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Chapter 1

Introduction

1.1 Overview

In this chapter, a brief introduction to quality control problem is presented by
defining different areas of quality control. The main area of concern in this thesis
is the problem of process targeting. This area is introduced in this thesis by a
basic model of process targeting. An introduction to inspection plans is presented
in section 1.3, in which acceptance sampling and inspection error are discussed in
detail. Acceptance sampling plan plays a vital role in the field of statistical quality
control(SQC), and will be used in the thesis for the extension of several models in the
literature. The problem under consideration is discussed in section 1.4, followed by
the objectives of the thesis in section 1.5. The organization of the thesis is presented

in section 1.6.



1.2 Quality Control

In any production process, regardless of how well designed or carefully maintained,
a certain amount of inherent or natural variability will always exist. This natural
variability is the cumulative effects of many small, essentially unavoidable causes.
This variability in key quality characteristics usually arises from three sources: im-
properly adjusted machines, operator errors, or defective raw material. Thus, quality
control plays a vital role in minimizing this variations and improving the overall
characteristics of the product.

Quality control is a new way of thinking about and viewing management. Quality
control can be defined as " A system of methods for the cost effective provision of
goods or services whose quality is fit for the purchaser’s requirements.” The defini-
tion of quality has evolved with time. Initially it was defined as ”Fitness for Use”,
then the definition modified by Juran given as ”meeting specifications”.

Statistical methods are essential and form the basis for quality control. For this
reason, quality control is often called "statistical quality control”. It provides a
framework for obtaining the improvement in the quality of the products and ser-

vices. Areas of quality control includes,

1. Product Control: involves the control of products at the source of produc-
tion and through field service so that departures from the quality specification
can be corrected before defective or non conforming items are shipped, this

can be achieved through 100 percent inspection or sampling inspection etc.



2. Statistical Process Control: A major objective of statistical process control
is to quickly detect the occurrence of the assignable causes of process shifts by
the use of control charts or by the use of some other statistical tools. So that
investigations of the process and corrective action may be undertaken before
many non-conforming units are manufactured. This is usually achieved by

control charts.

3. Process Targeting: An important aspect of SQC is the determination of the
optimum values of the process parameters or machine settings. The general
process-targeting problem is to find the optimal settings of the process mean
and other process parameters to minimize total cost resulting from quality

cost and cost of manufacturing.

4. Quality Engineering: Deals with setting values for the controllable design
and process variables to minimize deviation from specific targets using design
of experiments techniques. Taguchi presented a quadratic penalty for this
deviation known as "Taguchi Quadratic Loss Function”, in which the loss
function concept for evaluating the quality level of a product by quantifying

the deviation from the target value.

1.2.1 Process Targeting

An important problem in manufacturing involves determining the optimal mean or

target value for the process. The process mean affects both the production cost



and the chance of producing non-conforming items. Therefore, the general ” Process
Targeting” problem is to find the optimal settings of the process mean and other
process parameters to minimize expected total cost or to maximize expected profit
resulting from quality cost, cost of material, cost of manufacturing and processing
etc. Consequently, the decision on setting a process mean should be based on the
trade-off among material cost, payoff of conforming items, and the costs incurred due

to non-conforming items. For example, suppose that there is a lower specification

A

T

/_ Lower
Specification Limit

N—

Figure 1.1: Process Targeting

limit (L) on the weight of a package. In many manufacturing process, each product
is weighed using an automatic weighing machine. If the package weighs less than

the lower specification limit, it is automatically rejected. We wish to determine the

4



optimal target value(> L).

Hunter and Kartha [2] have given an interesting formulation of this problem under
the assumption that the process quality characteristic is normally distributed. In an
industrial process in which items are produced continuously, suppose there is a lower
specification limit (L) for a quality characteristic is fixed, as shown in figure[1.1], such
that items with measured value less than L are re-processed or sold at a secondary
market. Thus, the customer is compensated for poor quality but does not pay extra
for excessive quality. A target value T = L + 4 is selected so that the net income for
the process is maximized. A net income function consists of the income from the
accepted items, the give-away cost of the material in excess of the lower specification,
and income from rejected items.

Notations:

x = the observed value of the quality characteristic (weight or volume),

L = the lower specification limit,

T = L + 6 is the target value,

2 = variance of the process,

o
a = the net selling price of an accepted item,
r = the net selling price of a rejected item, after re-processing(r < a),

g = the cost of excess quality per unit measure for an accepted item.

Suppose that out of n items manufactured, n, are accepted and n, are rejected.



Then the net income per item given by Hunter and Kartha [2] is,

a—g(z-L) fz>L
I=
T ifz<L

The expected net income derived as follows

o0 00 L
E(I) = a/[: f(a:)d:z:—g/L (z—L)f(x)dz+r/; f(z)dz (1.1)

f@) = —=e(Z221)

oV2r 202

The first term on the right-hand side is the income from the accepted items, the
second term is the give-away cost, and the third term is the income from the rejected
items.

Let

B(z) = /_ " a(t)t.

Thus, equation(1.1) can be written as,

E(I) = a® (ﬁ) —g /L (@ - [)f(z)dz + rd (:f)

o (o}

Where ¢ is the average amount of product which is "given away”; i.e, it is the
distance above the lower specification limit L to the target value T at which the

product must be operated. For specified values of a,r, g and o. The optimal value

6



of 4 is the solution to

Gosll) w0 o
@ ow@o w

This can be solved by a trial and error using normal tables. Nelson(1978) provided

a nomograph to determine the value of 4.

1.3 Inspection

Inspection for the purpose of deciding on the acceptability of material is carried on
at many points in the manufacturing cycle, for example, when products are received
from a vendor or from another department or when the products are shipped to
customers. There are several methods on deciding whether to accept or reject the

product. These are :

e No inspection at all: This obviously involves a great risk of accepting a

product that is defective.

¢ One hundred percent inspection: Inspect every product received. But, as
it is well known, 100 percent inspection is not 100 percent effective in removing
defects. In addition to the fact that 100 percent inspection is often less effective

than sampling . It has other drawbacks
7



— 100 percent inspection is expensive.

— It obscures the actual risk involved, because the margin of error is not
known.

— Because the margin of error is not known, the information provided by
100 percent inspection is relatively useless in improving the production

process.
— 100 percent inspection cannot be used for destructive testing.
— scheduling delays.

e Spot checking : This is a compromise between no inspection and 100 percent

inspection, but it means that many lots are accepted with no check on them.

1.3.1 Acceptance Sampling

Acceptance sampling is the process of evaluating a portion of the product in a lot
for the purpose of accepting or rejecting the entire lot as either confirming or non
confirming to a quality specification.

The main advantage of acceptance sampling is economy: the lower cost of inspecting
since only parts of the lot results in overall cost reduction. In addition to this major

advantage there are others.

o There is less damage to the product.

® The lot is disposed off in shorter time so that shop scheduling, inventory turns,

and delivery are improved.



e It is usually less expensive because there is less inspection.
e It is applicable to destructive testing.
e Fewer personnel are involved in inspection activities.

e It often reduces the amount of inspection error.

It may be noted here that no sampling plan is perfect; there is always a chance that
the sample may not always contain the same proportion of defectives items as the
lot. On the basis of the sample, there are risks of accepting "bad” lots and rejecting
"good” lots.

In earlier studies, on process targeting problem acceptance sampling and errors were
not incorporated. It was assumed error free inspection. In this thesis, an attempt
is made to extend existing models in the area of process targeting by incorporating

sampling inspection plan and inspection error.

1.3.2 Inspection Error

In case of inspection(either 100 percent or sampling plan) is used for classification
of product and quality control, there is always a chance of inspection error. There
are two types of errors, type I and type II error. Type I error is classifying a
non-defective item as defective and type II error is classifying a defective item as
non-defective.

Considering two types of errors, type I and type II errors in the sampling inspection

plan in which the observed number of defectives is the number of defectives as it

9



appears to the inspector.
The expected observed number of defectives in the sample, given by Bennett et. al.

(3] is
T, = (n—z)e; + (1 —ez)z. (1.4)

where n = sample size,

x = actual number of defectives in the sample,

e1, ez = probability of type I and type II error, respectively.

In the case of error free inspection, the decision to accept the lot is based on the
actual number of defectives in the sample, i.e the lot is accepted if T < dy, where d;
is the allowable number of defectives in the sample.

However, in the presence of error, the decision to accept the lot is based on observed
number of defectives in the sample i.e z. < dy. This is expected to have impact on
decision made in process targeting models.

In this Thesis, an attempt is made to study the effect of inspection error in the sam-
pling inspection plan in process targeting and extend the existing process targeting

models in this area.

1.4 Statement of the Problem

In this thesis, a container filling process is considered defined by a random variable,
which represents either the quantity or weight of material in an individual container.

The product has a lower specification limit on its quality characteristics as shown in

10



figure[1.2]. A container is defined as non-conforming, if it is filled less than the LSL.

Sampling Plan is used in which a sample from a lot is drawn and evaluated. The

TN
Process Target
Gradet \—//_

L Lower
i Specification
Limit
N

~_

\_/

Figure 1.2: Two-Class Targeting Problem

decision to accept or reject the lot is based on the sample, i.e if the number of non
conforming products is greater than the acceptance number then the lot is rejected
otherwise accepted.

Considering the situation in which type I and type II errors enter into the inspection
process. The number of defectives appear to the inspector is not the same as the
actual number. However, in the presence of error, the decision to accept the lot is
based on the observed number of non-conforming items in the sample.

In this thesis, a mathematical model will be developed to maximize the expected
profit by finding the optimal mean or target value considering the effect of inspection

error, two cases are considered for this model,

e the case of destructive testing and,

11



e the case of non-destructive testing.

Also sensitivity analysis will be conducted to the models developed to study the

effect of changes in model parameters on its solutions.
! \__/

L2\/

A

Figure 1.3: Multi-Class Targeting Problem

A model in the literature has been developed by Lee et.al [4] for three-class screening
problem as shown in the figure[l.3]. The aim of the model is to maximize the
expected profit by finding the optimal target value for the three-class screening
problem. In this thesis, the model in [4] is extended by relaxing the assumption of
100 percent inspection by considering sampling inspection plan. Then, the developed
model is extended by incorporating inspection error in the sampling inspection plan,

and sensitivity analysis is performed to the developed model.
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1.5 Objective of the Thesis

The objective of this thesis is to extend the existing process targeting models by in-
corporating sampling inspection plans under error and error free inspection. Specif-

ically, the objectives are to:

1. Develop a process targeting model for single filling operations considering in-

spection error in the sampling plan.

2. Conduct sensitivity analysis to study the effect of error on the model developed

in objective 1.

3. Develop a three-class targeting model using sampling inspection plan under

error free inspection.

4. Extend the model developed in objective 3 by considering inspection error and

to conduct sensitivity analysis to study the effect of error on its solution.

1.6 Thesis Organization

The thesis is organized as follows : Literature review in the area of process targeting
is presented in the next chapter with emphasis on the models of Boucher and Jafari
[1], Lee and Jang [4]. These models constitute basis for the models developed in this
thesis. The process targeting model that incorporates inspection error together with
sensitivity analysis to investigate the effect of inspection error is presented in chapter

3. A multi-class targeting problem using sampling inspection plan is presented in

13



chapter 4. The multi-class targeting model that incorporates inspection error in
sampling plan is presented in chapter 5 and sensitivity analysis on the error is also
conducted in the same chapter. Finally, conclusions and recommendations for future

research are outlined in chapter 6.
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Chapter 2

Literature Review and Problem

Definition

2.1 Introduction

The purpose of this chapter is to present the literature in the area of process targeting
with emphasis on models extended in this thesis. Section 2.2, presents the literature
on process targeting. The description of the model developed by Jafari and Boucher
(1] (referred to as Model I) is presented in section 2.3. The model developed by Lee
and Jang [4] (referred to as Model II) is presented in section 2.4. These models are

used for the extension in this thesis.
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2.2 Literature Review

In this section, the Literature in the area of process targeting is presented.

SPRINGER [5] considered a manufacturing situation where upper and lower spec-
ification limits are both present and the performance variable follows a gamma dis-
tribution. The per-item cost associated with non conforming items above the upper
specification limit (over filled items) can be different from those below the lower
specification limit (under filled items). However, these costs are assumed to be
constant. The process mean that minimizes the total cost associated with non con-

forming items is obtained.

BETTES [6] studied a similar situation with a given lower specification limit and
an arbitrary upper limit. Under filled and over filled items are re-processed at a
fixed cost. The optimal process mean and upper specification limit are determined

simultaneously.

BENNETT, CASE and SCHMIDT (3] considered the effects of inspection
error on a cost based quality control system. The system examined is of single sam-
pling plan involving several cost components. Both type I and type II errors are

considered.

CASE and BENNETT (7] studied the economic effects of measurement errors
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on variable acceptance sampling.

HUNTER and KARTHA [2] discussed the situation where under filled items
could be sold at a reduced price and a penalty (give-away cost) is incurred by con-
forming items with excess quality. They derived a procedure for calculating the

optimal process mean.

NELSON (8] provided approximate solutions to the problem defined by Hunter
and Kartha [2]. A four cycle arithmetic graph is provided for determining the target

value.

NELSON [9] gave a nomograph for setting process mean to minimize scrap cost
by assuming the distribution of the relevant characteristic of the individual item as

normal.

BISGAARD, HUNTER and PALLENSEN [10] modified Hunter and Kartha'’s
model by assuming that the selling price of non conforming items is a linear function

of the process mean.

CARLSSON [11] discussed a more general sales situation where the selling prices
of the conforming and non conforming items are linear function of excess (give-away)
quality and "deficit in quality”, respectively.
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GOLHAR ([12] assumed that only the regular market (fixed selling price) is avail-
able for the conforming items and that the under filled items are reprocessed and

sold in a regular market. The process is assumed to have known variance.

TANG and SCHNEIDER (13] discussed how to determine screening limits when
inspection error is present, and they investigated the economic effects of inspection
imprecision on a screening procedure. It is assumed that the rejected items are
reworked, and two rework conditions were considered. In the first situation the re-
jected items can be reworked so that the performance variable is exactly equal to the
target value. In the second situation rework is based on the first inspection result;
therefore, the value of the performance variable of the reworked items may not be

exactly equal to the target value.

TANG and SCHNEIDER (14] discussed a method of determining the opti-
mal inspection precision level based on the trade off of inspection cost and the cost

incurred by inspection errors.

