A C-Based High Level Synthesis System

by

Hassan Fakhri Al-Sukhni

A Thesis Presented to the
FACULTY OF THE COLLEGE OF GRADUATE STUDIES
KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
In

COMPUTER ENGINEERING

January, 1994

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road. Ann Arbor, Mi 48106-1346 USA
313:761-4700 800.521-0600

Order Number 1360384

A C-based high level synthesis system

Al-Sukhni, Hassan Fakhri, M.S.
King Fahd University of Petroleum and Minerals (Saudi Arabia), 1994

U-M-1

300 N. Zeeb Rd.
Ann Arbor, MI 48106

a
! .
o -

~

<
.

el e e Je Sl el el el

}
i

- X o191 ol o e e 9 e e 9 9t el el et ol e ool el el e

A C—-Based High Level
Svnthesis System

BY
Hassan Fakhri Al-Sukhni

A Thesis Presented to the
FACULTY OF THE COLLEGE OF GRADUATE STUDIES

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN, SAUDI ARABIA

In Pariai Fulfiiment of the
Requirements for the Degree of

MASTER OF SCIENCE

In

Computer Engineering

January 1994

,%
%
|

)

el el el el el el el el el el el el el

S S S R Y S S I T kB S Tk S S R S B S JE SR SR SE SR kX

King Fahd University of Petroleum & Minerals
College of Graduate Studies

This thesis, written by HASSAN FAKHRI AL-SUKHNI under the direction of his
Thesis Advisor and approved by his Thesis Committee, has been presented to and
accepted by the Dean of the College of Graduate Studies, in partial fulfillment of the
requirements for the degree of MASTER OF SCIENCE in COMPUTER
ENGINEERING.

Thesis Committee
Seday Ssk //M

AN
1" 5am 99 M 4. 7994

Thesis Chairman Co-Chairman Member

1.1.94
Department Chairman

ot

Dean, College of Graduate Stu\ﬁes

-1 a2y
Date

A C-Based High-Level Synthesis System

Hassan Fakhri Al-Sukhni

Computer Engineering

January 1994

Dedicated to

My Parents

Acknowledgment

Praise be to Allah for guiding and helping me in every aspect of this life. Peace

and mercy be upon His last Prophet.

I wish to thank my thesis advisor Prof. Mohammad S.T. Benten for his contin-
uous guidance, help, and encouragement, co-chairman Prof. Sadiq M. Sait who
introduced me to the area of high-level synthesis, and Prof. Habib Youssef for their
active support, help, and valuable suggestions. I also wish to thank faculty, research
assistants, graduate assistants and the staff members of the Computer Engineering

Department for their support, especially the chairman Prof. S. Abdul Jauwad.

I wish to thank Eng. Habib Mansour for his support and encouragement at the

early stage of my study and Mr. Ibrahim Abushanab for his continuous help and

encouragement.

il

Contents

List of Figures
Abstract(English)
Abstract(Arabic)
1 Introduction
2 Literature Review

3 System Overview

3.1 General approach

3.2 Assumptions on Input Specifications

..........

...................

..................

833 WhY AL ? © o vt e e e e

3.4 The Need for Pseudo Assembly Language

3.5 Pseudo Assembly Language (PAL)

4 Scheduling

iv

................

...................

vii

14

14

20

22

23

24

31

4.1 Overviewof Scheduling 31
4.2 Problem Formulation 34
4.3 Existing Scheduling Algorithms 39
4.3.1 As-Fast-As-Possible Scheduling 40
4.3.2 Dynamic Loop Scheduling, DLS 48
4.4 Loop Based Scheduling: ¢ new approach 92
4.4.1 Partitioning the CFG into Subgraphs 53
4.4.2 Scheduling Individual Subgraphs 57
4.4.3 Combining schedulesof subgraphs. 66
4.5 Experimentalresults,, 67
451 Benchmarks, 67
452 Howmuchreduction?. 69
Data Path Allocation 77
51 Introduction, 77
5.2 Existing approaches to Allocation 79
5.3 Allocationinoursystem 81
5.4 ExperimentalResults 89
Internal Data Structure (IDS) 99
6.1 Introduction 99

6.2 IDSdescription i it e e 101

6.2.1 Thefield cndreftable 107

622 Theregsfield, 107

623 Thehwfield......... 108

6.2.4 The gotos and branchesfields 108

625 Therchrsfield. 109

6.26 Thereachfield, 110

6.2.7 Theblocksfield, blks 111

7 Conclusions and Future Work 121
71 Conclusions e 121
72 Future Work oo 124

vi

List of Figures

3.1
3.2
3.3
3.4
3.5
3.6
3.7

3.8

4.1
4.2
4.3
4.4
4.5

4.6

HLS formulated a series of transformations. 15
Proposed approach overview.. 17
Machine independence of proposed approach.. 18
KFUPM HLS system components. 19
Introduced dependenciesin AL. 24
PAL Definition in YACC format. 26
Prefetch Example: C-Code. 29
Prefetch Example: Convex AL Code. 30
Prefetch Example: PALCode. 36
Prefetch Example: IDSCode. 37
Prefetch Example: Control Flow Graph. 38
Prefetch Example: DAGand paths. 41
Prefetch Example: Constraints and interval graphs for path 1. 44
Prefetch Example: Cuts overlapping. 46

vii

4.7 Prefetch Example: Cutsof the DLS. 51

4.8 Prefetch Example: Partitioning the CFG into Subgraphs. 54
49 Subgraph Breaking. 0 0 oo 56
4.10 Path Generation Algorithm. 60
4.11 Prefetch Example: Paths’ Generationin LBS. 61
4.12 Prefetch Example: FSM Controller. 66

4.13 The reduction of the number of paths in LBS compared to AFAP. . . 73
4.14 The reduction of the number of paths in LBS compared to AFAP. . . 74

4.15 The reduction of the number of paths in LBS compared to AFAP. . . 75

5.1 Allocation Algorithmin KHLS. 83
5.2 Register Allocation Algorithm.. 85
5.3 Prefetch Example: IDSCode. 87
5.4 Differential Equation Example. 92
55 Counter Example.. 93
5.6 Prefetch Example. 94
57 GCDExample. i 95
5.8 TLC Example: C-Code. 96
5.9 TLC Example: PAL-Code. 97
5.10 TLC Example: AHPL-Code. 98

viii

6.1 Crossreferencetable. e 102

6.2 Statedatastructure. e 103
6.3 Prefetch Example: Translation into statesof the IDS. 105
6.4 Prefetch Example: PALCode. 106
6.5 Conditions referencetable. o 000 107
6.6 branches and gotos data structure., 109
6.7 The rchrsdatastructure. 109
6.8 The reachdatastructure.. 110
6.9 Blockdatastructure. e 111
6.10 Prefetch Example: Blocks of the _prefetch state. 112
6.11 The stmtdatastructure, 113
6.12 The SRC_PTR data structurerecord 118
6.13 The CND_PTR data structure records 119
6.14 Storage of conditions.o o oL 120

ix

Abstract

Name: HASSAN FAKHRI AL-SUKHNI

Title: A C-Based High-Level Synthesis System
Major Field: Computer Engineering

Date of Degree: January 1994

High-Level Synthesis (HLS) refers to the process of translating a high-level specification
of the behavior of a circuit into a structural design. The outcome is e net-list of Register
Transfer Level (RTL) components, such as ALUs, registers and multiplezers.

Because of its complexity, HLS is broken into several steps, where a subset of the
overall problem is solved in each step. The steps move the source specification into a
target specification, through several intermediate forms.

Ezisting HLS systems fall into two broad categories. The first category takes a hardware
description language (HDL) as its source specification. Many structural biases are present
in all existing HDLs. These biases lead to a restricted view of the design space. For
the second category, a subset of some known high-level programming language is used to
describe the behavior of the intended design. The identification of the subset to use is a

problem by itself. Another problem is that the user must think within the boundary of the
subset.

In this work we present a new approach to HLS, where the system takes its source
specification in any high-level programming lunguage, without any restrictions. This is
facilitated by the novel idea of using the programming language compiler to produce the
first intermediate form in the transformation process. This first intermediate form is the
assembly language (AL). The use of the high-level language compiler serves two objectives.
The first is the utilization of the optimization carried out by the compiler. The second is
to avoid restricting the language to certain data types or control constructs.

Due to its machine dependency and complerity, AL is transformed into another form,
which is machine independent and has simpler syntaz and semantics. We refer to this
form as Pseudo Assembly Language (PAL). PAL descriptions are used by the system
components to produce the intended hardwere in an RTL description language. AHPL is
used as an RTL description language in the system.

The major contributions of this work are the introduction of this new methodology of
tackling HLS problem and the introduction of a new heuristic scheduling algorithm based
on the path-based scheduling originally presented by R. Camposano in [21].

Chapter 1

Introduction

High-Level Synthesis (HLS) refers to the process of translating a high-level specifica-
tion of the behavior of a circuit into a structural design, in terms of an interconnected

set of RTL components, such as ALUs, registers and multiplexers.

The main tasks performed by a general-purpose HLS system are:

1. Compilation of the source specification language into an internal representa-
tion, referred to as the Intermediate Form (IF). Usually the intermediate form
consists of a data flow graph and/or a control flow graph. This step is a
straightforward mapping of the behavioral description. It is very similar to

the compilation task of programming languages.

2. Optimization of the internal representation. This step involves both compiler-
like and hardware-specific optimization. Examples of compiler-like optimiza-

tion include:

dead code elimination.

¢ constant propagation.

e common sub-expression elimination.

e variable disambiguation by global flow analysis.
¢ code motion.

¢ in-line expansion of sub-programs.

loop unrolling.
Hardware-specific optimization include:

o life-time analysis to perform variable folding.
e substituting multiplication and division by shifts.
e increasing operator-level parallelism.
e creating concurrent processes.
3. Scheduling and Allocation. Scheduling assigns each operation to a control-

step. A control step is a measure of time. It is equivalent to a state in

a finite state machine, or to a micro-program step in a micro-programmed

controller. Scheduling is sometimes called control synthesis or control step
scheduling. Allocation or Data Path Synthesis, assigns each operation to a
piece of hardware. Allocation involves both the selection of the type and
quantity of hardware modules from a library (also called module assignment)
and the mapping of each operation to the selected hardware (module binding).

Scheduling and allocation are considered to be the heart of the HLS process.

4. Output generation produces the design in the desired format as required by a
logic synthesis tool and/or a finite state machine synthesis tool. The resulting
design is usually output in an RTL language, or as an interconnected set of

RTL components.

HLS has drawn a lot of attention in the last decade. A large amount of work
has already been reported {1]..[20]. The interest in HLS is due to several reasons,

among these are:

1. Unprecedented circuit complexity that emerged as a result of developments
in LSI and VLSI technologies. The design, modeling and implementation of
such circuits have placed demands on highly structured and rigorous design

methods as a means for mastering and managing this complexity.

2. The same developments have enhanced the feasibility of designing, building
and studying computer hardware systems of enormous organizational complex-

3

ity. Again the need for structuring the design process and design descriptions
seems imperative if designers are to produce well-behaved, understandable,

and intellectually manageable systems.

3. Theoretical pressure was forcing itself on the designers, in the sense that de-

signs’ correctness should be verified and circuits should have fewer design er-

rors.

4. ASICs are produced in smaller quantities and their life times are shorter.
Therefore the design cost is becoming too expensive to be carried by expert
humans. The ideal solution is to automate the process, making the design less

expensive but obviously at the expense of design quality (performance).
5. Making the search through the design space more feasible.
6. To give an elegant way of design documentation.
7. High level descriptions constitute an excellent communication media.

8. To make the IC technology available to a wider slice of people.

High-level synthesis is a very involved process. There are several factors which

account for this complexity:

e Optimization Problem: Even sub-problems of the synthesis problem such as

scheduling or allocation have been proven to be NP-complete.

4

e Partial Evaluation Problem: The evaluation of partially completed designs is

very complex, since the outcome could not be predicted before completing the

design.

e Design strategies are problem dependent: To choose the proper design strategy
that will best suit the problem is a very difficult task in an automated syn-
thesis system. Usually such decisions are made by the user as in the System

Architect’s Workbench [2], [8].

e Design process steps may change with the application: The HLS process is
broken down into steps, which take the source specifications (SS), through
possibly several intermediate forms (IFs), into a target specification (TS),
Figure 3.1. The order in which the steps are carried out is usually problem

dependent.

The following chapter reviews the existing literaturc on HLS systems. Chapter 3
describes the HLS system implemented. The system is called KFUPM HLS, KHLS
System. The chapter explains as well the defined PAL. Chapter 4 is devoted to the
scheduling algorithm introduced and used in the system. In Chapter 5 the Internal
Data Structure, IDS, of KFUPM HLS system is presented. Chapter 6 details the
allocation algorithm used. Chapter 7 describes the translation from IDS into AHPL.

Finaily, conclusions are drawn in Chapter 8, and future work is suggested.

Chapter 2

Literature Review

The roots of HLS can be traced back to the late 60s [1]. In 1969 the ALERT system
[3], might be one of the earliest HLS systems. By mid seventies the field gained more
and more popularity, and several systems were reported [10]-[19]. Among them were
the Carnegie-Mellon University’s (CMU) Expl system [1], the CMU-DA system [9],
[10], the University of Kiel's MIMOLA system [17], and the University of Karlsruhe's
CADDY/DDL system [20]. In the last decade, work on HLS has proliferated and
several systems were implemented. Neither the space, nor the scope of this work
allows the description of all these systems. The interested reader is referred to [2]
for an excellent survey. In this chapter a brief description of some of the well known

systems that have been reported in the literature is presented.

One of the first HLS systems is the IBM’s ALERT system [3], [4]. It takes as
source specifications, descriptions in a language based on Iverson notation. The lan-
guage supports arithmetic and logic operations, assignments, branching, arrays, etc.
The behavioral description describes storage, registers, and any pre-defined piece of
logic, such as adders or decoders. The intermediate form is a data-flow/control-flow
design file, representing the initial structure of the design. This is the output of the
compilation step. In the optimization step, macros are expanded, array referencing
is replaced with logic to select the appropriate element, and common sub expression
elimination is performed. The same intermediate form is used to perform schedul-
ing and data path synthesis. In scheduling, the user is allowed to pre-specify all or
part of the schedule. Initially, all operations are assigned to a single control step.
This step is then split at statements that are destinations of Goto instructions,
after conditional branching statements, and whenever a variable receives a second
value in a given control step. In data path synthesis, a data flow analysis is used
to assign values to flip-flops (or latches), storing those values that are produced in
one control step and used in a later control step. The target specification of the
system is an RTL design, specified in terms of Boolean equations. A complete IBM
1800 computer was synthesized automatically, requiring, however, more than twice
as many components as used in an equivalent design that was produced manually

(by a human designer) [4].

i |

The System Architect’s Workbench of Carnegie-Mellon University — [1], [2], [5]-
[10] — is the result of an extensive work that started in the mid 70’s [5]. Literature on
the system is still being published [6]-[8]. Several synthesis tools were incorporated
in the system for various target architectures. It supports three synthesis paths: a
general synthesis path, a pipelined-instruction-set-processor-specific synthesis path,
and a microprocessor-specific synthesis path. The system takes an extended IFPS
description as its source specification. The IFPS extension supports processes and
message-passing inter-process communication, and user definable operations. It can
take its source specification in VHDL as well. It uses the Value Trace (VT) [34], a
data-flow/control-flow graph, as its intermediate form. The system supports behav-
ioral and structural transformations, some to improve the efficiency of the control
structure, others to allow the user to explore algorithmic level design alternatives.
Examples of structural transformations include: in-line expansion and formation
of procedures, code motion, combination of nested decoding operations, etc. Ex-
amples of the algorithm-level transformations include adding concurrent processes
to a design, pipelining a design, and structurally partitioning a design. Depend-
ing on the chosen synthesis path, the proper scheduling routine is invoked. The
CSTEP scheduler used in the general synthesis path uses the list scheduling tech-
nique on a block-by-block basis, with timing constraint evaluation as the priority
function. Operations are scheduled into control steps one bhasic block at a time,

with blocks scheduled in execution order using a depth-first traversal of the control

flow graph. For each basic block, data ready operator are considered for placement
into the current control step, using a priority function that reflects whether or not
that placement will violate timing constraints. Resource limits may be applied to
limit the number of operators of a particular type in any one control step, i.e., area
restrictions. A data path synthesis routine may be invoked, again depending on
the chosen synthesis path. The EMUCS data path allocator used in the general
synthesis path attempts to bind data flow elements onto hardware elements in a
step-by-step manner. In each step, all unbound data flow elements are considered.
To decide which element to bind, EMUCS maintains a cost table, listing the cost
of binding each data flow element onto each hardware element. For each unbound
data flow element, EMUCS calculates the difference of the two lowest binding costs,
then binds the data flow element with the highest difference to the hardware element
with the lowest cost. This attempts to minimize the additional cost that would be
incurred if that element were bound in a later step. The system outputs either a
CMOS standard cell or TTL implementation [1]. Examples of hardware synthesized

by the system include the Intel 8251, and the IBM System/370 [2].

