INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6 x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

3 Aif-ii@i*i#i*iiﬁi%&i#t&i&i&l&»wﬁ&ﬁd#L*i*&&i%i%&t*%

Experimenting with Evolutionary Meta-heuristics for State
Justification in Sequential ATPG

) 4

Syed Zafar Shazli

A Thesis Presented to the
FACULTY OF THE COLLEGE OF GRADUATE STUDIES

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN, SAUDI ARABIA

A A PR PR

In Partial Fuffiilment of the
Requirements for the Degree of

MASTER OF SCIENCE

COMPUTER ENGINEERING

June 2001

el Fel el Ve e el el el el el el e el e el e e b e 9 e el e el el et

A S PN A A PP P PP PIF

¥

UMI Number: 1407216

®

UMI

UMI Microform 1407216

Copyright 2002 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against
unauthorized copying under Titie 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, M| 48106-1346

KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
DHAHRAN 31261, SAUDI ARABIA

DEANSHIP OF GRADUATE STUDIES

This thesis, written by

SYED ZAFAR SHAZLI
under the direction of his Thesis Advisor and approved by his Thesis Committee,
has been presented to and accepted by the Dean of Graduate Studies, in partial
fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER ENGINEERING

Thesis Committee

B

Dr. Aiman H. E— Maleh (Chairman)

Dr. Sadiq M. gait (Co — chairman)

»~

@3\/70 Dr. Alaaeldin Amin (Member)

Department Chairman

Dean of Graduate Studies

G5

Date

Dedicated to all those who cared for me

Acknowledgements

All praise be to Allah, Subhanahu-wa-ta-a’la, for his limitless blessing and
guidance. May Allah bestow peace on his prophet, Muhammad (peace and blessings
of Allah be upon him), and his family. I acknowledge the support and facilities
provided by King Fahd University of Petroleum and Minerals, Dhahran, Kingdom
of Saudi Arabia.

All my family members, especially my parents, were a constant source of mo-
tivation and support. Their prayers, guidance and inspiration lead to the successful
accomplishment of this work.

I would like to express my profound gratitude and appreciation to my thesis
committee chairman Dr. Aiman El-Maleh, for his guidance, patience, and sincere
advice throughout this thesis. He was helpful in every stage of the work and donated
a huge amount of time. I also acknowledge the co-chairman of my thesis committee,
Dr. Sadiq M. Sait, who introduced me to the area of evolutionary strategies. Thanks
are also due to Dr. Alaaeldin Amin for serving on my thesis committee.

I am also thankful to my house mates in NC, Minhas, Junaid, Murtaza and
Aamir, who relieved me of many household chores. I also acknowledge the support of
other friends at the campus, especially Arshad, Noman, Rais, Salman and Shahzada
Bhai who provided a wonderful company. Thanks are also due to Khalid Al-Utaibi
for providing me an excellent company in the department and helping me in the
Arabic abstract of this thesis.

ii

Contents

Dedication
Acknowledgements
List of Tables

List of Figures
Abstract (English)
Abstract (Arabic)

1 Introduction

il

ii

viii

1.1 Background oo 1

1.2 Proposed Work 4
1.3 Organization of thethesis 6

2 Sequential ATPG 7
21 Faultmodels. oo 7
2.1.1 Advantages of fault modeling 8

2.2 Fault detection in sequential circuits 9
2.3 Terminology e 10
2.4 Complexity of sequential ATPG 12
2.5 Classes of sequential ATPG 15
2.5.1 Structure-based approach 15

2.5.2 State-based approacho 15

2.5.3 Simulation-based approach 16

3 Use of Genetic Algorithms in Sequential ATPG 18
3.1 Imtroduction« . Lo 18
3.2 An overview of Genetic Algorithms 18
3.2.1 The Inspiration of Nature 19

322 GA Terminology« ot i it 19

3.2.3 The Basic Genetic Algorithm 24

iv

3.3 Literature Reviewo 0oL 24
3.3.1 Logic Simulation based Test Generators 26
3.3.2 Fault simulation based test generators 28
3.3.3 ATPGs using Logic and Fault Simulation 30
3.3.4 Parallel GA-based implementations 32

34 Conclusion Lo o e 35

State Justification using GA 36

4.1 Introduction 36

4.2 Problem Description 37

4.3 Approaches used for state justification using GA 37
43.1 GA-HITEC 38
432 IGATE. e e 38
4.3.3 STRATEGATE 39

44 TabuSearch 42
44.1 TabulList 43

4.5 Proposed GA-based state justification technique 44
4.5.1 Encoding of the chromosome 45
452 FitnessFunction 46
4.5.3 Parent Selection. 47
454 CrossOVEr o v v vt v it e e e e e e e 47

5

4.5.5 Mutation e e e e e e 48

4.5.6 Forming a new generation 48
4.5.7 'Traversing from a statetoastate 50
4.5.8 Removing the reached states from the list of desired states . . 51
46 Conclusion.o e 51
Experiments and Results 54
5.1 Introduction Lo 54
5.2 Generation of the desired states for benchmark circuits 55
5.2.1 Benchmarksused, 55
5.2.2 Obtaining a list of desired states. 56
5.3 Application of GA to state justification of the desired states 58
5.3.1 Comparison of replacement strategies 58
5.3.2 Sensitivity analysis of parameters 63
5.3.3 Recommended parameters for the proposed approach 69
5.4 Comparison with previous approaches 71
5.4.1 Limitations of the technique 71
5.4.2 Parameters used in comparison 72
5.4.3 Fault coverage comparisons, 74
5.5 Conclusion e e 75

vi

6 Conclusion 76

6.1 SUMMATY . . . - . . o o e 76
6.2 Future Research @ & i i i e e e e e e e e e e e e e 79
References o . o e 80

List of Tables

5.1 The benchmark circuitsused., 56
5.2 The number of target states obtained. 37
5.3 Comparison of the selection schemes. 59
5.4 [Effect of the change in populationsize. 65
5.5 Effect of the change in the number of generations. 66
5.6 Effect of the change in Nlimit. 67
5.7 Effect of the change in Tabu Listsize. 68
5.8 Effect of the change in Backtrack Limit. 70
5.9 Recommended parameters for the proposed approach. 70
5.10 Results obtained from the suggested parameters. 71
5.11 Best results obtained for each circuit.o 71
5.12 Comparison of the two techniques. 73
5.13 Faults detected by the two state-justification techniques. 74

viii

List of Figures

2.1

2.2

3.1

3.2

4.1

4.2

5.1

5.2

5.3

5.4

A model of synchronous sequential circuit. 10
Classesoffaults. 11
A roulette-wheel.ol 21
Structure of a simple genetic algorithm. 25
A block diagram of the methodology. 46
A flowchart of the algorithmused. 52
Merging of desired states. 0000 57

Average and best fitness plotted against the number of generations
for (n + 1) replacement strategy., 60
State traversed versus the fitness of reached states for a target state
of s1423 circuit. L e e e 61
State traversed versus the fitness of reached states for one of the

unreached state of s1423 circuit. 62

THESIS ABSTRACT

Name: SYED ZAFAR SHAZLI

Title: Experimenting with Evolutionary meta-heuristics for State
justification in Sequential ATPG

Major Field: COMPUTER ENGINEERING

Date of Degree: June 2001

Sequential circuit test generation using deterministic, fault-oriented algorithms is
highly complex and time consuming. New approaches are needed to enhance the
eristing techniques, both to reduce execution time and improve fault coverage. Evo-
lutionary algorithms have been effective in solving many search and optimization
problems. Since test generation is a search process over a large vector space, it is
an ideal candidate for evolutionary algorithms. A common search operation in se-
quential ATPG is to justify a desired state assignment on the sequential elements.
State justification using deterministic algorithms is a difficult problem and is prone
to many backtracks, which can lead to high execution times. Significant speedups
can be obtained with simulation-based approaches. Untestable faults however, can-
not be identified using these approaches and deterministic algorithms are needed. In
this work, we propose a hybrid approach which uses a combination of evolutionary
and deterministic algorithms for state justification. A new method based on Genetic
Algorithms is proposed, in which we engineer state justification sequences vector
by vector. This is in contrast to previous approaches where GA is applied to the
whole sequence. The drawback of previous approaches lies in their inability to justify
hard-to-reach states because of fized-length sequences. Moreover, they do not take
into account the quality of intermediate states reached and evaluate a chromosome
only on the basis of the final state reached. Our proposed technique overcomes these
drawbacks, as it generates the sequences vector by vector. The proposed method is
compared with previous GA-based approaches. Significant improvements have been
obtained for ISCAS 89 benchmark circuits in terms of state coverage and CPU time.

MASTER OF SCIENCE DEGREE

King Fahd University of Petroleum and Minerals, Dhahran.
June 2001

AT g =R s gt

b i sy Ll SEED ZEy) el 5l e Guall A8 je Akl ks A 1) il
bl

Y lall i spaiph Jlaald

12001 ysip tda D fa s

ieasad GolD Masiul dlulid) s jall (Test Pattern Generation) _tisY) bzl o
Fault-oriented) Ui cUad¥) Guad o e) Sl jsal 4 (Deterministic Methods)
Sl elEi U aa s N lad N L H0 Ga ESH G ATy c2iadl) (S Dl s ¢(Algorithms

el GLAS) 4pui 33l g « 25D Gy Gaaliil 353 giall

USEI e Joha oo Gl Jaa Wi (Evolutionary Algorithms) A5 5¥1 Claa)l sad) jiias
Do Gues Glee s LS olal¥l g0 pudy Jna Gandn Sing lae s (3D ¢ JLGAY) Dkail S dima
blay SEED Y Goh on AS Ad) Clleall Gada G Jubudd jealic (4 (State Justification) 3 _jab

ALl i 5 (ATPG) _say)

33 D Lgmad 5D S A e wad Gauial Sine AUSie Agn gall Slaa) gdD) pladinly 3 1aD o Guas O
LIS e jaas okl sda S lSladl e dsiae 3ok pladdiuly Syl 13 Gaul GSa Cua cdnl o
lags Laas Ll Al o3a i ol L2 gad Cilaa i sad sladiuly LS (Sas AN 5 fiadl e clhadl)
e 3day gl 130 3ol e el dgan gal aa) sidly A5G YY Caa) 93T (e L ja paiiens LS e
S AT B il Lgiud 3 el c¥aD Judhe e (Genetic Algorithms) Ll Slaa) sad) Gadas
8 g g3 eSS Al (3l JSlia o LALS Ale o Jead A AL Liad Claj) pald B
é)xana.\huiJM?bchiJPMMSuJW@dﬂj‘gﬂ.@qﬁn&y‘aﬂwﬁ&
puils 2l Cua sQudll Dlee el 30l gl Juad q.’-!l das gl <YLY so9a L (S ab vy
Jlai zlo) ol b Sl 03 o iy a0 med o B0 Lihay Ala 3T o el anjses S
c_g,,;iﬂUﬂ@mm@‘@uwjj,ﬂeaﬁ.u@mm,‘)m,nim,).,:svl
L &5 Al VD Lus (8 HuS Guad e ISCAS 89 il ille (e i3l e i sana S

L35l iy el Ailaly

palall B jhpladl dp
CIEN (onally gl agd dllall daaly
2001 s5ip

Chapter 1

Introduction

With today’s technology, it is possible to build very large systems containing mil-
lions of transistors on a single integrated circuit. Designing such large and complex
systems while meeting stringent cost and time-to-market constraints requires the
use of computer-aided-design (CAD) tools. Increasing complexity of digital circuits
in very large scale integration (VLSI) environment requires more efficient algorithms

to support the operations performed by CAD tools [1].

