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Chapter 1

Introduction

1.1 General

In MVL circuits, signal lines are not restricted to two values. Theoretically, they can
carry any desired number of logic values. This increases the amount of information
and reduces the space requirements, two desirable features in very large scale inte-
gration (VLSI) implementation. Until recently, practical implementations of MVL
circuits were not possible due to technology limitations. It has been recently possible
to implement MVL circuits using the available standard binary CMOS technology.
This resulted in various MVL implementations either as stand alone circuits, e. g.

multiplier chips [22], or as modules used in larger binary circuits. Intel, for example,



used MVL in the ROM part of its 8087 coprocessor and largely reduced the space

requirements making it possible to fit the circuit in a standard chip size [28].

1.2 Motivation

With the increasing number of MVL implementations, testing such circuits is be-
coming crucial. It is more involved to test an MVL circuit as compared to its binary
counterpart. This is due to the increased number of logic values and the need to
distinguish and eliminate an increased number of possible logic choices. However,
during the test generation process, there exists some flexibility since decisions to

assign a certain value to a line are not restricted to 0 or 1 only.

Previous work in testing MVL circuits includes generalizing binary testing tech-
niques to the MVL case. Ajab Noor and Abd-El-Barr [1], for example, used Boolean
Difference-like method in testing for stuck-at faults in M'VL circuits. Spillman and
Su [39] modified the D-algorithm to test MVL circuits. Tabakow [42] introduced
a generalized D-algebra for error propagation and detection. Other work used new
concepts, like the partial sensitivity for gates, found in MVL and formalized them
to be used in test generation. For example, Dubrova et. al. [8] used a full sensitivity

concept and formalized it to generate expressions to be used in test generation.



Previous work on MVL testing has been primarily based on the stuck-at fault
model. The adequacy of this model was questioned by various studies (see Chap-
ter 4). Also, fault characterization of MVL circuits has remained unattended so
far. For this reason, and due to the increased complexity of test generation of MVL
circuits, it 1s very important to recognize the actual type of faults expected to occur
in MVL implementations. This characterization becomes then an important input

to any test generation algorithm.

1.3 Objectives

The aim of this research work is to characterize faults in MVL circuits. For this
purpose, a functionally complete set of MVL operators is selected. The set is de-
scribed in Chapter 2. This set is not unique and is not minimal, but it is more
efficient in realizing MVL functions {20, 21]. One advantage of this set is that it
was implemented using standard binary CMOS technology. This enables us to use
the same fault characterization techniques used in binary CMOS in order to char-
acterize CMOS MVL circuits. Fault characterization techniques can be conducted
at two main levels, namely the layout level or the device level. In the first, a defect
is inserted in the layout of a fault free circuit. The new circuit, with the inserted

fault, is then extracted from the layout. Next, the resultant circuit is simulated



to study its behavior under the inserted fault. In the second approach, shorts and
opens are inserted directly to the device-level representation of the fault free circuit.
For example, a short can be inserted between two terminals of a transistor. Then,
the behavior of the resultant circuit is studied. In this work, fault characterization

in the considered set of MVL operators, is conducted at the device level.

1.4 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 introduces some background
material. A functionally complete set of MVL operators is introduced. The second
part of Chapter 2 introduces some new phenomena found in MVL and their effect
on the test generation process. A survey of previous MVL testing work is given
in Chapter 3. Chapter 4 surveys studies on the actual physical defects found in
VLSI implementations. Such studies form the basis of any fault characterization
technique. Techniques used in fault characterization for binary CMOS and BiCMOS
are also detailed in Chapter 4. Chapter 5 describes the simulations conducted to
characterize the faults. Fault categories found for the operators of the MVL set
are given. Further, Chapter 6 illustrates the use of these results to find the valid
test vectors for all faults found in an operator circuit by exhaustive simulation.

Chapter 7 presents Design for Testability (DFT) recommendations and applications.
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Discussion and conclusions are given in Chapter 8 which ends with some possible

future work.