DANZIGER and PAPP [15] considers extension of the basic methodology of
sampling plan to multiple criteria by defining tests for each criterion is discussed
such that passage of all tests will lead to acceptance of, a given total fraction non

conforming with specified risk.
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VIDAL [16] provided a simple graphical solution for the problem stated in Bis-

gaard, Hunter and Pallensen(10].

GOLHAR and POLLOCK (17] extended the model by Golhar [12] to include
the upper limit to reduce the cost associated with excess quality by re-processing the
items above this limit. This model reduces to the model presented in Golhar’s as up-
per limit tends to infinity. An implicit assumption in this model is that the process

has an unlimited capacity that can be used to re-process items above the upper limit.

GOLHAR (18] provided a computer program for the above model.

CARLSSON [19] discussed a situation in which the lots produced by the pro-

duction process are subjected to lot-by-lot acceptance sampling by variables.

SCHMIDT and PFEIFER [20] investigated the effects on cost savings from
variance reduction in a single level canning problem and an approximate simple
relationship between percentage reduction in standard deviation and the cost re-

duction was presented.

TANG and SCHNEIDER ([21] showed that when inspection error is present,

the observed value of the performance variable can be treated as a correlated vari-
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able. Consequently, all the results associated with using correlated variables in

screening are applicable to the inspection error situation.

FOUNTAIN and CHOU (22] determined the minimum sample size for two-

sided b-content tolerance intervals when the population size is finite.

R.SCHMIDT and P.PFEIFER [23] extended the model of D.Golhar [12] by
considering the situation where the process capacity is fixed. In this work, a two
level process control scheme is considered to determine both process mean and the

upper control limit.

BOUCHER and JAFARI [1] extended this line of research by introducing sam-
pling plan as opposed to 100 percent inspection, where the rejection criteria is based
on the number of non conforming units in the sample.In this model, they examined
the effect of single sampling plan on the optimal set point of a filling operation.
There are two conditions examined,

(1) when sampling results in destructive testing and

(2) when the testing is non destructive.

ARCELUS and RAHIM [24] provided joint optimal settings for variable and

attribute target means.
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MELLOY ([25] considered products that are subject to regulatory auditing (com-
pliance tests) scheme. The performance variable is the weight of the package, which
is determined by the weights of the product and the tare (boxes). The process mean
and two-sided screening limits are used to minimize the "give-away” product weight,

subject to an acceptable level of risk of failing the compliance tests.

CARLSSON (26] presents a model to determine the optimal two-dimensional pro-
cess level and the optimal expected net income per lot. The model is based on the
assumption that the joint distribution of quality characteristics follows a bi-variate

normal distribution with known covariance.

TANG and LO [27] developed a model for jointly determining the optimal process
mean and screening limits when a correlated variable is used in inspection. Since a
correlated variable is not perfectly correlated with the quality characteristic, accep-

tance cost may be incurred by accepting non conforming items for shipment.

DO SUN BAI and MIN KOO LEE (28] presented the problem of selecting
the process mean and the cutoff value of a correlated variable for a filling process in
which inspection is based on the correlated variable rather than the process mean

itself.

GEORGE TAGARAS [29] analyze an economic model for the selection of ac-

21



ceptance sampling by variables under the assumption of quadratic quality costs.

ARCELUS and RAHIM [30] presented a model for simultaneously selecting
the optimal target means for both the variable and attribute quality characteristic.

Optimality conditions are derived and a computational algorithm is given.

K.S.AL-SULTAN (31] extended the model of Boucher and Jafari [1] for two ma-
chines in series where a sampling plan is used. An algorithm for finding optimal
machine parameters for the two machines in series case, with sampling inspection

at each machine is given.

SHAUL P.LADANY (32] assumed the process in which oversized items and un-

dersized items are repaired at different costs. The objective is to maximize the profit.

MIHALKO and GOLHAR (33] addressed the problem of estimating the ex-
pected profit for automatic filling operation when the standard deviation of the
filling process is unknown. A method for the determination of the confidence inter-

val for the optimal process setting for the case of unknown variance is proposed.

LIU, TANG and CHUN (34] considered the case of a filling process with limited
capacity constraint. The optimal process parameters to be determined are process

mean and upper specification limit.
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ARCELUS and RAHIM (35] developed several models that controls both con-
formance to specification and uniformity of production. The models are proposed to
minimize the functional interval width, with and without predetermining the value
of the process coefficient of variation and to penalize for the deviation from the

target value.

LEE and JANG [4] introduced the case of the three-class screening. In this
paper, it is assumed that the products are sold in two different markets with differ-
ent price structures. Two models were presented, in the first case; the objective is to
find the optimal mean when inspection is based on the same quality characteristic.
While in the second model it is assumed that the inspection is based on a correlated

variable.

PULAK and AL-SULTAN (36] in this paper, a FORTRAN based computer

program is presented for nine different process targeting models.

AL-SULTAN and AL-FAWZAN [37] extended the model of M.A.Rahim and
P.K.Banerjee's(1988)model. This paper assumed a process with random linear drift
and is assumed to have both lower and upper specification limits. The objective is
to find the optimal initial mean and cycle length. Variance of the process is assumed

to be known and constant.
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AL-SULTAN and PULAK (38] presented a model for finding the optimal mean
of a filling process under rectifying inspection. The effect of variance reduction is

also considered for the case.

AL-SULTAN and AL-FAWZAN ([39] studied the model of M.A.Rahim and
P.K.Banerjee (1988) i.e. systems with linear drift for the case of variance reduction

and optimal initial process mean and cycle time is given.

CAIN and JANSSEN [40] presented the model where is asymmetric across
the target. a linear cost below lower specification limit and a quadratic cost above

specification limit are assumed.

POLLOCK and GOLHAR [41] in this paper the canning process with con-
stant demand and capacity constraint for the production process is considered. The

model also assumes penalty for producing nonconforming items.

PFEIFER (42] provided a general canning problem model consisting of a piecewise
linear profit function. This paper give a simple relationship between two competing
objective functions for the canning problem, expected profit per fill-attempt and

expected profit per can to be filled.
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HONG and ELSAYED [43] extended the Golhar’s [12] model for the case with
normally distributed measurement error. They developed a model for determining
jointly the optimum process mean and the cutoff value on the observed characteris-

tic when measurement error is present.

RAHIM and AL-SULTAN [44] Consider the problem of simultaneously de-

termining the optimal target mean and target variance.

MISIOREK and BARNETT [45] considered the problem of choosing the mean
of a filling process for a number of model variations. The effects of change of the
process variance on the optimal solution as well as on the expected profit are also

discussed.

RAHIM, BHADURY and AL-SULTAN [46] Addressed the problem of se-
lecting the most economical target mean and variance for a continuous production
process, three approaches are suggested for the economic selection of a target vari-

ance integrated with the target mean.

LEE and AL-SAYED [47] Addressed the problem of determining the optimum
process mean and screening limits of a product quality under a two-stage screening

procedures.
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As this thesis, extends the work done by Boucher and Jafari [1] and Lee and
Jang (4], their models are presented in this section referred to as model I and model

II, respectively.

2.3 Modell

The aim of the model is to find the optimum target value for a single filling process
with quality sampling plan with the assumption that the inspection is error free.

‘Two cases are examined.
e when sampling results in destructive testing and,
e when sampling results in non-destructive testing.

This model considers a filling process defined by a random variable " X", which rep-
resents the quantity of material in an individual container. A lower specification
limit exists for X. Sampling plan is introduced in which a product is produced daily
in lots of size "N”. So, from each lot a sample of size n is drawn and evaluated. A
container is classified as a "non-conforming” if it is filled less than the lower spec-
ification limit i.e, (X < L). If D is the number of non-conforming items found in
the sample and dj is the allowable number of non-conforming units,then the lot is
accepted and sold at a price of A, if D < dy and the lot is rejected and sold at a

reduced price of (A — P) per product.
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Notations

A = Selling price of the acceptable product,

P = Penalty or price reduction incurred per product,
¢ = Cost of excess quality per accepted item,

i = Process Mean or Target.

Model Formulation

Thus, The expected revenue for a lot of size N, given by boucher and jafari [1].
AN if D <dp

E[R|D] =
(A= P)N if D > dy

Therefore, The marginal profit function is
E[n(p)] = ANPr(D <dy)+ (A—- P)NPr.(D > dy) - Ncu

i.e

__E[%ﬂ)] = A—PPr.(D>dy)—cu (2.1)

where Ncp is the cost of processing for the lot N, given the set point .
The expected revenue function for destructive testing is
A(N - n) if D S do
E[R|D) =
(A-P)YN-n) if D>dy

And the expected profit becomes,

E[r(p)] = AN —n)Pr.(D < dp)+ (A— P)(N —n)Pr.(D > dy) — Ncu

]

E[r(u)] A(N —n) — P(N = n)Pr.(D > dy) — Ncp
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2.4 Model 11

In this model [4], the product out of the production process is classified into three
grades based on product specifications (that might be the weight or volume of the
can). Considering can filling process, grade one is the product that has the net weight
> L;. The second grade product is the product that has a net weight between L,
and L;. The third grade is scrap, which has net weight < L,.

The aim of this model is to find the optimal process mean, to maximize the profit
resulting from grade 1 and grade 2.

Notations

Y = Performance variable representing the quality characteristic,

L, = Specification limit on Y for grade 1,

L, = Specification limit on Y for grade 2,

a; = Selling Price for grade 1,

a = Selling Price for grade 2,

r = reduced price for scrap,

¢o + cy = Production cost per item,

¢, = Inspection cost per item.

Assumptions
e 100 percent inspection is considered.
e The inspection is assumed to be error free.

e A single item can be sold in two different markets with different cost(or)profit
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structures.

e The quality characteristic is assumed to be normally distributed with process

mean p, and known variance 03. The pdf of y is f(y).
® a >as >r.
o L, > L,.

e The production cost per item is co + cy.

Model Formulation

The profit function per item is given by

al—(Co+Cy+Cp) lfYZLl

Py = ¢ ag—(co+cy+c,,) ifL, <Y <L

r—(co+cy+c) ifY <L
Then the expected profit per unit given by Lee and Tang [4]
(= <] Ll L:
E[p)}= /L [ar = (co + cy + ¢p)]f(y)dy +/L (a2 = (co + cy + ¢p))f(y)dy + / [r — (co + cy + ¢p)}f (y)dy
t 2 —oo
(22)

This equation can be written as,

0o Ly Ly
E[P,) = [a1 — co ~ cp] /L f(y)dy + [az = co — ¢5] /L Iy 4 —co=cy) [ sy 2.3)
1 -0

o0 Ly Ly
—¢:_/l:l vf(y)dy —c_/b2 y!(y)dy-c/_m yf(y)dy

This further can be written as,

L;

) L
E[P)] =a, /L f@)dy + az /L f@dy+r [ f@)dy—(co+c)—cu  (24)
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Where f(y) N(py, o)

Let z = L—{:T“l =TI,

and z = L—";’-‘ﬂ = I'; Where ¢(z) and ®(z) are the pdf and cdf of the standard
normal distribution,

-2

8(2) = ghret
using the relationship above we can rewrite the equation of expected profit,

E[P)] = a;[®(~T)] + a2[®(T})] + (7 — @2)[®(T'2)] — o — ¢, — ¢(Ly — T'10,)

2.5 Conclusion

In this chapter, the literature in the area of process targeting is reviewed. The models
of Boucher and Jafari 1], Lee and Jang [4] are presented to provide background
for the work in this thesis. The next chapter extends model I to the case where

inspection error is present.
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Chapter 3

Process Targeting with Inspection

Error in Sampling Plan

3.1 Introduction

The purpose of this chapter is to extend model I developed by Boucher and Jafari [1]
by incorporating inspection error in the sampling inspection plan. Then to conduct
sensitivity analysis to the developed model to study the effect of model parameters
on its optimal solutions.

Classically, sampling inspection plans have assumed that the inspection process is
perfect, with no errors in judgments being made by the inspector. This assumption
is, of course, false. In reality an inspector whether human or machine subject to
making two types of errors, these errors are

(1) Type I error: Classifying a non-defective item as defective
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(2) Type II error: Classifying a defective item as non-defective.

Thus, inspection error may cause considerable loss due to misclassification of the
product. The loss could be of replacement and warranty costs, loss of goodwill,
or loss of profit by selling a higher-grade product as lower grade product due to
misclassification.

The objective of this model is to maximize the expected profit by finding the
optimum target value for single filling operations with quality sampling plans by
considering the effect of inspection error. The following two cases are examined.
(1) When sampling results in destructive testing and
(2) When the sampling results in non-destructive testing.

This chapter is organized as follows, Model Development is presented in section
3.2, in which notations, model assumptions statement of the problem, and model
formulation are discussed. Solution and Analysis of the model are discussed in
section 3.3, results are shown in section 3.4, then sensitivity analysis is conducted

in section 3.5.

3.2 Model Development

In this section, a Process Targeting model is developed incorporating inspection
error in the sampling plan. At first, necessary notations are presented, followed by

model assumptions, then the statement of the problem is provided.
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3.2.1 Notations

The following are the notations which are adopted in this chapter

X = Quality characteristic of the product,

A = Selling price of the accepted product,

P = Penalty or price reduction incurred per product,
¢ = Ingredient cost per unit weight,

i = The expected value of X,

0> = Process variance,

L = lower specification limit for the product attribute,
n = sample size for sampling,

q = lot fraction defective i.e Pr[X < L] = ®(-2),

dy = allowable number of non-conforming units in the sample,
z = actual number of defectives in the sample,

ey = type I error,

ez = type ll error.

ze = The apparent number of defectives in the sample,

3.2.2 Model Assumptions

p—

. The inspection process is assumed to be error prone.

2. The quality characteristic X is assumed to be normally distributed with mean

u and variance o2,
3. The variance of the process is assumed to be known and fixed.

