximum end-to-end delay, number of Steiner
nodes, and delay variation as the multiobjective Steiner tree optimization problem.

If nodes are allowed to join or leave the multicast group any time during the
lifetime of the multicast connection, then the problem is called dynamic multicast
routing problem. In graph theory, this problem is also known as the dynamic Steiner
tree problem [3]. In the dynamic multicast routing problem, we are given a source

node and a sequence of requests R = ry, 7o, ,Tm. Bach request r; is for either

adding or removing a destination node to or from the multicast group. In response
to request r;, a multicast tree T; is constructed by a dynamic multicast routing
algorithm on S; where S; be the set of nodes in the multicast group. That is, T; spans
S;. Given a sequence of requests R and an initial tree Ty, the dynamic multicast
routing problem consists of finding a sequence of multicast trees T}, 7 = 1, 2, ... m such
that its cost is optimized [4, 5, 6]. If Quality of Service (QoS) parameter is included,
such as a delay constraint, then it is called as delay-constrained minimum cost
multicast-routing problem with dynamic membership [7, 8]. In this work, we seek
te optimize the number of Steiner nodes and delay variaticn besides the bandwidth
and delay QoS parameters. We refer to this problem as the multiobjective multicast-

routing problem with dynamic membership.

1.4 Research Objectives

In this thesis, a tabu search based approach for the three previously mentioned
problems namely: (1) the minimum Steiner tree (MST) problem, (2) the delay-
constrained minimum Steiner tree (CMST) problem, and (3) the multiobjective
minimum Steiner tree optimization (MOST) problem are proposed. A fuzzy logic
based tabu search algorithm is proposed for the multiobjective optimization prob-
lem. The proposed algorithm is compared with many existing multicast algorithms.

Results show that on almost all test cases, Tabu Search algorithm exhibits more

10

intelligent search of the solution subspace and is able to find better solutions than
other reported multicast algorithms. A greedy approach for Dynamic Multicast

routing problem is also proposed in this thesis.

Organization of Thesis

The rest of this thesis is organized as follows. Chapter 2 gives a formal description
of the problem. In Chapter 3, we review related literature. This chapter covers
different approaches that have been attempted in Steiner tree problems.

In Chapter 4, we discuss our proposed fuzzy logic based tabu search algorithm
for multiobjective optimization problem. Further, we describe different steps of our
fuzzy tabu search algorithm, and the methodology to implement each of them. Also,
a tabu search algorithm for Steiner tree and delay constrained Steiner tree problem
is explained. In Chapter 5, we present and discuss experiments and results.

In Chapter 6, dynamic multicast routing problem is discussed. A greedy algo-
rithm is proposed for multiobjective minimum steiner tree optimization with dy-
namic membership problem followed by experiments and simulation results. The

thesis ends with conclusion and future work in Chapter 7.

Chapter 2

Problem Formulation

In this chapter, the formulation of minimum Steiner tree problem, delay constrained
minimum Steiner tree problem, multiobjective minimum Steiner tree problem and
multiobjective minimum Steiner tree problem with dynamic membership is given.
The multiobjective minimum Steiner tree involves simultaneous optimization of cost,
maximum end-to-end delay, delay variance, and the number of Steiner nodes.

This chapter is organized as follows. In Section 2.1, some basic definitions are
given that are used throughout the thesis. Sections 2.2 - 2.5 describe mathemat-
ically the minimum Steiner tree problem, the delay constrained minimum Steiner
tree problem, the multiobjective Steiner tree optimization problem, and the multi-
objective Steiner tree optimization with dynamic membership problem respectively.

Section 2.6 concludes the chapter.

11

oy
1o

2.1 Definitions

The communication network is modeled as a graph G = (V, E), where V" is a set
of nodes and E is a set of edges (links). A link represents a physical connection
between two nodes. The cost and delay of an edge e are denoted by cost(e) and de-
lay(e) respectively, where cost(e) and delay(e) are positive real numbers. A directed
network model is assumed, i.e., the links e = (u,v) and e = (v, u) cannot be used

interchangeably.
e A node is a switch in a wide area network.

e A link represents a physical connection between two nodes. The existence of
a link from node A to node B implies the existence of a link in the reverse
direction from node B to node A. The network is not symmetric, thus cost and
delay functions of the two links are not necessarily equal. Different capacities

may be assigned to the different links in the network.

e A network consists of a set of nodes and a set of links interconnecting these

nodes such that:
there is a path from any node to all other nodes in the network, and

there exists at most one link between any two nodes.

Thus from graph theory point of view a network is a simple connected directed

graph.

13

e A multicast tree for a given multicast source is a tree rooted at the source and

all its leaves being members in the multicast group.

e The link cost is a function of the amount of traffic traversing the link e and

the expected buffer space needed for that traffic [9, 10].

e The delay of a link is the sum of the queuing delay, transmission delay and
propagation delay of the link. Let D be the set of destination nodes, then. for
each path from a source s to any destination d € D, D C V, the delay of the
path is defined as the sum of link delays along the path:

delay(ll;q) = Y delay(e) where d € D

e€ll, 4

The maximum end-to-end delay of a multicast tree is the maximum delay from

the source to any member in the multicast group, that is;

Maz_Delay(Il; g) = max(Y_ delay(e)) where d € D

e€ll, 4
e An upper bound U is assigned to the delay along every path from a source to
any destination d € D, D C V. The delay bound for each destination node can
be different since each communication link in the network can have different

delay constraints as specified by the multicast application.

e The delay variance is defined as the variance over the set of end-to-end delavs

along the paths II; ; where d € D. This delay variance is used to address

14

the problem of delay variation in the tree. Mathematically, the delay variance

function is defined as

Var(T) = variance(Y delay(e)) where d € D
ecll, 4

e The number of Steiner nodes is defined as the intermediate nodes in the mul-

ticast tree excluding the source and destination nodes.

2.2 Minimum Steiner Tree (MST) Problem

The minimum Steiner tree problem [4] is to determine a multicast tree connecting
the source node s to every destination node d € D, such that the total cost of this
tree is minimal. Mathematically, the problem is to find a tree T = (Vr, Er) where
Vr C V and Er C E such that the total cost of this tree > cost(e) is minimized

e€Er
subject to the constraint {s} D C V.

2.3 Delay Constrained Minimum Steiner Tree (CMST)

Problem

The delay constrained minimum Steiner problem [11, 12] is to determine a multicast
tree connecting the source node s to every destination d € D node such that the cost

of this tree is minimal while the total delay from the source node to any destination

15

node is smaller than U. Mathematically, the problem is to find a tree 7 = (V7. E7)
where Vpr C V and Er C E such that the total cost of this tree " cost(e) is

ecEr
minimized subject to the following two constraints:

1. {s}UD C Vr;

2. > delay(e) < UVd € D, where I1, 4 is the set of edges constituting the
e€ll, g

path from source node s to destination node d in the tree 7.

2.4 Multiobjective Steiner Tree Optimization (MOST)

Problem

The multiobjective Steiner tree optimization problem is to determine a multicast tree
connecting the source node s to every destination d € D satisfying the source band-

width requirement and such that the total cost of the tree z cost(e), maximum end
e€Er-

to end delay max() delay(e)) whered € D, the delay variance variance(> delay(e))
e€ll, a4 e€ll; ¢

where d € D, and the number of Steiner nodes are minimized.

16

2.5 Multiobjective Steiner Tree Optimization with

Dynamic Membership (DMOST) Problem

Given a graph G = (V, E) with two weighted functions cost(e) and delay(e) on edge
e, a source s, a set of destinations D, and considering the dynamic condition with
a sequence of connection requests R = ry,7,,---, 7., the multiobjective minimum
Steiner tree problem with dynamic membership is to determine a multicast tree
connecting the source node s to every destination node d € D for every request.
satisfying the source bandwidth requirement and such that the total cost of the
tree, maximum end-to-end delay, the delay variation, and the number of Steiner

nodes are minimized.

2.6 Conclusion

In this chapter, we have formulated minimum Steiner tree problem. delay con-
strained minimum Steiner tree problem and multiobjective minimum Steiner tree
problem and multiobjective minimum Steiner tree problem with dynamic member-
ship problem. Important criteria for multicast routing algorithms are also discussed

in this chapter.

Chapter 3

Literature Survey

The different multicast routing algorithms are presented in this chapter with their
distinguishing features. It is beyond the scope of this survey to list the pseudo code of
each individual algorithm. This chapter is organized as follows. Section 3.1 describes
previously proposed algorithms for minimum Steiner tree problem. In Section 3.2,
algorithms for delay constrained minimum Steiner tree problem have been discussed
followed by algorithms for dynamic Steiner tree problem in Section 3.3. Section 3.4

concludes the chapter.

3.1 Minimum Steiner Tree Algorithms

The objective of the minimum Steiner tree problem is to minimize the total cost

of the multicast tree. Very few algorithms have been proposed for the minimum

17

18

Steiner tree problem in directed network [13]. The minimum Steiner tree problem is
known to be NP-complete. KMB [14] is an efficient unconstrained minimum Steiner
tree heuristic for undirected networks. The KMB heuristic uses Prim’s minimum
spanning tree algorithm [15] during its computation. Prim’s algorithm is optimal
only for symmetric networks. Thus the cost performance of the KMB heuristic may
be optimized if it is applied to asymmetric networks. The worst case time complexity
of the KMB heuristic is O(MV?), where M is the size of the multicast group. The
total cost of trees generated using KMB heuristic in symmetric networks is on the
average 5% worse than the cost of the optimal minimum Steiner tree [16].

An efficient solution for the Steiner tree problem with application to multicast
routing is presented by Ricudis [17]. The solution is based on a hybridized Genetic
algorithm with a hill climbing technique that facilities better local exploration of

the solution search space.

3.2 Delay Constrained Minimum Steiner Tree Al-

gorithms

The delay-constrained source-specific minimum Steiner tree problem was first for-
mulated by Kompella, Pasquale, and Polyzos [11]. The authors proved the NP-
completeness of the problem. In their algorithm, it is necessary to solve the delay

constrained shortest path problem for k(k + 1)/2 number of times, where k is the

19

number of source and destination nodes. The algorithm uses source routing. The
steps of the algorithm are illustrated with the following example.
Examplel: Consider the network given in Figure 3.1 with U = 5. Each edge is

labeled with its cost and delay.

{10,2) / /
{(12) 1) (' 1)
(10,1) \-

Figure 3.1: The graph of example 1.

Step 1: Compute all-pairs constrained least cost paths.

s=a,D = {b,cd, f}

cost(I1,.;) = least cost constrained path from v to w.

delay(Il,) = path delay along least cost constrained path from v to w.

From Figure 3.1,
1. cost(Ilap) = 5,delay(Il,) = 4,1, = [a, g, c, b]
2. cost(ll,c) = 3,delay(Il,) = 3,11, = [a, g, c]

3. cost(Ily) = 6,delay(Il, 4) = 1,11, 4 = [a, d]

4. cost(lla,s) = 11, delay(Tl, 5) = 3,1, ; = [a, g, f]

5. cost(llyc) = 2,delay(Il,) = 1,11 = [b,]

6. cost(Ilya) = 7,delay(Il, 4) = 2,11 4 = [b, c, d]

7. cost(Ilyr) = 10, delay(Ml, ;) = 4,1, 5 = [b, b, f]

8. cost(Il. 4) = 5,delay(Il.q) = 1, . g = [c,d]

9. cost(ll.f) = 12,delay(Il. ;) = 2,11 ; = [c, b, h, f]
10. cost(llas) = 10,delay(llyy) = 3,145 = [d, e, f]

Then a closure graph is constructed where edges are labeled with the corresponding
cost and delay of the enumerated least costs paths. The closure graph from Step 1

is shown in Figure 3.2.

Figure 3.2: The closure graph on D = {b,d,c,f} with U = 5 and s = a.

21

Step 2: Construct a constrained spanning tree of the closure graph. A greedy
approach is used to add edges to a subtree of the constrained spanning tree until all
the destination nodes are covered. The following two functions are defined for each

path:

_ cost(I,)
Too) = eI, + defag (L,) G
where delay(Il,,) = path delay from s to v in the tree.
fe(v, w) = cost(Il,) (3.2)

Continuing with the same example, s = a,D = {b.c,d, f} and from Equatioh 3.1,
fcp(a C) E=(013) (0+3) =1.5

fCD(G., d) = g‘_ﬁj =1.5

w

fen(a, f) = 5= (o+3) = 5.
fep(a,b) = 5-(3—+4) =5

Step 3: Expand the edges of the constrained spanning tree into the constrained
lowest paths that they represent. fop and f¢ give rise to two source-based heuristics.
CSTcp, and CSTg, respectively. The algorithm constructs a spanning tree using
fe,p and fc as shown in Figures 3.3 and 3.4 respectively. Paths are added in

increasing order of their cost until all destinations are covered.