Chapter 2

Background Material

In MVL circuits, signal lines are allowed to carry more than two logic values. A
line in a 4-valued logic system can represent 4 different logic levels: 0, 1, 2 and 3.
To represent the same amount of information in binary logic, will require two lines.
This reduction in the number of lines introduces a potential for reducing the wiring
interconnect, a very desirable feature needed in very large scale integration (VLSI)
implementation. Another advantage of MVL is the increased functionality. For ex-
ample, using one binary variable, 4 (22") different functions can be realized, whereas
using a four-valued variable allows the realization of 256 (4*') different functions. In
general, there are r™ different functions in an r-valued, n-variable system [20, 21].

Although some MVL algebras were developed as early as Boolean algebra, practical



implementations were not possible due to technology limitations. Recently, MVL
gained increasing interest since it became possible to implement MVL circuits using
available technologies. Implementation of MVL circuits using the already available

binary CMOS process have been reported [20, 21].

Basically there are two ways for using MVL [45]. One, is to use interconnect lines
carrving MVL signals between binary devices and gates. Encoding from binary to
MVL and decoding from MVL to binary circuits will be needed in this scheme.
The second method is to design the whole circuit or some modules (devices and the

interconnect) using MVL.

2.1 Functionally Complete Sets of MVL Opera-

tors

A functionally complete set of MVL operators is a set of MVL operators capable
of realizing any arbitrary MVL function. In this section, a functionally complete
set of MVL operators is introduced. The set is reported in the work of Jain et. al.
[20, 21]. It is implemented using CMOS and consists of six operators: literal, cycle,
complement of literal, complement of cycle, min and tsum. Different current values

are used to represent the MVL levels. In this implementation, 4-valued logic values



are used. Internal threshold circuit elements generate binary voltage signals which
control switches that realize appropriate current levels. The functionality of the set

implementation is verified by HSPICE simulation [20].

The introduced set is not unique. There are other MVL sets of operators which
are also functionally complete. Moreover, the set is not minimal. For example,
literal, min & tsum are functionally complete. However, the introduced set is shown
to be more efficient in realizing MVL functions in terms of the number of operators

used and the overall required circuits [21].

2.1.1 Definitions

Let R={0,1,2,...,7r — 1} be the set of logic values for an r-valued logic where r is
the radix. Assume also that a,b,€ R, a <b and k € {1,2,...,r — 1}. The following

MVL operations are defined.

1. min (minimum operator) is defined as
min (a1, Q2,...;Qnp) = Q1 ® a2 ® ... ¢ g, = minimum of (a;,as,...,a,) where

a, s, ..., an € R. For example, min (1,2,3) = 1.

2. tsum (truncated sum) operator is defined as

tsum (a1,02,..-,8,) = a1 D a2 @ ... ® a, = min(a; +as + ... + a,, 7 — 1). For



(W13

example, forr =4, a1 =2, a2 =3, and az =1, tsum (2, 3,1) = min (2 + 3

+ 1, 1-1) = min (6, 3) = 3.

complement of a logic level [is defined as

I =(r—1)—1 Forexample, forr=4andl=1,1=3-1=2.

literal of an MV variable x is defined as

{}b -1 fa<z<b
ax —

0 otherwise

A weighted literal, k[{z}?], is defined as

s k faz<b
k[*{z}] =

0 otherwise

For example, for r =4, 2[*{z}?] is equal to 2 if z € {1,2} and 0 if z € {0,3}

. cycle operator. A clockwise cycle is defined as

T = (z + m) mod r where m € R. A counter clockwise cycle is defined as

—_m

1
T = (z—m)modr. For example, for r=4, if £ =<0123> then T =<1230>.

2.1.2 CMOS Circuit Realizations

The circuit realization, presented in [20], for the above mentioned operators uses

both current mode CMOS logic (CMCL) and voltage mode CMOS logic (VMCL)
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circuit elements. CMCL elements are used to represent MVL levels while binary

signals are represented by VMCL elements.

