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Chapter 1

Introduction

In the field of Geometric Modeling, the construction of efficient, intuitive, and in-
teractive editors for geometric objects is a fundamental objective, but it is yet a
difficult challenge. In many freeform geometric modeling systems the users are al-
lowed to work in the framework of a specific data model, e.g. Bezier or non-uniform
rational B-splines [9]. This imposes constraints on the set of geometric manipula-
tion operations that can be performed, the man-machine interface and the type of
objects which can be modeled.

There are various curve manipulation techniques have been proposed. The Eu-
clidean distances between the point of modification and the control points of a
B-spline curve were used as weights to affect the control points in [5]. The diffi-
culty with this approach appears when the two separate portions of the curve are

close. To alleviate the difficulty in editing freeform shapes while matching engineer-



ing specifications, constraint based approaches were proposed in [3, 78]. Direct and
interactive manipulation tools of freeform curves and surfaces are investigated in [6]-

In the field of Computer Graphics or Computer Aided Design, a very useful
property for a given spline model is to have locally supported basis functions, in
order to allow localized modifications of the shape. Unfortunately this property can
also become a serious disadvantage when the user wishes to edit the global shape of
a complex object. Piecewise polynomial B-spline representation is common in many
contemporary geometric modeling systems. While this is a powerful tool with many
desirable properties, the same properties impose some undesirable constraints on the
user. For example, the most attractive property, locality, restricts the user to perform
global operations on the object being modeled. To perform a global operation, it
has to be transformed into a series of local operations affecting only a small portion
of the curve, which makes the process time wasting and precision hazardous [23].
The ability to simultaneously perform both local and global operations at will would
add significant functionality to any modeling system.

Multiresolution representation is a possible solution which addresses this prob-
lem, because it allows the user to edit objects at different resolution levels. Both local
as well as global operations can be performed on curves by representing them using
multiresolution decomposition. Several approaches have been proposed for multires-
olution representation of splines, mostly based on wavelets. All these approaches

involve expensive precalculations and in the case of open curves and surfaces, often



require specific treatment of boundary control points. Moreover, these approaches
depend on the given spline model they manipulate; the whole scheme has to be
redefined when it comes to manipulating other spline models, only the philosophy
of the calculus can potentially be reused [23].

All the approaches presented are either for the uniform B-splines or non-uniform
B-splines. None of the previous work addresses the case of rational splines, which
are the generalization of B-splines. Among the type of B-splines, NURBS (Non
Uniform Rational B-Splines) have been receiving considerable attention in the areas
of computer graphics and geometric modeling. In a very short period of time,
NURBS are industry standard tools for the representation and design of geometry.
The term NURBS given to it because they are defined on a knot vector where the
interior knots spans are not equal.

NURBS are useful because

e By manipulating the control points, knot vector and weights, NURBS provides

the facility to design a large variety of shapes.

e They offer a common mathematical form for representing and designing both

standard analytic shapes (conics, quadrics) and free form curves and surfaces.
e Evaluation is reasonably fast and computationally stable.

o NURBS have clear geometric tool kit (knot insertion/deletion, degree elevation

etc.), which can be used to design, analyze, process and interrogate objects.



The main objective of this work is to propose a multiresolution representation
for NURBS. This work is also oriented towards closely studying two of the proposed
multiresolution representations, one based on wavelets for the uniform B-spline case,

and the other for non-uniform B-splines.

1.1 Theory of Splines

Prior to the development of mathematical and computer models to support engi-
neering design and manufacturing, descriptive geometry was used. Many of these
geometric design techniques have been carried over into CAD design. The techniques
for obtaining a mathematical curve model from digitized data are generally referred
as curve fitting techniques. Cubic spline is an example of such technique. They are
characterized by the fact that the mathematically derived curve passes through each
and every data point. Another technique by which the mathematical descriptions
of a space curve is generated without any prior knowledge of the curve shape or
form. Bezier and B-spline are the examples of such technique. These techniques are

frequently referred as curve fairing technique.

1.2 Spline Definitions

The Mathematical or Natural Spline is a piecewise polynomial of degree k& with

continuity of derivatives of order k-1 at common joints between segment.



1.3 A Bit of History

Back in the days before computers, architects, engineers, and artists would draw
their designs for buildings, roads, machine parts, and the like by using pencil, paper,
and various drafting tools. These tools included rulers and T-squares for drawing
straight lines, compasses for drawing circles and circular arcs, and triangles and
protractors for making precise angles.

Of course, a lot of interesting-shaped objects couldn’t be drawn with just these
simple tools, because they had curved parts that weren’t just circles or ellipses.
Often, a curve was needed that went smoothly through a number of predetermined
points. This problem was particularly acute in shipbuilding: although a skilled artist
or draftsman could reliably hand-draw such curves on a drafting table, shipbuilders
often needed to make life-size (or nearly life-size) drawings, where the sheer size of
the required curves made hand drawing impossible. Because of their great size, such
drawings were often done in the loft area of a large building, by a specialist known
as a loftsman. To aid in the task, the loftsman would employ long, thin, flexible
strips of wood, plastic, or metal, called splines. The splines were held in place with
lead weights, called ducks because of their resemblance to the feathered creature of

the same name (see Figure 1.1).



Figure 1.1: A Draftsman Spline.

1.4 Types of Spline Curves

A spline curve is specified by a giving set of coordinates positions, called Control
Points, indicating the shape of a curve. Spline curve is defined, modified and ma-
nipulated with operations on the control points. Control points are then fitted with
piecewise continuous parametric polynomial functions in one of two ways.

The first type of splines is called Approzimatory Splines in which the polynomials
are fitted to the general control point path without necessarily passing through any
control point and the resulting curve is said to approximate the set of control points
(as shown in figure 1.2).These type of splines are used as design tools to structure
object surfaces. Cubic spline Interpolation methods are often used to set up paths
for object motions or to provide a representation for an existing object or drawing,
and also to design object shapes.

The second type of splines is called Interpolatory Splinesin which the curve passes
through each control point and the resulting curve is said to interpolate the set of
control points (as Shown in figure 1.3).They are used to digitize drawings, specify

animation paths etc.



Figure 1.2: Curve Approximates the Control Points : An Approximatory Spline.

Figure 1.3: Curve Interpolates Through All Control Points: An Interpolatory Spline.



1.4.1 Approximatory Splines
Bezier Curves

P. Bezier pioneered the Bezier Curve for computer modeling of surfaces for the
design of automobiles. It interpolates the two end control points and approximates

the other two. Mathematically a Bezier curves is defined as:

PO) =Y P B.) 0<t<1 (1)

i=0
The key of the Bezier method is the use of blending or basis functions. The
Bezier (or Bernstein) basis function is
Bui(t) = s £ (1= )"~ (1.2)
il (n—d)
These affect the behavior of the curve from four control points. The four blending
functions represent the ’influence’ that each control point has on the curve. The

major propertis of Bezier curve are:

Interpolates through first (FPp) and last (P, ) point.

e Non Negativity: For all 7, p and ¢, B; ,(t) is non-negative.

Convex Hull Property: The curve always lies within the control polygon.

Variation diminishing Property: No straight line intersects the curve more



times than it intersects the curves control polygon.

e Affine Invariance: The curves remains unchanged under various transorma-

tions like rotation, scaling etc.

There are several drawbacks in using this method. The blending functions affect
all points along the curve. In other words, it does not have localized control over the
curve so charge in the postion of one control point will affect the whole shape of the
curve as shown in figure 1.4. As we increase the weight value at Ps, the curve gets
a pull and the result is the change in the overall shape of the curve as we can see
for curves 1, 2, and 3. Also, the Bezier curve is a polynomial of degree one less than
the number of control points. so, the number of control points affected the degree
of the curve. The higher the degree, the higher the lack of control over the curve
there was. This makes calculation of higher degree polynomial functions expensive

in terms of computation.

B-Splines

B-Spline curves were used to overcome the problems (such as global control and the
relation between number of control points and degree of the curve) encountered by
the Bezier curves , by providing a set of blending functions that only had effect on a
few control points. This gave the local control that was lacking. Also, the problem

of piecing curves together was avoided by allowing onlv those curves that possessed
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Figure 1.4: Global Control in Bezier Curves as a Result of Change in Position of
Single Control Point.
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the required continuity at the joints. Most other spline techniques provided this at
the loss of local control.

There are three types of B-splines: Uniform Nonrational B-Splines, Non-uniform
Nonrational B-Splines and Non-uniform Rational B-Splines [14].

The term uniform means that the joints (knots) are spaced at equal intervals of
the parameter ¢. The term rational is used where z(t),y(t) and z(t) are each defined

as the ratio of two polynomials.

Uniform Nonrational B-Splines: The B-splines curves were evolved in order to
overcome the problems encountered by Bezier curves by providing a set of blending
functions that only had effect on a few control points.

The general expression for the calculation of coordinate positions along a B-

Spline curve in a blending function formulation is of the form:

P(t) = Z F.iBi,p(t) tmin S t < tma:zy 2 S p S n-+ 1 (13)
i=0

where P, is an input set of n+1 control points and the B-Spline Blending func-
tions B;, are polynomials of degree p.

The major properties of B-Spline curves are:
e B-spline curve P(t) is a piecewise curve with each component a degree p curve.

e Strong Convex Hull Property.
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e P(t) is CP~* continuous at a knot of multiplicity k .
e Variation Diminishing Property:

e Bézier Curves Are Special Cases of B-spline Curves .
o Affine Invariance

e If the standard knot vector is used, the B-Spline curve will interpolate the first
and the last control points. Its initial and final directions are along the first

and last edges of the control polygon respectively.