1
19

® ®) © @

Figure 3.3: (a)-(d) The four stages in constructing the spanning tree using fcp.

Figure 3.4: (a)-(d) The four stages in constructing the spanning tree using fc.

CSTcp uses the selection function fcp, which explicitly uses both cost and delay
in its functional form. It tries to choose low cost paths, but modulates the choice
by trying to pick edges that maximize the residual delay as stated in Equation 3.1.
This increases the chances of extending the path through this edge, and beyond to
another destination. The idea is to reduce the cost of the tree through path sharing.
Moreover, this heuristic has a tendency to optimize on delay. It may find paths
with delays far lower than U, at the expense of added cost to the tree. Figure 3.5
shows the constrained spanning tree using CST¢cp. CST¢, minimizes fe, thereby
trying to construct the lowest cost tree if possible, while meeting the delay bound.

ngure 3.6 shows the constrained spanning tree using CST¢.

/
7/
/
/
(10,2)
’ S~ a3
/ ~~
/ T~
. 1) g —— 1 ——-Oh
N ;
A i
N\
AN t
(1.2) @ el
N f
N
S
AN
(10,1) -
f

Figure 3.5: The constrained spanning tree using CSTcp.

(1.2) 2]

H

E
(10,1) -

{

Figure 3.6: The optimal constrained Steiner tree: cost = 20 with U

23

24

Another heuristic algorithm called DDBMA (Dynamic Delay Bounded Multicast
Algorithm) is reported by Hac [18] to construct a minimum cost multicast tree. The
algorithm sets variable delay bounds on destinations and can be used to handle
the network cost optimization goal; i.e., minimizing the total cost (total bandwidth
utilization) of the tree. This algorithm can also be used to handle a dynamic delay-
bounded minimum Steiner tree which is accomplished by updating the existing
multicast tree when a destination node need to be added or deleted.

The DDBMA consists of four major steps:

1. Construct a minimum delay Steiner tree (Ty) using Dijkstra’s shortest-path

algorithm with respect to the multicast source (Figure 3.7).

2. Iteratively refine the initial tree (Tp) for lower cost using Path Replacement

Technique.
3. Check for destination node either joining or leaving.
4. Update existing multicast tree if there are any requests to join or leave.

The algorithm terminates when there is no more requests. Consider the same net-
work as shown in Figure 3.1. An important part of this algorithm is the delay-
bounded path replacement iterative improvement strategy. Path replacement in the
DDBMA means that a path in the tree T; is replaced by another new path which is

not in tree T, resulting in a new tree configuration T;,; of a lower cost. Figure 3.8

19
()]

shows the path replacement technique. The final tree from this algorithm is the

same as that given in Figure 3.6.

i "\
N
: (10,1} —m

i
i A
i N

(10,1} —

9 1

Figure 3.8: Example of Path replacement: path ab in Figure 3.7 is replaced by path
bc. Cost = 24 with delay U = 5.

Evolutionary algorithms are robust heuristics for many hard optimization prob-
lems [1]. An orthogonal genetic algorithm is proposed by Zhang [12] for the design of
delay constraint minimum cost multicast tree. A tree is encoded as a binary string.

The edges of the graph are numbered from 1 to n. Thus any multicast tree 7" can

be represented as a binary String (e;, e,- -, e,) where

1 if edge t is included in the multicast tree T

0 otherwise

Two fitness vectors are defined; f; measures the cost of the multicast tree and
f2 measures how tight the delay constraints are fulfilled. Thus a multicast tree
is good if f; is small (i.e., a small cost) and f, is zero (i.e., the delay constraints
are fulfilled). Given two multicast trees T3 and T, with respective fitness vectors

(C1, Dy) and (Co, Dy), 13 is better than 15 if and only if
1. D, < D, or
2. Dy = D, and C; < Cs.

In this manner, the cost of the multicast tree is minimized enforcing the delay
constraint. In genetic algorithms, crossover and mutation are adopted to search
the solution space. The subgraph obtained from these operations may not be a
tree connecting the source node to all the destination nodes. Thus a graph search
method has been applied to find a spanning tree from the subgraph and then connect
the unconnected destination nodes to the tree. This is called as Check and Repair
Operation.

An orthogonal design has been used into the crossover operation [10]. The or-

thogonal design provides a series of orthogonal arrays for different number of factors

[N
=1

and a different number of levels. L,,(n*) denotes an orthogonal array for £ factors
and n levels, where “L” denotes a Latin square and m is the number of combinations
of levels to be tested. The following table shows an example of orthogonal array

L,(23) for three factors and two levels. There are four combinations of factor Levels.

Combination || Factor 1 | Factor 2 | Factor 3
1st 1 1 1
2nd 1 2 2
3rd 2 1 2
4th 2 2 1

An example is shown below, in which the orthogonal array L4(23) is used to sample
the genes of two parents for crossover. Since L4(23) has three factors, each parent
string is divided into three substrings.

Example 2: Consider two Parents P1: 11001111 and P2: 00101001

Aiq | A2

¥

A3

3l A21 | A22

¥

A3

)

110 | 011 | 11 | 001 | 010 | O1

Now sample the genes from the 2 parents to produce 4 binary strings based on

La(23).

0y = (AI,I,A1,27A1,3) = (1 100111 1)

02 = (A131,A22,A423)=(110 010 01)

03 = (A2,1,A12,A23)=(001 011 01)

04 = (A2,1, Az,z,A1,3) = (0 01010 1 1)

28

Among these four binary strings, some are selected to be offsprings. In orthog-
onal crossover, one of the main design choices is the orthogonal array. In many
traditional genetic algorithms, global selection of parents is needed, and this is a
serious bottleneck in parallel implementation. In the orthogonal genetic algorithm,
selection is performed only within the orthogonal crossover operation but global se-
lection is not needed. Thus, the orthogonal genetic algorithm can search the sclution
space effectively and is well suited for parallel implementation and execution.

A fast heuristic, called QDMR, is proposed by Guo [19] for generating low-cost
multicast routing trees. A salient feature of QDMR is that it dynamically adjusts its
low-cost tree construction policy based on how far the current on-tree node is from
violating the QoS delay bound. This QoS dependent (adaptive) tree construction,
together with the capability to merge least delay paths into the low-cost tree in case

of constrained delay requirements, lead to the following properties:

1. QDMR guarantees to find a feasible multicast tree if such a tree exists;
2. This delay-bounded multicast tree is very rapidly generated; and

3. The tree has low cost.

QDMR is based on the DDMC algorithm [20]. DDMC algorithm does not con-
sider delay constraints. The QDMR extends the DDMC algorithm by overcoming
this problem. The DDMC is based on two well-known algorithms: Prim and Di-

jkstra’s [21]. Both algorithms are greedy in nature. The DDMC algorithm treats

29

each destination node as a new "source” after that node is added to the tree. Thus
the final tree has a low-cost multicast tree. However, this may lead to some desti-
nation nodes violating the delay bound. The pruning Phase in QDMR overcomes
this problem of violating the delay bound.

The multicast routing is formulated as an Integer Programming problem by using
Path variables in [22]. An associated problem reduction property is then character-
ized to reduce the solution space. Moreover, a polynomial time column generation
procedure is exploited to solve the associated linear programming relaxation with
such solution space reduced. Therefore, a branch-and-price algorithm is derived to
obtain the optimal integer solution (tree) for the problem.

The bounded shortest multicast algorithm, BSMA is another multicast algorithm
that is considered the best in terms of tree cost [23]. BSMA iteratively replaces the
edges in the tree until the tree cost can not be further reduced. BSMA uses A'th
Shortest path algorithm to find lower cost edges. The time complexity for BSMA
is O(K V3 logV) where K may be very large in the case of large, densely connected
networks, and this may lead to the difficulty of achieving acceptable running times.

Another algorithm is constrained adaptive ordering, CAO [24]. In CAO, the
constrained Bellman-Ford algorithm is used to connect one group member at a
time to the source. After each run of the constrained Bellman-Ford algorithm.
the unconnected member with the minimum cost constrained path to the source is

chosen and is added to the existing subtree. The cost of the links in the existing

30

subtree is set to zero. CAO is always capable of constructing a constrained multicast
tree, if one exists, because of the nature of the breadth-first search conducted.

A variant of the Steiner tree problem is proposed by Haberman [25]. A set of
constraints namely delay and delay variation along the paths of the final tree have
been imposed in this problem. The authors named this problem as delay and delay
variation constrained Steiner tree (DVCST) problem.

The minimum Steiner tree heuristic proposed by Waters [26] to be semi-constrained,
because it uses the maximum end-to-end delay from the source to any node in the
network as the delay consiraini. Thus, this constraint is not related directly to
the application’s QoS constraints, and that, depending on the network delays, this
internally computed constraint may be too strict or too lenient as compared to the
QoS requirements of the application. The heuristic then constructs a broadcast tree
that does not violate the internal delay constraint. Finally, the broadcast is then
pruned beyond the multicast nodes. In [27], the SC algorithm has been modified
and denoted as MSC. Simulation results in [27] showed that MSC heuristic always

performs better than the original heuristic with respect to tree costs and end-to-end

delays.

31

3.3 Dynamic Steiner Tree Algorithms

In dynamic multicasting, destination nodes are joining and leaving the group during
the communication period without any re-routing, and therefore the multicast tree
may grow too large. A re-routing can produce an optimal cost tree, but is undesirable
as it would cause disruption in transmission of continuous media. Thus, in [28],
a centralized heuristic approach for dynamic multicast routing is proposed. The
motivation is to minimize the total cost of Steiner Tree for the whole duration of
a session without re-routing. Thus, this algorithm tries to minimize the spanning
tree cost for the whole duration of a session, instead of individual tree cost for every
time instant. It is assumed that the duration of participation of every member is
known at the time of joining.

A non-rearrangeable Virtual Trunk Dynamic Multicast (VIDM) algorithm is
proposed in [5] and is based on the following principle:

“In the dynamic multicast routing problem, if a static multicast algorithm is
applied to re-construct the tree for each request, some nodes and links may be fre-
quently used. If a dynamic multicast routing can use these nodes and links, then
it could conceivably construct low-cost trees matching the cost-performance of the
static multicast algorithm”.

In order to identify such nodes and links, the authors define the notion of a

Virtual Trunk (VT), which is a tree of the underlying network. The nodes of the

32

VT are determined using a weight function that associates a positive real number
with each node. The VT, for a given connection, is constructed by applyving the
KMB algorithm to a selected set of nodes [4]. It is then used as a template for
modifying the tree in response to changes in group membership. New nodes are
attached to the multicast tree by determining the least-cost path connecting the
nodes to the Virtual Trunk. Nodes deletions are handled as greedy.

An efficient multicast routing algorithm for delay sensitive applications with dy-
namic membership is proposed by Hong [6]. The proposed algorithm utilizes an
optimization technique called Lagrangian relaxation method. A source-based op-
timal dynamic multicast routing algorithm is proposed in [29], which satisfies the
network conditions of delay constraints, cost minimization and adapts to a dynamic
network events. An algorithm called CRCDM (Controlled Rearrangement for Con-
strained Dynamic Multicasting) for on-line update of multicast trees to adjust to
changes in group membership is proposed in [7]. This algorithm is based on a con-
cept called Quality Factor (QF) that represents the usefulness of a portion of the
multicast tree to the overall multicast session.

An algorithm named as SBPT (Shortest Best Path Tree) is presented by Fujinoki
[30]. This algorithm establishes and maintains dynamic multicast trees, maximize
the bandwidth to be shared by multiple receivers and simultaneously guarantees
the shortest paths for each receiver node. The SBPT algorithm is a distributed

algorithm with a cost in the same order as the sum of the shortest path tree (SPT)

33

and Greedy Algorithm.

3.4 Conclusion

In this chapter, literature related to multicast routing algorithms has been reviewed.
The most popular algorithms for unconstrained multicast routing problem are KMB
[14] and RPM [31, 32]. Some algorithms for delay-constrained multicast routing
algorithms are KPP [11], CAO [24], BSMA [23], SC [26], MSC [27]. BSMA is proved
to be best and is within 7% of the optimal for symmetric and small networks [27].
For Dynamic Multicast Routing algorithms, Greedy [14], VITDM [5], and CRCDM
[7] are the most popular. In short, this chapter covers different approaches that have

been taken in the multicast routing problems and the objectives that they optimize.

