Integrating Heterogeneous Database Schemas Using
as On-line Taxonomy:
A Methodology for Creating a Global Schema

by

Mohammad Shafique Ahmad Al-Shishtawi

A Thesis Presented to the
FACULTY OF THE COLLEGE OF GRADUATE STUDIES
KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
In

COMPUTER SCIENCE

April, 1997

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road. Ann Arbor. Mi 48106-1346 USA
313:761-4700 800.521-0600

Integrating Heterogeneous Database Schemas Using

an On-line Taxonomy:
A Methodology for Creating a Global Schema

BY
Mohammad Shafique Ahmad Al-Shishtawi

A Thesis Presented to the
FACULTY OF THE COLLEGE OF GRADUATE STUDIES

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN, SAUD! ARABIA

In Partial Fuffillment of the
Requirements for the Degree of

MASTER OF SCIENCE

a%b%ﬁeﬁb%Licwda%b%ﬁd%&L%i*!#i%i%t*i%i%Laldidakbﬂ%t%i#ei*i%tisi*i*ﬁe@s

eleise e 3 JelFe e e e el el el el sl

|

:
:
:

o

%

%

%
&
:

o)

In
COMPUTER SCIENCE
April 1997
5%
P P A R P A P e e

UMI Number: 1385824

UMI Microform 1385824
Copyright 1997, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI

300 North Zeeb Road
Ann Arbor, MI 48103

KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
DHAHRAN 31261, SAUDI ARABIA

COLLEGE OF GRADUATE STUDIES

This thesis, written by

—

MOHAMMAD SHAFIQUE AHMAD AL-SHISHTAWI

under the direction of his Thesis Advisor and approved by his Thesis Committee, has
been presented to and accepted by the Dean of the College of Graduate Studies, in

partial fulfillment of the requirements Jor the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE.

Thesis Committee

Maémmﬂdﬂ‘»"f 7 Ju, 17
Dr. Muhammad Shafique (Chairman)

- 7 J_:mc', 97

Dr. Abdullah /?—Sukairi‘ [Member)

Ll },?,.j" Tew 7 111]
Dr. Mostafa dref (Mémber)
N /YN Al
Dr. Muhammad Al-Mulhem (Member)

%

Department Chairman

Dean, College of Graduate Studies
a/4/13

Date

Dedecated to

my parents

moral sapport kave brought albout

ACKNOWLEDGMENT

Praise to Allah, the almighty God, for his support, blessings and disguise throughout
this work. Acknowledgment is due to King Fahd University of Petroleum and

Minerals (KFUPM) for all the support extended during this research.

I would like to express my gratitude to my thesis committee chairman
Dr. Muhammad Shafique for his advice and guidance. I would like also to thank my
thesis committee members Dr. Abdullah Al-Sukairi, Dr. Mostafa Aref and

Dr. Muhammad Al-Mulhem for their significant suggestions and continuous support.

I would like to express my deep appreciation for the faculty and staff members
of the College of Computer Science and Engineering for everything they did. I would

like also to acknowledge all the faculty and teachers who taught me during my school
and academic years.

Thanks are due to the Information Technology Center of KFUPM for providing
all necessary computing facilities. Special thanks for all of my friends and colleagues
for their help and cooperation.

Last and not the least, I would like to express my sincere gratitude and
appreciation for my parents and my brother for their motivation, support and

sacrifices.

CONTENTS

ACKNOWLEDGMENT v
CONTENTS A"
LIST OF FIGURES vl
THESIS ABSTRACT (ENGLISH) viI
THESIS ABSTRACT (ARABIC) IX
INTRODUCTION 1
1.1. WORK MOTIVATION . 3
1.2, OBJIECTIVES ...cccvceriirererreracseesssessrsessssessesseresssessmsssossesssssosessassasssassessmssssesnsessssssnsssnsssssssossssssssemssnsns 3
1.3. THESIS ORGANIZATION.......ceccaueeceaccercrcsmasirssesessseesesesssessssssessssssssssrsssssmsmssssssssmssonsessesensssssssnssnns 4
BACKGROUND AND OVERVIEW 6
2.1. GENERAL CLASSIFICATION AND SCHEMA ARCHITECTURE OF HDBSS.. 6
2.1.1. Classification......... reemebeusarrn et bttt st erear s s st s e e e e et st s maeasentsesestenststantene 6
2.1.2. General SCREMA AVYCRILECHUTE.ureeeeeeeeeeeeeeeeeeeeeesrenesseessesesseessasssssessesssessemsensessarssssssnas 8
2.1.3. Research Schema Architecture..... 10

2.2. SCHEMA INTEGRATION.. ettt et e e s a s n e s as s as s ne san s s s e s et en e s et s s seensentasarressen 12
2.2.1. DESIGR APPIOACRES..............coeennneieererirereseeesnsesensesnsesssassenssessssesessaessssssssnsosnsssanennnens 12
2.2.1.1. Temporary Global Schema Approach 13

2.2.1.2. Permanent Global Schema Approach 14

2.2.2. Major Problems of Schema Integration eretsrsarrenresnssnns A5
2.2.3. Schema QA DAtA CONIICLS ...uueueeeeeerereeereerieeseeeeeevsveseecsesessessssssessssssassseassssseseesasssseses 16
2.2.3.1. Definition 16

2.2.3.2. Schema Integration and Conflicts 17

2.2.3.3. Classification of Conflicts 18

2.2.3.4. Forms of Semantic Conflicts 20

2.3. SCHEMA INTEGRATION METHODOLOGIES........ccecueunverrrrereaenseessnssesensssssssessesemscsossenssnsns .21
2.3.1. REdAY'S MEROAOIORY..........o.uoceeeneereeeenverrererereersressssesesesssssssssssnssssssssssssssssssssesstssesamsanns 22
2.3.1.1. Translating Local Schemas into Component Schemas 22

2.3.1.2. Deriving the Global Schema 23

2.3.2. Related Sem@ANEIC WOTK...........ocueneeeereeeevrreresevsesseeersersteeenssossnsessssssessessssnssssnsnsen .26
2.3.2.1. Semantic Knowledge Acquisition Process 26

2.3.2.2. Linguistic Concepts. 26
ISSUES ON SEMANTICALLY SIMILAR OBJECTS 28
3.1. AUTOMATIC IDENTIFICATION OF SEMANTICALLY SIMILAR OBJECTS ...ovvvveveenvenrerieneeeneneeeeenssenns 28
L L TAXOMOMLYnnneeeeevneennvecueeressnensisissasensssssesesesessesssresssssssessssssssasssnssnnssssesessesenssesusssssasenns 28
3.1.2. Creating a errarchy of Summary SCREMUEAS.....ceeeeeeeeererereererenreceeereveseesrrssessressessnsenae 30
3.1.3. Merits and DEmerits Of tRE SSM........ueeeeeeeeeveeeeererenereisesseeeesesssasveessesssssssssssstessssessssssmsnas 30
THE INTEGRATION METHODOLOGY 33
4.1. OVERVIEW OF THE INTEGRATION METHODOLOGYcceverreeurcriemesessesseseeesssesssssssessssessssssssa 33
4.2. THE TAXONOMY: A NEW LOOK....ccocerrmereerrrrrrereeirenennns 36
4.3. EXAMPLE [: AN ILLUSTRATIVE EXAMPLE.ceviueuinenreneseeseeetssesereesessssssessesssssessessssssssssseseseeenns 38
4.4. TAB DASHING DETAILS.....cocveirrerirrerenneieserrecerssssrsrsssessssssssssssssssssssssssssessesesssssesssessssssssssos 42
4.4.1. Phase 1: Selecting @ TAXONOMYeceveeuvveeereverrieeresesesseesessesseeeseeseeesesssssssssssessssesesnon 42
4.4.2. Phase 2: Translating Local Schemas to CDM Component Schemaseoeeueeen.... 44

4.4.2.1. The CDM Selected for Use with the Methodology
4.4.2.2. Translation from Different Data Models to0 CDMc.ocuoernerereeeeeresnerceennne s cese s s eseoene
4.4.3. Phase 3: Mapping Access Terms
4.4.4. Phase 4: Augmenting Semantic Knowledge
4.4.5. Phase 5: Determining Equivalent Objects and Creating the Global Schema......................
4.4.6. Phase 6: Defining Compatibility Methods

4.5. EXAMPLEIT: A COMPLETE EXAMPLE

4.6. METHODOLOGY ANALYSIS

4.7. GENERAL IMPLEMENTATION GUIDELINES
CASE STUDY: INTEGRATION OF TWO STUDENT DATABASE SCHEMAScoveeeeuerenns

CONCLUSION AND FUTURE WORK

6.1. CONCLUSIONoveeremreernerrrenseseesressnessessossessnsentonsessnesassmsessssassensassasesnstassssssssssasessessessosssssessosssns
6.2. FUTURE WORK... . verrrreveresraeseen

REFERENCES

VITA

vi

LIST OF FIGURES

FIGURE |: AUTONOMY-BASED CLASSIFICATION OF MDBSs

FIGURE 2: FIVE-LEVEL SCHEMA ARCHITECTURE OF HDBSS
FIGURE 3: FOUR-LEVEL SCHEMA ARCHITECTURE OF HDBSS

FIGURE 4: RESEARCH SCHEMA ARCHITECTURE

FIGURE 5: CLASSIFICATION OF SCHEMA CONFLICTS

FIGURE 6: A SAMPLE SUMMARY SCHEMA

FIGURE 7: THESIS WORK FILLS IN THE SHADED AREA

FIGURE 8: A CLASS IN THE TAXONOMY

FIGURE9: TWO SAMPLE RELATIONS

FIGURE 10: PARTS OF THE TAXONOMY FOR EXAMPLE [

FIGURE 11: SAMPLE CLASSES OF THE TAXONOMY HIERARCHY

FIGURE 12: A SAMPLE METHOD FOR ACHIEVING COMPATIBILITY

FIGURE 13: SUPER CLASS/SUBCLASS INFORMATION IN REDDY ET AL.

FIGURE 14: PARTS OF THE TAXONOMY FOR EXAMPLEI..

FIGURE 15: TRANSLATED SCHEMAS

FIGURE 16: HCM METHOD RESOLVING THE BUDGET CONFLICT

FIGURE 17: VCM METHOD CONVERTING EMPLOYEE SALARY TO FACULTY SALARY

FIGURE 18: LOCAL SCHEMA 1

FIGURE 19: LOCAL SCHEMA 2

FIGURE 20: PARTS OF ROGET’S TAXONOMY

FIGURE21: THE CDM OF LOCAL SCHEMA 1

FIGURE 22: THE CDM OF LOCAL SCHEMA 2..............
FIGURE 23: ACCESS TERM MAPPING

FIGURE 24: CLASS PROPERTIESccoveeeerremreerenieaereneeennessensensnsasserssesssesnnes

FIGURE 25: EQUIVALENT OBJECTS IN COMPONENT SCHEMAS...
FIGURE 26: THE GLOBAL SCHEMAccveeveereremvreerveesvnesseneessessessesssessnseosen

FIGURE 27: COMPATIBILITY METHODS......

vii

THESIS ABSTRACT

Full Name: Mohammad Shafique Ahmad Al-Shishtawi

Title: Integrating Heterogeneous Database Schemas Using an On-line
Taxonomy: A Methodology for Creating a Global Schema

Major Field: Information and Computer Science

Date of Degree: April 1997

In the process of developing heterogeneous database systems, one of the main tasks is
integrating various component database schemas. Several methodologies for
integrating component schemas can be found in the literature. These methodologies
are criticized for being very human labor intensive, for demanding extensive global
DBA knowledge, for the difficulty in determining semantically similar objects, and
for the difficulty in maintaining the global schema.

In this thesis, a new methodology for integrating heterogeneous database
schemas is developed. The new methodology avoids the disadvantages that exist in
the work upon which it is based. In addition, it offers its own advantages. First,
missing relationships among access terms do exist naturally in an on-line general
lexicon taxonomy and the need to manually derive them no longer exists. Second,
semantic knowledge of global objects is derived automatically. Finally, automatic
knowledge mapping is achieved.