1.1 Background

Testing of integrated circuits is an important area which nowadays accounts for
a significant percentage of the total design and production costs of ICs. For this
reason, a large amount of research efforts have been invested in the last decade in the

development of more efficient algorithms for the Automatic Test Pattern Generation

(ATPG) for digital circuits [2]. In order to obtain acceptably high quality of tests,
design for testability (DFT) techniques are in use [3]. The first technique, called
full-scan design, can be used to reduce the sequential test generation problem to a
less difficult combinational test generation problem. In this technique, all memory
elements are chained into shift registers so that they can be set to desired values
and observed by shifting test patterns in and out. In large circuits however, this
technique adversely affects the test application time as all the test vectors have to
be scanned in and out of the flip-flops. Moreover, all of the memory elements may
not be scanable in a given circuit [4]. In order to alleviate the test complexity, a
second technique, called partial-scan design, is employed. This involves scanning a
selected set of memory elements. Both these methods can add 10-20% hardware
overhead. In case of a full scan design, a combinational test generator can be used
to obtain tests. However, a sequential test generator is necessary in case of a partial
scan or no-scan design [4]. In this work, we assume either no-scan or partial scan
designs. Generating test sequences for synchronous sequential circuits is a more
challenging problem than that of combinational circuits for several reasons. They

may be itemized as follows:

e Each fault must be first excited by presenting a given value not only on the

primary inputs but also on the flip-flop outputs.

e The difference existing on the fault source between the values of the fault-free

and the faulty circuit must be then propagated to the primary outputs. This

is accomplished normally in the next time frames.

e The test sequence is composed of three parts: excitation vector, propagation

sequence and state-justification sequence.

e The lengths of state-justification and propagation sequences are not known
before hand as they depend on the starting state and the Finite State Machine

(FSM).
e Untestable faults require a large amount of time to be identified.

Different approaches have been used to solve the problem of sequential ATPG [5].

They are listed below:

e Using structural ATPG in which learning techniques and heuristics are used

to guide the search.

e Using the symbolic approach which exploits techniques which are based on the
extraction and manipulation of Boolean functions implemented by the circuit.
Typically, these techniques involve Binary Decision Diagrams (BDDs) and are
applied at the functional level. They are however, completely inapplicable

when dealing with circuits having more than some tens of flip-flops.

e Using a simulation-based approach which consists of generating pseudo-random

sequences, fault-simulating them, and then modifying their characteristics to

obtain the required fault coverage.

1.2 Proposed Work

The goal in this work is to use Genetic Algorithms (GAs) for generating sequences
that will help the Automatic Test Pattern Generator (ATPG) in detecting more
faults by reaching specific states. GAs are very well suited for optimization and
search problems [6]. Several ATPGs have been reported which use genetic algo-
rithms for simulation-based test generation. A good comparison is given in [3].
The main advantage of GA-based ATPGs as compared to other approaches, is their
ability to cover a larger search space in lower CPU time. This improves the fault cov-
erage and makes these ATPGs capable of dealing with larger circuits. On the other
hand, the main drawback consists in their inability to identify untestable faults [2].
Deterministic algorithms for combinational circuit test generation have been proven
to be more effective than genetic algorithms [7]. Higher fault coverage are obtained,
and the execution time is significantly reduced. However, this is not the case for
sequential circuits. These circuits involve justifying state assignments on sequential
elements. State justification using deterministic algorithms is a difficult problem,
especially if design and tester constraints are considered [8]. In simulation-based
ATPGs, the search proceeds in the forward direction only. Hence there are no back-

tracks and state justification is easier as compared to deterministic ATPGs. In this

work, a hybrid state justification approach is proposed, where both deterministic
and genetic-based algorithms are employed. In evaluating this approach, we will
conduct experiments in which a deterministic test generator will be employed ini-
tially. Untestable faults will be identified. The states which could not be reached in
this phase, will be attempted in a genetic phase for state justification. Since Genetic
Algorithms have been used successfully for combining useful portions of several can-
didate solutions to a given problem [6], we will try to genetically engineer sequences
which justify the leftover states. In the past, Genetic Algorithms have been used for
state justification [9]. The length of the sequence was a function of the structural
sequential depth of the circuit, where sequential depth is defined as the minimum
number of flip-flops in a path between the primary inputs and the farthest gate.
In case of feed-back loops, the structural sequential depth may not give a correct
estimate of the number of vectors required for justifying a given state. Thus, if a
state requires longer justification sequence, it will not be justified. The approach
also does not take into account the quality of intermediate states reached and eval-
uates a chromosome only on the basis of the final state reached. In this work, we
will use an incremental approach in which the length of the sequences will be dy-
namic. State justification sequences will be genetically engineered vector by vector.
Even if some state remains unjustified after the genetic phase, the best sequence
obtained in a given number of generations will be viewed as a partial solution. The

determinisitc ATPG will be seeded with this sequence so that it may become able

to reach previously unvisited regions of the search space.

1.3 Organization of the thesis

A brief overview of sequential ATPG is presented in Chapter 2. Chapter 3 discusses
Genetic Algorithms in general and their use in Sequential ATPG. The proposed ap-
proach of using Genetic Algorithms for state justification is presented in Chapter 4.
Experiments performed and discussion on the results obtained are given in Chapter

5. Finally, Chapter 6 offers the conclusions and directions for future research.

Chapter 2

Sequential ATPG

Although scan-based design for testability techniques can convert a sequential cir-
cuit into a combinational one for testing purposes, in some cases, the cost of full
scan can be prohibitive in both area overhead and performance degradation. There-
fore, efficient sequential circuit test generation algorithms are very important for

producing high quality VLSI circuits.

2.1 Fault models

An instance of an incorrect operation of the unit under test (UUT) is referred to as an
error. The causes of the observed errors may be fabrication errors, fabrication defects
and physical failures. These are collectively referred to as physical faults. Examples
of fabrication errors are wrong components, incorrect wiring etc. Fabrication defects

usually result from an imperfect manufacturing process. These can include shorts

or opens in MOS circuits, and mask alignment errors. Physical failures occur during
the lifetime of a system due to component wear-out and environmental factors.

Physical faults can be broadly classified as
e permanent faults, i.e., always being present after their occurence;
e intermittent faults, i.e., existing only during some intervals; and,

e transient faults, i.e., a one-time occurence caused by a temporary change in

some environmental factor.

In general, physical faults do not allow a direct mathematical treatment of testing.
The solution is to deal with logical faults, which are a convinient representation of
the effect of physical faults on the operation of the system. The basic assumptions

regarding the nature of logical faults are referred to as a fault model.

2.1.1 Advantages of fault modeling

By modeling a physical fault, the problem of fault analysis becomes a logical rather
than a physical problem. Its complexity is greatly reduced since many different
physical faults may be modeled by the same logical fault. Some logical fault models
are technology-independent in the sense that the same fault model is applicable to
many technologies. Hence, testing methods developed for such a fault model remain

valid despite changes in technology. Moreover, tests derived for logical faults may

be used for physical faults whose effect on circuit behavior is too complex to be

analyzed.

2.2 Fault detection in sequential circuits

The goal of sequential circuit ATPG using the single stuck-at fault (SSF) model is
to derive an input vector sequence such that, upon application of this input vector
sequence, we obtain different output responses between the fault-free and faulty
circuits. The SSF model is an abstraction of defects in a circuit which cause a single
line connecting components to be permanently stuck either at logic 0 or logic 1 [10].
In this work, we assume the SSF model. In a typical ATPG process, a test or test
set is evaluated by the length of the test sequence or the number of test vectors in
it, and by the number of faults covered by the test, known as fault coverage. Fault
coverage is defined as the fraction of faults in the circuit that is detected by the test
sequence [11].

Three separate tasks are necessary to generate a test to detect a fault in a
sequential circuit. In the first task, the values of the machine state and the primary
input values which excite the fault must be determined. Next, a justification se-
quence must be derived in order to attain the value of the excitation state on the
state bits. Finally, the fault effects must be propagated to a primary output. This

goal can seldom be reached in the same time frame which excites it. The fault is

PPI

PI
—pp
COMBINATIONAL
LOGIC
—P
PPO F
LF
1L |4
PO
P
S

Figure 2.1: A model of synchronous sequential circuit.

10

mostly first propagated to the flip-flop inputs (Pseudo-primary outputs), and a given

number of clock cycles is required to propagate the fault effects from the flip-flops

to the primary outputs. This phase is termed as fault propagation [11]. A model of

a synchronous sequential circuit is shown in Figure 2.1.

2.3 Terminology

Metrics exist to measure both the resultant quality level which a test set will attain,

and the completeness of test generation. Fault coverage is defined as the percentage

of faults which are detected. Fault efficiency is defined as the percentage of faults

that are either detected or declared untestable. A fault is said to be detectable,

11

if there exists an input sequence such that, for every pair of initial states of the
fault-free and faulty circuit, the response of the fault-free circuit is different from
that of the faulty circuit. A fault is untestable if it is not detectable. A fault is
partially testable, if there exists an initial state S/ of the faulty circuit and an input
sequence I, such that, for every fault-free initial state S, the response Z([,S) is
different from Zf(I,S’). Every fault that is not partially testable, is a redundant

fault [12]. Figure 2.2 summarizes the difference between various classes of faults.

Redundant

Faults

f Untestable
Irredundant f faults

Untestable
Partially < Faults
testable

faults Testable
Faults

Figure 2.2: Classes of faults.

In case of sequential circuits, the value on the sequential elements (state bits)
describes the state of the circuit (machine). To generate tests for a sequential
circuit, it is necessary to drive that circuit to a known unique state. A synchronizing
sequence is a sequence of primary inputs which initializes the state bits to some

known state regardless of the prior state of the circuit. The final state reached at

12

the end of a synchronizing sequence is called a reset state.

A cycle or loop exists in a sequential circuit, when the same node can be
revisited after starting from that node and traversing the circuit, while not traversing
any other node more than a single time within that traversal. The length of a cycle
is said to be the number of sequential elements encountered while traversing the

cycle [13].

2.4 Complexity of sequential ATPG

Sequential ATPG is a much more complex process than combinational ATPG due
to signal dependencies across multiple time frames [13]. It has been shown in [14]
that the test generation problem for combinational circuits is NP-complete. The
search space is of the order of 2®, where n is the number of inputs. For sequen-
tial circuit ATPG, the worst-case search space is 9™, where m is the number of
flip-flops. This exponential search space makes exhaustive ATPG search computa-
tionally impractical for large sequential circuits [4]. In the last years, one of the
main goals of researchers was to develop effective algorithms for sequential circuit
test pattern generation [15]. A lot of work has been done in the area of sequential
circuit test generation using both deterministic and simulation based algorithms.
The bottleneck in deterministic algorithms is line justification and backtracking. In

simulation-based approaches, no backtracking is required but their quality in terms

13

of fault coverage is generally lower [15]. Several issues contribute to the complexity

of sequential ATPG [16]:

e Number of time frames. Consider a 20-bit counter. Detecting the s-a-0 fault
at the MSB would require a sequence of 2!° vectors (to set the MSB to 1).
Thus, ATPG would need 2!° time frames. No existing logic-level ATPG tool
could handle this circuit. Partial-scan techniques may be necessary in such

cases.

e Propagation delay. It is difficult to accurately model the propagation delay
and incorporate it in ATPG because it causes problems for circuits with com-
binational asynchronous feedback loops and for designs with multiple phases
or clocks. A practical solution is to use a simulator, which can model delay
and timing accurately, to verify the generated tests and to filter out the tests

that cause races and hazards.

e Eristence of loops or cycles. Sequential circuits have feedback loops. This can
result in endless loops during test pattern generation if no special measures
are taken. The complexity of sequential ATPG increases in the presence of

loops.

e Sequential depth. The sequential depth of a circuit refers to the greatest num-

ber of sequential elements encountered in a traversal from any primary input

14

to any primary output [13]. The complexity of sequential test generation is

directly propotional to the sequential depth of the circuit.

e Density of Encoding. Density of encoding, describes the fraction of total num-
ber of possible states that are valid. The lower the density of encoding, the
higher the probability that the ATPG will select, and subsequently waste time

trying to justify, an invalid state [13].

The task of exciting the fault is on the order of complexity of combinational test
generation. However, the tasks of state justification and fault propagation both
involve traversing distinct states of the circuit. The complexity of state traversal is
correlated to the size of the state space which is to be traversed. The total number
of possible states in a circuit is 2PFF, where DFF refers to the number of flip-flops
in the circuit. However, not all states are necessarily valid. The presence of invalid
states is known to increase the difficulty of state traversal [17]. The smaller the
percentage of states which are valid, the greater the chance that the test generator
will spend time attempting to traverse an invalid state. Thus, the smaller the
fraction of the total number of states which are valid, the greater the difficulty of
state traversal, and the higher the complexity of sequential ATPG. Traversing all
valid states does not guarantee 100% fault efficiency. However, as shown in [17],
there is a trend that when the ATPG is able to traverse a majority of the valid

states it attains a level of fault efficiency of nearly 100%.

15
2.5 Classes of sequential ATPG

Several different approaches have been presented for sequential circuit test genera-

tion. These can be divided into the following different classes as given in [3].