B-splines consists of curve segments whose polynomial coefficients depend on
just a few control points, exhibiting local control, thereby moving a single control
point affects only a small part of the curve. The time to compute the coefficients is
greatly reduced and they have same continuity as natural splines. B-spline curves
with different knot vectors are shown in figures 1.5 and 1.6 .

The Cox Deboor (8] recursive formula for the B-Spline basis can be defined as:

1 if t; <t< tiv1;
B;,(t) =

0 otherwise.

and

—t,)B, ties — t)Bis1oe
B,'vp(t) - (t t tl)Bl,p—tl(t) + ( +Pt. )_ ;l.p l(t) (1.4)
i4+p—-1 = bi i+p i+1
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Figure 1.5: A B-spline Curve with Open Uniform Knot Vector.

Figure 1.6: A B-Spline Curve with Periodic Knot Vector.
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The major properties of the B-Spline Basis function B; 4 are:
e B;,(t) is a degree p polynomial in ¢.
e Nonnegativity - For all i, p and ¢, B;,(t) is non-negative.
® Local Support - B; ,(t) is a non-zero polynomial on [t;, t;4ps1].

® On any span [t;,t;4], at most p + 1 degree p basis functions are non-zero,

namely: B,-_p,,,(t),B,-_,H_l'p(t),B,-_p.,_g',,(t), ..., and B; p(t).

e Partition of Unity ~ The sum of all non-zero degree p basis functions on span

[tiyti-i-l] is 1.

e If the number of knots is m + 1, the degree of the basis functions is p, and the

number of degree d basis functionsisn + 1, then m =n+p + 1.

e At a knot of multiplicity k, basis function B; ,(¢) is CP~* continuous.

Figure 1.7 shows the basis funcions of B-spline curve with five control points.

The important feature of the B-Spline blending functions is that they are non-
zero in only a small portion of the range of the particular parameter. B-Spline
shares many of the advantages of Bezier Curves, but the main advantage is the local
control of the curve shape as shown in figure 1.8 . In other words, moving a control
point affects only in the region near the control point of a curve. In addition, the

time needed to compute the coefficients is greatly reduced. B-splines have the same
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Figure 1.7: B-Spline Curve Basis Functions.

15



16

continuity as cubic splines, but do not interpolate their control points.Control points
can be added at will without increasing the degree of the curve, thereby retaining

the control over the curve that would be lost with a Bezier curve.

Nonuniform Nonrational B-Splines: Nonuniform nonrational B-splines permit
unequal spacing between the knots. These curves have several advantages over
uniform B-splines.

First, continuity at selected join points can be reduced from second derivative
(C?) to first derivative (C!) to C° to none. If the continuity is reduced to C?, then
the curve interpolates a control point, but without the undesirable effect of uniform
B-splines, where the curve segments on either side of the interpolated control point
are straight lines. Also, starting and ending points can be easily interpolated exactly
without introducing line at segments at the same time.

It is possible to add an additional knot and control point to nonuniform B-
splines, so the resulting curve can be easily reshaped, whereas this cannot be done

with uniform B-splines.

Nonuniform Rational B-Splines: NURBS are Non-Uniform Rational B-Splines
and is the term given to curves that are defined on a knot vector where the interior
knot spans are not equal. As an example, we may have interior knots with spans of
zero. Some common curves require this type of non-uniform knot spacing. The use

of this option allows better shape control and the ability to model a larger class of
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shapes.
Given a set of n + 1 control points Py, P, ..., P., each of which is associated
with a non-negative weight w; (i.e, P, has weight w; > 0), and a knot vector

t = {to,t1,...,tm} of m + 1 knots, the degree p NURBS curve is defined as follows:

P(t)= 3" P Riylt (15)

i=0

Where

Rip(t) = 222 (16)
Y Bip(t) w;

=0

The knot vector uniquely detemines the B-spline as it is obvious from figure 1.7.
The relation between the number of knots (m + 1), the degree (p) of B;, and the
number of control points (n + 1) is given by m =n +p + 1.

Shape of NURBS not only depends on the control points but also on the weight
parameter associated with each control point. By changing the weight w; of a control

point P; affects only the range t;, tiypi;.

1.4.2 Interpolatory Splines

Natural Cubic Splines, Hermite Splines, Cardinal Splines, and Kochanek-Bartels

Splines come under the category of Interpolatory splines. For further discussion on
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Interpolatory splines, please refer [4].

1.5 Some Other Splines

A large number of spline methods exist in literature. Some of them are useful to
achieve one objective and others are useful to achieve other objective. For brevity,
reader is referred to [74, 70, 61, 57, 58, 17, 62, 66, 56, 30, 44, 34, 59, 60, 54, 55, 51,
93, 52, 49, 50, 48, 47, 16, 20, 73, 46, 72, 71, 75, 31, 40, 35, 37, 36, 45, 43, 21, 69, 39,

64, 38, 67, 68, 65, 41, 42, 63].

1.6 Objective

The work presented here aims at the following aspects.

1. Study of the already proposed multiresolution representation methods for

splines.
2. Coming up with a multiresolution representation for NURBS.
3. Application of the proposed method on NURBS curves and surfaces.
4. NURBS curve editing by using the proposed methodology.

5. Comparison of the proposed work with some of the previously proposed meth-

ods.
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1.7 Thesis Organization

Chapter 2 is about Non-uniform Rational B-Splines (NURBS). It covers the theo-
retical details and the properties of NURBS which make them superior to the other
parametric curves. Chapter 3 addresses two of the previously proposed multires-
olution representation methods for B-splines. Chapter 4 deals with the proposed
method for the multiresolution representation of NURBS, it also covers the appli-
cation of proposed method by using it for editing the NURBS curves. Chapter 5
gives a brief comparative study of proposed method and previous works. Chapter 6

concludes our work and gives suggestions for possible future directions.
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Figure 1.8: Local Control in B-spline Curves.
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Chapter 2

NURBS

2.1 Introduction

B-spline curves are polynomial curves. While B-spline curves are flexible and have
many nice properties for curve design, they are not able to represent the simplest of
curves like the Circle, Ellipse, and many other curves that cannot be represented by
polynomials. To cope with this inability, an extension to B-splines is needed. This
motivates for the generalization of B-splines to rational curves using homogeneous
coordinates. Therefor the name Non-Uniform Rational B-Splines (NURBS).

The major ingredients of NURBS are Non Uniform knots, Rational and B
Splines. Rational curve and surfaces was first introduced into computer graphics
literature by Coons around 1967. He also suggested their usage to represent conic

sections. Forrest gives a rigorous treatment of rational conics and cubics. Following

21
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the work done by De Boor, Cox and Riesenfeld, Versprille , in 1975 proposed the
Non uniform Rational B splines or NURBS. After that, Piegl and Tiller form the
basis of the current implementation. The NURBS shape representation for geomet-
ric design generalized Riesenfeld’s B-Splines. NURBS quickly gained popularity and
were incorporated into several commercial modeling systems like IEGS, PHIGS+,
Product Data Exchange Specification , International Standard Office Standard for
the Exchange of Product Model Data [33]. It offers a unified mathematical for-
mulation for representing not only free-form curves and surfaces, but also standard
analytic shapes such as conics, quadrics, and surfaces of revolution. By adjusting
the positions of control points and manipulating associated weights, one can design
a large variety of shapes using NURBS.

NURBS are defined on a knot vector where the interior knot spans are not equal.
As an example, we may have interior knots with spans of zero. Some common curves
require this type of non-uniform knot spacing. The use of this option allows better

shape control and the ability to model a larger class of shapes.

2.2 Mathematical Definition

Given a set of n + 1 control points Py, P, ..., P,, each of which is associated with
a non-negative weight w; (i.e., P, has weight w; > 0), and a knot vector t =

{to.t1,...,tm} of m + 1 knots, the degree p NURBS curve is defined as follows:
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P(t) =) PR ,(t) (2.1)
i=0
where R; ,(t) is defined as:
Ry plt) = ) ¥ (2.2)

j=0 B;, p(t) w;

P;’s are the control points (forming a control polygon), the w; are the weights,
and B; ,(t) are the pth-degree B-spline basis functions.

The R;p(t) are the rational basis functions; they are piecewise rational functions
on t €[0,1].

The i** normalized B-spline basis function or order p + 1 (degree p) is defined by
the Cox-deBoor recursion formulas.

1 if ti S t< ti+1;
B;,(t) =

0 otherwise.

and

Bi(t) = (t = t:)Bip-1(t) + (tispsr1 — t)Bip1p(2) (2.3)

Livp — L Livp+1 — iyl
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2.3 Basis Functions

The function B;,(t), which determines how strongly control point P, influences the
curve at time ¢, is called the basis function for that control point. There are two

interesting properties of Basis Functions, namely:

e The domain is subdivided by the so called knots.

e Basis functions are not non-zero on the entire interval.

In fact, each B-spline basis function is non-zero on a few adjacent subintervals
and, as a result, B-spline basis functions are quite ”local”.

Figure 2.1 shows the B-spline basis functions.

2.3.1 Knots and Knot Vector

In figure 2.1, all the basis functions have same shape and cover equal interval of
time. In order to change the effect of different control points on smaller or larger
portions, we vary the width of the intervals, so that the non-uniformity comes into
picture (hence the name Non Uniform). We define a series of points that partition
the time into intervals, which can be used in basis functions to achieve the desired
result. By varying the relative lengths of the intervals, we can vary the amount of
time each control point affects the curve. The points demarcating the intervals are

known as knots, and the ordered list of them is a knot vector.
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Figure 2.1: B-Spline Curve Basis Functions.
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Let ¢ be a set of m+ 1 non-decreasing real numbers, ¢y < t; < te <...<t,. The
t;’s are called knots, the set ¢ the knot vector, and the half open interval; [t;, ;4]
the i** knot span. Note that since some t;’s may be equal, some spans may not exist.
If a knot t; appears k times, where k > 1, ¢; is a multiple knot of multiplicity k,
written as ¢;(k). Otherwise if ¢; appears only once, it is a simple knot. If the knots
are equally spaced (i.e., t;y; - ¢; is a constant for 0 < i < m — 1), the knot vector or

the knot sequence is called uniform otherwise it is non-uniform.

