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Product codes attracted many researchers resulting in an explosive amount of
literature. This is because product codes deal with the concept of constructing long
powerful codes without increasing the complexity of the associated decoding, by
employing shorter component codes. Also, product codes are effective in recovering both
random and burst errors.

Most proposed decoding algorithms of product code either do not exploit the full
capability of the code or achieve high correction capability at the cost of increased
complexity and delay. The objective of this thesis is to improve the performance of the
product codes without a significant increase in decoding complexity. Specifically, the
thesis introduces three modified algorithms. The modified hard decision decoder,
MHDD. algorithm develops a decoding algorithm that is capable of reaching the
theoretical error correction capability of the product code without a significant increase
in the decoding complexity. The extension of the MHDD to three dimensions is presented.
The extended MHDD algorithm is also capable of reaching the theoretical error
correction capability. The modified soft decision decoder, MSDD, algorithm investigates
the performance of soft decision decoding for binary symbols to improve the performance
by taking advantage of soft decoding in both dimensions. The modified erasure decoder,
MED, algorithm investigates erasure decoding for binary symbols to improve the
performance by erasing specific values instead of erasing whole rows or columns.
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CHAPTER 1

INTRODUCTION

In this introductory chapter, we review the basic parts of a communication system. It will
be observed that a channel code is an essential part of any modern communication
system. A channel-encoding scheme, called Product Code, will be presented and some

aspects of the code will be introduced.

1.1 General Overview

Consider Figure 1.1 that shows a general digital communication system. Channel coding
is an integral part of the system. Channel coding refers to the class of signal
transformations designed to improve communication performance by enabling the
transmitted signals to better withstand the effects of various channel impairments, such as

noise, fading, and jamming [1].



Information Source

Source - Encoder
Informaton .~ Source
Decoder

Sink

Channel
Encoder

Channel

Decoder

-» Modulator

v

Channel

— --- Demodulator

Figure 1.1 : General Communication System

(3]



3
To overcome such noise and interference and, thus, increase the reliability of the signals
transmitted through the channel, it is often necessary to introduce some redundant bits.
The redundant bits can be then used for the detection and/or correction of errors.
On the next sections, different aspects of a communication system will be discussed.
Those aspects are related to this thesis work, and are introduced to provide a better

understanding of what is done in this work.

1.2 Noise

The signal-to-noise power ratio (SNVR). defined below, is a good measure of performance
at various points of a coding system. The SVR can degrade by the decrease of the signal
power (signal loss) or the increase of the noise power (interference), however. the net

effect on the SVNR (£, / Np) is the same [1].

SNR = sigl'ml power (L)
noise power

1.2.1 AWGN

The additive white Gaussian noise (AWGN) is completely characterized by its variance.
The variance of AWGN is infinite, however, the variance of the filtered AWGN is finite
and equals Ny/2, and where the factor 2 indicates that this is a two-sided power spectral
density. So, it will be assumed that the noise of interest is the output noise of a correlator
or a matched filter with variance & = Ny2.

1.2.2 Fading

Any microwave radio channel like mobile channel faces the problem that the impulse

response of the channel is, in general. time varying [2][3]. This is because of the
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constantly changing characteristic of the channel due to the random motion of the ions in
the ionospheric layers. So, two received signals transmitted through such channel will be
received differently and this difference will be random rather than deterministic. Also,
there may be a multiple of paths for a signal with different amplitudes and phases from
the transmitter to the receiver. These relatively delayed signal components interfere with
each other at the receiver causing fading. At times, the signals from different paths add
up constructively and at other times they add up destructively. Thus, the amplitude
variations in the received signal are due to the time-variant multi-path characteristics of
the channel. These time-variant and multi-path propagation cause frequency dispersion
and time dispersion. respectively, of the received signal leading to different types of
channels.

Time dispersion

Time dispersion is characterized by the root mean square (rms) delay spread, t.,, and
the coherence bandwidth, B.. The rms delay spread is the square root of the second
central moments of the power delay profile and it is a natural phenomenon caused by
reflected and scattered propagation paths in the channel. However, the coherence
bandwidth is a defined relation derived from the rms delay spread and it is the range of
frequencies for which the channel passes all spectral components with equal gain and
linear phase.

If the bandwidth, B, over which the channel has constant gain and linear phase is greater
than the bandwidth of the transmitted signal, then the received signal will undergo a

frequency non-selective or flat fading. This implies that the spectral characteristics of the
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signal are preserved at the receiver while the strength of the received signal changes with
time.

[f the bandwidth, B, over which the channel has constant gain and linear phase is less
than the bandwidth of the transmitted signal, then the received signal will undergo a
frequency selective fading. This implies that the received signal includes multiple
versions of the transmitted signal, which are attenuated and delayed in time, and hence
the received signal is distorted. This delay (dispersion) in time smears symbols into
adjacent ones causing intersymbol interference (ISI). The delay in time, viewing it in
frequency. means that different frequency components of the received signal have
different gains and hence the channel is frequency selective.

Frequency dispersion

Frequency dispersion describes the time varying nature of the channel caused by the
relative motion between the mobile and the base stations or by the movement of objects
in the channel. Frequency dispersion is characterized by Doppler spread. fp, and
coherence time, T..

Doppler spread is a measure of the spectral broadening and it is the range of frequencies
over which the received Doppler spectrum is essentially non zero. Coherence time is a
statistical measure of the time duration over which the channel impulse response is
essentially invariant.

[f the coherence time is less than the symbol period of the transmitted signal, the channel
is a fast fading channel. The impulse response of such channel changes rapidly within the

symbol duration leading to signal distortion.
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[n a slow fading channel, the channel impulse response changes at a rate much slower
than the transmitted base-band signal. It means that the Doppler spread of the channel is

much less than the bandwidth of the base-band signal.

1.3 Channel

Work is tested by assuming the presentation of AWGN and/or fading. To do so. the bit
error rate (BER) will be calculated against SVR. As mentioned earlier, the AWGN will be
modeled as a filtered AWGN with variance & =Ny2. For fading channel, it is known that
the envelope of the sum of two quadrature Gaussian noise signals obeys a Rayleigh
distribution [3]. So. the fade will be modeled as a Rayleigh fading. This model is widely
used and it is a realistic one. Rayleigh fading model gives all the characteristics of a
narrow band channel leading to the conclusion that the channel under consideration is a
flat fading channel. This flat fading channel is simulated for different fade rate, where the
fade rate is nothing but the normalized Doppler spread, f/pT where T is the symbol
duration. The fade rate will indicate how fast the channel fade is. Unless otherwise
mentioned, two values of fade rate will be considered. Those are 0.1 and 0.001. Fading
channel simulation is done using Jake’s method at a mobile speed of 96 Km/hr and
carrier frequency of 900 MHz. This method was tested against theoretical statistics,
which are the probability density function and the autocorrelation function. Good

agreement was found with theory [4].



1.4 Mitigation Techniques

To militate against such noise and fading introduced by the channel, there are many
ways. Those include diversity, equalization, and channel coding. Equalization is applied
when the channel introduces ISI, which is not considered here. Channel coding, which is
considered in this thesis, incorporates extra information (redundancy) into the transmitted
data. which can then be used to detect and/or correct errors. Diversity techniques are
based on the concept of supplying the receiver with several replicas of the same
information signal transmitted over independently fading channels. So, the probability
that all signal components will fade simultaneously is reduced considerably. Diversity
can be regarded as brute force use of redundancy. in which each symbol is repeated L
times. From a coding vision, diversity involves the use of a simple repetition code of rate
I/L. Selection of a code will lead to a more efficient system, while maintaining the
benefits of the diversity concept. It has been proven that an error correcting code can
provide an effective order of diversity equal to its minimum distance [5].

This work concentrates on channel coding with/without interleaver. Channel coding
fulfils our need regarding the types of thermal noise and fading channel that were
modeled. Next, brief introduction about error control coding and interleaver will be

presented.

1.5 Error Control Coding

A major concern in data communication systems is how to control transmission errors

caused the channel noise and/or fading so that reliable data can be delivered to the user.
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Different data communication systems attempt to make use of coding differently in order
to enhance their performance, based on one or more performance criteria. Basically, there
are two fundamental techniques for error control, which are automatic repeat request
(ARQ) and the forward error control (FEC) [1]. The former employs pure error detection
in which an acknowledgement type of protocol is used with requests for repetitions of
unaccepted messages and the latter employs pure error correction. FEC is considered.

FEC could be block codes or convolutional codes. Two or more codes can be combined
to produce a more powerful error control code called layered code. Layering [6] can be
done in parallel or serially. Parallel layering is done for convolutional codes to form what
is called turbo codes. However, serial layering is found in block codes.

There are two kinds of serially layered block codes. which are product codes and
concatenated codes [7)]. The goal is to form long powerful codes, without the complexity
of the associated decoding, by employing shorter component codes. Concatenated codes
are serially layered codes in which a code followed by another. They use two levels of
coding, an inner code and an outer code, to achieve the desired error performance. The
inner code is usually to correct most of the channel errors and the outer code, higher rate
code. reduces the probability of error to the specified level. Usually, there is an
interleaver between the two coding steps to spread any error bursts that may appear at the
output of the inner coding operation. Product codes, which will be discussed on the next
chapter, are serially layered codes [8] but layering is done of one code on top of the other
one. The primary difference in concatenated codes is that the two component codes are

defined over different field sizes [6]. Here, block codes are considered.