4. Sampling plan is used for quality control.

o

. Selling price is greater than the penalty incurred i.e,A>P.
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3.2.3 Statement of the Problem

Consider a can filling process where the content of the container is represented by
a random variable X, a lower specification limit exists for the quality characteristic
(X>L). Sampling plan is used in which a product is produced daily in lots of size N
and from each lot a sample of size n is drawn and inspected. A container is defined as
non-conforming, if it is filled less than the lower specification limit (X<L). If x is the
actual number of nonconforming units in the sample and d, is the allowable number
of non-conforming units, the decision to accept the lot is based on actual number
of non-conforming in the sample, i.e the lot is accepted if z < dy. Considering
the situation in which type I and type II errors is a part of the inspection process,
the number of defectives appears to the inspector is not the same as the actual
number of defectives in the sample. Thus, the apparent number of defectives are
the number of defectives as it appears to the inspector. The expected apparent

number of defectives in the sample, z. given by [3] is

Ze=(n-1z)ey+ (1 -e)z

However, in the presence of error, the decision to accept the lot is based on the ap-
parent number of defectives z.. This is expected to have an impact on the decisions
made in process targeting model. Containers from a production lot that is accepted
are sold at a price A per container, while containers from an unacceptable lots incur

a penalty of P per container, i.e they bring in incremental revenue of (A — P).
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3.2.4 Model Formulation
Non-Destructive Testing

Thus, The expected revenue for a lot of size N, given ..

AN if z. < dy
E[R|z.] =
(A-P)N ifz, > d,
For the set point of u, the expected value of the marginal cost per lot is Ncu, where

4 is the expected value of X.

Therefore, The marginal profit function is

E[r(n)] = ANP(z. < do)+ (A - P)NP(z, > dy) ~ Ncp
i.e

E_[i;é_“)] = A—-PP(z.>dy)—cpu (3.1)

Where E[r(p)] is the expected profit when the set point 4 is fixed at a specific value,
looking at this equation one can say that the expected profit is not a function of the
lot size and it is only defined in terms of the decision variable x which affects both

the probability of rejection of a lot and the cost of material per lot.

Destructive Testing

It is often the case that examining the weight of the contents of a package will result

in destroying the product,
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Then, The expected revenue becomes

A(N - n) if Te S do
E[R|z,] =
(A-P)(N —n) ifz, > dy

And the expected profit becomes,

E[r(u)] = A(N-n)P(z. < dy) + (A~ P)(N —n)P(z. > dy) — Nep

E[n(p)] = AN -n)— P(N —n)P(z. > dy) — Ncp

It should be noted that the expected profit for nondestructive testing is not directly
comparable cost wise to destructive testing because there are different cost asso-
ciated with the sampling method used. In nondestructive testing the container is

salvageable, whereas it is rendered useless in destructive testing.

3.3 Solution and Analysis

We want to maximize ﬂ’%ﬂl defined above. A necessary condition for optimality is

that the partial derivative with respect to u vanishes at the target value .

ie 2 E5l = o,
Therefore,

0 Eln(w)] _ @

auT = PauP(ze > do) c (32)
Where

P(.’Ee>do)=1—P($eSd0)
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The probability of an item being defective q is independent of other items and the

lot is assumed to be too large then x is said to follow binomial distribution.

since,
% =q(1 —e2) + (1 —g)es
g=P(X < L)=#-2)
where
z=u—L
o

Therefore, z. is said to follow binomial distribution with sample size n and lot

fraction defective gq,. i.e

Ie = b(Qes n)

Therefore,
do n . .
P(ze <do) =3 ( i)q;(l ~ go)
i=0
Then,
—P(z, > dp) ——a—P(.z: < dyp)
au e 0 - 6“ e = 0
dq. 0
e —Z < .
By Bq, P(z, < dp) (3.3)

we know that,

ge = q(l—e2)+(1-q)e

(1—e—ex)g+e
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Therefore,

%z_(l—el—eg)(b([/—u) (34)

A n n—i
9q P(Ee Sdo) = aq,.Z()%“- ge)(n9

= g (’:) [iqi"-l)(l —q)" Y —gi(n - i1 - q‘)(n—i—l)]
= -n(l-g)* V4 [n(l —ge)" Y —n(n - 1)ge(l - ,k)(n-z)]

+ [n(n - 1)ge(1 - qe)(n—Z) - wqﬁl - qg)("‘:’)]

+ot [ﬁufw"‘é“'”“ ) e i~ ool — e
= W(ﬂ do)qdo(1 — g)(n—do—1) (3.5)

Substituting equations (3.4) and (3.5) in (3.3), we get

(1“31"32)¢(L-l‘

(n — do)ge°(1 - g )"~ (3.6)

0 n!
gt (Fe > d) = -7 a)(n PATEA

Substituting, equation (3.6) in (3.2) and equating it to zero, we get

P(l_e‘—ez)¢<L—u) (- don!_ gt =@ e =c (37

o o
The optimal value of u can be obtained from this equation by numerically solving
this equation.
Similar calculations are carried out to find the optimal condition for optimality for

destructive testing, we arrive at the result shown below,

pR=s =, (L ; u) = don!— Tyggide (4 = a0 = (NjX n) ¢ 69

o o
The only change noted in the optimality condition for the two cases i.e for destructive
testing and nondestructive testing is the term (7Y-) on the right hand side of the

equation.
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3.4 Results

In this section, an illustrative example for destructive and non-destructive testing
are presented. Since, it is difficult to find a closed form solution, numerical search
such as Golden Section method is used, and IMSL subroutines of ANORDF are used
to evaluate the standard uni-variate normal distribution function. Computer code
is written in Fortran 90, the program is run on a pentium III computer with 64 MB
ram (see appendix B for the code).

Using the same values as given in the model developed by Boucher and Jafari [1]
and the level of errors from the model of Bennett et. al. [3], the optimal process
mean and expected profit for different sample size, and for different values of dg
are computed. The expected profit obtained by considering the effect of inspection
error is evaluated and compared with that of the profit without error. The values
A, P,c, 0, e, e L are given as,

A =675, P =30.5, ¢c =55, 0 = 0.00563, ¢; =0.01, e, =0.03, L = 1.

The table below shows the values of the optimal process mean and expected profit
for the can filling problem with and with out inspection error. The profit decreases
with the when inspection error is incorporated in the model.

For n=10

without error with error

dy m EP i EP

1| 1.014 | 11.68 | 1.0153 | 11.4370
2 | 1.0111 [ 11.84 | 1.0117 | 11.7865

Table 3.1: Expected Profit and Mean with and without Error for n=10
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For n=20

without error with error

do W EP m EP

1 [1.0154(11.60(1.0175 | 10.9328
2 (1.0129 ] 11.75 ] 1.0142 | 11.6108

Table 3.2: Expected Profit and Mean with and without Error for n=20

For Destructive Testing

For n=10

without error with error

dp 7 EP n EP

1 [ 1.01381 | 4.93 | 1.01514 | 4.7096
2 | 1.01097 | 5.097 | 1.01159 | 5.0437

Table 3.3: Expected Profit and Mean for Destructive testing, for n=10

without error with error

do n EP m EP
1101529 -1.889 |1.01734 | -2.45
2 | 1.01275 | -1.74028 | 1.01407 | -1.8664

Table 3.4: Expected Profit and Mean for Destructive testing, for n=20

The point to be noted here is that, the solution is independent of the lot size "N”,
whatever may be the lot size the value of the Expected Profit and Optimal Mean
u are not affected. As we can see from the table above, for the same value of
do, as the sample size increases the set point also increases because for any value
q, the OC curve of a sampling plan with higher "n”will show less probability of
acceptance. In simple terms, sampling more units in a lot ensures the detection of
the non-conformity and rejecting the lot. That’s why the producer increases the set

point. As we can see from the table above, as the sample size increases the mean is
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increased and if the mean is increased then the Expected Profit will decrease.
Moreover, as the allowable number of defectives d is increased then the optimum set
point falls because, for the same "n” raising the value of dy has the effect of enlarging
the area of acceptance under the OC curve, i.e the probability of acceptance increases
with the increase in the value of acceptance number d,.

As can be seen from the tables above, the expected profit for destructive testing is
less than the expected profit for non destructive testing, but with the increase in
the lot size N the expected profit for destructive testing increases, but if the lot size
is infinite then the expected profit for both destructive and non destructive testing

are equal.

3.4.1 Hyper-geometric distribution

Using the same values as given in Boucher and Jafari model [1], the expected profit
and optimal mean are computed considering hypergeometric distribution. The graph
shows the expected profit with and without error for binomial distribution and ex-
pected profit with and without error for hypergeometric distribution at different
levels of the lot size N. The results shows that when the lot size is small the hyper-
geometric distribution gives the best results but as the lot size increases the expected
profit for hypergeometric distribution is almost the same as the expected profit for

binomial.

41



S & 8

Expected Profit
S o

o n

30 40 SO 60 70 80 90 100 110 120 130 140 150
lot size N

—&— EP(with error) with B.D —&— EP(without error)with B.D
—&— EP(with error) with H.D —&~— EP(without error) with H.D

Figure 3.1: Expected Profit vs Lot Size for hypergeometric distribution

3.5 Sensitivity Analysis

The effect of type I and type II errors on expected profit and the process mean is
investigated in the sensitivity analysis. Two Sampling Plans are considered with
sample size n = 10 and 20, and with same acceptance number dy = 2. Table 3.5
and 3.6, shows the optimal mean and expected profit at different levels of type I
and type II error. The levels considered for type I and type II errors are taken from
the paper by Bennett [3]

Change in profit is defined as the difference between expected profit without error

and expected profit with error. Thus, percentage change in profit is given by,

E P(without error) — EP(with error)
E P(without error)

percentage change in profit = 100 (3.9)

The point to be noted in the tables shown below is that, the first few values of the

change in profit is negative. This is expected because when type I error is nullified
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and increasing the value of type II error, we are classifying more number of defective
items as good and selling them at a higher price. So, the profit with error is expected
to be more than the profit without error. This is a limitation in the model it does

explicitly considers the negative effect of type II error.
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Expected profit without error = 11.84 _
percentage change in profit = EP(withouterror) - EP(uwitherror) , 1))

E P(withouterror)
(e1,€2) 7 EP | Percentage change in profit
(0,0.01) |1.01106 | 11.844 -0.033
(0,0.03) | 1.01101 | 11.847 -0.059
(0,0.05) {1.01096 | 11.849 -0.076
(0,0.1) 1.01082 | 11.857 -0.143
(0,0.15) | 1.01067 | 11.864 -0.202
(0.01,0) | 1.01177|11.782 0.489
(0.01,0.01) | 1.01175 | 11.783 0.481
(0.01,0.03) | 1.01169 | 11.786 0.456
(0.01,0.05) | 1.01164 | 11.789 0.4307
(0.01,0.10) | 1.0115 | 11.796 0.371
(0.01,0.15) | 1.01136 | 11.803 0.312
(0.03,0.0) | 1.0132 | 11.594 2.077
(0.03,0.01) | 1.01318 | 11.595 2.069
(0.03,0.03) | 1.01313 { 11.598 2.0439
(0.03,0.05) | 1.01311 | 11.6 2.0270
(0.03,0.1) | 1.013 | 11.607 1.967
(0.03,0.15) | 1.0128 | 11.613 1.917
(0.05,0) |[1.01444 | 11.253 4.95
(0.05,0.01) | 1.01441 | 11.254 4.949
(0.05,0.03) | 1.01437 | 11.256 4.932
(0.05,0.05) | 1.01435 | 11.259 4.907
(0.05,0.1) | 1.01424 | 11.265 4.856
(0.05,0.15) | 1.01407 | 11.271 4.805
(0.1,0.0) {1.01615| 9.372 20.844
(0.1,0.01) | 1.01615 | 9.373 20.836
(0.1,0.03) | 1.0161 | 9.375 20.819
(0.1,0.05) | 1.01604 | 9.377 20.802
(0.1,0.1) |1.01593 | 9.383 20.751
(0.1,0.15) { 1.01582 | 9.39 20.692
(0.15,0.0) | 1.0168 | 5.995 49.366
(0.15,0.01) | 1.01677 | 5.997 49.349
(0.15,0.03) | 1.01677 | 5.999 49.332
(0.15,0.05) | 1.01672 | 6.001 49.315
(0.15,0.1) | 1.0166 | 6.007 49.265
(0.15,0.15) | 1.01644 | 6.014 49.206

Table 3.5: Expected Profit and Optimal Mean at different values of Error for n =
10 ;do =2
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Table 3.6: Expected Profit and Optimal Mean at different values of Error for n =

20;dp =2

Expected profit without error = 11.75

(e1, €2) M EP | Percentage change in profit
(0,0.01) |1.01284 | 11.751 -0.0085
(0,0.03) | 1.01279 | 11.754 -0.0340
(0,0.05) 1.012 | 11.756 -0.051
(0,0.1) |1.01262 | 11.763 -0.11064
(0,0.15) |1.01249 | 11.769 -0.161
(0.01,0) |1.01424 | 11.607 1.217
(0.01,0.01) | 1.01422 | 11.608 1.208
(0.01,0.03) | 1.01417 | 11.61 1.191
(0.01,0.05) | 1.01413 | 11.613 1.165
(0.01,0.10) | 1.01401 | 11.619 1.114
(0.01,0.15) | 1.0139 | 11.625 1.06383
(0.03,0.0) | 1.01652 | 10.856 7.608
(0.03,0.01) | 1.0165 | 10.857 7.6
(0.03,0.03) | 1.01646 | 10.859 7.582
(0.03,0.05) | 1.01642 | 10.861 7.565957
(0.03,0.1) | 1.01631 | 10.866 7.523
(0.03,0.15) | 1.0162 | 10.872 7.472
(0.05,0) | 1.01761 | 9.137 22.238
(0.05,0.01) | 1.01759 | 9.138 22.229
(0.05,0.03) | 1.01756 | 9.14 22.212
(0.05,0.05) | 1.01752 | 9.142 22.195
(0.05,0.1) | 1.01741 | 9.147 22.153
(0.05,0.15) | 1.0173 | 9.152 22.110
(0.1,0.0) |1.01831 | 1.549 86.817
(0.1,0.01) | 1.01829 | 1.55 86.80851
(0.1,0.03) | 1.01825 | 1.552 86.791
(0.1,0.05) | 1.01821 | 1.554 86.774
(0.1,0.1) | 1.01811 ] 1.559 86.731
(0.1,0.15) | 1.01799 | 1.565 86.680
(0.15,0.0) | 1.01792 | -6.72 157.191
(0.15,0.01) | 1.0179 | -6.726 157.242
(0.15,0.03) [ 1.01786 | -6.724 157.22
(0.15,0.05) | 1.01781 | -6.722 157.208
(0.15,0.1) | 1.01777 | -6.716 157.157
(0.15,0.15) | 1.0175 | -6.71 157.106
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3.5.1 Effect of Type I Error on Expected Profit

In this section, expected profit at different levels of type I error are shown in Figures
3.2 to 3.7, each figure shows, Expected profit versus type I error at fixed levels
of e;, containing 2 plots each with different sampling plan with sample size n and
acceptance number dy. At a given level of type II error, the expected profit decreases
with the increase in the value of type I error, this is expected because a good item
is classified as defective when type I error is committed, and it is sold at a reduced
price. Thus, reducing the expected profit.