2.3.2 Important Properties of NURBS Basis Functions

Since NURBS is the generalization of B-spline, it enjoys all the properties of B-spline.

Following are some of the main properties of NURBS Basis Functions.

® R;,(t) is a degree p rational function in t.

o Non-negativity- for all 4, P and ¢, R; ,(t) is non-negative.

local Support- N;,(t) is a non-zero polynomial on [ti, tisps1]-

Since N;,(t) is non-zero on [t;,t;yp41], so does R;,(t). Note that we assume

w;s are non-negative.

On any span [t;,t;41], at most p + 1 degree p basis functions are non-zero,

namely: N’_lyp(t), M—p-{-l,p(t)y M—p-{-?,p(t)y .... and Ni'p(t).
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e Partition of Unity The sum of all non-zero degree p basis functions on span

[t,', t,'.{..l] is 1.

e If the number of knots is m + 1, the degree of the basis functions is p, and the

number of degree p basis functions isn + 1, thenm =n +p + 1.

e At a knot multiplicity of k, basis function N; ,(t) is CP~* continuous. There-
fore, increasing multiplicity decreases the level of continuity, and increasing

degree increases continuity.

e Basis function R;,(t) is a composite curve of degree p rational functions with

joining points at knots in [t;, t;+ps1]-
o If w; = c for all 4, where c is a non-zero constant, R;,(t) = N; o(t).

e Therefore, B-spline basis functions are special cases of NURBS basis functions
when all weights become a non-zero constant. We have mentioned the special

caseof c = 1.

2.4 Important Properties of NURBS Curves

The following are the important properties of NURBS curves.

e NURBS curve C(t) is a piecewise curve with each component a degree p ra-

tional curve.
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e Equality m = n + p + 1 must be satisfied.

e A clamped NURBS curve C(t) passes through two end control points py and

Pn-

e Strong Conver Hull Property: The NURBS curve is contained in the convex
hull of its control polyline. More over, if t is in knot span [t;, ¢;4,], then p(t) is

in the convex hull of control points Di—ps Pi—p+1, -+ Di-

® Local Modification Scheme: Changing the position of control point p; only
affects the curve p(t) on interval [¢;,¢;41]. This local modification scheme is
very important to curve design, because we can modify a curve locally without

changing the shape in a global way.
e p(t) is CP~* continuous at a knot of multiplicity k.

o Variation Diminishing Property: The variation diminishing property also holds
for NURBS curves. If the curve is contained in a plane (resp., space), this mean
no straight line (resp., plane) intersects a NURBS curve more than it intersects

the curve’s control polyline (see Figure 2.2).
e B-spline Curves and Bezier are special cases of NURBS Curves.

o If all weights are equal, a NURBS curve becomes a B-spline curve. If further

more n = p (i.e., the degree of a B-spline curve is equal to n, the number of
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-9

Figure 2.2: Variation Diminishing Property in NURBS.

control points minus 1) and there are 2(p + 1) = 2(n + 1) knots with p + 1 of

them clamped at each end, this NURBS curve reduces to a Bezier curve.

Projective Invariance: If a projectivev transformation is applied to a NURBS
curve, the result can be constructed from the projective images of its control
points. This is a nice property. When we want to apply a geometric or even
projective transformation to a NURBS curve, this property guarantees that
we can apply transformation to control points, which is quite easy, and once
the transformed control points are available the transformed NURBS curve is
the one defined by these transformed points. Therefore, we do not have to

transform the curve. On the other hand, Bezier curves and B-spline curves
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only satisfy the affine invariance property. This is because only NURBS curves

involve projective transformations.

2.5 Effect of Modifying Weights on NURBS

Since NURBS curves contain B-spline curves as special cases, methods for modifying
the shape of a B-spline curve such as moving control points and modifying knot
vector also work for NURBS. NURBS curves are defined with a set of control points,
a knot vector, a degree and a set of weights, we have on e more parameter for
modifying the shape of a NURBS curve, the weights.

The basis functions of a NURBS curve has been shown in Fig.2.1. Therefore,
increasing and decreasing the value of w; will increase and decrease the value of
R; 5(t), respectively. By changing the weight w; of a control point P, affects only the
range [t;, t;1p+1]. More precisely, increasing the value of w; will pull the curve toward
the control point P; . In fact all affected points on the curve will also be pulled in
the direction of P;. When w; approaches infinity, the curve will pass through control
point P;. On the other hand, decreasing the value of w; will push the curve away
form control point P;.

A Simple NURBS curve is shown in Figure 2.3 and Figures 2.4 and 2.5 show
NURBS curve with varying weights at a control point.

In summary, we can say that "Increasing (resp., decreasing) the value of weight



Figure 2.3: NURBS Curve with Default Shape Parameters.
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Curve with
weight vafue 10 at P‘

Curve with
weight value 5 at P .

Curve with
weight value 2 at P .

Curve with
defaulit weights

Figure 2.4: A NURBS curve with application of different weights at P;.
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Curve with weight 10

\

Defautt curve \\\\ // /
/
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Figure 2.5: Application of Different Weight Values on P, and its Effect on the Shape
of the Curve.
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w; pulls (resp., pushes) the curve toward (resp., away from) control point P,. When
the value of of w; becomes infinity, the curve passes through control point P and
when w; is zero, control point P; does not have impact on the curve”.

Non-uniform Rational B-splines(NURBS) are useful for two reasons. The first
and the most important reason is that they are invariant under perspective transfor-
mations of the control points. The second advantage of rational splines is that they
define precisely any of the conic sections. A conic section can only be approximated

with rational, by using many control points close to the conic.



Chapter 3

Multiresolution Representation of

Splines

In the field of Computer Graphics or Computer Aided Design, a very useful property
for a given spline model is to have locally supported basis functions, in order to
allow localized modifications of the shape. Unfortunately this property can also
become a serious disadvantage when the user wishes to edit the global shape of a
complex object. Piecewise polynomial B-spline representation is common in many
contemporary geometric modeling systems. While this is a powerful tool with many
desirable properties, the same properties impose some undesirable constraints on the
user. For example, the most attractive property, locality, restricts the user to perform
global operations on the object being modeled. To perform a global operation, it

has to be transformed into a series of local operations affecting only a small portion
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of the curve, which makes the process time wasting and precision hazardous [23].
The ability to simultaneously perform both local and global operations at will would
add significant functionality to any modeling system.

Multiresolution representation is a possible solution which addresses this prob-
lem, because it allows the user to edit objects at different resolution levels. Both
local as well as global operations can be performed on curves by representing them
using multiresolution decomposition. Multiresolution analysis can be defined as an
ability to simultaneously perform both local and global operations on the analyzed
object[9] . Several approaches have been proposed for multiresolution representa-
tion of splines, mostly based on wavelets. All these approaches involve expensive
precalculations and in the case of open curves and surfaces, often require specific
treatment of boundary control points. Moreover, these approaches depend on the
given spline model they manipulate; the whole scheme has to be redefined when it
comes to manipulating other spline models, only the philosophy of the calculus can
potentially be reused [23].

There are many applications of multiresolution curves, including [13]:

e computer aided design, in which cross-sectional curves are frequently used in

the specification of surfaces;

e keyframe animation, in which curves are used to control parameter interpola-

tion;
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e 3D modeling and animation, in which “backbone” curves are manipulated to

specify object deformations;

e graphic design, in which curves are used to describe regions of constant color

or texture;
e font design, in which curves represent the outlines of characters;

e and pen-and-ink illustration, in which curves are the basic elements of the

finished piece.

Two of the approaches presented are studied in detail. One of them uses B-spline
wavelets for endpoint interpolating B-splines. Another approach which deals with
the multiresolution control on Non-uniform B-splines for the purpose of curve editing
is presented, which uses the knot decimation and least squares approximation. This

chapter explores both of these approaches in detail for the sake of completeness.

3.1 Background Material on Wavelets

Prior to discussing the wavelet methods for multiresolution analysis, it is desirable

to discuss about wavelets, which show the usefulness of wavelets for these purposes.
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3.1.1 Introduction to Wavelets

Wavelets are a mathematical tool for hierarchically decomposing functions. Using
wavelets one can describe a function in terms of a coarse overall shape, and the
details that range from broad to narrow. Wavelets offer an elegant technique for
representing the levels of details present in a function, regardless of whether the
function of interest is an image, a curve, or a surface [12].

The roots of wavelets are found in approximation theory, signal processing, and
physics; they have also been applied to many problems in computer graphics. These
applications include image editing and compression, automatic level-of-detail control
for editing and rendering curves and surfaces, surface reconstruction from contours,
and fast methods for solving simulation problems in 3D modeling, global illumina-
tion, and animation [10].

In every scientific and engineering discipline there is a need to analyze, visualize
and manipulate large quantities of data. The data in these applications may have
many forms, like the functions of a single parameter, such as the time series data
used in signal processing, or complex cross sectional contours encountered in medical
applications. The data may also be functions of two or more parameters, such as
two-dimensional images, surface models, or higher dimensional "global illumination”
solutions for photorealistic lighting.

In all of these cases, the simplest way to represent the information is with a se-
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quence of points. For example, a time series is most easily represented as a sequence
(t,yi). Each such point provides complete information about the behavior of the
series at ti but absolutely no information about the behavior of the series elsewhere.
In contrast, many applications require an analysis of the series at broader scales; for
example, a region of rapid change in the series can only be detected by examining
many points at once.