Carleton’s HAL (Hardware ALlocator) system [11]-[15] takes the behavioral
source specification as a manually entered data-flow/control-flow graph. This graph
is used for internal processing. The system combines the Force-Directed Scheduling

(FDS) algorithm presented in {11} with list scheduling to produce a Force-Directed

List Scheduling (FDLS) algorithm. Whereas FDS constrains the length of the sched-
ule, list scheduling constrains the number of functional units, or hardware. In FDLS,
force is used as the priority function, where among the ready operations, the oper-
ation with the lowest force is deferred (not considered for the current control step).
This process is continued until the constraint on the number of functional units is
met. Data path synthesis is then performed, where functional units are allocated
to perform the scheduled operations. Following that, a rule-based expert system,
which takes into account the available cells, their area cost, and the timing con-
straints, is invoked to bind the operations to the allocated functional units. The
target specification of the system is an interconnected sct of RTL components. The
system was used to synthesize a fifth-order digital elliptic wave filter and a pipelined

16-point digital FIR filter.

The above systems require that the behavioral specifications be described in a
special functional specification language. Attempts to build Top-Down high-level
synthesis systems that generate hardware from software algorithms written in ordi-
nary programming languages have been reported in [2], [16]-[19]. There are several

reasons in support of using ordinary programming languages for behavioral descrip-

tions:

1. Special purpose structural specification languages are inconvenient. Their
grammars require that the target architecture he almost completely defined

10

before using the language [19]. This requirement defeats the purpose of HLS,
namely to describe a system behavior without any reference to structural or

architectural details.

2. Wider slice of hardware designers would be able to use HLS systems. This is

a direct result of the popularity of ordinary programming languages.

3. Transportability of the description to any HLS system that uses the same

language as its source specification.

The YASC silicon compiler automatically synthesizes general cells from behav-
ioral descriptions [16]. It transforms the behavioral descriptions into Boolean level
descriptions, which are synthesized into custom cells. The MIMOLA system [17],
takes input descriptions in the MIMOLA language - a Pascal-like language that in-
cludes recursive procedure calls and multi-dimensional arrays, and generates hard-
ware automatically. The CADDY system [2] generates structural descriptions from

the DSL language, which is also a Pascal-like language.

Stanford’s Flamel System [18] takes as source specification a small subset of
Pascal. This subset is limited to single, parameterless, non-recursive procedure,
supporting only single-dimensional arrays, and not allowing multiplication, division
and modulo operations except by constants that are powers of two. The source

specification is compiled into a block graph that shows the transfers between basic

11

blocks of the algorithm, and to a Directed Acyclic Graph (DAG) that represents the
data flow within each basic block. A graph combining both the data flow and control
flow, called dacon, is used as an intermediate form. Block-level transformations are

automatically applied to produce the dacon with the fastest implementation. The

block-level transformations identified are :

(a) Line merge, that merges adjacent blocks.

(b) Alt merge, that combines a block followed by two or more conditionally exe-

cuted blocks into a single block.
(c) Loop unrolling,

(d) Tat-to-tab, that moves test at top of a loop to test at bottom.

Then algebraic transformations are used to reduce the height of the dacon. Schedul-
ing uses as soon as possible (ASAP) strategy with unlimited hardware. Then it
attempts to fold together pairs of resources (functional units, registers, buses, etc.)
that perform the same function or which can be gencralized to perform the same
function. If the cost exceeds the constraint, the schedule is lengthened. The target
specification is a bit-slice architecture. Examples of hardware synthesized by Flamel

include a bubble sorter, a string convertor, a hash table manager, and others that

could be found in [18].

12

NTT’s HARP (Hardware Architecture Ruling Processor) is another example of
a top-down HLS system [19]. It takes as source specification a subset of ANSI
FORTRAN77, which supports constant, integer, real, logical variables and arrays,
subroutines and function calls, but does not support loops with indefinite iteration.
It uses a data flow graph as its intermediate form. The scheduling strategy used
is ASAP, together with a parallelism evaluator (PE), which does the binding of
operations as well. The operations in the PE are bound to two types of functional
units: the first type consists of functional units that perform a pre-specified set of
operations, and the second type is defined automatically by the system, but limited
by a database that specifies permissible combinations of operations in a functional
unit. Variables are bound to registers by performing life-time analysis first. Then an
algorithm similar to the left-edge algorithm used in channel routing is invoked. This
algorithm attempts to minimize the number of registers. Buses and multiplexers are
inserted wherever needed. The target specification is an RTL description that is fed
to an RTL synthesizer. Examples of hardware synthesized by the system include a

4-points FFT, and a biquad filter.

The aforementioned systems are just examples of the large amount of work that
has been done in HLS. These systems reflect the major contributions to the field.
Needless to say that the reported work on sub-problems of the field is even larger,

and including it here is out of the scope of this work.

13

Chapter 3

System Overview

3.1 General approach

To overcome the complexity of the HLS problem, a stepwise approach is adopted.
The first step takes the source specification and transforms it into a first intermediate
form, say IF), which is closer to the target specification. The k** step transforms
IF._, to IF;. It is always the case that IF} is closer to hardware (less abstract)

than I Fy,IF5,..,IF}_,, see Figure 3.1.

14

Solve a part of the
problem

Solve a part of the
problem

Y
S_g ve remaining of the
zrg_blem

Problem Solved

Figure 3.1: HLS formulated a series of transformations.

15

All existing solutions fall into two major classes. The first class performs HLS
from Hardware Description Languages, HDLs. The second class performs HLS from
a subset of a specific high level programming language. In this work a different
approach is adopted. Synthesis is performed from any high level programming lan-
guage, without restrictions on the language data types or control constructs that
might be used, except for subroutines which are restricted at the time being to a
certain way of usage. Figure 3.2 gives an overview of the approach. The salient fea-
tures of this approach are the use of Assembly Language, AL, and the introduction

of what we call Pseudo Assembly Language, PAL. The advantages of AL and PAL

are discussed next.

The first step in our approach is the compilation of the source high-level specifi-
cation into AL. This is performed by the language compiler. An assembly language
translator is invoked next to produce PAL, which is the actual input specification
to the HLS system. In this work the C-language is used as the input specification,
however other high-level languages could easily be used as illustrated in Figure 3.2.
The described HLS system could be used in any machine provided that the proper
AL translator is built, Figure 3.3. PAL will be used to build the Internal Data
Structure (IDS), of the system, which is similar to a Control/Data Flow Graph,
CDFQG, using the IDS Extractor, Figure 3.4. IDS is described in detail in a following

section.

16

-

/

: Dependant
|
_—

PASCAL :

FORTRAN :

|
|
1
I
i
1
G
t
\

N
Machine \
1
[
i
l o,
: | A
'C ! L ,’
10 ! T |
: M i L |
- P | a j
I 1 . \
L - 1 v I
E . ' . a .
LB ' |
R ! o 1
1S ! f \
Lol 1 \
v] ™ e e e e e e e = = = -
|
Language !
Independant !
~ 7/

Figure 3.2: Proposed approach overview.

17

- wm Em e e = e

<4+-voce-s-o0-

/

Machine Independant HLS

[

: ..._

a<a

-~ - -—— -

B T T

-~

PR N ¥ T T

Figure 3.3: Machine independence of proposed approach.

18

/ IDS Extractor \
(IDS)

(.- Scheduler)
{: Controller Svinthesizer |

| “Data Path Svnthesizer |

AHPL
Svnthesizer

Figure 3.4: KFUPM HLS system components.

19

IDS is used by the system scheduler to synthesize a Finite State Machine (FSM)
controller, satisfying, if any, user-specified constraints on the number of functional
units and clock cycle, while minimizing the number of states of the FSM. The
scheduler is the heart of the system. A heuristic algorithm is developed to carry
out the scheduling task. The algorithm, called here Loop-Based Scheduling (LBS)
is based upon the As-Fast-As-Possible (AFAP) path-based scheduling algorithm
presented by R. Camposano [21]. A separate section in Chapter 4 is devoted for
the LBS algorithm. Allocation is done alongside with scheduling, an As-Soon-As-
Possible (ASAP) algorithm is used to allocate hardware. Allocation is described in
a Chapter 5. RTL descriptions in AHPL are generated from IDS using the RTL
synthesizer (Figure 3.4). Generated RTL descriptions are finally fed to the AHPL

silicon compiler to generate the fabrication masks.

3.2 Assumptions on Input Specifications

As mentioned earlier, no restrictions are imposed on the input language. However,
certain assumptions have to be made in order for the user to communicate with the
system properly. The assumptions are quite simple, and not related to the constructs
or types that might be used in the behavioral descriptions of the intended circuit, but

rather to the behavior of the circuit. Behavioral description means the description

20

of the way the intended circuit behaves with the outside world. Formally stated,
a behavioral description of a circuit is the description of how the circuit maps its

inputs to its outputs. Thus, the following is assumed about the input specification.

1. Input/Output ports of the described circuit are assumed to be defined as
“ezternal” variables in the input specifications. The second assumption has
already been introduced in the previous sub-scection and is repeated here for

completeness.

2. Subroutine calls are allowed. However they are assumed to have no parame-

ters, and do not use local variables. Globally defined variables could be used

freely.

The rest of the assumptions are not related to the input specifications but

rather to the system implementation.

3. Hardware modules are taken from a library where for each module the following
information shall be supplied.
¢ Time-delay for the hardware unit.
¢ Maximum allowable number of units to be used in the implementation.

e The name used to access the module from the AHPL Combinational
Logic Units library. This is needed for the generation of AHPL output

21

description.
4. As for the generated hardware the following is assumed.

¢ Single phase clocking is assumed.

e Signals and their complements are assumed to be available.

3.3 Why AL ?

There are several motivations that prompted us to use assembly language as a first

intermediate form.

1. To utilize the optimized assembly language output generated by the C-compiler.
The C-compiler already performs several optimization tasks which include, but
not limited to:

(a) Dead Code Elimination.

(b) Constant Propagation.

(¢) Common Sub-expression Elimination.
(d) Code Motion.

(e) In-line Expansion of Sub-programs.

(f) Variable Disambiguation.

22

2. Other programming languages could be accommodated in the system, as il-

lustrated in Figure 3.3.

3. The principal motivation for using AL is to avoid restricting the user to a
subset of the original programming language. In existing HLS systems, pro-
gramming languages were restricted to avoid handling complex constructs,
such as multi-dimensional arrays, user-defined data types, subroutines, etc.
Compilers already handle these problems and the generated AL does not have
such constructs. An exception is subroutine calls which require special han-
dling. Subroutines in the current implementation can have neither parameters,

nor local variables. Subroutine calls are, for the time being, expanded in-line.

3.4 The Need for Pseudo Assembly Language

AL has several limitations that could be summarized as follows:

1. AL is bound to a specific machine, which makes the transportability of the HLS
system limited to that class of machines which use the same AL instruction

set.

2. AL has too many instructions and types of instructions.

23

3. AL usually introduces new dependencies, either in the control or the data
flow. This is due to the fact that machines usually have a limited number
of registers, and some machines do not have a memory-to-memory transfer
instructions. An example for such introduced dependencies is illustrated in
Figure 3.5. The AL code introduces “tempreg” as a third variable, which is

not needed to carry the transfer operation in a hardware implementation.

varl = var2 ; load tempreg,var2
stor tempreg,varl

C-Code AL-Code

Figure 3.5: Introduced dependencies in AL.

The solution to the aforementioned AL limitations is to translate the AL into an
other form, called here Pseudo Assembly Language PAL. PAL is presented in the

following section.

3.5 Pseudo Assembly Language (PAL)

In order to make the system portable, as well as to eliminate the limitations of

AL discussed in the previous section, a new language, called here Pseudo Assembly

24

Language (PAL), is introduced. PAL was carefully designed to have the following

characteristics:

1. Simplicity: PAL has simple syntactic and semantic constructs.

2. Completeness: It is limited to a set of basic types of instructions. This set

includes:

e Data Moves
e Operations on data

¢ Control constructs
3. Teémporary-Register-Free: To make it machine independent, Figure 3.3.

4. Capable of sub-program handling. This characteristic requires further study.

Currently, this capability is not included in the language.

5. Easily mapped from AL.

PAL is informally defined ‘n “yacc” format, in Figure 3.6. PAL is intended to
hide all insignificant details for a hardware implementation. By this, PAL moves
the input specification a step toward the required target specification. Although
PAL is very much a behavioral description, it does have hardware images in the way

it is constructed, where hardware related information are kept from the assembly

25

line:
I/ empty /

line statement '\n’
statement:

[* empty */
I

instruction

|
label

label:
address
instruction:
/* empty */
I
address =" address REST

If condition Goto address

|
Goto address

REST1:
address REST

REST:
[*empty */
I
OPR address

1)

OPR:
/* To be defined according to the input assembly language */

b
address:
/* any combination of characters */

]
condition:
“ﬁa‘gs”

“Iflags”

Figure 3.6: PAL Definition in YACC format.

26

language. An example would be the translation of several assembly instructions
into the same PAL instruction, since they all have the same hardware effect, say

transferring a variable onto the other.

Simplicity of PAL, and the ease of mapping from AL are quite obvious from
the way it is defined. The completeness of PAL is inherent to the way “address”
and “OPR” are defined, where any assembly instruction could be easily included
in PAL. Temporary registers are kept in PAL, they are eliminated in a following
optimization phase. Subroutine handling is not incorporated in PAL for the time-
being, since subroutines are expanded in-line in a pre-processing step applied to the
input C-specification. Figure 3.7 shows a description of a Prefetch unit taken from
[21]. The description in [21] is in VHDL, the figure is a direct translation to C. The
AL output of the C-compiler for the Convex machine is shown in Figure 3.8. PAL
output of the AL Translator is shown in Figure 4.1. The numbers that appear at
the end of each line are added for clarity of explanation and not produced by the

AL translator.

The AL Translator carries out some important tasks other than the translation

into PAL. These tasks are:

1. Loop Identification: Loops are the key observation in the scheduling algorithm,

LBS. Loop entrance points are marked during the translation process to be

27

used later by the scheduler.

2. Semantic Processing, where for each loop, the variables that are set to a new

value within the loop body are identified, and passed to the scheduler.

28

extern int branchpc,ibus,ire;
extern int branch,ppc,popc,obus;
prefetch()

int pc,oldpc;
while (1){
Ppc=pc;
popc=oldpc;
obus=ibus+4;
if{branch)
pc=branchpc;
while(ire!=1);
oldpc=pc;
pc=pc+4;

Figure 3.7: Prefetch Example: C-Code.

29

;NO_APP
gec2_compiled.:
text
text
.align 2
.globl _prefetch
—prefetch:
ld.w _ibus,s0
add.w #4,s0
ld.w _branch,s4
ld.w .re,s3
L1:
st.w sl,_ppc
st.w s2,_popc
st.w s0,.obus
eq.w #0,s4
jbrs.t L4
ld.w _branchpc,sl
L4:
eq.w #1,s3
jbrs.f L4
mov.w sl,s2
add.w #4,s1
jbr _prefetch

Figure 3.8: Prefetch Example: Convex AL Code.

30

Chapter 4

Scheduling

4.1 Overview of Scheduling

The IDS extractor, Figure 3.4, transforms PAL into the IDS form, which is used
by the various system components for decision making. Discussion on the IDS is
delayed until Chapter 6. The IDS was designed to meet the requirements of the
scheduling and allocation algorithms. Hence, presenting the IDS would be more

convenient after presenting these algorithms.

Scheduling is defined in the context of HLS of synchronous digital systems as,

the task of assigning operations to control steps so as to minimize an objective func-

31

tion while meeting certain user specified constraints [1]. Operations are the atomic
components used to describe behavior, like arithmetic or boolean operations. A
control step corresponds to one state in a finite state machine, or to a microprogram
step. Control steps will be called controlstates or just states throughout the rest of
this work. This shall reflect the fact that the controller synthesized to control the
resulting hardware implementation is a Finite State Machine (FSM). Scheduling is
an NP-hard problem [11]. Several heuristic algorithms have been developed to find

a good solution rather than an optimal one [11}, [12], [24], [29], [23].

Scheduling algorithms have been classified in [1] into two major classes. This
classification is according to the way the algorithm develops its solution. The first
class is identified as transformational, where a default solution is picked, then a
series of transformations are applied to that solution to move it toward an accept-
able solution, where the constraints are met and the objective function is satisfied.
Examples of this class are the scheduling algorithms used in CAMAD ([24] and in
the YSC [25]. The second class is identified as iterative/constructive, where the
operations are scheduled one at a time meeting the constraints, and improving the
objective function all along. Examples of this class are the ASAP scheduling al-
gorithm [1] and the different list scheduling algorithms, like the freedom-based list

scheduling used in MAHA [26], and the force-directed list scheduling used in HAL

[12).

32

Another possible classification of scheduling algorithms can be made on the basis
of the resolution exploited in developing the solution. These are Operation Based
Scheduling (OBS) and Path Based Scheduling (PBS). OBS visualizes the CFG as
a set of operations that need be distributed among hardware resources. A schedule
can be made faster by attempting to schedule as many operations as possible in the
same control step. On the other hand operations can be assigned to control steps
so as to maximize hardware resource sharing. The schedule resulting from such
approach will be slower but more economical in terms of hardware usage. Most of
the known scheduling algorithms fall into this class. Examples are the force-directed
list scheduling in HAL [12] and the scheduling algorithm used in the YSC [25]. The
other class (PBS) visualizes the CFG as a set of execution paths. This class considers
mutual exclusion of different paths to produce its solution. Operations in mutually
exclusive paths may share the same hardware resources in the same control step.
The PBS algorithms attempt to minimize the schedule length, restricted by a set
of constraints. The constraints are usually supplied by the user in order to limit
the number of hardware units (i.e., area) and/or the timing (i.e., maximum clock
period). Algorithms that fall in this class include the As-Fast-As-Possible (AFAP)
[21], and the Dynamic Loop Scheduling (DLS) [23]. This classification is similar to

that presented in [22].