Chapter 4

Tabu Search Based Multicast Tree

Design

In Chapter 3, different heuristics for multicast routing algorithms were reviewed.
These heuristics are applied only either to the minimum Steiner tree (MST) prob-
lem or the delay constrained minimum Steiner tree (CMST) problem. To the best
of our knowledge, no algorithm has been proposed for the multiobjective Steiner
tree optimization (MOST) problem. A tabu search based heuristic is proposed in
this thesis, that can easily be applied to both minimum Steiner tree and delay Con-
strained minimum Steiner tree problem. Further, a fuzzy logic based tabu search
algorithm is proposed for multiobjective Steiner tree optimization problem. Thus,
in our scheme, we optimize four cost parameters in the multicast tree design: cost

of the tree, end-to-end delay of the tree, delay variance of the tree and number of

34

Steiner nodes in the tree.

In this chapter, the proposed scheme and implementation details are discussed.
This chapter is organized as follows. Section 4.1, some of the theory of tabu search is
briefly explained. Section 4.2 describes proposed scheme for delay constrained mini-
mumm Steiner tree problem followed by proposed scheme for unconstrained minimum
Steiner tree problem in Section 4.3. Section 4.4 describes multiobjective minimum

Steiner tree problem. A conclusion is given in Section 4.6.

4.1 Tabu Search

The number of possible multicast trees in a computer network of a moderate size
is extremely large. Further because of the constrained nature of the problem and
the various cost parameters, it is not clear what constitutes the best tree. Modern
iterative heuristics such as tabu search have been found effective in tackling this
category of problems which have an exponential and noisy search space with numer-
ous local optima [1]. These iterative algorithms are heuristic search methods which
perform a nondeterministic but intelligent walk through the search space. In this
chapter, we present a Tabu Search algorithm to find a multicast tree satisfving the

given Quality of Service (QoS).

36

4.1.1 Overview of Tabu Search

Tabu Search (TS) was introduced by Fred Glover [33, 34] as a general iterative
metaheuristic for solving combinatorial optimization problems. Tabu Search is con-
ceptually simple and elegant. It is a form of local neighborhood search. Each
solution S € (2 has an associated set of neighbors N(S) C Q where Q is the set of
feasible solutions. A solution S’ € N(S) can be reached from S by an operation
called a move to S’. TS moves from a solution to its best admissible neighbor, even
if this causes the objective function to deteriorate. To avoid cycling, solutions that
were recently explored are declared forbidden or tabu for a number of iterations.
The tabu Status of a solution is overridden when certain criteria (aspiration crite-
ria) are satisfied. Intensification and diversification strategies are used to ﬁnprove
the search. In the former case, the search is accentuated in promising regions of the
feasible domain. In the latter case, an attempt is made to consider solutions in a
broad area of the search space [1]. To produce good results, any implementation
of TS must be engineered to suite the structure of the problem at hand [35]. The

general Tabu Search algorithm is given in Figure 4.1.

37

Algorithm Short-Term-TS

Q : Set of feasible solution
S : Current Solution
S* : Best admissible solution

Cost : Objective function

N(S) : Neighborhood of solution S

| % : Sample of neighborhood solutions
T : Tabu list

AL : Aspiration Level

Begin
Start with an initial feasible solution S € 2.
Initialize tabu lists and aspiration level.
For fixed number of iterations Do
Generate neighbor solutions V* C N(S).
Find best S* € V~.
If move S to S* is not in T Then
Accept move and update best solution.
Update tabu list and aspiration level.
Increment iteration number.

=t el e e e 2O OO o ! w s
NQQPWNHP..N..P. !to-

Else
If Cost(S*) < AL Then
Accept move and update best solution.
Update tabu list and aspiration level.
Increment iteration number.
End If
End If
End For
End

Figure 4.1: Algorithmic description of a short-term Tabu Search (TS) [1]-

38

4.2 Delay Constrained Minimum Steiner Tree (CMST)

Design

This problem is also called as QoS Driven Multicast Tree Generation Problem. Qur
Algorithm assumes that sufficient global information is available to the source, i.e.,
the source node of the network has complete information regarding all network links

to construct a multicast tree.

4.2.1 Initial Solution

The algorithm starts with an initial feasible solution S € 2 built in a greedy fash-
ion as follows: A minimum cost delay constraint Steiner tree is constructed using
Dijkstra’s shortest-path algorithm starting from the source. This results in a set
of superpaths. A superpath is defined as a set of edges whose starting and ending
nodes are the root of the tree and any node in {s}{JD. We call this tree as sink
tree of source s. To illustrate how CMST works, we consider a network as shown in
Figure 4.2, here s = {A} and D ={B,C, D, F}.

The sink tree for source s is shown in Figure 4.3. The solution encoding is path
based, where a solution is encoded as an array of k£ elements where each element is
a superpath representing a branch of the multicast tree and k& = | D} i.e., cardinality
of the set D, which contains the members of the multicast group.

The encoding for the initial solution corresponding to the sink tree of Figure 4.3

Figure 4.2: An example network.

Figure 4.3: Sink tree for source A, cost = 22 with U = 5.

39

40

is as follows

0 1 2 3

A,D | A,G,F | A,G,C | AG,C,B | Cost =22

4.2.2 Neighborhood Solutions

For generating neighbors, we choose a neighborhood structure based on “delete and
add” operations. To reduce the size of the solution space to be searched by Tabu, we
construct a sink tree for each destination using Dijkstra’s Shortest Path Algorithm.
The destination is the root of the tree and the remaining nodes out of {s} D are
the destinations of the new sink tree. Figure 4.4 shows the sink trees generated for
the netwc;rk of Figure 4.3.

Each iteration begins by generating a set V* of neighboring solutions. In our
algorithm, the set V* is dynamic, i.e., it varies from one iteration to another. At each
iteration, we randomly delete one superpath from the encoding of current solution
and then generate different feasible solutions by adding superpaths from one of the
destinations sink trees of Figure 4.4.

Among the neighbors, the one with the best cost is selected, and considered
as new current solution for the next iteration. For example, the two new trees of

Figure 4.4 are shown in Figure 4.5 and are encoded as follows

41

NG

Figure 4.4: Sink trees for destinations D = {B,C, D, F}.

Figure 4.5: Two possible neighbors from current solution.

0 1 2 3 Cost

Figure 4.6(a) Encoding | D,C | A,G,F | A,G,C | A, G,C,B 20

Figure 4.6(b) Encoding | D,E,F | A,G,F | A,G,C | A,G,C, B | 25+ Penalty

Thus, the new multicast tree of Figure 4.6(a) is selected for the next iteration and
considered as new current solution. As mentioned above, we randomly delete one
superpath from the current solution in the next iteration. Thus, for all candidate
solutions in the current iteration, it is guaranteed that at least one solution will give
a multicast tree. It might happen that some of the trees violate delay constraint; in
that case we assign an extra penalty by increasing its cost, so that it is less likely to

be accepted in the candidate list as shown in the tree of Figure 4.6(b).

Figure 4.6: Final solutions from current solution.

4.2.3 Tabu Moves

If a superpath is deleted at iteration %, then reintroducing the same superpath in an

add operation is tabu. The tabu list size is set to 7.

43

4.2.4 Aspiration Criterion

As is common in TS, a tabu status of a move can be overridden if implementing
it results in a better cost. This means that a tabu superpath in this case will be

inserted anyhow.

4.2.5 Termination Rule

We have used a fixed number of iterations as a stopping criterion. We experimented
with different values of iterations, and found that for all the test cases, the tabu
search algorithm converges within a maximum of 500 iterations. The choice of a
maximum number of iteration is a function of network and group size. This issue

has not been investigated in this work but could be future research work.

4.3 Unconstrained Minimum Steiner Tree (MST)

Design

The algorithm explained above can also be used for Steiner tree problem also called
as multicast tree generation problem. The only change in the initial solution where
a minimum cost Steiner tree is constructed using Dijkstra’s shortest path algorithm
without delay constrained and also there is no penalty in the cost because there is

no delay violation during the formulation of the candidate list solutions.

44

4.4 Multiobjective Steiner Tree Optimization (MOST)

Design

In earlier chapters we mentioned that there are four criteria to be optimized with re-
spect to the overall solution. These criteria are cost of the tree, maximum end-to-end
delay, number of Steiner nodes and delay variance. When dealing with conflicting
objectives, the concept of optimum is not clear. Further, it is not clear how one can
precisely compare two competing topologies when one topology is not better across
the other three criteria. Let C;, D;, H;, and V; be the cost, delay, maximum Steiner
nodes and variance of a multicast tree solution S; respectively. A solution S; is said
to dominate a solution S;, denoted as S; < S iff
Ci<Cii Di< D;; Hi < Hyj; Vi< V;

Obviously if S; < S;, then S; is a better solution than S;, and the solution that
dominates all other solutions is the best solution. Unfortunately the relation < does
not define a partial order on all possible solutions, i.e., there are numerous cases
where two solutions only partially dominate each other with respect to one or two of
the objective criteria. To deal with this problem, researchers traditionally adopted

one of the following two approaches:

1. Ranking, where individual objectives are prioritized against each other. For
example cost would be number 1 objective, then delay, then Steiner nodes,

then delay variance. Then a solution S; is better than S; if

C,’(C}'
(C,=C,~a.nd D5<Dj)
((C: = Cj and D; = D;) and H; < Hj) or

(((C: = C; and D; = D;) and H; < H;) and V; < V;)

2. Weighted sum approach, where we use a utility function that combines the

individual criteria in a weighted sum, that is
f(C,D,H,V)= WoC+ WpD + WgH + Wy V

where W¢, Wp, Wy, and Wy are the weights associated with cost, delay,
Steiner nodes, and delay variance respectively. Usually We+ Wp+ Wy+ Wy
= 1. The problem with this approach is that it needs a careful tuning with
respect to each objective that needs to be optimized. Good solutions can only

be obtained if tuning has been made.

During the multicast tree desigﬁ process, some desirable objectives, such as the
delay, can only be imprecisely estimated. To efficiently deal with such situation,
Fuzzy logic can be considered. Fuzzy logic provides a rigorous algebra for deal-
ing with imprecise information. Further, it is a convenient method of combining
conflicting objectives and expert human knowledge.

Fuzzy set theory has been recently applied in many areas of science and engi-
neering [36, 37, 38, 39]. But there are very few applications of fuzzy logic in data

networking which are limited to specific problems.

46

In fuzzy logic, optimization of a vector-valued function is replaced by the op-
timization of a scalar function, which is constructed from levels of satisfaction of
decision-makers by values of components of a vector-function. In practice, this
approach is proven to be useful for finding of compromised solutions in different
applications.

Another reason to consider fuzzy logic approach is its ability of treatment of un-
certainties in network state information. Fuzzy logic provides a convenient frame-
work for representation of such knowledge. The desirable properties of multicast
trees are more naiurally described in linguistic terms, which constitute the basis of
fuzzy logic.

A fuzzy set A of a universe of discourse X is defined as A = {(z, pa(z))|all z € X},
where p4(z) is a membership function of z € X being an element in A. Membership
of data in a fuzzy set is defined using values in the range [0,1]. A value of 1 indicates
full membership in the set. Figure 4.7 shows one example of a membership function.

For the problem under consideration, four objective functions are combined using
fuzzy logic to characterize a good multicast tree, as depicted in Figure 4.8. The fuzzy

subset of good multicast trees is defined by the following Fuzzy logic rule:

IF a tree has small number of Steiner nodes AND low mazimum end-end delay

AND low delay variation AND low cost, THEN it is a good tree

According to the andlike/orlike ordered-weighted-averaging logic [40], the above

47

degree of membership

1.0
Ha
o5 _ [____2 ST,
1
1
1
I
1
0 ,

Universe of discourse X

Figure 4.7: Membership function for a fuzzy set A.

rule evaluates tc the following:

p(@) = 7 x min(u(2)) + (1= 7) x 1 3" i(a). (4.1)

=1

where p(z) is the membership value for solution z in the fuzzy set good tree
and B is a constant in the range [0,1]. Here, y; for i = {1,2,3,4} represents the
membership values of solution z in the fuzzy sets small number of Steiner nodes, low
delay, low delay variance, and low cost, respectively. The solution which results in
the maximum value for Equation 4.1 is reported as the best solution found by the
TS algorithm. Below we will see how to get the membership functions for the four

criteria mentioned above.

48

i Good Multicast Tree |

Smalier
Low Cost LowDEe?:-End number of L‘;’; igt?lany
y Steiner Nodes °

Figure 4.8: Basic components for a good topology.

4.4.1 Membership Function for Cost

First, we determine two extreme values for Cost, i.e., the minimum and maximum
values. The maximum value, “TCostMax”, is found by using Dijkstra’s shortest
path algorithm with respect to delay. The minimum value, “TCostMin”,A is only
found by using optimal minimum Steiner tree algorithm using Branch and Bound
techniques, which are not suitable to apply due to the exhibition of very high time
complexity. So, approximate minimum value, “TCostmin”, can be found by taking
75% of the cost found by using Dijkstra’s shortest path algorithm with respect to
cost which is the initial solution of our proposed tabu search algorithm. The cost is
normalized with respect to “TCostMax”. The shape of the membership function is

shown in Figure 4.9. The membership value for the normalized cost is then compared

49

using Equation 4.2.