The classic tool for addressing these issues is Fourier analysis, which can be
used to convert point data into a form that is useful for analyzing frequencies. A
difficulty with Fourier technique is that each Fourier coefficient contains complete
information about the behavior of the series at one frequency but no information
about its behavior at other frequencies. Fourier techniques are also difficult to adapt
to many situations of practical importance; for instance, most of the time series
encountered in practice are finite and aperiodic, but the Fourier representation is
clearly not appropriate for aperiodic or non-stationary functions (whose spectral
content change in time).

For example consider the following signal;

z(t) = cos(27.10.t) + cos(27.25.t) + cos(27.50.t) + cos(27.100.t) (3.1)

it has the frequency components of 10, 25, 50, and 100 Hz at any given time

instant. Its plot is given in figure 3.1.
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If we look at the Fourier analysis of this signal (figure 3.2), it contains four peaks,
which are the Fourier coefficients corresponding to the four frequencies contained in
the signal.

Now looking at another example (figure 3.3), this signal also contains the same
four frequency components but at four different time intervals (It is called a non-
stationary or aperiodic). The interval 0 to 300ms (millisecond) has a 100Hz sinusoid,
the interval 300 to 600ms has a 50Hz sinusoid, the interval 600 to 800ms has a 25Hz
sinusoid, and finally the interval 800 to 1000ms has a 10Hz sinusoid. Figure 3.4
shows its Fourier transform (FT).

The little ripples in figure 3.4 are due to sudden changes from one frequency
component to another, which have no significance at present. Note that the ampli-
tudes of higher frequency components (100 and 50Hz) are higher than those of the
lower frequency (25 and 10Hz) ones. This is due to fact that higher frequencies last
longer (300 ms each) than the lower frequency components (200 ms each). (The
exact values of the amplitudes are also not important here.)

Other than those ripples, everything in figures 3.2 and 3.4 seems to be same, i.e.,
the discrete F'T has four peaks, corresponding to four frequencies with reasonable
amplitudes. But there is a significant difference in the signals of figure 3.1 and 3.3.
To observe this difference let us answer the following question for both the signals
[28].

At what time intervals, do these frequency (i.e., 10, 25, 50, and 100Hz) compo-



41

Figure 3.1: Signal z(t) with 10, 25, 50, and 100Hz Frequencies.

Figure 3.2: Fourier Transform of the Signal z(¢) of figure 3.1.



Figure 3.3: A Non-Stationary signal with 10, 25, 50, and 100Hz Frequencies.
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Figure 3.4: Fourier Transform of the Signal of figure 3.3.
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nents occur?

For the first signal of figure 3.1, the answer to this question is at all times i.e., all
the four frequencies exist in the interval 0 to 1000ms. However, for the second signal
in figure 3.3 these components exist for different intervals of time. The similarity
between figures 3.2 and 3.4 is apparent; both of them show four spectral components
at exactly the same frequencies, i.e., the two spectra are almost identical, although
the corresponding time-domain signals are not even close to each other. Both signals
involve the same frequency components, but the first one has these frequencies at
all times, the second one has these frequencies at different intervals. So, how come
the spectrums of two entirely different signals look very much alike?

The inability of the Fourier techniques in distinguishing between stationary and
non-stationary signals and to provide the time-frequency localization information
arises the need for a better representation of signals. This has led researchers in a
variety of disciplines (including approximation theory, physics, signal and image pro-
cessing, as well as computer graphics) to develop various hierarchical representations
of the functions [10]. The basic idea behind all hierarchical methods called as mul-
tiresolution methods is to represent functions with a collection of coefficients, each
of which provides some limited information about both the position and frequency
of the function.

Although there are a wide variety of methods for representing a function in a

hierarchical fashion [10], the theory of wavelets provide an extremely useful mathe-
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matical toolkit for hierarchically decomposing functions in ways that are both effi-
cient and theoretically sound [10]. Broadly speaking, a wavelet representation of a
function consists of a coarse overall approximation together with detail coefficients

that influence the function at various scales [12, 10].

History of Wavelets

Wavelets have recently become popular, however the roots of wavelets go back at
least a century to the work of Karl Weierstrass [77], who in 1873 described a family
of functions that are constructed by superimposing scaled copies of a given basis
function [10]. Another important early milestone was Alfred Haar’s construction of
the first orthonormal system of compactly supported functions in 1909, called the
Haar basis {19]. The Haar basis still serves as the foundation of modern wavelet
theory. In 1946 another significant advancement came in, when Dennis Gabor [15]
described a non-orthogonal basis of wavelets with unbounded support, based on
translated Gaussians.

The term wavelet came from the field of seismology, where it was coined by Ricker
in 1940 to describe the disturbance that proceeds outwards from a sharp seismic
impulse or explosive charge [32]. In 1982 Morlet et al. [22] showed how these seismic
wavelets could be effectively modeled with the mathematical functions that Gabor
has defined. Later, Grossman and Morlet [18] showed how arbitrary signals could

be analyzed in terms of scales and translates of a signal mother wavelet function.
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Yves Meyer [26, 27] and Stephane Mallat [24] developed this notion into a theory
called multiresolution analysis. In 1989 Mallat [25] showed how multiresolution
analysis could be viewed as just another form of the pyramid algorithms used in

image processing [2] and the quadrature mirror filters used in signal analysis [1, 76].

3.1.2 Mathematical Description of Wavelet Transform

Mathematically, the Fourier Transform is represented as:

X(f) = / ~ z(t) e J™It dt (3.2)
)= [ T X(f) ¥ df (3.3)

z(t) is the original signal in time domain and X(f) is the transformed signal in
frequency domain. The Fourier transform tells whether a certain frequency compo-
nent exists or not. It does not provide information regarding where in time these
spectral components appear.

Short Time Fourier Transform (STFT) is proposed which allows analysis of non-
stationary signals by segmenting them into stationary enough short pieces and then

computing the FT of each piece. Mathematically it is given as:

STFT™(t, f) = / [x(t) w*(t —t)] e ¥t dt (3.4)



47

w(t) is the window function, and * is the complex conjugate. As it is clear from
the above equation that STFT of the signal is nothing but its FT multiplied by
a window function. The problem with this approach is that it provides constant
resolutions for all frequencies, since it uses the same window for the analysis of
entire signal.

To alleviate this problem Wavelet Transform (WT) provides varying time and
frequency resolutions by using windows of different lengths. It is represented math-

ematically as follows:

t—1
s

W(T,S):-\—}_; / () v (LT e (3.5)

s and 7 are scale and translation parameters respectively, and 1 is the mother

wavelet.

3.1.3 Important Properties of Wavelets

Wavelets representations are beginning to profoundly affect most of the areas of the
computer graphics, due to many useful properties associated with them. In addition

to hierarchical nature of the wavelets, these properties include:

o Linear Time Complezity: Transforming to and from a wavelet representation
can generally be accomplished in linear time, which results in very fast algo-

rithms.
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® Sparsity: For functions typically encountered in practice, many of the coef-
ficients in a wavelet representation are either zero or negligibly small. This
property offers the opportunity both to compress data and to accelerate the

convergence of iterative solution techniques.

e Adaptability: Wavelets are remarkably flexible, unlike Fourier techniques, that
they can be applied to represent a wide variety of functions, including func-
tions with discontinuities, functions defined on bounded domains, and func-
tions defined on domains of arbitrary topological type. Consequently, wavelets
are equally suited to problems involving images, open or closed curves, and

surfaces of just about any variety.

The form of multiresolution analysis, proposed by Meyer and Mallat decomposes
signal onto a set of basis functions, called wavelets, in which every wavelet is just a
scaled and translated copy of a single unique function, called the mother wavelet,
shown in figure 3.5. This approach can be called as shift-invariant theory, since the
wavelets lying on different parts of the unbounded real line all look the same. The
shift-invariant approach, being remarkably beautiful from theoretical standpoint,
is problematic for most computer graphics applications since many functions of
interest, such as images or open curves, are defined only on some bounded portion

[10].
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Figure 3.5: Mother Wavelet.

Figure 3.6: Shift-Invariant Wavelets.
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A more generalized version, which accommodates more naturally the kind of
finite data sets encountered in practical computer graphics applications can be used.
Unlike classical theory of multiresolution analysis, the generalized version is shift-
variant. It accommodates bounded data sets by introducing different, specially
adapted wavelets near the boundaries as shown in figure 3.7.

The shift-variant multiresolution analysis is very closely related to the theory of
recursive subdivision. Indeed the functions to which shift-variant multiresolution
analysis can be applied turn out to be exactly those functions that can be generated

through a subdivision process [10].

3.1.4 Wavelets and Multiresolution Analysis

To understand the basic ideas behind wavelets and multiresolution analysis, consider
a discrete signal C", expressed as column vector of samples. The samples could be
the control points of the curve. If we want to create a low resolution version C™~!
of C™ with a fewer number of samples m’. The approach is to use some form of
filtering and downsampling on m samples of C™. This process can be expressed as

the matrix equation;

crl=A"C" (3.6)

where An is m’ X m matrix.
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Since C™~! contains fewer samples than C", it is clear that some amount of
details is lost in the filtering process. If A™ is appropriately chosen, it is possible to

capture the lost details as another signal D"~!, given as;

p*~'=p"cCn (3.7)

where B" is (m — m’) X m matrix, which is related to matrix A™.

The matrices A™ and B™ are called analysis filters. The process of splitting C™
into low-resolution version C*~! and detail D"~! is called decomposition.

If A" and B™ are chosen correctly, the original signal C" can be recovered from

C™~! and D! by using another pair of matrices P* and Q" as;

c = p* C*! + Q" D! (3.8)

The recovery process of C™ from C"~! and D"~! is called reconstruction, and
the pair of matrices P* and Q" are called synthesis filters.