Our scheduling algorithm, Loop Based Scheduling (LBS) is a PBS algorithm that

33

heuristically solves the scheduling problem. The technique is described in detail in a
later section. In the following section we review the definitions required to formulate
the problem as presented in [21]. In section 4.3 we present the formulation of [21]
along with the AFAP scheduling algorithm. In section 4.4 DLS is presented. The
rest of the chapter is devoted to the presentation of our approach (LBS), along with

a comparison with the other two algorithms (AFAP and DLS).

4.2 Problem Formulation

In this section we recall the necessary terminology that will be used in the formu-
lation of the scheduling problem. These definitions are taken from [21] and recalled

here for the sake of completeness.

The input to the scheduling problem is a behavioral description in the form of
a directed control-flow graph, CFG, G = (V, E'). The nodes v € V represent opera-
tions to be scheduled, and the edges give the precedence relation, i.e., (v;,v;) € E iff
v; is an immediate predecessor of v; (v; is called an immediate successor of v;) . The
interpretation of G is: an operation is executed if one of its predecessors is executed.
If a node v has more than one successor, v is said to be a conditional branch. Only
one of the successors will be executed. The decision of which successor is chosen is

taken according to a condition predicate cond(v;,v;) attached to the corresponding

34

edge. If cond(v;,v;) is true, then v; is executed after v;. The conditions on out-
going edges from conditional branches must be all mutually exclusive. Conditions
are arbitrary boolean functions that are derived from conditional constructs in the
behavioral description language like IF, CASE, WHILE, etc. In PAL there is only

one construct, namely “If condition Goto address ”.

The control-flow graph has a unique first operation, v, at which execution starts.

It should be possible to reach all other operations from v;.

A longest path through the control-flow graph is a path starting at node v, and
ending at an operation with no successor. The set of all longest paths is denoted
as {P}. It represents all possible operation sequences that the specified behavior

allows, excluding repetition of cycles.

The CFG is not directly obtained from PAL, but rather from the IDS. It is worth
mentioning at this point that the C-compiler moves the constant assignments outside
loops in an attempt to minimize the loop run time. This is acceptable except for
external variables, which correspond to ports in our implementation. For a hardware
implementation, the motion of such assignments is behaviorally incorrect because
ports may change their values at any time. Hence, the value read at loop entrance
time may change whilst loop execution. The solution to this problem is included in

the IDS translator. In the translator, assignments of this type are put back inside

35

_prefetch:

L1:

s0 = dbus

s0 = s0 + #4
s4 = _branch
s3 = .ire
-ppc = sl
-popc = s2
-obus = s0

flags = s4 == #0
If flags Goto L4
sl = _branchpc

L4:

flags = s3 == #1
If flags Goto L4
s2 =sl

sl =sl + #4
Goto L1

(Read ibus port.)
(Add 4 to ibus.)
(Read branch port.)

(Read ire port. This instruction will go just after L{ label.)

(Out sl to ppc port.)

(Out s2 to popc port.)

(Out s0 to obus port.)
(Compeare branch port with 0.)
(If result is equal Goto L4.)
(Otherwise sl reads branchpc.)

(Compare s3 (ire) with 1.)

(If equal wait until reset to 0 (loop back to L§).)
(Else store sl for future need.)

(Increment sl by 4.)

(Loop back to L1.)

Figure 4.1: Prefetch Example: PAL Code.

36

_prefetch:
s0 = ibus
s0 = s0 + #4
s4 = _branch
L1:
-ppc = sl
-popc = s2
—obus = s0
flags = s4 == #0
If flags Goto L4

sl = _branchpc
L4:
s3 = _re

flags = s3 == #1
If flags Goto L4
s2 = sl

sl = sl + #4
Goto _prefetch

—10
—l11
—12
—13
—14
—15

(Read ibus port.)
(Add 4 to ibus.)
(Read branch port.)

{Out s1 to ppc port.)

(Out 32 to popc port.)

(Out s0 to obus port.)
(Compare branch port with 0.)
(If result is equal Goto L4.)
(Otherwise sl reads branchpe.)

(Read ire port.)

(Compare 33 (ire) with 1.)

(If equal wait until reset to 0 (loop back to L§).)
(Else store sl for future need.)

(Increment sl by 4.)

(Loop back to _prefetch.)

Figure 4.2: Prefetch Example: IDS Code.

37

-6

0-6-6;

/

N
~——

&-8-6

5-0-0-0

S~

—

CFG

Figure 4.3: Prefetch Example: Control Flow Graph.

the loop. This is reflected in the IDS code of the prefetch example (see Figure 4.2)
by changing the instruction “Goto L1” of the PAL code (Figure 4.1) to “Goto
_prefetch” (instruction #15). Note also the migration of the instruction “s3 = _ire”
to the second loop after the label “L4’. Figure 4.3 shows the CFG of the prefetch
example. The CFG nodes are numbered according to the statements of the IDS

code given after the “—” in Figure 4.2. The CFG is a direct translation from the

IDS code.

Operations that can be executed in parallel may be clustered in one node or
ordered arbitrarily. If they are clustered in one node, they will always be scheduled
in one control state (they will be treated as one large operation). If they are ordered,

they may be scheduled in one or more control states.

In the remainder of this chapter we present several scheduling algorithms, in-

cluding our algorithm, called Loop Based Scheduling.

4.3 Existing Scheduling Algorithms

In this section we present two Path Based Scheduling techniques. We start with
the AFAP algorithm [21]. Then Dynamic Loop Scheduling (DLS) [23] algorithm is

presented. In the following section (Section 4.4), we describe our scheduling algo-

39

rithm which adopts a loop based strategy and is called here Loop Based Scheduling

(LBS).

4.3.1 As-Fast-As-Possible Scheduling

The AFAP scheduling problem was formulated in [21] as:
“Given G = (V, E) and a set of constraints, schedule all operations v € V such that

all possible longest paths { P;} execute in the minimum number of control states and

all constraints are met.”

The AFAP algorithm consists of four main steps:

1. Transform the control-flow graph into a directed acyclic graph (DAG) and

keep lists of the loops.

2. All paths in the DAG are scheduled AFAP independently, according to the

constraints in each path.

3. The schedules of Step 2 are overlapped while minimizing the number of control

states.

4. Building the finite state machine controller.

40

006008
0000006 0000005
0-00-0-0-0-0-0-0-0-0-0-6-0-02

O-0H0-0-0-0-0-0-0-0-0-0-0-0-0 2

—
- -

Store:
12,4,iflags
15,1, True

(b)

(a)

Figure 4.4: Prefetch Example: DAG and paths.

41

In the first step, the CFG is converted into a DAG by eliminating the loops,
and keeping lists for such eliminations along with the conditions of transfer either
back to the loop or out of it. This is illustrated in Figure 4.4(a), where the CFG of
Figure 4.3 is shown as a DAG. Note that nodes 1 and 2 are combined together, This
combination is a consequence of the optimization carried out in the optimization task
within the scheduler. For the moment assume that the two operations, s0 = _ibus
and s0 = s0 + #4 are combined into one statement s0 = _ibus + #4. Optimization

will be explained in chapter 5.

After this conversion, all longest paths ({F}) in the resulting DAG are identified
(pathl and path2 in Figure 4.4(b)). Next, paths starting at loop entrance points
are identified (path3 in Figure 4.4(b). Let this new set be called {P.}. Then the

set of all paths in the DAG, identified as { P}, is the union of these two sets. That is:

{P} ={R}U{F}

For the CFG of Figure 4.3, this set is shown in Figure 4.4(b). denoted the CFG of

the

The next step is the calculation of all constraints for each path found in the

previous step. The constraints consist of [21]:

42

1. Variables can only be assigned once in a control state.
2. I/O ports can be read or written only once in one control state.

3. Functional units can be used only once in a control state. This constraint is

only relevant if the amount of hardware is constrained.

4. The maximal delay within one control state limits the number of operations
that can be chained (i.e that feed data to each other and are executed in the

same control state).

The constraints are kept as sets of operations, 1", so that if any v € V is the
first operation in the next state, the constraint is met. For one path, the nodes
are totally ordered. Thus, each constraint (set of nodes) can be interpreted as
an interval. Figure 4.5 illustrates the idea for path 1 of the prefetch example.
“Constraint 1” is generated because variable sl is written twice (constraint of type
“1"). The constraint indicates that path 1 has to be “cut” between operations
9 and 14, so that the two assignments to sl are not in the same control state.
Assuming that only one adder is allowed to be used in the implementation will
generate “constraint 2” between node 2 (the combined node) and node 14 (constraint
of type “3”). “Constraint 2” implies that the path has to be “cut” between these
two nodes, scheduling each operation in a different state, thus using a single adder

in the implementation.

43

Cuto

\
]

’, N \ .
$0=_ibus+#4 | - \
@,
D
D
Cs Interval
Co Graph
<«
Ce D Cut 1 Clique 1
s1=_branchpc GO
Cae D
o
; Constraint 1: s1 assigned twice.
GO Constraint 2: Two adders used.
A
s1=s1+i#4 @
Y

Path1 Constraints Cuts

Figure 4.5: Prefetch Example: Constraints and interval graphs for path 1.

44

Once all constraints are calculated, an interval graph is formed (Figure 4.5).
The nodes in the interval graph represent constraint intervals, and the edges join
overlapping constraint intervals. A clique is a complete subgraph. A minimum clique
covering is a minimal number of cliques, so that each node is in one clique. The
solution to the minimum clique covering gives the minimum number of control states.
A “cut” corresponds to each clique. Note that a “cut” is a set of nodes. Cutting the
path at any of these nodes will satisfy the associated constraint(s). Cutting the path
at different nodes of this set will produce different schedules. However, the number
of states will be always the same, no matter where the cut took place. An additional
cut, or state, is added for the first operation along the path, Cut0 in Figure 4.5 is
of this type. In the above example, only one clique is generated, corresponding to a
single cut, namely Cutl. By finishing this step the AFAP schedule is obtained for
each path. The next step is the overlapping of all individual schedules to generate

the final single schedule for the whole intended circuit.

To overlap schedules, another interval graph is gencrated in an attempt to overlap
individual cuts while minimizing the total number of states. The nodes of the
interval graph correspond to cuts (remember that a cut is a set of nodes, i.e., a
set of operations). Edges join nodes corresponding to overlapping cuts. Again a
minimum clique covering of this graph will generate the minimum set of cuts that

fulfills the fastest schedule for all paths. Figure 4.6 shows the overlapping of cuts

45

Clique 1

o0

o)

ut 10

7/

-~
A\Y
\
I
7/
—
-
- T~
)
\)
!
/
-
9
=]
=
N
o

.-

State 1

o'
3
2,
)
[}
G-
]
i
i
i
i
i
I
i
I

{004
i PO-0-0-0-04
— -

........... Clique 2
S 1
G? GP GPCut 30
State 2 G? C? G;)
P @ | <
Lot X ocwz K
G
Path 1 Path 2 Path 3

Figure 4.6: Prefetch Example: Cuts overlapping.

46

for the Prefetch example. Cuts are indexed with the path number first then with
an increasing index starting at 0. Cut10 and Cutll correspond to cuts discussed in
Figure 4.5. Cut20 and Cut30 correspond to the initial operations in pathl and path2
respectively. Cut2l is generated by the area constraint along path2 and prevents
the scheduling of nodes 2 and 14 in the same state. There are two cliques, the first
corresponds to the cuts representing node 1. The second clique is formed by the
cuts overlapping at operation 10. This clique indicates the starting of state 2 at

operation 10.

Note that each initial operation in each path forces a cut that extends only to
that node. This will force a state to be generated at each of these nodes. Recall
that each loop entrance node starts at least one path, hence forcing a state in the

final schedule at each of these nodes. This leads to the following Lemma.

Lemma 4.1 The number of states generated by AFAP scheduling, denoted as Napp

18:

N AFAP 2]Vloops

Where Nigops is the number of loop entrance nodes in the CFG of the input specifi-

cation.

Proof of Lemma 4.1 The proof is obvious from the previous discussion.

At this point all operations are scheduled. An FSM controller is then synthesized.
Conditions are derived to control the transitions between states and which operations
are executed within each state. Interested readers are referred to [21] for a detailed

description on how conditions are derived.

4.3.2 Dynamic Loop Scheduling, DLS

O’brien et al., [23] noticed the excessive amount of processing required for the AFAP
scheduling described in the previous section. The major limitation of AFAP is that,
as the problem becomes complex, the number of paths generated quickly increases
making the approach very cumbersome for large realistic cases. They suggested
another heuristic scheduling algorithm, called Dynamic Loop Scheduling (DLS).

Their problem formulation could be stated as follows:

“Given G = (V, E') and a set of constraints, schedule all operations v € V' such

that all constraints are met, while trying to minimize the number of control states.”

The formulation implies that the objective is not to produce the optimum so-
lution in terms of the number of control states, neither does it guarantee a fastest

execution time of the resulting schedule.

48

Dynamic Loop Scheduling works as follows. First, all longest paths are identified
in the behavioral specification (paths are called traces in [23]). This is similar to
AFAP first step. However, in AFAP each loop starts a path, while in DLS a WAIT
statement is guaranteed to start a path, and any other loop starting nodes that do
not include a WAIT statement. A WAIT statement is a VHDL construct which
is actually a loop. DLS is tailored to VHDL input specifications. If the input

specification were not in VHDL, the algorithm will produce the same number of

paths as the AFAP.

The second step is to cut these paths. Cutting paths is performed ASAP, i.e.,
whenever a constraint is violated, the path is cut. Starting at the node after the

cut, the path is scanned to check for any further violations of the given constraint.

The result is a set of intervals. These intervals are used to generate the FSM
states. All intervals starting at the same node are combined into the same state.
Note that each loop-starting-node generates a path of its own, assuming that the
input specifications does not include “ WAIT" statements. Accordingly, each of these
nodes will have a respective state in the FSM. This leads us to state Lemma 4.2,

which is similar to Lemma 4.1.

49

Lemma 4.2 The number of states generated by DLS scheduling, denoted as Npps

1s:

JVDLS 2 Nlaops

Where Nigops is the number of loop entrance nodes in the CFG of the input specifi-

cation.

Proof of Lemma 4.2 The proof is obvious from the previous discussion.

Conditions for transitions between states are generated from the branching condi-
tions and the cutting points. Instructions are executed on the transitions between

states, hence ensuring that the proper sequences of operations are executed.

The major advantage of DLS over AFAP, is that DLS does not perform the
excessive calculations required for clique solving. However, it does not produce
the same quality of solutions as in AFAP. DLS still processes all possible paths of
the input specification. Figure 4.7 shows the application of DLS on the prefetch

example.

50

0-06-0-0-0-0-0-01-0-0-0:0-0

Final Schedule

State 1
State 2
State 3

6-0-6-0-0-0 &
00000000 6-0-0-6:603
090-0:0-00-0-00-0-0-0:0-03

Figure 4.7: Prefetch Example: Cuts of the DLS.

o1

4.4 Loop Based Scheduling: a new approach

When no constraints are present, both AFAP and DLS (assuming no WAIT state-
ments) techniques generate schedules that are bound by the number of loops in the

input specification (Lemma 4.1 and Lemma 4.2).

Above observation led us to the idea of Loop Based Scheduling (LBS). Both
scheduling algorithms (AFAP and DLS) consider all paths of the CFG to produce
their schedules. Loop entrance nodes are scheduled in different states of the resulting
schedule. Our scheduling algorithm (LBS) uses this notion to cut the CFG into
what we call subgraphs. “Subgraphs” are scheduled individually. Paths within
each subgraph are considered to generate its corresponding schedule. This results
in a considerable reduction in the number of paths to process. The technique is

further explained in the remainder of this section.
The formulation of the problem tackled by LBS is the same as that of DLS.

“Given G = (V, E) and a set of constraints, schedule all operations v € V such

that all constraints are met, while trying to minimize the number of control states.”

The LBS algorithm consists of the following steps:

1. Partitioning the CFG into subgraphs {s¢;}.

52

2. Scheduling each subgraph sg; individually.

3. Combining individual schedules of subgraphs.

These steps are explained in detail in the remainder of this section.

4.4.1 Partitioning the CFG into Subgraphs

In LBS, the graph G is divided into subgraphs. A subgraph is a graph that
contains exactly one loop entrance node. A loop entrance node is the first node in a
loop body. Subgraphs divide the original graph such that each node of G is in exactly
one subgraph. Let the first node in aloop body be identified as v where i is a running
index starting at 1. “i” is incremented each time a loop is encountered in the graph.
Hence v} is the first node in the first loop of the graph. Similarly, v? is the first node
in the second loop of the graph. For example node 1 in the Prefetch example CFG
is v}, while node 10 is v}. Subgraphs are constructed from G as follows. Starting
at node vl, subgraph 1 (denoted as sg;) is constructed by adding nodes until v} is
reached. vf is the first node in sgs. sg, is built the same way as sg; by adding nodes
until v} is reached. This process is repeated until the last instruction in the input is
reached. Note that v} is vl assuming that the specification loops back indefinitely
to vl after a node with no successor is reached. An additional node is added at
the end of each subgraph. This node is an unconditional branch to the first node

93

0-6-0-6-0-0-0

©-0-0--6-6-6-0

Branch to node # 10

|

06
0-6-6-6-0-D

a1: Goto node # 10

g1

CFG

(/2]
[72]

g2

Figure 4.8: Prefetch Example: Partitioning the CFG into Subgraphs.

o4

in the next subgraph. This is to keep the correct flow of control among subgraphs.
Subgraphs will be processed independently in the following steps, thus keeping the
flow of control in these branching nodes. Note the insertion of node al in subgraph
sq, for the Prefetch example in Figure 4.8. Let the set of all subgraphs be denoted
as {sg;}. In the Prefech example, the number of subgraphs is two, subgraphs are
shown in Figure 4.8. After dividing G into subgraphs, all branches of each subgraph

are checked. Branches should satisfy one of the following two conditions:

(a) The branch is to a node within the subgraph.