2.5.1 Structure-based approach

In this approach, tests are generated by activating faults and sensitizing paths for
fault propagation through the multiple copies of the combinational circuit. Gener-
ally forward time processing (FTP) is used for fault propagation and reverse time
processing (RTP) is used for initialization. HITEC [18] is an example of a sequen-
tial ATPG that uses both FTP and RTP, and utilizes several techniques to improve
the performance of test generation. It also uses a fast circuit simulator, PROOFS
[19], which combines the advantages of concurrent, differential and parallel fault
simulation algorithms. D-algorithm, PODEM, FAN and BACK are examples of
structure-based algorithms. A discussion about these algorithms can be seen in [3],

[11] and [20].

2.5.2 State-based approach

The state-based approach uses an abstract model called finite-state machine (FSM),
describing the behavior of the circuit. A state transition graph-based (STG-based)

algorithm is used to assist the search in the circuit state space. STALLION [21] is

16

an STG-based ATPG which extracts the STG for the fault-free circuit. It finds an
activation state S and a fault propagation sequence T for a given fault. Using the
STG, STALLION finds a state transfer sequence to bring the circuit from the initial
state Sy to the activation state S. Fault simulation is performed to check the validity
of the sequence, and if the generated sequence is not valid, an alternative transfer
sequence is generated. Since the extraction of STG is not feasible for large circuits,
STALLION constructs a partial STG to overcome this shortfall. STEED is another
algorithm which is based on state-transition graphs. STEED has the ability to
handle larger circuits than STALLION. A description of the test generation strategy

used in STEED can be seen in [3].

2.5.3 Simulation-based approach

The simulation-based approach uses the simulation under the guidance of cost func-
tions. In a typical simulation-based test generation process, a trial sequence is
generated. It is then evaluated using logic simulation or fault simulation. A cost
function which determines how far the state of the circuit is from the required state
for the detection of the fault is computed. If the cost is reduced, the trial vector
is included in the final test sequence, otherwise, it is discarded. Simulation-based
ATPGs differ in the way they generate new trial vectors and the definition of cost
functions for guiding the search. The major advantage of simulation-based ATPGs

is their ability to work with more realistic models of the circuit and their simplic-

17

ity of implementation. However, such ATPGs cannot identify undetectable faults.
Their test sets are generally longer and they may fail to generate tests for hard-to-
detect faults if they are not guided by a suitable cost function [3]. CONTEST ([22],
CRIS [23], GATEST [24] and GATTO |[25] are some well-known simulation based
ATPGs.

A number of test generators use a combination of the methods listed above. The
methods may use low cost test generation step, such as random vector generation,

or a hybrid of deterministic test generation and fault simulation.

Chapter 3

Use of Genetic Algorithms in
Sequential ATPG

3.1 Introduction

In this chapter, we first give an overview of Genetic Algorithms (GA). We then dis-
cuss various approaches used in applying GA to sequential Automatic Test Pattern
Generation. The last section describes different strategies used for state justification

in sequential ATPG using GA.

3.2 An overview of Genetic Algorithms

In this section, we introduce various terminologies used in describing Genetic Algo-

rithms. A structure of the basic Genetic Algorithm is also presented.

18

19

3.2.1 The Inspiration of Nature

Genetic Algorithms attempt to mimic nature by evolving solutions to problems
rather than designing them. They are a long way from the power of Natural Evo-
lution! Populations of tens or hundreds are common, rather than the millions used
in nature; tens or hundreds of generations elapse rather than millions. As a rough
estimate, it might be said that Genetic Algorithms are about a hundred million
times less effective than Natural Evolution - and this ignores the fact that Natural
Evolution builds on its previous discoveries as it creates more complexity [26].
Genetic Algorithms work by analogy with Natural Selection as follows. First,
a population pool of chromosomes is maintained. The chromosomes are strings of
symbols or numbers. They might be as simple as strings of bits - the simplest type
of strings possible. The chromosomes are also called the genotype (the coding of
the solution). These chromosomes must be evaluated for fitness. Poor solutions
are purged and small changes are made to existing solutions. The gene pool thus

evolves steadily towards better solutions.

3.2.2 GA Terminology

The following terms are frequently encountered in GA literature [27].

20

Chromosome

The structure that encodes how the organism is to be constructed is called a chro-
mosome. In most combinatorial optimization problems, a single chromosome is gen-
erally sufficient to represent a solution. Mostly binary encoding is used to represent

a solution but some character encodings have also been used [6].

Fitness

The fitness value of an individual (chromosome) is a measure of its closeness to the
optimal. The fitness is determined by a fitness function. This function generally

indicates the cost of the solution.

Selection

In each generation, parents are selected to produce new children. The selection of
parents is biased by fitness, so that fit parents produce more children; very unfit so-
lutions produce no children. This is known as selection. The genes of good solutions
thus begin to proliferate through the population. In this work, we use Roulette-
wheel selection mechanism. In roulette-wheel method [26], a wheel is constructed
on which each member of the population is given a sector whose size is propotional
to the relative fitness of that individual. To select a parent, the wheel is spun and
whichever individual comes up becomes the selected parent. Therefore, individuals

with lower fitness values also have a finite but lower probability of being selected

21

for crossover. Figure 3.1 shows the roulette wheel for the population whose fitness

values and their relative percentages are as follows:

C; =100 = 10% C, = 250 = 25% C3 = 300 = 30% C; = 350 = 35%

35% -
mCc1 ;
|mc2;
|:|C3§
uC4i

Figure 3.1: A roulette-wheel.

Crossover

Crossover is performed on the parents selected. Useful characteristics of two parents
are combined to produce a better individual. There are a number of crossovers
reported in literature, and the performance differs in different problems. A good
overview of different crossover operators is given in {28]. The following two crossovers

have been used more often:

e One point uniform crossover: In a one-point uniform crossover, an integer

position is randomly selected within a chromosome. Each of the two parents

22

are divided into two parts at this random cut point. The offspring is then
generated by catenating the segment of one parent to the left of the cut point
with the segment of the second parent to the right of the cut point [27]. For

example, consider two parent chromosomes
P, : 101101 P, : 001100

Let the random cut point be after the third gene from the left. The resulting
chromosome after crossover will be
C:101100

We have used one-point crossover in this implementation.

e Two-point uniform Crossover: In a two-point uniform crossover, two random
cut points are selected. The offspring is generated by joining together the
extreme segments of one parent and the middle segment of the other parent.

This has been used in [8].

Mutation

Small changes (mutations) are made to at least some of the newly created children.
Some of these mutations may be harmful (in the Natural World, the vast majority
of mutations either have no effect or are harmful). However, this doesn’t matter
as bad mutations will soon be purged by selection. Good mutations, on the other

hand, will succeed, causing further increases in fitness.

23

Generation and Replacement

A generation is an iteration of GA, where individuals in the current population
are selected for crossover and offsprings are created. Due to the addition of off-
springs, the size of population increases. In order to keep the number of members
in a population fixed, a constant number of individuals are selected from this set
which consists of both the individuals of the initial population, and the generated
offsprings. If M is the size of initial population and N, is the number of offsprings
created in each generation, then, before beginning the next generations we select
M new members from a population of M + N, members [27]. Various replacement

policies are used for selecting the next generation:

e Tournament Selection without replacement: In tournament selection without
replacement, two individuals are randomly chosen and removed from the pop-
ulation, and the better of the two is selected. The two individuals are not
replaced into the original population until all other individuals have also been
removed. Since two individuals are removed from the population for every
individual selected, and the population size remains constant from one gener-
ation to the next, the original population is restored after the new population
is half-filled. Therefore, the best individual is selected twice, and the worst
individual is not selected at all. The number of copies selected of any other

individual cannot be predicted except that it is either zero,one or two [8).

24

e Tournament Selection with replacement: In tournament selection with replace-
ment the above procedure is repeated except that, the individuals selected are
not removed from the old population. Therefore, individuals with higher fit-

ness have a greater probability of being selected again [6].

3.2.3 The Basic Genetic Algorithm

During each generation of the genetic algorithm, a set of offsprings are produced by
the application of the crossover operator. This operator ensures that the offsprings
generated have a mixture of parental properties. Mutation is also applied with a
small probability to introduce diversification in the population. From the entire pool
consisting of both the parents and their offsprings, a fixed number of individuals are
chosen that form the population of the new generation. The randomly assigned
initial pool is presumably pretty poor. However, successive generations improve as
we discard unhealthy chromosomes in the population [27]. The structure of a simple

genetic algorithm is given in Figure 3.2. This has been taken from [27].

3.3 Literature Review

Several approaches to test generation using genetic algorithms have been proposed
in the past [2, 5, 7, 8, 9, 15, 23, 24, 25, 29, 30, 31, 32, 33, 34, 35, 36]. Fitness functions

were used to guide the GA in finding a test vector or sequence that maximizes given

Algorithm (Genetic_Algorithm)
(N, = Population Size)
(N; = Number of Generations)
(N, = Number of Offsprings)
(P; = Inversion Probability)
(P, = Mutation Probabilty)
Begin
(Construct initial population)
Construct_Population(N);
Forj=1toN,
Evaluate_Fitness (Population{j])
EndFor;
Fori=1toN;
Forj=1to N,
(Choose parents with probability proportional to fitness value)
(x,y) € Choose_parents;,
(Perform crossover to generate offsprings)
offspring[j] € Crossover(x,y)
Fork=1toN, :
With probability P, apply Mutation (Population[k])
With probability P; apply Inversion (Population[k])
EndFor;
Evaluate Fitness(offspring(j])
EndFor;
Population € Select(Population, offspring, N;)
EndFor;
Return highest scoring configuration in population
End. (Genetic Algorithm)

Figure 3.2: Structure of a simple genetic algorithm.

25

26

objectives for a single fault or a group of faults. A major difference in various GA-
based approaches lies in the way the fitness is computed. Some techniques use logic
simulation for evaluation of candidate vectors or sequences, while other techniques
use fault simulation. In addition, there are certain other techniques which target
different objectives in various phases of test generation. These techniques typically,
use both logic and fault simulation in evaluating candidate sequences. The main
advantage of GA-based ATPGs, as compared to other approaches, is their ability to
cover a larger search space in lower CPU time. Traversing a larger number of states,
improves the fault coverage of sequential ATPGs as mentioned in [17]. However,
untestable faults cannot be identified using these approaches [2]. For combinational
circuit test generation, deterministic algorithms have proven to be more effective
than genetic algorithms [7]. Sequential test pattern generation requires state jus-
tification. State justification using deterministic algorithms is a difficult problem,
especially if design and tester constraints are considered [8]. A reasonable approach
is to use hybrid techniques which include the deterministic algorithm for fault exci-
tation and propagation within a single time frame, and perform state justification

using a GA.

3.3.1 Logic Simulation based Test Generators

Genetically engineered sequences were produced by test generators reported in (23],

[29] and [30]. The objective in these approaches was fault detection. However, the

27

test generators were unable to drive the fault effects to the primary outputs for

hard-to-detect faults.

CRIS

CRIS [23] was the first ATPG to use GAs. The objective function was based on
balanced circuit activity (found from logic simulator). Sequences which produced
more activity were termed to be more fit. The aim was to detect a higher number
of faults. Balanced circuit activity creates randomness in the circuit model. The
process of creating balanced randomness has a close relationship with fault coverage
as is shown in [30]. Logic activities were monitored during simulation and were
used to rank and select the candidate sequences. Vectors were spliced to produce
a new candidate sequence. Randomly selected bits were flipped during mutation.
The results obtained for ISCAS 89 benchmark circuits were comparable to those
of a deterministic ATPG HITEC [18]. On the average, the proposed technique ran
25 times faster than traditional deterministic techniques with very competitive test

length and fault coverage for large sequential circuits.

FESTA

Fault detection by state traversal and activity(FESTA) used a fitness function based
on logic simulation [29]. The objective of this technique was fault detection. The

technique aimed at increasing the number of reached states during the test gener-

28

ation process. GA was applied on sequences and one point crossover was applied
at boundaries of the vectors. During the fitness evaluation phase, more importance
was given to sequences which were able to explore new states and produce a higher
flip-flop activity. Experimental results showed that the approach attained a better
fault coverage than state-of-the-art GA-based ATPG in a much reduced time, espe-
cially for large circuits. This is because for such circuits logic simulation is far less
expensive than fault simulation. The test sets produced by FESTA were also more

compact as compared to other GA-based ATPGs.