Master of Science Degree

King Fahd University of Petroleum and Minerals
Dhahran 31261, Saudi Arabia

April 1997

viii

Ul LS

6538 deal (343 tena :JalSl) ulllal) aud

iyl il WIS sl aladiuly dwladall e il ael 48 7 2l Al o gl
‘;ﬁ“ Gulall o dle § Claglea 2 Ammmia il

p VY ol e algldl ey)l

) o uilaiall 2 bl sol i sk ol Glee (8 D) algall aaf
L i 2 pradll 133 ALll dyagia 3k 20 2a gy 22Ul &5 Sall lilll el 4§ cllalad
le—i 5y e il puainll o Waalaie) 58] (3 kall o3g] o5 da g 385 AR Sl
(Al—a¥1) <y yaa5 4y geal 5 el ALalis A pra ililyl) 2 gl Slall _paall (pa callsis
o lilall saeal Jalill Labasall dilua 4 grual L 5 imall 8 gLl

28 Qb 2ol Clhahia med By Aagia A8k ekl 23 ALl 030
o3 lpm—ud o ey Al ARl 3okl Qe saaal) 43k (galis . dulaial
"Jsma sl e’ c Lad DAl ga Y g Baaa G Jrea b L LS cdgy
u)unc\:a:_ulP@@Lﬁ.%g@&ﬁﬂi;&?,@hﬂ\w@ﬁ@
L1 28 el e o3 ol il L Lad Jalal) Uil il g3 Jleay

aghall 2 yoalall da o

A gl Ay el ASLaall (FAYTY o ekl

CHAPTER ONE

INTRODUCTION

Starting at late sixties, database management systems (DBMS) began taking over
older techniques of file-based data processing. A major reason for adopting the
DBMS:s approach is that they provide the capability of defining integrated views of
related data for various database applications. Advantages gained are many, among
them are: elimination of duplications, avoiding the multiple updates problem and

minimizing inter-application inconsistencies. [1]

Over the years, database systems (DBS) have spread and become a major
support of organizations’ and individuals’ daily work. Various databases were
developed to satisfy specific requirements of certain users. Such autonomous
(potentially heterogeneous) database systems are unable to satisfy current users
requirements characterized as being more sophisticated and involving more than one

database. To meet recent user requirements, integrating these heterogeneous databases

(HDB) becomes a necessity. [3]

As the popularity of databases increase, so does the heterogeneity among them

[8]. Heterogeneity has a wide range of possibilities. It could range from just simple

structural differences to major differences in design and/or modeling, for example
[13, 18]. Existence of heterogeneity implies structural and semantic conflicts. Such

conflicts hamper the process of database integration. [17]

Research in the area of heterogeneous database systems (HDBS) can be traced
back to late seventiés. It can be divided into three phases: [8]
I. Late seventies: Establishing the feasibility of integrating heterogeneous
DBMSs (HDBMS)
2. Early eighties: Schema integration research and other operational issues

3. Late eighties: Global transaction management

The interest of this thesis is in schema integration. Particularly, it is concerned
with developing a new schema integration methodology. The work is based mainly on
the schema integration methodology described in [17]. Research described in [3, 14,
15 and 18] provide several concepts of particular importance for the development of
the new methodology. These concepts include: identification of semantically similar
data in different local databases [3], effect of object orientation on designing and
implementing federated database systems (FDBS) [15], a reference system
architecture for FDBSs [18], and classifying semantic, syntactic and data conflicts
[14]. The work is related to semantic research since integration is achievable only if

structural and semantic conflicts are resolved [3, 17].

1.1. Work Motivation

It has been mentioned in the literature that completely automating the process of
schema integration is not possible! The difficulty is believed to be in discovering the
relationships among access terms of various schemas. The main reason given for this
difficuity is the necessity of capturing the semantics of the schemas. [18] This thesis
agrees with this point of view to a certain extent. However, major steps toward

making the problem much simpler can be taken.

The view in this thesis is based on the fact that relationships among access
terms representing real world objects do exist naturally; they don’t have to be
discover again. Hence, if these objects (or at least the ones involved in various
schemas) and their attributes can be represented as well as relationships among them,
the problem reduces to only mapping various schema objects to their corresponding
representations. It is really not necessary to capture all the semantics involved. That
is, in this representation, it is necessary to capture only needed objects, needed object

attributes and needed relationships.

1.2. Objectives

Integrating local database schemas by creating a global schema has been described in
the literature. Several integration methodologies have been described. Some of the
major problems associated with these methodologies are: [3]

o They are very human labor intensive

e Extensive knowledge is required by the global DBA about schemas to
integrate, how to integrate them and about global users requirements.

¢ Determining semantically similar objects for the purpose of unifying them
is difficult.

¢ Global schema creation and maintenance is difficult and time consuming.

The methodology developed in this research tries to avoid or alleviate these
problems. The development of the methodology has progressed with the following
objectives in mind:

1. Make the process less human labor intensive. That is, partially automate the

process.

2. Distribute the work and effort required in a better way over both local and

global DBAs.

3. Provide an easier way of determining semantically similar schema objects.

4. Provide an easier way to create and maintain the global schema.

1.3. Thesis Organization

The thesis is divided into five chapters. Chapter | presents an overview of the work.
Chapter 2 provides the necessary background and reviews basic concepts. It is divided
into three main sections: section 2.1 presents a general classification and a schema
architecture of HDBSs, section 2.2 addresses major issues in the context of schema

integration, section 2.3 summarizes the schema integration methodology developed by

Reddy et al. [17] Work related to the research is also presented in the section. Chapter

3 discusses major issues concerning semantically similar objects.

Chapter 4 provides details of the contributions of this research. The chapter
presents an overview of the developed methodology in section 4.1. Section 4.2
describes the extensions introduced to the basic building block of the methodology,
the general lexicon taxonomy. Section 4.4 discusses the details of the methodology
phases. Sections 4.3 and 4.5 provide two examples to illustrates the way the
methodology works. The methodology is analyzed and compared against other
methodologies in section 4.6. Section 4.7 gives general implementation guidelines of
the methodology. Chapter 5 describes a case study where the developed methodology

is applied. Finally, chapter 6 concludes the work and gives futurs directions.

CHAPTER TWO

BACKGROUND AND OVERVIEW

2.1. General Classification and Schema Architecture of
HDBSs

The survey by Sheth and Larson [18] describes two main issues: a classification
of multidatabase systems (MDBS) and a comprehensive five-level schema
architecture for heterogeneous database systems. The survey tries to unify conflicting
terminology used in heterogeneous database research. The classification and
terminology present in the survey are adopted in this research. The five-level schema
architecture will be adapted to suit the undergoing research. The rest of this section

elaborates the two issues.

2.1.1. Classification

Figure 1 shows an autonomy-based classification of MDBSs (adopted from [18]). An
MDBS, by definition, is one that supports operations on several DBSs each of which

is managed by a potentially different DBMS. Each of these DBSs is called a

component DBS. If each component DBS is managed by the same DBMS, the MDBS
is considered homogeneous. If this condition is not fulfilled, the MDBS is considered

heterogeneous. [18]

Multidatabases
Non-Federated Federated
Loosely Tightly
Coupled Coupled

Single Muitiple
Schema Schemas

Figure 1: Autonomy-based Classification of MDBSs

MDBSs can either be federated or non-federated. A federated DBS (FDBS)
consists of autonomous component DBSs each of which provides controlled sharing
of its resources. No centralized control is exhibited over any of the component DBSs.
Generally speaking, most FDBSs are heterogeneous in nature. Hence, FDBSs can also

be referred to as heterogeneous database systems. [18]

FDBSs can be further classified as loosely coupled and tightly coupled systems.
Loosely coupled systems are created and maintained by their users. Loosely coupled
systems can support several federated (global) schemas. Tightly coupled systems, on
the contrary, are created and maintained by the federation (global) database
administrator (DBA). Depending on the number of federations (one or more), tightly
coupled systems are divided into single schema and multiple schema FDBSs,

respectively. [18]

2.1.2. General Schema Architecture

Figure 2 presents the five-level schema architecture described by Sheth and Larson.
At the very bottom of the figure lie the various databases. At the next higher level
comes the local schemas which represent the conceptual schema of the corresponding
databases. Component schemas are derived by translating each local schema to a
common data model (see section 2.3.1.1 for more details). Each component schema
may have zero or more export schemas. Each export schema is a subset of the
corresponding component schema. This subset is the part of the component schema
that is made available for global use. Export schemas may also include access control
information with respect to the data managed by the component schema. On top of the
export schemas come the global schemas. Each global schema represents an
integration of several export schemas. On top of the global schemas, external schemas
may be defined. External schemas are schemas defined for use by different users
and/or applications or classes of them. They are used for reasons of customization,
specifying additional integrity constraints and specifying access control information

with respect to the data managed by the FDBSs. [18]

Reddy et al. [17] build their methodology on the basis of the four-level schema

architecture shown in Figure 3. Despite terminology inconsistencies between the two

External External External
Schema t Schema 2 * * * Schema j
Global Global . . . Global
Schema 1 Schema 2 Schema k
Export Export Export « e Export
Schema 1.1| |Schema 1.2] |Schema 2.1 Scheman
Component Component| . .[Component
Schema 1 Schema 2 Schema m
Local Local R . . Local
Schema 1 Schema 2 Schema n

3 e

Figure 2: Five-level Schema Architecture of HDBSs

Global Global Global
View 1 View 2 * * - View m

~ N 7

Global Schema

/

Local Object| | tocal . . . [LocalObject
Schema 1 jec Scheman
Schema 2
Local Local - - . Local
Schema 1 Schema 2 Schema n
DB 1 DB 2 . . . DB n

Figure 3: Four-level Schema Architecture of HDBSs

10

architectures, the four-level schema architecture is clearly a subset of the (more)
comprehensive five-level architecture. Local Object Schemas and Global Views in
Figure 3 correspond to Component Schemas and External Schemas in Figure 2
respectively. The missing level (export schema level) does not affect the generality
and applicability of the methodology developed by Reddy et al. As a matter of fact,
export schemas can be considered redundant as far as integration methodology
development is concerned. The reason is that export schemas can simply be

considered as a subset of the corresponding component schema. [18]

2.1.3. Research Schema Architecture

As mentioned above, the methodology developed in this research is based on that
developed in [17]. For this reason and to avoid terminology confusions, the
terminology used in Sheth and Larson [18] are applied to the four-level architecture
proposed by Reddy et al. [17]. Figure 4 shows the resulting schema architecture that
is used through out this research. To avoid any confusion with the terminology used in

Figure 2 and Figure 3, the various levels of Figure 4 are described below.

At the bottom of Figure 4 are component databases. Component databases are
simply the local databases. The first level of schemas, local schemas, lies above the
component databases. A local schema represents the conceptual schema of the
corresponding component database. Potentially, local schemas are expressed in

different data models. [18]

External External External
Schema 1 Schema 2 * Schema m
Global Schema
Component | [Component . Component
Schema 1 Schema 2 Scheman
Local Local . Local
Schema 1 Schema 2 Scheman

Level 4

Level 3

Level 2

Level 1

Level O

Figure 4: Research Schema Architecture

11

12

Corresponding to each local schema is a component schema. Each component
schema is an equivalent translation of the corresponding local schema. Component
schemas are all expressed in the same data model, called the common data model
(CDM). Object oriented data model has been suggested for use as a CDM for the

capabilities it provides. [10, 13, 15, 18]

At the third level comes the global schema. It represents the result of integrating
the underlying component schemas. External schemas are defined on the fourth level.
Eternal schemas are used for reasons of customization, defining more integrity

constraints and specifying global access control constraints. [18]

2.2. Schema Integration

Schema integration is one of the major tasks which arise in the context of developing
HDBSs. It is defined as the process of integrating existing or proposed component
database schemas into a single federated (usually called global) schema. [1, 15, 18]

This section is devoted for discussing main issues related to this process.