(b) If the branch is to a node in another subgraph, then it should be to the

first node in that subgraph.

If a branch does not satisfy any of the above conditions, then the subgraph being

branched to is broken, ensuring that the branch satisfies condition (b).

In the example, note that node #8 in sg; is a branch to node #10, and node #10
is the first node in subgraph sg,. On the other hand instruction #12 is a branch
within subgraph s¢g2. To show the idea of breaking subgraphs, assume that node
#5 in subgraph sg¢l is a branch to instruction #13 in s¢g2, then sg2 should have
been broken at instruction #13, forcing the nodes 13 to 15 to constitute a third

subgraph, Figure 4.9.

95

Breaking sg2 due to the branch
form node #5

6-0-0-0-0-6-0-0:0:¢
00

-1
-
-
o

(@}
Ly
@
73
«Q
-t

Figure 4.9: Subgraph Breaking.

4.4.2 Scheduling Individual Subgraphs

Each subgraph sg; is scheduled separately. Scheduling subgraphs consists of the

following steps:

1. Convert each subgraph into a DAGs
2. Generate paths of each subgraph.
3. Schedule individual paths.

4. Combine schedules of individual paths.

Converting subgraphs into DAGs

Each subgraph is converted into a Directed Acyclic Graph (DAG). This conversion
is done by eliminating edges that branch to other subgraphs. Conditions for these
branches are kept in lists associated with each subgraph. Loops back to the first
node in each subgraph are eliminated and conditions for looping back are kept in
lists as well. These conditions are to be used later for transitions among subgraphs.
In the Prefetch example, the branch from node #8 to node #10 is eliminated in sg;.
The same is done for the loop back to node #10 from node #12 in sg,, as depicted

in Figure 4.8 and Figure 4.11.

Generating paths

Paths within a subgraph are generated the same way as in AFAP, or in DLS. An
exception is that loops do not exist within a subgraph. Hence no special processing

is required for loops.

The algorithm for generating paths is shown in Figure 4.10. The subroutine is

called with the following arguments:

e subgraph, identifying the subgraph being processed.

e start_node, identifying the node in the subgraph from which paths are to be

generated.

o accumulated_cond which is the accumulated condition for executing the nodes

starting at start_node

o accumulated_path is the last argument in the arguments list, and is a copy of

the accumulated path just before calling the routine.

When the routine is first called, the arguments are the subgraph to be processed,
the first node in the subgraph, accumulated condition is passed as TRUE, and
accumulated_path as empty. Then the subroutine calls itself when necessary to gen-

erate the appropriate set of paths. Note that the type of each node, or equivalently

58

instruction, is one of the three types of the PAL instructions, namely, conditional
branch, unconditional branch and data transfer. A new path is generated only when
a conditional branch instruction is encountered, given that the node branched to is
within the subgraph being processed. That is, if the conditional branch is outside

the subgraph, it is called a state transition. State transitions have been handled in

the previous step.

Unconditional branches just ignore the nodes after the branch and continue the
path as if the node to which the branch is done (the destination of the branch)
comes immediately after the previous node. The nodes between the unconditional
branching node and its destination, shall be reached by a branch from a previous
node in the subgraph. Otherwise, these nodes would be unreachable, or equivalently

dead code. Dead code should have been eliminated in the initial compilation process.

Note also that the conditions for executing each instruction along the path are
collected in the variable accurmulated_cond, and stored with each instruction. Note
also that the conditions for executing the individual instructions, or nodes, are
updated whenever a conditional branch is encountered. Each node is associated with
a set of conditions. Each condition corresponds to a path and is found by ANDing
the branching conditions along that path. Whenever any of these conditions is
TRUE, that node is to be executed in the resuiting schedule. This is discussed

further in a following section.

99

Algorithm path_generation (subgraph,start_.node, accumulated_cond,accumulated path)
cur_node=start_node;

while (more_nodes in the subgraph){

}

If (cur_node==conditional branch){

temp._cond= accumulated.cond;

accumulated_cond=accumulated.cond AND branch.cond;

If (branch_node € subgraph){
new_path=copy.-path(accumulated_path);
path_generation(subgraph,branch_node,accumulated cond,new._ path);

}
Else {

add.state_branch(branch_node,accumulated _condition);

accumulated_cond=(temp_cond AND !branch_cond);

Else If (cur-node == unconditional branch){

If (branch_node € subgraph){
skip.all_nodes_until_branch_node
}

Else {

add_state_branch(branch.node,accumulated_condition)

}

Else {

add_node to accumulated_path;
node_execution_cond=accumulated_cond;

cur_node=next_node_in_subgraph;

add accumulated._path to the list of paths generated;

Figure 4.10: Path Generation Algorithm.

60

sg1
path path

O+ O-O-0-0-6-0-0-0-0
& 66600

Figure 4.11: Prefetch Example: Paths’ Generation in LBS.

61

The result of path generation is a set of paths, each path consisting of a set of
ordered nodes. Each node is associated with an execution condition derived from the
conditional branching nodes along the path in the corresponding subgraph. Figure
4.11 illustrates the path generation for the Prefetch example. Note that the total
number of paths for the example is only two, compared to three for the AFAP. The
number of paths (or traces) for this example is also three in the DLS algorithm.
This reduction of the number of paths is due to the fact that the paths do not
interact among subgraphs. That is, conditional branches are limited to the subgraph
boundaries. This leads to a considerable reduction in the number of paths compared

to the other two techniques, AFAP and DLS. This is stated in the following two

lemmas.

Lemma 4.3 The total number of paths (P, ps) generated in LBS is:

Prgs = XN pi

Where p; is the number of paths in subgraph sg; and N 1is the total number of sub-

graphs of the CFG.

Proof of Lemma 4.3 The proof is obvious from the previous discussion.

The reduction in the number of paths in LBS compared to AFAP depends on

62

the CFG topology. LBS usually results in a sizeable reduction in the number of

paths and never results in an increase. This is stated in the following lemma.

Lemma 4.4 The number of paths generated in LBS denoted as Npgs satisfies the

following two inequalities:

(a) Nips < Narar

(b) Nigs < NpLs

Where Napap and Npps are the number of paths generated in AFAP and DLS,

respectively

Proof of Lemma 4.4 The proof of parts (a) and (b) is identical since the number

of paths generated in both DLS and AFAP is the same.

(a) The equality occurs when the CFG is a single loop. In that case the num-
ber of paths generated in both scheduling algorithms will be the same. If
the CFG consists of more than one loop, then the number of paths gener-
ated by LBS Npgs will be the sum of the paths of these individual loops
(refer to lemma 4.3). While in AFAP the number of paths (Napap) will
be Nypgs (since each loop starting node will contribute by the same number

of paths in both algorithms) plus « number of paths that is generated due

63

to the interaction of the paths of different loops. The worst case reduction
occurs when the CFG is a single loop, hence no subgraphs are formed and

no reduction in the number of paths is gained.

(b) The same argument as in (a) applies to DLS.

Scheduling individual paths

Paths of each subgraph are then scheduled individually in the same way as in DLS.
Each path is traced from its starting node and constraints are checked. Whenever
a constraint is violated the path is cut. Constraints are defined the same way as in
AFAP and DLS. An additional node is added after the last node in the cut path.
This node is a branch to the first node in the rest of the path. This branch is
associated with a condition equal to the condition of executing the node at which
cutting took place. This is similar to the nodes’ insertion in the subgraph formation
step, and is done for the same reasons. Tracing is resumed from the cutting point
until another cut is required or the path is consumed. This process will result in a
set of intervals, each consisting of a set of ordered nodes. Each interval corresponds
to a control state. Note that each node might exist in more than one interval,
associated with different execution conditions in different intervals. For the prefetch
example, no constraints are present in the individual paths, and hence, neither of the

paths is cut. Cutting paths this way, i.e., As-Soon-As-Possible, is not as efficient as

64

AFAP scheduling, however it was shown in [22] that it compares quite favorably with
other scheduling techniques. Furthermore, it was felt in [23] that the computational
savings justify the slight loss in performance compared to AFAP scheduling. A
further limitation is the fact that the subgraph is checked sequentially and no effort

is made to optimize the order of operations. This is a classic problem with the

path-based approach [23).

Combining schedules of individual paths

Cutting individual paths as in the previous step results in a set of intervals for
each path. Intervals that start with the same node are collected together to form
a control state. Thus scheduling the operations of the subgraph into control states.
Each node is associated within each interval with a different execution condition.
These execution conditions are ORed to produce the execution condition for the

instruction, or node, within the state.

This results in scheduling each subgraph into a set of states. Transitions among
states within each subgraph are taken from the nodes added at each cutting point

in the “scheduling individual paths” step.

65

(True)

Lirel=1) pposst
obus=ADD{_bus,#4)
ADDL et

s2*(CMP{1](ire.#1))=s1 o r -
SI*CMP(ICirc#D)=ADDsLA4) (_ire == 1) $1'(-CMP(1}{_branch.40))=_branchp

Figure 4.12: Prefetch Example: FSM Controller.

4.4.3 Combining schedules of subgraphs

At this point, each subgraph is scheduled in a set of states. Transitions among states
within each subgraph have been decided in a previous step, namely in the nodes
added at cut points. To combine the schedules of the individual subgraphs, each
subgraph is processed as follows. Transitions outside the subgraph, collected while
converting sg, into DAGS, are checked to produce the transition to other subgraphs.
Note that each of these transitions is associated with a condition produced in the
path generation step. This condition is used as a transition condition to the first

state in the subgraph being branched to.

By finishing this step the scheduling is complete, and the FSM controller is
produced. Figure 4.12 shows the controller FSM of the prefetch example. The

instructions in the figure are in an RTL language called AHPL [35].

66

|| Design | Method | States | Paths [State Transitions

AFAP
Prefetch! DLS
LBS
AFAP
Counter! | DLS
LBS
AFAP
GCD DLS
LBS
AFAP
TLC DLS
LBS
AFAP
DiffEq DLS
LBS

W =] =0 W WIN W W

e e
.g_“;oo.n-.c..;a’—-»—-o—awlco

[r——
(LR Lo I {o]

O ! =[Ot~ OO NN = NN

w W
W |

Table 4.1: WSHLS Benchmark Results

4.5 Experimental results

4.5.1 Benchmarks

The examples used in this section are shown in Table 4.1. The Prefetch! is an
instruction fetch unit for a microprocessor. It is the example presented in [21] and
used in this chapter. The second circuit is a modulo-8 Counter' with clear and
clock inputs. The rest of the circuits are benchmarks from the 1992 Workshop on

High Level Synthesis [33]. GCD is a greatest common divisor calculator. The traffic

I'These are not WSHLS Benchmarks.

light controller TLC is specified excluding the required timer (the timer is called).
DiffEq is a numerical solution to the differential equation y" + 3zy’ + 3y = 0.
The designs were translated manually from VHDL to C. Neither area constraints
nor timing constraints are specified in these implementations. Hence, all possible

chaining of operations is utilized.

The three scheduling algorithms that were presented in this chapter are compared
in Table 4.1 (namely AFAP, DLS and our algorithm LBS). Two major aspects are

compared, the complexity of the algorithm and the quality of the solution they

produced.

The complexity of the algorithm is a function of the number of paths processed.
The more the number of paths, the more of processing time the algorithm requires
to generate its schedule. complexity. Our scheduling algorithm generates the least
number of paths compared with the other two. The reason is that our scheduling

algorithm ignores the paths generated from the branches among different subgraphs.

The quality of the solution is a function of both the number of sates generated and
the number of transitions among states. The number of states implies the complexity
of the controller required to realize the schedule. The number of transitions is also
an indication of the amount of hardware required to realize the controller. Our

scheduling algorithm generated schedules with less number of states and less (or

68

equal) number of state transitions for the listed benchmarks.

It could be seen from the table that our scheduling algorithm does produce
better schedules with less cost. The cost in terms of processing time (measured in the
number of paths) is lesser and the quality (measured in number of states) is better. It
is worth mentioning at this point that although the number of states of the schedule
is less, this does not ensure a fastest execution time for all input sequences. This
fastest execution time is guaranteed by the AFAP scheduling algorithm. However,

the number of paths of AFAP explodes for realistic examples.

In chapter five, we give the complete specifications of the produced RTL descrip-

tions of these examples.

4.5.2 How much reduction?

It was pointed out in the previous section that our scheduling algorithm, Loop Based
Scheduling (LBS), is guaranteed to produce a number of paths that is less than or
equal to that produced by As Fast As Possible (AFAP), or Dynamic Loop Scheduling
(DLS), (refer to Lemma 4.4). In order to quantify how much less, a number of
random graphs were generated. The number of paths processed by both AFAP and
LBS for each graph was determined. The comparison results are presented in this

subsection.

69

Generation of random graphs

The graphs processed by the system start at node v;. Any node v; in the graph

should be reachable from v;. A node v; is one of two types:

(1) Data transfer operation, where the control is passed to the successor operation.

(2) Branching operation, where the control is transferred to an operation other

than the successor operation if the condition is true.

A simulation program was written to generate random graphs that resemble the
graphs processed by the system. For a given number of nodes (N) in the graph, if
a node v; is a branching node (i.e., of type 2) with a probability p and is a data

transfer (i.e., of type 1) with a probability 1 — p. A branch node could be one of

two types:

(a) Forward Branch.

(b) Backward Branch, or a Loop.

For a branching node (i.e. of type 2) if the probability that it is a Looping node (i.e.
of type (b)) is g, then it is a forward branch (i.e. of type (a)) with probability 1 — q.
Hence, starting at node v;, each node among the N nodes of the graph is identified

as one of three types according to p and ¢ as follows:

70

DataTransfer 1-—p

NodeType = { ForwardBranch P—Dpq

L Loop Pq

Once a node v; is determined to be a branching node (either forward or backward)
the destination node vy has to be determined. For a forward branch, vy could be
any of the nodes v;;» to vy (note that if v;;, was the branch destination, then v;
will not be a branch but a data transfer). Hence, if the probability that node v, is

v; where (i + 1) < j < N, identified as py, 7 would be:

J=[pp(N=-i=2))]+i+2

where [a] is the smallest integer greater than a. Similarly for a backward branch
(i-e. a loop), vy may be any of the nodes v; to v;_; (assuming that v; will not branch
to itself). Hence, if the probability that node v, is v; where 1 < j < i is py, then j

would be:

j=[pi-2)]+1

All probabilities, p, ¢, py and p, are generated using uniformly distributed random

number generators.

Comparison results

We determined the number of paths processed by both AFAP and LBS for each
random graph. The Reduction in the number of paths was plotted as a function
of the number of nodes of the graph. The Reduction is defined as the ratio of the
difference between the number of paths generated in both schedules to the number

generated in AFAP. That is,

Reduction = fdﬂgd“ﬁi
AFAP
Where Psrap and Ppps are the number of paths generated by AFAP and LBS

scheduling algorithms, respectively. Figures 4.13, 4.14 and 4.15 show some of these

results.

In each figure the branching probability, p, was fixed, and the Reduction was
plot for different values of looping probability. The following comments can be made

about these figures.

e A sizeable reduction in the number of paths is noticed.

o The value of Reduction approaches 100% when the probability of looping
increases. This is due to the fact that paths do not interact among different

loop bodies in LBS.

Reduction
101

0.8
0.6
0.4

024

0'0 = 1 | | 1

1)

0 200 400 600 800

Branching Probability: 0.16

1000 1200

—-&— Loop Prob:0.0256

~~&-- Loop Prob:0.0512

O Loop Prob:0.0032

= Loop Prob:0.0128

Nodes

Figure 4.13: The reduction of the number of paths in LBS compared to AFAP.

Reduction

1.0
~& |oop Prob:0.0832

0.8 O Loop Prob:0.0416
=% { oop Prob:0.0208

0.6

04

0.2

0' 0 1 [] 1 1 (] J Nodes

0 200 400 600 800 1000 1200

Branching Probability: 0.26

Figure 4.14: The reduction of the number of paths in LBS compared to AFAP.

74

Reduction

10
& { oop Prob:0.0992
0.8 O Loop Prob:0.0496
=% L oop Prob:0.0248
0.6
04
0.2
0.0 1 1 [1 [) Nodes

0 200 400 600 800 1000 1200

Branching Probability: 0.31

Figure 4.15: The reduction of the number of paths in LBS compared to AFAP.

7

e Even for small sized graphs with looping probability as low as 0.0032, and
a branching probability of 0.16, our algorithm still performs quite well. (See

Figure 4.13)

This experiment shows the amount of saving achieved by our scheduling algo-
rithm compared to AFAP and DLS (recall that AFAP and DLS produce the same
number of paths). On the other hand, we did not notice a loss in the quality of
the solution for the in-house test examples. However a slight loss is expected for a
certain type of graphs. We strongly believe that this loss is justifiable by the amount

of savings in the calculation cost.