The procedure of splitting C™ into a low-resolution part C"~! and a detail part
D™~! can be applied recursively to the new signal C"~!. Thus the original signal
can be decomposed as a hierarchy of low-resolution signals C°, C!, ..., C*~! and
details D°, D', ..., D!, this recursive process is shown in figure 3.8, and is known
as a filter bank (13, 10, 11].

Since the original signal C" can be recovered from the sequence C°, D°, D!, ...,



Figure 3.7: Shift-Variant Wavelets.
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Figure 3.8: The Filter Bank.
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D™, this sequence can be thought of as a transform of the original signal, known
as wavelet transform. The total size of the transform C° D° D!, ... D" !is the
same as that of the original signal C™ i.e., no extra storage is required.

Many properties of wavelet transforms make them attractive for signal process-
ing.

e Firstly, if the analysis and synthesis filters are constructed to be sparse, the

filter bank operation can be performed very fast, often in O(m).

e Second, for many of the signal that are available in practice, a large percentage

of the entries in the wavelet transform are negligible.

Wavelet compression methods can therefore approximate the original set of sam-
ples in C™ by storing only the significant coefficients of the wavelet transform.

For performing the wavelet transform all that is needed is an appropriate set of
analysis and synthesis filters A7, B/, P/, and @’. To construct these filters, each

signal C™ is associated with a function f"(u) with u € [0, 1] given by;

J"(u) = ®™(u) C" (3.9)

Where ®"(u) is a row matrix of basis functions [¢7(u), #3(u), ..., % (u)] called
scaling functions.
The scaling functions are required to be refinable; i.e., for all j in (1, n] a matrix

P7 must exist such that:
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-l =¢ P (3.10)

each scaling function at level j — 1 must be expressible as a linear combination
of finer scaling functions at level j.

Now, next, let V7 be the linear space spanned by the set of scaling functions ®7.
From the equation 3.10, it is implied that these spaces are nested, i.e., V° C V! C
N el 44

Choosing an inner product for the basis functions in V7 allows us to define W7
as the orthogonal complement of V7 in V7*!, that is, the space W7 whose basis
functions ¥ = [y(u), ¥3(u), - .., 97 _,..(u)] are such that & and ¥’ together form
a basis for V7*!, and every 97 (u) is orthogonal to every ¢/(u) under the chosen inner
product. The basis functions v (u) are called wavelets.

The synthesis filter Q7 can be constructed as the matrix that satisfies;

Wl = @7 Q7 (3.11)

Equations 3.10 and 3.11 can be expressed as a single equation by concatenating

the matrices together:

[~ | ¥ = [P | Q] (3.12)
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The analysis filters A’ and B? are formed by the matrices satisfying the inverse

relation:

[®1 | ¥l [—g; =@ (3.13)

The matrices [P? | Q7] and [A7 | B|T are both square matrices, thus;
A
(51 = P | Q] (3.14)

3.2 Multiresolution Decomposition of End-point

Interpolating B-splines Using Wavelets

3.2.1 Construction of B-spline Wavelets

A multiresolution analysis for B-spline curves (specially cubic B-splines) is presented
in [13, 10, 11]. The B-splines used were defined on uniform knot sequence everywhere
except at ends, where its knots have multiplicity 4.

To construct multiresolution framework from endpoint-interpolating cubic B-

splines, the following choices are made [13, 10].

1. Choosing the scaling functions ®(u) for all j in [0,n]: This choice determines
the synthesis filters P?. For each level j, a basis for the end-point interpolating

cubic B-spline curve with 27 interior segments. The basis functions for these
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curves are the 2743 endpoint-interpolating cubic B-splines, which are refinable,

as required by equation 3.10.

2. Selection of an inner product for any two functions f and g in V7: This choice
determines the orthogonal complement spaces W7. The standard form of Inner

product is:

< f,g>= /f(u) 9(u) du (3.15)

3. Selection of a set of wavelets ®7(u) that span W7: This choice determines the

synthesis filters Q7.

4. Finding the Analysis Filters: Together, the synthesis filters P7 and Q7 deter-

mine the analysis filters A7 and BY.

Figure 3.9 shows the scaling functions and wavelets for the above construction

for 7 = 3.

3.2.2 Application to Curves and Surfaces

After the development of the multiresolution framework, it can be used in various
applications for curves and surfaces. This section shows some of the applications of

it.
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Smoothing

The problem here can be defined as: Given a curve C* with m control points,
construct a best least-squares-error approzimating curve C* with m' control points
(m’ <m and n’ < n). Using the multiresolution analysis it can be trivially solved
as:

C" = AVH A7+ gncm (3.16)

For using the endpoint-interpolating cubic B-splines, the restriction is m = 2n+3
and m’ = 2n’ + 3 for some non-negative integers n’ < n.

Simply the decomposition algorithm is run on the original curve (with m control
points) until a curve with just m’ control points is reached.

One notable aspect of the multiresolution curve representation is its discrete
nature. It is easy to construct approximating curves with 4, 5, 7, 11, or any 27 + 3
control points efficiently for any integer level j, using the above method. However,
there is no direct way to quickly construct curves that have fractional levels of
smoothness.

For this the best solution presented in [13] is to define a fractional level curve
f7+t(u) for some 0 < ¢ < 1 in terms of a linear interpolation between its two nearest

integer level curves f7(u) and fi+!(u) as:

fH(u) = (1=t) fi(u) +t f7*!(u)

= (1—t) ®(u) CI +t ¥+ (u) CI+!
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These fractional level curves allow for continuous levels of smoothing. Figure

3.10 shows some fractional level curves.

Editing the Sweep of the Curve

Editing the sweep of a curve at an integer level of the wavelet transform is carried
out as follows.

Let C™ be the control points of the original curve f*(u), let C? be a low-resolution
version of C*, and let C7 be an edited version of C7, given by G’ = CJ + ACJ. The
edited version of the highest-resolution curve C* = C™ + AC™ can be computed
through reconstruction:

C"=C"+AC™

=C"+ P" p*! || pitl ACY

Here it is worth noting that editing the sweep of the curve at lower levels of
smoothing j affects the larger portion of the high resolution curve f*(u). At the
lowest level when j = 0 the entire curve is affected; at the highest level, when j = n,
only the narrow portion influenced by one original control point is affected.

Figure 3.11 shows the editing of the sweep of the curve.

Editing the Character of the Curve

Another form of editing that is naturally supported by multiresolution curves is

editing the character of a curve, without affecting its overall sweep.
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Figure 3.9: Cubic B-spline Scaling functions and wavelets for j = 3.
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Figure 3.10: Smoothing a curve continuously. From left to right: the original curve
at level 8, and smoother versions at level 5.4 and 3.1.
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Figure 3.11: Changing the overall sweep of a curve without affecting its character.
From left to right: the original curve, its extracted overall sweep, the sweep modified
by the user, the details reapplied to the modified sweep.
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Figure 3.12: Changing the character of the curve without affecting its sweep.

Let C™ be the control points of a curve, and let C°,C!...,C*'and D° D!..., D1
denote the components of its multiresolution decomposition. Editing the character
of the curve is simply replacing the existing set of details D7, Di*! D1 with
some new set D7, Di+! _ Pn-l and reconstructing. Figure 3.12 shows a curve

with change in its character without affecting its sweep.

Scan Conversion and Curve Compression

Using curve character libraries and other scan multiresolution editing features very
complex curves consisting of hundreds or thousands of control points can be cre-
ated, but in many cases these curves are printed in small form. So the conventional
scan conversion methods using all the complexity of curves are wasteful in terms of
the network traffic caused by sending these large files to the printer as well as the

processing time required by the printer to render these curves with many control
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points within a few square pixels. It is possible to develop a form of curve compres-
sion suitable for the purpose of scan conversion using multiresolution method that

approximates the original curve within a specified error tolerance [10].

Multiresolution Surfaces

In many 3-D computer graphics applications surfaces play a central role. For the
purpose of compression, multiresolution editing and many other operations that
can be applied to images and curves can also be applied to surfaces by means of
hierarchical representation [10]. The same idea of multiresolution analysis used for
images and curves is applicable for the surfaces as well, i.e., the high-resolution
surface is split into a low-resolution part and a detail part. This computation is
carried out same as curves, i.e., multiplication by a matrix A7 for getting the low-
resolution version surface and multiplication by another matrix B? for obtaining the
wavelet coefficients, which represent the details. This process is recursively applied
to the low-resolution part until the coarsest representation of the surface is obtained.

This process is shown in figure 3.13.

Surface Applications The applications for the surfaces include compression of
surface models, continuous level-of-detail control for high-performance rendering,
progressive transmission of complex surface models, and multiresolution editing of

surfaces.
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Figure 3.13: Decomposition of a Surface.

For the compression of a surface, first the surface is decomposed then all those
wavelet coefficients are set to zero that are less than a predefined threshold value.

When viewing a complex object, it is unnecessary and inefficient to draw a highly
detailed representation if the viewer is far away from the object. So it is better to use
some form of level-of-detail control. Another use of continuous level-of-detail control
is in the animation where switching suddenly between models with different levels
of detail in an animation can produce objectionable popping, this problem is easily
solved by using continuous level of smoothing. As the viewer approaches an ob ject,
each wavelet coefficient is smoothly varied from zero to its correct value. Likewise,
as the viewer goes away from the object, each wavelet coefficient is smoothly reduced
to zero. As a result, each wavelet coefficient can be made a continuous function of
viewing distance.

On the World Wide Web, text, images, and video are very widely transmitted.