2.2.1. Design Approaches

There are two major design approaches for integrating HDBSs. Each approach
corresponds to one class of HDBSs. Both approaches produce global schemas. The

following two sections describe the two major approaches.

13
2.2.1.1. Temporary Global Schema Approach

Multidatabase languages are similar to standard structured query language (SQL).
They possess, however, additional capabilities. These capabilities include: [3]
e Defining global schemas as views
e Handling various structured and semantic conflicts (see section 2.2.3).
Several semantics of the same data can be defined by some multidatabase
languages.
e Manipulating different data representations
¢ Transforming source data to the integrated representation
e Making implicit decisions in interpreting user requests and provide default

functions

The temporary global schema approach is usually used for creating global
schemas for loosely coupled HDBSs. Loosely coupled systems are characterized by
integrating large number of very autonomous databases where users are mostly
interested in creating on-the-fly global schemas, fill them with data and then destroy
them after use. In this regard, temporary global schema approach is more suitable than
the permanent global schema approach discussed in the next section. The temporary
global schema approach offers the following advantages: [3, 18]

o The global DBA has much less overhead with respect to integration. It is

the responsibility of the user to specify the relations and mappings among

component schema objects

14

e Multiple semantics are supported since different users may interpret and
map schema objects differently. This is useful when user needs cannot be
anticipated

e Much less development time, maintenance efforts and storage requirements

for global schemas

2.2.1.2. Permanent Global Schema Approach

Global schemas for tightly coupled systems are created on the basis of this approach.
Many methodologies and procedures are described in the literature. The common
feature among them is the activity of resolving syntactic (structural) and semantic
conflicts among component databases involved in the integration. The result of this
activity is the creation of one (or more) homogenized and integrated schema which
represents a summary of the information contained in the component schemas. [1, 3,

17, 18]

Even though this approach provides for data independence where duplication,
heterogeneity and location information are hidden, it suffers from serious
disadvantages: [3]

e It is very human labor intensive

e Extensive knowledge is required by the global DBA about component

schemas involved in the integration, how to integrate them and about global

users requirements

15

Global schema maintenance against any possible modification in the
autonomous component schemas is very difficult

Global schemas can be huge in size such that users with limited storage
may not be able to participate in the federation

Determining semantically similar objects and then resolving the wide range

of possible conflicts among them is a difficult and time consuming task

2.2.2. Major Problems of Schema Integration

The autonomous nature of database development is the major cause of database

heterogeneity [3, 13, 18]. The more heterogeneous the participating databases are, the

more difficult it is to integrate them. Several main problems can be identified: [3]

Different data models may be used to model different databases which may
result in completely different conceptualization of information.

Changes at any level in individual databases may take place without taking
permission or even notifying database administrators (DBA) of other
databases.

Participation in the global database may take place without any
modification to the local databases. In addition, getting involved in different
global activities is totally up to the local DBA.

Different kinds of conflicts (described in section 2.2.3) may exist among

data objects. [17]

16

2.2.3. Schema and Data Conflicts

Even though the feasibility of integrating HDBMSs was established since two
decades, HDBs are not yet popular. The basic problem seems to be the lack of a
comprehensive understanding of schema conflicts (both syntactic and semantic) and
data heterogeneity. Despite the many methodologies proposed for schema integration,
a practical solution for homogenizing various types of heterogeneity and conflicts is
still absent. In this section, the issue of schema and data conflicts is discussed. [I, 8,

14]

2.2.3.1. Definition

Any two syntactic representations of the same concept are said to have a conflict if
the representations can be described as: [1]

1. Equivalent representation: Different but equivalent modeling constructs are

used. The notion of equivalence may be any of the following three types:

a) Behavioral equivalence: Two representations are equivalent in this

sense if for every instantiation of one representation, there exists a

corresponding instantiation of the other that provides the same set of
answers to any given query.

b) Mapping equivalence: Two representations are equivalent if for every

instance of the first representation there exists a corresponding instance

of the other representation.

17

¢) Transformational equivalence: One representation is equivalent to
another in this sense if applying a set of transformations to the first
representation will yield the second. The transformations applied must
be atomic and, hence, equivalence preserving.
2. Compatible representation: No contradiction exists neither in the modeling
constructs used, in the designer's perception nor in the integrity constraints.
The representations are neither identical nor equivalent though

3. Incompatible representation: Representations are contradictory

If the two concepts, on the other hand, have identical syntactic representations
across component schemas, then no conflicts exist. The phrase “identical syntactic
representations” means that exactly the same modeling constructs are used to
represent the concept. This case rarely happens though, possibly due to any of the

problems mentioned in section 2.2.2.

2.2.3.2. Schema Integration and Conflicts

In order to integrate HDB schemas, various kinds of heterogeneity and conflicts must
be resolved. In addition, resolving these conflicts should not increase the processing
time and response time significantly. [16] To achieve that, identification of common
concepts is necessary. However, due to several reasons (mentioned below), common
concepts are mostly represented by syntactically different representations that may be
semantically conflicting as well. A better (thorough) understanding of conflicts and

causes of heterogeneity is needed to successfully resolve the conflicts and, hence,

18

carry out the integration. [14, 17] The following, summarizes the major causes of
conflicts: [1, 17]

e Real world objects are perceived differently by different individuals.

e Individual differences in data modeling skills of schema designers.

e Variations in the semantic richness of data models used for different

schema definitions.

2.2.3.3. Classification of Conflicts

Two kinds of conflicts pertain to integrating HDB schemas. Schema conflicts, the
first kind of conflicts, refers to possible syntactic and semantic (see section 2.2.3.4 for
various forms of semantic conflicts) differences among component schemas. Schema
conflicts occur basically due to two reasons: [14, 17]
1. Using different syntactic constructs to represent the same information.
Syntactic conflicts occur due to this reason.
2. Associating different specifications (semantic information) with the same

concept. This causes semantic conflicts to occur.

The second kind of conflicts is data conflicts. It refers to contradictory data.
Data contradiction (inconsistency) my be one of two types: [14]
1. Wrong data: occurs when integrity constraints imposed implicitly or
explicitly on the data are violated.
2. Data conflicts based on schema conflicts: occur when schema conflicts take

place.

19

Data conflicts may occur due to several reasons: [14, 17]

e Different accuracy levels: The same data may be stored in different
databases with different accuracy levels (e.g. cm and meter).

¢ Different units: Objects may be stored in different units in various schemes
(e.g. cm and inch)

¢ Different expressions: The same data is represented by different
expressions (e.g. CD-ROM and Compact Disk Read Only Memory)

¢ Asynchronous updates: Local databases are autonomous and updates may
not be reflected on some of them at a point of time or even at all.

¢ Lack of security: Unauthorized users may change local databases due to

lack of security.

Kim and Seo [14] propose a practical and complete classification of schema
conflicts based on the relational model. In the rest of this section, this classification is

generalized to include other models too.

Figure 5 shows the general classification of schema conflicts. Kim and Seo base
their classification on relational model constructs like tables and attributes. Trying to
be more general, the classification presented here is based on Information Units (IU)
that can be at any level of granularity of any data model. For example, attributes,
objects, functions and facts are different possible [Us. Schema conflicts could occur
between the same two IUs. This kind of conflicts can either be one-to-one IU conflicts
(e.g. one attribute conflicting with another) or many-to-many IU conflicts (e.g. two

objects conflicting with three other objects representing the same information). Both

20

one-to-one and many-to-many IU conflicts can be syntactic conflicts or semantic

conflicts as illustrated in Figure 5 .

Schema Conflicts

/\

Different Same
Information Information
Units Units
many-to-many one-to one

Syntactic Semantic Syntactic Semantic

Figure 5: Classification of Schema Conflicts

Schema conflicts could occur between two different IUs. For example, it could
occur between an attribute and a table. This kind of conflicts can be regarded as
several m-to-n conflicts. It is clear that m-to-n conflicts are definitely conflicting in
syntax. They could also conflict in semantics. Compound conflicts could also occur.
These conflicts can simply be considered as several conflicts of the types discussed

above. The following section provides more elaboration on semantic conflicts.

2.2.3.4. Forms of Semantic Conflicts

Many semantic conflict forms are possible. Here are some of the most obvious ones.
(17]

e Naming conflicts: Objects in local databases are named autonomously.

Conflicts may result in different concepts being named by one name

(homonyms) or one concept named differently (synonyms).

21

o Identity conflicts: Different objects in different databases are used to
represent the same concept. [3]

¢ Type conflicts: Different structures are used to represent the same concept
in various schemes.

e Key conflicts: Different keys in different schemas are assigned to the same
concept.

e Behavioral conflicts: Refer to various insertion/ deletion policies
associated with the same objects in different schemes.

e Missing data: The same concept in different schemes may be represented
by different attributes/properties. Essentially, each representation of the
concept will be missing some information existing in the other.

e Level of abstraction: Objects in some schemas may be more detailed than
others.

¢ Identification of related concepts: Concepts in local schemas may be
related even though they are not the same. Properties relating these concepts

have to be identified.

2.3. Schema Integration Methodologies

In this section, some of the latest mature work that has been described in the literature

is summarized. This work provides important concepts for this research.

22
2.3.1. Reddy's Methodology

In this section, the methodology developed by Reddy et al. [17] is summarized.

2.3.1.1. Translating Local Schemas into Component Schemas

The first step toward integration is to translate local schemas of local databases into
schemas represented in a common data model (CDM). CDM schemas are referred to
as component schemas [10]. Adopting a CDM is necessary for several reasons: [17]
e Homogenize data models used in different local schemas and achieve
uniformity in modeling constructs.
e Present an integrated view of information about each entity since it could be
distributed over local schemas.
e Store the explicit semantic knowledge as well as the implicit semantic
knowledge and underlying assumptions obtained during the knowledge

acquisition process described above.

Four parameters for each component schema have to be derived from the
corresponding local database. The first parameter is the set of all distinguishable
entities (objects) defined in a local database. Each object in the set has some

properties that characterize it. [17]

The second parameter is the matrix specifying the relationships among the set of
local objects. This matrix need only to be generated by each local DBA based on his
local database only. The relation between the instances of any two objects may belong

to any of the following categories: [17]

23

e Equivalence relation (cannot exist in a single database schema)
e Super class/ subclass relation
e Overlapping relation

e Disjoint relation

The third parameter is the semantic knowledge collected for each property for
each object. This knowledge is captured via the set of meta-properties and their
corresponding meta-values. Meta-properties provide the semantic meaning to property

values. [17]

The last parameter is the mapping knowledge which is required to construct
instances of a set of objects from data stored in the local database. It provides details
about how an object in a component schema is mapped to its storage representation in
the corresponding local database. The procedure for deriving this parameter is data

model dependent. [17]

2.3.1.2. Deriving the Global Schema

After deriving local object schemas, it is possible to derive the global schema. This
requires deriving four parameters from the corresponding parameters derived for each

component schema. [17]

The set of objects in the global schema is constructed from the various sets of
objects of local schemas derived previously. First, groups of equivalent objects must
be identified. Each group is then replaced by a single object in the global schema.

Equivalent objects have equivalent real world state. Two objects are said to have

24

equivalent real world states if they represent the same sets of instances of some real

world entity. The two objects, though, need not provide identical information. [17]

The next step after deriving global schema objects, is to derive their properties.
Similar to the equivalence among objects, two properties may also be equivalent. If
two properties describe the same characteristic of some real world object, they are
said to be equivalent and should be represented by a single property in the global
schema. In general, a group of, say, m properties of an object may be equivalent to n
properties of another equivalent object. This leads to the possibility that a concept
modeled by several properties of an object may be equivalent to another object. This

type incompatibility is a result of differences in abstraction levels. [17]

The second parameter to derive is the matrix determining the relationships
among global objects. Detailed derivation procedure of this matrix is described in
[17]. The three steps involved are:

I. Automatic derivation based on the matrices derived for local schemas: The
relationships between two objects can be found easily from these matrices if
the two objects belong to the same schema. If not, then the relationship
between them is defined as the sum of their corresponding entries in the
corresponding relationship matrices. If conflicts occur, they have to be
resolved manually as they arise.