Chapter 5

Data Path Allocation

5.1 Introduction

Data path allocation deals with the problem of minimizing the amount of hardware
needed to realize the data path input specification. This problem consists of two

main tasks:

® Module allocation which is the task of determining the minimum number of

hardware modules required to implement the data path.

o Module bindingis the task of determining which instance of a hardware module
is assigned to which operation, variable or data transfer operation.

77

Due to their inherent inter-dependencies, module allocation and module binding

are usually combined in the same step and referred to as just allocation.

The hardware modules needed to realize the data path consist of:

o Operators or Functional Units (FU): They are the hardware units that perform

the operations of the data path, like addition, multiplication, etc.

o Registers or storage elements: They are used to hold variables or values needed

in different control steps.

o Communication paths or connections over which the registers and FUs com-

municate.

Accordingly the allocation task is usually divided into three subtasks.

1. Operation assignment, which involves the assignment of the operations of the
data path to operators or FUs while ensuring that no more than one operations
within a same control step are assigned to the same FU. The objective of this
task is usually to minimize the number of FUs used, or to meet a certain

constraint on the number of FUs used.

2. Register allocation, which binds all variables into a number of registers such

that the lifetimes of those variables bound to the same register do not overlap.

78

The primary objective of this subtask is to minimize the number of registers

used.

3. Inter-connection allocation, which aims at connecting the FUs and registers in

such a way, so as to minimize the interconnection cost.

Because these subtasks are tightly related, the order in which they are performed

will affect the quality of the resulting allocation [32]. Decisions made in one subtask

will significantly affect the other two.

5.2 Existing approaches to Allocation

Allocation and scheduling are the heart of any HLS system. In this section we

describe briefly some of the techniques reported to solve the allocation problem.

FACET ([31] solves all three subtasks of the allocation problem using a clique
partitioning heuristic method. It does register allocation, then operation assignment
and, finally, connection allocation. For register allocation, it builds a graph, where
each vertex represents a variable and an edge exists between two vertices if and
only if the two corresponding variables can share the same register (i.e., they have
disjoint lifetimes). The graph is then partitioned into a number of cliques (a clique is
a complete subgraph). The number of cliques partitioned is the number of registers

79

needed. A register is allocated for those variables corresponding to the vertices in
each clique. For operation assignment, FACET again builds a graph where each
vertex represents an operation in the input specification and an edge exists between
two vertices if and only if the two corresponding operations will not be performed
in the same control step. Again, the graph is partitioned into a number of cliques,
and to each clique an FU is allocated. For connection allocation, FACET builds
a graph where each vertex represents a point-to-point connection. An edge exists
between two vertices if and only if the two corresponding connections will never be
used simultaneously. After performing a clique partitioning, a bus is allocated for
each clique. Because the clique partitioning problem is NP-complete, a heuristic

algorithm has been developed in [31] to partition the graphs.

HAL [12] performs operation assignment, then register allocation and, finally,
connection allocation. The register allocation is also modeled as a clique partitioning
problem. However, weights are associated with the edges of the graph to reflect the

preference of register sharing among variables {11].

REAL [28] is a subsystem of MAHA [26] which performs register allocation only.
After MAHA has performed a scheduling, REAL allocates registers using the Left
Edge Algorithm [27]. The lifetime of each variable is mapped into a net interval
as in the channel routing problem. The number of tracks needed by the left-edge

algorithm is equal to the number of registers allocated. Variables whose intervals

80

are in the same track are assigned to the same register. REAL does not handle the

operation assignment nor the connection allocation.

Splicer [29] uses a branch-and-bound search to solve all three subtasks. Instead
of solving one subtask at a time, it solves them all for each control step. It first
assigns FUs to operations in a control step then allocates registers and connections.
The system performs a look-ahead search for a user-specified number of steps to

malke its allocation decisions.

Raj [30] integrates allocation into a scheduler, which performs binding immedi-

ately after each control step is scheduled.

5.3 Allocation in our system

In our system, allocation is integrated into the scheduler. No FUs are used in
the system, rather operators are assumed, where for each operation, an operator is
assumed to be available in a hardware library. Associated with each operator the

following information shall be supplied:

¢ The maximum number of units allowed to be used in the resulting hardware

realization.

81

e The time delay for the operator to execute the corresponding operation.

Operator assignment and connection allocation is done in a First-Come-First-
Served (FCFS) fashion. The allocation part of the scheduler is shown in Figure
5.1. The scheduler fetches one operation at-a-time. Assuming no constraints are
violated, it checks whether the number of operators already used in the control step
is equal to the maximum allowable number specified. If not, an operator is assigned
to that operation. The inputs of the operation are connected to the inputs of the
operator and the output is connected to the proper destination of the operation
or left unconnected for further processing. If the number of operators used in the
control step under consideration is equal to the maximum allowable number, the
state is broken and the operation is assigned to an operator the same way as if there
were no conflict. Then the number of hardware modules of the used operator is

incremented in that control step.

Operator assignment and connection allocation done this way assume that dif-
ferent operators are used in different control steps, unless the inputs are the same in
both control steps. This will result in a much larger number of operators in the final
realization than required. In order to limit the hardware modules to the specified
limit the following has to be done. Whenever a new state is formed, the operators
used in previous states should be used for the operations of this state, introducing
multiplexers at the inputs of those operators. The state flip-flops of the synthesized

82

Procedure Allocation(operation)

Begin
If number_of_operators in current_state = max[operation] Then
Begin
Break_State;
current_state = new_state;
number_of_operators = 0;
End
Allocate operator_for_operation;
number_of_operators = number.of_operators + 1;
Connect_inputs ;
Connect_output;
End

Figure 5.1: Allocation Algorithm in IKHLS.

83

FSM controller could be used as selection signals for the different multiplexers at
the inputs of the operators. Hence a modification to the allocation algorithm has to
be incorporated to come up with good allocation results. For the time being this is

not yet done in the system, provisions are incorporated for this future work.

As mentioned earlier, the C-compiler does lifetime analysis and several optimiza-
tion tasks, refer to Section 3.3. The assembly output is fairly optimum in terms of
the number of variables used. However it was shown that it contains some redundant
dependencies and further optimization is required (see Figure 3.5). This optimiza-
tion is mainly concerned with the elimination of temporary variables introduced to

hold the intermediate results. Register allocation deals with this problem.

Register allocation is again incorporated in the scheduler. The scheduler picks
one instruction at a time. Each PAL instruction is either an operation that requires
one or two operandi, or a control construct. Control constructs are used to find the
execution conditions of operations as explained in Chapter 4. Each operand of an
operation is either a variable or a port. Ports are distinguished by an underscore
as the first character of their names in the PAL code (and IDS code). Ports need
no register allocation and are directly fed to the inputs/output of the operator.

Variables are processed independently by the Register_Allocator, Figure 5.2.

84

Procedure Register_Allocator;

Begin
While more_vars in required_vars lists
Begin
For all states Do
Begin
For each required variable in the required_vars list Do
Begin
Schedule all assignments in all states reaching current state;
Allocate a register for this variable;
Remove the variable from the required_vars list;
End
End
End
End

Figure 5.2: Register Allocation Algorithm.

85

As mentioned earlier, the scheduler processes paths independently. Each path is
traced from the first node to the last node. When a node is picked in the path, each
variable of the inputs to the operation is processed as follows. The last assignment
to that variable along the path is checked (i.e., the last time the variable appeared
at the left hand side of an instruction). In case the variable is not found in the path
it is added to a list called required_vars. If it is found along the path, then the value
it was assigned to is checked to make sure that the time delay of the path added
to the current operation delay would not exceed a user specified maximum clock
period. If that period is exceeded, then the path has to be cut and the operation
has to be scheduled in a different control step, refer to scheduling individual paths
in section 4.5.2. If the clock period is not exceeded then that last assignment of the
variable is used as an input to the current operation. Unless that last assignment is
needed some where else, it is a redundant assignment and could be eliminated and
the variable need not be allocated to a register. After the scheduling of all paths,

each variable in the required_vars list is allocated to a register.

Each operation has a destination variable on its left hand side. Once the inputs
have been connected to the operator, the output is connected (virtually) to the vari-
able at the left hand side of the instruction. If this variable is needed in a following
instruction within the same control step, then the operator output is connected at

that time to the proper destination, as explained in the previous paragraph.

86

_prefetch:

s0 = ibus —1
s0 = s0 + #4 —2
s4 = _branch —3
L1:
-ppc = sl —4
-popc = s2 —3
-obus = s0 —06
flags = s4 == #0 —7
if flags goto L4 —8
sl = _branchpc —9
L4:
sd = dre —10
flags = s3 == #1 —11
if flags goto L4 —12
s2 = sl —13
sl =sl + #4 —14
goto _prefetch —15

Figure 5.3: Prefetch Example: IDS Code.

Take the first two instructions of the prefetch example, Figure 5.3. When the
scheduler picks the first instruction it assigns “_ibus” to “s0”. This assignment is
kept for future reference. The time delay for this assignment is assumed to be zero
since it is a direct read. When the next instruction is processed, “s0 = s0 + #4",
“s0” is traced along the path and the first assignment is found, its right hand side is
fed to the adder input, that is, the input to the adder is assumed to be “_.ibus” rather
than “s0”. The output of the adder is assigned to s0 because it is the destination
of the addition operation. Again when s0 is required at instruction number 6 (see
Figure 5.3) the same is done and the output of the adder is fed to the .obus port.
“s0” is not needed anywhere else in the path. Neither is it required in the path of

subgraph sgo (see Figure 4.11) and hence it is actually not needed in the hardware

realization of this specification.

On the other hand take instruction #4 , “_ppc = s1” in Figure 5.3. Note that
“s1” is not assigned on that path, hence it is added to the required_vars list. After
scheduling is over and when this list is checked “s1” is found to be required, so it has
to be allocated a register in all the states that might lead to the state in which “s1”
is required. These states happen to be only one, namely the state into which the
path of sgs is scheduled. Hence, the last assignment in that state for “sI” is checked
and a register is allocated for that assignment. This is reflected in the instruction (

“s1*(CMP[1](-ire,#1)) = ADD(sl1,#4)" in Figure 4.12. The instruction is in AHPL

88

format and reads as “ sl conditioned on the compare result of _ire with #1 gets the

addition of s1 and #4”. This allocation will also force the allocation of a register to

hold the value “#4”.

To summarize, register allocation is done after scheduling. However the decision
of which variables are to be allocated to which registers is done during scheduling.
Variables used in the assembly output are taken as an initial allocation of variables.
Redendant variables are eliminated in the scheduling process. The Register Alloca-
tor then reduces to allocating the required variables for a control step to registers

in all control steps that could reach the control step under consideration.

5.4 Experimental Results

In this section we describe the experimental results of the examples introduced in

Chapter 4. The examples are:

1. Prefetch
2. GCD

3. Counter
4. TLC

5. DiffEq

89

For each of these examples, the C-code, the PAL-code and the resulting RTL-

code in AHPL are given.

In the figures of this chapter, note the following:

1. Ports are defined as extern in the C-code. They are identified by an underscore
as the first character of the port name in both PAL and AHPL specifications

(for example “_ire” in prefetch, Figure 5.6).

2. Variables are given different names in the internal representation. These names

are taken from the Assembly Language produced by the C-compiler.

3. Further processing is required for the AHPL-code to make it acceptable for the
KFUPM AHPL-based silicon compiler [36], in order to produce the fabrication

masks. The processing needed consists of the following:

(a) All variables and their sizes have to be defined.

(b) The Combinational Logic Units (CLUs) library that implements the op-
erators has to be loaded with the RTL-code. That is, CLUs have to be

defined.

(c) Under scores (“.") leading ports’ names have to be deleted.

The Prefetch and the GCD examples have been fed to the AHPL-synthesis

system at KFUPM. The specification file and the simulation results are presented

90

in AppendizA.

91

C-Code PAL-Code AHPL-Code
extemn int _DiffEq; STATEL1:
Xinport,Xoutport,DXport,Aport,Yin | L1: s3=_Xinport
port, Youtport; s3 =_Xinport; s7=_Aport
extem int Uinport,Uoutport; s7=_Aport; s6=_DXport
DiffEq() 6 =_DXport; s5=_Yinport
i‘m si = _:Jﬁ_npOtrtt ; s4=_Uinport
s4 = _Uinport ; ->(~CMP[0}(_Aport,_Xinport))/(L3)
:‘n-t";':;’;"ﬁ‘fg;;igi;}g;"“"-‘"‘" flags=(s7 < s3); |->(~~CMP[O}(_Aport,_Xinport))/(L4)
L1: if ('flags) goto L3; STATE L4:
X_var=xinport; L4: $4=SUB(SUB(s4,mul(mul(s4,s6),ADD(
a_var=Aport; s2=s4; ADD(s3,53),53))),mul(ADD(ADD(s5,s5)
dx_var=DXport; $2=82" s6; ,55),56))
y_var=Yinport; s0=s3; $5=ADD(s5,mul(SUB(SUB(s4,mul(mul(
u_var=Uinport; s0=s0+ sO; $4,56),ADD(ADD(s3,53),53))).mul(ADD
while (x_var < a_var){ sO=s0+ s3; (ADD(s5,s5),55),56)).56))
t =u__rar * dx_var; s1=s5; s§3=ADD(s3,s6)
g=_ % e si=sl+s1; ->(CMP([0)(s7.ADD(s3,s6)))/(L4)
oo):5 : sl1=s1+s5; ->(~CMP[0)(s7,ADD(s3,56))}/(L3)
ts:dx va;"t3' s2=s2'sO: STATELs:
6= u_var- t4; o1 wsi” 86; _Xoutport=s3
u_var =16 - t5; SO=s4; _Youtport=s5
y1 =u_var * dx_var; $0=50- s2; -Uoutport=s4
y_var=y_var +y1; $4=50; ->(L1)
x_var = x_var + s4=54-s1;
d‘_var; sO =84 H
} s0=s0" s6;
} s5=85+ s0O;
s3=83+ s6;
flags=(s7 < s3);
if (flags) goto L4;
L3:
_Xoutport =s3 ;
_Youtport=s5;
_Uoutport =s4 ;
goto L1;

Figure 5.4: Differential Equation Example.

92

C-Code PAL-Code AHPL-Code
extemn int clear,clock,out; _counter: STATE L1:
counter() s3=_clear; s2*(~~CMP[1](_clear,#0))=_cl
{ L1: ock.
prtwhviai fags = (s3 = #0); | STORC-CMPITI_deardo).A
if (clear) out1=0; if é !ﬂagls) Eoto L7; '(AI(\-I'E;(~C M[P%(] o2 (: (;ck))i)
else { s0 = _clock ; = ’
if ((clk1=clock)l=clk) flags=(s2 == s0); ?JZ’;{ Uc(,;‘g,‘;affg‘),;:ﬁ?(gg;[
out1=outi+1 c;lk=clk1; :1(ﬂasgfl g;tq L5; #0))),';8),~~C'MP[1 1(_clear, #0)5
if (out1==8) out1=0; LT '))=H#0.
} () LS: _out=(#0!s11ADD(s1,#1))*(OR(
out=outt; s2=50; AND(~~CMP[1]((ADD(s1,#1)Is
} flags=(s1 == #8); |1)"(AND(-CMP[1)(s2,_clock),~
} if (flags) goto L4, ~CMP[1)(_clear,#0)),AND(CM
L7: P[1)(s2,_clock),~~CMP[1](_cle
s1=#0; ar,#0))),#8),~~CMP[1](_clear,#
L4: 0)),~CMP[1](_clear,#0)),AND(
_out=s1; CMP[1}(s2,_clock),~~CMP[1](_
goto L1; clear,#0)),AND(~CMP[1](s2,_cl

ock),~~CMP[1](_clear,#0))).
->(L1)

93

Figure 5.5: Counter Example.

C-Code PAL-Code AHPL-Code
extern int _prefetch: STATEL1:
branchpe,ibus,branchire,ppc,pop | sO=_ibus _ppc=s1
c,abus; sO=s0+i#4; _popc=s2
?’efe“’"() s4=_branch ; _obus=ADD(_ibus,#4)
int pe.oldpc; Ls13 _ire ; ;;' ‘(‘ 195ij1:](_branch.#O))-_branchpc
Wh"eé:,)c{:pc; _ppc=sl ; $2*(~~CMP[1](_ire,#1))=s1
popc=oldpc; popc=s2 ; s1*(~~CMP[1](_ire,#1))=ADD(s1,#4)
obus=ibus+4; _Obus =s0 ; ->(~CMP(1](ire,#1))/(L4)
if(branch) pc=branchpc; flags = s4 == #0; ->(~~CMP[1](_ire,#1))/(L1)
while(irel=1); if flags goto L4 ;
oldpc=pc; s1 =_branchpc ;
pc=pc+4; L4:
} flags =s3 ==#1;

if iflags goto L4 ;

s2=81 ;

st=s1+i#4;
gotolL1;

Figure 5.6: Prefetch Example.

94

C-Code

PAL-Code AHPL-Code
extemn int xi,yi,rst,out; _ged: STATEL3:
ged() s2=_rst ; $1*(~CMP[1](_rst,#0))=_xi
-~ L3: $0*(~CMP[1](_rst#0))=_yi
whia (1 flags =52 = 40, ->(CMP[1](_rst,#0))/(L3)
while(lrst); e1 3gsxig°‘9 ’ STA{E L10 .'C)
x=xl;y=yi; =X s0*(AND(~~CMPJ[0](s0,s1),~CMP[
whiley(xly=y)(Lsf’; A 1)(s0,s1)))=SUB(s0,s1)
if (x<y) y=y-x; flags = s0.== 51 ; s1*(AND(~CMPJ[0](s0,s1),~CMP[1}
else x=x-y; it flags goto L6 ; (0,51)))=SUB(s1,50)
e flags = 50 < §1 - _out*(CMP[1](s0,s1))=s1
y if fflags goto L7 ; ->(~CMP[1](s0,s1))/(L10)
} sO=s0-s1; ->(CMP[1](s0,s1))/(L3)
goto L10;
L7:
s1=s1-50;
goto L10;
L6:
_out=s1 ;
goto L3

Figure 5.7: GCD Example.