1 if T'Cost < TCostMin
p1(z) = < TolssMaz_TCost . if TCostMin < TCost < TCostMaz (4.2)
{ 0 if TCostMazx < T Cost
" 4
1 TCost
'TCoﬂIln TCostMax g

Figure 4.9: Membership function for cost.

4.4.2 Membership Function for End-to-End Delay

First, we determine two extreme values for maximum end-to-end delay, i.e., the
minimum and maximum values. The maximum value, “TDelayMax”, is found by
using Dijkstra’s shortest path algorithm with respect to cost. The minimum value,
“TDelayMin”, is found by using Dijkstra’s shortest path algorithm with respect

to delay. The shape of the membership function is shown in Figure 4.10. The

50
membership value for the normalized delay is then compared using Equation 4.3.

1 if TDelay < T DelayMin

pa(z) = ¢ Them e TDdey — if TDelayMin < TDelay < TDelayMaz (4-3)

{ 0 if TDelayMaz < T Delay
" 4
1 TDelay
qrbcllvﬂln TOelavMax

Figure 4.10: Membership function for end-to-end delay.

4.4.3 Membership Function for Number of Steiner nodes

First, we determine two extreme values for number of Steiner nodes., i.e., the mini-
mum and maximum values. The minimum value for the number of hop is 0, and the
maximum value is taken to be maximum number of Steiner nodes found by either
Dijkstra w.r.t. cost or Dijkstra w.r.t. delay. The shape of the membership function

is shown in Figure 4.11. The membership value for the normalized Steiner nodes is

then compared using Equation 4.4.

(1 if TS nodes < T'S_nodesMin

H3(T) = 4 Tgsmmﬁf;gsmm‘.n if TS nodesMin < T'S_nodes < TS nodesMaz

{ 0 if TS nodesMaz < TS _nodes
(4.4)

M &

18

[V}

.

02

1 TS_Nodes
"rs Nodesiin TS NodesMax

Figure 4.11: Membership function for Steiner nodes.

4.4.4 Membership Function for Delay Variance

First, we determine two extreme values for delay variance, i.e., the minimum and
maximum values. The maximum value, “TDVarMax”, is found by using Dijkstra’s
shortest path algorithm with respect to cost. The minimum value, “TDVarMin”, is
found by using Dijkstra’s shortest path algorithm with respect to delay. The shape

of the membership function is shown in Figure 4.12. The membership value for the

(]}
(R}

normalized delay variance is then compared using Equation 4.5.

1 if TDvar < TDvarMin

(@) = { Thoaa ez T Dver— if TDvarMin < TDvar < TDvarMaz (4.5)

0 if TDvarMaz < TDvar

82

o 1 TOvar
TODvarMin TDvartiax

Figure 4.12: Membership function for delay variance.

4.4.5 An Example

The algorithm for multiobjective optimization is similar to the one discussed in
Section 4.2, except that new cost function, also called as goodness, is based on
Equation 4.1. Consider again the network of Figure 4.2. Figure 4.13 shows the tree
obtained by applying Dijkstra’s shortest path algorithm to it with respect to delay.

The following are the extreme values used in membership functions that are

obtained from Figure 4.13.

e Maximum Value of Cost i.e., “TCostMax” = 33

e Minimum Value of Delay i.e., “TDelayMin” = 3

e Minimum Value of Delay Variance i.e., “TDVarMin” = Variance(2,2,1,3) =

0.5

.1}

(102 s

Figure 4.13: Minimum delay tree.

Figure 4.14 shows the tree obtained by applying Dijkstra’s shortest path algo-

rithm with respect to Delay. This is used as the initial solution for fuzzy tabu search

based algorithm.

h
-

\ 1) \ !

t.2) oy @

\ \\\\
(10,1}

J
g 1

Figure 4.14: Minimum cost tree.

The following are the extreme values used in the membership functions that are

obtained from Figure 4.14.

e Minimum value of cost i.e., “TCostMin” = 0.75 x 22 = 16.5

¢ Maximum value of end-to-end delay i.e., “TDelayMax” = 4

e Maximum value of delay Variance i.e., “TDVarMax” = variance(4,3,1,3) =

1.1875

The only two extreme values are remaining “T'S_nodesMin” and “TS_nodesMax”.

e Minimum value of number of Steiner nodes i.e., “TS_nodesMin” = 0

e Maximum Value of number of Steiner nodes i.e., “TS_nodesMax” = max(1,1)

=1

Now, the initial solution and neighborhood solutions are generated as the same

procedure as described in Section 4.2. The cost function for the initial solution is

calculated from Equation 4.1. The following are the numeric values for the mem-

bership functions of the initial solution.

From Equation 4.2 p,(z) = 3352 = 0.67
From Equation 4.3 u,(z) = =% = 0.0
From Equation 4.4 u;(z) = 152 = 0.0

From Equation 4.5 y4(z) =

1.1875—1.1875 __
1.1875—-0.5

0.0.

Thus goodness or the cost function is calculated using Equation 4.1 which gives

u(z) = 0.08334.

o]}
[$1]

Now, as mentioned in Section 4.2, Each iteration begins by generating a set 1™
of neighboring solutions. In our algorithm, the set V* is dynamic, i.e., it varies from
one iteration to another. At each iteration, we randomly delete one superpath from
the encoding of current solution and then generate different feasible solutions by
adding superpaths from one of the destinations sink trees as shown in Figure 4.4.
The two possible neighbors are shown in Figure 4.6. The goodness for Figure 4.6(a)
is calculated as follows,

p1(z) = F55% = 0.789

p2(z) = =5 = 0.0

ps(z) = =2 =0.0
u4(z) = 1 since uy(z) <= TDVarMin.
Using Equation 4.1, we get u(z) = 0.2235
Similarly, the goodness for Figure 4.6(b) is calculated as follows,

() = 252 =0.485

p2(z) = 0.0 since uy(r) >= T DDelayMazx
1-1

u3($) =10~ 0.0

pa(z) = HER20Es = 0.723

Again using Equation 4.1, u(z) = 0.177
Among the neighbors, the one with the high goodness is selected, and considered

as a new current solution for the next iteration. Thus, the solution represented by

the tree of Figure 4.6(a) is selected as a new solution for the next iteration because

56

of high goodness. The tabu list size is set to be 15 and the aspiration criteria and

termination rule are same as described in Section 4.2.

4.5 Time Complexity Analysis of Tabu Search

The most expensive step of our heuristic is the initial step where Dijkstra’s shortest-
path algorithm is used for generating sink trees for the source and the destinations.
The worst time complexity of this step is O(M [VI?) where M is the number of
multicast members including the source and [V is the number of nodes in the
network. In tabu search, one iteration costs O(M). Thus, for k iterations, the
cost becomes O(Mk). Thus the expected time complexity of proposed tabu search
algorithm is O(Mk + M|V[?). The term Mk is usually much smaller than M|V [2.
Therefore, complexity of the algorithm is O(M|V[?). In comparison with other
algorithms with respect to time complexity, our tabu search algorithm compares
favorably with KPP and BSMA which have time complexities of O(U|V]?) and

O(K |V[? log|V]) respectively. The time complexity of CAO is not known.

4.6 Conclusion

The multicast routing problem is an NP-hard problem. The number of possible
multicast trees in a computer network even of medium size is extremely large. A

. tabu search algorithm technique is being proposed and described in this chapter

that is suitable for both unconstrained and constrained multicast routing problem.
For multiobjective multicast routing problem, a fuzzy logic is used in the cost

function. Time complexity of the proposed algorithm is also explained in this chap-

ter.

Chapter 5

Experiments and Simulation

Results

In this chapter, algorithms discussed in Chapter 3 and Chapter 4 have been incorpo-
rated into our experimentation. The results of these experiments are also discussed.
Moreover, we provide a comparison between different constrained and unconstrained
multicast routing algorithms with tabu search is done. This chapter is organized
as follows. Section 5.1 is the experimental setup. Section 5.2 gives simulation re-
sults for unconstrained steiner tree problem followed by simulation results for delay
constrained steiner tree problem in Section 5.3. Section 5.4 gives the simulation
results for multiobjective minimum Steiner tree problem. A conclusion is given in

Section 5.5.

58

5.1 The Experimental Setup

Full duplex ATM networks with homogeneous link capacities of 155 Mbps were
used in the experiments. The positions of the nodes are fixed in a rectangle of size
4000 x 2400 Km?, roughly the dimensions of the continental United States. ATM
networks permit the applications to specify their own QoS requirements, and thev
allow cell multicasting in the physical layer. Thus, it was appropriate to comply
with the ATM standards. A random generator [9] (based on Waxman’s generator
[4] with some modifications) was used to create links interconnecting the nodes.
A multicast routing simulator MCRSIM [41] developed at North Carolina State
University is used to generate random graphs as described in [9]. In this model n
nodes are randomly distributed over a rectangular coordinate grid. Each ﬁode is
placed at a location with integer coordinates. The Euclidean metric is then used
to determine the distance between each pair of nodes. In this model, edges are
introduced between pairs of nodes (u,v) with a probability that depends on the
distance between them. The edge probability is given by

—d(u,v)

La (5-1)

P(u,v) = Bexp
where d(u, v) is the distance from node u to v, L is the maximum distance between
two nodes, and a and S are parameters in the range (0, 1). Larger values of S result

in graphs with higher edge densities, while small values of o increases the density

60

of short edges relative to longer ones.

Each node represented a non-blocking ATM switch, and each link had a small
output buffer. The propagation speed through the links was taken to be two thirds
the speed of light. The link propagation delay was dominant under these assump-
tions, and the queuing component of the link delay was not taken into account. The
link delays were thus symmetric, delay(u,v) = delay(v, u), because the link lengths,
and hence the propagation delays, were symmetric.

For the multicast sources we used variable bit rate (VBR) video sources. These
represented realistic, bursty, multimedia traffic sources. Any session traversing a
link e, reserved a fraction of e’s bandwidth equal to the equivalent bandwidth of the
traffic it generated. The link cost, cost(e), was set equal to the reserved bandwidth
on that link, because it is a suitable measure of the utilization of both the link's
bandwidth and its buffer space. Therefore, the cost of a heavily utilized link was
larger than the cost of a lightly utilized link. The link costs were dynamic, and
varied as new sessions were established or existing sessions were torn down.

A link could accept sessions and reserve bandwidth for them until its cost, i.e.,
the sum of the equivalent bandwidth of the sessions traversing that link, exceeded
85% of the link’s capacity; then it got saturated. This admission control policy
allowed statistical multiplexing and efficient utilization of the available resources.
More sophisticated admission control policies for real-time traffic exist, but the

simple policy just described was sufficient for the purposes of our study of multicast

61

routing algorithms. A detailed study of admission control algorithms for real-time
traffic can be found in [12].

In our experiments we used random networks with an average node degree of 4,
which is close to the average node degree of the current Internet. The values for the
parameters o and S are 0.15 and 2.2 respectively. Figure 5.1 shows an example of

a randomly generated 20-node network.

Figure 5.1: A randomly generated network, 20 nodes, average degree 4.

62

5.2 Simulation Results for Unconstrained Multi-

cast Tree Design Problem

Many existing unconstrained Steiner tree heuristics including KMB [14], RPM [31,
32] have been implemented in MCRSIM. For each run of the experiment, a random
set of links to interconnect the fixed nodes is generated. Random background traf-
fic for each link is also generated. A random source node and a multicast group
of randomly chosen destination nodes are selected. The equivalent bandwidth of
each link’s background traffic was a random variable uniformly distributed between
minimum background traffic B, and maximum background traffic Byner. As the
range of the link loads, i.e., the difference between B,,;, and Bz, increased, the
asymmetry of the link loads also increased, because the load on the forward link
e = (u,v) is independent of the load on the backward link € = (v, u). The tabu
search based algorithm was run on 20, 30, 40, 50, 60, 70, 80, 90, and 100 node
random graph with @ = 0.15 and 8 = 2.2. The B, and B,, are assumed to be
10Mbps and 150 M bps respectively. The default link capacity is 155Mbps. Following

sets of experiments are carried out.

e Comparing tabu search with KMB [14].

e Comparing tabu search with RPM [31, 32].