1.5.1 Block Codes

The input to the encoder is assumed to be a sequence of bits occurring at a rate of R
bits/s. In block encoding, blocks of & information bits are encoded into blocks of n bits
(n>k). Each block of n bits from the encoder constitutes a codeword contained in a set of
M = 2% possible codewords. The code rate, defined as the ratio /7 and denoted by R isa
measure of the amount of redundancy introduced by the encoder.

The binary digits from the encoder are fed into a modulator, which maps each bit into an
elementary signal waveform. Binary phase shift keyving (BPSK) is considered in this
work. The channel corrupts the transmitted signal by AWGN and/or Rayleigh fading. The
resulting received signal is processed first by the demodulator and then by the decoder.
Remember that. €, the channel bit error probability is related to E/Ny, bit energy per
noise spectral density, for BPSK by the following

s-of 2L 0

0

where Qrx) is the complementary error function [1].

The demodulator is a matched filter to the signal waveform corresponding to each
transmitted signal [1]. The demodulator can be used to make firm decisions onto whether
each decoded bit is a 0 or a 1, for two quantization levels. In this case the demodulator
makes a hard decision on each bit. The detected bits from the demodulator are fed into
the decoder to recover the information sequence. Since the decoder operates on the hard
decisions made by the demodulator, the decoding process is termed hard decision

decoding. However, the unquantized output, or more than two levels of quantization,
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from the demodulator can be fed to the decoder. The decoder now uses the additional
information contained in the unquantized samples to recover the information sequence
with a higher reliability than that achieved with hard decisions. The resulting decoding
process is termed soft decision decoding. This work employs the class of Hamming
codes. So. some little details about this class will be discussed.

1.5.2 Hamming Codes

A binary Hamming code is an [n=2" -1, k=2" =1-m, dp,s=3] code for m>2. The columns
of the parity check matrix H consists of all non-zero binary vectors of length m (m -
tuple). As the minimum distance of these codes is three, they are single error correcting
codes. Furthermore. they are perfect codes meaning that the number of correctable error
patterns equals the number of distinct syndromes. Weight distribution of Hamming codes
is known. Hamming codes are easily encoded and decoded. They can be made cyclic
which are even simpler to encode and decode. In this work, the (7. 4. 3) and (15, 11, 3)
Hamming codes will be used in a layered manner.

Coding theory has been based on the assumption that each symbol is affected
independently by noise so that the probability of an error pattern depends only on the
number of errors. This referred to as random errors. Codes are designed to correct any
pattern of ¢ errors or less in a block of » symbols. If more than ¢ errors occur, the received
codeword will be incorrectly decoded. For a random Binary Symmetric Channel, BSC, of
crossover probability & where an (n, k, dmn) code is used, the probability of a received

codeword to be in error is as follows

Prock = 2, (7)5i(1 —e)” (1.3)
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This is the probability [2] that a decoded codeword is wrong. This does not mean that
each bit in this codeword is erroneous. A decoded codeword is wrong whenever at least
one bit is wrong. Since some bits of the wrongly decoded codeword may still be correct,
a useful quantity to calculate is the BER after decoding, which is used in this work.

1.5.3 Interleaving

Time diversity of channel codes in digital communication system can be improved by
incorporating interleaving, without adding any overhead information. However, the
system will incur interleaver and deinterleaver delay. Interleaving is an effective way to
combat error bursts occurring on fading channels. It helps to randomize error burst and
hence good codes that are designed for independent error channels can be utilized for
burst error channels. Several types of interleavers have been proposed in the literature
[3](9]{10]. Convolutional, diagonal, inter block, and block interleavers are in existence.
The block interleaver and diagonal interleaver are considered in this work. The
interleaver is modeled as a buffer of J rows, referred to as the depth and K columns called
the span. The channel symbols are written into the array row-wise and readout into the
channel column-wise or the opposite. The size of the interleaver is JK. At the receiver,
the deinterleaver performs the reverse operation. It has been shown [4] that near ideal
interleaver performance is obtained if J and K are chosen as follows, where A is the

allowable delay.

(1.4)

K==—= (L.5)



CHAPTER 2

PRODUCT CODES

2.1 General Overview

As mentioned in chapter 1. redundant symbols must be introduced for error detection
and/or correction. To have error free symbols, the redundant symbols must be long,
ideally infinite, meaning that the rate of the code must be very small, ideally zero.
However, Shannon showed that if the rate of the source code is less than channel
capacity, then it is possible to have codes such that the probability of erroneous decoding
is arbitrarily small [2]. This is the channel-coding theorem, which is an existence proof of
such codes, but it does not tell us how to construct such good codes.

Coding (for error-correction or detection) has been well accepted as a powerful technique
for digital communication systems design over fading and non-fading channels. It is

known from information theory that the performance of a code is proportional to its block
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length, for block codes, or to its constraint length, for convolutional codes. However,
increasing the code length results in an increased complexity at the decoder. Researchers
have been trying to introduce long codes but yet posses enough structure to be decoded
easily. Today, concatenated coding schemes are considered one of the best solutions for
powerful protection against errors [7]. The motivation for using concatenated coding
schemes is to achieve the same performance as that of a single and powerful error
correcting code with lower decoding complexity by associating two (or more) less
powerful error correcting codes for data coding. Practically, the number of codes in a
concatenated code is limited to two codes. One of the most successful proposals is the
introduction of product codes by Elias [7].

The introduction of product codes attracted many researchers resulting in an explosive
amount of literature. This is because product codes deal with the concept of constructing
long powerful codes without increasing the complexity of the associated decoding, by
employing shorter component codes [11]. Also, product codes are effective in dealing
with both random and burst errors. However, the correction capability of the product

codes most of the time cannot be reached without complex decoding designs [11].

This chapter starts with introducing product codes. Both the encoder and the decoder are
reviewed. An up-to-date literature survey is then presented on decoding algorithms for
random and burst errors. The chapter ends with stating the thesis contribution and

highlighting the thesis organization.
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2.2 Product Codes

2.2.1 Introduction

Product codes, a kind of series concatenated coding schemes [7][8], were introduced as
early as 1954 by Elias [12]. They were the first family of codes shown to asymptotically
achieve error free performance with a nonzero code rate [12]. Product codes were not
given much attention for a long time because they did not yield good performance. The
deceiving performance of product codes was mainly due to the use of sub-optimal hard
decoders for decoding the rows and the columns of the matrix. The authors in [8]
proposed a near optimum iterative algorithm for soft decision decoding of product codes.
It has been shown that for BCH product codes, a BER of 10" can be achieved with a
signal to noise ratio of 2.5+0.2 dB of Shannon’s theoretical limits [8]. So. series-
concatenated (product) and parallel-concatenated (turbo) coding schemes are now
comparable in terms of performance. The dominating factor in the choice of one solution

among these different candidates is the complexity of the decoders.

In the following sections the structure of both the encoder and the decoder are explained.
The error-and-erasure, near optimum performance, and cascaded Hamming codes are

briefed. Some other decoding designs are also highlighted.

2.2.2 Product Encoder

Errors occur independently at random and/or in bursts. So, the objective is to design
codes capable of correcting those two types of errors. Interleaving is often implemented
to handle burst errors. Actually, product codes are nothing but interleaved block codes

because codewords are written into arrays row-wise and read out column-wise. Generally
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speaking the rows of the array are generated from one code, ¢;, and the columns are
generated from another code, c:. In effect, a product code combines two codes ¢; (n,, &,
dy) and c; (ny, ki dy) where n, is the total length of the code, 4, is the length of the
information bits and d, is the minimum distance of the code. The resultant code is the
product code ¢ (nn;, kiks, did>). Figure 2.1 shows the structure of the product code. To
encode the product code using two codes ¢; (n;, k. d;) and c¢> (ns, k3, d>), arrange the
information bits in an array of kaxk;. Then, encode each of the k> rows using code c¢;.
Next. encode each of the n; resultant columns using code c¢>. The resultant code is a
product code ¢ (n;n,, kik;, did>). Alternatively, the same product code ¢ can be obtained
by first encoding all the &, columns using code c¢;, and then the resultant n, rows are

encoded using code ¢; {1 1][13][14].

2.2.3 Product Decoder

Most of the research on product codes concentrates on decoding. Since product codes are
generated from simple codes, they, in general, have low complexity decoding algorithms.
However, as researchers are seeking better performance, the complexity of decoding
increases.

Decoding of product codes can be done for random errors, burst errors, or both. It can as
well be applied to erasures. Other new trends in decoding have been proposed. In the
following subsections, we provide a literature survey of decoding techniques and
algorithms. Before that we review the error correcting capability of product codes for

random errors only, burst errors only, and mixed random & burst errors.
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Figure 2.1 : Product Code Array
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2.3 Error Correcting Capability

Errors can happen randomly, in bursts, and/or random & burst. This depends on the kind
of channel under consideration. The correcting capability of the product codes for such
errors are different.

2.3.1 Random Errors

The minimum distance of the product code is (dmn=d;d>) [11]. This can be seen as
follows [14], d; is the minimum distance of code c¢;, and 4> is the minimum distance of
code c>. Then, a code word in the product code must have at least d; nonzero elements in
cach row and at least d> nonzero elements in each nonzero column. Thus. the minimum
distance of the product code is exactly dd>. Therefore, at least one such code word exists.
So. the random error correction capability, ¢, of the product code is I_(d,dg—l)/2_] or fewer
random errors.