3.3.2 Fault simulation based test generators

A fault simulator was used for evaluating fitness in [24], [25] and [31]. The fitness
functions were biased towards maximizing the number of faults detected and the

number of fault effects propagated to the flip-flops.

GATEST

GATEST was implemented around the PROOFS [19] fault simulator and was re-
ported in [31]. Test sequences were used rather than test vectors. The GA generated
candidate test sequences, and the fitness was computed by a sequential circuit fault
simulator. Fitness was a function of the number of faults detected by the sequence
and the number of faults propagated to flip-flops. The objective was detection

of a group of hard-to-detect faults. Both binary and non-binary encodings were

29

experimented with. Binary encoding was found to give better results. Crossover
was applied at vector boundaries. Uniform crossover gave better results than two-
point crossover. Several genetic parameters were experimented with. Best selection
scheme was found to be tournament selection without replacement. The number of
generations was limited to 8. A population size of 32 was used for all circuits during
test sequence generation. Generation gap was also experimented. If the population
size is N, and the GA generates g offsprings, then g/N is referred to as the gen-
eration gap [26]. A generation gap of 2/N gave better fault coverage. In general,
fault coverage was higher than CRIS [23] for 17 out of 18 benchmark circuits but

the execution time was 6 to 40 times longer.

GATTO

The objective of the test generation run was detection of a specific fault in GATTO (25].
An evaluation function estimated how close the fault is to being detected. The fault
with maximum value of evaluation function was selected as the target fault. An indi-
vidual in the population corresponded to a sequence composed of a variable number
of vectors to be applied after the reset state. Each sequence was fault simulated
with respect to a target fault. Fitness function was the sum of weighted number
of gates with different values in good and faulty circuits and the weighted number
of flip-flops with different values in good and faulty circuits. A weight associated

with a gate or flip-flop is a measure of its observability. Stopping criterion was the

30

fixed number of generations or the detection of fault. Roulette wheel selection [27]
with simple crossover and mutation was used. Length of sequences increased with
increasing fault coverage. Sequences with considerable test size were obtained for

highly sequential benchmark circuits.

3.3.3 ATPGs using Logic and Fault Simulation

A logic simulator is used along with a fault simulator to evaluate candidate test

vectors and sequences in test generators reported in [7] and [32].

ALT-TEST

ALT-TEST repeatedly shifted between GA-based and deterministic test generation
[32]. The population size was a function of the length of the sequence. A multi-
ple of the structural sequential depth of the circuit was used as the test sequence
length. It used a fault simulator initially to evaluate candidate test sequences and
31 faults were targeted for each test sequence generated. The fitness function then
favored visiting more states when the fault detection count dropped significantly. In

particular, the fitness of a sequence depended on

e number of faults detected;
e number of flip-flops that carried the fault effects;

e number of new states visited; and,

31

e number of hard-to-control flip-flops set to specific values.

The fault coverage improved by more than 40% for some benchmark circuits.
Moreover, it succeeded in identifying the redundant faults by using deterministic

test generation algorithm.

Simple Genetic Algorithm

Test vectors were represented by chromosomes in the population in the ATPG re-
ported in [7]. It was the first scheme in which test sequences were cultivated dy-
namically. GA was applied on individual vectors. Initial population was randomly
constructed. The fitness of a candidate vector was a measure of the number of flip-
flops set to 0 or 1 in the first phase. The number of flip-flops that changed value
since the last time frame were also included in evaluating the fitness. In phase 2, the
objective was to detect the maximum number of faults. Hence, the fitness of a can-
didate vector was a measure of the number of previously undetected faults detected
by the vector. A fault simulator PROOFS, was used for fault detection. Several
schemes were applied for selection and crossover. Roulette wheel selection with uni-
form crossover gave the best results. The test sets obtained by this technique, were

smaller than CRIS [23] but fault coverage was lower for highly sequential circuits.

32

3.3.4 Parallel GA-based implementations

In this section, we discuss two parallel implementations of GA that have been re-

ported for test pattern generation [33], [34].

GATTO*

GATTO* is based on the GATTO tool, and is reported in [34]. It exploits the
power of a parallel or distributed system in order to improve the result quality,
rather than to reduce the CPU time requirements. PVM library was used and fault
coverage were reported for several benchmark circuits. The approach consisted of
three phases as in GATTO [25]. In the first phase, test sequence partitioning was
adopted, so that every processor fault simulated a different sequence. Every proces-
sor executed the same GA experiment in the second phase, aiming at finding a test
sequence for the same target fault starting from the same population of sequences.
Processors were organized in groups, and the flip-flop weights used by the proces-
sors in different groups were different. This orients the search towards different
areas of the search space. The best results obtained in every group were analyzed
periodically and processors were moved from the most unsuccessful groups to the
most successful ones. Thus, the algorithm aims at dynamically evaluating the most
suitable parameter values and at increasing the computational resources allocated
to the most successful ones. In phase 3, a fault partitioning technique was used,

according to which all the processors simulate the same sequence on a subset of the

33

whole fault list. GATTO* was able to produce the best fault coverage reported in

the literature for large ISCAS 89 benchmark circuits.

ProperGATEST

Another parallel implementation ProperGATEST, was described in [33]. It consisted
of three different stages. GA consisted of a population of individuals, in which each
individual represented a sequence of vectors. Each individual was simulated using a
group of 31 faults, for the purpose of evaluating the fitness. The following parameters

affected the fitness:
e Number of faults in the given fault group detected.
e Number of new states visited.
e Number of flip-flops that carry fault effects at the end of simulation.

In the first stage, the aim was to detect as many faults as possible with short
sequences and minimal time. Thus, more weight was given to the number of faults
detected. In the second stage, the goal was to maximize visitation of new states
and fault effect propagation to flip-flops. In the final stage, the focus was once
again shifted towards targeting the remaining hard-to-detect faults. Hence, fault
detection and new state identifications were weighted more heavily in this stage.
ProperGATEST consisted of three different parallel implementations of ATPG using

GA.

34

In the first algorithm, the fitness evaluation phase was parallelized. Each pro-
cessor maintains its own copy of the entire population. Fitness evaluation was
statically distributed over the processors. The fitness values computed by different
processors were communicated to a single processor, which collected the information
and broadcasted it to all processors. Each processor then evolved the next genera-
tion and computed the best individual in the population for that generation. After
a fixed number of generations, the best individual was added to the test set. Fault
simulation was then done by all processors using the best-fit individual. The results
remained unchanged from the uniprocessor run and execution times were reduced
significantly.

The processors exchanged the fittest individual among each other at pre-determined
intervals in the second algorithm. The same number of individuals were assigned
to each processor and independent fault lists were maintained. The processors tra-
versed different areas of the search space and hence converged to their results faster
with the added advantage that the quality of results improved in certain cases.

In the third algorithm, each processor works on a sub-population, and therefore
the population size was small. Also, due to migration of fit individuals from one
processor to another, each processor detected faults faster than if they were to run
independent GAs with a reduced population size. The algorithm provided excellent

execution times, but the test sizes were larger than the previous algorithms.

35

3.4 Conclusion

In this chapter, we have reviewed various GA-based approaches for test generation.
We have also presented a brief discussion of Genetic Algorithms. This heuristic
is a powerful stochastic iterative heuristic for general combinatorial optimization
problems. The test pattern generators developed using GA can be broadly classi-
fied in three categories. The first category contains those ATPGs which use logic
simulation for evaluation of candidate sequences or vectors. ATPGs which use fault
simulation for candidate evaluation come in the second category. There are certain
other ATPGs, which use both logic and fault simulation for computing the fitness.
These come in the third category. Various test pattern generators which come under
these categories, have been discussed in this chapter. In addition, parallel GA-based

generators have also been discussed.

Chapter 4

State Justification using GA

4.1 Introduction

State justification is one of the most time-consuming tasks in sequential Automatic
Test Pattern Generation (ATPG). For states that are difficult to justify, determinis-
tic algorithms take significant CPU time without much success most of the time. In
this chapter, we describe a hybrid approach for state justification. A new method
based on Genetic Algorithms is proposed, in which we engineer state justification
sequences vector by vector. Previous approaches for state justification using GA are

also described.

36

37

4.2 Problem Description

Despite improved efficiency, GA-based ATPG algorithms require large amounts of
CPU time when dealing with very large sequential circuits. Hence, the less expensive
logic simulation has been used to traverse the search space in the test generation
techniques proposed in [29], [15], [8] and [10]. Storing the complete state informa-
tion for large circuits is impractical. Similarly, keeping a list of sequences capable
of reaching each reachable state is also infeasible. State justification is therefore
performed by using GAs which are very well suited for optimization and search
problems. In this work, we propose a hybrid state justification approach, employing
both deterministic and genetic-based algorithms. Since Genetic Algorithms have
been used successfully for combining useful portions of several candidate solutions
to a given problem [6], we try to genetically engineer sequences, vector by vector,

to justify the hard-to-reach states.

4.3 Approaches used for state justification using

GA

The hard-to-activate faults in sequential circuits sometimes require specific states
and justification sequences in order for them to be activated. GA-based test gener-
ators discussed in the previous chapter, failed to drive the circuit to these specific

states for fault excitation, resulting in low fault coverage for many circuits. GA was

38

used for state justification in (8, 9, 15, 35, 36].

4.3.1 GA-HITEC

A hybrid test generator GA-HITEC was reported in [8]. Deterministic algorithms
were used for fault excitation and propagation, and a GA was used for state jus-
tification. Sequences were evolved over several generations. The fitness of each
individual was a measure of how closely the final state reached matched the desired
state. The test generator makes several passes through the fault list, with different
conditions and time limits imposed in each pass. Detected faults are removed from
the fault list. State justification is performed using a GA in the first pass. A small
population size and few generations were used to reduce the execution time in this
pass. The search space is expanded in the second pass and GAs are again used
for state justification. In the third phase, the deterministic test pattern generator,

HITEC, is used for state justification and identifying untestable faults.

4.3.2 IGATE

Methods using finite-state-machine (FSM) sequences were used for fault-effect prop-
agation and state justification in IGATE as mentioned in [9]. GA was used to engi-
neer comnplete test sequences. A test generator IGATE, based on GA, was developed
which targeted individual faults in two phases. The first phase focused on activating

the target fault, while the second phase tried to propagate the faults to the primary

39

outputs. The targeted fault is said to be detected at the primary outputs when the
faulty machine state is distinguished from the fault-free machine state.

The fitness function used in IGATE depends upon
e fault detection by the individual chromosome;
e sum of dynamic controllabilities;

e matching flip-flop values between the final state reached by the sequence and

the target state;
e weighted faulty circuit activity induced by the individual; and,
e number of new states visited by the individual.

The weights given to these parameters were different in the two stages. The faults
covered and the length of the test sets were compared with other GA-based ap-
proaches for various ISCAS 89 benchmark circuits and significant improvements

were reported.

4.3.3 STRATEGATE

A test generator STRATEGATE, was reported in [35]. It was further modified in
[36]. It used the linear list of states obtained dynamically during the derivation of

test vectors to guide the search during state justification. GA-based techniques were

40

used to engineer valid state justification sequences and the objective was detection
of a particular fault. STRATEGATE used several passes through the fault list.
Single time-frame activation was performed in the first phase. The aim in this
phase was to engineer a vector, composed of PI and flip-flop values, capable of ac-
tivating the target fault in a single time-frame. A GA was employed for this stage
and dynamic fitness objectives were set up for each target fault. The justification
frontier for a SSF at a given line consists of values necessary for justifying a desired
value at that line. During the single time-frame fault activation, the fitness func-
tion tried to maximize the number of justification frontier values justified. Once a
target fault is excited, its fault-effects need to be propagated to at least one PO
or flip-flop. The values required at different lines to propagate this fault effect are
called the propagation frontier. The fitness function aimed to dynamically advance
the propagation of fault effects beyond the current propagation frontier. Once a
vector (PI and flip-flop values) was successfully derived, the FF values (state) were
relaxed to one that had as many don’t cares as possible and could still activate the
target fault. The order in which the flip-flops were relaxed was determined in a
greedy fashion: from the least controllable to the most controllable flip-flop. State
relaxation improves the success rate of state justification which was attempted in
the next phase. State justification was performed by using a GA with an initial
population consisting of random sequences and any useful state-transfer sequences.