63

In order to analyze the performance of the proposed tabu search algorithm, we
compare it with KMB as well as with RPM. There are three sets of experiments.
In the first set of experiments, tabu search is compared with KMB and RPM for
symmetric networks. In the second set of experiments, tabu search is compared for
asymietric networks, and in the third set of experiment, a completely unloaded
network is taken and kept adding multicast (MC) sessions and constructing the
corresponding MC trees until the cumulative tree failure rate exceeded 15%. A MC
session consisted of a random source node generating VBR video traffic with an
equivalent bandwidth of 6.5 Mbps, and a MC group of randomly chosen destination

nodes. The experiment was repeated with different MC groups.

5.2.1 Comparison of Tabu Search and KMB |

In section 3.1, we have discussed KMB algorithm, which is the most widely used
algorithm for unconstrained minimum steiner tree problem. Figures 5.2 and 5.4
show the cost comparison between KMB and Tabu under fixed group size of 10
and different networks for Symmetric Networks and Asymmetric Networks respec-
tively. Figures 5.3 and 5.5 show the cost comparison between KMB and Tabu under
different group size for symmetric networks and asymmetric networks respectively.
Our proposed tabu search based heuristic was able to identify better trees for all
Test Networks. Figure 5.6 shows the number of multicast sessions versus cost for a

network of 20 nodes and group size of 5. The number of multicast sessions is the

64

same for both heuristics, and both algorithms are able to identify alternate paths
for the saturated links. Tabu was even able to identify a better tree in terms of cost

in almost all cases for different multicast sessions.

2000 -
1850 -
g 1700 1
= 1550 -
£ 1400 -
8 1250 -
(&)
1100 |
well B 0
800 - : . : . , . .
20 30 40 50 60 70 8 90 100
Neiwork ;
[OKMB ®Tabu] |

Figure 5.2: Symmetric load. Cost comparison of KMB and Tabu. Group size .=10.

4000 - I
3700 - ,
3400 - ‘
- 3100 - |
a 2800 |
£ 2500 -
£ 2200 -
® 1900 -
S 1600 -
1300
1000 -
=
400 - .
5 10 15 20 25
Group Size
I KMB @ Tabui

Figure 5.3: Symmetric load. Cost comparison of KMB and Tabu. Network size =80.

1500 -

1400 4

1300 -

3_1200'

£ 1100 -

< 1000 -

£ 900 -

S 800 -

© 700 -

600 -

500 -

400 - : . - :

20 30 40 50 60 70 80 90 100

Network
[OKMB mTabu|

Figure 5.4: Asymmetric load. Cost comparison of KMB and Tabu. Group size =10.

2800 -
2500
2200
2
& 19800 -
=
£ 1600 A
8 1300 - '
(&)
1000 -
700 -
400 | M | . A
5 10 15 20 25
Group Size
|KMB m Tabu |

Figure 5.5: Asymmetric load. Cost comparison of KMB and Tabu. Network size =100.

66

Iy

Cost in Mbps
-2 B8588838¢88

VAN

A

AV

- ~ O o™ & N W D - v o ©
- e 2 e2ygL&a&«ascsezseQ € 9 B8

Mutticast Sessions
—KMB —Tabu

o
[+

Figure 5.6: Number of multicast session versus cost between KMB and Tabu. Network
Size =20, Group size=5.

5.2.2 Comparison of Tabu Search and RPM

RPM is used in practice, because it requires only limited information to be available
at each node in order to construct a reverse shortest path MC tree [42]. Figures 5.7
and 5.9 show the cost comparison between RPM and Tabu under fixed group size
of 10 and different networks for symmetric networks and asymmetric networks re-
spectively. Figures 5.8 and 5.10 show the cost comparison between RPM and Tabu
under different group size for symmetric networks and asymmetric networks respec-
tively. Our proposed tabu search based heuristic was able to identify better trees
for all test networks. Figure 5.11 shows the number of multicast sessions versus
cost for a network of 20 nodes and group size of 5. The sharp line in the graph at
multicast session 52 for RPM indicates the failure of RPM to identify the alternate

paths when the links got saturated.

2200 1
2000 -
1800 -
1600 -
1400 -
1200 4

1000 -
20 30 40 50 60 70 80 90 100
Network |

Cost in Mpbs

Figure 5.7: Symmetric load. Cost comparison of RPM and Tabu. Group size =10.

4400 -
3900 -
- 3400 -
8 2900 -
=
£ 2400 -
é’ 1900
1400 -
[
400 . .
5 10 15 20 25
Group Size
{ORPM B Tabu|

Figure 5.8: Symmetric load. Cost comparison of RPM ard Tabu. Network size =80.

68

2000 -
1800 -
1600 -
1400 -

1200 -
1000 -
800 -
600 -
400 - . - : — T -
80 90

20 30 40 50 60 70

Network

e yr———|
|ORPM B Tabu;

Cost in Mpbs

100

Figure 5.9: Asymmetric load. Cost comparison of RPM and Tabu. Group size =10.

3900 - ;

3400 - 2

i

o 2900 - i

Iy E

= 2400 - i
£

% 1900 - '

o j

© 1400 | ‘

900 - g

]

400 __:h . - . r !

5 10 15 20 25 !

Group Size ‘

{DRPM B Tabu|

Figure 5.10: Asymmetric load. Cost comparison of RPM and Tabu. Network size=100.

69

1500 -

1400! [A

1200 4 N
g il
fo PO A 1
T o AVIVATY VARV
I i

200 & A

NPASVadidEN.

© 7 MuMtcastSessions

Figure 5.11: Number of multicast session versus cost between RPM and Tabu. Network
size =20, Group size=5.

5.3 Simulation Results for Delay Constrained Mul-

ticast Tree Design Problem

Many existing delay constrained Steiner tree heuristics including KPP1 [11], KPP2
[11], CAO [24], BSMA [23], SC [26], MSC [27] are already implemented in MCRSIM.
The same experiment setup is used as mentioned in Section 5.2. The tabu search
based algorithm was run on 20, 30, 40, 50, 60, 70, 80, 90, and 100 nodes random
graph with o = 0.15 and 8 = 2.2. For each node, 5 different random graphs have
been generated and the results are the average of these 5 random graphs. The B,.in
and By, are assumed to be 10Mbps and 150 Mbps respectively. The default link

capacity is 155Mbps. The following experiments have been carried out:

e Comparison of tabu search with SC [26] and MSC [27].

e Comparison of tabu search Tabu with KPP1 [11] and KPP2 [11].
e Comparison of tabu search Tabu with CAO [24].

e Comparison of tabu search Tabu with BSMA [23].

5.3.1 Comparison of Tabu Search with SC and MSC

In Section 3.2, we have discussed SC and MSC algorithms. Figures 5.12 and
5.13 show the cost comparison between SC, MSC and Tabu for Symmetric and
Asymmetric load respectively under fixed group size, fixed delay U and different
networks. Figure 5.14 shows the cost comparison under fixed group size and fixed
network with increasing value of U. Both SC and MSC showed no change in cost with
increasing value of U because of their Semi-Constrained Nature. Figure 5.15 shows
the cost comparison under fixed network delay and fixed network with different
number of Group Members. SC is not shown in Figure 5.15 because it was unable
to find a multicast tree on group size more than 15 node network. Our proposed
tabu search based heuristic was able to identify better trees for all Test Networks.
Figure 5.16 shows the number of multicast sessions versus cost for a network of 20
nodes and group size of 5. The tabu was able to find more multicast sessions and

of better quality as compared to SC and MSC.

I@SC OMSC mTabu|

Figure 5.12: Symmetric load. Cost comparison of SC, MSC and Tabu. Group size =10
and U=0.05 Sec.

v

Cost In Mbps
YR

[BSC OMSC mTabu'

Figure 5.13: Asymmetric load. Cost comparison of SC, MSC and Tabu. Group size =10
and U=0.04 Sec.

1200 -

Cost in Mbps

004 0045 005 0.055 0.06 0.065 007 0.075
U(Delay Bound)
IWSC OMSC mTabu |

Figure 5.14: Asymmetric load. Cost comparison of SC, MSC and Tabu. Group size =10,
Network size=100 nodes.

4500 i

4000 {

3500 ;

8 3000 i

F-] }
Z 2500

=

= 2000

n i

S 1500 i

1000 |

500 -

0 . . . i

1 2 3 4 5 :

Number of Groups '

IBMSC s Tabu

Figure 5.15: Asymmetric load. Cost comparison of MSC and Tabu. U = 0.05 sec,
Network size=100 nodes.

1600

1400

1200 1 A
i AVINIA
ano] \V -I/\\
% w N J

NI VA LA

N e s s snes s v e 5

Multicast Sessions
[—S8C —TABU —MSC]|

Figure 5.16: Number of multicast session versus cost between SC, MSC, and Tabu.
Network size =20, Group size=5.

5.3.2 Comparison of Tabu Search with KPP1 and KPP2

In Section 3.2, we discussed KPP1 and KPP2 algorithms. Figures 5.17 and 5.18
show the cost comparison between KPP1, KPP2 and Tabu for asymmetric networks
under fixed group size of 10, U = 0.04 sec and different networks. Figure 5.19 shows
the cost comparison under fixed group size and fixed network and with increasing
value of U. Figure 5.20 shows the cost comparison under fixed network delay and
fixed network of 100 nodes with different number of Group Members. Our proposed
tabu search based heuristic was able to identify better trees for all Test Networks.
Figures 5.21 and 5.22 show the number of multicast sessions versus cost for a network
of 20 nodes and group size of 5. The tabu able to find multicast session of better
quality as compared to KPP1 and KPP2. The number_of multicast sessions are the

same for both KPP and tabu.

2100

£188

Cost in Mbps

il

L

110
30

20

IBKPP1 OKPP2 @ Tabuj

Figure 5.17: Symmetric load. Cost comparison of KPP2, KPP1 and Tabu. Group size
=10 and U=0.05 Sec.

Cost In Mbps

Network

IBKPP1 OKPP2 B Tabu|

Figure 5.18: Asymmetric load. Cost comparison of KPP2, KPP1 and Tabu. Group size
=10 and U=0.04 Sec.

1400 -

Cost in Mbps

200 -
0 -

0.04 0.045 005 0055 0.06 0.065 007 0.075
U(Delay Bound)
|8 KPP2 DKPP1 BTabu |

Figure 5.19: Asymmetric load. Cost comparisoa of KPP2, KPP1 and Tabu. Group size
=10, Network size=100 nodes.

3500
3000

g

Cost in Mbps

1 2 3 4 5
Nimber of Groups
iBKPP2 DKPP1 mTabu] ;

Figure 5.20: Asymmetric load. Cost comparison of KPP2, KPP1 and Tabu. U = 0.05
sec, Network size=100 nodes.

g &

Vil

Cost In Mbps

E§888

— A AU,

200

/
00 ~N

0 ol A R T i R A T

-
- - N0 M O o N W =4
- = e - N N -

- - P~ ™
L - B] -

Multicast Sessions
i=—KPP1 —TABU,

28

21: Number of multicast session versus cost between KPP1 and Tabu. Network

Higure 5.
size =20, Group size=5.

<

900 A ;

800 .

700 ANy P

2 oo L

£ , [\J

£ L LT Y

5 A

200 /AVA [|

100 PaAAY

B g A e
Multicast Sessions
{—KPP2 —TABU! '

Figure 5.22: Number of multicast session versus cost between KPP2 and Tabu. Network
size =20, Group size=5.

5.3.3 Comparison of Tabu Search and CAO

Figures 5.23 and 5.24 show the cost comparison between CAO and Tabu for symmet-
ric and asymmetric load under fixed group size, fixed delay and different networks.
Figure 5.25 shows the cost comparison under fixed group size and fixed network
and with increasing value of U. Figure 5.26 shows the cost comparison under fixed
network delay and fixed network and with different number of group members. Our
proposed tabu search based heuristic was able to identify better trees for all test
networks. Figure 5.27 shows the number of multicast sessions versus cost for a net-
work of 20 nodes and group size of 5. The tabu able to find multicast session of
better quality in almost all cases as compared to CAO. The number of multicast

sessions are the same for CAQO and tabu.

20 30 40 50 60 70 80 Q0 100

IBCAC B Tabu!

Figure 5.23: Symmetric load. Cost comparison of CAO and Tabu. Group size =10 and
U=0.05 Sec.

Cost in Mbps

{ECAO B Tabu|

Figure 5.24: Asymmetric load. Cost comparison of CAO and Tabu. Group size =10 and
U=0.04 Sec.

|
1200
8 1000
£
T 800
‘g’ 600
(&)
400 4
200 4
0 - .
004 0045 005 0055 006 0065 007 0.075
U(Deiay Bound) |
[@CAO B Tabu | ?

Figure 5.25: Cost comparison of CAO and Tabu. Group size =10, Network size=100
nodes.

g

(_:‘osllanps
- 88888

3.

-

1 2 3
Number of Groups

|{BCAO B Tabui

Figure 5.26: Cost comparison of CAO and Tabu. U = 0.05 Sec, Network size=100 nodes.