2. Manual derivation of missing relationships: This is simply done by the
global DBA in case some relationships could not be derived in the previous

step.

25

3. Consistency checking of the global schema: Particularly, two
inconsistencies are determined and resolved in this step. The first occurs
when it can be implied from the global matrix that one object is a subclass
of another object, yet they are disjoint. The second inconsistency occurs
when cycles in subclass relationships can be determined from the global

matrix.

The third parameter to derive is the semantic knowledge of global objects. As
objects are characterized by their properties, the semantic meaning of global
properties must be determined. The semantic meaning of a property is captured via its
meta-properties. Meta-properties of a global property are derived from the meta-
properties of the equivalent property set from which the global property was derived

(17]

Object integration is achieved by the last parameter, the mapping knowledge
from the global schema to various component schemas. If two equivalent objects from
two different local object schemas are to be integrated, they have to be made
compatible. They require making their equivalent properties compatible. This is
achieved by identifying ways the equivalent properties of the objects are incompatible
and then making them compatible. Making two properties compatible is achieved via
transforming the meta-values of the meta-properties of one incompatible property to
the other. Another way of integrating two objects is via generalization. This, however,

is applicable only to objects that are overlapping (but not contained). [17]

26
2.3.2. Related Semantic Work

In this section, work related to this research is summarized.

2.3.2.1. Semantic Knowledge Acquisition Process

In order to integrate different schemas, relationships among access terms in different
schemas has to be established. This, however, is hampered by different
incompatibilities discussed above. To solve this problem, these conflicts must be
resolved. This, in turn, requires collecting and incorporating missing and/or implied

semantic knowledge for all objects present in different schemas. [17]

The process of semantic knowledge acquisition can either be done manually or
be automated. The manual process is hectic and labor intensive. The automatic
process, on the other hand, is much easier. As complete semantic knowledge is
acquired and stored, the problem of identifying semantically similar objects, possibly

represented differently, is greatly simplified. [1]

2.3.2.2. Linguistic Concepts

It is possible to identify the semantic relationships among terms using linguistic
theories. In order to utilize the linguistic theory automatically in a system, one may
need the help of good user interfaces, and on-line dictionaries and thesauruses. The
user interface should effectively guide the user, with the help of on-line dictionaries,
to determine the semantic relationships among system objects. Basically, these objects

are referred to by various linguistic terms. These terms are called access terms.

27

Therefore, the problem reduces to determining the semantic relationships among these
access terms. [3]

Semantic Relationships

Based on the semantic content, one may unify words in a taxonomy. Two semantic
relationships are of particular importance: hypernymy and synonymy. Hypernyms are
more general words. That is, words with broader meaning. Hyponyms, on the other
hand, are words with more specific meaning (opposite of hypernyms.) Synonyms can
either be strong or weak. Strong synonyms are equivalent from the semantic point of
view. They can be substituted for each other in a sentence without changing its
meaning. Weak synonyms can also be substituted for each other but with some
change in the meaning of the sentence. [3]

Imprecision

Frequently, systems will contain information related to user requests but does not
precisely match them. This imprecision is a result of users and system designers
perceiving the real world differently. In order to deal with that properly, it is necessary

to quantify the similarity between two terms. [3]

A measure used to define the degree of similarity between two terms is called
the semantic distance metric (SDM). If all pairs of terms are connected by some
combination of hypernym-hyponym and synonym links in a taxonomy structured as a
tree, the SDM is the weighted count of the links in the path between any two terms.
The path is supposed to be the shortest path between the two terms. Well known

algorithms can be used to find the shortest path. [3]

CHAPTER THREE

ISSUES ON SEMANTICALLY SIMILAR OBJECTS

3.1. Automatic Identification of Semantically Similar Objects

The objective is to automatically identify semantically similar access terms used in
databases, i.e. the names used in a database schema. To achieve that, an abstract view
of access terms of all local databases is created and structured in a hierarchy. At the
lowest level of the hierarchy are entry-level terms that correspond to access terms
existing in local databases. At each higher level in the hierarchy, some of the lower
level entries are abstracted to form what is called a summary schema. Summary
- schemas are not exact representation of their children. They retain, however, most of
the semantics contained in the children. The summary schemas model (SSM) offers

many advantages discussed in section 3.1.3. [3, 4, 12]

3.1.1. Taxonomy

The SSM requires a general hierarchical taxonomy with disambiguated definition of

words where homographs and polysemy are resolved [3]. The taxonomy should be

28

29

on-line and should combine information found in traditional dictionaries and
thesauruses. It makes use of three types of semantic links: synonyms, hypernyms and
hyponym links. Hypernym and hyponym links are reciprocal and construct the
hierarchy. Synonym links, on the other hand, are symmetric and travel across the
hierarchy between subtrees and leaf nodes. Building such a taxonomy is an
achievement by itself. Therefore, it is sufficient to make use of any existing taxonomy

(or a combination of them) and augment it if necessary. [3]

It is necessary to distinguish between two types of taxonomies: full taxonomy
and operational taxonomy. The full taxonomy contains the following information:
terms, their disambiguated definition and the semantic relationship among definitions.
Each entry in the full taxonomy has the following “fields™: [3]

¢ Term name

o Term definition

e A pointer to a hypernym (not available for the root)

e Alist of pointers to hyponyms (not available for leafs)

e A list of pointers to synonyms (not available for non leafs)

The full taxonomy does require a specialized structure. It must be available on-
line to aid database designers and users understand precisely the meaning of different

terms. It is not required for the automated processing of the SSM. [3]

The operational taxonomy is similar to the full taxonomy except that is contains

less data. It requires much less storage when compared to the full taxonomy. It is only

30

used by the system for its automated processing. Each entry in the operational
taxonomy has the following “fields™:

e TemID

e A pointer to a hypernym (not available for the root)

e A list of pointers to hyponyms (not available for leafs)

e Alist of pointers to synonyms (not available for non leafs)

Note that the operational taxonomy is one level shorter then the full taxonomy. The

leafs of the full taxonomy do not appear in the operational taxonomy. [3]

3.1.2. Creating a Hierarchy of Summary Schemas

As mentioned above, a summary schema is a group of access terms abstracted from
existing terms in local databases. The terms used in a summary schema are hypernyms
of the access terms. To simplify the matter, it is assumed that database schema access
terms are the leaf nodes and internal nodes are summary schemas. Each internal node
summarizes the schemas of its children. The whole hierarchy is five levels high (top

level is level one) which makes it easier to traverse. [3] Figure 6 shows an example of

a summary schema.

3.1.3. Merits and Demerits of the SSM

Using the SSM together with a multidatabase language to create a temporary global
schema offers many advantages. When compared to the approach that creates a

permanent global schema, the following advantages reveal: [3]

31

Level 1 (Summary Schema) - ------- - - - -, Volition
Level 2 (Sections) - - - - - - - - cc ool Possessive Relations
level3(Heads) - - - ------ - ----- .- .. Acquisition Payment
O\ '
Level 4 (Subheads) - ---------- Earnings Gain Pay
Lo
Level 5 (Local DB Schema) - - - - wage Salary Interest Pension

Figure 6: A Sample Summary Schema

e It has a smaller data structure that is easier to create, maintain and store.

e Users can submit queries using terms meaningful to them. They don't have
to worry about terms used in other databases.

e The extra processing overhead is relatively small.

e Integration efforts are shared among local DBAs, users and, to a much
lesser extent, global DBAs.

e Nodes with small storage capacity and processing power can participate in
the global database if this approach is adopted as they don’t need much

resources.

The major disadvantage of the SSM approach has to do with the interpretation
correctness of terms used in user queries and access terms. In fact, this interpretation
depends on issues like: precise usage of terms by both designers and users, and the

suitability of the dictionaries and thesauruses used. [3]

32

Initially, local DBAs have to do some minor effort in mapping all local access
terms to entry-level (level 5 in Figure 6) terms in the taxonomy. They are given the
capability of automatically looking up terms in the full taxonomy where they can
select the proper definition of a term. This capability simplifies much the effort they
have to make. The remaining effort for constructing (and later, maintaining) the

hierarchy is simply automatic. [3]

For each entry-level in the hierarchy, a “subhead” is determined via a hypernym
link. Subheads contain, in their list of synonyms, pointers to various entry-level
nodes. Similarly, hypernym links connect higher levels to their next lower level. List
of hyponym links at each higher level, will point to hyponym terms. Hypernyms, as
such, represent the summary schemas and hyponyms are more concrete or accurate

terms. [3]

CHAPTER FOUR

THE INTEGRATION METHODOLOGY

4.1. Overview of the Integration Methodology

This section introduces a Taxonomy Based Database Schema Integrating
Methodology (TAB DASHING). The shaded area of Figure 7 shows the scope of this
work. The approach combines three main ideas:
1. Integrating heterogeneous database component schemas to build a global
schema structure.
2. Identifying semantically similar objects with the aid of an existing on-line

taxonomy.

3. The general framework of object oriented systems.

By putting together these ideas, TAB DASHING automates the major steps that
used to be done manually. These steps have been described briefly in section 2.3.1.2.

In short, TAB DASHING offers the following advantages:

33

34

External
Schema 1

External

Schema 2

™~

External
Schemam

pd

Global Schema

Component

Component

Component
Scheman

Schema 1 Schema 2
Local Local
schema 1 Schema 2

Local
Scheman

Figure 7: Thesis Work Fills in the Shaded Area

35

1. The need to derive missing relationships among access terms manually no
longer exists. These relations exist naturally in the global taxonomy.

2. Manual derivation of semantic knowledge of global objects is now
automatic.

3. Automatic knowledge mapping is achieved.

In section 2.3 above, it is mentioned that local DBAs have to create local object
schemas from the corresponding local databases. Local DBAs had to create four
different parameters. With the developed methodology, local DBAs have to do much
simpler work. They only have to determine various objects in each database, map
them to the corresponding terms in the on-line taxonomy and fill in the missing or
implied semantic knowledge. In addition, this task is also simplified by the
availability of on-line dictionaries and thesauruses that can be referenced before
defining objects in the component schema. This should reduce semantic conflicts to
minimum.

After each local DBA translates his database into the CDM form, he has to map
each object (represented by a term in the CDM schema) to the corresponding entry in
the taxonomy.

Starting with all objects of all local databases, the global DBA has to extract
various sets of equivalent objects. Each set of equivalent objects will be represented

by only one object in the global schema.

36

Determination of equivalent objects is simple. If two objects were mapped to
two different entries in the taxonomy and it happens that these two entries are

synonyms, then these two objects belong to one equivalent set of objects.

Having that done, the rest of the work is carried out automatically within the

taxonomy.

4.2. The Taxonomy: A New Look

The basic building block of the new approach is the existence of an on-line general
taxonomy of words. The taxonomy will be used by all DBAs as a pool of their
knowledge about their databases. It will serve as a “resolver” of various conflicts

among objects participating in the federation.

Describing the taxonomy as “general” means that each object used within the
databases participating in the federation will have a corresponding entry in the
taxonomy. Moreover, needed properties and meta-properties of the objects will also
have corresponding entries in the taxonomy. Other objects in the world do not really

have to exist in the taxonomy.

Restricting the domain of the taxonomy by making it “domain specific” will
surely give the integrators some relief since the number of terms will be reduced
significantly. The problem, however, is that databases frequently contain access terms
that are not from the domain. These access terms will cause a problem while

integration since they will not be available in a domain specific taxonomy.

37

The on-line taxonomy described in 3.1.1 will be used. It has to be extended,
however, to suite the new approach. The taxonomy is extended to be a hierarchy of
classes rather than just a simple hierarchy of terms. Each term is represented as a class
in the hierarchy. Since the taxonomy is general, there will be classes for all objects,

properties and meta-properties. Figure 8 shows the general format of an entry (a class)

in the taxonomy.