Genetic engineering of several sequences was performed to try to justify the target

41

state. Candidate sequences in the GA population were simulated, starting from
the current state. The objective was to engineer a state justification sequence that
justifies the required state by genetically combining the candidate justification se-
quences. If a sequence was found that justified the target state, the sequence was
appended to the test set and a fault simulator was used to remove any additional
faults detected by the sequence. Otherwise, the current target fault was aborted
and test generation continued for the next fault in the fault list. The parameters
that affected the fitness of an individual in the GA during test generation were as

follows:

e Fault detection: It is included in the fault activation phase to cover faults that

propagate directly to the POs in the time frame in which they are excited.

e Sum of dynamic controllabilities: Maximizing it during single time-frame fault

activation makes the state more easily justifiable.

e Matches of flip-flop values: Matching flip-flop values between the final state

reached by the sequence and the target state.

o Sum of distinguishing powers: Maximizing this value, increases the probability
that the fault effects reach the flip-lops having more powerful distinguishing

sequences.

e Induced faulty circuit activity: This parameter measures the number of events

42

generated in the faulty circuit, with events on more observable gates weighted

more heavily.

o Number of new states visited: This is used to expand the search space and is

given a high weight in the final stages.

Parallel-pattern fault simulation [20] was used to speed up the process. 32 candi-
date sequences from the population were simulated simultaneously during fitness
evaluation. Fault-free simulation was performed initially, followed by faulty circuit
evaluation, in which events start exclusively from the faulty gate. HITEC [18] was
used after the first GA stage to identify untestable faults. The fault coverage im-
proved for most of the ISCAS 89 benchmark circuits when compared with other
GA-based ATPGs and HITEC. For circuits where HITEC required long execution

times, STRATEGATE reported higher fault coverage and lower execution times.

4.4 Tabu Search

Tabu Search is a general iterative meta-heuristic that is used for solving combi-
natorial optimization problems. The heuristic is based on selected concepts from
Artificial Intelligence. The rules used in Tabu Search are broad enough to make it
applicable separately or as a guide for other heuristic procedures applied to combi-
natorial optimization problems [37].

A key feature of Tabu Search is that it imposes restrictions on the search process

43

preventing it from moving in certain directions to drive the process through regions
desired for investigation. An important component that enables Tabu Search to
achieve the above-mentioned feature is the use of an adaptive flexible memory. This
distinguishes Tabu Search from other memory-less optimization heuristics. Tabu
Search is a generalization of a local search. It searches for the best move in the

neighborhood of the current solution [27].

4.4.1 Tabu List

At any given point of time during the operation of the algorithm, there are n possible
directions for future investigation of the search space, where n is the number of
possible moves at that point, and many directions might be overlapping. One of the
objectives of Tabu Search is to prevent cycling back to previous solutions [37].

For the purpose of not cycling back to recently visited solutions, certain at-
tributes of the move are made tabu for a specific number of coming iterations called
Tabu Tenure or Tabu List size [37). To implement this, a queue of attributes can
be used. Tabu Tenure depends primarily on the size of the problem as well as the
objective of the search. Generally, the size can be determined using experimental

runs.

44

4.5 Proposed GA-based state justification tech-
nique

GA-based state justification approaches described in the previous sections, have a
common characteristic of engineering sequences. Deterministic algorithms were used
for fault excitation and propagation, and a GA was used for state justification in
the test generators reported in [8] and [9]. Sequences were evolved over several gen-
erations. The fitness of each individual was a measure of how closely the final state
reached matched the desired state. A chromosome was represented by a sequence
of vectors. Candidate sequences were simulated starting from the last state reached
at the end of the previous test sequence. The objective was to engineer a test se-
quence that justified the required state. The length of the sequence was a function
of the structural sequential depth of the circuit, where sequential depth is defined
as the minimum number of flip-flops in a path between the primary inputs and the
farthest gate. In case of feed-back loops, the structural sequential depth may not
give a correct estimate of the number of vectors required for justifying a given state.
Thus, if a state requires longer justification sequence, it will not be justified. The
approach also does not take into account the quality of intermediate states reached
and evaluates a chromosome only on the basis of the final state reached.

To overcome these deficiencies, we propose an incremental approach in which

the length of the sequences is dynamic. State justification sequences are genetically

45

engineered vector by vector. Even if some state remains unjustified after the genetic
phase, the best sequence obtained in a given number of generations is viewed as a
partial solution and is appended to the justification sequence. Hence, the quality
of intermediate states reached while searching for a target state, is also considered
while building the justification sequence.

In this work, we use GA for traversing from one state to another. Individual
vectors are represented by chromosomes in the population. Deterministic ATPG is
run for e;very target fault. First, the fault is activated and propagated to a primary
output. Next, state justification is attempted. If the required state is justified
by the deterministic ATPG, then the derived sequence is fault simulated and all
detected faults are dropped from the faultlist. Otherwise, our GA-based algorithm

attempts to justify the required state. A block diagram of the methodology is shown

in Figure 4.1.

4.5.1 Encoding of the chromosome

During generation of individual test vectors, each character of a chromosome in the
population is mapped to a primary input. A binary encoding has been used in this

implementation.

46

Select Target Fault
'L__

Run deterministic
ATPG

Fault simulate
gene seq M

No

Justify state using
Genetic Algorithm

Figure 4.1: A block diagram of the methodology.

4.5.2 Fitness Function

Fitness function is the most important parameter of the GA. A solution is considered
to be better than another if its fitness is higher. Each vector (chromosome) is logic
simulated to give the state reached. This state is compared with all the flip-flop
assignment values of the target state. The fitness f(v;) of a vector v; is computed

as follows:

J— m(i)
flv) = 5t

47

where s; is the state reached by vector v;, s; is the target state and m(s;, s;) is the
number of matching specified bits in s; and s;. B(s;) gives the number of specified

bits in s; (i.e., those which are not ‘z’).

4.5.3 Parent Selection

The choice of parents for crossover from the set of indivduals that comprise the
population is probabilistic. It is assumed that stronger indivduals, that is those
with higher fitness values, are more likely to mate than the weaker ones. Hence, we
select parents with a probability that is directly propotional to their fitness values;
the larger the fitness of a certain chromosome, the greater is its chance of being
selected as one of the parents for crossover. To accomplish parent selection, we have

used the Roulette-wheel selection scheme.

4.5.4 Crossover

Crossover provides a mechanism for the offspring to inherit the characterstics of
both the parents. Several crossover operators have been proposed in the literature.
Depending on the combinatorial optimization problem being solved some are more
effective than others. A good comparison is given in [28]. In this work, we have

used one-point crossover.

48

4.5.5 Mutation

Mutation produces incremental changes in the offspring by randomly changing values
of some genes. In this work, mutation corresponds to changing single bit positions.
Mutation has the effect of perturbing a certain chromosome in order to introduce
new characteristics not present in any element of the population. In our work, bit

flipping is used to implement mutation.

4.5.6 Forming a new generation

A generation is an iteration of GA where individuals in the current population are
selected for crossover and offsprings are created. Due to the addition of offsprings,
the size of population increases. In order to keep the number of members in a
population fixed, a constant number of individuals are selected from this set for the
new generation. The new population thus consists of both, members from the initial
generation and the offsprings created. In this work, we have used three replacement

strategies.

(n + 1) replacement strategy

In this strategy, we change one chromosome in every generation. One crossover is
performed in every generation. If the child is more fit than the worst member of the
previous generation, it is introduced into the population. Hence, we select the best

n — 1 members from a population of n, and the worst member gets replaced if its

49

fitness is less than the fitness of the offspring.

Random Elitist strategy

We perform n/2 crossovers on a population of n chromosomes. This produces n
offsprings. The best n/2 members are transferred to the next generation. The
remaining members of the new generation are selected randomly from the leftover

chromosomes.

Roulette Elitist strategy

In this strategy, n offsprings are produced after n/2 crossovers in a population of
n chromosomes. The best n/2 members are transferred automatically to the next
generation. Roulette wheel decides the remaining n/2 members of the new genera-
tion. This gives an advantage to the relatively more fit members of the population
to be transferred to the next generation.

The stopping criteria used is the number of generations. Another criteria which
has been experimented with is that the algorithm stops searching for the desired
state when there is no improvement in the average fitness of the population for a

specified number of generations.

50

4.5.7 Traversing from a state to a state

The algorithm is run for a fixed number of generations. If the state reached is the
desired state, the algorithm stops and picks the next state from the list. However,
if the algorithm is unable to reach the desired state, it picks the best chromosome
found until then and adds it to the test set. Then, it continues the process again by
calling the GA starting from this reached state. This state is nearer to the target
state in terms of the Hamming distance, which increases the likelihood of reaching
the desired state in the next GA runs. The following parameters are used to guide

the search

Tabu List Size

To prevent the algorithm from re-visiting recently visited states, we propose a Tabu
List containing the last visited states. The length of this list is a user-defined
parameter. On reaching a state, the algorithm looks into the Tabu list. If the state

reached is present, the next fit vector is chosen and its fitness is evaluated.

Backtrack limit

When all the chromosomes in the population are unable to reach a new state, (a
state which is not in the Tabu List), we move to a previously visited state. This
is termed as backtracking. We impose an upper limit on this parameter and the

algorithm stops searching for a state when this parameter exceeds.

51

Nlimit parameter

The algorithm traverses at least Nlimit number of states before it gives up the
search for the desired state. If the fitness of the currently visited state is less than
the average fitness of the last Nlimit states, the algorithm stops further searching of
the desired state; otherwise the search is continued.

A flowchart of the state justification process used in this work is shown in

Figure 4.2.

4.5.8 Removing the reached states from the list of desired

states

Once a sequence is generated by the algorithm, we compare the states reached by
the sequence with the list of desired states. All the desired states reached by the
sequence are removed. This prevents us from searching again for those states which

we have already reached while searching for some other target state.

4.6 Conclusion

In this chapter, we discussed various approaches in which Genetic Algorithm has
been used for state justification. We have proposed a hybrid approach for state
justification in which we engineer state justification sequences vector by vector.

This overcomes the problem of fixed length sequences associated with earlier ap-

fit(s)<M(NLimit)

final sequence
$33+1;

T remove first
element from

Ehs

Figure 4.2: A flowchart of the algorithm used.

52

53

proaches. Moreover, the proposed approach considers the quality of intermediate
states reached while searching for a target state. This is in contrast to earlier ap-
proaches, where a sequence was evaluated only on the basis of the final state reached.
Various parameters used in our methodology were explained. The fitness function

was elaborated and a flowchart of the proposed approach was explained.

Chapter 5

Experiments and Results

5.1 Introduction

In this chapter, we will discuss the experiments performed to evaluate the proposed
GA-based state justification technique. The chapter is organized as follows. We
will explain the process of obtaining the set of states that will be used to evalu-
ate the effectiveness of the proposed approach in Section 5.2. In Section 5.3, we
perform a sensitivity analysis of the parameters used. A comparison of the three
replacement strategies mentioned in the previous chapter is also included in this
section. Section 5.4 gives a comparison of the proposed approach with the one used
in IGATE [9]. A discussion of the results obtained is also given. A conclusion is

given in Section 5.5.

54

95

5.2 Generation of the desired states for bench-

mark circuits

In order to test the effectiveness of the proposed GA-based state justification tech-
nique, we need to generate a set of states for every benchmark circuit, that are hard
to justify by a deterministic sequential ATPG. Typically, an ATPG aborts its search
for a test if the backtrack limit is reached. Hence, by stretching the ATPG to a large
backtrack limit, we can get a list of hard-to-detect faults. In general, these faults
will be the ones that require specific hard-to-justify states. A list of such states is
maintained for each circuit under consideration. This step involves a one-time effort

and is performed at the beginning of the experimental runs.

5.2.1 Benchmarks used

In this work, we have conducted experiments on ISCAS 89 benchmark circuits. Only
those circuits were used for which the deterministic ATPG HITEC [18], was unable
to detect the faults after exhausting the backtrack limit of 10°. In addition, four re-
timed circuits given in [13] were considered. Re-timing changes the sequential nature
of the circuit, while preserving both the combinational nature and the functionality
[13]. The four re-timed circuits used were the ones on which HITEC performed
poorly even after spending astronomical amount of CPU time. Thus, re-timing

offered a vehicle to analyze the behaviour of complex sequential circuits. Table 5.1

56

lists the number of primary inputs, primary outputs and D flip-flops of the circuits

used in this work.

| circuit # of PI | # of PO | # of DFF |
s1423 17 5 74
s3271 26 14 116
s3384 43 26 183
s5378 35 49 179
s6669 83 55 239
scfRjisdre 27 54 20
s832jcsrre 18 19 31
s510Rjcsrre 20 7 30
s510Rjosrre 20 7 32

Table 5.1: The benchmark circuits used.