2.3.2 Burst Errors

Product codes are also effective in fading channels, which result in burst errors. If b; and
b- are the burst error correcting capabilities of code ¢; and code ¢, respectively, then it
can be shown that the burst error correction capability, b, of the product code is at least
max (n;b3, nab)) if burst errors are only considered [13]. This can be shown as follows
[13][14]. Assume a code array is transmitted row-by-row and then rearranged back at the
receiver into an array row-by-row. Any existing error burst of length n;b; or less will
affect no more than b-+1 consecutive rows. So, at the receiver, each column is at most
affected by a burst of length 5,. Now, decoding the received code array on the basis of a

column-by column will correct that length of burst errors. Therefor, the burst error
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correction capability of the product code is at least n;b,. On the other hand, assume a
code array is transmitted on a column-by-column basis and decoded on a row-by-row
basis. It can be shown that any error burst of length n,b; or less can be corrected.
Therefor, the burst error correction capability of the product code is at least nsb,.
Consequently, one may conclude that the burst error correction capability, 4, of the
product code is at least max (1,4, n2b;) if burst errors are only considered.

Here. it is important to emphasize that the burst error correction capability, b, of the
product code is at least max (n;b>, n-b,) if the decoding is done on the basis of column-
by-column or row-by-row. If the decoding is done on the basis of column-by-row or row-
by-column. then the burst error correction capability, b, of the product code is at least
max (n;b2+b, n:b+by), although this capability is only claimed for cyclic product code.

2.3.3 Random and Burst Errors

Product codes could be used for simultaneous random error correction and burst error
correction [15][16]. It does not mean that one array can contain a full complement of
both burst and random errors, however, it means that there can never be confusion
between burst errors and random errors if both fall within the error correction capability
of the product code. This can be shown as follows. Assume that d; is the minimum
distance of code ¢, correcting r; random errors and d- is the minimum distance of code ¢
correcting ¢; random errors, then we have shown that the random error correction
capability, ¢, of the product code is L.(d;d—1)/2] or fewer random errors. Simultaneously,
the burst error correction capability, b, of the product code is at least max (n,¢2, nat;) or
shorter burst errors. Now, if n,t; is greater than or equals nyt; then b will be n,¢,. Consider

an error burst of b= n;t; or less. When this error burst is arranged in an array of n; rows
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by n; columns, then each column contains at most ¢, errors. If this burst and some random
error pattern of ¢ or fewer errors are in the same co-set (codewords corrupted with the
same error pattern) of the product code then the sum of these two error patterns is a code
array in the product code. As a result, each column of the sum array must either have no
nonzero components or have at least 4> nonzero components. Each nonzero column of the
sum array of the product code must be composed of at least (d>-;) errors from the
random error pattern and at most 7, errors from the burst error pattern. Since there are at

most ¢ random errors, these errors can be distributed among at most l_f/(dg-tg)J columns.

This leads to conclude that the sum array must contain at most LI/(dg-!g)_l*fg+[ nonzero

components. However,
Ll/(dg-!g) J* trtt < *[{t/(d-t2)}+1] < 2t < did;

So. the sum array contains fewer than d,d> nonzero components and hence it is not a code
array in the product code. This contradiction implies that those two types of errors can
not be in the same co-set of a standard array. They can be both the co-set leaders
(different error patterns leading every co-set in the standard array) and hence be
corrected. The same arguments can be applied to rows instead of columns of the sum
array. So, the burst error correction capability, b, of the product code is at least max (n,¢2,

nzt;) and the simultaneous random error correction capability of the product code is ¢.

2.4 Error Correcting Algorithms

Most of the existing decoding algorithms are built around error correcting. Product codes

are effective in correcting random errors as well as burst errors.
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However, the existing decoding schemes of product codes cannot achieve the correction
capability, ¢. without complex decoding. This is because error correction of product codes
depends on the distribution of the errors in the codeword array [11]. Actually, it is not
easy to characterize correctable error patterns because they depend on how the correction
is done. The normal dimension by dimension (row-column or vise versa) decoding is not

effective.

Researchers were trying to solve this problem of poor performance. Double decoding, i.e.
performing row-column decoding twice may improve the correction capability but it will
increase delay [13]. We review some decoding algorithms to see how researchers tackle

the decoding of product codes or how they look at different aspects of product codes.
2.4.1 Cascaded Hamming Codes

Kousa analyzed a multi-dimensional coding scheme based on Hamming codes and
introduced the use of the Hamming codes in a cascaded fashion, called cascaded
Hamming codes [5]. The two-dimensional scheme is the popular product code. He started
with » information bits. These bits are the zeroth level of cascading since they are yet
uncoded for error correction. These bits can go to one or more stages of encoding
(cascading). For a particular (N, K) Hamming code, the n bits are divided into groups of
K bits. Each set of K bits is then mapped into N bits by means of an (V, K) Hamming
encoder. The total number of bits at this stage is (#/K) N. This stage is referred to as the
first level of cascading. The second level of cascading is formed by sorting the (W/K)N
available bits into groups of K bits again. These bits should constitute (#/K°) N such

groups. Each group is again encoded into M bits by the same encoder. At the end of this
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stage, there should be (n/K%) N? = n(N/K) bits. Continuing this process, any level of
cascading can be reached. The author formulated a recursive equation that finds the bit
error rate of any intended level in terms of the bit error rate of the previous level. For an

(.V. K) Hamming code it was shown that

' = Y[+ D(Y)- 4, ~ 24 (N - i+ D (- ) @.1)

A(V ’:0

where ., is the number of code words of weight i, ¢ is the bit error rate of level one. and
€ is the bit error rate of level zero (channel bit error rate). The bit error probability for
higher dimensions can be found recursively in the same manner. The above relation was
derived under the assumption of random errors. Therefor, it assumes that the bits are well
interleaved before each level of encoding. This is to ensure that the bit errors in each
block are statically independent. The author did suitable interleaving for a particular (V,
K) Hamming code and up to three levels of cascading have been shown. For two levels of

cascading, the resulting code is nothing but a product code as mentioned before.
2.4.2 Ordered Decoding

Chacehag etal used a diagonal interleaver, Figure 2.2, to randomize errors and an ordered
decoding scheme for decoding [10]. A good performance was claimed at the expense of
the huge amount of computation. Specifically, the authors provided a decoding algorithm
for product codes over mobile data communication. They used Reed Solomon (RS) codes
for both the rows and the columns of the product code. To reduce the effect of burst
errors, a diagonal interleaver is used for the product code. The interleaver rearranges the

bits of a codeword to reduce the errors in a row codeword and in a column codeword.
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Figure 2.2 : Diagonal Interleaver of the (49,16) Product Code
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The interleaver outputs the bits to the diagonal direction. For decoding, an ordered
decoding scheme is used. The ordered decoding calculates probabilities of correct
decoding for each row and column. The most reliable row or column codeword is
decoded first to reduce the probability of decoding error, and then the second most
reliable row or column codeword is decoded, and so on. They showed that their scheme
has a 5.5dB gain over ordinary decoding. However. the required computation for their
ordered decoding scheme is very large, and it is required once per product codeword. One
important factor to mention is that their performance measure was not the normal BER

but the bit failure rate.
2.4.3 Product Codes and Interleaved Block Codes

Dongteng and Lijun compared product codes with interleaved block codes over mobile
channel [16]. They applied nine kinds of product codes where the component codes are
BCH codes. For every kind of product code, they chose an interleaved BCH code having
the same elapsed time (delay). They concluded that product codes can improve the BER
of mobile communication channels by one order of magnitude better than interleaved
BCH codes in general with the same delay using modulation schemes such as FSK.

DPSK, and 8-ary PSK.
2.4.4 Near Optimum Decoding

Pyndiah etal applied a new algorithm that is very effective in dealing with random error
and burst error (7] [8][17]. The authors showed how powerful a product code could be. It
is claimed that a near optimum performance was obtained [17][8]. However, as

mentioned earlier, decoding complexity was increased drastically. They used an iterative
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decoding algorithm for product codes similar to the concept of convolutional turbo code,
called product turbo codes. It is based on soft-input soft-output decoders for decoding the
component codes so that near optimum performance is obtained at each iteration. This
soft-input soft-output decoder is a Chase decoder, which delivers soft outputs instead of
binary decision. Channel state information (CSI) and a posteriori probability for decoded
symbols are needed in the algorithm. The concept of ranked decoding is proposed for
maximum likelihood sequence estimation (MLSE) in which the decoding process starts
with the most reliable symbol and works toward the least reliable one. Error performance
is evaluated in a Gaussian channel. For a Rayleigh fading channel, the error performance
was evaluated for maximum likelihood demodulation of M-ary orthogonal signal. Then,
they tried to reduce the complexity of the turbo product code and offered a very low
complexity product turbo codes [7]. The complexity of the new one is about one tenth of
that of the near optimum one for a degradation coding gain of only 0.7 dB. So. the
reduced complexity of the near optimum turbo product code offers a good compromise
between complexity and performance. Also, the complexity does not depend on the
number of iterations done because the same decoder can be used for several iterations.
This results in reduction in time which make this algorithm advantageous over
convolutional turbo codes, which exhibit delay. However, they did not provide any clear

theoretical justification for its good behavior.
2.4.5 Decoding of n-Dimensional Product Codes

One good such research is given in [12]. It is stated that decoding product codes on row-
column basis is successful but this is at the expense of increased complexity and delay.

They applied single parity check codes and Hamming codes for the component codes.