900
800
700 A t
-]
= 500
5 @ mvv '
3 AR Y
O 300 . |
A 'AY
200 V\J
100 f
T TRt essn e e e B
Multicast Sessions
.L-CAO-TABUI

Figure 5.27: Number of Multicast Session versus cost between CAO and Tabu. Network
size =20, Group size=5.

80

5.3.4 Comparison of Tabu Search and BSMA

Figures 5.28 and 5.29 show the cost comparison between BSMA and Tabu for sym-
metric and asymmetric networks under fixed group size, fixed delay and different
networks. Figure 5.30 shows the cost comparison for asymmetric networks under
fixed group size and fixed network of 100 nodes with increasing value of U. Fig-
ure 5.31 shows the cost comparison for asymmetric networks under fixed network
delay and fixed network of 100 nodes with different number of group members. Our
proposed tabu search based heuristic was able to identify better trees for all test
networks. Figure 5.32 shows the number of multicast sessions versus cost for a net-
work of 20 nodes and group size of 5. The tabu able to find multicast session of
better quality in almost all cases as compared to BSMA. The number of m-ulticast

sessions are the same for BSMA and Tabu.

! I{DBSMA B Tabu:

Figure 5.28: Symmetric load. Cost comparison of BSMA and Tabu. Group size =10 and
U=0.05 Sec.

81

3

Cost in Mbps

|BBSMA B Tabu!

Figure 5.29: Asymmetric load. Cost comparison of BSMA and Tabu. Group size =10

and U=0.04 Sec.

1400
1200 - :
& 1000 - |
g !
T 800- i
:o; 600 - !
400 - ‘
200 -
0 =1 Y T :
0.04 0045 005 0.055 006 0065 0.07 0.075 ‘
U(Delay Bound) :
IIBSMA WTabu |

Figure 5.30: Cost comparison of BSMA and Tabu. Group size =10, Network size=100

nodes.

3000

2500
2 2000
F-l
-3
£ 1500
-
S 1000

500
0 v - . -
1 2 3 4 5
Number of Groups

[@BSMA mTabu] |

Figure 5.31: Cost comparison of BSMA and Tabu. U = 0.05 Sec, Network size=100
nodes.

900
- £
0 |
2 s A\ J
2 s A
zw TN
. AR Vi h
a0 A VY
100 A NJV
TN e s e e 8 s =5 s 95 5z
Multicast Sessions
[—BSMA —TABU]

Figure 5.32: Number of multicast session versus cost between BSMA and Tabu. Network
size =20, Group size=>5.

83

5.3.5 Quality of Solution by Tabu Search

Figure 5.33 shows how well focused is tabu search on the good solution subspace. It is
clear from the figure that more than 50% of the multicast trees found and evaluated
by TS were in the good solution subspace (barchart highly skewed towards the left),
i.e., in the cost interval [1590 —1700). Figure 5.34 tracks with time the total number
of solutions found by the proposed TS algorithm for various cost intervals. The plot
clearly indicates that as more iterations are evaluated, TS keeps converging to better
solution subspaces. For example, very few solutions(< 20) are found beyond 300
iterations in cost interval [1700 — 2100). In contrast, nearly all solutions found
and evaluated after the first 300 iterations are in the cost interval [1590 — 1700).
Figures 5.33 and 5.34 clearly indicate that TS has been well tuned to the plroblem
of delay constrained minimum steiner tree design problem. Figure 5.35 tracks the
cost of the best solution over time. As is clear, for small networks size(< 60), TS

converges within a maximum of 100 iterations.

350

300
2=
3 200 -
£
£ 100] .

50 4
o |
{1500,1700) [1700,1800) [1800,2100)
Cost in Mbps

Figure 5.33: Total number of solutions evaluated by tabu search during 500 iterations for
different cost ranges. Network size = 100 nodes, Group size = 10 and U=0.05 Sec.

84

g

\

\

K\

8

3
\
|

[~—[1590 , 1700) —[1700.1800) — [1800,2100)} i

Figure 5.34: Total number of solutions evaluated by tabu search versus iteration number
for different cost ranges. Network size = 100 nodes, Group size = 10 and U=0.05 Sec.

:

2100

g

1700

1300
1100
9200
700

Best Coat In Mbps
a
o

244
2N

298
325
352
379
406
433
460
487

{==90 Node — 60 Node -- 30 Node |

Figure 5.35: Cost of best solution found by tabu search versus iteration number for 3
networks. Group size = 10 and U=0.05 Sec

85
5.4 Simulation Results for Multiobjective Mini-

mum Steiner Tree Problem

As discussed before, the multiobjective minimum Steiner tree problem is to deter-
mine a multicast tree connecting the source node s to every destination nodes d € D
satisfying the source bandwidth requirement and such that the total cost of the tree,
maximum end-to-end delay, the delay variance, and the number of steiner nodes are
minimized.

We re-ran the same experiment of Section 5.2. Fuzzy based tabu search algorithm
has been implemented to re-run the experiments. Comparison has been performed
in such a way that the minimum end-end delay achieved from Tabu Algorithm is

considered as delay bound U for other algorithms KPP, CAO and BSMA.

5.4.1 Comparison of KPP and Tabu

Table 5.1 shows the comparison of tabu and KPP under a fixed group members and
different networks. It is clear from the table that tabu performs better than KPP as
far as cost and number of Steiner nodes is concerned in all test cases. For example,
a gain of 25% is achieved for the cost in a network of 60 nodes. Similarly, a gain
of 80% is achieved for the number of Steiner nodes in a network of 60 nodes. For
Delay variance, in some cases, KPP performs better, but the overall performance is

better if we combined all three parameters in tabu. For example, although a gain

86

of 34% is achieved by KPP in the network of 70 nodes but for the same network,
a gain of 5% and 38% in cost and number of Steiner nodes is achieved respectively
by tabu. Table 5.2 shows the comparison of tabu and KPP under a fixed network
of 100 nodes and different group members. It is clear from the table that overall

performance of tabu is better than KPP in all test cases.

Table 5.1: Comparison of Tabu and KPP. N= Network size, D=Maximum end to end
delay in msec, C=Cost in Mbps, V=Delay variance in usec, and S = Number of Steiner
nodes. Group size = 10.

Tabu KPP %Gain
N|DJ] ¢ [V C V [S] C] V [S

100 | 29 | 1503.0 | 38.7 1569 60.7 [14] 44 56.7 45
90 | 29 || 1248.0 | 23.5 1331.75 | 249 |12 || 6.7 | 6.06 | 26.3
80 | 21 |} 1239.0 | 21.2 1406.25 | 26.1 |11 ff 13.5 | 22.8 7.7
70 | 32 || 1435.5 | 60.2 1512.0 | 39.49 |12 | 5.33 | -344 | 380
60 | 32 || 1125.7 | 42.8 1560.0 | 51.7 | 9 | 25.52 | 20.73 | 80
50 | 31 || 1172.2 | 33.7 1209.75 {2542 | 10 || 3.2 | -24.5 | 66.67
1236.0 | 245 | 8 || 14.2 | 7.135| 25

40 | 23 |} 1089.7 | 20.0
30 | 22 { 1027.5 | 23.8 1066.5 [29.14 | 5 || 3.80 | 22.56 | 22.22

S o| o | of | o] S| »n

Table 5.2: Comparison of Tabu and KPP. G= Group size, D=Maximum end to end delay
in msec, C=Cost in Mbps, V=Delay variance in psec, and S = Number of Steiner nodes.
Network size = 50.

Tabu KPP %Gain
G |D C A\ S C Vv S C A\ S
2533 2190.0 14744 | 5| 23445 (5660} 7 7.06 | 19.31 40
20 |37 || 1762.5 | 61.41 | 4 || 18645 | 75.73 | 9 5.8 23.93 | 75.0
15 (37 |1 1251.0] 71.6 | 5 || 132458869 | 8 || 5.875 | 22.94 | 60.0
10 | 37 || 1027.5 { 43.71 | 4 || 1161.0 | 23.72 | 9 13.0 | -45.73 } 125.0
5 |36 | 817.5 62.7 | 6 933 10.0 | 11 || 14.13 | -84.05 | 83.33

5.4.2 Comparison of CAO and Tabu

Table 5.3 shows the comparison of tabu and CAO under a fixed group members and
different networks. It is clear from the table that tabu performs better than CAO as
far as cost and number of Steiner nodes is concerned in all test cases. For example,
a gain of 16% is achieved for the cost in a network of 60 nodes. Similarly, a gain
of 80% is achieved for the number of Steiner nodes in a network of 60 nodes. For
Delay variance, in some cases, CAO performs better, but the overall performance is
better if we combined all three parameters in Tabu. For example, although a gain
of 27% is achieved by CAO in the network of 70 nodes but for the same network,
a gain of 6% and 39% in cost and number of Steiner nodes is achieved respectively
by tabu. Table 5.4 shows the comparison of tabu and CAO under a fixed ﬁetwork
of 100 nodes and different group members. It is clear from the table that overall

performance of tabu is better than CAO in all test cases.

5.4.3 Comparison of BSMA and Tabu

A comparison of tabu and BSMA under a fixed group members and different net-
works is shown in Table 5.5. It is clear from the table that tabu performs better
than BSMA as far as cost and number of Steiner nodes is concerned in all test cases.
For example, a gain of 10% is achieved for the cost in a network of 50 nodes. Simi-

larly, a gain of 40% is achieved for the number of Steiner nodes in a network of 50

88

Table 5.3: Comparison of Tabu and CAO. N= Network size, D=Maximum end to end
delay in msec, C=Cost in Mbps, V=Delay variance in usec, and S = Number of Steiner

nodes. Group size = 10.

Tabu CAO %Gain
N|D] C V [S C V [S C Y S
100 [29 [1503.0 [38.7 [10 || 15930 | 39.76 | 11 | 6.0 | 264 | 15.0
90 |29 [1248.0 [235 9 [[1377.75| 17.8 |10 || 10.4 | -6.94 | 10
80 [211239.0[21.2| 7 || 140625 26.1 | 11 || 16.0 | 3.02 | 42.86
70 {32 14355602 9 || 15225 [44.15 12 || 6.1 |-26.64 | 38.0
60 |32 || 1125.7 [42.8 | 5 || 1305.0 | 438 | 9 || 16.0 | 2.32 | 80.0
50 {31 1172.2[33.7]| 6 || 1218.75[25.42 | 10 | 3.97 | -7.9 | 41.67
40 |23 [1089.7[20.0 [6 || 1236.0 | 245 | 8 || 13.42 | 22.1 25
30 (2210275238 4 || 10642 | 264 | 5 || 3.6 | 100 | 22.2

Table 5.4: Comparison of Tabu and CAQO. G= Group size, D=Maximum end to end delay
in msec, C=Cost in Mbps, V=Delay variance in usec, and S = Number of Steiner nodes.
Network size = 50.

Tabu CAO %Gain
'G]D C V [S C V TS C % S
(25 [331 2190.0 | 47.44 | 5 || 2541.0 | 59.5 | 10 || 16.03 | 25.34 | 100.0
20 137 (17625 [61.41 | 4 || 2001.0 [6728 [O | 13.53 | 9.56 | 125.0
15|37 || 1251.0 [71.56 | 5 || 1326.0 | 81.25 | 8 || 6.0 | 13.54 | 60.0
10 |37 || 1027.5|43.71 |4 [1047.0| 51.2 | 5 || 1.9 | 17.16 | 25.0
5361 8175 | 62.7 [6 || 10875 | 259 | 12 || 33.03 | -58.7 | 100.0

89

nodes. BSMA is assumed is to be within 7% of the optimal for small networks. For
Delay variance, in some cases, BSMA performs better, but the overall performance
is better if we combined all three parameters in tabu. For example, although a gain
of 42% is achieved by BSMA in the network of 70 nodes but for the same network. a
gain of 1% and 10% in cost and number of Steiner nodes is achieved respectively by
Tabu. Table 5.6 shows the comparison of Tabu and BSMA under a fixed network
of 100 nodes and different group members. It is clear from the table that overall

performance of tabu is better than BSMA in all test cases.

Table 5.5: Comparison of tabu and BSMA. N= Network Size, D=Maximum end to end
delay in msec, C=Cost in Mbps, V=Delay variance in usec, and S = Number of Steiner
nodes. Group size = 10.