Term
Property 1
Property 1

Propertvy N
Method 1
Method 2

Method M

Figure 8: A Class in the Taxonomy

Each class represents a level of abstraction of some real world object. Some of

the classes are linked to other classes via cross links. Such links denote that the linked
classes represent synonym terms.
Each class will contain various class variables. These variables correspond to

properties of the objects represented by this class. In each class, there will be class

methods that are used to achieve compatibility among compatible classes.

Precise definition of each term in the taxonomy must exist in the corresponding

class. This will aid local DBAs in determining the classes that best represent their

objects.

38

As each term represents a real world entity, the term will possess properties that
correspond to properties of the real world entity it represents. The properties of a term
are modeled as properties (instance variables) of the corresponding class in the

hierarchy. Some of the properties may be inherited from the term’s ancestors

(hypernyms).

4.3. Example I: An lllustrative Example

The way semantic resolution is done and compatibility is achieved are best illustrated
by an example. The example is kept simple such that it is easy to understand.
Consider a merger of two companies A and B. The executives of the merged
companies are interested in the data stored in the Personnel Database of company A
(PDBA) and the Personnel Database of company B (PDBB) collectively. The two
databases are relational. The two local DBAs are willing to integrate these databases.
PDBA has a an entity named “Emp” and PDBB contains an entity named “Staff-

Member”. Figure 9 illustrates these two objects.

Applying the phases TAB DASHING, the DBAs will be able to identify the

following two objects: “Emp” from PDBA and “Staff-Member” from PDBB.

Database Name: PDBA

Entity Name: Emp

Attribute 1: EName: Char (30)
Attribute 2: Wage

Database Name: PDBB

Entity Name: Staff-Member
Attribute 1: SName: Char (30)
Attribute 2: Salary

Figure 9: Two Sample Relations

39

Figure 10 shows the parts of the taxonomy significant to this example. Figure
11 shows some classes of the taxonomy hierarchy. The first object, “Emp”, can be
mapped to “Employee” in the taxonomy. The local DBA of PDBB will be able to map
the second object, “Staff-Member”, to “Staff” in the taxonomy. Note that if both
DBAs have mapped the two terms to “Employee”, for example, the problem would be

simpler.

Depending on the semantic distance metric (SDM) described in section 2.3.2.2,
the degree of semantic similarity between these two objects can be determined. The
SDM between “Employee” and “Staff” is low indicating their similarities (see section
2.4.2). Actually, these two objects are synonyms according to the taxonomy and their
SDM has a value of one, the lowest possible value. Moreover, the synonym link
between the two objects indicates an equivalence relation between them. Hence, their

properties (attributes) have to be equivalent, or at least compatible.

40

Manpower
r
Teacher Engineer Employee «« — — — > Staff
Worker Janitor CEO Manager
Periodicity of Pay Acquisition Payment
Daily Wesekly Monthly Yearly Gain Eaming « — > Pay
) A
Representation Revenue wage Salary Compensation
b
Graphical Computer Finantial Document
Numeric Alphabitic Checks Currency
/\‘ P d R Doll Riyal
Character String oun upee offar lya

Legend:
-———>» :Hypernym to Hyponym Link
< —> :Synonym Link

Figure 10: Parts of the taxonomy for example [

Employee
Name: Pointer to Name class

Wage: Pointer to Wage class

Staff
Name: Pointer to Name class
Salary: Pointer to Salary class

Wage
Value

Currency: Pointer to Currency class
Periodicity-of-pay: Pointer to ...

Method: Wage-to-Salary;

Salary
Value

Currency: Pointer to Currency class
Periodicity-of-pay: Pointer to ...

Figure 11: Sample Classes of the Taxonomy Hierarchy

41

In the example at hand, one property of “Emp” (namely, “EName”) is
equivalent to its corresponding property of “Staff-Member” (“SName”). The second
property, on the other hand, of “Emp” (“Wage”) is only compatible with “Salary”, the

second property of “Staff-Member”.

The equivalence of “EName” and “SName” can be easily determined from their
mapping. Both of them are mapped to Name in the taxonomy which means that they
have the same properties (i.e. meta-properties). That is not enough, however, to
guarantee their equivalence. As mentioned before, the values of these meta-properties
have to be equal in order to guarantee the equivalence of the properties. In fact, this is
the case with “EName” and “SName”. To further illustrate, one meta-property of the
property Name is its computer representation. Both “EName” and “SName” are

represented as characters of length 30 each.

Another issue of concern in this example is the compatibility of the two
properties “Wage” and “Salary”. This compatibility can be determined from the
taxonomy. In this example, it is assumed that wages are paid in terms of Riyals (the
meta-property Currency) per day (the meta-property Periodicity-of-pay). Salaries, on
the other hand, are paid in terms of Riyals per month. Here, the meta-property

Periodicity-of-pay has two different values.

Compatibility between “Wage” and “Salary” can be achieved via methods
defined in the corresponding classes in the taxonomy hierarchy. A method in the

“Wage” class, for example, will multiply a wage by 30 to get the salary per month.

42

Figure 12 shows a method for this purpose. The method is defined in the class
“Wage”. It acts on the attribute Value of the “Wage” class. Whenever this method is

called, the required calculations are performed and the computed result is returned.

Method: Wage-to-Salary;
RETURN Wage.Value X 30
end;

Figure 12: A Sample Method for Achieving Compatibility

4.4. TAB DASHING Details

In this section, TAB DASHING will be described in detail. In order to make the
methodology easy to follow and simple to apply, it is divided into several phases.
“Like every other methodology, we do not present an algorithm in the sense of
stepwise action rather as a way of thinking”, says Eder and Frank [7].Only phases |
and 2 may be curried out in parallel. The rest of the phases have to be applied in

sequence.

4.4.1. Phase 1: Selecting a Taxonomy

The importance of using a lexicon taxonomy in the methodology is that it captures
various semantic relationships among the words people use to express ideas. In earlier
methodologies, researchers started by trying to build these semantic relationships
among access terms (words) used in local schemas, for example [10, 17], for the sake
of identifying semantically similar access terms and resolving conflicts among them.

Researchers who developed these methodologies assumed the existence of a human

43

integrator (mostly the global DBA) who can find (or at least confirm) these

relationships and solve the conflicts. The problems of such approach were discussed

in section 2.2.1.2.

To simplify the process, the idea of using a general lexicon taxonomy was
introduced in the context of developing the SSM (see section 3.1 for a brief
discussion) [3, 4, 12]. Building on the same idea, I suggest using the taxonomy

hierarchy as the basic building block of TAB DASHING.

It is suggested in [3] to select an existing taxonomy (or a combination of
existing ones) rather than building one from scratch. Section 3.1.1 describes the
taxonomy. Section 4.2 shows how it looks in this research. Building a taxonomy from
scratch requires a significant effort. Moreover, the existing taxonomies are suitable
and sufficient for the purposes of TAB DASHING. Furthermore, definitions and

semantic relationships in existing taxonomies are tested and verified for its usefulness

as opposed to a newly built one.[3]

Customizing and/or augmenting the selected taxonomy is not out of question.
As a matter of fact, if only some of the features required are met in the taxonomy, the
global DBA or even some/all local DBAs should consider augmenting the most

suitable taxonomy.

Selecting a taxonomy can be done by the global DBA alone or by some/all local
DBAs together with the global DBA. The main features they should look for while
selecting one are listed below: [3]

¢ A general lexicon taxonomy

e The entries in the taxonomy should be disambiguated
e The hypernyms hierarchy should be simple
e Hypemnyms should be semantically intuitive

e The taxonomy should have a limited number of synonym cross-references

4.4.2. Phase 2: Translating Local Schemas to CDM Component
Schemas

Integrating local schemas in their original (potentially heterogeneous) data
models is a difficult task. It becomes easier if the problem is reduced to integrating
schemas that share a common data model (CDM). Reasons making it necessary to
adopt a CDM are mentioned in section 2.3.1.1. To achieve this, each local schema is

translated to an equivalent schema represented in the CDM. [6]

Since each local DBA is assumed to be knowledgeable of the database s(he)
administrates, s(he) would be the best person to carry out the translation. Help of the
on-line taxonomy can be sought in the process of translation. The on-line taxonomy is
a browsable version of the taxonomy hierarchy that provides the DBAs with the
precise meaning of each term in the hierarchy. It is suggested (but not necessary) to
use the terms found in the taxonomy instead of the original terms of the local
schemas. This should simplify carrying out the next phase. This situation is much the
same as a person trying to translate an article to an equivalent article in another
language. He would seek the help of a proper dictionary and/or thesauruses, and use

the words s(he) discovers.

45

As an example, suppose there is an access term “Emp” in some local schema.
The local DBA, by assumption, well understands the meaning of “Emp”. Now, the
local DBA wants to translate the local schema to a corresponding component schema.
Of course, s(he) can still use the same access term “Emp” or any other term. If a
proper term is used, however, the next phase will be simpler to carry out. To select the
proper term s(he) would want to know which term in the taxonomy is most suitable.
For that s(he) will need to browse the taxonomy and select the term that has the best
definition. The local DBA might find terms like “Employee” and “Staff” prime
candidates. Chung and Mah [6] mention a few guidelines for translating schemas in
relational, network, hierarchical and object oriented models to the unified model, an

object oriented extension of the relational model.[6]

4.4.2.1. The CDM Selected for Use with the Methodology

Two main features DBAs should look for when selecting a CDM are, first, it
should be rich enough in semantics such that it can model the semantics of the data
models of various local schemas. In other words, the CDM should subsume other data
models; second, it should be simple enough such that creation and maintenance of the
global schema is easy. [6, 11, 15] Rich data models are ones with more data modeling
constructs, properties and constraints while simple data models are ones with fewer
such constructs [10]. The two features, hence, are contradictory. The object oriented
data model, however, seems to be accepted as one that satisfies both features. More

details about main concepts and issues of the model may be found in Bertino and

Martino [2].

46

Some researches proposed to use the object oriented data model or an extension
of it (see [5] for an example) as the CDM. Others suggested extending the relational
model with object oriented features [6]. It seems that object orientation offers the
necessary features needed for this kind of research. Therefore, we will consider the
object oriented data model (or any of its extensions) as a suitable CDM for schemas to

be integrated by TAB DASHING.

4.4.2.2. Translation from Different Data Models to CDM

Local databases are potentially modeled using different data models. Some of the
widely used data models are the relational, network, hierarchical and object-oriented
data models. In order to translate local schemas modeled using a data model different
from the CDM, it is necessary to follow some kind of translation guidelines. These
guidelines when applied to a schema in some data model (source data model) should

result in an equivalent schema in the target data model (the CDM.)

Fortunately, earlier research has produced such guidelines. Chung and Mah [6]
present guidelines for converting relational, network, hierarchical and object-oriented

data models to the unified data model, a relational data model with object-oriented

features.

Chung and Mah [6] claim that the unified model and the object-oriented model
are essentially the same except that the object-oriented model has more features. They
also claim that converting the extra features to the available ones in the unified data

model is “quite straightforward.” Hence, it is quite reasonable to accept the given

47

guidelines as valid ones for translating local schemas with their data model being
relational, network, hierarchical or object-oriented to the CDM (the object-oriented

data model.)

Guidelines for translating other data models to the object-oriented data model
can be developed if not already available. This kink of work, however, is beyond the

scope of this research.

4.4.3. Phase 3: Mapping Access Terms

This phase is also carried out by each local DBA. Each local DBA has to, first,
identify all objects in the translated schema, the component schema. Each of these
objects is represented by an access term in the component schema (see section 3.1).
As mentioned in phase 2, each local DBA is assumed to be well knowledgeable of the

database s(he) administrates.

In the second step, each local DBA has to determine, precisely, which taxonomy
term matches the meaning of each access term. This task is much simplified by the
availability of the on-line taxonomy that can be referred to even before identifying

access terms (see phase 2 above) in component schemas.