Expected Profit decreases sharply as type I error tends to 0.1. As the sample size
increases the expected profit is reduced because the sampling plan with a higher

sample size will show a smaller probability of acceptance.

type | error vs EP

—&—n=20,d0=2
——-n=10,d0=2

Figure 3.2: Expected Profit versus e; at e; = 0
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type | error vs EP

——n=20,d0=2
—~n=10,d0=2

Figure 3.3: Expected Profit versus e, at e; = 0.01

type | error vs EP

—&o—n=20,d0=2
—8—-n=10,d0=2

Figure 3.4: Expected Profit versus e; at e; = 0.03
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type | error vs EP

——n=20,d0=2
—&-n=10,d0=2

Figure 3.5: Expected Profit versus e; at e; = 0.05

type | error vs EP

——n=20,d0=2
~8—n=10,d0=2

Figure 3.6: Expected Profit versus e; at e; = 0.1
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type | error vs EP

—o—n=20,d0=2
~@—n=10,d0=2

Figure 3.7: Expected Profit versus e; at e; = 0.15

3.5.2 Effect of Type II Error on Expected Profit

The Expected Profit at different levels of type II error are shown in this section. As
shown in the figures 3.8 to 3.13 taking different values of e,, for the same Sampling
plan expected profit increases with the increase in the level of type II error, this is
expected because increasing the level of type II error implies that we are classifying
more number of defective items as good and selling it at a higher price.Thus, Ex-
pected Profit is assumed to be directly proportional to type II error.

Each figure shows Expected profit versus type II error at different levels of e, ; con-
taining 2 plots each with different sampling plan with sample size n and acceptance
number dy.As the sample size increases the Expected Profit is reduced because the
sampling plan with a higher sample size will show a smaller probability of acceptance

for the same acceptance number dy.Simply,Sampling more units in a lot increases
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the chances of detecting the non-conformity and rejecting the lot. As seen from
figures 3.2 to 3.7, type I error reduces the value of EP. Thus, type I error has more

impact on Expected Profit than type II error.

type Il error vs EP

11.88
11.86
11.84
11.82

11.8
11.78
11.76
11.74
11.72

11.7
11.68

——n=20,d0=2
—8-n=10,d0=2

(0,0.01) (0,0.03) (0,005 (0,0.1) (0,0.15)

Figure 3.8: Expected Profit versus e; at e; =0

type Il error vs EP

——n=20,d0=2
~@-n=10,d0=2

Figure 3.9: Expected Profit versus e; at e; = 0.01
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type ll error vs EP

——n=20,d0=2
—~n=10,d0=2

Figure 3.10: Expected Profit versus e; at e; = 0.03

12
10
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type Il error vs EP

——n=20,d0=2
——n=10,d0=2

Figure 3.11: Expected Profit versus e; at e; = 0.05
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type ll error vs EP

Figure 3.12: Expected Profit versus e, at e; = 0.1

o N & OO

o 60N\ N
&

type ll error vs EP

——n=20,d0=2 !
—&-n=10,d0=2

——n=20,d0=2
—&—-n=t 0,d0=2

Figure 3.13: Expected Profit versus e, at ¢; = 0.15
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3.5.3 Effect of type I and type II error on Optimal Mean

The effect of type I error on optimal mean are shown in figure 3.16 and 3.17, at a
given level of type II error the mean tends to increase drastically with the increase
in type I error, this shows that the process mean is forced higher at higher values of
e.

In figure 3.14 and 3.15, keeping e, as constant, optimal mean versus type II error is
plotted. the graphs shows that the mean tends to decrease with the increase in the
value of e,.

The graphs show two points with different sampling plan with sample size n and
acceptance number dy . It can be seen that as the sample size increases the mean
of the process is increased because for any value of probability of failure g,, the OC
curve of a sampling plan with higher n will show a lower probability of acceptance,

this forces the producer to increase the set point.
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type Il error vs MU

1.015
1.014
1.013
1012 —o—n=20,d0=2
1.011 ~8—n=10,d0=2
1.01
1.009
A
@9
Figure 3.14: p versus e; at ¢; = 0.01
type ll error vs MU
——n=20,d0=2
—8—n=10,d0=2

Figure 3.15: u versus e; at ¢; = 0.15

94




type | error vs MU

1.02
1.018
1.016
1.014
1.012

——n=20,d0=2
- n=10,d0=2

1.01
1.008
1.006 -

Figure 3.16: u versus e, at e; = 0.01

type | error vs MU

1.02
1.018
1.016

—&o—n=20,d0=2
- n=10,d0=2

1.014
1.012

1.01
1.008
1.006

Figure 3.17: u versus e, at e; = 0.15
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3.5.4 Effect of Cost parameters on Expected Profit

The effect of different cost parameters on expected profit are studied in this section,
by taking the partial derivative of the profit function w.r.t. the selling price A, P
and processing cost c. Thus, the partial derivatives of equation 3.1 w.r.t different

parameters are as follows:

o( £l

0A
o)
T— = —P(Z¢>do)

a(Elzell)

S~ N 7 _
dc #

The partial derivative w.r.t selling price A is constant, whereas the partial deriva-
tive w.r.t P the price reduction for rejected items is equal to the negative of the
probability of rejection, and the rate of change of profit w.r.t cost c is the negative
of the mean of the process.

The rate of change of profit w.r.t selling prices at different sample sizes are plot-
ted against the acceptance number dy. Figure 3.18, shows that the rate of change
of profit w.r.t A is constant for all levels of the acceptance number dy. As seen
from the figure 3.19, for the same acceptance number, as the sample size increases
the probability of acceptance decreases, because sampling more units in a lot have
higher chances of detecting the defect and rejecting the lot. So, the probability of
acceptance decreases with the increase in the sample size and hence the probability
of rejection increases. The rate of change of expected profit w.r.t P is the negative

of the probability of rejection. Therefore, for the same acceptance number, the rate
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of change of expected profit w.r.t P decreases because of the negative sign. But for
the same level of sample size, the rate of change of profit w.r.t P increases with the
increase in the level of acceptance number.

The rate of change of expected profit w.r.t ¢ vs. dp is shown in figure. 3.20, the
figure shows 4 plots with different sample size, the rate of change of expected profit
is the negative of the mean of the process. With the increase in the acceptance
number, the mean of the process decreases because raising the value of dy has the
effect of enlarging the area of acceptance under the OC curve corresponding to the
sampling plan. i.e. allowing more nonconforming units to occur gives the producer
more latitude in producing nonconforming units, but as seen in the figure the rate of
change of expected profit w.r.t. ¢ increases because of the negative sign associated
with the mean. The rate of change of expected profit w.r.t ¢ increases with the

increase in the acceptance number.

(-1 ]
os i

: 04

Figure 3.18: Rate of change of Expected Profit w.r.t A vs dg
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d,

—o=nag5 ~@~nm20 —a—nmi5 ~@=n=10]

25

Figure 3.19: Rate of change of Expected Profit w.r.t P vs d,

-0.995 T T T -

-1.005 H
-1.01
-1.015 1

-1.02

d,

'=-n=25 --n=20 -+-n=15 = n=10]

-1.025 -

Figure 3.20: Rate of change of Expected Profit w.r.t ¢ vs d;
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3.6 Conclusion

In this chapter a model for process targeting is developed by incorporating the effect
of type I and type II error on the sampling inspection plan. The results showed that
the expected profit increases with the increase in the level of type II error and
decreases with the increase in the level of type I error. Sensitivity analysis is also
conducted to study the impact of error on the solutions. It is concluded that type

I and type II errors has a tremendous impact on the process optimal parameters.
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Chapter 4

Multi-Class Process Targeting

with Quality Sampling Plans

4.1 Introduction

The purpose of this chapter is to develop a multi-class targeting model using Sam-
pling Inspection Plan. A container filling process is considered, in which a product
out of the production process, is sold in one of two markets with different profit
structures or scrapped, suppose the quality characteristic X has a lower specifica-
tion limit L, the quality characteristic may be the weight or volume of the container.
Sampling Inspection is used in this model instead of 100 percent inspection because
of less inspection, less handling of the product, lower inspection error etc.

In this model lot disposition is done by sampling i.e, a sample is drawn from a lot,
to classify the lot into three classes(grades) based on the acceptance number of the
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sample, i.e, grade 1 is the product in the lot with number of defectives less than the
acceptance number for grade 1 d;, the grade 2 product in the lot is the product that
has acceptance number greater than d, and less than d; and the third class is scrap,
number of defective greater than d,.

The objective of this model is to maximize the expected profit by finding the op-
timum target value for multi-class targeting problem with quality sampling plans.
Two cases are examined here.

(1) When sampling results in destructive testing and

(2) When the sampling results in non-destructive testing.

This chapter is organized as follows, model development is presented in sec.4.2, in
this section notations, model assumptions and statement of the model, and model
formulation are presented. Solution and Analysis of the problem is discussed in

sec.4.3,and the results are shown in sec.4.4.

4.2 Model Development

The model developed in this chapter is presented in this section. The section con-

tains, model notations, assumptions, problem statement and model formulation.

4.2.1 Notations

The following are the symbols which are used in this chapter,
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a, = Selling price for grade 1 item,

a; = Selling price for grade 2 item,

r = Salvage value when an item is scrap,

¢ = Ingredient cost per unit weight,

X = Weight or volume of the product and is a random variable,

# = The expected value of X or process mean,

02 = Process variance,

L = Lower specification limit for the product attribute,

n = Sample size,

q = Probability of failure i.e P[X < L] = <I>(L~;-ﬁ),

d, = Allowable number of non-conforming units in the sample for gradel,
d; = Allowable number of non-conforming units in the sample for grade2,
z = Number of non-conforming units in the sample.

4.2.2 Model Assumptions

1. The inspection process is assumed to be error free.

2. The quality characteristic X is assumed to be normally distributed with mean

1 and variance o2.
3. The variance of the process is assumed to be known and fixed.
4. Sampling plan is used for ensuring product quality.

5. The probability of an item being defective is independent of other items in the

lot.

6. The selling price for grade 1 is greater than selling price for grade 2 is grade

than the price for scrap, i.e a; > a; > 7.

7. The acceptance number for grade 2 is greater than the acceptance number for

grade 1, i.e d; > d,
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4.2.3 Statement of the model

Consider a can filling process or turning a metal bar. The quality characteristic X,
for the can filling process is the weight of the material or the diameter of the turned
metal bar, X is assumed normally distributed with mean x and known variance o2.
Products are produced in lots, sampling plan is used for ensuring product quality.
A container is classified as a "non-conforming” if it is filled less than the lower
specification limit (X<L). The lot disposition is based on the number of defective
x in the sample. If the number of defective in the sample is less than or equal to
acceptance number for grade 1, the lot is considered as grade 1. If the number of
defective is greater than d; and less than or equal to d, it is considered as grade 2
product. If the number of defectives are greater than d,, then the product is scrap.
Containers from a production lot that is accepted for grade 1 are sold at a price
"a,” per container, whereas containers acceptable for grade 2 are sold at a price a,

and salvage value r per container, is obtained if the lot is scrap.

4.2.4 Model Formulation
Non-Destructive Testing

Thus, The expected revenue for a lot of size N, given z.
( alN if z S dl
E[RIJI] = 4 a;N ifdy<z<d;

rN ifz>d,

\
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For the set point of u, the expected value of the marginal cost per lot is Ncy, where
u is the expected value of X.

Therefore, The marginal profit function is

Eln(p)] = aiNP(z <d))+a;NP(d, <z <dy) +rNP(z > dy) — Neu
e

E[i’ré“)] = aP(z <d))+a;P(di<z< dy) +rP(z > dy) — cu (4.1)

Where E[m(u)] is the expected profit when the set point p is fixed at a specific
value, the process mean may be set higher to reduce the cost incurred by producing
defective items. Using a higher process mean, however, results in a higher production
cost. Therefore, a process mean is to be selected so that the expected profit per

item is maximized.

Destructive Testing

It is often the case that examining the weight of the contents of a package will result
in destroying the product,

Then, The expected revenue becomes

4

al(N—n) if z S dl

E[Rlz] =4 ay(N-n) ifd, <z <d,

r(N-n) ifz>d,

\

And the expected profit becomes,
E[r(p)] = a) (N —n)P(z < di) +a(N —-n)P(d, < z <dy) +r(N -=n)P(z >d2) — Nep (4.2)
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It should be noted that the expected profit for nondestructive testing is not di-
rectly comparable cost wise to destructive testing because there are different cost
associated with the sampling method used. In nondestructive testing the container

is salvageable, whereas it is rendered useless in destructive testing.

4.3 Solution and Analysis

We want to maximize ﬂ%ﬁn defined above. A necessary condition for optimality is

that the partial derivative with respect to 4 vanishes at the target value p.