Figure 2.1 shows the basic circuit elements of CMCL which are used in the real-
ization of the above operators. Figure 2.2 shows the realization of the min operator.
Its transient-time response is shown in Figure 2.3 (scanned from [20] with permis-
sion). The tsum realization is shown in Figure 2.4 and the transient-time response
in Figure 2.5 (scanned from [20] with permission). Literal and complement of lit-
eral operators are shown in Figures 2.6 and 2.7 respectively. Figure 2.8 shows the
transient-time responses of 3['{z}?] and 2['{z}!] (scanned from [20] with permis-
sion). Figure 2.9 shows the cycle realization. Finally, Figure 2.10 (scanned from [20]

2 . .
with permission) shows the (‘Z ) cycle operator transient-time response.

The above realizations will be used in this work to study the possible types
of faults that can occur at the end of a production line. The following sections
will review fault characterization studies conducted on typical CMOS circuits. The
methods used to model possible faults in those studies will be applicable to the
above MVL realizations since the same binary CMOS technology 1is used in both.

Some general MVL testability issues are presented in the next subsection.
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Name| Logic Operation Symbol Circuit Realization
Xz - y X2 2— b
Sum Y=Xy+Xg+. .. +X, . Z ° K)
Constant y=k
NMOS
and Yi=g; x
PMOS fori=1,2,...n
Current a; : scale factor
Mirror
P-type For N-type
and if (x >=k) then
N-type y = binary high X 3! Thresh(i) | L Noor (YK
else +K _I
Threshold y = binary low * y
x pramy
P . o
type if (Switch is ON) then v, , +x L + y
and y=x * in :I in |
N-type y jtch i x
else (Switch is OFF) Switch y l
Switch y =0 (no current) + y + x

Figure 2.1: Basic circuit elements for CMCL.
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-Figure 2.2: Circuit realizing min operator. (a): input currents are sinking, (b):
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Figure 2.9: Circuit realization of the cycle operator.
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2.2 Testability Issues in M VL Circuits

For a given line in a MVL network, the number of possible values that can be assigned
is more than those assigned to a binary line. This complicates the test generation
process as compared to the binary case. This is due to the increased number of
logic values and the need to distinguish and eliminate an increased number of logic
choices. However, during the test generation process, there exists some flexibility

since decisions to assign a certain value to a line are not restricted to 0 or 1 only.

In addition, new concepts related to the MVL arise. At any given time, an MVL
gate can be either partially or fully enabled. A gate is fully enabled along one of

its inputs if the gate’s output is sensitive to any change on that input. This can be



17

achieved by setting other inputs to appropriate values. A 2-input binary AND gate
can be fully enabled (sensitive) along one of its inputs if the other input, call it the
fixed input, is set to 1. So any change on the free input can be sensed at the output.
If, on the other hand, the fixed input was assigned to 0, the gate is disabled and

changes on the free input have no effect on the output, which will be always 0.

The same concept (enabled or disabled gate) can be generalized to the 2-input
MVL min gate by substituting Os, in binary, with 0Os, in MVL, and 1s with r-1.
However, if the fixed input is set to k, where 0 < k < r—1, the min gate is partially
enabled (k-enabled). It will be sensitive to some values and disabled for some others.

This case does not exist in binary.

To illustrate the above concept, consider the 4-valued, 2-input min gate shown
in Figure 2.11a where the fixed input is assigned to k. All inputs greater than or
equal to k are indistinguishable at the output. If £ =2 (Figure 2.11b), the gate is
sensitive only to 0 and 1. The output is always 2 for the rest of input values. So,

input changes for values > 2 have no distinguishable effect on the output.

2.2.1 K-enabled Gates and Fault Propagation

During the test generation process of a binary network, an error signal is generated

at a given point (line) in the circuit. Then, it is propagated to an observable output.
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P€{0,1,2, 3}
_ﬁ__P if P=< K
K | MIN / K otherwise

a.: all p >= k are indistinguishable

0,1 ‘ 2
MIN » MIN

b.: 2 and 3 are indistinguishable

Figure 2.11: k-enabled gates.