5.2.2 Obtaining a list of desired states

A list of target states is obtained for each circuit as follows:

e A deterministic test pattern generator HITEC [18] is stretched to a backtrack

limit of 10° to identify the redundant faults.

The aborted faults are taken and are converted to their full-scan equivalents

HITEC then produces a test for each of these faults.

The required state is then relaxed using PROOFS [19].

The desired states are merged if they are compatible, as shown in Figure 5.1.

Ixx01x11

11x01011

State 1 merges into State 2, and we drop State 1

Figure 5.1: Merging of desired states.

Table 5.2 lists the target states obtained for each of the circuits. It is worth
mentioning that some of the states obtained may correspond to redundant faults as

the ATPG aborted the search of a sequence for detecting the target fault after a

given number of backtracks.

State 1

State 2

circuit # of target states
s1423 135
s3271 45
s3384 102
s5378 524
s6669 32
scfRjisdre 267
s832jcsrre o7
s510Rjcsrre 114
s510Rjosrre 114

Table 5.2: The number of target states obtained.

58

5.3 Application of GA to state justification of the

desired states

The proposed GA-based state justification algorithm was implemented inside a fault
simulator HOPE [38]. This involved an additional 2000 lines of code in C. The
experiments were run on SUN ULTRA 10 stations. The target states were provided
as an input to the algorithm. The processing times were computed and the output
was a list of reached states and the state justification sequence derived. The state
justification algorithm used in IGATE [8] [9] was also implemented inside HOPE for
comparison purposes. Time taken and the list of states reached by the algorithm

were reported. The following sets of experiments were carried out:
1. Comparing three replacement policies for the GA.

2. Sensitivity analysis of the different parameters used.

5.3.1 Comparison of replacement strategies

The initial population is randomly generated. Fitness is computed for each chro-
mosome and parents are selected based on the Roulette-wheel selection scheme.
Crossover and mutation operators as discussed in Section 4.5.4, are applied. More
fit children replace the members of the previous generation [26]. Three replacement

policies were experimented with. A discussion of these is given in Section 4.5.6.

59

The (n + 1) replacement strategy, replaces one chromosome of the previous

population after every generation. In Random Elitist strategy, two chromosomes

are created in every crossover and /N/2 crossovers are performed in every generation,

where N is the number of chromosomes in the population. The best half of these

are inserted in the new population. Half of the members of the new population are

selected randomly in Random Elitist strategy, while they are selected based on a

roulette wheel mechanism in Roulette Elitist strategy. The results of the simulations

carried out using these three replacement policies are shown in Table 5.3.

(n+1) dom Elitist Roulette Elitist
circuit CHR GEN BT NLimit TLS Time SR Time ‘Time
81423 16 100 10 120 150 58 126 19 508 32 748
32 100 10 120 150 64 365 31 778 49 3586
64 100 10 120 150 64 572 49 11300 68 13704
53271 16 800 20 225 150 20 4592 11 5023 15 11214
32 100 20 225 150 21 6244 18 11805 20 18113
256 100 20 225 150 | 21 10625 19 12976 21 109612
33384 16 800 10 375 150 65 11849 23 14912 34 17445
64 800 10 375 150 66 23115 51 24905 41 30023
256 800 10 375 150 66 41225 65 68428 50 100615
$5378 16 400 10 275 150 64 25294 22 84225 45 112610
32 400 10 275 150 113 29274 53 100324 61 141251
64 400 10 275 150 115 34893 55 117520 61 161225
36669 16 10 10 375 150 19 130 19 871 22 914
16 100 10 375 150 27 503 19 5151 22 8681
16 400 10 375 150 30 1664 22 17905 22 24668
sciﬁjixdre 16 100 10 40 150 18 25 17 285 26 836
64 100 10 40 150 19 42 34 832 43 6700
256 100 10 40 150 20 114 46 5055 50 48820
3832jcsrre 16 400 100 100 150 7 79 6 77 6 82
256 400 100 100 150 7 190 7 1946 7 2126
1024 400 100 100 150 9 360 8 3441 9 4956
3510Rjcsrre 16 400 10 45 150 12 14 8 120 6 140
256 400 10 45 150 16 132 23 523 23 1208
512 400 10 45 150 23 260 31 2340 31 5038
8510Rjosrre 16 800 10 45 150 12 92 5 233 4 305
684 800 10 45 150 19 661 13 1171 11 2841
256 800 10 45 150 19 2740 17 9870 19 19342

Table 5.3: Comparison of the selection schemes.

In Table 5.3, the number of states reached (SR) and the time

taken to reach

those states are given for each replacement strategy described above. It was observed

that (n + 1) replacement strategy was the best in terms of execution time. It also

60

reached a comparable number of states for most of the circuits. This strategy changes
only one member of the previous generation and hence the number of operations
in one generation of (n + 1) replacement strategy requires less time as compared
to other strategies. Moreover, changes in the characteristics of the population do
not occur as abruptly as in the other two schemes. Figure 5.2 shows the average
and best fitness of the population against the number of generations for one of
the target states that is justified by the algorithm using the (n + 1) replacement
strategy. It can be seen that the average fitness increases monotonically with the
number of generations. This is due to the fact that we are always preserving the

best chromosome in each generation.

1.2 -

1-
0.6 / —s— Avg. Fitness
0.4

0.2 - —— Best Fitness

0 -+
- N M O = M
- ~ N M M

No. of generations

Fitness

Figure 5.2: Average and best fitness plotted against the number of generations for
(n + 1) replacement strategy.

61

In Figure 5.3, we show the state traversal for one of the states that has been
reached by the algorithm. It can be seen that we progress towards better states in
terms of the Hamming distance as the algorithm runs for more iterations. Less fit
states are reached if we we are unable to reach a better state because of the Tabu
restriction. Moreover, we move towards the best state among all alternatives, even
if that state is worse than the current state. This helps in avoiding the local minima.

The example is for one of the target states of s1423 circuit.

-t

Fitness
ohvho®—=
|

cCOoOO0O

NARARARAS AR AR AR RRIERRLAR RN RRARA IR

- N OO O D = N M
- ~ N OO MO <

States Traversed

Figure 5.3: State traversed versus the fitness of reached states for a target state of
s1423 circuit.

In Figure 5.4, state traversal for one of the unreached states is shown. It can
be observed from the figure, that the quality of states reached is better in terms of

Hamming distance as the algorithm runs for more iterations.

62

1 -
0.8 -
0.6 -
0.4 1
0.2

0 -t ———————— ——————

- ¥ N O MO O N OV ©
FN"U)(DI\CDO:
-

States Traversed

Fitness

Figure 5.4: State traversed versus the fitness of reached states for one of the un-
reached state of s1423 circuit.

The Random Elitist strategy was comparable to the (n + 1) replacement strat-
egy in terms of the quality of solution. However, as more operations were required
in one generation of this strategy, it was expensive in terms of CPU execution time.
Sorting had to be performed on the children produced after crossover, to select the
best half of them. This took additional execution time as compared to the (n + 1)
replacement strategy.

The Roulette Elitist strategy gave better results in terms of the number of
justified target states than the Random Elitist strategy for most of the circuits. Ad-
ditional operations like applying the roulette-wheel to select half of the candidates,

made it worse than the Random Elitist and (n+1) replacement strategies in terms of

63

the execution time. However, it was comparable to the (n + 1) replacement scheme
as far as the number of reached states is concerned.

It can be observed from Table 5.3 that (n + 1) selection strategy was far better
than the other two strategies in terms of execution time. It gave cﬁmparable results
for the number of reached states for most of the circuits. In the remainder of this

thesis, the (n + 1) replacement strategy is employed.

5.3.2 Sensitivity analysis of parameters

It has been observed that Genetic Algorithms are quite sensitive to variations in
the control parameters [27]. The parameters that affect the proposed algorithm in-
clude size of the population, the number of generations, size of the Tabu list, value
of the Nlimit parameter and the number of backtracks. A sensitivity analysis of
these parameters was performed and we discuss it in this section. In addition, the
type of encoding used (binary or integer), crossovers used, selection and replacee-
ment policies and rates of crossover and mutation affect the quality of solution. As
each character of the chromosome was mapped to a primary input, a binary encod-
ing was used. As observed in Section 5.3.1, the (n + 1) replacement strategy gave
better results in terms of execution time while producing solutions of comparable
quality. Hence, it was decided to use this replacement strategy in the simulations.
The crossover rate was kept at 1 and the roulette-wheel selection scheme as de-

scribed in Section 3.2.2 was used for parent selection. One point uniform crossover

64

as mentioned in Section 3.2.2 was used in this implementation because of its low
complexity. Bit-flipping was used in mutation, and the mutation rate was kept at

0.01.

Effect of population size

The effect of population size on the quality of solution was viewed in this experi-
ment. The number of chromosomes was kept constant in each generation. As the
population size increased, the time taken by the algorithm for each generation in-
creased. Tabu List size was kept at 150 and the Nlimit was 1.5 times the number
of flip-flops for each circuit. The values of other parameters, were the best values
obtained for each circuit. The results are given in Table 5.4.

It can be seen from the table that there was a general trend of improvement in
the number of reached states as the population size increased. However, the total
run time increased appreciably with the increase in the population size. As can be
seen from the table, a population size of 32 seems sufficient considering both the

reached states and required CPU time.

Effect of the number of generations

In this experiment, the effect on the quality of solution was observed for the number
of generations the algorithm was run while moving from a state to a state. Because

of the replacement policy used, each generation replaced the worst chromosome from

65

circuit Chromes | Gen | BT | NLimit | TLS | Reached | Time(sec)
s1423 16 100 10 120 150 58 126
32 100 10 120 150 64 365
64 100 10 120 150 64 572
83271 16 100 10 225 150 19 831
32 100 10 225 150 21 1244
256 100 10 225 150 21 2625
53384 16 800 10 375 150 65 11849
32 800 10 375 150 66 18122
64 800 10 375 150 66 23115
256 800 10 375 150 66 41225
85378 16 400 10 275 150 64 25294
32 400 10 275 150 113 29274
64 400 10 275 150 115 34893
s6669 16 100 10 375 150 22 503
32 100 10 375 150 23 788
64 100 10 375 150 23 1349
scfRjisdre 16 100 10 40 150 18 25
32 100 10 40 150 19 33
64 100 10 40 150 19 42
256 100 10 40 150 20 114
s832jcsrre 16 400 100 100 150 7 79
32 400 100 100 150 7 118
256 400 100 100 150 7 190
1024 400 100 100 150 9 360
s510Rjcsrre 16 400 10 45 150 12 14
32 400 10 45 150 12 77
256 400 10 45 150 16 132
512 400 10 45 150 23 260
s510Rjosrre 16 800 10 45 150 12 92
32 800 10 45 150 16 334
64 800 10 45 150 19 661
256 800 10 45 150 19 2740

Table 5.4: Effect of the change in population size.

the last generation. Hence, the average fitness monotonically increased with every
generation. The population size which gave the best results was used for every
circuit. The results are shown in Table 5.5.

It can be seen from the table that there was a general trend of improvement
in the number of reached states with the number of generations. The increase in

execution time was not as much as in the case of increase in population size.

] circuit Chromes | Gen | BT | NLimit | TLS | Reached | Time(sec)
s1423 32 10 10 120 150 46 91
32 100 10 120 150 64 365
32 200 10 120 150 68 1457
32 400 10 120 150 71 2912
32 800 10 120 150 71 6303
53271 16 10 10 225 150 12 105
16 100 10 225 150 19 831
16 400 10 225 150 21 2455
16 800 10 225 150 21 4592
53384 16 10 10 375 150 29 1104
16 100 10 375 150 45 2687
16 200 10 375 150 45 4744
16 400 10 375 150 49 7794
16 800 10 375 150 65 11849
16 1200 10 375 150 69 15887
s5378 32 10 10 275 150 51 3125
32 400 10 275 150 113 29274
32 800 10 275 150 115 49257
s6669 16 10 10 375 150 19 130
16 100 10 375 150 22 503
16 400 10 375 150 30 1664
scfRjisdre 16 100 10 40 150 18 25
16 400 10 40 150 28 108
16 800 10 40 150 42 183
16 1400 10 40 150 45 233
s832jcsrre 16 10 10 45 150 5 3
16 100 10 45 150 6 11
16 400 10 45 150 6 49
16 800 10 45 150 7 73
s510Rjcsrre 256 100 10 45 150 14 30
256 400 10 45 150 16 132
256 800 10 45 150 20 210
256 1400 10 45 150 20 1063
s510Rjosrre 32 10 10 45 150 3]
32 100 10 45 150 7 81
32 400 10 45 150 12 167
32 800 10 45 150 16 334
32 1200 10 45 150 16 611

Table 5.5: Effect of the change in the number of generations.