: o 8 Elm(w)] _
l.e a—%zl = 0,
Therefore,
0 Eln(p)] _ 8 d a _
6;1—N —ala#P(zsdl)-f-ag—a“P(dl <zr<d,) +ra—#P(z >dy)-c=0 (4.3)

we know that x is binomially distributed with sample size n and probability of

failure q. Therefore,

Where
q=P(X <L)=%(-2)
and
z=#—L
o

Then,

dq 1 (L - u)

===t

n o o



therefore,

a dq 0
—_— < = -
aup(l' <d,) 3,uaqP(I <d)

d

-aa—qP(z <d) = a%z ('i')q"(l - q)tn=d)

=0
dy
= g (1:) [iq(i—-l)(l - ‘I)("_i) - qi(n —-i)(1 - q)(n—i-l)]
= -n(l-q)" M+ [n(l — @)V _ n(n - 1)q(l q)("—2)]

+

160 - a1 - - - 2By q)<n-=>] ‘.

dlq(dl'l)(l - q)('I-dl) _

+

A

n! n!
[(n —dy)ld! (n —dy)dy!

n! g
plit ey y Ll Gk

We can write the above equation as,

0 n!
— < — — dy _ (n—d,-1)
aqp(z: <d) n—d, 1)!d1!q (1-9q)
Therefore,
0 dq (0
— < = — | —
ul Esd) o (aqplz = dl])
i.e,
0 1 n!
< —— : di(1 _ ,\(n—d-1) .
apF (e S ) = S8 g e (- 0 (44

Similar calculations are carried out to get the differential of P(z > d,) with respect

to u

%P(z > dp) = %(1 — Pz < dy])
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ie,

0 1 n! —da—
6_;;P($ > dp) = —~¢(2) n—d; = 1)!d2!qd’(1 — g)n~%) (4.5)
similarly,
%P(dl <.'L‘Sd2) = g—Z' (%P(d[ <1‘Sd2))
Therefore,
3 0 & (n) . .
—Pld <z<dy) = — S )d'(1 = )0
5P <z <do) 3«1,}31 ;)e-a)
4z n . . . .
= > (7) -0 - g - - go-iY]
i=d+1

(("n?«n——?fwm—n(dx +1)g%(1 - q)m-dl-l,)

_((T-dl__?)!s_ﬁm(n —d; - 1)gh+(1 - ) J

[ -

((T—au—zn)!!Tm(dl + 2)gh+(1 - q)(n—dl-z))

+
L —(m’l)!!(—dm(" —dy - 2)gh*3(1 - q)(n-—dl_a)) |
n! _ dy—2 B donl
+ et (m@-—m(dz 1)g%~2(1 — q)(n—d2+ ))
_(G’m(n —dy + 1)g%1(1 - q)("—dz))
+
_(m(n - d2)qdz(1 - q)("—dz—l))
That is equal to,
iP(dl <zr< dz) = n! qd‘(l — q)(n-dx--l) _ n! qd2(1 ~ q)(n—dz_l)
Jdq - (n—=d, - 1), = d D)y
Therefore,
iP(d <zsdy) = ‘l¢(2) [*n!'——q“t(l ~q)in—di=1) _ n! ¢ (1 - g)n~%7Y)
an 1 <d; o (n —d, - 1)d;! FY AL
(4.6)
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Substituting equations(4.4),(4.5) and (4.6) in (4.3), and equating it to zero, we get

#(2)

n! g (] — g)(Pn—dr-1) - n! ad2(1 _ ,\(n—dz—1) _ _
a[m-m-nmﬂ(IQ) (@1 —a2) + e (1 - ) (az—r)} =c

(4.7)

‘The optimal value of 4 can be obtained from this equation by numerically solving
this equation.

Similar calculations are carried out to find the optimal condition for optimality for

destructive testing, we arrive at the result shown below,

o [ T 0 e )+ g - e )
N
_ (N_n)c (4.8)

The only change noted in the optimality condition for the two cases i.e for destruc-
tive testing and non destructive testing is the term (%) on the right hand side of

the equation.

68



4.4 Results

In this section, an illustrative example for destructive and non-destructive testing
are presented. Since, closed form solution cannot be obtained to this problem. A
line search such as golden section method is used to get the solutions. computer
code is written in Fortran 90, the program is run on a pentium III computer with
64 MB RAM (see appendix C for the code).

Using the same numerical values of the parameters as given in the model developed
by Boucher and Jafari [1], the optimal process mean and expected profit for different
sample size, and for different values of d; and d, are evaluated. Given a; = 67.5,
az = 37, r =10,c = 55, 0 = 0.00563, L = 1.

The table below shows the values of the optimal process mean and expected profit

for the Multi-Class Process Targeting problem for sampling plans.

d1=0 d1=1 d1=2 d1=3
ds n EP 7 EP 7 EP n EP
1 | 1.0206 | 11.289 - - - - - -
2 11.0206 | 11.289 | 1.0155 | 11.5989 - - - -
3 | 1.0206 | 11.289 | 1.0154 | 11.5989 | 1.0129 | 11.749 - -
4 [1.0206 | 11.289 | 1.0154 { 11.5989 | 1.0129 | 11.7505 | 1.0112 | 11.8494

Table 4.1: Expected Profit and Mean for n=20 using model I values

Using the numerical values of the parameters given by Lee and Jang [4], the optimal
process mean and expected profit for different sample size, and for different values

of d; and d; are obtained.
69



d1=0 d1=1 d1=2 d1=3
d; 7 EP 7 EP I EP 7 EP
1 1.0195|11.346 - - - - - -
2 | 1.0195 | 11.346 | 1.014 | 11.6741 - - - -
3 | 1.0195]11.346 | 1.014 | 11.6748 | 1.011 | 11.8415 - -
4 ] 1.0195|11.346 | 1.014 | 11.6748 | 1.011 | 11.8415 | 1.0091 | 11.9582

Given a; = 5.5, 0, = 5.1, r = 2.5,¢c = 0.01, 0 = 1.25, L = 40.

The table below shows the values of the optimal process mean and expected profit

for the Multi-Class Process Targeting problem.

Table 4.2: Expected Profit and Mean for n=10 using model I values

d1=0 d1=1 d1=2 d1=3

d, 7 EP " EP 7 EP I EP

1 [ 44.1758 | 5.0548 - - - - - -

2 | 44.1606 | 5.0549 | 43.2239 | 5.0657 - - - -

3 | 44.1604 | 5.0549 | 43.1809 | 5.0661 | 42.729 | 5.0711 - -

4 | 44.1604 | 5.0549 | 43.1809 | 5.0661 | 42.6595 | 5.0717 | 42.3796 | 5.0748

Table 4.3: Expected Profit and Mean for n=20 using model II values

d1=0 d1=1 d1=2 d1=3

d, 7 EP i EP 7 EP i EP

1 | 43.9105 | 5.0573 - - - - - -

2 | 43.8847 | 5.0574 | 42.8734 | 5.0689 - - - -

3 | 43.8865 | 5.0574 | 42.8149 | 5.0693 | 42.3141 | 5.075 - -

4 | 43.8864 | 5.0574 | 42.8131 | 5.0694 | 42.2322 | 5.0756 | 41.9044 | 5.0794

Table 4.4: Expected Profit and Mean for n=10 using model II values

For Destructive Testing Using the same values of model I, the optimal process
mean and Expected Profit for different sampling plans are shown for destructive

testing.
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For n=20,N=100;

d1=0 d1=1 d1=2 dl=3
ds u EP U EP i EP I EP
1 | 1.0202 | -2.1923 - - - - - -
2 | 1.0202 | -2.1922 | 1.0152 | -1.8905 - - - -
3 | 1.0202 | -2.1922 | 1.0152 | -1.8895 | 1.0127 | -1.7420 - -
4 | 1.0202 | -2.1922 | 1.0152 | -1.8895 | 1.0127 | -1.7424 | 1.011 | -1.6427

Table 4.5: Expected Profit and Mean for n=20 for destructive testing using model

I values

For n=10,N=100;

d]_:O d1=1 d1=2 d[=3
ds 7 EP 7 EP I EP I EP
1 |1.0193 | 4.6051 - - - - - -
2 11.0193 | 4.6052 | 1.0139 | 4.9299 - - - -
3 | 1.0193 | 11.346 { 1.0139 | 4.9308 | 1.0111 | 5.0963 - -
4 {1.0193 | 11.346 | 1.0139 | 4.9308 | 1.0111 | 5.098 | 1.0090 | 5.2124

Table 4.6: Expected Profit and Mean for n=10 for destructive testing using model

I values

Using the same values as given in model II, the optimal process mean and Expected

Profit for different sample size, and for different values of d; and d, are obtained for

destructive testing.

For n=20,N=100;

d1=0 dl——-—l d1=2 d1=3
d: | & EP 1 EP m EP 7 EP
1 | 44.0918 | 3.9556 - - - - - -
2 | 44.0837 | 3.9557 | 43.1814 | 3.9661 - - - -
3 | 44.0837 | 3.9557 | 43.1112 | 3.9666 | 42.6937 | 3.9714 - -
4 | 44.0835 | 3.9557 | 43.1112 | 3.9666 | 42.6209 | 3.9721 | 42.3550 | 3.9751

Table 4.7: Expected Profit and Mean for n=20 for destructive testing using model
IT values
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For n=10,N=100;

d1=0 d1=1 d[=2 d1—3
d, 7 EP I EP I EP U EP
1 | 43.8632 | 4.5077 - - - - - -
2 | 43.8398 | 4.5078 | 42.8552 | 4.5192 - - - -
3 | 43.8399 | 4.5078 | 42.7836 | 4.5196 | 42.2965 | 4.5252 - -
4 | 43.8399 | 4.5078 | 42.7835 | 4.5196 | 42.2147 | 4.5258 | 41.8836 | 4.5296

Table 4.8: Expected Profit and Mean for n=10 for destructive testing using model
IT values

Looking at equation 4.3, one can say that, the solution is independent of the lot size
N. The value of the expected profit and optimal mean u are not effected for any
value of the lot size,this is only applied for non-destructive testing, but for destruc-
tive testing the value of the expected profit and the optimal mean depends on the
lot size as can be seen from the table.

As the lot size is increased the value of the expected profit also increases, but the
expected profit for destructive testing is always less than expected profit for non-
destructive testing, for any number of units in the lot. As can be seen from the
table above, for the same value of d;, as the sample size increases the set point
also increases because for any value q, the OC curve of a sampling plan with higher
"n”will show less probability of acceptance. In simple terms, sampling more units
in a lot ensures of detecting the non-conformity and rejecting the lot. That’s why
the producer increases the set point.

As we can see as the sample size increases the set point is increased and if the set

point is increased then the Expected Profit will decrease.
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4.4.1 Effect of d; on Expected Profit

The expected Profit at different levels of acceptance number for different sample size
are shown in figures 4.1 and 4.2.

For the same sampling plan, the expected profit increases with the increase in the
level of acceptance number d, for grade 1, because for the same sample size the
probability of acceptance increases with the increase in the level of acceptance num-
ber d,.

As the sample size is increased, the expected profit decreases because sampling plan

with a higher sample size will show a lower probability of acceptance.

d1 versus EP

12.2
12
11.8
11.6
11.4
11.2
11
10.8 r . . .
d1=0 di=1 di=2 di=3

| —n=10;d2=4 —8—n=20;d0=4

Figure 4.1: Expected Profit versus d; at d, = 4
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d1 versus EP

5.09 -
5.08 -
5.07
5.06 -
5.05 -

5-04 T T ¥ 1
d1=0 di=1 di1=2 d1=3

—o—n=10;d2=4 —8—n=20;d2=4

Figure 4.2: Expected Profit versus d; at d, = 4

4.4.2 Effect of d; on u

The effect of acceptance number d; on optimal mean is shown in figures 4.3 and 4.4,
the graphs shows that the mean tends to decrease with the increase in the value of
acceptance for grade 1 d; .

As the sample size increases for the same value of acceptance numbers d; and d;;
the mean of the process is increased, because for any value of lot fraction defective
q, the OC curve of the sampling plan with higher n will show a lower probability of

acceptance.
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d1 versus mu

1.002

di=0 di=1 d1=2 d1=3

d1

|—#—n=10;d2=4 —8~n=20;d2=4 |

Figure 4.3: u versus d, at d, = 4

44.5 -

43.5
43 -
42.5 -
42 1
41.5 -
41 -

d1 versus mu

40.5

di=0 di=1 di=2 di1=3

—o—n=10;d2=4 —8—n=20;d2=4

Figure 4.4: p versus d; at d; = 4
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4.4.3 Effect of Cost parameters on Expected Profit

The effect of different cost parameters on expected profit are studied in this section,
by taking the partial derivative of the profit function with respect to. the selling
price a;, az, r and processing cost c. The rate of change of expected profit are
computed in this section. thus, the partial derivatives of equation 4.1 with respect

to these parameters are as follows:

o( el

N
6(11
o( el
Bag
i )

dc

P(z < d)

= P(d; <z <d,)

The partial derivative with respect to selling price a, is the probability of the lot
accepted for grade 1, and the partial derivative with respect to a, is equal to the
probability of acceptance for grade 2, and the probability that the lot is scrap is the
rate of change of expected profit with respect to selling price r. whereas, the rate of
change of profit with respect to cost c is the negative of the mean of the process.
The rate of change of profit at different sample sizes are plotted against the accep-
tance number d; and d,. Figure 4.5 shows that the rate of change of profit with
respect to a; Is increases with the increase in the acceptance number d;.

Fig.4.6 shows the rate of change of expected profit with respect to a, vs acceptance
number for grade 1 d,, the rate decreases with the increase in the acceptance number

for grade 1. Fig 4.7, shows the rate of change of expected profit with respect to r vs
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ds, the rate of change decreases with the acceptance number d,.

The rate of change of expected profit with respect to ¢ vs. d, is shown in figure. 4.8,
the figure shows 4 plots with different sample size, the rate of change of expected
profit is the negative of the mean of the process. With the increase in the acceptance
number, the mean of the process decreases because raising the value of dy has the
effect of enlarging the area of acceptance under the OC curve corresponding to the
sampling plan. i.e. allowing more nonconforming units to occur gives the producer
more latitude in producing nonconforming units, but as seen in the figure the rate
of change of expected profit with respect to. c increases because of the negative sign
associated with the mean. The rate of change of expected profit with respect to c

increases with the increase in the acceptance number.

0.9995 -
0.999 -
0.9985 -
0.998 -
0.9975 -
0.997 -
0.9965 -
0.996

0 1 2 3
dl
| —#—n=25,d2=4 —8—n=20,d2=4 —4—n=15,d2=4 —a—n=10,d2=4 |

Figure 4.5: Rate of change of Expected Profit with respect to a; vs d,
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0.00E+00 ; : —_
0 1 dl 2 3
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Figure 4.6: Rate of change of Expected Profit with respect to a, vs d;

3.50E-05 -
3.00E-05 -
2.50E-05 -
2.00E-05 -
1.50E-05 -
1.00E-05 -
5.00E-06 -

0.00E+00 T — 4 T + T F 1
2 3 d , 4 5 6

| —~n=25,d1=1 ~8—n=20,d1=1 —4—n=15,d1=1 —8—n=10,d1=1

Figure 4.7: Rate of change of Expected Profit with respect to r vs d,

78



-1.002 T T T —
-1.004 - o 1 2 3
-1.006 -
-1.008 -
-1.01 4
-1.012 -
-1.014 ;
-1.016 -
-1.018 -
-1.02

-1.022 - dl

| ——n=25,d2-4 —8n=20,d2=4 —&—n=15,d2=4 —&—n=10,d2=4 |

Figure 4.8: Rate of change of Expected Profit with respect to c vs d,

4.5 Conclusion
In this chapter, a three class process targeting model is developed with quality
sampling plans. Two cases are examined for sampling i.e, with without destructive

testing. The effect of cost parameters on expected profit and optimal mean are also

examined.
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Chapter 5

Multi-Class Process Targeting
with Quality Sampling Plans and

Inspection Error

5.1 Introduction

The purpose of this chapter is to develop a model for selecting the most economi-
cal target mean for multi-class targeting problem when inspection error is present.
then conduct sensitivity analysis to investigate the effect of the inspection error and
model parameters on the result of the model.