25

They tested the performance for two and more dimension levels. As the dimension
increases, the performance improves. They applied hard decision and soft decision
decoding and found that much better performance can be obtained from soft decision
decoding. For the soft decision decoding two techniques were compared, maximum a
posteriori probability (MAP) decoding and the log-likelihood domain. The former is
better than the latter. In the former, more than one cycle (iteration) is applied, but as the
number of cycles increases, the probabilities of the received symbols become correlated.
So. the performance improves toward a limit with each iteration and it is better for higher
dimensional product codes than lower ones because high dimensional product codes have
less correlation between the decoding cycles. The latter has an advantage of determining
the code-word probabilities from the a priori probabilities of the information bits meaning
that the bits of check on check need not to be transmitted resuiting in increasing the rate
of the code. However, the minimum distance now is less than before. If those bits are
kept. the performance of the latter is better. Those two soft decoding techniques are

difficult to be used and time consuming.
2.4.6 Randomly Interleaved SPC Product Codes

Rankin and Gulliver proposed a scheme to reduce the number of low weight codewords
and hence improve the performance of the product codes [18]. The authors considered
single parity check (SPC) product codes, which are randomly, interleaved (RI)between
the encoding of each dimension. For encoding, simply, after each parity check equation is
encoded in a single dimension, the data are interleaved before the next dimension is
encoded. For decoding, the RI SPC product code must be decoded in the reverse order of

the encoding process. The component decoders are maximum a priori (MAP) decoders in
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the log likelihood domain, hence the bit error probability in the component code is
minimized. Simulation was done for two to five dimensional RI SPC product codes. The
performance was exceptional especially as the size of the component code increases
and/or the number of dimensions increases. For four-dimensional (20, 19) RI SPC, the
code is only 0.63 dB away from the channel capacity at BER of 0°. The only
disadvantage is the exponential increase in the block length as the number of dimensions

increases and as the size of the component code increases.
2.4.7 A Multidimensional Block Coding Scheme with [terative Decoding

Sweeny etal proposed an iterative decoding algorithm that uses Dorsch algorithm instead
of the Chase algorithm that was used by Pyndiah [19]. The Chase algorithm produces
alternative solutions to the soft inputs by testing various numbers of patterns. However,
because an algebraic decoder has to be invoked for each error pattern, the number of
decoding tries is kept relatively small and it is applied only to codes for which an
algebraic decoder is available. The main advantage of the Dorsch algorithm over the
Chase algorithm is its complexity. The Dorsch algorithm has to sort the received bits
once according to their reliability and then only needs to re-encode the most reliable bits.
Also, each new re-encoding does yield a new codeword while the Chase algorithm may
fail to produce a solution. Another advantage is that the Dorsch algorithm is applicable to
any binary code whereas the Chase algorithm can only be applied to codes for which an
algebraic decoder is available. The authors also implemented the Dorsch algorithm to
non-binary codes. The Dorsch algorithm showed an improved performance over the
standard Chase algorithm. Also, the authors compared their scheme with that of Pyndiah

in the case of the product code formed using (15, 12, 4) extended Reed-Solomon code
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with a total of 4 iterations. They increased the number of decoding tries to 100 and
achieved a BER of 107 at lower SNR of 2.5-2.6 dB with only a marginally increased

complexity of their scheme.
2.4.8 Soft Decision Decoding

There is also soft decision decoding. Some of the previously mentioned algorithms used a

kind of soft decision decoding.

Let £ denote the transmitted signal energy per codeword, E. denote the transmitted signal
energy per bit in the codeword, and Ej denote the transmitted energy per information bit.
Since there are » bits in a codeword, £ = n E,, and since each codeword conveys k bits of
information, the energy per information bit is £, - E/ k=n E. / k= E./ R.. The

codewords are assumed to be equally likely a priori with prior probability 1/M, where

In soft decision decoding [2], the optimum receiver can be realized as a parallel bank of
M filters matched to the M possible transmitted signals. The outputs of the M matched
filters which encompasses the transmission of » bits in the codeword are compared and
the codeword corresponding to the largest matched filter output is selected. The receiver
implementation can be simplified. So, an equivalent optimum receiver can be realized by
the use of a single filter matched to the BPSK waveform used to transmit each bit in the
codeword followed by a decoder which forms the M decision variables corresponding to
the M codewords. To be specific, let y,, j = 1, 2... n, represents the n sampled outputs of
the matched filter for any particular codeword. Since the signaling is BPSK, the output y,

may be expressed either as



y,==2E +v, (2.2)
when the jth bit of a codeword is a | or as

y,=2E +v, (2.3)
when the jith bit of a codeword is a 0. The variable v, represents AWGN with zero mean

and 2E.N, variance. From knowledge of the M possible transmitted codewords and upon

reception of the y,, the optimum decoder forms the M decision variables
U= ¢, -y, i=12..M (2.4)
=l

where ¢, denotes the bit in the jth position of the ith codeword. Thus. if ¢, = 1. the
weighting factor 2¢, — | =1, and if ¢, = 0, the weighting factor 2¢, — 1= -1. In this
manner. the weighting (2¢, — 1) aligns the signal components in yy such that the decision
variable corresponding to the actual transmitted codeword will have a mean value 2nE,
while the other M — | decision variables will have smaller mean values.

Although the above computation for optimum soft decision decoding is relatively simple,
it may still be impractical to compute for all possible codewords when the number of
codewords is large, e.g., M > 2'° In such cases, sub-optimum soft decision decoding may
be used and they are available in the literature. This is out of the scope of this work.

2.4.9 Erasure Decoding

Erasure decoding is a special kind of soft decision decoding. The simplest form of soft
decision decoder uses erasure to indicate the reception of a signal whose corresponding
symbol value is in doubt. Such a channel has an input alphabet of size Q and an output
alphabet of O+1. The extra symbol is called an erasure flag, or simply an erasure.

Decoding using error correction decoder for rows and an error-erasure correction decoder
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for columns or vice versa is effective in dealing with random errors and helps

significantly in fading and bursty channels [14].

The matter now lies on finding the coordinates for erasing. Assuming the order of

transmission is along the rows, the decoding method relies on having an error correcting

decoder for the rows and an error-and-erasure correcting decoder for the columns.

L
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Decode the rows. For any row that cannot be decoded (all rows can be decoded for
perfect codes), erase it. For any row / in which corrections are made, record w,, the

number of corrections.

[f an odd number of rows have been erased, erase one more row, choosing the one

for which @, is largest.

Calculate the error correction capability of the product code as [(d; (dr—e)-1)/2]

where ¢ is the number of rows erased.

Decode one column. If decoding succeeds, count d,- @; for every position in which
the value is corrected and w, for every (unerased) position in which no correction
occurs. If this count is less than or equal to the error correction capability of the code,
then the column is correctly decoded. Otherwise, or if the original decoding failed,
erase two more rows (with largest ), recalculate the error correction capability, and

repeat.

After each successful column decoding, move on to the next column. Rows

previously erased remain erased.
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There are other erasure techniques for non-binary symbols like Berlekamp-Massey
algorithm and Euclid algorithm [15][20]. The algorithms for non-binary symbols are so

complicated and Galois Field (GF) arithmetic must be invoked there.
2.4.10 Other Researches

There are also many other techniques in the field of product codes. Henkel and Chung
introduced a filling procedure for the array of product codes that will reduce delay [9].
Rajpal and Lin discussed product-coded modulation in which good modulation codes can

be constructed for the AWGN and Rayleigh fading channel [21].

2.5 Thesis Contribution

Most proposed decoding algorithms achieve high correction capability at the cost of
increased complexity and delay. The objective of this work is to improve the performance
of the product codes without a significant increase in decoding complexity. Specifically,

the thesis introduces three modified algorithms.

The first modified algorithm is the medified hard decision decoding (MHDD) algorithm.
The MHDD algorithm develops a decoding algorithm for a product code that is capable
of reaching the correction capability of the code without significant increase in the
decoding complexity. The algorithm is suitable for component codes that are single error
correcting. The MHDD algorithm is extended to three dimensions. The extended MHDD
algorithm is also capable of reaching the theoretical error correction capability of the

product code in three dimensions.
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The second modified algorithm is the medified seft decision deceding (MSDD)
algorithm. The MSDD algorithm investigates the performance of soft decision decoding
for binary symbols. It proposes a simple modification for the theoretical soft decision

decoding algorithm for binary symbols to improve the performance.

The third modified algorithm is the medified erasure deceding (MED) algorithm. The
MED algorithm is to investigate erasure decoding for binary symbols. We will
investigate the erasure characterization in [11]. The MED algorithm modifies slightly the
erasure characterization in [11]. It selects symbols for erasing instead of whole rows.
Conceptually, some improvement in decoding could be achieved without significantly

increasing the complexity of decoding.

The above mentioned modified algorithms will be applied to the well-known Hamming
codes. The modified algorithms will be evaluated in terms of their correction capability,
bit error rate performance, and complexity. They will be tested over AWGN and/or
Rayleigh fading channels. They will be compared with relevant algorithms reported in

the literature.

2.5.1 Thesis Organization

The next chapter, Chapter 3, introduces the hard decision decoding. The first modified
algorithm. the MHDD algorithm, is introduced. The algorithm flowchart is presented and
the main aspects are explained. The extension of this algorithm to three dimensions is

presented.
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In Chapter 4, the soft decision decoding and erasure decoding are explained. The MSDD
and the MED algorithms are presented. The algorithms flowchart are presented and
explained.
In both chapters, the modified algorithms will be compared with relevant equations,
algorithms. and approaches. and they will be tested over AWGN and/or Rayleigh fading
channels. A measure of the complexity of the modified algorithms will be provided.
The findings and conclusions of this thesis are summarized in Chapter 5. Also.

suggestions for direct extensions of this work that worth further investigations are stated.