95

C-Code

int extern Cars, TimeoutL, TimeoutS,StartTimer,HiWay,FarmL ,state;
void TLC(X{

int newstate,current_state,newHL ,newFL,newST;

Lt

current_state=newstate;
if (current_state== 0){

else if (current_state== 6)(
newHL=6;

newHL=4;newFL=6; _newFL=2;

it (Cars && TimeoutL) { if (TimeoutS) {
newstate=4; newstate=0;
newST = 1; newST=1;

} }

else { else{
newstate=0; newstate=6;
newST=0; newST=0;

} }

else if (current_state== 4){
newHL=2;

}
else if (current_state== 7){
newHL=0;

newFL=6; newFL=0;

if (TimeoutS) { newstate=0;
newstate=2; newST=0;
newST=1; }

} state=newstate;

else{ HiWay=newHL;
newstate=6; FarmL=newFL;
newST=0; StartTimer=newST;

} goto L1;

else if (current_state== 2){

newHL=6;newFL=4;

if (\Cars Il TimeoutL) {
newstate=6;
newST =1;

}

else {
newstate=2;
newST=0;

'
.
]
.
]
[}
.
]
'
[}
!
)
]
.
1
.
)
[}
.
1
.
]
1
]
.
[}
.
]
.
[}
[}
)
]
[}
[}
]
.
]
]
)
i
.
]
]
.
)
1
.
1

Figure 5.8: TLC Example: C-Code.

PAL-Code

_TLC:
Lt
s0=s2 ;
flags =s2==4#0;
it Iflags goto L2 ;
s4=#4 ;
s3=#6 ;
s0=_Cars ;
flags =s0==#0;
it flags goto L20 ;
s0 = _TimeoutL
flags =s0==#0;
if flags goto L20 ;
s2=#4 ;
si=#1

goto LS ;
L2:
flags =s0==#4;
if ifiags goto L6 ;
s4=#2 ;
s3=#6
s0 = _TimeoutS
flags =s0==#0;
if flags goto L7 ;
s2=#2 ;
si=#1 ;

flags =sO==#2;
if tflags goto L10 ;
s4=#6 ;
s3=#4
s0=_Cars ;
flags =s0==#0;
if flags goto L12 ;
s0 = _TimeoutL
flags = s0 ==#0;
if flags goto L11 ;

Li2:
s2=#6 ;
si=#1
goto LS ;
Li11:
L2=#2 ;
goto L21 ;
L10:
flags =s0 ==#6;
if iflags goto L15 ;
s4=#6 ;
s3=#2 ;
s0 = _TimeoutS
flags = s0==#0;
if flags goto L16 ;
2=#0 ;
si=#1
goto L5 ;
Li16:
s2=#6
goto L21 ;
L15:
flags = SO == #7;
if Iflags goto LS ;
s4=#0 ;
s3=#0 ;
L20:
2=#0 ;
L21:
si=#0 ;
LS:
_state=s2 ;
_Hiway=s4 ;
_FarmL=s3 ;
_StartTimer = s1
gotoL1;

.
’

Figure 5.9: TLC Example: PAL-Code.

97

AHPL-Code

STATE L1 :
84°(~~CMP[1}(s2,040))=it4
83°(~~CMP[1](s2,#0))=#6
82°(AND{AND{~CMP{1}(_TimeoulL,¥0),~-CMP{1]_Cars,¥#0)),~~CMP{1)(s2,40)))=#4
81°(AND{AND(~CMP{1}{_Timaeoutl#0),-CMP(1){_Cars,#0)),-~CMP{1)(s2,#0)))=#1
84°(AND(-~CMP{1](s2,#4).~CMP{1](s2,00))) u#2
83°(AND(~~CMP{1)(s2,#4),~-CMP{1)(32,#0)))=#6
82°(AND{AND(~CMP[1}(_TimeoutS,¥0),~~CMP[1)(s2,#4)),~-CMP{1)(s2,40)))=#2
81°(AND(AND{~CMP[1](_TimeoutS,#0),~~CMP[1)(s2,#4)),~CMP[1](s2,40)))=#1
$2°(AND(AND(CMP{1](_TimeoutS,#0),~~CMP{1](s2,#4)),~CMP{ 1](s2,#0)))=#6
84*(AND(AND(~-CMP[1)(s2,#2),~CMP{1](s2,#4)),~-CMP{1)(s2,#0)))=#6
83" (AND{AND(~~CMP{1](s2,#2),~CMP{1](s2,#4)),-CMP{1](s2,#0)))u#4
82°(OR(AND(AND(AND(CMP{ 1)(_Cars,#0),--CMP{1](s2,#2)),~-CMP[1](s2,#4)),~CMP{1](s2,#0)), AND(AND(AND(AND(
~CMP{1])(_TimeoutL,#0),~CMP{1](_Cars,#0)),~~CMP{1](s2,#2)),~CMP{1](s2,#4)),~CMP[1](s2,#0))))=#6
81"(OR(AND(AND(AND(CMP{1)(_Cars,#0),~~CMP{1}(s2,#2)),~-CMP{1}(s2,#4)),~-CMP{1}(s2,#0)), AND(AND(AND{AND(
~CMP{1](_TimeoutL,#0),-CMP[1}(_Cars,#0)),~~CMP{1](s2,#2)),~CMP[1}(52,#4)).~CMP[1)(s2.40))))=#1
82°(AND{AND(AND{AND(CMP{1)(_TimeoutL,#0),~CMP(1](_Cars,#0)),~~CMP{1](s2,#2)),~-CMP[1)(s2,#4)),~CMP{1)(s2,
#0)))=#2
84" (AND(AND(AND{~-CMP{1](s2,46),-CMP{1](s2,#2)),~CMP{1](s2,#4)),~CMP{1)(s2,#0)))=#6
#3*(AND{AND(AND{~~CMP{1}(s2,#6),~CMP{1)(s2,#2)),-CMP{1)(s2,#4)),~-CMP{1)(s2,40))) n#2
82°(AND(AND(AND(AND(~CMP[1}(_TimeoutS,#0),-~CMP{1)(s2,#6)),~-CMP{1](s2,#2)),~CMP{1}(s2,#4)),~CMP[1}(s2,#
0)))=#0
$1°*(AND(AND{AND{AND{~CMP{1](_TimeoutS,#0),~~CMP[1](s2,#6)),~CMP[1}(s2,#2)),~CMP[1](s2,#4)),~-CMP[1}(s2.#
0)))=#1
82°(AND(AND{AND(AND(CMP(1}{_TimeoutS,#0),~-CMP[1)(s2.#6)),~CMP[1}(s2,#2)),~CMP{1)(s2,#4)),~CMP{1}(s2,#0)
=06
~>(AND(CMP{1)(_Cars,#0),~~CMP{1](s2,#0)))/(L20)
->(AND{AND{CMP[1](_TimeoutL,#0),-CMP[1](_Cars,#0)),~~CMP[1)(s2,#0)))}/(L20)
->(AND{AND(~CMP[1}(_TimeoutL#0),~CMP[1)(_Cars,#0)),~~CMP[1)(s2,#0)))/{LS)
->(AND(AND(~CMP{1)(_TimeoutS, #0),~-CMP[1](s2.#4)),~CMP{1)(s2.#0)))/(LS)
~>(AND(AND(CMP{1](_TimeoutS,#0),~~CMP{1](s2,#4)),~CMP[1](s2,#0)))/(L21)
->(OR(AND{AND(AND{CMP{1](_Cars,#0),~~CMP{1](s2,#2)),~CMP{1](s2,#4)),-CMP{1)(s2,#0)), AND(AND(AND{AND{~
CMP[1)(_Timeoutl,#0),~-CMP{1}{_Cars,¥#0)),~-CMP[1}(a2,#2)),-CMP[1}(s2,#4)),~CMP[1](s2,#0)))/(L5)
->(AND(AND{AND(AND(CMP{1](_TimeoutL,#0),~CMP{1](_Cars,#0)),~~CMP[1](s2,#2)),~CMP{1](s2,#4)),~CMP[1](s2,#0
MAL21)
->(AND(AND(AND(AND{~CMP{1)(_TimeoutS,#0),~~CMP[1)(s2,#6)),-CMP[1)(s2,#2)),~-CMP[1)(s2,#4)),~CMP[1)(s2,#0))
Y(LS)
->(AND(AND{AND{AND{CMP{[1){_TimeoutS,¥0),~~CMP{1)(s2.#6)),~CMP[1](s2,#2)),~CMP[1}(s2,#4)),~CMP[1](s2,#0))/
(21)
STATEL11:
84°(~~CMP{1)(s0,#7))=#0
83°(~~CMP{1](80,#7))=#0
->(~CMP{1](s0,#7))/(LS5)
->(~~CMP{1](s0,#7))/(L20)
STATE L20:
22=#0
>{L21)
STATE L21:
s1=#0
->(L5)
STATELS:
_state=s2 , _HiWay=s4 , _FamL=s3, _StartTimer=s1
->(L1)

Figure 5.10: TLC Example: AHPL-Code.

98

Chapter 6

Internal Data Structure (IDS)

6.1 Introduction

The input specification to an HLS system as a behavioral description language is
convenient for the human. This is not the case for the HLS system algorithms and
routines such as the scheduling or allocation algorithms. For these algorithms to
be more efficient, some of the hidden information in the constructs of the language
has to be extracted and highlighted. On the other hand some information are not
relevant to the algorithm and hiding it makes the processing less cumbersome and
more efficient. An example of the latter is the use of names for variables, to make

the specification meaningful for the human, is of no importance to an allocator;

99

an identification number will suffice and will be much more efficient in terms of
processing time. Hence, the first task in HLS systems is usually the compilation
of the input specification into an internal form. The internal form is designed to

facilitate the tasks carried out by these algorithms.

The input specification includes two types of information, control and data flow.
Control information is contained in the control constructs like GOTO, CASE, LOOP
and other control statements. Control information is also included in the ordering
of statements of the input specification. Data flow information is also included in
the input specification along with the control, where data propagate through the
different paths of the specification code. Thus, this information has to be extracted
from the specification and made easily accessible to the system. Control informa-

tion is usually represented by a control flow graph. On the other hand data flow

information is mapped into a data flow graph.

The control flow graph (CFG) is a directed graph, where the nodes correspond
to the operations of the specification and the edges link immediate predecessor-
successor pairs. Conditional branching is indicated by more than one successor of a
node. The data flow graph (DFG) is some sort of a directed bipartite graph. The
nodes are either data or operation nodes. A directed edge between nodes A and

node B, if node A puts data into node B.

100

The CFG and the DFG might be combined into a single graph that incorporates
both information. This type of graphs is referred to as Control Data Flow Graph

(CDFG). CDFGs are frequently used in HLS systems.

The HAL system [12] of Carleton University uses a CDFG as an internal form.
The Carnegie Mellon University (CMU) [1, 5, 6, 7, 9, 10] HLS systems use the Value
Trace (VT) as an internal form. The VT is a CDFG. The IBM’s Yorktown Silicon
Compiler (YSC) [25], uses separate CFG and DFG for the internal representation.
Its internal form is called Yorktown Internal Format (YIF). Stanford’s Flamel system

[18] uses a CDFG, called dacon, as an internal representation.

In our system we use a combined control and data flow structure to represent
the input specification internally. We call this form of a CDFG the Internal Data

Structure (IDS). IDS is explained in detail in the rest of this chapter.

6.2 IDS description

The IDS was carefully designed to meet the requirements of the system. It is imper-
ative that the IDS provides an easy way to access the required data for the various
system algorithms. Hence the requirements of each algorithm (i.e. the scheduler,

allocator and the tasks carried alongside these modules) has been incorporated into

101

the IDS.

The first task carried by the IDS translator is to build the cross reference table,
Figure 6.1. The variable names are converted into integers in this step. Integers are
much more efficient in terms of processing, and storage. The variable name need be

stored only once along with a corresponding integer. This information is stored in

the cross reference table.

struct cross_ref_table{

char name[VAR LEN];
value;
struct cross_ref *next_item;

h

Figure 6.1: Cross reference table.

The heart of the system is the scheduler. The other parts carry their tasks from
within the scheduler. Therefore the IDS was designed to optimize the various tasks
carried out by the scheduler. The IDS primary construct is the state. A state in the
IDS corresponds to a state in the attempted schedule. The scheduler starts from an
initial schedule. This schedule is the subgraphs presented in Chapter 4. Hence the
IDS translator carries out the task of subgraph generation (refer to Chapter 4 for

more detail).

102

struct state{
char

(* A state initially is a loop body *)
label[VAR.LEN];(* A state identifier *)

BLK_PTR blks; (* A pointer to the blocks of this loop body *)
BRA_PTR branches; (* A pointer to the branching instructions out of this state *)
REACH_PTR reach; (* A pointer to all branches among this state *)
RCHR_PTR rchrs; (* A pointer to all states reaching this state *)
HW_PTR hw; (* A pointer to the amount of Hardware used in this state *)
VAR_PTR regs; (* A list of all required variables for this state *)
GOTOPTR gotos; (* A list of all goto instructions of this state *)
CND_REF_PTR cnd.eftable; (* A table of each condition and its integer reference value *)
struct state list *next._state; (* A pointer to the next state *)

15

Figure 6.2: State data structure.

103

The state data structure is shown in Figure 6.2. The variable label holds the
identifying name of the state. This name is taken from the PAL code. The PAL code
assigns a label for each loop entrance point. Remember that each state corresponds
to a subgraph, which starts at a loop entrance point of the PAL specification. An
exception for this is the first subgraph, which starts at the first instruction of PAL.
The first instruction is always labeled in the PAL specification, whether it is a loop

entrance instruction or not.

The prefetch example of Figure 4.1 is repeated in Figure 6.4 and used to explain
the IDS translation. The translation of this specification into states is shown in
Figure 6.3. The field next_state is a pointer to the next subgraph of the specifica-
tion. This field corresponds to the nodes added after each subgraph in the subgraph

generation step, presented in chapter 4.

104

_prefetch

_prefetch:
s0 =_ibus -1
s0=s0+#4 -2
s4 = _branch -3
L1:
_ppc = st -4
_popc =s2 -5
_Obus =s0 -6

flags =s4 ==#0 ---7
if lagsgotoL4 -8
s1 =_branchpc ---9

T

L4 L4:

s3=_ire --10
flags=s3==#1 --11
if Iflags goto L4 -—-12
s2 = s1 --13
s1=s1+#4 --14
goto _prefetch ---15

L

Figure 6.3: Prefetch Example: Translation into states of the IDS.

105

—prefetch:

s0 = _ibus —1
s0 = s0 + #4 —2
s4 = _branch —3
L1:
-ppc = sl —4
-popc = s2 —3
-obus = s0 —6
flags = s4 == #0 —T7
if flags goto L4 —8
sl = _branchpc —9
L4:
s3 = dre —10
flags = s3 == #1 —11
if 'flags goto L4 —12
s2 = sl —13
sl = sl + #4 —14
goto _prefetch —15

Figure 6.4: Prefetch Example: PAL Code.

106

6.2.1 The field cnd_ref.table

Conditions generated in each state are mapped into integers. The cross reference
table between conditions and corresponding integers is stored in the table pointed to
by cnd_ref_table, Figure 6.5. A negative integer implies that the condition should

be inverted.

struct cnd.ref list{

int cond_ref;
char cond_value[INST_LEN};
struct end.ref list *next_cr;

b

Figure 6.5: Conditions reference table.

6.2.2 The regs field

This field holds a list of the required variables of the state from other states. These
variables are identified by the scheduler and the register allocator, refer to Chapters
4 and 5. A required variable for a state is a variable that is used in the state before
being set to a value, or a variable that is required for a state that is reached by the

current state.

107

6.2.3 The hw field

This pointer points to a list of hardware units used in the state. This information is
needed in the scheduler to decide whether a user specified limit on area is violated

or not.

6.2.4 The gotos and branches fields

The gotos field points to a list of the GOTO instructions (both conditional and
unconditional) in the state. Each goto is associated with a condition of its own
and the ANDing of the conditions along the path leading to the execution of that
instruction. This condition is used as an inter-state branching condition when the
state is cut by the scheduler. Another field in the gotos data structure is the st_num
(see Figure 6.6). This field holds the statement number from which the goto took
place. Branching among the states is stored in the field branches with the proper

condition for each branch. The data structure for these fields is shown in Figure 6.6

108

struct goto list{

char label[VARLEN];
CND.PTR cond;
int st.num;
struct goto_list *next_goto;

k

struct branches_list{
char inst[INST_LEN};
struct bra_list *next_bra;

|

Figure 6.6: branches and gotos data structure.

6.2.5 The rchrs field

struct rchr_list{

char label[VAR LEN};
ANDS.PTR cnd;

int st.num;

struct rchr list *next.rchr;

Figure 6.7: The rchrs data structure.