The model is developed for a container filling process is considered where the weight
and volume of the container is represented by a random variable X, that follows

normal distribution with mean p and variance 2. A fixed lower specification limit
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exists for the quality characteristic X of interest, The lot is classified into three
classes using a sampling plan. The classes are grade 1, grade 2, and scrap grade 1
and grade 2 are sold in two different markets with different price structure.

The product is produced in lots and an inspection plan is used for classifying the
product as follows, a sample of size n is drawn from the lot and based on the num-
ber of defective in the sample the lot is classified as grade 1, grade 2 or scrap. If
the number of defectives is less than or equal to d), the lot is considered grade 1.
However, if the number of defectives is more than d, and less or equal to d the lot
is considered grade 2. In case the number of defective more than d, the lot is sold
as scrap.

In this model Inspection error is incorporated in the sampling plan in which an
inspector commits two types of errors i.e

(1) Classify a good item as bad, i.e Type I error and

(2) Classify a bad item as good, i.e type II error

Thus, type I and type II error may cause considerable loss to the society. These
losses could be the loss due to replacement and warranty, loss of goodwill or loss of
profit by selling a higher grade product as a lower grade and selling them at a lower
price.

The objective of this model is to maximize the expected profit by finding the op-
timum target value for multi-class targeting problem with inspection error in the
sampling plan. Two cases are examined here.

(1) When sampling results in destructive testing and
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(2) When the sampling results in non-destructive testing.

This chapter is organized as follows, model development is presented in section5.2,
in which notations, model assumptions and statement of the problem are discussed.
solution and analysis of the problem is discussed in sec.5.3, the model results are

given in sec.5.4, then sensitivity analysis is provided in section 5.5.

5.2 Model Development

In this section, a multi-class process targeting model is developed considering sam-
pling inspection plan and inspection error. At first, model assumptions, followed by,

necessary notations are presented, then the statement of the problem is provided.

5.2.1 Model Assumptions

1. The inspection process is assumed to be error prone.

2. The quality characteristic X is assumed to be normally distributed with mean

u and variance o2.

3. The variance of the process is assumed to be known and fixed.
4. Sampling plan is used for quality control in this model.
5. a; >a; >r.

6. d, > d;.
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9.2.2 Notations

The following are the notations that are used in this chapter

a; = Selling price for grade 1,

a; = Selling price for grade 2,

r = Salvage value when an item is scrap,

¢ = Processing cost per item,

X = Weight or volume of the product and is a random variable,

¢ = The expected value of X or process mean,

02 = Process variance setting,

L = Lower specification limit for the product attribute,

n = Sample size in the inspection plan,

g = Lot fraction defective i.e P[X < L] = ®(£2),

dy = Allowable number of non-conforming units in the sample for gradel,
d2 = Allowable number of non-conforming units in the sample for grade2,
e; = Probability of type I error,

e2 = Probability of type II error,

z = Number of non-conforming items in the sample, x is a random variable,
Te = Observed number of non-conforming units in the sample.

5.2.3 Statement of the Problem

Consider a can filling process or turning a metal bar defined by a quality charac-
teristic X, which represents the quantity of material in an individual container or
the mean diameter of the turned metal bar and it is assumed to be normally dis-
tributed with mean u and variance o2. Sampling Plan is used in this model i.e, a
product is produced daily in lots of size N and from each lot a sample of size n is
drawn and evaluated. A container is defined as a "non-conforming” if it is filled
less than the lower specification limit (X<L). If x is the number of non-conforming
units in the sample, and follows binomial distribution and d; is the allowable num-

ber of non-conforming units, the decision to accept the lot is based on number of
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non-conforming in the sample i.e the lot is accepted if z < d; otherwise scrapped.
Considering the situation in which type I and type II error occurs in the inspection.
The observed number of defectives as it appears to the inspector is not the same as
the actual number of defective items in the sample. The expected observed number

of defectives in the sample given by Bennett [3] is

Te=(n—z)e; + (1 — ex)x

let P = P(X < L), the probability of a item being non-conforming is independent

of the other item in the lot. the lot fraction defective under error is

Pe=(1—P)€1+(1—62)P

Therefore, the decision to accept the lot is based on the observed number of defec-
tives in the sample i.e the lot is accepted if z. < d,. Once the lot is accepted, it
is considered for grades i.e,if the observed number of non-conforming units are less
than d; then the lot is accepted for grade 1 or else accepted for grade 2. Containers
from a production lot that is accepted for grade 1 are sold at a price "a,” per con-

tainer, whereas containers acceptable for grade 2 are sold at a price a; and salvage

value r per container, is obtained if the lot is scrap.
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Non-Destructive Testing

Thus, The expected revenue for a lot of size N, given z..

4
alN if Te < dl

E[R/ze| = { a,N ifd, < z. < dy

rN  ifze > d,

\

For the set point of 4, the expected value of the marginal cost per lot is Ncu, where
1 is the expected value of X.

Therefore, The marginal profit function is

E[r(y)) = aiNP(z. < di)+a;NP(d, < 7, < d3) + TNP(z, > dy) — Ncp
ie

E[’]f\(r“)] = aP(z. < di) +arP(d) < 2. < do) +TP(z. > dy) — cp (5.1)

Where E[r(u)] is the expected profit when the set point u is fixed at a specific value,
The first term in the expected profit function is the profit from accepted items, the
second term is the profit from class 2 items, the third term is the profit obtained
from scrap and Ncy is the cost of processing for the set point p. The process mean
may be set higher to reduce the cost incurred by producing defective items. Using
a higher process mean, however, increases the probability of producing grade 1 and
hence obtaining higher sales and increases the cost. Therefore, the need to select an

optimal mean is to obtain the highest profit exists.
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Destructive Testing

It is often the case that examining the weight of the contents of a package will result
in destroying the product,

Then, The expected revenue becomes

( a(N-n) ifz. <d

E[R/z.] = . a(N -n) ifd, <z, <d,

T(N - n) ifz, > dp

\

And the expected profit becomes,
Elr(u)] = a1(N —n)P(z. < d;) + az(N - n)P(d) < z. < dp) + (N —n)P(z. > d3) — Nep
(5.2)
It should be noted that the expected profit for non destructive testing is not di-
rectly comparable cost wise to destructive testing because there are different cost
associated with the sampling method used. In non destructive testing the container

is salvageable, whereas it is rendered useless in destructive testing.

5.3 Solution and Analysis

The objective is to maximize ﬂ’,ﬂvﬂ defined above. A necessary condition for opti-

mality is that the partial derivative with respect to x vanishes at the target value p.

. . iElx!u!l .
which is N = 0,

Therefore,
2 En(w) _ 8 3 o e
P —N @ 6;4P(z° <d))+a; 3;4P(dl <z, <dp)+ raP(a:e >ds)—-¢c=0 (5.3)
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we know that z. is binomially distributed with sample size n and lot fraction

defective q. Therefore,

Pz < dy) = i (?)q};(l - ;)"

i=0

Where,
ge = q(1 — €2) + (1 — q)e
and
a=P(x < 1) =424
and
u—L
2z =
o
Then,
dq. (l—el—e2)¢<L—u)
="
m c o
therefore,
d 0q. 0
— < = ——— e <
gut (e = h) =5, g Plme <)
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0 8 <N (n) . .
< = — E t —_ (n—i)
a‘k - dl) aqe . ('l)qe(l Qe)

i=0

= ~n(l1 - g)" ™V + [n(1 - )" —n(n - 1)g.(1 — g.)"?)

" [n(n-l) (1 — g)2 - "‘"‘12)("‘2)q3<

d, | | |
= Z (z) [ng 1)(1 - (Ie)(ﬂ—t) ~gi(n—19)(1 - qe)(n—:_l)]

1- qe)(n-a) +

n! n!
LS C T TS QU ) S L S S
nv
- 1] = g,)n=d1=1)
We can write the above equation as,
7, n! d (n—di—1)
< = - (1 —gqe !
6qu(ze_dl) ('n—d]_—].)'dl'qe ( Q)
Therefore,
0 0ge [ O
— < = — | =—Plz. <d
opt TS d) =5, (qu lze < l])
i.e,
d (1 — € — 62) n! d (n—d;-1)
—_ < — 11 — e 1
aﬂp(xe = dl) = ¢(Z) (Tl — dl _ 1)|d1|Qe ( q )

Similar calculations are carried out to get the differential of P(z. > d;) w.r.t p

0 d
—_ - (1 — <
aﬂP(.’L'e 2 d2) a[,t(l P[.’De < dgl)

i.e,

ge (1 — g.)"~*

(5.4)



similarly,

0 0g. [ O
—P(dl < Ie 2 d2) a‘i‘ (aqcP(dl < T 2 dz))
Therefore,
aip(dl <z <dy) = — Z ( )qe(l — o)™
Qe :—d1+l
dz n
= > () [igfV(1 — )" — gi(n —i)(1 — go) "]
i=d;+1 t
- .

((n-—dx—l"')!m(dl +1)get(1 - qe)"‘“‘“”)

((n-d, 1)'(d|+1)'(" - d1 - l)qgl'*'l(]_ - qe)(ﬂ—d1—2))

(ﬁﬁm(dl +2)gh*1(1 - qe)(n—dl—z))

—+
|~ (i@ (0 — & — )¢ (1 — g) "4 Y) |
——n (1 1\ad2=2(1 — 4 (n—d2+1)
+ ..+ (("‘dz+’11)!(dz-l)!(d2 1)g22(1 — g.)"~% )
((""dz+l)'(d2_1)|(n —dp + 1)g%~ (1 — g.) ("))
+ ((n_—de)'_dzdzqe 1 - q,)- dz))

((n—d2)'d2 (n d2)qdz(1 - e )(n—dg—l))

That is equal to,

n! L
902 (1 - ge) Y

— (n—d; 1)
e (n—dy - 1)idy!

9 n!
g Pl < ) = g gt

Therefore,

a (1 —e; —e2) [ ! B o o o
Erai < == & (1—g)r=d-1) ™ dag) _, (n=da=1)
an (di < ze < d2) o #(2) (n—d; - l)!d[!q‘ ( Ge) oo l)!dz!qz ( %)

(5.6)

Substituting equations(5.4),(5.5) and (5.6) in (5.3), and equating it to zero, we get

n!

(1 —e1 — e2)¢(z) o
(n - d2 — 1)'dy!

o [(" dl - 1)'d

08 (1 - ge) ™9 "V (a —az) + 0@2(1 - o) V(e -r)] =c
(5.7)
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The optimal value of ;1 can be obtained from this equation by numerically solving

this equation.
Similar calculations are carried out to find the optimal condition for optimality for

destructive testing, we arrive at the result shown below,

(L ~ e —ea)e(z) [ n! d (n~dy—1) n! do (n~dg—1)(ag— ] ( N )
a - _ 1- 2 2=r)| —
v n—di —Digide (1= 9) (@ —r) ~ g Ty (L %) N-n)€

(5.8)
The only change noted in the optimality condition for the two cases i.e for destruc-
tive testing and non destructive testing is the term (5*-) on the right hand side of

the equation.
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5.4 Results

An example for destructive and non-destructive testing for the targeting problem
with two types of error in the sampling inspection plan are presented in this section.
Since, it is difficult to get the closed form solution to this problem. A line search
such as golden section method is used to get the solutions. Computer code is written
in Fortran 90, the program is run on a pentium III computer with 64 MB RAM (see
appendix D for the code).

Using the same numerical values of parameters as given in the model developed by
Boucher and Jafari [1], and the same error levels as given in th model of Bennett
et.al. [3], the optimal process mean and expected profit for different sample size,
and for different values of d; and d, are evaluated.

Given a; = 67.5, a; = 37, r = 10,c = 55, ¢ = 0.00563, L = l,e; = 0.01 and
es = 0.03.

The table below shows the values of the optimal process mean and expected profit
for the muiti-class process targeting problem for sampling plans with inspection er-

ror.

d1=0 d1=1 d1=2 d1=3
7 EP 7 EP m EP n EP
1.0204 | 5.2868 - -
1.0202 | 5.7263 | 1.0177 | 10.8985 - -
1.0202 | 5.7534 | 1.0176 | 10.9312 | 1.0143 | 11.6047 - -
1.0202 | 5.7546 | 1.0176 | 10.9327 | 1.0142 | 11.6105 | 1.0119 | 11.7891

S

- - - -

o] —

Table 5.1: Expected Profit and Mean for n=20
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Comparing the tables above, w.r.t sample size and acceptance number

d1=0 d1=1 d1=2 d1=3
d, 7 EP U EP 7 EP 7 EP
1 11.0194 | 8.3192 - - - - - -
2 [1.0192 | 8.4377 | 1.0154 | 11.4302 - - - -
3 [1.0192 | 8.4410 | 1.053 | 11.4369 | 1.0118 | 11.7836 - -
4 |1.0192 | 8.4410 | 1.053 | 11.4370 | 1.0117 | 11.7865 | 1.0094 | 11.9335

Table 5.2: Expected Profit and Mean for n=10

The mean of the process increases with the increase in the level of the sample size
for the fixed value of d; and d,, because the OC curve shows lower probability of
acceptance for higher n in the sampling plan, i.e sampling more units in a lot shows
higher chances of detecting the defect and rejecting the lot. That’s why the producer
increases the mean.

If the mean is increased the chance of producing the defectives is reduced at the
expense of cost of manufacturing. Thus,the expected profit decreases with the in-
crease in process mean.

Using the same values as given in the model developed by Lee and Jang [4], the
optimal process mean and expected profit for different sample size, and for different
values of d; and d, are obtained.

Given a; = 5.5, a2 =5.1, 7 = 25,¢c = 001, 0 = 1.25, L = 40, ¢; = 0.01 and
e2 = 0.03.

The table below shows the values of the optimal process mean and expected profit

for the multi-class process targeting problem.
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d

0

dy

=1

7

EP

u

EP

EP

44.3781

4.9363

44.1174

4.9799

43.6694

9.0504

44.0750

4.9828

43.4738

5.0546

42.9770

9.0669

N F X T RS

44.0750

4.9829

43.4569

9.0548

42.8422

5.0682

42.5165

Table 5.3: Expected Profit and Mean for n=20

d

0

d1=1

d

2

d

3

7

EP

n

EP

7

EP

I

EP

44.0317

5.0068

43.8479

5.0192

43.1078

5.0634

43.8320

5.0196

42.9840

5.0647

42.4200

5.0733

waf o] o] =] S

43.8320

5.0196

42.9781

5.0648

42.3200

5.0742

41.9516

5.0786

Table 5.4: Expected Profit and Mean for n=10

For Destructive Testing Using the same values of model I, the optimal process
mean and Expected Profit for different sampling plans are shown for destructive
testing.