Complex geometric objects are also becoming very common. The ever-growing pro-
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duction and distribution of these geometric objects motivates the need for efficient
transmission of models across relatively low bandwidth networks.

A more attractive way is to use the wavelet representation for progressive trans-
mission. Wavelet representation is used as; first the decomposed object is transmit-
ted, as it contains the fewer control points it is received and displayed very quickly.
Next, the normalized wavelet coefficients are transmitted in order of decreasing mag-
nitude. As these coefficients are received, the renderer can update and redisplay the
object with more resolution.

Multiresolution representation for surfaces can also be used for editing the sur-
faces. The editing of surfaces is used in much the same way as that for curves.

Figure 3.14 shows an example of surface editing.

3.3 Multiresolution of NUBS Using Knot Deci-

mation

Another method studied is for the multiresolution representation of Non-Uniform
B-Splines (NUBS) as presented in [9]. The multiresolution decomposition of the
freeform NUBS curve is computed using least-squares approximation, based on ex-
isting data reduction techniques. The least-squares decomposition allows the sup-
port of NUBS curves, but it also imposes some processing penalties in both time

and space compared to techniques for multiresolution uniform B-spline curves [9].
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Figure 3.14: Surface manipulation at different levels of detail.

3.3.1 Least-Squares Multiresolution Decomposition

Let Ci(t) be a B-spline curve of order n and [, control points, defined over the knot
vector 7i, where k € Z*. Let Vi be the space induced by 7%, and let 7._; C 7. The
new space induced by 7,_;, denoted by Vi_, is clearly a strict subspace of Vi. Now,
suppose C_1(t)(€ Vi—1) be the least-squares approximation of C(t) in the space

Vi-1, and their difference be the detail Di_,(t) € Vi, given by
Dy-1(t) = Cie(t) — Cr—1(2) (3.17)

This process of decomposing a curve into two parts, one low resolution approxi-
mation and one high resolution detail can be applied recursively. Ci(t) could then

be expressed as:

k-1
Ci(t) = Co(t) + ) _ Di(2) (3.18)

=0
where Cy(t) € Vp and D;(t) € V4.

In order to construct a multiresolution decomposition of a NUBS curve as in
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equation 3.18, the knot sequence 7;, inducing the subspaces V; must first be defined.
Tk is the knot vector of the original curve, the subsequent knot vectors 7;, 0 < i < k,
can be constructed such that 7; C 74 and 2|5;| = ||, where | | denotes the size of
the knot vector. The end conditions of the original curve must be preserved, hence
the knots t; € ;, 0 < j<nand ; < j <+ n, Y0 < i < k are unmodified,
where /; denotes the number of control points defining C;(¢) over 7;. In general,
l; = |1| +n. This knot decimation process defines the function space hierarchy and
is independent of the specific curve being decomposed.

For a B-spline curve with knot vector 7i of size 2*, k subspaces will be con-
structed, each induced by approximately half the knots of the previous level. The
lowest resolution approximation Cy(t) will a single polynomial curve, i.e., the knot
vector 7o has no interior knots (|7o| = 2n). Least-squares techniques [29] are em-
ployed to find the curve C;(t) € V;, defined over 7;, best approximating Ci(t).
Following algorithm summarizes the multiresolution decomposition process.

Ci(t)s are regular Euclidean curves, where as the D;(t)s are vector fields curves

that can be used to reconstruct Cj;(t) as:

-1
C;i(t) = Co(t) + ) Di(t) (3.19)

=0
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INPUT:
Ck(t), a NUBS Curve.
OUTPUT:
Co(t), Di(t),0 < i < k, the multiresolution decomposition of C(t).
ALGORITHM:
e 7. <= Knot Sequence of Ci(t);

e for i=k—1 to 0 step —1 do

T: = half the knots of 7;;;, preserving end conditions;

e Co(t) < Least Squares Approximation of Ci(t) in V,, defined over To;

e for i=1 to k£ do

begin

Ci(t) <= Ci(t) — Cina(2);
Ci(t) < Least Squares Approximation of Ci(t) in V;, defined over 7;;

Di_1(t) < Ci(t) — Ci_y(2t);

end;
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The problem of knot sequence decimation for the purpose of data reduction
purposes is addressed in [7]. In which knots are selected for removal by weighing
their possible effect on the curve. Where as in this case, knots are selected so as to
minimize the local effect on the curve due to removals from level i to level i + 1.
Hence, consecutive knots should not be removed in one step. Removing every nt*
knot, where n is the order of the curve will cause the least change from one level to
the next, yet affect the entire curve. As the degree of a Bezier or B-spline curve is
increased, the curve is becomes smoother and smoother due to the low pass property
of the basis functions of the representation. Therefore, as n increases, by selecting
every n'* knot for removal, the knots are removed at larger intervals yet the curve
becomes smoother. In practice, it is found that removing every alternate knot still
retains a sufficient number of resolution levels to enable an effective multiresolution
control. Moreover, the computational overhead required for the algebraic summation
is kept at interactive speeds. Figure 3.15 shows the multiresolution decomposition

for a star shaped curve.

3.3.2 Manipulation of Multiresolution Decompositions

A main purpose for applying multiresolution decomposition to B-spline curves is
to obtain the ability to manipulate and edit the curve at different resolution levels.
Figure 3.16 shows a signature curve modified at different levels. Editing is performed

at the center of s character.
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Figure 3.15: Multiresolution Decomposition of a B-spline Star Curve Cs(t) (of order
3, defined with 100 control points.). The Original Curve is shown in thin lines
throughout while C;(t)s, 0 < i < 5 are shown in thick lines.

Figure 3.16: Editing the same curve location, the center of the s in the signature, at
different resolution levels, from the lowest (top left) to the highest resolution (right
bottom). The original curve is shown in thin lines and the low resolution curves are

displayed in thick lines.
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Figure 3.17: (a) Low resolution quadratic B-spline curve (with 22 control points),
representing a cross-section of an airplane. (b) The curve of (a) is locally refined to
create the degrees of freedom that are necessary to interactively model the missiles
at the wing tips, the elevators and the steering wings, as well as the cockpit.

The ability to handle multiresolution NUBS curves allows one to not only edit
and manipulate them at different resolution levels, but also to provide local refine-
ment control, inserting new knots into tie curve in the neighborhood of the domain
to be manipulated. A fixed number of knots are heuristically inserted in the neigh-
borhood of the refined location while preserving continuity as much as possible by
prohibiting knot multiplicities. Figure 3.17(a) shows a low resolution cross-section
of an airplane, edited and refined to form missiles at its wing tips as well as its

elevators, steering wings, and cockpit in figure 3.17(b).



Chapter 4

Multiresolution Representation of

NURBS

All the multiresolution decomposition approaches presented for splines are restricted
to non-rational splines. There is no model suggested which can address the case of
rational splines. Non-Uniform Rational B-Splines (NURBS) are the generalization of
B-splines. Among the types of B-splines, NURBS have been receiving considerable
attention in the areas of computer graphics and geometric modeling. NURBS or
the splines with similar geometric properties as those of NURBS [4, 7, ?,?, 2,7, 7],
have got various applications in computer graphics. In a very short period of time,
NURBS are industry standard tools for the representation and design of geometry.
Hence there is a need to represent NURBS using multiresolution decomposition for

the purpose of obtaining the ability to manipulate and edit the curve at different

70
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resolution levels. In this work, we propose a model based on control point decimation
for multiresolution representation of NURBS. As NURBS are the generalization of
B-splines, the same model can be used for other types of splines like uniform non-

rational and non-uniform non-rational B-splines as well.

4.1 Development of the Model

Because of the flexibility of B-spline basis functions and hence of the resulting B-
spline curves, different types of control handles are used to influence the shape of

the curve [8]. Control is achieved by:

e Changing the type of the knot vector and hence basis functions (periodic

uniform, open uniform or non-uniform), figure 4.1.
¢ Changing the Order of the basis functions, figure 4.2.

e Changing the position and order of the defining polygon vertices (Control

Points), figure 4.3.

Using multiple polygon vertices, figure 4.4.

Using multiple knot values in the knot vector, figure 4.5.

And for the NURBS an additional control handle is provided by modifying the

weight values of the control points, figure 4.6.
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Figure 4.1: B-spline curve shape control by changing the type of knot vector.

By using the ability to control a B-spline curve by changing the position and
order of the control points, we can come up with a multiresolution representation
for NURBS. In this work we used the control point decimation for the purpose of
multiresolution representation of NURBS.

Let Ci(t) be a NURBS curve, defined over the set of polygon vertices or control
points P (consisting of corresponding weight values for each point in addition to X
and Y co-ordinate values) containing /. points, using the knot vector T}, where k is
a positive integer, greater than zero. There are various methods proposed for the
calculation of non-uniform knots, a popular method is to calculate the knot vector

proportional to the chord lengths between the defining polygon vertices. We use
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Figure 4.2: B-spline curve shape control by changing the Order (k) of the Basis
Functions.

Curve with P,

A\n with P,

Figure 4.3: B-spline curve shape control by changing the Position of Control Points.
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Duplicste Knot value at P,

Figure 4.5: B-spline curve shape control by using Multiple Knots.
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Figure 4.6: NURBS curve shape control by changing Weight values.

the same knot calculation method. The NURBS curve Ci(t) is calculated from the
control points P as given in the following equation and described in detail in section
2.2.
-1
C(t) = Y Pei Ri p(2) (4.1)
i=0
Let Vi be the space of all the curves that can be defined using control points F;.
Now, we find a subset Pi.; of P (Pi-y C Py), clearly the space V.., induced by
Py_y is a subset of Vi. Let Cix_;(t) € Vi, is a curve defined over the control points

Pi_1, and we found out that it is the approximation to the higher resolution curve

Ci(t). To find Py from P, we use the process of decimation.
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Let a unary operator d; is defined for decimation, where j denotes the interval
that is used to decimate the control points. If j is 2 then every 2" (alternate)
control point is decimated, if j is 3 then select every 3™ control point (i.e., control
points numbered 3, 6, 9, ...) for removal. Similarly, if j is ¢ then decimate every it

control point. Mathematically control point decimation is given by:

Py =dj(F) (4.2)

To minimize the local effect on the resulting curve Ci_,(t), consecutive control
points from P should not be removed to obtain Pi_,. It is observed that removing
every alternate point causes the acceptable amount of local effect and still retains a
sufficient number of resolution levels to enable an effective multiresolution control.
The lost control points can be captured as Q;_,.