Effect of change in Nlimit parameter

66

The algorithm traverses atleast Nlimit number of states before it gives up the search

for the desired state. If the fitness of the currently visited state is less than the

average fitness of the last Nlimit states, the algorithm stops further searching of

the desired state. Experiments were carried out to tune this parameter and the

results are given in Table 5.6. The best parameters obtained from Table 5.4 and

67

Table 5.5 for population size and number of generations respectively, were used for
each circuit.

It can be observed from the table, that there was a general trend of improve-
ment in the number of reached states with the increase in Nlimit. The algorithm
searches more intensely for an _objective state when the Nlimit is increased. How-
ever, increasing this parameter brings about an increase in the execution time. It
was observed that an Nlimit value which is 1.5 times the number of flip-flops gave

good state coverage in reasonable time.

circuit Chromes | Gen | BT | NLimit | TLS | Reached | Time(sec)
51423 32 400 10 120 150 71 2912
32 400 10 500 150 74 9447
s3271 16 800 10 225 150 21 4592
16 800 10 500 150 21 10654
16 800 10 800 150 23 22096
s3384 16 800 10 50 150 53 2289
16 800 10 375 150 65 11849
16 800 10 500 150 67 16219
s5378 32 400 10 275 150 113 29274
32 400 10 600 150 115 57135
s6669 16 400 10 50 150 19 130
16 400 10 375 150 30 1664
16 400 10 500 150 30 3716
scfRjisdre 16 800 10 40 150 42 183
16 800 10 100 150 43 533
s832jcsrre 16 400 10 45 150 6 49
16 400 10 100 150 6 73
16 400 10 500 150 7 664
s510Rjcsrre 256 400 10 45 150 16 132
256 400 10 100 150 16 410
256 400 10 200 150 20 1063
s510Rjosrre 32 800 10 45 150 16 334
32 800 10 100 150 16 1243
32 800 10 500 150 19 3717

Table 5.6: Effect of the change in Nlimit.

68

Effect of change in Tabu List size

To prevent the algorithm from visiting recently visited states, a Tabu list containing
the last visited states was formed. On reaching a list, the algorithm looks into the
Tabu list. If the state reached is present, the algorithm goes to the state reached
by the next fit vector. A large value of Tabu list size, restricts us from undoing a
bad move which had been taken previously. Several experiments were carried out to
find a reasonable value. It was observed that a Tabu List size of 15, gave the best
results. The best values obtained for population size and the number of generations
from Table 5.4 and Table 5.5 respectively, were used for all the circuits. The Nlimit

was kept at 1.5 times the number of flip-flops. The results are shown in Table 5.7.

[circuit Chromes { Gen | BT | NLimit | TLS | Reached | Time(sec)
81423 32 400 10 120 150 71 2912
32 400 10 120 50 71 2966
32 400 10 120 15 74 3119
s3271 16 800 10 225 150 21 4592
16 800 10 225 50 21 4627
16 800 10 225 15 21 4894
s3384 16 800 10 375 150 65 11849
16 800 10 375 50 65 11703
16 800 10 375 15 67 16121
s5378 32 400 10 275 150 113 29274
32 400 10 275 S50 113 31127
32 400 10 275 15 115 31281
s6669 16 400 10 375 150 27 503
16 400 10 375 50 27 715
16 400 10 375 15 30 1466
scfRjisdre 16 800 10 40 150 42 183
16 800 10 40 50 42 355
16 800 10 40 15 46 533
s832jcsrre 16 400 10 45 150 6 49
16 400 10 45 50 6 77
16 400 10 45 15 7 106
s510Rjcsrre 256 400 10 100 150 16 410
256 400 10 100 50 16 492
256 400 10 100 15 19 663
s510R josrre 32 800 10 45 150 16 334
32 800 10 45 50 16 416
32 800 10 45 15 18 441

Table 5.7: Effect of the change in Tabu List size.

69

Effect of change in the number of Backtracks

When a state is reached after which no further traversal is possible, we move back to
a previously visited state. This is termed as backtracking. Increase in the backtrack
limit causes an increase in execution time. The increase in the number of visited
states was not very significant except for some cases. The best values obtained
for population size and the number of generations from Table 5.4 and Table 5.5
respectively, were used for all the circuits. The Nlimit was kept at 1.5 times the
number of flip-flops. The size of the Tabu List was set to 15. The results are shown
in Table 5.8.

It was observed that a backtrack limit of 10 gave good results in reasonable

time.

5.3.3 Recommended parameters for the proposed approach

Based on the experiments performed and the observed results, certain parameters are
found to perform better than others for most of the circuits. A list of recommended
parameters is given in Table 5.9.

A population size of 32 and 400 generations gave good quality results in rea-
sonable time. A backtrack limit of 10 and Tabu List size of 15 are suggested. Nlimit
is suggested as 1.5 times the number of flip-flops in the circuit. The algorithm was

run with the parameters suggested above for all circuits. Results are shown in Ta-

circuit Chromes | Gen | BT | NLimit | TLS | Reached Time(sec) |
s1423 32 400 | 200 120 15 75 4217
32 400 100 120 15 75 4212
32 400 10 120 15 74 3119
s3271 16 800 | 200 225 15 21 5042
16 800 100 225 15 21 4992
16 800 10 225 15 21 4894
$3384 16 800 | 200 375 15 68 17714
16 800 100 375 15 68 17703
16 800 10 375 15 67 16121
35378 32 400 | 200 275 15 115 31311
32 400 100 275 15 115 31302
32 400 10 275 15 115 31281
s6669 16 400 | 200 375 15 30 1723
16 400 100 375 15 30 1715
16 400 10 375 15 30 1466
scfRjisdre 16 800 | 200 40 15 48 735
16 800 100 40 15 48 735
16 800 10 40 15 46 533
s832jcsrre 16 400 | 200 45 15 7 189
16 400 100 45 15 7 187
16 400 10 45 15 7 106
8510Rjcsrre 256 400 | 200 100 15 21 951
256 400 100 100 15 21 949
256 400 10 100 15 19 663
s510Rjosrre 32 800 | 200 45 15 18 460
32 800 100 45 15 18 462
32 800 10 45 15 18 441

Table 5.8: Effect of the change in Backtrack Limit.

Population size

32

No. of Generations

400

Nlimit 1.5 times # of FF
TLS 15
Backtrack limit 10

Table 5.9: Recommended parameters for the proposed approach.

70

ble 5.10. In Table 5.11, we present the best results obtained for each of the circuits.

The parameters are listed for every circuit. It can be seen from Table 5.10 and Ta-

ble 5.11, that the parameters proposed in Table 5.9 gave good quality results when

compared with the best results obtained for each circuit.

Table 5.10: Results obtained from the suggested parameters.

—

circuit Chromes | Gen | BT | NLimit | TLS | Reached | Time(sec) |
31423 [32 | 400 | 100 120 | 15 | 75 1212
83271 16 400 | 10 225 150 21 2455
23384 16 800 | 100 376 15 68 17703

[85378 32 400 | 10 275 15 115 — 31281 |
56669 16 400 | 10 375 15 30 1466
sciRjiadre 16 800 | 100 40 15 3 735
s832jcarre 1024 400 | 100 100 150 9 360
s510Rjcarre 512 400 | 10 45 150 23 260
| 8510R josrre 64 800 | 10 45 150 19 661

71

circuit Reached | Time(sec)
31423 T4 3119
83271 21 6015
83384 67 18314 ,
85378 115 31281 \
36669 30 1764 i
scfRjisdre 48 803 !
s832jcarre 8 139
s510RjcarTe 16 163
| s510R josrre 16 181

Table 5.11: Best results obtained for each circuit.

5.4 Comparison with previous approaches

GA has been used previously for state justification [8] [9]. It has been applied to a
sequence of vectors as opposed to individual vectors in the proposed approach. The
fitness of each individual was a measure of how closely the final state reached by the
sequence matched the desired state. If any sequence was found which produced the
desired state, the sequence was added to the test set. The GA was run 'for a specific

number of generations if the sequence failed in reaching the desired state.

5.4.1 Limitations of the technique

There were several drawbacks in the technique proposed by Patel et. al. in [8][9).

72

Fitness Function

The fitness function used, matched only the last state reached by the sequence with
the desired state. It did not take into account any more closely matched state which
it reached while simulating the vectors in the sequence. The fitness was hence a
measure of only how closely the last state reached by the sequence matched the

desired state.

Fixed number of vectors

The number of vectors in a sequence was fixed at 4 times the structural sequential
depth of the circuit. Hence, there were a fixed number of vectors to simulate for
reaching a desired state. In case of feed-back loops, the structural sequential depth
may not give a correct estimate of the number of vectors required for justifying a
given state. Thus, if a state requires longer justification sequence, it will not be

justified by the algorithm.

5.4.2 Parameters used in comparison

The parameters used were the same as those mentioned in [8][9]. The number of
vectors in each sequence was kept equal to 4 times the structural sequential depth of
the circuit. 32 chromosomes were used and the algorithm was run for 8 generations.
Tournament selection and two-point uniform crossover were used. The crossover and

mutation probabilities of one and 1/64 respectively, were used in the simulations.

73

For our proposed approach, we found better results with a population size of

32, 400 generations, an (n + 1) replacement strategy, and one point crossover. The

parameters used were as given in Table 5.9. Results are demonstrated in Table 5.12

our approach approach in {9)] approach in [9]
Name # of | Target states time(sec) | gens states time(sec) | gens states time(sec)
FF states | reached reached reached
s1423 74 135 74 3119 8 50 2743 50 61 3953
3271 116 45 21 6015 8 15 1664 200 18 6319
53384 183 102 67 18314 8 31 3794 250 45 21161
85378 179 524 115 31281 8 45 3133 100 48 225160
s6669 239 32 30 1764 8 23 1701 50 24 2289
scfRjisdre 20 267 48 803 8 25 501 100 31 5196
s832jcsrre 31 57 8 139 8 7 120 100 7 2170
s510Rjcsrre 30 114 16 163 8 12 61 100 13 504
8510R josrre 32 114 16 181 8 9 62 100 13 583

Table 5.12: Comparison of the two techniques.

The first column in the table shows the circuit name. In the second and third

columns, the number of flip-flops (FFs) and the number of target states respectively

is given for each circuit. The states reached and CPU time obtained by our algorithm

are mentioned in the next two columns.

For comparison purposes, we ran the

algorithm proposed in [9], for several number of generations and the results are

shown in the next columns.

It can be observed from the results, that the number of desired states reached

by our technique are more than those reached by the technique used in IGATE [9]

for all the circuits. Furthermore, our proposed technique reached a higher number

of states than IGATE [9] in all the cases even when the latter was run for greater

amount of CPU time.

74

5.4.3 Fault coverage comparisons

In order to verify the effectiveness of the generated state justification sequences
in detecting hard-to-detect faults, we seeded them to a deterministic test pattern
generator HITEC [18]. HITEC makes use of previously visited states while doing
state justification. The faults detected by an initial run of HITEC with 1000000

backtracks were removed from the fault list. The results are shown in Table 5.13.

faults detected reached states
Name TF approach in [9] | our approach | TS | approach in [9] | our approach
51423 926 312 578 135 61 74
s3271 61 34 41 45 18 21
83384 376 91 116 102 45 67
85378 1221 103 285 524 48 115
s6669 40 29 31 32 24 30
scfRjisdre 1920 1397 1802 267 31 48
3832jcsrre 293 38 147 57 7 8
s510Rjcsrre 374 45 85 114 13 16
s510Rjosrre 459 232 431 114 13 16

Table 5.13: Faults detected by the two state-justification techniques.

It can be observed that a large number of hard-to-detect faults are detected
when we seed HITEC with the state justification sequence obtained by the proposed
strategy. The number of faults detected are significantly higher than the faults
detected when the ATPG is seeded with the state justification sequences generated
by the technique used in IGATE [9]. Apart from justifying more states, our technique

takes advantage of the partial justification sequences generated.