For n=20, N=100;

d1=0 d1=1 d1=2 d1=3
d, U EP m EP U EP 7 EP
1 {1.0201 | -6.9935 - - - - - -
2 11.0199 | -6.6393 | 1.0173 | -2.4735 - - - -
3 ]1.0199 | -6.6174 | 1.0172 | -2.4459 | 1.0140 | -1.8718 - -
4 11.0199 | -6.6164 | 1.0172 | -2.4446 | 1.0139 | -1.8661 | 1.0118 | -1.6989

Table 5.5: Expected Profit and Mean for n=20 for destructive testing

93




For n=10, N=100;

d1=0 d1=1 d1=2 d1=3
d; I EP 7} EP i EP 7 EP
1 11.0192 | 1.8813 - - - - - -
2 | 1.0191 | 1.9885 | 1.0152 | 4.7031 - - - -
3 |1.0191 | 1.9915 | 1.0151 | 4.7095 | 1.0116 | 5.0408 - -
4 | 1.0191 | 1.9916 | 1.0151 | 4.7097 | 1.0116 | 5.0437 | 1.0093 | 5.1886

Using the same values as given in model II, the optimal process mean and Expected

Profit for different sample sizes, and for different values of d; and d, are obtained

Table 5.6: Expected Profit and Mean for n=10 for destructive testing

for destructive testing.

For n=20, N=100;

For n=10, N=100;

d1=0 d1=1 d1=2 d1=3
d, i EP 7 EP 7 EP i EP
1 | 44.3038 | 3.8603 - - - - - -
2 |44.0327 | 3.8958 | 43.5832 | 3.9531 - - - -
3 | 43.9831 | 3.8982 | 43.4087 | 3.9568 | 42.9208 | 3.9676 - -
4 |43.9831 | 3.8983 | 43.3794 | 3.9510 | 42.7929 | 3.9689 | 42.4924 | 3.9732
Table 5.7: Expected Profit and Mean for n=20 for destructive testing

As
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d1=0 d[=1 d1=2 d1=3
d; U EP N EP u EP i EP
1 [ 43.9831 | 4.4621 - - - - - -
2 | 43.8017 | 4.4735 | 43.0808 | 4.5139 - - - -
3 | 43.7860 | 4.4739 | 42.9505 | 4.5153 | 42.3964 | 4.5236 - -
4 | 43.7860 | 4.4739 | 42.9505 | 4.5153 | 42.2915 | 4.5245 | 41.9307 | 4.5288
Table 5.8: Expected Profit and Mean for n=10 for destructive testing

the lot size is increasing the value of the Expected Profit also increases, but




the Expected Profit for destructive testing is always less than Expected Profit for

non-destructive testing, for any number of units in the lot.

3.5 Sensitivity Analysis

The effect of type I and type II errors on expected profit and the process mean is
investigated in the sensitivity analysis. Three Sampling Plans are considered with
sample size n = 10,20 and 30, and with same acceptance numbers d; = 3 and dy = 4.
Table 5.9, 5.10 and 5.11, shows the Optimal Mean and Expected Profit at different
levels of type I and type II error.

Change in Profit is defined as the difference between Expected Profit without error
and Expected Profit with error. Thus, percentage change in profit is given by,

EP(without error) — E'P(with error)
E P(without error)

percentage change in profit =

The point to be noted in the tables shown below is that, the first few values of the
Change in profit is negative, this is expected because when type I error is nullified
and increasing the value of type II error, we are classifying more number of defective
items as good and selling it at a higher price. So, the Profit with error is expected

to be more than the Profit without error.

5.5.1 Effect of Type I Error on Expected Profit

In this section, Expected Profit at different levels of type I error are shown. Figures

9.1 to 5.6, shows that at a given level of type II error, the Expected Profit decreases
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Expected profit without error = 11.9582 .
percentage change in profit = ZE(withouterror)_EP(witherror) 10

E P(withouterror)

(e1,e2) M EP | Percentage change in profit
(0,0) 1.0091 | 11.9582 0.00
(0,0.01) | 1.0091 | 11.9597 -0.012
(0,0.03) | 1.000 | 11.9628 -0.038
(0,0.05) 1.009 | 11.966 -0.0652
(0,0.1) 1.0088 | 11.9744 -0.135
(0,0.15) | 1.0086 | 11.9833 -0.209
(0.01,0) 1.0095 | 11.929 0.244
(0.01,0.01) | 1.0095 | 11.9305 0.231
(0.01,0.03) | 1.0094 | 11.9335 0.206
(0.01,0.05) | 1.0094 | 11.9367 0.179
(0.01,0.10) | 1.0092 | 11.9449 0.111
(0.01,0.15) { 1.009 | 11.9536 0.038
(0.03,0.0) | 1.0104 | 11.8561 0.853
(0.03,0.01) | 1.0104 | 11.8575 0.842
(0.03,0.03) | 1.0103 | 11.8605 0.817
(0.03,0.05) | 1.0103 | 11.8634 0.792
(0.03,0.1) | 1.0101 | 11.8713 0.726
(0.03,0.15) | 1.0099 | 11.8797 0.656
(0.05,0) | 1.0114 | 11.7531 1.715
(0.05,0.01) { 1.0114 | 11.7545 1.703
(0.05,0.03) | 1.0113 | 11.7573 1.680
(0.05,0.05) | 1.0113 | 11.7602 1.655
(0.05,0.1) | 1.0111 | 11.7676 1.593
(0.05,0.15) | 1.0109 | 11.7757 1.526
(0.1,0.0) | 1.0139 [ 11.1984 6.353
(0.1,0.01) | 1.0139 | 11.1997 6.342
(0.1,0.03) | 1.0138 | 11.2022 6.322
(0.1,0.05) | 1.0138 | 11.2048 6.3002
(0.1,0.1) | 1.0136 | 11.2116 6.243
(0.1,0.15) | 1.0135 | 11.2189 6.182
(0.15,0.0) | 1.0156 | 9.7541 18.431
(0.15,0.01) | 1.0155 | 9.7553 18.421
(0.15,0.03) | 1.0155 | 9.7577 18.401
(0.15,0.05) | 1.0155 | 9.7602 18.380
(0.15,0.1) | 1.0153 | 9.7668 18.325
(0.15,0.15) | 1.0152 | 9.7739 18.266

Table 5.9: Expected Profit and Optimal Mean at different values of Error for n =
10 ;d, = 3;d, = 4
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Expected profit without error = 11.8494

(e1,€3) 7 EP Percentage change in profit
(0,0) 1.0112 | 11.8494 0
(0,0.01) |1.0112{11.8507 -0.0109
(0,0.03) |1.0111 | 11.8533 -0.0329
(0,0.05) | 1.0111 | 11.8562 -0.0573
(0,0.1) 1.0109 | 11.8634 -0.118
(0,0.15) | 1.0108 | 11.871 -0.182
(0.01,0) 1.012 | 11.7854 0.540
(0.01,0.01) | 1.012 | 11.7866 0.529
(0.01,0.03) | 1.012 | 11.7892 0.508
(0.01,0.05) | 1.0119 | 11.7918 0.486
(0.01,0.10) | 1.0118 | 11.7987 0.427
(0.01,0.15) | 1.0116 | 11.806 0.366
(0.03,0.0) | 1.014 | 11.5532 2.499
(0.03,0.01) | 1.014 | 11.5545 2.488
(0.03,0.03) | 1.0139 | 11.5567 2.470
(0.03,0.05) | 1.0139 | 11.5592 2.449
(0.03,0.1) | 1.0138 | 11.5654 2.396
(0.03,0.15) | 1.0136 | 11.5719 2.341
(0.05,0) | 1.0159 | 10.9796 7.340
(0.05,0.01) | 1.0158 | 10.9807 7.331
(0.05,0.03) | 1.0158 | 10.9828 7.313
(0.05,0.05) | 1.0157 | 10.985 7.294
(0.05,0.1) | 1.0156 | 10.9907 7.246
(0.05,0.15) | 1.0155 | 10.9969 7.194
(0.1,0.0) | 1.0181] 6.1937 47.729
(0.1,0.01) | 1.0181 | 6.1947 47.721
(0.1,0.03) | 1.018 | 6.1968 47.703
(0.1,0.05) | 1.018 | 6.1988 47.686
(0.1,0.1) |1.0179 | 6.2043 47.640
(0.1,0.15) | 1.0177| 6.21 47.592
(0.15,0.0) | 1.0188 [ -3.9585 133.406
(0.15,0.01) | 1.0187 | -3.9575 133.398
(0.15,0.03) | 1.0187 | -3.9554 133.380
(0.15,0.05) | 1.0187 | -3.9533 133.362
(0.15,0.1) | 1.0186 | -3.9477 133.315
(0.15,0.15) | 1.0184 | -3.9417 133.264

Table 5.10: Expected Profit and Optimal Mean at different values of Error for n =
20;d, =3;d, =4
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Expected profit without error = 11.8494

(e1,e2) i EP Percentage change in profit
(0,0) 1.0122 | 11.795 0
(0,0.01) | 1.0112 | 11.7962 -0.010173802
(0,003) | 1.0122 | 11.7988 -0.032
(0,0.05) | 1.0121 | 11.8014 -0.0542
(0,01) | 1.012 | 11.808 -0.110
(0,0.15) | 1.0118 | 11.8152 0171
(0.01,0) | 1.0135] 11.69 0.890
(0.01,0.01) | 1.0135 | 11.6911 0.880
(0.01,0.03) | 1.0134 | 11.6936 0.859
(0.01,0.05) | 1.0134 | 11.696 0.839
(0.01,0.10) | 1.0133 | 11.7022 0.786
(0.01,0.15) | 1.0131 | 11.7089 0.729
(0.03,0.0) | 1.0164 | 11.0957 5.928
(0.03,0.01) | 1.0163 | 11.0966 5.921
(0.03,0.03) | 1.0164 | 11.0987 5.903
(0.03,0.05) { 1.0163 | 11.1008 5.885
(0.03,0.1) | 1.0162 | 11.1062 5.839
(0.03,0.15) | 1.016 | 11.112 9.790
(0.05,0) | 1.0182 | 9.1388 22.519
(0.05,0.01) | 1.0181 | 9.1399 22.510
(0.05,0.03) | 1.0181 [ 9.1418 22.494
(0.05,0.05) | 1.018 | 9.1438 22.477
(0.05,0.1) { 1.018 | 9.1489 22.434
(0.05,0.15) | 1.0178 | 9.1543 22.388
(0.1,0.0) |1.0195] -4.149 135.175
(0.1,0.01) | 1.0195 | -4.148 135.167
(0.1,0.03) | 1.0195 | -4.1462 135.152
(0.1,0.05) | 1.0195 | -4.1443 135.136
(0.1,01) |1.0104 | -4.1392 135.092
(0.1,0.15) {1.0192 | -4.1337 135.046
(0.15,0.0) | 1.0193 | -22.176 288.011
(0.15,0.01) | 1.0194 | -22.1751 288.004
(0.15,0.03) | 1.0193 | -22.173 287.986
(0.15,0.05) | 1.0192 | -22.1709 287.968
(0.15,0.1) | 1.0192 | -22.1655 287.922
(0.15,0.15) | 1.019 | -22.1596 287.872

Table 5.11: Expected Profit and Optimal Mean at different values of Error for n =
30 ;dl = 3;d2 =4
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with the increase in the value of type I error, this is expected because a good item
is classified as defective when type I error is committed, and it is sold at a reduced
price. Thus, reducing the expected profit.

Expected Profit reduces sharply as type I error tends to 0.1. Each figure shows,
Expected profit versus type I error at different levels of e, ; containing 3 plots each
with different sampling plan with sample size n and acceptance number d, and d,.
As the sample size increases the Expected Profit is reduced because the sampling

plan with a higher sample size will show a smaller probability of acceptance.

Type | Error

| —8—n=30 —8—n=20 —&—n=10]

Figure 5.1: Expected Profit versus e; at e; =0
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15 -
10 -
a (0.0.03) (0.01,0.03) (0.03,0.03) (0.05,0.03) (0.19.03) (hw.oa)
a )
<10 -
-18 4
-20 -
25 |

Type | Error

| —#—n=30 —8—n=20 —a—n=10]

Figure 5.3: Expected Profit versus e; at e; = 0.03
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Figure 5.4: Expected Profit versus e; at e, = 0.05
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Figure 5.5: Expected Profit versus e; at e; = 0.1
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Figure 5.6: Expected Profit versus e, at e; = 0.15

5.5.2 Effect of Type II Error on Expected Profit

The Expected Profit at different levels of type II error are shown in this section. As
shown in the figures 5.7 to 5.12 taking different values of e,, for the same Sampling
plan expected profit increases with the increase in the level of type II error, this is
expected because increasing the level of type II error implies that we are classifying
more number of defective items as good and selling it at a higher price. Thus, Ex-
pected Profit is assumed to be directly proportional to type II error.

Each figure shows Expected profit versus type II error at different levels of e; ; con-
taining 3 plots each with different sampling plan with sample size n and acceptance
number d, and d,. As the sample size increases the Expected Profit is reduced be-

cause the sampling plan with a higher sample size will show a smaller probability of
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acceptance for the same acceptance number d; and d,. Simply,Sampling more units
in a lot increases the chances of detecting the non-conformity and rejecting the lot.
As seen from figures 5.1 to 5.6, type I error reduces the value of EP. Thus, type I

error has more impact on Expected Profit than type II error.