Tabu BSMA %Gain

N | D cC | V C V | S L C A\ S

100 | 29 || 1503.0 | 38.7 15975 41113 5.9 5.7 | 23.1
90 | 29 || 1248.0 | 23.5 1322.2 | 284 | 11 || 5.6 175 | 17.4
80 | 21 || 1239.0 | 21.2 1401.7 [21.9 | 10 || 11.6 | 2.93 | 30
70 | 32 || 1435.5 | 60.2 1450.5 | 425110 || 1.03 | -41.7 | 10.0
60 | 32 || 1125.7 | 42.8 1139.2 | 324 | 8 12]-32.0]41.2
50 | 31 || 1172.2 | 33.7 1308.7 | 31.5 | 10 || 10.43 | -6.7 | 40
40 | 23 }} 1089.7 | 20.0 1148.2 1212 | 8 5.1 5.64 | 25
30 | 22 || 1027.5 | 23.8 1056.7 | 27.2 { 6 || 2.77 | 12.53 | 25

B oo o o] ~fo| Sl w

5.4.4 Quality of Solution by Tabu Search

Figure 5.36 and 5.37 show the cost, maximum end-to-end delay, delay variance and

steiner nodes versus iterations during the solution search space by Tabu. Figure 5.38

90

Table 5.6: Comparison of Tabu and BSMA. G= Group size, D=Maximum end to end
delay in msec, C=Cost in Mbps, V=Delay variance in pusec, and S = Number of Steiner
nodes. Network size = 50.

Tabu BSMA %Gain
GID|[€ [Vv C [VI[S[C]V s
25

5[33]2190.0 [47.44 [5[2139.0 | 54.21 | 6 || -2.32 | 143 | 20.0
20 | 37 [17625 | 61.41 18345 | 75.35 | 7 | 4.1 | 22.70 | 75.0
15 | 37 || 1251.0 | 71.56 14025 [76.44 | 7 || 12.11 | 6.82 | 40.0
10 | 37 || 1027.5 | 43.71 13020 | 40.4 | 9 || 26.7 | -7.57 | 195.0
5 |36 8175 | 62.7 1014.0 | 48.24 | 10 || 24.04 | -23.06 | 66.67

OO i oril tn

shows how well focused tabu search is on the good solution subspace. As it is clear
from the figure, more than 50% of the multicast trees found and evaluated by tabu
search were in the good solution subspace (barchart highly skewed towards the
right), i.e., in the membership interval [0.4 — 0.72). Figure 5.39 tracks with time the
total number of solutions found by the proposed tabu search algorithm for various
cost intervals. The plot clearly indicates that as more iterations are evaluated,
tabu search keeps converging to better solution subspaces. For example, very few
solutions(< 50) are found beyond 700 iterations in membership range [0.0 — 0.4).
In contrast, nearly all éolutions found and evaluated after 700 iterations are in the

cost interval [0.4 — 0.72).

x 10
25 0.055
24 1 0.051
_ 23 - 0.045}
[[:-
8 °©
22] S 004
21¢ : 0.035 L_r
2 0.03 -
4] 200 400 600 800 1000 0 200 400 600 800 1000
fterations lterations
x1 0"
1.6 11
14} 10}
9
1.2¢

Varlance
=

Steiner Nodes
(o]

o
o
o

L—L

(o] 200 400 600 800 1000 (o} 200 400 600 800 1000
lterations lterations

0.6

Figure 5.36: Four different objective functions versus iterations. Network size = 50 Nodes.
Group size = 20.

1.85
1.8

1.75

1.7

Cost

1.65

1.6

.

1.55
0
lterations

x 10~

200 400 600

800 1000

12

10¢

Variance

]

lterations

2 o _—
0 200 400 600

800 1000

0.055

0.05¢

0.045

Delay

0.04

0.035¢

0.03
0

-
\J

Steiner Nodes
o

-
w

12

200 400 600 800 1000
Iterations

-
()]

s
Hh

200 400 600 800 1000
lterations

Figure 5.37: Four different objective functions versus iterations. Network size = 100

Nodes. Group size = 10.

93

200
s 150
3
& 100
S
[~
Z s5p
0 -
o Q‘D th\ 0\ 0?"\ QQ e -;
& & & & LA NS e 5
< ® < << < ;
Membership Ranges :

Figure 5.38: Total number of solutions evaluated by tabu search during 1000 iterations
for different membership ranges. Network size = 100 nodes, Group size = 10.

700 -

500 —~

400 /

300 /

200 -/ e
/,//"”"—J

100
/__'——-—_—’—'
0 g

3 8E8F 28853288
2sr
- N N MM e T WD O

No. ot Solutions

729
781
833
885
937
989

lterations
[--102-04) —[0.0-0.2) —[0.4-0.6)]

Figure 5.39: Total number of solutions evaluated by tabu search as a function of time
(Iteration number) for different membership intervals. Network size = 100 nodes and

Group size =10.

94
5.5 Conclusion

In this chapter, we presented and discussed various experiments that were performed
using the approaches based on tabu search algorithm. Our proposed idea has per-
formed well for all three static multicast routing problems. Fuzzy logic is used for the
cost function in multiobjective minimum Steiner tree problem. The proposed tabu
search algorithm was always able to find a multicast tree if one exists. Tabu search
is better in terms of tree cost as compared to BSMA, CAO, KPP1 and KPP2. Re-
sults suggest that the search performed by tabu search is of intelligent and superior
quality. Further, as time elapsed, tabu search progressively zoomed towards a better

solution subspace, a desirable characteristics of approximation iterative heuristics.

Chapter 6

Dynamic Multicast Routing

If nodes are allowed to join or leave the multicast group at any time during the
lifetime of the multicast connection, then the problem is called Dynamic Multicast
Routing Problem. In the dynamic multicast routing problem, the members of the
multicast group are dynamically changing. Let us take a snapshot of the multicast
group and denote it by S. Suppose that a static multicast routing algorithm is
applied to find a multicast tree for $in G. A good static multicast routing algo-
rithm can generally produce better results than a dynamic one [4]. This is because
a dynamic multicast routing algorithm usually adds or removes a node without dis-
rupting the connections to existing members. It does not take the multicast group as
a whole into consideration and reconstructs the multicast tree as a static algorithm
does. Therefore, a static routing algorithm which produces near optimal results can

serve as a reference for comparing dynamic multicast routing algorithms. In this

95

96

problem, KPP is used as a reference algorithm. KPP is static delay constrained
algorithm. The minimum delay found by our proposed technique is considered as
delay bound for this algorithm.

This chapter is organized as follows, Section 6.1 describes the proposed approach
for Multiobjective Steiner Tree Optimization with dynamic membership Problem.
Section 6.2 explains experiment setup and simulation results. Section 6.3 concludes

the chapter.

6.1 Proposed Approach

In a dynamic multicast connection, nodes may join or leave the multicast group
dynamically during the lifetime of the multicast connection. First, a static multicast
tree is generated by using Fuzzy based tabu search algorithm when a multicast
session is established. Then, the multicast tree is modified for each connection

request (either addition or deletion) by the scheme as mentioned below.

6.1.1 Nodes Leaving

Let us assume that node n in the tree issues a leave request to end its participation
in the multicast session. If node n is not an end destination node in the existing
tree T3, no action will be taken. The new tree T}, will be same as T;ie,T;yy = T3,

with the only difference that node n will stop forwarding the multicast packets to

g7

its users. If n is an end destination node of T, then in order to avoid wasting
bandwidth, tree T;, has to be pruned to exclude node n and related steiner nodes
and links used in the tree T}, to avoid forwarding packets to n. This approach used

here is similar to those reported in earlier works 4, 5).

6.1.2 Nodes Joining

There are two situations when a new node n intends to join tree T;.
e the node n that wants to join the tree is not in tree 7% and
e the node n that wants to join the tree is a steiner node of tree 7.

If the node n is a steiner node of the existing multicast tree T}, then nodé n can
be used without any change to forward multicast packets to its user, in addition to
forwarding them to downstream nodes.

If the node n is not in the tree Tj,, a shortest path is first found to all nodes
(steiner nodes, destination nodes and source node) in the multicast tree from the
new member node n. Now, we will treat every shortest path as a new added edge in
the multicast tree. The result is in the number of multicast trees. Every multicast
tree is evaluated by using Fuzzy Membership function. And the tree with the best
membership function is considered as new multicast tree T;,,. Thus, T} to new tree
T;41 involves only establishment of a new path and does not affect any of the paths

from source to destination nodes already in the multicast tree T;.

98
6.2 Experiment Setup and Simulation Results

In our simulations, sequence of random requests are generated for adding and re-
moving nodes. A simple probability model is used to determine whether the request
is adding a node to the multicast group or removing the node from the multicast
group. The probability for adding a node to the multicast group is determined by

the probability function [4, 5].

N—
Prob(add) = 7(N_~;{)+{Q S

where M is the current number of nodes in the multicast group, N is the number of
nodes in the network, and v is a parameter of real number in the range (0,1]. The

pa.;ameter v determines the size of the multicast group in equilibrium. N ote that
e Prob(add) =1 if M = yN.
e Prob(add) > 1 if M < yN, and
e Prob(add) < if M > yN.
The probability that a request will be a delete-request is given by
Prob(del) = 1 — Prob(add)

If the request is a node addition, a node is randomly chosen from the nodes which

are not in the multicast group. It is then added to the multicast group. If the

99

request is a node removal, a node excluding the source node is randomly chosen
from the multicast group. It is then removed from the multicast group.

The above proposed technique is then applied to different networks with an initial
group size of 10 members. A sequence of 20 events are generated using a fixed value
for v = M/N, for which Prob(add) = 1/2 for each network. We are comparing our
approach with other static multicast routing algorithm.

Figure 6.1 shows the cost, delay yaria.nce and number of steiner nodes comparison
vs event number between greedy and KPP. An event is either leaving or joining with
probability 1/2. The initial solution for Greedy is assumed to be found by Fuzzy
based multiobjective tabu search algorithm. For smaller number of events, the
results are comparable to that of static multicast routing algorithms. But as the
number of events increases, the performance of Dynamic Greedy is decreasing as
expected because it is not considering the tree as a whole in finding the multicast
tree.

Table 6.1 depicts the same picture as described in Figure 6.1 but with different
network of size 40 nodes and also showing whether the event is a Join or Leave.
For small number of events, the result are comparable to KPP. Due to members
leaving or joining, there is a change of almost 100% in the tree topology. That is
why Greedy Algorithm tends to find multicast tree of high cost as comparable to

KPP.

100

&
)

Cost In Mbps

Y A

12345678 81011121314151617 181920

EVENTS

{—Greedy =—KPP|

(a)

‘5 3
Pt
£ 1\
E 35 —
ﬁm “\ _IA
g .. “.\ ./r,"/\
3
513\ L/
3
PN N7t
10 — S A— . . .
123 5678 910111213 1415 16 17 18 19 20
EVENTS
— Greedy - KPP
(b)
a-
2
87
(5]
E6-
£
8s-
s
&3
e
2 — . . .
12345678 9 1011121314151617 18192021
EVENTS
[~ Greedy — KPP
(c)

Figure 6.1: Network size = 30 nodes, Initial group size =10. (a) Cost versus Event
number between KPP and Greedy. (b) Delay variance versus Event number between
KPP and Greedy. (c) Steiner nodes versus Event number between KPP and Greedy.

101

Table 6.1: Comparison of Dynamic Greedy and KPP. E= Event, J=Join, L=Leave,
=Maximum end to end delay in msec, C=Cost in M bps, V=Delay variance in usec, and
S = Number of Steiner nodes. Initial group size = 10.

Dynamic Greedy KPP
E|[G|D] C V |S C \% S
1 [J[24[13185[35.14] 6 | 1431.0| 2058 | O
2 |L |24 13185[30.54| 7 || 1431.0| 19.96 | 10
372915600 469 | 8 || 1491.0 | 29.65 | 12
4 | J |29 15600 431 | 7 || 1680.0 | 29.19 | 13
5| L |29 13185] 326 | 6 || 1431.0 | 2058 | 9
6 | J |24 13185[29.05| 5 || 1507.5| 21.81 | 9
7] J |48 1612.5]105.0| 7 || 1458.0 | 102.55 | 13
8 | J |48 1743 [99.43| 7 || 14445 | 115.7 | 12
9 | L |48 16125[105.0 | 7 || 1458.0 | 102.55 | 13
10 | L |24 13185[29.05] 5 | 15075 21.81 | 9
11 | L |22 11970[2445 5 || 1386.0 | 1898 | 9
12| J |22/ 134252194 5 || 1386.0 | 17.65 | 8
13| L |22 1152.0[21.34] 4 || 12120 1584 | 8
14 | L |22 |[1008.0 | 19.16 | 3 || 1023.0 | 13.80 | 7
15| J |38 1173.0 [6836 | 4 || 886.5 | 89.3 | 7
16 | L | 38| 1173.0 | 7541 | 5 || 886.5 | 94.28 | 8
17| L |38]/ 1173.0 | 8156 | 6 || 858.0 | 41.84 | 4
18| J |38 | 14460 | 876 | 8 | 919.5 | 3793 | 5
19| J |38 18915 |117.8 |10 || 1111.5| 47.1 | 6
20| J |46] 21585 [165.3 [11 || 1167.0 | 46.01 | 6

102

6.3 Conclusion

A greedy approach for dynamic multicast routing has been proposed in this chapter.
Our proposed algorithm involves only in the establishment of a new path and is
able to find multicast tree of good cost for small number of events. As the number
of events increases, the performance of dynamic greedy is decreasing as expected

because it is not considering the tree as a whole in finding the multicast tree.