CHAPTER 3

HARD DECISION DECODING

OF PRODUCT CODES

3.1 General Overview

As mentioned in previous chapters, in hard decision decoding, the n bits from the
demodulator corresponding to a received codeword are passed to the decoder. The
decoder compares the received codeword with the M possible transmitted codewords and
decides for the codeword that is closest in Hamming distance to the received codeword.
This minimum distance decoding rule is the optimum decoding in the sense that it results
in a minimum probability of a codeword error for the binary symmetric channel. This
method is computationally inefficient so syndrome decoding is better to use in the sense

that it is optimum and more efficient. Syndrome decoding for Hamming Codes is used.



3.2 Hard Decision Decoding of Product Codes

[t had been shown that the minimum distance, d,,, of the product code is d,d.. It follows
that the random error correction capability, ¢, of the product code is L(did1)/2] and all-
fewer random errors. This capability can not be achieved, except for the simple parity-
check component codes, without complex decoding.

So. the straightforward approach of performing row-column decoding, or vice versa. is
not effective. We refer to this approach by Ordinary Hard Decision Decoding (OHDD)
algorithm. as depicted in Figure 3.1. This approach does not recover all error patterns
promised by the minimum distance of the product code although it can recover some
higher error patterns [13]. This can be demonstrated as follows. Take the product of two
single-error-correcting codes such as the (7, 4) Hamming code. The resultant product
code has a minimum distance of 9 and hence should correct all patterns of four and less
random errors. If those four errors are arranged in a rectangular shape, as in Figure 3.2
then the simple strategy of performing row-column decoding or vice versa will make
things worse. The row correction will add an extra error into each of the infected rows
and the column correction will then do the same into each of the erroneous columns. So.,
the product code will thus be wrongly decoded.

The smallest number of errors that prohibits correct decoding in row-column decoding
can be determined [6]. Let ¢, and ¢, be the guaranteed error correcting capability of the
row and column codes, respectively. For it to be possible for an array to fail, a certain
number of row failures should occur. Row failures may happen when ¢,+1 errors occur in

any row. For the column decoding to fail, it must be true that at least t+1 row failures
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occur and, moreover, these errors are arranged in a particular shape. Thus, any error
pattern with the following number of errors, ,, or less is correctable.

te = (1) 12+1)-1 (3.1)
This is of course less than the capability of the product code, roughly half as large for
large distance codes. Take d;=d>=21 meaning d.,,==441. This product code should correct
up to 220 errors but Equation (3.1) yields that only 120 errors are guaranteed to be
corrected. Nevertheless, it should be observed that many higher error patterns are in fact
correctable.
Double decoding, as mentioned in Chapter 2 may improve the correction capability but it

will increase delay [13].

3.3 MHDD of Product Codes

Now. we are in a position to present the first modified algorithm which is the MHDD
algorithm. This algorithm makes the product code capable of reaching its theoretical
capability of correction for product codes generated from single error correcting
component codes. Theoretically, component codes having a minimum distance of three
will make the generated product code of minimum distance nine. So, such product code
should be able to correct all four or less random error patterns. The OHDD algorithm, as
discussed earlier, could not do the job. The MHDD algorithm uses Hamming codes as
component codes and assumes hard decision symbols are coming from the demodulator.
The motivation of the MHDD algorithm is to reach the theoretical capability of the

product code. The algorithm basically modifies the basic row-column decoding and tries
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to account for the most dominant errors by gathering some information. The flowchart of

the MHDD algorithm is shown in Figure 3.3.

Briefly, at the beginning, a codeword A of hard symbols is received after demodulation.

Then. the following steps are made in sequence.

1)

The received codeword, A, is decoded row-wise giving Ag. For any row
correction, the row number is indicated, Ag;, the column number is indicated.
Ag.ig). and the number of correction is counted, which is one for Hamming codes.
After finishing all rows, we will have information about the rows in which
correction was made, Ag;, the place of correction, Ag g, and the total number of
correction made, {Ag;}. If the total number of corrections made for rows, {Ag;},
is not two or three, go to step 3.

Decode the original received codeword, A, columns-wise giving Ac. For any
column correction, we will have information about the columns in which
correction was made, Ac;, the location of the corrected bit. A¢jm, and total
number of corrections made for columns, {A¢,}. If the location of the corrected
bit corresponds to a row in which a correction was done, Ac;, such scenario is
counted {Ac,}.

Decode, Ag, column-wise giving Agc. If column correction is made, the location
of the correction is indicated, Agcjp. From Agcjn, the number of corrections
happened in each row , ¥, can be found. If the total number of corrections made

for rows, {AR,}, is not two or three, go to step 5.
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4) From all the above gathered information, certain conditions should be checked for
each corrected column in Agc. If one of the conditions is satisfied, the corrected
column is replaced by the column generated from the codeword after row
decoding, Ag. and the bits corresponding to row corrections, Ag; are reversed.
Otherwise go to step 3.

3) Decoding of codeword A is thus done.

The conditions are set by doing exhaustive search. They try to give an idea about the

dominant error patterns that took place for that codeword. Actually, we analyzed the set

of actions (the above gathered data) of the decoder after row decoding and after column
decoding to find symptoms to map a certain set of actions to a certain error pattern.

To explain how did we reach to the conditions, we start by the four-error pattern that was

depicted in Figure 3.2. This error pattern and all other four error patterns can be corrected

if the following condition is satisfied. Remember that any condition is checked for every
column in Agc if a correction was done for that column.

* ({Ari} =2) & (Arci # Ar.)-

This condition means that if there were two corrections when the codeword was decoded

row-wise and a column correction made a correction outside the rows in which

corrections were done. So, reverse the two bits from the corrected column corresponding
to where row corrections were done. Although the above condition ensures that the
product code will reach its theoretical error correction capability, the BER of the product
code may not improve because the condition will affect other higher error patterns that

are correctable by the OHDD algorithm. So, let’s be more specific in choosing the
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uncorrectable four-error patterns. The four-error patterns having rectangular shapes will
be corrected by the following condition:

*  ({Ari} =2) & (Arci 2 Ari) & (Vi=3) & ({A¢;} =2).

We still have other four-error patterns that can not be corrected. Figure 3.4 shows those
four-error patterns. The four-error pattern in Figure 3.4 (a) will be corrected by the
following condition:

o ({Agi} =2) & (Agci = Ari) & (Vi=3) & ({Acj} =3) & ({Acir} = 2).

The four error-patterns in Figure 3.4 (b) and (c) will be corrected by the following
condition:

o ({Api} =2) & (Apciz Ari) & (1 Vi £2) & ({A¢} £ 4) & ({Acir 2 1)

A six-error pattern distributing in three rows each row having two errors while one of the
column has three errors, can be corrected by the following condition if columns decoding
attempts to add errors:

o ({Api} =3) & (Arci# Ari) & (Vi=1) & ({A¢;} =4) & ({Acir} = 3).

We can not proceed more since as you try to correct some error patterns others will be
affected.

To test the MHDD algorithm against the OHDD algorithm, all error patterns from 1 to 8
are generated and the two algorithms are tested. The result is in Table 3.1. We stopped at
8 error patterns since more than this will have a very small probability to occur and the
time needed to be generated is huge, about 2 days for all the nine error patterns. It is seen
from the table that the correction capability of the code, which is four, is reached by the
MHDD algorithm while it is only three using the OHDD algorithm as Equation 3.1

indicates. Furthermore, it can be observed that the number of errors remaining after
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Figure 3.4: Uncorrectable Four-Error Patterns



Number of Introduced Errors 4 5 ] 7 8
Total Number of Error Patterns 211876 1906884 13983816 85900584 450978066
Total Number of Bits 10381924 | 93437316 | 685206984 | 4209128616 | 22097925234
g |Average # of bits in error after
8 5:_ decoding per codeword 3857 3.986 4408 5223 6.526
o]
o g’ % of uncorrected patterns 4371 18.432 42.003 67.322 85.532
a E Average # of bits in error after 0 2826 4421 5195 6526
% = {decoding per codeword
Q
= % % of uncorrected patterns 0 17.576 41.826 67.318 85.515
% of Corrected Patterns by OHDD and MHDD 95.629 81.499 57.998 32,677 14,468
% of Corrected Patterns by MHDD not OHDD 4.371 0.925 0.1766 0.004107 0.0172
% of Corrected Patterns by OHDD not MHDD 0 0.0694 0 1} 0
% of Not Corrected Patterns by Both 0 17.507 41.826 67.318 85515

Table 3.1 Comparision Between OHDD and MHDD of (49, 16) Product Code
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decoding is in average equals the number of errors before decoding and sometimes they
are less. Also, other information can be extracted from the table regarding the number of
correct arrays (blocks). number of errors, and the number of error patterns corrected by
one algorithm and the other could not. The information from the table indicates that the
MHDD algorithm outperforms the ordinary algorithm.

To further test the algorithms, they are tested over AWGN and fading channels. Figure
3.5 shows the performance of the two algorithms over AWGN channel. It is noticed that
the MHDD algorithm has about one-half dB gain over the OHDD algorithm.

For fading channel, Figure 3.6 and Figure 3.7 show that the two algorithms are
comparable for the same fade rate. However, low fade rate gives bad performance. This
is because if the magnitude of the fade rate is small, it means slowly fading channel. This
means that the channel represents high correlation among the generated fade amplitudes.
So, the system with less correlation (fast fading or bigger fade rate) performs better than
the one with higher correlation. Also, the MHDD algorithm is better than the OHDD
algorithm as the fade rate increases. It can be seen from Figure 3.6 that for 0.1 fade rate.
the gain is about 0.5 dB. The difference between the two algorithms is not notable as the
fade rate decreases. Also, as the dimension of the product code increases, the
performance improves especially at lower fade rate. This is because at low fade rate the
number of burst errors is high. So, the errors are more randomized in a higher

dimensional product code.
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3.4 Extension to Three Dimensions

Now. let's extend the MHDD algorithm to a three-dimensional product code. We saw

earlier that the MHDD algorithm does reach the theoretical capability of error correction,

which is four for the Hamming product code. By the same concept, the extension to three

dimensions will be done by investigating the most dominant error patterns.