The last step is now straightforward. Each access term is mapped to the
corresponding taxonomy term. This is made possible by making the taxonomy
structure globally available. That is, it can be accessed by all local DBAs as well as

the global DBA. When an access term is mapped to a taxonomy term, the taxonomy

48

term should be the most specific term in the taxonomy. That is, the term that lies as

deep as possible in the taxonomy structure.

To illustrate, assume that one of the objects in the component schema is named
“Emp”. The first step the local DBA should do is to identify this object (as well as
others). As the meaning of each access term (“Emp” in this example) is well
understood by the local DBA, the second step aims at finding the taxonomy term
whose meaning corresponds to the meaning of “Emp”. Let us assume that the
taxonomy term “Employee” is found to be the best corresponding term in the
taxonomy. In the last step, the access term “Emp” is mapped to the taxonomy term
“Employee”.

Term Matching

Terms in component schemas are mapped to the taxonomy terms on the basis of there
semantics. If the semantics of a component schema term matches the semantics of a
taxonomy term then the component schema term should be mapped to this taxonomy

term.

One way to compare the semantics of two terms is to first consider the
definition of the two terms (the one the local DBA knows versus the one in the
taxonomy). Second, the properties of the terms are compared against each other. An
ideal situation will occur when the definitions are matching and the properties are
identical in number and semantics. The ideal situation is not very likely in most cases.
A more realistic situation would be one in which definitions and only some properties

are matching. In this case, terms having more properties in common are ones with

49

closer meaning. Resolving the conflicts among properties with different semantics can

be considered (see section 2.2.3.3).

This matching method might not be the best to apply. It is sufficient, however,
for the purposes of developing TAB DASHING. Better matching techniques can be

considered. If one is found, it would add to the power of TAB DASHING.

4.4.4. Phase 4: Augmenting Semantic Knowledge

Section 2.3.2.1 addresses the issue of explicitly storing semantic knowledge missing
or implied about each object. The collected knowledge will be stored in the taxonomy

term corresponding to the access term representing the object.

Automating the process of semantic knowledge acquisition was also addressed.
As each local DBA maps an access term to a taxonomy term, s(he) can be prompted
to fill in the missing and/or implied semantics. As the semantics are captured via
instance variables of each taxonomy term (a. class), it is obvious that valueless
instance variables are the ones with missing semantics. Local DBAs will be prompted

to fill in the information for these variables.

4.4.5. Phase 5: Determining Equivalent Objects and Creating the
Global Schema

In a single local schema, there will be no equivalent objects. Otherwise, the
minimality condition of database design is violated. Equivalent objects might exist,
however, among component schemas. As mentioned previously, it is essential to

determine such objects to achieve integration (see section 3.1). This task is quite

50

involved and difficult in other methodologies. In this methodology, however, the

global DBA has a much easier and straightforward job.

If two access terms were mapped (in phase 3) to the same taxonomy term, then
it is obvious that the corresponding objects belong to one equivalent set of objects.
Assume, for example, that the access terms “Emp” and “Staff-Member” from
databases A and B respectively were both mapped to the taxonomy term “Employee”.
The global DBA can safely say that “Emp” and “Staff-Member” are equivalent

objects.

Similarly, if access terms were mapped to different taxonomy terms that share
synonym links among them, then the corresponding objects belong to one equivalent
set of objects. Assume that “Staff-Member” in the previous example was mapped to
the taxonomy term “Staff” that shares a synonym link with “Employee” (see Figure
10). In this case too, the global DBA can safely declare the equivalence between
“Emp” and “Staff-Member”. In any other case, the global DBA may assume that the

objects are not semantically similar.

For the sake of constructing the global schema, the global DBA has to select a
representative access term from the taxonomy for each set of equivalent access terms.
In the case where all access terms are mapped to one taxonomy term, the global DBA
may only select that taxonomy term as an access term in the global schema. If access
terms were mapped to synonymous taxonomy terms, the global DBA may select any
of these synonyms as an access term in the global schema. The resulting global

schema is an object oriented schema. In the previous example, if the two access terms

51

were mapped to “Employee”, “Employee” is the term that will be selected as the
access term in the global schema that corresponds to “Emp” and “Staff-Member”. On
the other hand, where “Emp” and “Staff-Member” are mapped to “Employee” and
“Staff” respectively, either “Employee” or “Staff” may be selected as the

corresponding access term in the global schema.

For unique access terms (ones that have no equivalents), the corresponding
taxonomy term may be selected as a representative access term in the global schema.
Assume, for example, a unique access term “Eng” was mapped to “Engineer”. Then,

“Engineer” will be used as the representative access term in the global schema.

Up to this point the need for the on-line taxonomy no longer exists. The global

schema has just been created and only one more phase, described next, remains.

4.4.6. Phase 6: Defining Compatibility Methods

Section 2.2.3.3 describes different kinds of conflicts that may exist between two
access terms from two different component schemas. The way these conflicts are
resolved in this methodology is via compatibility methods. A compatibility method is
simply a method defined in a taxonomy term (class) that is compatible, but conflicting
with, another taxonomy term. A compatibility method is needed for each different
conflict between two terms. Compatibility methods will reside in various classes of

the global schema created in phase S.

According to the way synonyms are perceived in this research, synonymous

terms refer to semantically similar objects. That is these synonyms should be

52

compatible. Synonyms, however, might have conflicts among them. Therefore,
compatibility methods will have to be defined in the taxonomy term that need to be
made compatible with another synonymous taxonomy term. We call this kind of

compatibility methods Horizontal Compatibility Methods (HCM).

Another type of compatibility methods is the Vertical Compatibility Methods
(VCM). VCMs are defined to resolve conflicts between two taxonomy terms one is a
super class of the other. This situation will arise in cases where one of the properties
of the super class is redefined in a subclass and the property is given the same name.
Redefining a property this way is never needed unless there is a semantic difference

(semantic conflict) between the super class property and the subclass property.

Basically, there is no difference between HCMs and VCMs except that the

former apply to synonymous terms while the later apply to hypernym/hyponym terms.

Examples of HCMs and VCMs may be found in sections 4.3 and 4.5.

Compatibility methods will have to be invoked only when data retrieval takes
place. In this case, it is possible to have these methods invoked automatically.

Example II in section 4.5 illustrates the idea.

Compatibility methods can either be defined by the global DBA or by individual
local DBAs. In either case, however, definition cannot be done before phase 5 is

complete and global schema access terms are known.

53

4.5. Example lI: A Complete Example

To illustrate the power of TAB DASHING and to facilitate its analysis, we take the
very same schemas, schema objects and properties presented in Reddy et al. [17] and
apply TAB DASHING to it. We will be able to get a result equivalent of that in [17].
To simplify building the example, schemas, objects, and object properties and meta-
properties found in [17] are mentioned below:
Local Schemas and Objects

Local Schema | = {Emp, Faculty, Dept}

Local Schema 2 = {Employee, Visiting-Prof, Professor}

Local Schema 3 = {Temporary-Staff, V-Prof, Division}
Objects and Properties

Emp = {Emp-Id, Emp-Sal, Dept-Name}

Faculty = {Fac-Id, Fac-Pay, Fac-Specialization}

Dept = {Dept-Budget}

Employee = {E-Id, E-Sal, Div-Name, E-Rank}

Temporary-Staff = {TS-Id, Working-Hours, Wages}

Staff = {Staff-Id, Staff-Sal}
Properties and Meta-Properties

Emp-Sal = {Currency, Periodicity-of-Pay}

Dept-Budget = {Currency, Periodicity-of-Grant}

The following objects were found to be equivalent in [17]:
{Emp, Employee}

54

{Dept, Division}

{ Visiting-Prof, V-Prof}

Figure 13 shows the super class/ subclass information found in [17]:
Phase 1 of TAB DASHING aims at selecting a taxonomy. Figure 14 shows the

parts of the selected taxonomy significant to this example.

In phase 2, translation of local schemas to CDM component schemas takes
place. The result of translating schema 1, schema 2 and schema 3 to the CDM (Object

Oriented Data Model in TAB DASHING) is shown in Figure 15.

Staff

Employee Temporary-Staff

v

Faculty

Professor

/

Visiting-Professor

Figure 13: Super class/Subclass Information in Reddy et al.

Daily Weekly Monthly Yearly

Organization Staff
{1d, Salary}
Division < — —> Degartment Employee Temporary-Staff
{id, Budget} {d, Salary, {Id, Working Hours,
Department Name} Wages}
Periodicity of Pay ¢
Facuity
{Spcialization}
Daily Weekly Monthly Yearly *
Professor Budget
Periodicity of Grant

Visiting-Professor

Figure 14: Parts of the Taxonomy for Example II

55

Componet Schema 1

Emp

Emp-Id

Emp-Sal Dept
Dept-Name—— —__p Dept-Name

I Dept-'Budget

Budget
Faculty Periodicity-of-Grant
Fac-id Currency
Fac-Pay

Fac-Specialization

Employee

Componet Schema 2

Division

E-id Div-Name

E-Sal Budget

Div-Name

E-Rank
Budget
Periodicity-of-Grant
Currency

V-Prof Professor

Legend:

—>» :lInheritance Relationship

—>» :Aggregation Relationship

Componet Schema 3

Temporary-Staff Division

TS-id Budget
Working-Hours
Wages
Budget
Periodicity-of-Grant
V-Prof Currency

Figure 15: Translated Schemas

56

In phase 3, local DBAs will identify component schema access terms and find
proper taxonomy terms corresponding to them. The access terms identified in each
component schema and the corresponding taxonomy terms to which they are mapped

are mentioned below:

“Component Schema 1.Emp” mapped to “Employee”
“Component Schema [.Faculty” mapped to “Faculty”

“Component Schema |.Dept” mapped to “Department”

“Component Schema 2.Employee” mapped to “Employee”
“Component Schema 2.Visiting-Prof”” mapped to “Visiting Professor”
“Component Schema 2.Professor’” mapped to “Professor”

“Component Schema 2.Div” mapped to “Division”

“Component Schema 3.Temporary-Staff” mapped to “Temporary Staff”
“Component Schema 3.V-Prof” mapped to “Visiting Professor”

“Component Schema 3.Division” mapped to “Division”

In phase 4, missing or implied semantic knowledge is explicitly stored.
Examples of this knowledge include: “Currency” and “Periodicity of Pay” of the
“Salary” property of “Employee”, and “Currency” and “Periodicity of Grant” of the
“Budget” property of “Department”.

In phase 5, the global DBA determines equivalent objects. The global DBA

should be able to determine the same sets of equivalent objects mentioned above.

57

Since “Component Schema |.Emp” and “Component Schema 2.Employee” are both
mapped to the same taxonomy term, “Employee”, their equivalence is obvious.
Similarly, “Component Schema 2.Visiting-Prof” and “Component Schema 3.V-Prof”
are obviously equivalent. “Component Schema 1.Dept”, “Component Schema 2.Div”
and “Component Schema 3.Division” are also eéuivalent since the access terms are

either mapped to the same taxonomy term or to synonymous taxonomy terms.

The global DBA should now select an access term for each set of equivalent
access terms. The following may be selected as representative access terms:
“Employee” represents “Component Schema 1.Emp” and
“Component Schema 2.Employee”
“Department” represents “Component Schema 1.Dept”,
“Component Schema 2.Div” and
“Component Schema 3.Division”
“Visiting Professor” represents “Component Schema 2. Visiting-Prof” and

“Component Schema 3.V-Prof”

“Component Schema [.Faculty” and “Component Schema 3.Temporary-Staff”
are the only two access terms without equivalents. Their representative access terms

are “Faculty” and “Temporary Staff” respectively.

In phase 6, compatibility methods are to be defined. In this example, it is
assumed that “Department.Budget” is granted five times a year in Rupees while
“Division.Budget” is granted once a year in terms of Dollars. Here, the meta-

properties “Periodicity of Grant” and “Currency” have different meta-values. To

58

achieve compatibility, an HCM have to be defined in “Division” class. The method
has to formal parameters that are assigned proper values when used. In this example,
it is assumed that $1 = 30 Rupees. Hence, “PoG” and “Rate” will be assigned the

values: 1/5 and 30 respectively. Figure 16 shows an outline of the method.