The rchrs (reachers) pointer points to a list of states that reach this state. The
record of each reacher, Figure 6.7, contains as well two more fields (cnd and st_num)
which are not used in this context. These fields are used when the list is used in the

reach data structure explained next.

109

6.2.6 The reach field

struct reach list{

char label[VARLEN];
struct reach list *next._reach;
RCHR_PTR reachers;

b

Figure 6.8: The reach data structure.

This field points to a list shown in Figure 6.8. The list holds the branching
relationships among the blocks of the state. The field label holds the label of the
block under consideration. The field reachers holds the information about all blocks
reaching the one under consideration. For each reacher the following information is

stored (refer to Figure 6.7).

o A label field identifying the reaching block.

o A st_numfield identifying the statement in the reaching block where the branch

took place.

o A cnd field that holds the condition for that branch.

110

6.2.7 The blocks field, blks

struct blk list{

char label[VARLEN];
STMTS_PTR stmts;
struct blk_list *next_blk;

h

Figure 6.9: Block data structure.

In the PAL specification, there might be several segments of code each of them
having a different label. These labels are used in the PAL for branching instructions.
These segments are identified in the IDS as blocks. Blocks are the building units of

states in the IDS. The block data structure is shown in Figure 6.9.

The label field is an identification field. It is given the label initially found in
the PAL description. The nezt_bik field is a pointer pointing the following block of
the PAL specification within the state. The stmts field stores the statements of the
specification as they appear in the PAL specification. The stmts field is explained

in the following subsection.

111

_prefetch
State

Figure 6.10: Prefetch Example: Blocks of the _prefetch state.

_prefetch

ppo=st

popc =2
-obus =s0
flags = s4 == #0
ifflags goto L4 ..
s1=_branchpc

112

The state labeled _prefetch in Figure 6.3 is shown in Figure 6.10 as a set of blocks.

The stmis field

Each block consists of a number of statements. PAL statements are read from the
PAL specification file one at a time as they appear in the code. Each PAL statement
is analyzed as soon as it is read. This analysis converts the statement into the IDS
form of the statement. The statement IDS form, stmt is shown in Figure 6.11. The

fields of this data structure are explained next.

struct stmt{

nt num;

int IF _cond start;

int delay;

int LHS,RHS1,RHS2,0PR, type;
char label[VARLENJ;

CND_PTR LHS _conds;

SRC_PTR RHS1_sres,RHS2 sres;

struct stmt *next_stmt;

Figure 6.11: The stmt data structure

113

The field num

Each statement in the PAL code is given a distinct identification number. This
identification number is stored in the field num. All references to any statement use

this identification number.

The field type

This field is an integer field that stores the type of the instruction. Recall that any

PAL instruction is one of three types:

e Data transfer : The type value of which is 0.
e Conditional branch : The type value of which is 1.

e Unconditional branch: The type value of which is 2.

The field IF_cond

The conditional branch instruction in PAL has the form “IF condition GOTO label”.
The “condition” takes only one of two values : “flags” or “/flags”. That is, the branch
will take place if the result of a previous comparison operation is either TRUF or

FALSE. The comparison operations always store their results in a variable called

114

flags. This is due to the fact that PAL is translated from assembly language, where

a flags register is usually invoked to make the branching decisions.

The field IF_cond stores the value “1” if the condition is flags and the value “0”

if the condition is !flags.

The field label

This field is associated with branching instructions. It stores the label into which

the branch is done. It is a redundant field if the instruction is not a branch.

The field LHS

This field stores the integer reference value of the Left Hand Side variable of a data

transfer instruction.

The field RHS!

This field stores the integer reference value of the first Right Hand Side variable of

a data transfer instruction.

115

The field RHS2

This field stores the integer reference value of the second Right Hand Side variable

of a data transfer instruction.

The field OPR

This field stores the integer reference value of the operation of a data transfer in-

struction.

The field start

This field is a Boolean variable that hold the value TRUE if the instruction is in the
starting sequence of the PAL code, and FALSE otherwise. The starting sequence is
the sequence that appears between the first instruction of the code and the first loop
entrance instruction. This sequence of instructions will be executed only once, that
is the first time the code is executed. The instructions in the block _prefetch are
of this type of instructions. These instructions are usually the instructions moved
outside loops by the compiler to minimize the run time of loops. These instructions
are the candidate instructions for reinsertion inside loops. The instruction s3 = _ire

is of this type. Remember that this instruction is moved inside the block labeled L4

116

in the CFG of this example (see Figure 4.3).

The field delay

This field is needed in the scheduling algorithm for the chaining of operations along
a certain path. The scheduler takes as input the maximum clock period allowed in
the final realization. Time delay of each operation is given in the hardware library.
Hence this field is used to store the accumulated time delay of the data path realizing

the associated instruction.

The fields RHS1_srcs and RHS2.srcs

These two fields are pointers to the operands of the operation. They are of type

SRC_PTR. The type SRC_PTR is explained next.

The field LHS_conds

This field is a pointer to the different execution conditions of the statement. It is

built by the scheduler. This pointer is of type CND_PTR. The type CND_PTR is

explained later.

The type SRC_.PTR

struct src_list{

. char src[INST_LEN];
CND_PTR cond;
struct src.list *next_src;

b

Figure 6.12: The SRC_PTR data structure record

The data structure pointed to by a SRC_PTR is shown in Figure 6.12. This list
holds the different paths that the source of an operation might have followed. Each
path is stored in a record of the list. The field that stores the path is called src
and is of type char. The use of this type is due to the fact that the data path is
converted into the output format in AHPL and stored in this variable. Each path is
associated with a different execution condition stored in the list pointed to by the

condition pointer cond of type CND_PTR.

The type CND_PTR

The CND_PTR is a pointer to a condition. The condition is the result of an AND-
OR operations. Conditions are generated from the different paths reaching a certain
instruction. Associated with each path is a set of conditions, the ANDing of which

is the condition of executing the associated instruction. If any of the paths leading

118

struct cnd_list{
ANDS_PTR ands;
struct cnd_list *next_cnd;

b

struct ands list{ /* pointed to by ANDS_PTR */
int cond.ref;
struct andslist *next.and;

b

Figure 6.13: The CND_PTR data structure records

to a certain statement is activated, that statement should be executed. Thus the
ORing of the different paths conditions yields the execution condition for a specific
statement. Figure 6.13 shows the data structure of CND_PTR. Figure 6.14 shows
an example of how conditions are stored. In the figure the conditions “a —d” are

stored as numbers and not characters.

119

CND_PTR

> I1p{a | b [P c Hl

cond = abc + db
ENESENE ST nl

X =

(a) Condition (b) Representation

Figure 6.14: Storage of conditions.

120

Chapter 7

Conclusions and Future Work

7.1 Conclusions

High Level Synthesis is a complex process. To overcome its complexity, a new step-
wise approach is adopted. A series of transformations move the input specification

into the target specification (RTL descriptions).

We have built an HLS system that incorporates the following features:

e The system can accomodate any ordinary high level programming language.

e The system produces RTL descriptions of input specifications written in the

121

C-language. It synthesizes these descriptions trying to minimize the schedule
length restricted by a set of user supplied constraints. The constraints are
either on area (represented by the number of hardware units to be used in the

implementation) or on timing (represented by the minimum clock frequency)

or on both.

The system is machine independent.

It incorporates a superior scheduling algorithm.

An optimization register allocation algorithm is incorporated in the system.

The system produced quality designs for several benchmarks.

AHPL hardware description language is used as an RTL target specification

language.

o The supported C-language is quite comprehensive.

The novel idea of this work is the use of the ordinary language compiler to
produce the first intermediate form. This lead to the utilization of the tasks carried

by the compiler such as:

1. Dead Code Elimination.

2. Constant Propagation

122

3. Common Sub-expression Elimination
4. Code Motion

5. Variable Disambiguation

The C-language is used in this work as a representative specification language.
The supported C is quite comprehensive. However, some restrictions are still im-
posed on the input specification. All control constructs are allowed in the current
implementation. Subroutine calls are allowed with some restrictions. Subroutines
are currently expanded in line. Certain data types such as arrays and strings are

supported but not handled efficiently.

This work introduced the Pseudo Assembly Language (PAL) as an actual input
specification language for the system. PAL made the system machine independent

and made it easier to carry out the various tasks of the HLS process.

Scheduling algorithms are classified in this work into two classes: Operation
Based Scheduling algorithms and Path Based Scheduling algorithms. A new Path
Based Scheduling algorithm is introduced. We call this algorithm Loop Based
Scheduling (LBS). The experimental results show an exponential decrease in the
number of paths processed by this algorithm compared to other reported Path Based

Scheduling algorithms. The number of paths is a measure of the complexity of the

123

algorithm. The scheduler includes operation chaining as well.

The system includes an optimizing register allocator. The register allocator starts
by the initial allocation performed by the language compiler. It then optimizes that

solution by minimizing the number of registers used in the realization.

The operator assignment and interconnection allocation is not investigated in this
work. A provision is made in the system design for accomodating these allocation

techniques. For the time being an allocation technique like the ASAP is used.

The Internal Data Structure was carefully designed to make the tasks carried by

the system modules easier. A comprehensive description of the IDS is presented.

Several benchmarks have been used in the system. The results are quite inter-
esting both in the complexity of processing and the quality of the solution. Several
examples have been simulated and fabrication masks were produced. However, no

chips are yet fabricated.

7.2 Future Work

Several open problems need to be investigated within the context of this new syn-

thesis methodology. Among these problems are the following.

124

e Word Length. At the time being all hardware units are assumed to have
the same word length. This word length is supplied by the user. A more
efficient and suitable way has to be found to determine the word length of
the different components of the realization hardware. The Flamel system of
Stanford University and the HARP system use simulation to determine the

word length.

e Arrays. Arrays are handled in the system as separate registers. A better
solution might be to use memory modules to realize arrays, or even multi-port

memories. A further study is required for this issue.

e Bit-wise Operations. Bit-wise operations are not supported in the system. A

way of supporting such operations is required.

o Allocation. Operator and interconnection allocation are not well handled in
the system. A solution for this is proposed in Chapter 5. However, the solution

was not implemented.

e Subroutines and Stacks. Subroutines are expanded inline in the system. A
better way of implementing subroutines is needed. The possibility of modelling
subroutines as asynchronous hardware modules has to be studied. Parameter
passing is a limitation for such a solution. However, the stack used in the
assembly languages might provide a good communication media that would

overcome this problem.

125

o User Interface. Although an experienced user may be able to affect the deci-
sions of the system by manipulating the PAL specification, no attention was
paid for user interface. An interactive graphical interface and multi-cycle de-

sign style shall help producing more efficient solutions.

o The classification of scheduling algorithms into operation based and path based
triggered the idea of trying to apply some operation based algorithms like
Force-Directed Scheduling to the control flow graphs in a path based fashion.
The idea would be probably to incorporate the mutual exclusion information
of paths execution into the force measure. The force is an indication of the

gain yielding from assigning an operation to a certain control step.

126

Appendix Al

This appendix shows the simulation results for two circuits: the GCD and the
Prefetch. These circuits are explained in Chapter 5. The first is the GCD circuit,
which calculates the Greatest Common Divisor of two numbers. The second is the
prefetch circuitry explained in the chapters of this report. Given next are the AHPL

model and the simulation results for both examples.

All necessary declarations are incorporated in the models. Combinational Logic

Units are defined in the system.

127

The GCD Example

Simulation Results

128

MODULE : GCD.

MEMORY : S0{8} ; s1(8}.
EXINPUTS : XI{8};YI{8};RST{1l};CLOCK.
CLUNITS : ADD{B)} <: ADDER<. 8 .>.
CLUNITS : COM8{8} <«: COMPAR<. 8 .>.
CLUNITS : COM1{1l} <: COMPAR<. 1 .>.
CLUNITS : SUB{8}.
OUTPUTS : OUT{8}.

BODY
SEQUENCE : CLOCK.

1 S1 * (~COM1{1l}(RST;\0\)) <= XI;
SO * (~COM1{1}(RST;\0\)) <= YI;
=> (COM1{1}(RST;\0\)) / (1).

2 S0 * ((~CoM8{2}(S0;S1)) & (~COM8{1}(S0;S1)))<= SUB(SO;sl);
s1 * ((coM8{2}(s0;S81)) & (~COM8(1}(s0;Sl)))<= SUB(S1l;S0);
ouT * (COM8{1}(sS0;S1)) <= Si1;
=> (~COM8{1}(S0;sl),CcoM8{1}(s0;S1)) / (2,1).

ENDSEQUENCE
CONTROLRESET (~RST) / (1).

129

1KING FAHD UNIV OF PETROLEUM & MINERALS,

UNIVERSAL AHPL SIMULATOR OUTPUT

12:20:50

UNIVERSAL
RST
| so

| |

| |

||

| 1

CLOCK # |
0 0 00
* %k %k %k
1 0 00
*k k%
2 0 00
* % k%
3 0 00
* %k %k k
4 0 00
%* % %k %k
5 0 00
* %k k*x
6 1 00
% % kK
7 114
* % k%
8 1 05
% %k kK
9 1 05
* %k Kk k
10 1 05
%* % Kk Kk
11 105
* k Kk %k
12 108

% % %k %k

DATE: SAT 13 NOV.,

AHPL FUNCTIONAL LEVEL SIMULATOR OUTPUT:

s1

| XxI

| | Yz

| | | our

.
00 00 00 00

ACTIVE STEPS

00 OF 14 00
ACTIVE STEPS

00 OF 14 00
ACTIVE STEPS

00 OF 14 00
ACTIVE STEPS

00 OF 14 00
ACTIVE STEPS

00 OF 14 00
ACTIVE STEPS

00 OF 14 00
ACTIVE STEPS

OF OF 14 00
ACTIVE STEPS

OF OF 14 00
ACTIVE STEPS

0a OF 14 00
ACTIVE STEPS

05 OF 14 00
ACTIVE STEPS

05 04 08 05
ACTIVE STEPS

04 04 08 05
ACTIVE STEPS

IN

IN

IN

IN

IN

IN

IN

IN

IN

IN

IN

IN

IN

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

130

(10)
(11)
(12)
(13)

: SYST/STEP

1/ 1

: SYST/STEP

1/ 1

: SYST/STEP

1/ 1

: SYST/STEP

1/ 1

: SYST/STEP

1/ 1

: SYST/STEP

1/ 1

: SYST/STEP

1/ 2

: SYST/STEP

1/ 2

: SYST/STEP

1/ 2

: SYST/STEP

1/ 2

: SYST/STEP

1/ 1

: SYST/STEP

1/ 2

: SYST/STEP

1/ 2

COLLEGE OF COMPUTER SCIENCE

1993

* %k %k

*kk*x

* ok kk

g &k kK

* %k k Kk

*kk Kk

* kK Kk

*kk*k

* %k ok k

* %k kK

*kk*k

kkkx

* %k %k

TIME:

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

104

* % ok *

1 04

* % kK

1l 08

*kkk

1l 04

*kkk

1l 04

¥k ok k

114

* ok kK

1l 0a

* &k ok Kk

1 0a

%* %k kK

114

% % % &

10a

* kKK

10a

% % &k

114

o %k % %

1 0a

% %k k %k

1 0A

* % %k

114

* %k kk

1 0A

% % % %

1 0a

%* % Kk Kk

04 04 08 05
ACTIVE STEPS

04 04 08 04
ACTIVE STEPS

04 04 08 04
ACTIVE STEPS

04 04 08 04
ACTIVE STEPS

04 0A 14 04
ACTIVE STEPS

OA 0A 14 04
ACTIVE STEPS

0A 0A 14 04
ACTIVE STEPS

0A 0A 14 OA
ACTIVE STEPS

0A 0A 14 0A
ACTIVE STEPS

OA 0A 14 OA
ACTIVE STEPS

0A 0A 14 O0A
ACTIVE STEPS

0A 0A 14 OA
ACTIVE STEPS

0A 0A 14 Oa
ACTIVE STEPS

OA 0A 14 Oa
ACTIVE STEPS

0A 14 1E 0a
ACTIVE STEPS

0A 14 1E 0OA
ACTIVE STEPS

0A 14 1E OA
ACTIVE STEPS

IN

IN

IN

IN

IN

IN

IN

IN

IN

IN

IN

IN

IN

IN

IN

IN

IN

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

131

14)

15)

16)

17)

18)

19)

20)

21)

22)

23)

24)

25)

26)

27)

28)

29)

30)

: SYST/STEP

1/ 1

: SYST/STEP

1/ 2

: SYST/STEP

1/ 2

: SYST/STEP

1/ 1

: SYST/STEP

1/ 2

: SYST/STEP

1/ 2

: SYST/STEP

1/ 1

: SYST/STEP

1/ 2

: SYST/STEP

1/ 2

SYST/STEP
1/ 1

: SYST/STEP

1/ 2

SYST/STEP
1/ 2

SYST/STEP
1/ 1

SYST/STEP
1/ 2

: SYST/STEP

1/ 2

: SYST/STEP

1/ 1

SYST/STEP
1/ 2

* ok kK

* %k %k k

* ke kk

*kk Kk

* %k k ok

*KxKk Kk

*kkk

* kK k

* %k ok %k

* kKK

* %k kk

* d kK

% Kk k

%* % % %

%* % % %k

* ok ok k

*k*h*k

30

31

32

33

34

35

36

37

38

39

40

1l11E

LA A 2

10a

LA 2 &

10A

* kKK

1l 0a

LA 2 &]

11E

* Kk *k Kk

10a

* % % %

10a

*kkk*k

10a

% % & &k

1l11E

* &k k%

1 0A

L 2 2

1 0a

% % % X

14 14 1E 0Aa
ACTIVE STEPS

14 14 1E OA
ACTIVE STEPS

0A 14 1E 0Aa
ACTIVE STEPS

0A 14 1E 0A
ACTIVE STEPS

14 14 1E 0A
ACTIVE STEPS

14 14 1E 0a
ACTIVE STEPS

0A 14 1E 0Oa
ACTIVE STEPS

0A 14 1E 0Oa
ACTIVE STEPS

14 14 1E 0A
ACTIVE STEPS

14 14 1E 0A
ACTIVE STEPS

0A 14 1E 0a

IN

IN

IN

IN

IN

IN

IN

IN

IN

IN

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

ACTIVE STEPS IN CLOCK

PROGRAM REACHED THE CLOCKLIMIT.