First. we would like to characterize the errors from zero to three by noting what will

happen to these errors after row decoding and then column decoding to the row-decoded

codeword. We will have the following cases:

L.

{I.

lI.

V.

Case 1: No errors; In this case no row or column corrections will take place.

Case 2: One error; In this case a single row correction takes place.

Case 3: Two errors; The errors in this case could be in two different rows or in the

same row. For the former, we will have two row corrections and no column

corrections. For the latter, we will have one row correction and three column

corrections where all column corrections are in the same row in which correction

was done.

Case 4: Three errors; we will have one of the following three cases.

a) If the errors are all in different rows, we will have three row corrections and
no column corrections.

b) If the errors are all in one row, we will have two scenarios. If the three errors
do not correspond to a valid codeword, we will have one row correction and

four column corrections where all column corrections are in the same row in
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which correction was done. [f the three errors correspond to a valid codeword,
we will have no row corrections and three column corrections.
¢) If the errors are distributed into two rows, we will have two row corrections
and three column corrections where all column corrections are in one of the
two corrected rows.
All errors of four and five will have ditferent cases than those mentioned above. So. a
plane containing four or five error-pattern will be recognized and distinguished from
other planes having less error patterns. More than five errors may or may not produce one
of the cases above.
Now. the extension to three dimensions is as follows. A codeword A4 of hard symbols is
received after demodulation.
1) Decode a plane consisting of rows and columns using the MHDD algorithm.
2) If one of the above cases happened. the case number is indicated for this plane.
Otherwise, a flag is set to one for this plane.
3) Repeat steps land 2 for all planes. After finishing step three, every plane is either
corresponding to one of the cases or it has a flag set to one.
4) Find the two planes, if any, in which the bits may be reversed with the following
conditions.
a) Condition 1: If the total number of tlags that are set to one is two, the bits to
be reversed are corresponding to the planes where the flags are set to one.
b) Condition 2: If the total number of flags that are set to one is one and only one
highest case can be decided, the bits to be reversed are corresponding to where

the flag is set to one and where the highest case is in.
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c¢) Condition 3: If no flags are set to one and we have only two cases, those two

cases should be either two cases of 4 or case 4 and case 3. The bits to be
reversed are corresponding to where the two cases are in.

d) Condition 4: If no flags are set to one and we have three cases, those three
cases should be two of case 4 and one of case |. The bits to be reversed are
corresponding to where the two highest cases are in.

5) Decode one vector from the third dimension.

a) Ifno correction takes place, the decoding of that vector is finished.

b) Ifa correction took place. check the above conditions.

e Ifnone of the conditions are satisfied, decoding that vector is finished.

e If a condition is satisfied, check the location of the error. If the error location
corresponds to one of the chosen planes in which the bits will be reversed.
accept the decoding of that vector. Otherwise, the error location does not
correspond to any of the chosen planes in which the bits will be reversed, do
not accept the decoding of that vector. Instead, reverse the bits in the chosen
planes.

6) Repeat step5 for all vectors in the third dimension.

The above algorithm will be called the extended MHDD algorithm and its flowchart is
shown in Figure 3.8. It is guaranteed to reach the theoretical error correcting capability of
the three dimensional product codes of 13 while the extended OHDD algorithm can

correct up to 7 errors only.



——— i A S
Charcterize the error patterns from zero to three
O S, A J— e

Receive an array A of n,rows, n, columns,
andnydepth

- Y o - U I
Decode a plane of rows and columns using the MHDD algorithm
No . fﬁoes the plane correspond to a casg'?rt‘ff: L. Yes
» The flag is set to one to this plane -————The case number is set to this plane
- [ A,
Decode all planes the same way mentioned above
X
Check the conditions to determine which two planes to choose if any
e e A J e
Decode a vector from the third dimension
A/' -
__No . K carrection happened outside ~ -
" ~___ thechosenplanes -
7 Yes
— 2 S
Reverse the bits from the vector corresponding to the chosen planes
—»
P \ 4

Decode all vectors the same way mentioned above

/—%
Stop

Figure 3.8 : The Extended MHDD Algorithm



52

To prove that the extended MHDD algorithm reaches the theoretical limit of 13, we will

examine 13-error patterns. Since the MHDD algorithm can correct up to 4 errors, it is

guaranteed that the extended MHDD algorithm can correct all error patterns from 1 to 9.

This can be proven by simply invoking Equation 3.1, where ¢, equals 4 and ¢, equals 1.

We are left with the errors from 10 to 13. Remember that the correction of a plane may

fail if a plane has five or more errors. We will consider the distribution of the error

patterns into two to five planes only. If all the errors are in one plane. the third dimension

will correct any errors left after planes corrections.

I. Ten errors in two planes:

a)

Five and five: We will have two flags set to one, condition 1. If the decoding of a
vector from the third dimension attempts to correct an error outside the two
planes, do not accept the vector decoding but reverse the bits corresponding to the
two planes. However, if the decoding of the vector from the third dimension
attempts to correct an error inside one of the two planes, accept the vector
decoding.

Four and six: The plane containing four will indicate a flag and the one with six
may indicate a flag, making a total of two flags, condition I. If the plane
containing the six errors does not indicate a flag, still it will be chosen as a case,
condition 2. The decoding of a vector from the third dimension always attempts to
correct an error inside the plane containing the six errors.

Three and seven, two and eight, cne and nine: The plane containing the lower
number of errors will indicate a case definitely. Irrespective of the plane with

higher number of errors, the decoding of a vector from the third dimension always
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attempts to correct an error inside the plane containing the higher number of

€ITrors.

Eleven errors in two planes:

a)

b)

Five and six, four and seven: They are like ten errors in two planes, part (b).
Three and eight. two and nine. one and ten: They are like ten errors in two planes.

part (c).

Twelve errors in two plane:

a)

b)

C)

Six and six: If the two planes containing the errors indicate flag, it is like ten
errors in two planes, part (a). [f one of them indicates a flag, it is like ten errors in
two planes, part (b). If the two planes do not indicate a flag, they will be chosen
since they are two cases of 4, condition 3. So, the decoding of a vector from the
third dimension attempts to correct an error outside the two planes, do not accept
the vector decoding but reverse the bits corresponding to the two planes.

Five and seven, four and eight: They are like ten errors in two planes. part (b).
Three and nine, two and ten. one and eleven: They are like ten errors in two

planes, part (c).

Thirteen errors in two planes:

a)

Six and seven: If the two planes containing the errors indicate fiag, it is, like, ten
errors in two planes, part (a). If one of them indicate a flag, it is like ten errors in
two planes, part (b). If the two planes do not indicate a flag, they will be chosen
since they are two cases one of case 4 and the other is case 3, condition 3. So, the

decoding of a vector from the third dimension attempts to correct an error outside
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the two planes, do not accept the vector decoding but reverse the bits
corresponding to the two planes.

b) Five and eight, four and nine: They are like ten errors in two planes, (b).
c) Three and ten, two and eleven, one and twelve: They are like ten errors in two

planes, part (c).

From the above discussion for the errors that were distributed in two planes. the

distribution of errors in three, four. and five planes will cause a problem for the third

dimension if two planes are left in error after plane corrections. This will limit our

discussion to the following distributions:

I

[§9]

(U8

Eleven errors in three planes, we will have only one situation that will produce two

planes in error after planes corrections.

a) One, five and five: It is like ten errors in two planes, part (a).

Twelve errors in three planes:

a) One, five and six: It is like ten errors in two planes, part (b).

b) Two, five and five: It is like ten errors in two planes, part (a).

Thirteen errors in three planes:

a) One, five and seven: It is like ten errors in two planes, part (b).

b) One, six and six: It is like twelve errors in two planes, part (a). However, if the
three planes do not indicate a flag, they are all cases. Those cases are exactly the
one set by condition 4. So, the highest two cases will be chosen. So, the decoding
of a vector from the third dimension attempts to correct an error outside the two
chosen planes, do not accept the vector decoding but reverse the bits

corresponding to the two chosen planes.



c) Two, five and six: It is like ten errors in two planes, part (b).
4. Twelve errors in four planes, we will have only one distribution that will produce two
planes in error after planes corrections.

a) One, one, five and five: It is like ten errors in two planes, part (a).

w

Thirteen errors in four planes:
a) One, one, five and six: It is like ten errors in two planes, part (b).
b) One, two, five and five: It is like ten errors in two planes, part (a).
6. Thirteen errors in five planes, we will have only one distribution that will produce
two planes in error after planes corrections.
a) One, one, one, five and five: It s like ten errors in two planes, part (a).
If the errors are distributed into more than five planes. they will be corrected.
To test the extension to three dimensions, the extended MHDD algorithm is compared
with the extended OHDD algorithm. Figure 3.9 shows the performance of these two
extended algorithms over AWGN channel. Figure 3.9 shows that the extended MHDD
algorithm outperforms the extended OHDD algorithm. It has about 0.5-dB gain over the

OHDD algorithm.
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3.5 Performance Criteria

The block error rate was given in Equation 1.3. That formula is applicable for r-error
correcting code in which all error patterns up to ¢ are correctable and all error patterns
more than ¢ are not correctable. Unfortunately, that equation is very underestimating
when applied to product codes. This is because any product code which can correct all
error patterns up to ¢ errors, can correct many higher error patterns. To accommodate this
situation. Equation 1.3 can be modified as follows
n ' i
Prtock = Z B, 51(1 - g)n‘l (3.2)
ist+]

where B, is the number of uncorrectable patterns of i errors and ¢ is the channel bit error
probability. The values for B, are taken from Table 3.1 for up to eight error patterns.
Higher error patterns are assumed to be uncorrectable. Consequently, the bit error
probability. Equation 3.2, can be moditied to the form:

>iB e'(1-g)” (.3)

Py = L
(N
where / means that the number of errors after decoding is, in average, equal to the number
of errors before decoding.