Let another unary operator c; is defined to capture the decimated control points.
Here also j denotes the interval used to decimate the points. Mathematically Q_,

can be computed as:

Qk-1 = c;(P) (4.3)

The process of decomposition can be applied recursively until Py, which contains
only n control points, where n is the order of the B-spline curve.
Following algorithm summarizes the multiresolution decomposition process and

the flow chart in figure 4.7 shows it pictorially.



INPUT:
Ci(t), a NUBS Curve.
OUTPUT:
Py, Q:,0 < i < k, the multiresolution decomposition of Ci(t).
ALGORITHM:
e P, < Control Points of Ci(t);

e for i=k—1 to 0 step —1 do

begin
P, = d;(Py1);
Qi = Cj(Pi+1);

end;

77



YES

Figure 4.7: Flow Chart of the Multiresolution Decomposition Process.
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The reconstruction of P, from P,_; and Q;_, is carried out by merging the sets
Fi—, and Q;_,. Let a binary operator r; is defined for the process of reconstruction

of P; from P,_; and Q;_,. The reconstruction is mathematically represented as:

P, = l'j(P'—l, Qi-1) (4.4)

While reconstructing, the criteria used for the decomposition should be followed.
For example, if every j** point is decimated during decomposition, then the recon-
struction of P, is obtained by rearranging P,_, and Q;_, as; place (j — 1) points from
P;_, and one point from Q;_, in the same order and so on.

By means of recursively applying the reconstruction operator the original set of

control points can be represented in terms of its multiresolution components as:

P =rij(Po,Qo, @1, Q2, ..., Qk—1) (4.5)

The above recursion can be expanded as follows:

P, = rj(rj(PO, QO)) Qh Q?: ooy Qk—l)
= rj(Pl,le Q21 ey Qk—l)
= rj(rj(Pval)’ Q21 ey Qk—'l)

= Tj(Pr-1, Qr-1)
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4.2 Results

This section presents the results obtained using the proposed model on curves and

surfaces.

4.2.1 Multiresolution Decomposition

Figure 4.8 shows a degree 3 NURBS curve drawn with 259 control points with the
default weight values i.e., all wight values are set to 1. This curve can be decomposed
into six lower level curves as shown in figure 4.9. There are six lower resolution levels
(from level 5 down to level 0) are possible for this curve, hence the original curve is

assumed to be at level 6.

Table 4.1: Details of Curves of figure 4.9.

Figure Number | No. of Control Points | Level
49(a) 130 5
4.9(b) 66 4
4.9(c) 34 3
4.9(d) 18 2
4.9(e) 10 1
4.9(f) 6 0
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Figure 4.8: A NURBS Curve with default weight values.

The original curve is decomposed by decimating alternative control points to
get the curve at level 5 with 130 control points (figure 4.9(a)). The curve at level
4 (figure 4.9(b))is obtained by decimating every alternative control point from the
level 5 curve. Similarly curve at a lower level is obtained by decimating alternative
control points from the curve at one level higher to it. Table 4.1 gives the details of

all the lower resolution level curves of figure 4.9.
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Figure 4.9: Multiresolution levels of the curve in figure 4.8.
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Figure 4.10: A NURBS Curve with non-default weight values.

Figure 4.10 shows the same NURBS curve as in figure 4.8, but with non-default
weight values assigned to the control points. This curve can also be decomposed
into lower resolution versions by means of control point decimation method in the
same manner as performed for the curve in figure 4.8. Figure 4.11 shows all its
multiresolution levels. The attributes of these curves are same as those of the curves

in figure 4.9, as given in table 4.1.
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Figure 4.11: Multiresolution levels of the curve in figure 4.10.



Table 4.2: Details of Curves of figure 4.13.

Figure Number | No. of Control Points | Level
4.13(a) 159 5
4.13(b) 80 4
4.13(c) 40 3
4.13(d) 20 2
4.13(e) 10 1
4.13(f) 5 0
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Figure 4.12 shows another NURBS curve of degree 3 consisting of 319 control

points with default weight values. In total, six multiresolution levels are obtained for

this curve, as shown in figure 4.13. This is an example of applying the multiresolution

decomposition on closed curves. Table 4.2 lists the details of the curves in figure

4.13.

While performing control point decimation, a possible variation is to decimate

every odd numbered point in one iteration and in the next iteration all the even

numbered points can be decimated. This gives a little better control on the shape

of decomposed curves.



Figure 4.12: A Closed NURBS Curve.
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Figure 4.13: Multiresolution levels of the curve in figure 4.12.
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4.2.2 Editing Curves using Multiresolution Representation

Multiresolution analysis is defined as an ability to simultaneously perform both local
and global operations on the analyzed object. Using multiresolution representation
there are two types of editings of the curves (in general shapes) are possible, one

that affects the entire shape and the other which affects only a part of the shape.

Global Editing

Figures 4.14 to 4.22 demonstrate the ability to perform global editing (editing on
the entire curve) on a NURBS curve using multiresolution representation. Figure
4.14 is same as figure 4.12 on which the editing is performed. Figure 4.16 is a result
of editing performed on the Q component of level 3 curve and then reconstructing
back to the highest level. This process is explained as follows:

"The original curve is Cg(t) with a set of control points P as shown in figure 4.14.

e Decompose the curve Cg(t) up to level 3 to obtain Cs(t), thus obtaining the

multiresolution components P, Q3, @4, and Q5.

e Perform editing on Q3 to get Q5. For the process of editing, let e be an
operator which is applied on Q3 to get @ based on some criteria(this criteria
can be anything depending upon the interest of the user, for example user can
add or subtract a particular value from each point in Q3 to get @4, or he/she

can add a value to a point and subtract the same value from the next point



Figure 4.14: Original NURBS Curve.
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D -— Decomposition
E —-- Editing
R -— Reconstruction

Figure 4.15: Diagrammatic representation of editing at level 3.

and so on). Hence the editing operation can be defined as:

Q; = e(Qs) (4.6)

e Reconstruct P; from P; and @Q}. Similarly obtain P! from P and @, and

finally Fg (figure 4.16) is obtained from P and Qs.

Figure 4.15 shows the above process in a diagrammatic representation.



Figure 4.16: NURBS Curve with editing performed at level 3.
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Figure 4.18 shows the curve after performing editing at level 4 of the decom-
position. To obtain this edited curve first the original curve Cs(t) of figure 4.14 is
decomposed to two levels to get the lower resolution curve Cs(t), and then its Q
component (i.e., Q4) is edited to get Q. It is then combined with its corresponding
P component to reconstruct the curve at level 5. And again the level 5 curve is
subjected to reconstruction to get the highest level curve. This whole process is
explained diagrammatically in figure 4.17.

Figure 4.20 is the result of performing editing at level 5, similar to that of
explained above. Its diagrammatic representation is given in figure 4.19.

Whereas the figure 4.22 is an example of editing at all levels of the multireso-
lution representation. For performing this kind of editing first the original curve is
decomposed to the lowest level (level 0), now the Q component i.e., Qo is edited to
get Qo It is now combined with Py by means of reconstruction process to get P|.
Similarly @ is edited to get Q}, and P} is reconstructed by combining Q] and P|.
This process of editing the Q component and combining with the corresponding P
component is repeated until the last level curve is reconstructed, as shown in figure

4.21.



D - Decomposition
E --- Editing
R — Reconstruction

Figure 4.17: Diagrammatic representation of editing at level 4.
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Figure 4.18: NURBS Curve with editing performed at level 4.
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D - Decomposition
E - Editing
R - Reconstruction

Figure 4.19: Diagrammatic representation of editing at level 5.
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Figure 4.20: NURBS Curve with editing performed at level 5.



D — Decomposition
E - Editing
R — Reconstruction

Figure 4.21: Diagrammatic representation of editing at all levels.
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Figure 4.22: NURBS Curve with editing performed at all levels.
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Figure 4.23: A NURBS Curve.

Local Editing

In the context of the local editing, we edit only a part of the shape without affecting
the whole shape. Figure 4.23 shows a curve on which the editing is performed. Figure
4.24 shows the curve of 4.23 after decomposing to each level. After decomposing
to the last level of multiresolution, it is edited and the curve is reconstructed at all
levels. Figure 4.25 shows the reconstructed curves corresponding to curves of figure
4.24 after performing editing locally at a point in the middle of the curve. Figure

4.26 shows the final curve after reconstruction.
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Figure 4.24: Decomposition levels of the NURBS Curve.
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Figure 4.25: All levels of Locally Edited NURBS Curve.
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Figure 4.26: Locally Edited Final NURBS Curve.
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4.2.3 Multiresolution Surfaces

The same technique of multiresolution decomposition can be extended for surfaces,
to achieve the control that is possible for the curves. A NURBS surface S(u, v) with
l, control points and degree m in the direction of the parameter u and I, control
points and degree n in the direction of parameter v with a set of control points P

(here P contains 3-Dimensional data) is represented as:

ly=11y—1

S(u,v) =) Y P j Rim(u) Ry n(v) 4.7

i=0 j=0

where R is the N U‘RBS basis function as described in section 2.2.