During this propagation, assignments are made to some other circuit lines. These
assignments have to be justified after a successful propagation of the error signal to
an observable output is achieved. If both phases of error propagation and assign-
ments justification are successful, a test is generated for the error signal (the fault).
If, on the other hand, the assignments are not justified they are removed from the
solution space and the process is repeated with new assignments. This procedure
continues until a test is found or all possible assignments are tried. Usually, a time
limit is set and when it is exceeded, the procedure stops even if there are untried as-
signments left. If the procedure stops and no test was found, the fault is considered
un-testable. Different algorithms, e. g. D [30], PODEM [13] & FAN [11], try to
guide the assignments through the solution space in such a way that minimizes the
dead iterations (unjustifiable assignments) and avoids wrong assignments as early as

possible. The degree of success in doing so determines the efficiency of the algorithm
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and its execution time.

For MVL, similar procedure applies. The fact that lines can be assigned to more
than two logic values introduces an added complexity. K-enabled gates also add to
this complexity and if not treated properly, wrong assignments can be made during

error propagation and a lot of time can be wasted.

Consider, for example, the 4-valued min gate shown in Figure 2.12. The gate is
fully enabled since its fixed input (line b) is assigned to r — 1 = 3. Suppose that a
value p € {0, 1, 2, 3} is assigned to the free line (line a). This value of p will test for
all single stuck-at faults except stuck-at-p (s-a-p). To test for s-a-p, any value other
than p can be used. For example, 0 will test for s-a-1, s-a-2, s-a-3. Any other value
(1, 2, or 3) can test for s-a-0. As a result, a combination of any two values will test
for all single stuck-at faults on the free line (line a). Vectors including 2 and 3 can

be selected as shown in the figure.

Now, consider the partially enabled min gate shown in Figure 2.13. In this case,
0 is the only assignment that can test for s-a-1, s-a-2, s-a-3 giving 0/1, 0/1 and 0/1
output respectively. Any other assignment will only test for s-a-0 (1, 2, or 3 will
give 1/0). So, unlike the previous case, the combination 2 & 3 can not be used. Any

valid combination must include the input value 0.

This illustrates that k-enabled gates and paths passing through them should be



1

Figure 2.13: l-enabled gate.

output: good / faulty
fault
test input s-a-3 > 2/3
0 r—t»S-a-2 -~ " - -~~~ » 3/2
1 s-a-1 > 2/1
:' 24— s-a-0 > 2/0
1 !
3 MIN ¢
b
Figure 2.12: Fully enabled gate.
0 s-a-3
1 s-a-2
- s-a-1
? ! -a-
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treated properly in any test generation algorithm. A significant time can be waste=d
during test generation if the k-enabled gates concept is not taken into account bsy
algorithms generating tests for MVL circuits. The occurrence of these k-enable=d
gates is network dependent (related to the values of constants, k’s, found in thse
network). Also, every MVL network is likely to have k values (constants) since an:y
set of MVL operators must include a decision operator that limits its output to tw-o
values for all input combinations. These values become the %’s for gates connecte-d
to that output. For example, the literal operator 2['{z}?] will give either 0 or 2
on the output. Then if 2, for example, was connected to a min gate, it will lim&t
its sensitivity. Values > 2 on the other input of the min gate will not produce

distinguishable output changes, as shown in Figure 2.11(b).



Chapter 3

Literature Review

Previous work showed that it is more involved to test MVL circuits as compared to
their binary counterparts since the test generation algorithms have to deal with the
new phenomena introduced by MVL operators. Spillman and Su [39] modified the
D-algorithm to test MVL circuits. They start by identifying k-enabled gates and
paths passing through them for the whole circuit. Then special D’s are propagated
through these paths. For the other paths, D propagation is the same as in the binary
case. The D-algorithm is modified to propagate D-chains along three separate types

of paths:

1. paths along min gates where the other input of the min exists on a k-path (k-
enabled min). A simplified example is shown in Figure 3.1(a). The D’s along

22
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such paths are subscripted with a k. Stuck-at-p faults are indistinguishable

forp>k.