132

(

31)

32)

33)

34)

35)

36)

37)

38)

39)

40)

41)

: SYST/STEP

1/ 2

: SYST/STEP

1/ 2

: SYST/STEP

1/ 1

: SYST/STEP

1/ 2

: SYST/STEP

1/ 2

: SYST/STEP

1/ 2

: SYST/STEP

1/ 1

: SYST/STEP

1/ 2

: SYST/STEP

1/ 2

: SYST/STEP

1/ 2

: SYST/STEP

1/ 1

L 2 5

*kk*x

*k K%k

* kK x

* Kk k

L & 2 1

*kxk Kk

%* k% X

* k kK

*kkk

kk

AHPL SIMULATION STOPS.

The Prefetch Example

Simulation Results

133

MODULE :PREFETCH.
MEMORY : S1{8} ; s2(8}.
EXINPUTS : IRE(1};BRANCH{1l)};BRANCHPC{8};IBUS{8}.
EXINPUTS : CLOCK;RESET.

CLUNITS : ADD{8} <: ADDER<. 8 .>,
CLUNITS : COM{8) <: COMPAR<. 8 .>.
OUTPUTS : PPC{8};POPC{8);0BUS{8}.
BODY
SEQUENCE : CLOCK.
1l PPC <= S1;
POPC <= 82 ;
OBUS <= ADD(IBUS:\0,0,0,0,0,1,0,0\);

81 * (~COM{1} (BRANCH;\O0\)) <= BRANCHPC.

2 s2 * (coM{1}(IRE;\1l\)) <= S1;
Sl * (COM({1}(IRE;\1\)) <= ADD(S1;\0,0,0,0,0,1,0,0\);
=> (~COM{1} (IRE;\1\),COM{1}(IRE;\1\)) / (2,1).
ENDSEQUENCE
CONTROLRESET (RESET) / (1).
END.

134

1KING FAHD UNIV OF PETROLEUM & MINERALS, COLLEGE OF COMPUTER SCIENCE

UNIVERSAL AHPL SIMULATOR OUTPUT

12:16:17

DATE:

SAT 13 NOV.,

UNIVERSAL AHPL FUNCTIONAL LEVEL SIMULATOR OUTPUT:

IRE
BRANCHPC
| BRANCH
| | 1BUS
| | | oBUSs
| || | Popc
| 11 | | eec
CLOCK # .
0 0 00 0 00 00 00 00
**** ACTIVE STEPS IN
1 104 0 01 00 00 00
**** ACTIVE STEPS IN
2 1 04 0 01 05 00 00
**** ACTIVE STEPS IN
3 0 04 0 01 05 00 00
**** ACTIVE STEPS IN
4 0 04 0 02 05 00 04
**** ACTIVE STEPS IN
5 104 0 02 05 00 04
**** ACTIVE STEPS IN
6 1 04 0 03 05 00 04
**** ACTIVE STEPS IN
7 0 04 0 03 07 04 08
**%* ACTIVE STEPS IN
8 0 04 0 04 07 04 08
**** ACTIVE STEPS IN
9 104 0 04 07 04 08
**** ACTIVE STEPS IN
10 104 0 05 07 04 08
*x** ACTIVE STEPS IN
11 0 04 1 05 09 08 OC

*k kK

ACTIVE STEPS IN

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

135

(10)
(11)
(12)

: SYST/STEP

1/ 1

: SYST/STEP

1/ 2

: SYST/STEP

1/ 1

: SYST/STEP

1/ 2

: SYST/STEP

1/ 2

: SYST/STEP

1/ 1

: SYST/STEP

1/ 2

: SYST/STEP

1/ 2

: SYST/STEP

1/ 2

: SYST/STEP

1/ 1

: SYST/STEP

1/ 2

: SYST/STEP

1/ 2

1993

* kKK

*k kK

LA S 23

*hk*x

*k k%

kkk

*kk*x

J d ke k

*kxk

d ok kK

kk

* k% Kk

TIME:

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

0 04

* % kK

105

*k kK

105

% % % %k

0 05

% % %k

0 06

* k kk

1 06

* % &k &k

1 06

* %k kX

1 06

* k kX

1 07

LA A &

0 07

* %**Kx

0 07

* % k%

1 07

* %k kK

1 08

* k k%

0 08

o Xk &k

0 08

%k kK

1 08

% &k k%

1 0a

*k kK

1 06 09 08 OC
ACTIVE STEPS IN

1 06 09 08 OC
ACTIVE STEPS IN

1 07 09 08 OC
ACTIVE STEPS IN

1 07 OB OC 10
ACTIVE STEPS IN

1 08 OB 0C 10
ACTIVE STEPS IN

1 08 OB 0C 10
ACTIVE STEPS IN

101 0B OC 10
ACTIVE STEPS IN

1 01 05 05 09
ACTIVE STEPS IN

1 01 05 05 09
ACTIVE STEPS IN

0 02 05 06 0A
ACTIVE STEPS IN

0 02 05 06 0A
ACTIVE STEPS IN

0 03 05 06 0A
ACTIVE STEPS IN

0 03 05 06 0A
ACTIVE STEPS IN

0 04 07 07 OB
ACTIVE STEPS IN

0 04 07 07 OB
ACTIVE STEPS IN

0 05 07 07 OB
ACTIVE STEPS IN

0 05 07 07 0B
ACTIVE STEPS 1IN

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

136

13)

14)

15)

16)

17)

18)

19)

20)

21)

22)

23)

24)

25)

26)

27)

28)

29)

: SYST/STEP

1/ 2

: SYST/STEP

1/ 1l

: SYST/STEP

1/ 2

: SYST/STEP

1/ 2

: SYST/STEP

1/ 2

: SYST/STEP

1/ 1

: SYST/STEP

1/ 2

: SYST/STEP

1/ 1

: SYST/STEP

1/ 2

: SYST/STEP

1/ 2

: SYST/STEP

1/ 2

: SYST/STEP

1/ 1

: SYST/STEP

1/ 2

: SYST/STEP

1/ 2

: SYST/STEP

1/ 2

: SYST/STEP

1/ 1

: SYST/STEP

1/ 2

* % %k %

* %k K

*k kK

*kk*k

*k kK

*kkk

*k kK

*kk*k

*kk*k

* %k *

*hkk

* %k &k %k

* %k kk

*kkk

* %k %k

* % %k Kk

* k% %k

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

0 oA

* Kk k&

0 oA

%* % kk

1 0a

* % %k

104

* % %k %

0 04

* % kK

0 04

* % k%

104

* %k kk

105

*k kK

105

* % k%

105

*kkk

0 06

* %k kK

0 06

* % % %

1 06

* %k k%

1 06

* %k k%

0 07

%k k*

0 07

* Kk k*k

0 06 09 OB OF
ACTIVE STEPS IN

0 06 09 OB OF
ACTIVE STEPS IN

1 07 09 0B OF
ACTIVE STEPS IN

1 07 09 OB OF
ACTIVE STEPS IN

1 08 OB OF 13
ACTIVE STEPS IN

1 08 OB OF 13
ACTIVE STEPS IN

1l 01 0B OF 13
ACTIVE STEPS IN

1 01 OB OF 13
ACTIVE STEPS IN

1 01 05 04 08
ACTIVE STEPS IN

1 02 05 04 08
ACTIVE STEPS IN

1 02 06 05 09
ACTIVE STEPS IN

1 03 06 05 09
ACTIVE STEPS IN

0 03 06 05 09
ACTIVE STEPS IN

0 04 06 05 09
ACTIVE STEPS IN

0 04 08 05 09
ACTIVE STEPS IN

0 05 08 05 09
ACTIVE STEPS IN

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

CLOCK

137

30)

31)

32)

33)

34)

35)

36)

37)

38)

39)

40)

41)

42)

43)

44)

45)

: SYST/STEP

1/ 2

: SYST/STEP

1/ 2

SYST/STEP
1/ 1

: SYST/STEP

1/ 2

: SYST/STEP

1/ 2

: SYST/STEP

1/ 2

: SYST/STEP

1/ 1

: SYST/STEP

1/ 2

: SYST/STEP

1/ 1

: SYST/STEP

1/ 2

: SYST/STEP

1/ 2

: SYST/STEP

1/ 2

: SYST/STEP

1/ 1

: SYST/STEP

1/ 2

: SYST/STEP

1/ 2

: SYST/STEP

1/ 2

*k kK

* &k %k ok

LA 2 B

*kk Kk

* %k k

%* % %k

% vk kK

%k kh

* % %k %k

LA R 2

LA R &

* %k k %k

* %k k Kk

* k ok k

LA & 5

*kk*k

45 107 0 05 08 05 09
**** ACTIVE STEPS IN CLOCK (46) : SYST/STEP ****

1/ 2
46 1 07 0 06 08 05 09

**** ACTIVE STEPS IN CLOCK (47) : SYST/STEP ****
1/ 1

47 0 08 0 06 0A 09 OD
x* ACTIVE STEPS IN CLOCK (48) : SYST/STEP *

1/ 2
48 0 08 0 07 0A 09 OD

**** ACTIVE STEPS IN CLOCK (49) : SYST/STEP ****

1/ 2
49 108 0 07 0a 09 0D

**** ACTIVE STEPS IN CLOCK (50) : SYST/STEP ****
1/ 1
50 1 080080A09 0D
**** ACTIVE STEPS IN CLOCK (51) : SYST/STEP ****
1/ 2

138

Bibliography

[1] M. C. McFarland, A. C. Parker and R. Camposano “The High-Level Synthesis

of Digital Systems,” in proc. of the IEEE, vol. 78, No. 2, Feb. 1990

[2] R. A. Walker and R. Camposano “A Survey of High-Level Synthesis Systems,”

Kluwer Academic Publishers, 1991.

[3] T.D. Friedman and S. C. Yang, “Methods used in an Automatic Logic Design

Generator (ALERT),” IEEE Trans. Computer, vol. C-18, 1969, pp. 593-614.

[4] T.D. Friedman and S. C. Yang, “Quality of Designs from an Automatic Logic
Generator (ALERT),” Proc. of the 7th Design Automation Workshop, pp. 71-

89, June 1970.

[5] D. E. Thomas and D. P. Siewiorek, “A Technology Relative Computer-Aided
Design System: Abstract Representations, Transformations and Design Trade-

offs,” Proc. of the 14th DAC, June 1977.

139

[6]

[7]

[8]

(9]

[10]

[11]

D. L. Springer and D. E. Thomas, “Exploiting the Special Structure of Conflict

and Compatibility Graphs in High-Level Synthesis,” Proc. of ICCAD’90, pp.

254-257, Nov. 1990.

R. J. Cloutier and D. E. Thomas, “The Combination of Scheduling, Allocation

and Mapping in a Single Algorithm,” Proc. of the 27th DAC, pp. 71-76, June

1990.

D. E. Thomas, E. D. Lagnese, R. A. Walker, J. A. Nestor, J. V. Rajan and R.
L. Blackburn, “Algorithmic and Register-Transfer Level Synthesis: The System

Architect’s Workbench,” Kluwer Academic Publishers, Boston, 1990.

D. E. Thomas, C. Y. Hitchcock III, T. J. Kowalski, J. V. Rajan and R. A.
Walker, “Methods of Automatic Data Path Synthesis,” IEEE Computer, pp.

59-70, Dec. 1983.

S. W. Director, A. C. Parker, D. P. Siework and D. E. Thomas, “A Design
Methodology and Computer Aids for Digital VLSI Systems,” IEEE Trans. on

Circuits and Systems, pp. 634-635, July 1981.

P. G. Paulin and J. P. Knight, “Force-Directed Scheduling for the Behavioral

Synthesis of ASIC’s,” IEEE Trans. on CAD, pp. 661-679, June 1989.

140

[12] P. G. Paulin, J. P. Knight and E. F. Girczyc, “HAL: A Multi-Paradigm Ap-
proach to Automatic Data Path Synthesis,” Proc. of the 23rd DAC, pp. 263-270,

June 1986.

[13] P. G. Paulin and J. P. Knight, “Algorithms for High-Level Synthesis,” IEEE

Design and Test, pp. 18-31, Dec. 1989.

[14] P. G. Paulin and J. P. Knight, “Force-Directed Scheduling in Automatic Data

Path Synthesis,” Proc. of the 24th DAC, pp. 195-202, June 1987.

[15] P. G. Paulin and J. P. Knight, “Scheduling and Binding Algorithms for High-

Level Synthesis,” Proc. of the 26th DAC, pp. 1-6, June 1989.

[16] Krekelberg, E. Sharagowitz, G. E. Sobleman and L. S. Lin, “Automated Layout
Synthesis in the YASC Silicon Compiler,” Proc. of the 23rd DAC, pp. 447-453,

1986.

[17] P. Marwedel, “The MIMOLA Design System: Tools for the Design of Digital

Processors,” Proc. of the 21st DAC, pp. 587-593, June 1984.

[18] H. Trickey, “Flamel: A High-Level Hardware Compiler,” IEEE Trans. on CAD,

pp. 259-269, Mar. 1987.

[19] T. Tanaka, T. Kobayashi and O. Karatsu, “Harp: FORTRAN to Silicon,” IEEE

Trans. on CAD, vol. 8, No. 6, June 1989.

141

[20]

[21]

[22]

[23]

[24]

[25]

[26]

H. Kramer and W. Rosenstiel, “System Synthesis using Behavioral Descrip-

tions,” Proc. of EDAC’90, pp. 277-282, Mar. 1990.

R. Camposano, “Path-Based Scheduling for Synthesis,” IEEE Trans. on CAD,

vol. 10, No. 1 January 1991.

R. Camposano and R. Bergamaschi, “Synthesis Using Path-Based Scheduling;:
Algorithms and Exercises,” in Proc. of the 27th Design Automation Confer-

ence,ACM/IEEE, 1990, pp. 450-455.

K. O’Brien, M. Rahmouni and A. A. Jerraya, “A VHDL-Based Scheduling
Algorithm For Control-Flow Dominated Circuits,” Technical report, Institut

IMAG, Gernoble, France, 1992.

Z. Peng, “Synthesis of VLSI Systems with the CAMAD Design Aid,” in Proc.
of the 23rd Design Automation Conference, New York, NY, ACM/IEEE June

1986, pp. 278-284.

R. K. Brayton, R. Camposano, G. DeMichelo, R. Otten and J. vanEijindhoven,
“The Yorktown Silicon Compiler,” in Silicon Compilation, D. D. Gajski, Ed.

Reading, MA: Addison-Wesley, 1988, pp. 204-311.

A. C. Parker, J. Pizarro and M. Mlinar, “MAHA: A Program for Datapath
Synthesis,” in Proc. of the 23rd Design Automayion Conference, New York,

NY, ACM/IEEE, June 1988, pp. 461-466.

142

[27] A. Hashimoto and M. Elmasry, “Automated Synthesis of a Multi-Bus Archi-

tecture for DSP,” ICCAD-88, pp. 44-47, Nov. 1988.

[28] F.J. Kurdahi and A. C. Parker, “REAL: A Proogram for REgister ALlocation,”

24th ACM/IEEE Design Automation Conference, pp. 210-215, Jun. 1987.

[29] B. M. Bangrle, “Splicer: A Heuristic Approach to Connectivity Binding,” 25th

ACM/IEEE Design Automation Conference, pp. 536-541, Jun. 1988.

[30] V. K. Raj, “Another Automated Data Path Designer,” ICCAD-86, pp. 214-217,

Nov. 1986.

[31] C.J. Tseng and D. P. Siewiorek, “Automated Synthesis of Data Path in Digital
Systems,” IEEE Trans. on CAD of ICAS, vol. CAD-5, no. 3, pp. 379-395, Jul.

1986.

[32] C.Y. Huang et al. “Data Path Allocation Based on Bipartite Weighted Match-

ing,” 27th ACM/IEEE Design Automation Conference, pp. 499-504, Jun. 1990.

[33] N. Dutt and C. Ramachandran, “Benchmarks for the 1992 High Level Synthesis
Workshop,” Technical Report #92-107, University of California, Irvine, Oct. 30,

1992.

[34] M. C. McFarland, “The Value Trace: A Data Base for Automated Digital De-

sign,” Dept. of Electrical Engineering, Carnegie-Mellon University, Dec. 1978.

143

[35] S. M. Sait, “Integrating UAHPL-DA System with VLSI Design Tools to Sup-
port VLSI DA Courses,” IEEE Trans. on EDUCATION, vol. 35, no. 4, pp.

321-331, Nov. 1992.

[36] S. M. Sait and M.S.K. Tanvir, “VLSI Layout Generation of a programmable
CRC Chip,” IEEE Trans. on Consumer Electronics, vol. 39, no. 4, pp. 911-916,

Nov. 1993.

144