If Py is the set of control points for a NURBS surface Si(u,v) (where k is a
positive integer used to denote a surface at a particular level of multiresolution), the
operators for decimation, capturing of decimated points, and reconstruction can be
defined by following the same reasoning as described in section 4.1. The decimation

process is then written as:

Pioy = d,(P) (4.8)

As the surfaces are represented by means of a mesh (Two-Dimensional Array)
of control points, the control point decimation strategy is to be modified a little
for applying it to surfaces. For surfaces, the control point decimation is carried out

as follows: first all rows are decimated based on a criteria (like every alternative
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row, or every k** row, etc.) from the mesh of control points used to represent
a surface. The columns are now decimated from thus obtained mesh of control
points after decimating rows. The columns are decimated by using the same criteria
used to decimate rows in the first step. Here the role of rows and columns can be
interchanged, i.e., instead of rows, columns can be decimated first.

Similarly, the process of capturing the decimated points and the reconstruction

process are represented in the form of following two mathematical equations.

Qi—1 =c;(P) (4.9)

P, =r;j(P_1,Qi1) (4.10)

Figure 4.27 shows a bi-cubic NURBS surface in the shape of an Ice Cream Cup.
Figures 4.28 to 4.30 show the surface at its decomposition levels.

By means of hierarchical representation of surfaces using multiresolution, editing
and other operations that can be applied to curves can also be applied to surfaces.
For multiresolution editing of the surfaces the same technique is applicable which
is applied to curves i.e., first by decomposing, after that performing editing on the

decomposed version and then reconstructing back to the original resolution level.
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Figure 4.27: A Bi-Cubic NURBS Surface witk a 30 X 30 mesh of Control Points.
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Figure 4.28: Decomposed NURBS Surface with 15 X 15 mesh of Control Points.
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Figure 4.29: Decomposed NURBS Surface with 8 X 8 mesh of Control Points.
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Figure 4.30: Decomposed NURBS Surface with 4 X 4 mesh of Control Points.
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Figure 4.31: A NURBS Surface with 15 X 15 mesh of Control Points.

Figure 4.31 shows another NURBS surface. This is also a bi-cubic surface, this
is an example of open NURBS surface. The ability of multiresolution decomposition
on this surface is shown in figures 4.32 to 4.34. As it is clear from the figures that
in the decomposition process, first three and the last three rows as well as columns
are preserved so as to retain the shape of the surface.

Figure 4.35 shows a NURBS surface and its multiresolution decompositions are
shown in figures 4.36 to 4.38. As another example of multiresolution decomposition
of surfaces, figure 4.39 shows the original NURBS surfaces and in figures 4.40 and

4.41 its multiresolution decompositions are shown.
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Figure 4.32: Decomposed NURBS Surface with 10 X 10 mesh of Control Points.
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Figure 4.33: Decomposed NURBS Surface with 8 X 8 mesh of Control Points.



112

Figure 4.34: Decomposed NURBS Surface with 7 X 7 mesh of Control Points.
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Figure 4.35: A NURBS Surface with 33 X 33 mesh of Control Points.
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Figure 4.36: Decomposed NURBS Surface with 17 X 17 mesh of Control Points.
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Figure 4.37: Decomposed NURBS Surface with 9 X 9 mesh of Control Points.
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Figure 4.38: Decomposed NURBS Surface with 5 X 5 mesh of Control Points.
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Figure 4.39: A NURBS Surface with 19 X 19 mesh of Control Points.
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Figure 4.40: Decomposed NURBS Surface with 10 X 10 mesh of Control Points.
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Figure 4.41: Decomposed NURBS Surface with 5 X 5 mesh of Control Points.



Chapter 5

Multiresolution of Splines: A

Comparative Study

This chapter discusses the comparison of our proposed method with each of the two
methods of multiresolution described in chapter 3. In this chapter, the ability of
representing various B-spline models by these multiresolution models are described.
Next the constraints on the number of control points that are imposed on B-splines
so as to use these methods are described. Finally, the results from the proposed

method is compared with those of the methods studied in chapter 3.
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5.1 Limitations of the Multiresolution Models

The multiresolution representation using wavelets method [13, 10, 11] described in
section 3.2 can represent only the uniform non-rational B-splines, it fails to represent
the non-uniform B-splines as well as the rational B-splines. Whereas the method that
uses knot decimation and least-squares approximation [9] (section 3.3) can represent
non-uniform non-rational B-splines. As uniform B-spline is the special case of non-
uniform B-spline, it can be used for the uniform B-splines as well. In this work, a
multiresolution representation for NURBS is proposed. Non-rational spline is the
special case of NURBS, hence the proposed method can be used to represent non-
uniform non-rational B-spline as well as the uniform B-splines. Table 5.1 summarizes
the types of B-splines and the ability of these three models to represent them using

multiresolution.

Table 5.1: Multiresolution Method’s Ability to Represent the Types of B-splines.

Multiresolution Model Uniform B-splines | NUBS | NURBS
Using Wavelets (section 3.2) v
By Knot Decimation (section 3.3) v v
By Control Point Decimation v v v

The multiresolution representation of end-point interpolating B-splines using

wavelets (section 3.2) imposes a constraint on the number of control points of the
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curve that is to be represented by this model; the curve should have 27 + 3 control
points, where j is a positive integer greater than 0. While the other two mod-
els, including the proposed one do not impose this constraint on the curves being

modeled.

3.2 Multiresolution Model Comparison: Wavelets

v/s Control Point Decimation

Figure 5.1 shows a B-spline curve, whose details are given in table 5.2. Figure
5.2 shows all its decomposition levels using the wavelets multiresolution method,
six lower resolution levels are obtained. The average execution time is recorded as
45.1 seconds !. Figure 5.3 shows the multiresolution decomposition levels of the
same curve by control point decimation method, with this method there are four
lower resolution levels are possible. The average execution time is recorded as 0.068

seconds.

YAll programs are executed on a Pentium III, 700MHz machine, running Windows 2000 oper-
ating system with 128MB of RAM.
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Table 5.2: Figure 5.1 Attributes.

Property Value
Type of Curve Uniform B-spline
Degree 3
No. of Control Points 67

Figure 5.1: A Uniform B-spline Curve.
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Figure 5.2: Multiresolution levels using Wavelets.
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Figure 5.3: Multiresolution levels by Control Point Decimation Method.
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3.3 Multiresolution Model Comparison: Knot Dec-

imation v/s Control Point Decimation

Figure 5.4 shows a Star Shaped NUBS curve 2, whose details are given in table 5.3.
Figure 5.5 shows all its decomposition levels using the knot decimation multiresolu-
tion method, five lower resolution levels are obtained. Figure 5.5(a) is the original
curve. Figures 5.5(b) to 5.5(f) show its lower level curves. In each figure the original
curve is shown in thin line and the decomposed curve is in thick line. The average
execution time is recorded as 1.73 seconds. Figure 5.6 shows the multiresolution
decomposition levels of the same curve by control point decimation method, with
this method also there are five lower resolution levels are possible. The average

execution time is recorded as 0.07 seconds.

Table 5.3: Figure 5.4 Attributes.

Property Value
Type of Curve NUBS

Degree 2

No. of Control Points 100

2The data was kindly provided by Dr. Gershon Elber [9).
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Figure 5.4: A Star Shaped NUBS Curve.
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Figure 5.5: Multiresolution levels by Knot Decimation Method.
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Figure 5.6: Multiresolution levels by Control Point Decimation Method.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

As NURBS have got various applications in computer graphics, there was a need
to represent NURBS using multiresolution decomposition for the purpose of ob-
taining the ability to manipulate and edit the curve at different resolution levels.
A framework for multiresolution representation of NURBS is developed for use in
various computer graphics applications which require both local as well as global
operations to be performed on B-splines. A method for representing NURBS us-
ing multiresolution is successfully devised, the objective of the work is achieved.
The idea of multiresolution representation of NURBS curves is extended to achieve
multiresolution control for surfaces as well.

It is observed that the wavelet method provides an efficient representation but
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it suffers from the fact that it is relatively very slow. Although our proposed model
does not approximate the original shape as efficiently as the other models do, but
it is very efficient with respect to execution time when compared with two of the
existing methods for decomposing B-splines using multiresolution representation. In
view of this observation the proposed model for the multiresolution representation
of the NURBS is a very good choice in applications where the tolerance in the
approximation is not of much importance.

The method presented is not capable of providing a continuous resolution control,
i.e., the decomposition at fraction levels.

Multiresolution analysis is defined as an ability to simultaneously perform both
local and global operations on the analyzed object. The work presented here can be
used for this purposes as it provides the ability to perform both local as well as the

global operations.

6.2 Future Work

e The ability to have a continuous multiresolution control would add a significant
functionality to this method. Investigation of any such method would be a

major addition to the proposed model.

e It is observed that the proposed approach for multiresolution representation

of splines is not that efficient in approximating the lower levels of a curve. It
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can be improved by means of optimizing the weights of the control points. It
will add a significant improvement if some method is developed that optimizes
the weights. This enhancement would make the proposed multiresolution rep-

resentation method very efficient.

Sometimes we encounter curves and surfaces in which some control points
are significant. Decimation of those control points may drastically change
the shape of the object. In view of this it is sought that there should be an
intelligent technique which can check these significant points at the time of
decimation. This can be achieved by assigning a weight value for each points

based on their significance.

Extension of the method to the splines that have the similar properties as

those of NURBS.

As the use of spline wavelets provides a very efficient way of multiresolution
representation of splines, it would be a significant contribution if it is extended
to NURBS. A finite initail subdivision relationship is needed for constructing

the wavelets that can be used to solve the multiresolution problem for NURBS.
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