Figure 3.10 and Figure 3.11 compare the OHDD algorithm and the MHDD algorithm
with Equations 2.1 and 3.3 over AWGN channel. Figures 3.10 shows a perfect matching
between the simulation of the OHDD algorithm and equation 2.1. Also, Figure 3.10 and

Figure 3.11 show that Equation 3.3 is a very good approximation for the bit error rate of

the OHDD algorithm and the MHDD algorithm.
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3.6 Performance Comparison

Now. the MHDD algorithm will be compared to one more algorithm, which is the
ordered decoding algorithm introduced in Chapter 2. The effect of diagonal interleaver,
which has been introduced in Chapter [, on these algorithms will be tested.

Figure 3.12 and Figure 3.13 compare the OHDD and MHDD algorithms incorporating
diagonal interleaver with the ordered decoding method over AWGN channel. The figures
show that the diagonal interleaver has no effect over AWGN channel. Also, the ordered
decoding method performs worse than the other two algorithms over AWGN channel.
Figure 3.14 and 3.15 compare the same algorithms over fading channel with fade rate of
0.1 while Figure 3.16 and 3.17 compare them for a fade rate of 0.001. The four Figures
show that as the fade rate increases, the diagonal interleaver provides some significance.
The ordered decoding method in general works worse than other algorithms. In general,
the ordered decoding method and the diagonal interleaver are affected mutually by the
length of the product code and the fade rate of the channel. However. as the length of the
product code increases or as the fade rate increases, the performance, generally,
improves.

Next we test the effect of increasing the number of decoding iterations. Figures 3.18
shows the performance of the OHDD algorithm over AWGN channel, under one iteration
(row only) to six iterations (row then column trials). It can be observed that row-column
decoding gives a big advantage over the row only decoding. A third decoding iteration
still provides some significance, but more iteration is of no practical value and is merely a

waste of time.
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CHAPTER 4

SOFT DECISION AND ERASURE

DECODINGS OF PRODUCT

CODES

4.1 General Overview

In a hard decision receiver, the detector limits its range of choices to the same group of
choices available at the transmitter. If the transmitter makes binary transmission, then the
receiver will do binary decision. Unfortunately, hard decisions destroy information that
can improve the overall performance of the communication system. In some cases, the
received signal may not offer a clear choice of what symbol has been transmitted. Rather

than force a decision that is likely to be incorrect, the soft decision receiver uses an
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expanded selection of choices to communicate the quality of the received symbol to the

error control decoder.

4.2 Soft Decision Decoding

In Chapter 2, we introduced the soft decision decoding. A product code can be decoded
softly by combining the demodulator with the decoder. Every codeword should be
correlated to all possible codewords. which are 2'% for the (49, 16) product code and then
choose the one with highest correlation. This is not practical. A more realistic approach is
proposed [12] and illustrated in Figure 4.1. Soft decoding will be performed for rows or
columns only. The results (symbols) from the first (soft) decoding are hard output. The
other dimension will be decoded hardly. We refer to the above algorithm as the Ordinary

Soft Decision Decoding (OSDD) algorithm. By doing so, the advantage of soft decoding

is exploited in one dimension only, rows or columns. This algorithm can be modified to

take advantage of soft decoding in both dimensions, as illustrated in Figure 4.2.

Considering a received codeword A4 of soft symbols, the following steps are made in

sequence.

1) The received codeword, A, is decoded row-wise vielding Az. Decoding is done on
the basis of Equation 2.3. For each row decoding, we will end up with the
decoded row, Ag;, and an associated weight of the row, Wg,.

2) The received codeword, A4, is decoded column-wise yielding A¢. Decoding is
done on the basis of Equation 2.3. For each column decoding, we will end up with

the decoded column, A¢, and an associated weight of the column, W¢,;.
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3) The symbol at the intersection of Ag; and A¢; is decoded by comparing its value
in Ag; and A¢y; If they agree, it is decoded as such. Otherwise, it is decoded based
on the maximum of the two weights Wg; and W¢;.

4) Re-decode the resultant symbols hardly row-wise and then column-wise because
of the existence of conflict from the comparison in step 3. Decoding codeword 4
finished.

We refer to the modified algorithm as the Modified Soft Decision Decoding (MSDD)

algorithm.

The two algorithms were tested over AWGN and fading channels. The results are similar

to those observed in hard decision decoding. For AWGN channel, Figure 4.3 shows that a

MSDD has more than 0.6 dB gain over OSDD at a BER of 10°. Also, the OSDD

algorithm was tested by start decoding the columns instead of rows and by decoding

hardly one more iteration, but essentially no difference was observed in both cases.

Figure 4.4 and Figure 4.5 show the performance of the two algorithms over fading

channels of 0.1 and 0.001 fade rate respectively. It can be observed that as the fade rate

increases. the performance of both algorithms improves. However, the difference
between the two algorithms is not notable especially as the fade rate decreases. Also, as
the length of the product code increases, the performance improves especially at lower

fade rate.
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4.3 Erasure Decoding

The simplest form of soft decision decoder discussed earlier, uses erasure to indicate the
reception of a signal whose corresponding symbol value is in doubt. Generally, if a
demodulator makes a symbol error, two parameters are needed to correct that error, the
location and the correct symbol value. In the case of binary symbols, only the error
location is needed for correction. However, in the erasure binary correction, all what is
needed is the symbol value because symbol location is known. So, decoding of erased

codewords can be simpler than error correcting.

Error control codes can be used to correct erasures or to correct errors and erasures
simultaneously. For a code having a minimum distance d,.,, any pattern of p or fewer
erasures can be corrected if dn,2p+1. Moreover, any pattern of « errors and y erasures
can be corrected simultaneously if d,22a+y+1. Simultaneous erasure correction and

error correction can be decoded in the following way [20].

. Given a received word r, place zeros in all erased positions and decode normally.

Label the resulting code word cy.

t9

Now place ones in all erased positions and decode normally. Label the resulting code

word ¢;.

(VS ]

Compare ¢y and ¢, to r after placing zeros and ones, respectively, selecting as the
final decoded output the code word that is closest in hamming distance to r, after

placing zeros and ones, respectively.
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It is simple to show that this mechanism works. We first assume that the number of
errors and erasures caused by the channel satisfies the constraint d,,~>2a+y for a pattern
of « errors and ¥ erasures simultaneously. If we assign zeros to the y-erased positions, we
generate a, errors. Making the total number of errors at the input to the decoder equal to
(a+ag). When we assign ones to the erased positions, we end up with (a+a;) = (at+y-a)
errors. Either g or (y-otg) must be less than or equal to /2. It follows that. in at least one
of the decoding operations, the total number of errors a, will satisfy 2 <2(ct+y/2)<dpn.

So. at least one of the decoding operations yields the correct code word.

[t should be noted that the speed of the errors-and-erasures decoder is half that of the
errors-only decoder (or it has twice the hardware). This is because now two standard

decoding operations must be performed for each received word containing erasures.

It is interesting to note that one can correct twice as many erasures as one can correct
errors. This can be explained intuitively by noting that we have more information about
the erasures to begin with. We know exactly where the erasures are, but we have no idea

as to the location of the errors.

Previously in Chapter 2, an algorithm was introduced that was capable of reaching the
theoretical minimum distance of the product code by determining which coordinates to
erase. That algorithm is depicted in Figure 4.6. We refer to that algorithm by the Ordinary
Erasure Decoding (OED) algorithm. To see how this algorithm works, consider once
more the four-error pattern that was introduced in Figure 3.2. Assume single error
correcting component codes. After decoding all rows, two more errors will be introduced

in the two rows having two errors. For column decoding, if a correction happened, an
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error is introduced in a row that was decoded without correction. So, it means that there
were three errors in that row in addition to the two errors presumably corrected in the
other two rows. This makes a total of 5 errors which exceeds the error correcting
capability. 4, of the product code. So, column decoding is not accepted and the two rows
corresponding to where a decoding was done are erased. Now, the column decoder will

successfully fill the erasures.

The OED algorithm. Figure 4.6, for binary symbols can be improved. The OED
algorithm erases whole rows or columns. which means that some good information is
erased. We are presenting a simple modified technique that erase particular symbols

instead of complete rows or columns. The algorithm is explained in Figure 4.7.

Considering a received codeword A of soft symbols with the weight of each symbol, W;;,

before demodulation. Then, the following steps are made in sequence.

1) For each row, erase the worst two symbols depending on their weights and

demodulate the other symbols yielding Ag.
2) Erasure decoding for Ag is done for each row yielding Agz.
3) Decode Agg column-wise hardly.
4) Decoding codeword A finished.

We refer to the modified algorithm as the Modified Erasure Decoding (MED) algorithm.
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The two algorithms were tested over AWGN and fading channels. Figure 4.8 shows that
the MED algorithm has more than one-half dB gain over the OED algorithm at a BER of
10,

Figure 4.9 and Figure 4.10 show the performance of the two algorithms over fading
channels of 0.1 and 0.001 fade rate respectively. It can be observed that as the fade rate
increases. the performance of the two algorithms improves. The difference between the
two algorithms is slightly big as the fade rate decreases. Also, as the length of the product

code increases, the performance improves especially at lower fade rate.