The method shown in Figure 16 will be invoked whenever the global data item
“Department.Budget” is queried and the local data item “Division.Budget” has data to
participate.

In this example, it is assumed that an “Employee” is paid his “Salary” in Rupees
and a “Faculty” in Dollars. Since the “Salary” property is defined in both “Employee”,
the super class, and “Faculty”, the subclass, (see Figure 14) a VCM is needed to
resolve the conflict. If interest is in the “Salary” of the “Faculty”, the VCM should be
defined in “Employee” as shown in Figure 17. In Figure 17, “Rate” is given the value

1/30 since $1 is assumed to be equal to 30 Rupees.

Method: DivisionBudget-to-DepartmentBudget (PoG, Rate);
RETURN Budget.value X PoG X Rate
end;

Figure 16: HCM Method Resolving the Budget Conflict

Method: EmployeeSalary-to-FacultySalary (Rate);
RETURN Salary.value X Rate
end;

Figure 17: VCM Method Converting Employee Salary to Faculty Salary

59

4.6. Methodology Analysis

This methodology is developed to overcome a few problems and achieve some
objectives (see section 1.2). The problems were found in methodologies developed
earlier and the objectives were determined to avoid them and offer new features. In
this section, we compare TAB DASHING to earlier ones, and highlight the new

features and extra overhead.

The first (and main) feature of TAB DASHING is the availability of
relationships among access terms in a pre selected taxonomy. The need to build these
relationships is no longer present. Earlier methodologies try to build these
relationships every time from scratch depending on the existence of a human to find
out these relationships and resolve possible conflicts. Some earlier researchers went a
bit further [3], where help of an existing taxonomy is sought to build these

relationships.

The second feature is the ability to automatically identify semantically similar
objects. Thanks to synonym links in the taxonomy. In earlier methodologies, a human
(usually the global DBA) had to find out himself different sets of equivalent objects.
Any conflict arose, had to be resolved manually. Conflicts are resolved automatically
in TAB DASHING via compatibility methods. Reddy et al. [17] resolved the conflicts
via transformation maps.

Automatic acquisition of semantic knowledge is the third feature. Previously,

both local and global DBAs had to provide missing and/or implied semantic

knowledge of objects. In TAB DASHING, there is no need to do this since this

60

knowledge is already present. In some cases a need might arise to augment the
taxonomy with some more information. Augmentation, if takes place, will have to be

done only once. Moreover, there should not be too much missing information from

the taxonomy.

As TAB DASHING adopts object oriented concepts, it was necessary to
generalize the classification of schema conflicts to suit the methodology (see section
2.2.3.3). Generalizing the classification of schema conflicts can be considered as a

“by product” of developing the methodology.

The methodology is much less human labor intensive. Compare the amount and
nature of work required from the DBAs using this methodology to that required by

users of the methodology developed in [17], for example.

The methodology requires minimal knowledge by the global DBA of different
local schemas. This is a result of distributing the integration tasks over local DBAs
and the global DBA giving each a fair share of work and reducing the responsibility
domain of the global DBA. In earlier methodologies, the global DBA is overwhelmed
by doing most (if not all) of the integration tasks with no (or very little) local DBA
assistance.

Earlier methodologies produce very rigged global schemas that are difficult to

create, in the first place, and hard to modify (maintain) afterwards. This methodology,

on the other hand, makes it easy to create and maintain the global schema.

Easy maintenance of the global schema is facilitated by a very important “by

product” of this approach is its dynamic nature. At any moment, a new local schema

61

can join the federation without disturbing any of the global users. In addition, local
schemas already participating in the federation can be dynamically modified

(maintained). Thanks to the possibility of using the taxonomy dynamically.

The price to achieve this easiness and simplicity of the methodology is paid in
terms of extra overhead. First, the taxonomy should contain more information when
compared to the taxonomy used in the SSM (see section 3.1). Second, compatibility
methods have to be developed to resolve various conflicts. The number of
compatibility methods that have to be developed is a factor of the number of conflicts
among objects in component schemas being integrated. Finally, the number of
aggregation relationships [2] is potentially large since any property of any object

could itself be an object.

4.7. General Implementation Guidelines

In order to make use of the methodology in actual integration problems, it has to be
realized as a computerized system. That is, the methodology has to be implemented.
Implementation of the methodology is neither trivial nor impossible! It can be
considered as a medium/large size project. As usual, the best way to handle projects

of this size is to divide it into several implementation phases and conquer each one

independently.

Dividing the methodology into six phases gives a clue for dividing the project.

The project can be broken into six implementation phases each of which is concerned

62

with providing the necessary support for carrying out the corresponding phase of the

methodology. Literally speaking, the following are the six implementation phases:

Implementation Phase 1

This implementation phase should take care of making the taxonomy available for the
DBAs. Basically, there are two options: either build the taxonomy from scratch or
take one off-shelf. Section 4.4.1 discusses the advantages and disadvantages of each
option.

Selecting a taxonomy off-shelf might require some augmentation/customization.
Main augmentation/customization activities include: transforming each term to a class
(section 4.2), defining different synonym links and adding missing/implied properties

of each term.

Implementation Phase 2

Local schemas not in the CDM have to be translated to the CDM. Since the CDM
used in this research is the object-oriented data model, the concern here is for
translation from different data models to the object-oriented data model. The literature
presents guidelines and techniques to carry out such translations (see [6] for example).
This implementation phase is concerned with realizing these guidelines in the
computerized system such that the users will be guided by the system to do the

translation.

As a start, it is sufficient to consider the most commonly used data models: the

relational, network and hierarchical data models. Other data models can be included

63

later on. Obviously, the more data models supported by the system, the stronger the

system is.

Since translating local schemas may be considered a pre-integration activity, an
alternative approach can be followed. The implementation phase can be restricted
only to accept component schemas as input to the system. That is, the translation of
local schemas will be done by the local DBAs some how, and the result of that will be
input to the system. The system, in this case, has to have the ability to recognize

different input elements and reconstruct component schemas internally.

Implementation Phase 3

This implementation phase is concerned with extracting various access terms from
each component schema and then defining a correspondence (mapping) between each
access term and a term in the taxonomy. This implementation phase simply provides
an interface for each local DBA. It facilitates browsing of the taxonomy terms in order
to find the proper taxonomy term that corresponds to each access term then define this

correspondence.

Implementation Phase 4

The issue of missing/implied semantic knowledge is addressed in section 2.3.2.1. The
missing semantics can be realized as properties without values. In this implementation
phase, all such properties will have to be presented to the integrators so that they can

augment the missing semantics.

Automating this process is straightforward. While each access term is mapped
(in implementation phase 3) to the proper taxonomy term, the integrators can be
prompted to fill the missing semantics. This kind of interaction between
implementation phases 3 and 4 has to be considered prior to carrying out any of them;
otherwise, it might become difficult (or even impossible) to combine both of them

after completion.
Implementation Phase 5

As mentioned in section 4.4.5 equivalent terms are those mapped to the same
taxonomy term or those mapped to different taxonomy terms that share synonym links
among them. This implementation phase is concerned with finding out these terms.
These terms represent equivalent objects in the global system. Creating the global

schema and presenting it to the DBAs is another task in this implementation phase.

Implementation Phase 6

In order to define HCMs, synonymous terms that have access terms mapped to them
have to be first identified. Proper HCMs can then be defined. VCMs are needed in a
different situation. Wherever a property of a super class is redefined in a subclass and
the property is given the same name, then there is a need to define a VCM. In this
case, it is necessary to build a technique to find such properties and inform the

integrators about them.

65

It should be the responsibility of the system to provide the integrators with the
proper tools (text editor, compiler, ...etc.) to write the methods. Then, it should place

the method in the proper class.

Some of these implementation phases are sufficiently large such that they can be
further divided into rather smaller phases. For example, implementation phases 2, 5

and 6 seem to be too large to be handled without dividing them further.

CHAPTER FIVE

CASE STUDY: INTEGRATION OF TWO STUDENT
DATABASE SCHEMAS

In this case study, two student database schemas will be integrated using TAB
DASHING. The schemas are used in two different schools to keep track of necessary
information about the students of each school. The two (local) schemas are relational

and are shown in Figure 18 and Figure 19 respectively.

Students (Student Id, Parent Id, Name, Grade, SchCode,
Joining Date, Birth Date, Admission-Status)

SchoolCode (SchCode, Description)

Parent (Parent Id, Name, NatCode, POBox, Postal Code,
OPhone, HPhone, Notes)

TNationality (NatCode, Nationality, AbbrNat, Country,
AbbrCountry)

GradeCode (Grade, Description)

Figure 18: Local Schema 1

66

67

Student (Parent-Id, Join-Date, Id, Name, B-Loc, B-Date,
Nation, Sex, Religion, Lang, Curr-Sch, Last-Sch,
Parent, Relation, Job, Job-Loc, J-Phone, H-Phone,
Address, Level, Year, Class, Status)

School (Id, Name, Sex, Lang, Address, Manager, Vice-Man,

Tel)
Sex (Id, Name) Level (Id, Name)
Lang (Id, Name) Year (Id, Name)

Nation (Num, Nation)

Figure 19: Local Schema 2

Phase 1 of the methodology suggests selecting a taxonomy. The taxonomy that
will be used for this case study is “Roget’s Thesaurus” [9]. Figure 20 shows the

necessary parts of the taxonomy that will be used during integration.

68

Relation

l

Circumstance

Voo

Quantity

SN NN

Equality Degree Term

Abstract Relations
(Class One)

Order Causation

l

Class Chronometry Period Paternity

ooy

Time

v

Status Level Stage Grade Sex Date Year Parent
Admission Hijra _ _ _Gregorian
Status Date Date
Space intellect
(Class Two) (Class Four
Division [Division il
General Dimension (Formation of Ideas) (Communication of ldeas)
‘/*
Modes of Means of
Abode Communication Communicating Ideas
v \ v
Residence School Learner Language
Address Student <- - - > Pupil
Volition Affections
(Class Five) (Class Six)
Division1 Division Il General Sympathetic

(Individual) (Inter social)

Philanthropy
General

Nationality
Keeper

Guardian

Figure 20: Parts of Roget’s Taxonomy

69

Figure 20 shows the result of translating the first local schema to the CDM,
“Component Schema 1”. Looking at “Component Schema 1” it can be seen that the
local DBA has taken the advice of using taxonomy terms instead of the original terms
found in the local schema. For example, he used “Nationality” instead of
“TNationality”. Figure 22, on the other hand, shows that the local DBA of the second

database preferred to use the same terms of his local schema.

Grade Student Parent Nationality
Code id / id Code
Name Name / Name // Name
\ Parent Nationality Nationality Abbreviation
'Grade POBox Country
School /'Scpool Postal Code Country Abbreviation
Code Join Date Office Phone
Name Birth Date Home Phone
Admiﬁsion Status Notes

Code
Description

Figure 21: The CDM of Local Schema 1

In phase 3, the two local DBAs have to identify component schema access terms
and map them to the proper taxonomy terms. Figure 23 shows the access terms of the

two component schemas and the taxonomy terms to which they are mapped.

70

School

Name

Sex /
Lang

Address
Tel

Manager
Vice-man

Level
Id
Name

Year
Id
Name

Id | 7 |

Lang

Name

Student
id

Name
Join-date

B-Loc
B-Date
Nation

Nation
Num
Nation

Sex

Sex
| Religion
Lang
'Curr-Sch
Last-Sch
Level

LYear
Class
Status
Parent-id
Parent
Relation
Job
Job-Loc
J-Phone
H-Phone

Address

Name

Figure 22: The CDM of Local Schema 2

Component Schema 1 Component Schema 2
Access Term Taxonomy Term Access Term Taxonomy Term
Student Student Student Pupil
Parent Guardian School School
School School Nation Nationality
Nationality Nationality Level Stage
Grade Grade Year Year
Admission Status | Admission Status Sex Sex

Lang Language

Figure 23: Access Term Mapping

71

Comparing the properties of the objects of the component schemas against those
of the taxonomy terms, we find that some properties are missing from some objects.
Figure 24 shows the taxonomy terms and their properties that are needed through out
this case study. For example, “Component Schema 1.School” has only two properties:
“Code” and “Name”. The taxonomy term “School” contains additional properties like

“Phone” and “Address”.