12 -
11.95- &— . —
11.9{
& 1185 o— 8 —a8 —8—— °©
M8~ o . . —
| 11.75{
| 1.7 - : — : : :
(0.0) (0,0.01) (0,0.03) (0,0.05) (0,0.1) (0,0.15)
Type |l Error
.——n=30 —8~n=20 —+—n=10]

Figure 5.7: Expected Profit versus e; at e; = 0

103



11.9 & 4 L & - )
a 118 [ = - —— —8
w417 - - - - - -0
11.6
115 - T T T T T
O I - A QR
Q' Ne N A A~ N
¥ & ¢ ¢S E
Type Il Error

|—e—n=30 —8—n=20 —n=10]

Figure 5.8: Expected Profit versus e, at e; = 0.01
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Figure 5.9: Expected Profit versus e, at e; = 0.03
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Figure 5.10: Expected Profit versus e; at e; = 0.05
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Figure 5.11: Expected Profit versus e; at e; = 0.1
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Figure 5.12: Expected Profit versus e; at e; = 0.15

5.5.3 Effect of type I and type II error on Optimal Mean

The effect of type I error on Optimal Mean are shown in figure 5.13 and 5.14, at a
given level of type II error the mean tends to increase drastically with the increase
in type I error, this shows that the Process mean is forced higher at higher values
of e;.

in figure 5.15 and 5.16, keeping e; as constant , Optimal Mean versus type II error
is plotted. the graphs shows that the mean tends to decrease with the increase in
the value of e,.

The graphs show two points with different sampling plan with sample size n and
acceptance number d, and d;. It can be seen that as the sample size increases the
Mean of the process is increased because for any value of probability of failure g,

the OC curve of a sampling plan with higher n will show a lower probability of
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acceptance, this forces the producer to increase the set point.
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Figure 5.13: u versus e, at e; =0
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Figure 5.15: u versus e, at e; = 0

108




1027 )
1019 ¢+—g s 3{;
1.018 -

§ 1.017 4

= 1.016 - R N
1.015 A - * —
1.014 -

1.013 T T T T T —
S & F& O 8
b‘ . Q. 0- Q‘ °-
Q.\ \g\ \6' \b! 0.\ \6\
\ \Q' \Q \Q‘ \ \Q'
Type Il Error
|——n=30 —-&~n=20 ——n=10]

Figure 5.16: u versus e; at e; = 0.15

5.3.4 Effect of Cost parameters on Expected Profit

The effect of different cost parameters on expected profit are studied in this section,
by taking the partial derivative of the profit function w.r.t. the selling price a;,
az, v and processing cost c. thus, the partial derivatives of equation 5.1 w.r.t these

parameters are as follows:

)

~3a, = Ple<d)

6(’37"“ ) _ P(d <d

a_a2 = 1 < T < dy)
EI"!““

_a_(_aTN—) = P(:L'e > d2)

dc
The partial derivative w.r.t selling price a, is the probability of the lot accepted for
grade 1, and the partial derivative w.r.t a; is equal to the probability of acceptance

for grade 2, and the probability that the lot is scrap is the rate of change of expected
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profit w.r.t selling price r. whereas, the rate of change of profit w.r.t cost c is the
negative of the mean of the process.

The partial derivative w.r.t selling price a, increases with the increase in the accep-
tance number, because with the increase in the acceptance number, the probability
of acceptance increases. For the same acceptance number, with the increase in the
sample size the rate decreases because the probability of acceptance decreases with
the increase in the sample size as shown in figure 5.17. Fig. 5.18 shows the rate
of change of expected profit w.r.t a; vs d;, the rate of change decreases with the
increase in the acceptance number for grade 1, because the product is acceptable
for grade 2. For the same acceptance number with the increase in the sample size,
the rate of change increases because probability of acceptance decreases with the
sample size so the probability of rejection increases. similar result is obtain for the
case of the change in expected profit w.r.t r vs d,.

The rate of change of expected profit w.r.t ¢ vs. d, is shown in figure. 5.20, the
figure shows 4 plots with different sample size, the rate of change of expected profit
is the negative of the mean of the process. With the increase in the acceptance
number, the mean of the process decreases because raising the value of d; has the
effect of enlarging the area of acceptance under the OC curve corresponding to the
sampling plan. i.e. allowing more nonconforming units to occur gives the producer
more latitude in producing nonconforming units, but as seen in the figure the rate of
change of expected profit w.r.t. c increases because of the negative sign associated

with the mean. The rate of change of expected profit w.r.t ¢ increases with the
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increase in the acceptance number.
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Figure 5.17: Rate of change of Expected Profit w.r.t a; vs d;
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Figure 5.18: Rate of change of Expected Profit w.r.t a; vs d;
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Figure 5.20: Rate of change of Expected Profit w.r.t ¢ vs d,
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5.6 Conclusion

A three-class targeting model is developed in this chapter by incorporating inspec-
tion error in the sampling plan. Two cases are examined for inspection i.e with and
without destructive testing. Sensitivity analysis is conducted to study the effect of
type I and type II errors on expected profit and optimal mean and the effect of cost

parameters on expected profit is also considered in this chapter.
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Chapter 6

Conclusion and Future Research

6.1 Summary

In this thesis, relevant literature in the area of process targeting is reviewed, three
different models of process targeting with and without inspection error in the sam-
pling plan are developed.

Chapter 1 provides a brief introduction to quality control and state the problem
under consideration in this thesis. Literature in the area of process targeting is
reviewed along with Boucher and Jafari [1], Lee and Jang [4] models are presented
in chapter 2. A process targeting model for a single filling operation considering
inspection error in the sampling plan is developed in chapter 3. This model extends
the work done by Boucher and Jafari [1] to the case where the inspection process is
assumed to be error prone. Sensitivity analysis to the developed model is conducted

to study the effect of model parameters on its solution. A three-class targeting prob-
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lem under acceptance sampling is developed and sensitivity analysis with respect to
cost parameters are presented in chapter 4. A three-class targeting model consider-
ing acceptance sampling and inspection error is developed and sensitivity analysis
of the developed model is conducted with respect to error and cost parameters in

chapter 5.

Thus, the work done in this thesis can be summarized as follows:
e Three models of process targeting are developed.

e In the first extension, two types of inspection errors are introduced in the

model of Boucher and Jafari [1].

e In the second extension, Sampling inspection is introduced instead of 100

percent inspection in the model developed by Lee and Jang [4].

o In the third extension, the model developed in chapter 4 is extended to the

case where inspection error is present.
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6.2 Recommendations for Future Research

The research work in this thesis can be extended to the following areas.

e The three class targeting model could be extended to the case under asym-

metric cost.

e The three class targeting problem could be extended to the case of joint eco-
nomic selection of optimum mean and variance, by relaxing the assumption

that the variance is known and fixed in this thesis.

e This work can be extended to the case of two machines in series with different

process mean, by incorporating inspection error.

® Process targeting models can be developed considering inspection error for a

single filling operations with rectifying inspection.

® The developed models can be extended to the case where the process deterio-

rates with time.

o A targeting model can be developed by relaxing the assumption that the sam-
pling plan is known, The problem will be casted as the joint determination of

the optimal process targets and inspection plan parameters.

e The models of Boucher and Jafari [1], the extension in this thesis and the three
class targeting models can be extended by considering different cost function

such as Taguchi quadratic loss function, or nonlinear cost function.
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e The model of Boucher and Jafari [1] and the extension in this thesis could
be extended to reflect the effect of type I and type II errors in the objective

function.
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Appendix A

Computer Code for Jafari model
[1]

USE MSIMSL
implicit none
real:: z,p,s2,t2,phi,al,Ans,\signa,mu,ep,a2,c
integer:: n,d0,j4,m,flag
open(unit=6, file=’amjay.txt’,status='unknown’,access=’append’)
z=0.2
Ans=0.0
flag=1
do while (flag /= 0)
z=z+0.001
p = ANORDF(-2z)
! prints,"p",p

sigma=0.00563
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m=100
a2=30.5
al=67.5
=55
d2=2
n=20
s2=0
t2=0
prints,"st2",st2
do 80 j4=d0+1,n
s2=(fac(n)/(fac(j4)sfac(n-j4)))*((p**ja)»(1-p)*»(n-j4))
t2=t2+s82
continue
prints,t2
phi=0.3989672«exp(-zs#2/2)
Ans=(phi/sigma)*al*((fac(n)/(fac(n-1-d0)*fac(d0)))*(Ps*d0*(1-P)**(n-1-d0)))
mu=zZ*sigma+l
ep=(al)-(a2*t2)-(csmu)
print=,z
print=,Ans
print*,mu
print=,ep
if ((Ans <= 56) .and. (Ans > 54)) flag=0
enddo

end program
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Appendix B

Computer Code for Objective I of

the Thesis

program main
implicit none
real::a,b,lemda,meu,anew,bnev,lemdanew,meunew, alpha,f_lemda,f_meu
double precision ::epsilon
integer::k,i
a=1.0
b=2.0
alpha=0.618
epsilon=0.0001
lemda=a+(1-alpha)s(b-a)
meu=a+aipha#*(b-a)
k=1

do while( abs(b-a) >= epsilon)
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call get_objval(meu,f_meu)
call get_objval(lemda,f_lemda)
if (f_lemda<f_meu) then
anew=lemda
bnew=b
lemdanew=meu
meunew=anew+alpha*(bnev-anew)
else
anew=a
bnew=meu
meunev=lemda
lemdanew=anew+(1-alpha) * (bnew-anev)
endif
=k+1
a=anew
b=bnew
lemda=lemdanew
meu=meunewv
print 6,a,b,lemda,meu,f_lemda,f_meu
6 format(tr2,18.4,tr2,£8.4,tr2,£8.4,tr2,£8.4,tr2,£8.4,tr2,£8.4)
enddo

end program main

subroutine get_objval(x,f)
use MSIMSL

implicit none
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real,intent(in)::x
real, intent(out)::¢
real::2,1,sigma,al,a2,c,p,s2,t2
integer::j1,n,d0
sigma=0.00563
al=67.5
a2=30.5
1=1.0
c=55
n=20
d0=0
s2=0
t2=0
z=(x-1)/sigma
p=ANORDF (-z)
do 80 j1=dO+1,n
s2=(fac(n)/(fac(j1)sfac(n-j1)))*((p**j1)»(1-p)**(n-j1))
t2=t2+s2
80 continue
f = al-(a2*t2)-(c*x)

end subroutine get_objval

122



Appendix C

Computer Code for Objective III

for the Thesis

USE MSIMSL

implicit none

real:: z,p,s2,L,t2,s3,t3,t5,85,phi,al,Ans,sigma,m,ep,a2,r,c

integer:: n,d0,d1,j3,j4,)5,flag

! REAL

ANORDF,A,P,N,c,cl1,c2,1,sigma,el,e2,n,d0,alpha,beeta,xe,Pe,i,j
open(unit=6, file=’amjay.txt’,status=’unknown’,access=’append’)

z=0.1

Ans=0.0

flag=1

do while (flag /= 0)

2=2+0.001

p= ANORDF(-2)

123



80

do

90

do

prints,"p",p
sigma=0.00563

al=67.5, a2=30.5, r=10
c=55

do=4

di1=2

n=20

t2=0

s83=0

t3=0

t5=0

s5=0

prints*,"st2",st2

do 80 j4=d0+1,n
s2=(fac(n)/(fac(j4)*fac(n-j4)))*((p**j4)*(1-p)**(n-j4))
t2=t2+s2

continue !prints,t2

90 j3=0,d1
s3=(fac(n)/(fac(j3)*tac(n-j3)))*((ps*j3)*(1-p)*»s(n-j3))
t3=t3+s3

continue !prints,t3

100 j5=d1+1,d0
s5=(fac(n)/(fac(j5)*fac(n-j5)))*((p**j5)*(1-p)**(n-j5))

t5=t5+s5
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100 continue !prints,t5

phi=0.3989672%exp (-2+*2/2)

Ans=(phi/sigma)s((fac(n)/(fac(p-1-d1)*fac(dl)))*(Ps+d1s(1-P)*»(n-1-d1)+*(a2-r))-
(fac(n)/(tac(n-1-d0)*fac(d0)) ) # (P++d0s(1-P) ¥+ (n-1-d0)*(al-r)))
mu=z*sigma+L

ep=(al1#t3)+(a2st5)+(r*t2)-(cmu)

print 4,z,Ans,mu,ep
4 format(tr2,£8.4,tr2,18.4,tr2,18.4,tr2,18.4)
if ((Ans <= 55.5) .and. (Ans > 54.5)) flag=0

enddo ! do while ((Ans .le. 5501) .and. (Ans .ge.5499))

end program
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Appendix D

Computer Code for Objective IV

for the Thesis

program main
implicit none
real::a,b,lemda,meu,anev,bnev,lemdanev,meunev, &
alpha,f_lemda,f_meu
double precision ::epsilon
integer::k
a=1.0
b=2.0
alpha=0.618
epsilon=0.00001
lemda=a+(1-alpha)*(b-a)
meu=a+alpha*(b-a)

k=1
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do while( abs(b-a) >= epsilon)
call get_objval(meu,f_meu)
call get_objval(lemda,f_lemda)
if(f_lemda<f_meu) then
anew=lemda
bnew=b
lemdanew=meu
meunew=anew+alphas*(bnew-anew)
else
anew=a
bnew=meu
meunew=lemda
lemdanev=anew+(1-alpha)*(bnew-anew)
endif
k=k+1
a=anewv
b=bnew
lemda=lemdanew

meu=meunev

print 6,a,b,lemda,meu,f_lemia,f_meu

6 format(tr2,f8.4,tr2,18.4,tr2,£8.4,tr2,18.4,tr2,£10.4,tr2,£10.4)

enddo

end program main
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subroutine get_objval(x,t)
use MSIMSL

implicit none
real,intent(in)::x
real,intent(out)::f
real::z,1,sigma,al,a2,c,p,s2,t2,pe,e,e2,s3,t3,s54,t4,r

integer::j1,j2,j3,n,d2,d1,m
sigma=0.00563

al=67.5

a2=37

r=10

1=1.0

c=55

n=15

d1=0

d2=4

s2=0

t2=0

s3=0

t3=0

s4=0

t4=0

e=0.0

e2=0.0

2=(x-1)/sigma

p=ANORDF (-z)
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pe=p*(1-e2)+(1-p)*e

do 80 j1=d2+1,n
s2=(fac(n)/(fac(j1)stac(n-j1)))*((pe**j1)*(1-pe)**(n-j1))
t2=t2+s2

80 continue

do 90 j2=0,d1
s3=(fac(n)/(tac(j2)sfac(n-j2)))*((pe*+*j2)*(1-pe)s»(n-j2))
t3=t3+s3

90 continue

do 70 j3=di+1,d2
s4=(fac(n)/(fac(j3)*fac(n-j3)))*((pe**j3)*(1-pe)s*(n-j3))
t4=t4+s4

70 continue

print *,t4

print *,t3

print *,t2

f=(alst3)+(a2*t4) +(r*t2)-(c*x)

end subroutine get_objval
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