75

5.5 Conclusion

In this chapter, we presented and discussed various experiments that were performed
using our GA-based algorithm. Various replacement policies were experimented with
and results obtained have been compared. It was observed that (n + 1) replacement
strategy gave the best results in terms of the number of states reached and execution
time. Sensitivity analysis of different parameters like number of chromosomes in
the population, number of generations, etc has also been performed. An Nlimit
parameter has been introduced and its effect on the quality of solution has been
analyzed. The effect of Tabu List size has also been studied. It was observed that a
population size of 32, 400 generations and backtrack limit of 10 gave good results.
An Nlimit value of 1.5 times the number of flip-flops and a Tabu List Size of 15 gave
good results in reasonable time. The performance of the proposed algorithm has
been compared with another GA-based state justification algorithm reported in the
literature. It was observed that the number of desired states reached by our proposed
technique is more than the previous approach for all the circuits. Furthermore, our
proposed technique reached a higher number of states for all the circuits considered,
even when the previous algorithm was run for greater amount of CPU time. The
state justification sequence was seeded into a deterministic test pattern generator
and significant improvements in the number of faults detected were obtained over

previous approaches.

Chapter 6

Conclusion

6.1 Summary

Once a digital circuit is designed and fabricated, it needs to be tested for the pres-
ence or absence of physical defects or faults. Generating test patterns for testing
digital circuits consumes a significant portion of the design time. Automatic test
pattern generation (ATPG) deals with this problem automatically for a given circuit
description. The process of test pattern generation for digital logic involves a search
through all possible input values or sets of input values to find one that causes the
output of a good circuit to differ from that of a faulty circuit. The problem is far
more complex for sequential circuits as compared to combinational circuits. A com-
mon search operation in sequential ATPG is to justify a desired state assignment
on the sequential elements. State justification using deterministic algorithms is a

difficult problem and is prone to many backtracks, which can lead to high execution

76

77

times. Significant speedups can be obtained with the simulation-based approaches.
Untestable faults however, cannot be identified using these approaches and deter-
ministic algorithms are needed. In this work, we propose a hybrid approach which
uses a combination of evolutionary and deterministic algorithms for state justifica-
tion. Genetic Algorithms (GAs) were used for generating sequences that will help
the Automatic Test Pattern Generator (ATPG) in detecting more faults by reach-
ing specific states. The main advantage of GA-based ATPGs as compared to other
approaches, is their ability to cover a larger search space in lower CPU time. This
improves the fault coverage and makes these ATPGs capable of dealing with larger
circuits. The approach used was compared with other GA-based approaches and
significant improvements were observed.

The contributions of this work can be itemized as follows:

e A hybrid ATPG approach for sequential circuits, where, both deterministic

and GA-based state justification are involved.
e A novel state justification procedure based on GA.

e Genetic engineering of a sequence vector by vector. This has the advantage of
dynamically determining the length of the justification sequence. Furthermore,

this has the benefit of taking the fitness of intermediate states into account.

e A comparison of three replacement strategies. The (n+1) replacement strategy

gave better results.

78

e The use of a Tabu list to prevent the algorithm from visiting previously visited
states. Having a reasonably small Tabu list size allows the algorithm to get

out of bad moves.

e Sensitivity analysis of the parameters was carried out and a list of parameters

is recommended.

e A comparison with other approaches based on engineering sequences. Better
results obtained in terms of the number of states reached and the CPU time.

Higher fault coverage achieved than the previous techniques.

Chapter 1 briefly describes the Sequential ATPG problem. Various approaches
presented in the literature for solving the problem have been presented in Chapter
2. In Chapter 3, Genetic Algorithms and their application to the sequential ATPG
problem have been reviewed. We have described the proposed approach of using
Genetic Algorithms for state justification in Chapter 4. An overview of Tabu Search
is also given in the same chapter. In Chapter 5, experimental results have been pre-
sented. Sensitivity analysis of different parameters like number of chromosomes in
the population, number of generations, etc has been performed. An Nlimit parame-
ter has been introduced and its effect on the quality of solution has been analyzed.
The effect of Tabu List size has also been studied. The performance of the pro-
posed algorithm has been compared with another GA-based algorithm réported in

the literature.

79

6.2 Future Research
Our work can be extended to address the following issues:

e Designing other meta-heuristics (for e.g., Tabu Search) for state justification

and their comparison with the proposed scheme.

e Parallelization of the algorithm, especially the evaluation of the fitness func-

tion.

Bibliography

[1] Aiman El-Maleh, M. Kassab, and J. Rajski. A Fast simulation-based learning

technique for real sequential circuits. In Design Automation Conference, 1998.

[2] F. Corno, P. Prinetto, M. Rebaudengo, and M. Sonza Reorda. A Parallel Ge-
netic Algorithm for aoutomatic generation of test sequences for digital circuits.
In International Conf. on High Performance Computing and Networking, Bel-

gium, April 1996.

[3] Y. C. Kim and K. K. Saluja. Sequential test generators: past, present and

future. INTEGRATION, the VLSI journal, 26:41-54, 1998.

[4] M. H. Konijnenburg, J. T. van der Linden, and A. J. van de Goor. Sequen-
tial test generation with advanced illegal state search. In International Test

Conference, 1997.

[5] F. Corno, M. Rebaudengo, and Sonza Reorda. Experiences in the use of evo-

80

[7]

(8]

[9]

[10]

[11]

[12]

81

lutionary techniques for testing digital circuits. In Application and Science of

Neural Networks, Fuzzy Systems and Evolutionary computation, SPIE, 1998.

Srinivas M. and L. M. Patnaik. Genetic Algorithms : A Survey. IEEE Computer

Magazine, pages 17-26, June 1994.

E. M. Rudnick, J. G. Holm, D. G. Saab, and J. H. Patel. Application of Simple
Genetic Algorithm to sequential circuit test generation. In FEuropean Design

and Test Conference, pages 40—45, February 1994.

Elizabeth M. Rudnick and Janak H. Patel. State justification using Genetic
Algorithms in sequential circuit test generation. A survey report from CRHC

Univ. of Illinots, Urbana, January 1996.

M. S. Hsiao, E. M. Rudnick, and J. H. Patel. Application of genetically engi-
neered finite-state-machine sequences to sequential circuit ATPG. IEEE Trans-

actions on CAD of Integrated circuits and systems, 17:239-254, March 1998.

X. Chen and M. L. Bushnell. Sequential circuit test generation using dynamic

justification equivalence. Journal of Electronic Testing, 8:9-33, 1996.

Hideo Fujiwara. Logic Testing and Design for Testability. The MIT Press, 1991.

M. A. Iyer, D. E. Long, and M. Abramovici. Identifying sequential redundancies

without search. In 33rd Design Automation Conference, pages 457-462, 1996.

82

(13] T. E. Marchok, Aiman El-Maleh, W. Maly, and J. Rajski. A complexity analysis
of sequential ATPG. IEEE Transactions on CAD of Integrated circuits and

systems, 15:1409-1423, November 1998.

[14] P. H. Ibarra and S. K. Sahni. Polynomially complete fault detection problems.

IEEE Transactions on Computing, 24:242-249, 1975.

[15] M. S. Hsiao. Use of Genetic Algorithms for testing sequential circuits. Ph.D.

Dissertation, UIUC, December 1997.

[16] Kwang-Ting Cheng and A. Krstic. Current directions in automatic test-pattern

generation. [EEE Computer Magazine, pages 58-64, November 1999.

[17] T. Marchok, Aiman El-Maleh, W. Maly, and J. Rajski. Complexity of Sequen-

tial ATPG. In European Design and Test Conference, pages 252-261, 1995.

(18] T. Niermann and J. H. Patel. HITEC: a test generation package for sequential

circuits. In European Test Conf., pages 214-218, February 1991.

[19] T. Niermann, W. T. Cheng, and J. H. Patel. PROOFS: A fast memory efficient
sequential circuit fault simulator. In Design Automation Conf., pages 535-540,

June 1990.

[20] M. Abramovici, M. A. Breuer, and A. D. Friedman. Digital System Testing and

Testable Design. Computer Science Press, 1990.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

83

H. K. T. Ma, S. Devadas, A. R. Newton, and A. Sangiovanni-Vincentalli. Test
generation for sequential circuits. JEEE Transactions on CAD, 7:1081-1093,

1988.

V. D. Agrawal, K. Cheng, and P. Agrawal. A directed search method for
test generation using a concurrent simulator. [EEE Transactions on Computer

Aided Design, 10(5):652-667, 1989.

D. G. Saab, Y. G. Saab, and J. A. Abraham. CRIS: A test cultivation program
for sequential VLSI circuits. In International Conf. on Computer-aided Design,

pages 216-219, November 1992.

E. M. Rudnick, J. H. Patel, G. S. Greenstein, and T. M. Niermann. Sequential
circuit test generation in a genetic algorithm framework. In Design Automation

Conference, pages 698—704, June 1994.

F. Corno, P. Prinetto, M. Rebaudengo, and Sonza Reorda. GATTO: A genetic
algorithm for automatic test pattern generation for large synchronous sequential
circuits. IEEE Transactions on CAD of Integrated circuits and systems, 15:991—

1000, August 1996.

D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesley, 1989.

Sadiq M. Sait and Habib Youssef. Iterative Computer Algorithms with appli-

(28]

[29]

[30]

[31]

[32]

[33]

84

cations in Engineering: Solving combinatorial optimization problems. IEEE

Computer Society, 1999.

William M. Spears and Vic Anand. A study of crossover operators in genetic
programming. In Proceedings of the Sizth International Symposium on Method-

ologies for Intelligent Systems ISMIS 91, pages 409—418, 1991.

F. Corno, M. Rebaudengo, Sonza Reorda, and M. Violante. Exploiting logic
simulation to improve simulation-based sequential ATPG. In Sizth IEEE Asian

Test Symposium, Arta, Japan, November 1997.

D. G. Saab, Y. G. Saab, and J. A. Abraham. Automatic test vector cultivation
for sequential VLSI circuits using genetic algorithms. IEEE Transactions on

CAD, 15:1278-1285, October 1996.

E. M. Rudnick, J. H. Patel, G. S. Greenstein, and T. M. Niermann. A Ge-
netic algorithm framework for test generation. IEEE Transactions on CAD of

Integrated circuits and systems, 16:1034-1044, September 1997.

M. S. Hsiao, E. M. Rudnick, and J. H. Patel. Alternating strategies for sequen-
tial circuit ATPG. In Furopean Design and Test Conference, pages 368-374,

March 1996.

D. Krishnaswamy, M. S. Hsiao, V. Saxena, E. M. Rudnick, and J. H. Patel. Par-

34]

[35]

[36]

[37]

[38]

85

allel Genetic Algorithms for simulation-based sequential circuit test generation.

In IEEE VLSI Design Conference, pages 475-481, 1997.

F. Corno, P. Prinetto, M. Rebaudengo, Sonza Reorda, and E. Veiluva. A
PVM tool for automatic test generation on parallel and distributed systems.
In International Conf. on High Performance Computing and Networking, Italy,

pages 39-44, 1995.

M. S. Hsiao, E. M. Rudnick, and J. H. Patel. Sequential circuit test generation
using dynamic state traversal. In European Design and Test Conference, pages

22-28, March 1997.

M. S. Hsiao, E. M. Rudnick, and J. H. Patel. Dynamic state traversal for
sequential circuit test generation. ACM Transactions on Design Automation of

Electronic Systems, 5, July 2000.

Ahmed A. Al-Yamani. A Parallel Tabu Search Algorithm for VLSI Standard

Cell Placement. MS Thesis, KFUPM, April 1999.

H. K. Lee and D. S. Ha. HOPE: An Efficient Parallel Fault Simulator for Syn-
chronous Sequential Circuits. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, 15:1048-1058, September 1996.

86

Vitae

e Syed Zafar Shazli
e Born in Karachi, Pakistan.

e Received Bachelor of Science (Hons.) degree from University of Karachi,

Karachi, Pakistan in February 1995.

e Received Masters in Computer Science degree from University of Karachi,

Karachi, Pakistan in February 1997.

e Joined Computer Engineering Department, KFUPM, as a research assistant

in September 1998.

e Received Master of Science (M.S.) degree in Computer Engineering from

KFUPM, Dhaharan, Saudi Arabia, in June 2001.