Chapter 7

Conclusions and Future Work

7.1 Summary

In most general terms, the multicast routing problem is to determine a tree spanning
a source node to all the members of the multicast session. Real-time applications
have QoS service requirements that must be guaranteed by the underlying network.
Orne QoS requirement, the end-to-end delay constraint, can be guaranteed in wide-
area networks by using the appropriate routing algorithms. In addition to QoS
requirements, many real-time applications have high bandwidth requirements, and
hence it is important to use routing algorithms which manage the network bandwidth
efficiently. In this thesis, we defined two functions for each link in a network: a link
cost which is a function of the utilized fraction of the link’s capacity, and a link

delay which is a function of the delay a packet experiences when it traverses that

103

104

link. One of the objectives of our thesis is to find minimum cost multicast tree and
delay constrained minimum cost multicast tree. Tabu search technique has been
used to achieve both these objectives. There are also certain classes of applications
in which minimizing delay variation and minimizing number of steiner nodes are
important parameters along with minimizing cost and minimizing delay. Due to the
non-deterministic nature of the network state, QoS measures and other objectives
are imprecise. Fuzzy logic provides a suitable mathematical framework to address
such a problem. In this thesis, a fuzzy logic based tabu search algorithm is also
proposed to find a low cost multicast tree with desirable QoS parameters. If nodes
are allowed to join or leave the multicast group any time during the lifetime of
the multicast connection, it becomes another problem called as Dynamic Multicast
Routing Problem. A greedy algorithm is also proposed in this thesis for Dynamic
Multicast Routing Problem with desirable QoS parameters.

In Chapter 2, multicast routing problems have been described. All problems
studied in this thesis are NP-complete. The optimal solutions for these problems
are therefore too complex, and can only be used to benchmark heuristic solutions. In
chapter 3, we surveyed previous work on multicast routing. In Chapter 4, solutions
for multicast routing problems have been proposed. In Chapter 5, experimental
results have been presented. Our proposed algorithm is then compared with some
previous algorithms namely: KMB, RPM, KPP, CAO and BSMA. In Chapter 6,

a greedy approach for Dynamic Multicasting Routing Problem has been discussed

105

along with simulation results.

7.2 Conclusions

Following are the conclusions of our research.

e A pew tabu search algorithm has been proposed for both unconstrained and
delay constrained multicast routing problem. Comparison with other reported
algorithms suggest that search performed by our proposed algorithm is more

intelligent and of superior quality than that of others.

e QoS parameters targeted are guaranteed throughput, end-to-end delay, and
delay variation. Tree cost is measured by the utilization of tree hnks Also
tree cost is highly correlated with the number of Steiner tree nodes, i.e., nodes
not members of the multicast group. A fuzzy logic based tabu search algorithm

to find a low cost multicast tree with desirable QoS parameters is proposed.

e In all three problems namely: MST, CMST, and MOST, tabu search progres-
sively zoomed towards a better solution subspace, a desirable characteristics

of approximation iterative heuristics.

e A new greedy algorithm for dynamic join/leave of multicast group members

is proposed to find a low cost multicast tree with desirable QoS parameters.

106

7.3 Future Work

Following are the suggestions for the future work.

e Performance of tabu search and other previous heuristics have been evaluated
using simulation at randomly generated wide-area networks. Due to the rapid
growth of wide-area networks, researchers are currently developing mechanisms
to organize these networks into hierarchies of sub-networksj We therefore

recommend that future work should use hierarchical network models.

e A distributed multicast routing algorithm can be proposed instead of central-

ized approach.

e A multicast routing algorithm can be proposed that can also consider sudden

failures of links.

Bibliography

[1] Sadiq M. Sait and H. Youssef. “General Iterative Algorithms for Combinatorial
Optimization”. IEEE Computer Society, 1999.

[2] D. Kosiur. “IP Multicasting: The Complete Guide to Interactive Corporate
Networks”. Willey Computer Publishing, 1998.

[3] M. Imase and B. M. Waxmnan. “Dynamic Steiner Problem”. SIAM J. Disc.
Math, 4(3):369-384, August 1991.

[4] B. M. Waxman. “Routing of Multipoint Connections”. IEEE Journal on Se-
lected Areas in Comm,, 6(9):1617-1622, December 1988.

[5] H. Lin and S. Lai. “VTDM - A Dynamic multicast routmg problem”. Proc.
IEEE INFOCOM, pages 1426-1432, 1998.

[6] S. Hong, H. Lee, and B. H. Park. “An efficient multicast routing algorithm
for delay-sensitive applications with dynamic membership”. Proc. IEEE IN-
FOCOM, pages 14331440, 1998.

[7] G. Manimaran and S. Raghavan. “A rearrangeable algorithm for the construc-
tion of delay-constrained dynamic multicast trees”. IEEE/ACM Transactions
on Networking, 7(4):514-529, Aug 1999.

(8] B. M. Waxman. “Performance Evaluation of Multipoint Routing Algorithms”.
IEEFE INFOCOM, pages 980-986, 1993.

[9] H.F. Salama, D.S. Reeves, and Y. Viniotis. “Evaluation of Multicast Routing
Algorithms for Real-Time Communication on High Speed Networks”. IEEE
Journal on Selected Areas in Communication, 15:332-346, April 1997.

[10] S. Rampal and D. Reeves. “An Evaluation of Routing and Admission Control
Algorithms for Multimedia Traffic’. Computer Commaunications, 18(10):755~
768, October 1995.

107

108

[11] P. Kompella, C. Joseph, and C. George. “Multicast Routing For Multimedia
Communication”. IEEE/ACM Transactions on Networking, 1(3):286-292. June
1993.

[12] Q. Zhang and Y. W. Leung. “An Orthogonal Genetic Algorithm for Multi-
media Multicast Routing”. IEEE Transactions on Evolutionary Computation,
3(1):53-62, April 1999.

[13] F. Hwang and D. Richards. “Steiner Tree Problems”. Networks, 22(1):55-89.
January 1992.

[14] B. M. Waxman. “Routing of Multipoint Connections”. IEEE Journal on Se-
lected Areas in Comm,, 6(9):1617-1622, Dec 1988.

[15] R. Prim. “Shortest Connection Networks and Some Generalizations”. The Bell
Systems Technical Journal, 36(6):1389-1401, November 1957.

[16] M. Doar and I. Leslie. “How Bad is Naive Multicast Routing”. In in Proceedings
of IEEE INFOCOM 93, pages 82-89, 1993.

[17] C. S. Ricudis, M. Saltouros, and M. Angelopoulos. “An efficient evolutionary
algorithm for (near-) optimal Steiner trees calculation: An approach to routing
of multipoint connections”. Third International Conference on Computational
Intelligence and Multimedia Applications, pages 448-453, Sept 1999.

(18] A. Hac and K. Zhou. “A New Heuristic Algorithm For Finding Minimum-cost
Multicast Trees with Bounded Path Delay”. International Journal of Network
Management, 9:265-278, 1999.

[19] L. Guo and I. Matta. “QDMR: An Efficient QoS Dependent Multicast Routing
Algorithm”. Proceeding of the Fifth IEEE Real-Time Technology and Applica-
tion Symposium, pages 213-222, June 1999.

[20] A. Shaikh and K. Shin. “Destination-Driven Routing for Low- Cost Multicast”.
IEEE Journal on Selected Areas in Commaunications, 15(3):373-381, April 1997.

[21] A. S. Tanenbaum. “Computer Networks”. Prentice-Hall Publishing Company,
1996.

[22] C. S. Sung and J. M. Hong. “Branch-and Price Algorithm for a multicast
routing problem”. Journal of the Operational Research Society, 50(11):1168—
1175, 1999.

[23] Q. Zhu, M. Parsa, and J. Garcia. “A Source-Based Algorithm for Delay-
Constrained Minimum-Cost Multicasting”. In In proceedings of IEEE INFO-
COM 95, pages 353-360, 1995.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

109

R. Widyono. “The Design and Evaluation of Routing Algorithms for Real-Time
Channels”. Tech report icsi tr-94-024, University of California at Berkeley,
International Computer Science Institute, June 1994.

B. K. Haberman and G. N. Rouskas. “Cost, Delay, and Delay Variation Con-
scious Multicast Routing”. Technical report, Department of Computer Science,
North Carolina State University, march 1997.

A. Waters. “A new Heuristic for ATM Multicast Routing”. In proceedings of
the Second IFIP Workshop on Performance Modeling and Evaluation of ATM
Networks, pages 8.1-8.9, July 1994.

H. Salama, D.Reeves, Y. Viniotis, and T.L. Sheu. “Comparison of Multicast
Routing Algorithms for High-Speed Networks”. Technical report, TR 29.1930.
IBM, September 1994.

D. Chakraborty, C. Pornavalai, G.Chakraborty, and N.Shiratori. “An Efficient
Routing to Minimize the Cost for Dynamic Multicasting”. IEEE Asia Pacific
Conference on Circuits and Systems, Bangkok, Thailand, pages 463-466, Nov
1998.

M. Kang. “An Optimal Dynamic Multicast Routing Algorithm for Multimedia
Applications”. Proceedings of the 1997 International Conference on Multimedia
Computing and Systems, 1997.

H. Fujinoki and K.J. Christensen. “The New Shortest Path Tree (SBPT) Al-
gorithm for Dynamic Multicast Trees”. Proceedings of the 24{th Conference on
Local Computer Networks, 1998.

Y. Dalal and R. Metcalfe. “Reverse Path Forwarding”. Communications of the
ACM, 21(12):1040-1048, December 1978.

S. Deering and D. Cheriton. “Multicast Routing in Datagram Internetworks
and Extended LANs”. ACM Transactions on Computer Systems, 8(2):85-110,
May 1990.

F. Glover. “Tabu Search; A tutorial”. Technical report, University of Colorado,
Boulder, February 1990.

F. Glover. “Tabu Search and adaptive memory programming- advances, ap-
plications and challenges”. Technical report, College of Business, University of
Colorado at Boulder, 1996.

110

[35] Y. M. Sharaiha, M. Gendreau, G. Laporte, and I. H. Osman. “A Tabu Search
Algorithm for the Capacited Shortest Spanning Tree Problem”. Networks,
29:161-171, 1997.

[36] J. M. Mendel. “Fuzzy logic systems for engineering: A tutorial”. Proceeding of
the IEEE, 83(3):345-377, March 1995.

[37] H. J. Zimmerman. “Fuzzy Set Theory and Its application”. Kluwer Academic
Publishers, third edition, 1996.

[38] R.Y. Yager. “On ordered Weighted averaging aggregation operators in Multicri-
teria Decision Making”. JEEFE Transactions on Systems, Man, and Cybernatics,

pages 345-377.
[39] L. A. Zadeh. “Fuzzy Sets”. Information Contr., pages 338-353, 1965.

[40] E. Shragowitz, H. Youssef, Sadiq M. Sait, and H. Adiche. “Fuzzy Genetic Al-
gorithm for VLSI Floorplan Design”. International Conference on Applications
of Soft Computing, SPIE’97, 1997.

[41] H. F. Salama et al. “MCRSIM simulator source code and Users Man-
ual”. Center for Advanced Computing and Communication, North Car-
olina State University, Raleigh, 1995. Available by anonymous ftp at
ftp.csc.ncsu.edu: /pub/rtcomm.

[42] D. Waitzman, C. Partidge, and S. Deering. “Distance Vector
Multicast Routing Protocol”, November 1988. Internet RFC 10753,

http://ds.internic.net/rfc/rfc1075.txt.

[43] L. A. Zadeh. “The concept of a linguistic variable and its application to ap-
proximate reasoning”. Information Sciences, 8:199-249, 1975.

111

Vitae

Mubammed Atif Tahir.
Born in Karachi, Pakistan.

Received Bachelor of Engineering (B.E.) degree in Computer Engineering from

NED University, Karachi, Pakistan in December 1997.

Worked as a Computer Programmer in Karachi, Pakistan from January 1998

to August 1999.

Joined the Department of Computer Engineering at KFUPM as a Research

Assistant in September 1999.

Completed Master of Science (M.S.) in Computer Engineering at KFUPM in

July 2001.

Email: matiftahir@yahoo.com