Some semantic knowledge is not explicitly stored in “Component Schema 1”.
This knowledge has to appear explicitly in order to carry out the integration. For
example, “Component Schema 1.Grade” should have two more properties explicitly
stored. These properties are: “Stage” and “Year”. “Stage” represents the degree the
student is seeking (e.g. Elementary, Intermediate, High) while “Year” represents the

year he is attending (First, Second, ...etc.).

Starting from phase 5, the global DBA takes over. In phase 5, equivalent objects
will be determined. Figure 25 shows equivalent objects in the two component
schemas, the representative access term in the global schema and the reason the

objects were found to be equivalent.

72

School Address Student Pupil Guardian
Code P OBox id Id id
Name Postal Code Name Name Name
Address Street Guardian Guardian Relationship
Language City Grade Level Nationality
Sex Courtry Classroom Year Job
Phone School Classroom Job Phone
Principal Lanquage Previous School Current School Home Phone
Vice-Principal Code Language Previous Schoal Address
Name Sex Language Notes
Nationality Sex
Religion Nationality
Sex Join Date Religion Nationality
Code Birth Date Join Date Code
Name Birth Location Birth Date Narme
Adrmission Status Birth Location Nationality Abbreviation
Status Country
Gregorian Courtry Abbreviation
Date
Stage Day Admission Status
Code Month Code
Name Year Description
Grade Hijra
Code Date
Year Name Day
Code Stage Morth
Name Year Year
Figure 24: Class Properties
Component Component Global Schema Reason of
Schema 1 Schema 2 Access Term Equivalence (1" or 2™)
Student Pupil Student I
School School School 2
Nationality Nationality Nationality 2

1": Component schema terms are mapped to synonymous taxonomy terms
2 : Component schema terms are mapped to the same taxonomy term

Figure 25: Equivalent Objects in Component Schemas

73

Access terms in component schemas that have no equivalents are represented in
the global schema by the same taxonomy terms to which they were mapped. In
“Component Schema 1”, “Guardian” and “Admission Status” are the only access
terms that have no equivalents. In “Component Schema 2”, “Year”, “Sex” and

“Language” have no equivalents too. The global schema is shown in Figure 26.

Defining compatibility methods, phase 6, is needed to achieve compatibility
between two pairs of objects: between “Student” and “Pupil”, and between “Hijra
Date” and “Gregorian Date”. The properties of “Student”, “Pupil”, “Gregorian Date”
and “Hijra Date” (after augmenting possible missing/implied semantics) are shown in
Figure 24. In Figure 27, two HCMs are shown. The methods will be used to achieve
compatibility between the two object pairs. The methods will be defined in “Student”

and “Gregorian Date” classes of the global schema described earlier.

74

School Address Student Guardian
Code POBx Id Id
Name |_» |Postal Code Name Name
Address — | Street Guardan ———— | —> | Relationship
Langua Gity Grade Nationality
Sex Country Classroom Job
Phaone \ School Job Phone
Principal Lanquage Previous School Home Phone
Vice-Principal Code <«———Langquage Address
Narme / ,s'\:; Notes
oty
A Religion T N Y
Sex |Join Date > Nationality
Code | Birth Dete Code
Name Birth Location Name
/ Adission Status Netionality Abbreviation
. ' Country
(;3“""‘ l Courtry Abbreviation
Dey .
Stage Morth Code
Mmr;e Year Description
Grade
Yo =
Code NStage
Name N-Yw

Figure 26: The Global Schema

75

Method: HijraDate-to-GregorianDate();
RETURN f ([Gregorian Date] .Day, [Gregorian
Date] .Month,
[Gregorian Date] .Year)
/* £: a function that curries out the transformation
*/
end;

Method: Pupil-to-Student();
Studnet.Id = Pupil.Id
Studnet.Name = Pupil.Name
Studnet.Custodian = Pupil.Custodian
Studnet.Grade.Level = Pupil.Level
Studnet.Grade.Year = Pupil.Year
Studnet.Classroom = Pupil.Classroom
Studnet.School = Pupil. [Current School]
Studnet. [Previous School] = Pupil. [Previous School]
Studnet. [Join Datel = Pupil. [Join Date]
Studnet. [Birth Date] = Pupil. [Birth Date]
Studnet.Sex = Pupil.Sex
Studnet.Religion = Pupil.Religion
Studnet.Nationality = Pupil.Nationality
Studnet.Language = Pupil.Language
Studnet. [Admission Status] = Pupil.Status
RETURN

end;

Figure 27: Compatibility Methods

CHAPTER SIX

CONCLUSION AND FUTURE WORK

6.1. Conclusion

Integrating heterogeneous databases is gaining more interest nowadays. The reason is
that a huge number of autonomous (potentially heterogeneous) database systems were
developed to satisfy single user requirements. Some recent applications require data
from several of these systems while maintaining their autonomy is still desirable. In
order to build such global systems heterogeneous database systems (HDBS) must be

built above the autonomous database systems.

Building HDBSs is not trivial. Several tasks are involved. Schema integration is
a major task. It is defined as the process of integrating existing or proposed

component database schemas into a single global schema.

There are two design approaches for integrating HDBSs. The first approach
creates a temporary global schema while the second creates a permanent global
schema. In this research, the second design approach is adopted. The underlying

schema architecture is a four-level schema architecture with standard terminology.

76

77

The major problem of schema integration is resolving the wide range of
possible conflicts. Conflicts could range from simple structural differences to major

variations in semantics, design and/or modeling.

One of the objectives of this thesis is to automate identifying semantically
similar objects such that positive steps toward automating conflict resolution among
such objects can be taken. To achieve that, a pool of the knowledge available from
different component databases as well as the DBAs have to be used. This knowledge

pool is chosen to be an on-line general lexicon taxonomy.

In the taxonomy, each term is represented as a class with properties and
methods pertaining to the object represented by the class. The taxonomy contains

hypernym/hyponym hierarchical links as well as synonym cross links.

The whole point of the thesis is to develop a Taxonomy Based Database
Schema Integration Methodology (TAB DASHING). TAB DASHING is developed
to achieve certain objectives. Its start point is the local database schema. It then goes
through six phases, the result of which is a global schema. Analysis of TAB
DASHING shows that it overcomes some major drawbacks of earlier methodologies

and provides extra features.

To illustrate the workings of TAB DASHING, an illustrative example followed
by a more comprehensive one are provided. To show its applicability, a case study is
conducted. General implementation guidelines of TAB DASHING are also provided.

These guidelines should help realizing TAB DASHING as a computerized system.

78

In brief, this thesis provides two contributions. The first contribution is that it
gives details of a new database schema integration methodology. The methodology,
besides its other advantages, provides two new features. First, it helps identifying
semantically similar objects automatically such that positive steps toward
automatically resolving schema conflicts can be taken. Second, the methodology is

dynamic in nature which facilitates global schema creation and maintenance.

The second contribution of the thesis is a generalization of the classification of
schema conflicts. The generalized classification is based on Information Units that

can be at any level of granularity of any data model.

6.2. Future Work

There are four tasks that have particular significance in the development of an HDBS.
The four tasks are: schema translation, access control, negotiation and schema
integration. TAB DASHING handles schema integration. It provides enough support
for schema translation. Access control can be easily handled by a five-level schema
architecture. The task that TAB DASHING still has room for is negotiation. In future,
it is possible to extend TAB DASHING to have suitable protocols for message

exchange during carrying out the negotiation task.

In section 4.4.3, the subject of term matching is addressed. The better matching
techniques used, the stronger TAB DASHING becomes. Hence, developing better
matching techniques and incorporating them in TAB DASHING is another future

work possibility.

79

Implementation of the methodology is yet another direction for future work.

General implementation guidelines are provided in section 4.7.

10.

I1.

REFERENCES

Batini, C et al. A comparative analysis of methodologies for database schema
integration. ACM Computing Surveys, Vol. 18, No. 4, 1986, pp. 323-364.

Bertino, E and Martino, L. Object-Oriented Database Management Systems:
Concepts and Issues. Computer, April 1991, pp. 33-47.

Bright, M et al. Automated Resolution of Semantic Heterogeneity in
Multidatabases. ACM Transactions on Database Systems, Vol. 19, No. 2, June
1994, pp. 212-253.

Bright and Hurson, A. Linguistic Support for Semantic Identification and
Interpretation in Multidatabases. Proceedings of the I*' International Workshop
on Interoperability in Multidatabase Systems. IEEE Computer Society Press,
Los Alamitos, California, 1991, pp. 306-313.

Castellanos, M et al. A Canonical Model for the Interoperability among Object
Oriented and Relational Databases. Ozsu, Dayal & Valduriez (eds.) Distributed
Object management. Morgan Kaufmann 1992.

Chung, S and Mah, P. Schema Integration for Multidatabases Using the Unified
Relational and Object-Oriented Model. Proceedings of the ACM Computer
Science Conference, New York, 1995, pp. 205-215.

Eder, J and Frank, H. Schema Integration for Object Oriented Database
Systems. Software Systems Engineering, American Society of Mechanical
Engineers, Petroleum Division, Vol. 59, 1994, pp. 275-284.

Elmagarmid, A and Pu, C. Guest Editors’s Introduction to the Special Issue on
Heterogeneous Databases. . ACM Computing Surveys, Vol. 22, No. 3,
September 1990, pp. 175-178.

The Everyman Roget’s Thesaurus of English Words & Phrases, Peter Roget,
Chancellor Press, Britain, 1986.

Gotthard, W et al. System-Guided View Integration for Object-Oriented
Databases. IEEE Transactions on Knowledge and Data Engineering, Vol. 4,
No. 1, Feb. 1992, pp. 1-22.

Gracia-Solaco, M et al. A Structure Based Schema Integration Methodology.
Proceedings of the IEEE International Conference on Data Engineering, 1995,
pp- 505-512.

12.

13.

14.

15.

16.

17.

18.

81

Hurson, A and Bright, M. Global Information Access for Microcomputers.
Journal of Mini Micro Computers Applications, Vol. 10, No. 2, 1991a, pp. 73-
81.

Kaul, M. View System: Integrating Heterogeneous Information Bases by
Object-Oriented Views. In Proceedings of the 6th International Conference on
Data Engineering (Los Angeles, California), pp. 2-10.

Kim, W et al. Classifying schematic and data heterogeneity in multidatabase
systems. Computer, Vol. 24, No. 12, Dec. 1991, pp. 12-18.

Pitoura, E et al. Object Orientation in Multidatabase Systems. ACM Computing
Surveys, Vol. 27, No. 2, June 1995, pp. 144-195.

Ram, S. Guest Editor’s Introduction: Heterogeneous Distributed Database
Systems. Computer, Vol. 24, No. 12, Dec. 1991, pp. 7-9.

Reddy, M et al. A Methodology for Integration of Heterogeneous Databases.
IEEE Transactions on Knowledge and Data Engineering, Vol. 6, No. 6,
December 1994, pp. 920-933.

Sheth, A et al. Federated Database Systems for Managing Distributed,
Heterogeneous, and Autonomous Databases. ACM Computing Surveys, Vol. 22,
No. 3, September 1990, pp. 183-236.

VITA

Mohammad Shafique Ahmad Al-Shishtawi

Born on 24 May 1970 in Egypt

Joined King Fahd University of Petroleum and Minerals (KFUPM), Dhahran,
Saudi Arabia in September 1987

Received Bachelor of Science degree in Computer Science from the department of
Information and Computer Science, College of Computer Science and
Engineering, KFUPM in January 1993

Received Master of Science degree in Computer Science from KFUPM

in April 1997