It can be seen from Figure 4.9 that for big fade rate, less correlation, it is not good to
delete whole rows. So, the performance of the OED is bad and it is worse for the product
code of higher length. However, as the fade rate decreases. the product code of higher

length is better since it randomizes the errors more.

Regarding the length of the code, the curves indicate that the strength of the code is seen
only after an Ey/N, threshold has been exceeded. For values of Ey/N, less than the
threshold. the coding manifests itself only as overhead bits resulting in reduced energy
per bit. Before the threshold is exceeded, the redundant bits are simply excess load
without the ability to improve performance. Once the threshold is exceeded, the
performance improvement of the code is more than the compensation for the reduction in

energy per coded bit.
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4.4 Performance and Complexity Comparison

Previously. every presented modified algorithm was compared to the corresponding
ordinary one. In this chapter, the modified algorithms will be compared to each other.
Also. the complexity of the modified algorithms will be evaluated to have a measure of
the cost of the modifications giving the better performances.

Figure 4.11 and Figure 4.12 show the comparison among the six algorithms over AWGN
channel. It is important to notice that the MHDD algorithm is better than the OED
algorithm by 0.6 dB at BER of 107, Also, It is better by about 1 dB as the length of the
product code increases. Our particular interest in comparing these two algorithms comes
from the fact that both algorithms achieve the theoretical error correction capability of the
product code.

Figure 4.13 and Figure 4.14 show the comparison among the six algorithms over fading
channel of 0.1 fade rate. Again, it can be seen that MHDD algorithm is better than that of
the OED algorithm by about 1.8 dB but worse than that of the MED algorithm by 0.8 dB
at a BER of 10™. As the length of the product code increases, the difference between
MHDD algorithm and the OED algorithm becomes more significant while the MHDD
algorithm is very comparable to the MED algorithm.

Figure 4.15 and Figure 4.16 show the comparison among the six algorithms over fading
channel of 0.001 fade rate. Again, it can be seen that the MHDD algorithm is better than
the OED algorithm by about 3 dB at a BER of 10~ and it is comparable to the MED

algorithm. As the length of the product code increases, the difference between the
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MHDD algorithm and the OED algorithm becomes 2 dB at a BER of 10™ and the MHDD

algorithm is comparable to the MED algorithm.

Now. the complexity analysis in terms of the time needed for each algorithm to be
executed will be compared. The time is measured and compared for the (49, 16) product
code for each algorithm. Ten millions arrays (blocks) are processed in a 200 MHz
computer to find the time needed for each algorithm. Table 4.1 shows the time ratios of
each algorithm to all the others.

The ratios of the modified algorithms to their counter parts of the ordinary ones are seen
in Table 4.1 in bold face. The ratio of the MHDD algorithm to the OHDD algorithm is
about five, which may appear a big ratio. Although no real complexity analysis is made
in the literature, one can observe and deduce from the wording in the literature that this is
a reasonable ratio. This claim can be further enhanced by noting that the ratio of the OED
algorithm to the OHDD algorithm is about 8.6 although the OED algorithm is only
capable of reaching the guaranteed error correction capability. Note that the ratio of the
OED algorithm to MHDD algorithm is about 1.7. If the MHDD algorithm is processed
just to reach the guaranteed error correction capability, the ratio of the MHDD algorithm
to the OHDD algorithm is about 2.2 and the ratio of the OED algorithm to the MHDD
algorithm is about 3.9. Finally, it can be seen from Table 4.1 also that the ratio of the
MED algorithm to the OED algorithm is about 2.75 and the ratio of the MSDD algorithm
to the OSDD algorithm is about 2.27. Those two ratios, [ think, are very reasonable.

As a last note, we may add that with today’s advancement in technology and process

speed, the increased time can be easily absorbed.



I-_> OHDD MHDD OED MED oSsDD MSDD
OHDD E— 0.198 0.116 0.042 0.02 0.009
MHDD 5.043 Ea— 0.585 0.2125 0.1027 | 0.0453
OED 8.619 1.7 E— 0.363 0.1755 | 0.0774
MED 23.73 4.705 2.753 —_— 0.483 0.2132
OSDD 491 9.735 5.697 2.069 — 0.441

MSDD 11.3 22.07 12.915 4.69 2.267 E—

Table 4.1 : Timing Ratios of the Algorithms



CHAPTER§

SUMMARY, CONCLUSIONS,
AND SUGGESTIONS FOR

FUTURE WORK

5.1 Introduction

This thesis adds a good contribution towards finding algorithms that will improve the
performance of the product code without a significant increase in decoding complexity.
The performance of the product code was studied and analyzed over AWGN and fading
channels. In the following section a summary and conclusions of our findings are

presented. Suggestions for direct extensions of this work are listed in the last section.



5.2 Summary and Conclusions

Three algorithms were presented. Those algorithms were tested over AWGN and fading
channels. The first algorithm, the MHDD algorithm, modifies the basic OHDD algorithm
of product codes. The MHDD algorithm reaches the actual theoretical performance
guaranteed by the minimum distance of the product codes using Hamming codes as
component codes. We showed that the SVR of the MHDD algorithm is better than that of
the basic OHDD algorithm and of that of the basic OED algorithm by about 0.6 dB at

BER of 107,

The MSDD algorithm modifies the OSDD algorithm. It performs better than the OSDD
algorithm by 0.6 dB at BER of 10”. The MED algorithm performs better than that of the
basic OED algorithm by about 0.6 dB at BER of 107, as well. Although the OED
algorithm reaches the actual capability of the product code given by its minimum
distance, the performance measured by the BER is in general worse than that of the
OHDD algorithm. The MHDD algorithm is better than the MED algorithm in terms of

BER performance but the difference between them is not very significant.

We saw that the complexity of the modified algorithms is in general larger than that of
the ordinary algorithms but the increase is not too big. Actually, the complexity of the
MHDD algorithm is less than that of the OED algorithm and it does perform better. Both
algorithms reach the actual capability of the product codes. The MSDD algorithm is the

most complex in terms of processing timing

We saw that generally as the fade rate increases, the performance improves because for

fast fading the errors become more randomized. Diagonal interleaver has no effect over
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AWGN channel. It helps over fading channel specially as the fade rate decreases. The
ordered decoding method that was suggested in [10] helps over fading channel specially
as the fade rate decreases but it has no effect over AWGN channel and over fading

channel of high fade rate.

It is known that the performance of a code improves if there is more randomness in the
structure. This randomness comes from interleaver which is inherent in the product
codes. Diagonal interleaver gives more randomness than what ordinary interleaver does
because it randomizes burst errors in both dimensions, rows and columns.

Our simulation results showed that Equation 3.3 is a very good approximation of the

BER.

Generally, as the length of the product codes increases, the performance should improve
since the performance improvement of the code is more than the compensation for the
reduction in energy per coded bit. For the ordinary erasure decoder over fading channel,
the performance degrades as the length of the product code increases. This is because as

the length increases, a lot of good information is lost when whole rows are erased.

By extending the MHDD to three dimensions, the extended MHDD algorithm also
outperforms the extended OHDD algorithm. The extended MHDD algorithm reaches the
theoretical error correcting capability of 13 while the extended OHDD algorithm reaches

an error correction capability of 7 only.
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5.3 Suggestions for Future Work
Future work may consider the following extensions:
¢ Improving the performance of three dimensional product codes.

e Applying different and more powerful erasure techniques based on the Galois Field

arithmetic.

e Applying codes other than Hamming codes, as well as choosing different codes for

each dimension.

e Trying finding algorithms for other codes different from single error correcting codes,
investigating their performance, and comparing the performance with the actual

capability of such codes.

e Trying other soft decision decoding in which more than one iteration can be done.
One can then attempt answering some important questions like, is there a limit on the
number of iteration and is there a relation between the dimension of product codes

and the number of iteration?



Nomenclature

Abbreviations

AWGN Additive White Gaussian Noise
BER Bit Error Rate

dB deciBel; Decibel

MAP Maximum Aposteriori Probability
SNR Signal to Noise Ratio

Ey Ny Signal to Noise Ratio

TC Turbo Code

PC Product Code

rms root mean square

ISI Intersymbol Interference

ARQ Automatic Repeat Request

FEC Forward Error Control

BPSK Binary Phase Shift Keying

BSC Binary Symmetric Channel

CSl Channel State Information

MLSE Maximum Likelihood Sequence Estimation
MHDD Modified Hard Decision Decoding
MSDD Modified Soft Decision Decoding
MED Modified Erasure Decoding

GF Galois Field
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Information bits

Code rate

All possible codewords

Hamming minimum distance

Crossover probability of a BSC

Number of rows in a matrix interleaver (span)
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Information bits for cascaded Hamming codes
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The jth sampled output of a matched filter

The jth AWGN output of a matched filter of zero mean
The bit in the jth position of the ith codeword
Number of errors for erasure decoding

Number of erasures

Number of corrections happened per row
Number of rows erased

Probability of block error rate

Probability of bit error rate

Number of codewords of weight /

Number of uncorrectable error patterns of i errors
Complementary error function

Received codeword

Decoded codeword row-wise

Decoded codeword column-wise

Decoded codeword row-column-wise
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Corrections locations for rows



Arcym
v
W,
We,
W,

Ag

Agr

101

Total number of corrections for rows
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Corrections locations for columns
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Weight of decoded row # i
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