2. D-chains along k-paths where a & value exists on any point of the path. This is
illustrated in Figure 3.1(b). The U, notation is introduced to show the limited
set of values that a line can have. The set y={0, 1, ..., k} is the set of values

that a line can not assume.

3. D-chains along all other remaining paths (normal D-chains).

The modified D-algorithm, first, constructs all tests for distinguishable faults along
the k-paths of the circuit. Then, it constructs the tests for distinguishable faults
along Dy chains. Finally, it constructs tests for faults along the remaining D-chains.
Further, the introduced A product algorithm reduces the number of tests by utilizing

the U notation.

Tabakow [42] introduced a generalized D-algebra. The purpose was to introduce
an algebraic system usable in the process of fault oriented test generation for com-
binational MVL circuits. This method simplifies path sensitization as compared to
the previous method of Spillman and Su. In this system, D’s are represented as: d;;
where 7,7 € {0,1,...,r — 1} and r is the radix of the MVL system. The binary D, for
example, is represented as dg;. For a ternary algebra, dgy means 0 in the fault-free

circuit and 2 in the faulty circuit. Constants like 1 and 2 are represented by d;; and
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da.. propagating along k-enabled gates.

y={0, 1, .., k}

y
)

b.: propagating along k-paths.

U

Figure 3.1: Different D-chains propagation.

dss, respectively.

The error signal and the generated d;;’s are propagated by means of intersection
rules defined for the system. These rules will only propagate the correct d values
through any k-enabled gate directly without the need for a second pass like in the
Spillman and Su method. Some of these rules are introduced below with some

examples assuming ternary logic (r=3).

MAX(i,j) =1+ j=1iifi > j and j otherwise.
MAX(dsyj,, dirjn) = diyjy + dinga = iy tia)(Gr+i2)-

MIN(i, j) =iej=1ifi <jand j otherwise.



MLN(dixju dizjz) = diu'l . dizjz = d(il‘iZ)(jl’jz)’

As mentioned earlier, if a 2-input min gate, for example, is k enabled, then it is
sensitive only to inputs in {0, 1, ..., k-1} where £ € {0,1,...,7 — 1}. Accordingly,
the d;; values that can propagate through should satisfy:

MIN(k, dij) € Dz < k€ M — {0, ...,min(¢,j)} where M={0, 1, ..., r-1} and Dy is
the set of all d;; / ¢ # j (a d value that distinguishes the fault-free circuit from the
faulty circuit). Similarly, the rule for the MAX operation:

MAX(k, dij) € Dz < k € M —{maz(s,5),...,r—1}. Similar rules are defined for the
rest of operations, formalization of propagation rules and definitions are presented to
complete the algebraic system. Also, the system is generalized to deal with multiple

stuck-at faults.

Also, Vlad Shmerko et. al. [37, 36] modified the D algorithm. However, they used
modern results of Logic Differential Calculus and also sensitizing path method to

build generalized D-algebra based on the Direct Logic Derivative (DLD) notation.

In parallel, other works have used algebraic methods to find MVL tests. Ajab
Noor and Abd-El-Barr [1], for example, used Boolean Difference-like method in
testing for stuck-at faults in MVL circuits. Tapia and Guima [43] introduced new
differential operators for logic functions in a multi-valued algebra. These operators

were used in algorithm to find complete tests for stuck-at type faults in M VL circuits.
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They showed that the boolean differential operators are special cases of the new MVL
operators. Whitney and Muzio [47] generalized the decisive difference method to
MVL and used it to define functional transformations as partial differences. Boolean

difference is a special case of the partial differences applied.

Other works used some new concepts in finding MVL tests. Dubrova et. al.
[8, 9] used the full sensitivity concept, found in MVL, and formalized it to generate
expressions to be used in test generation. Basically a function is fully sensitive to
some line [ if each transition on this line from one logic level to another causes a
change in the output logic value. This concept is formalized and used to calculate
test vectors for large functions. For example, if a line /in an M VL n-variable function
is to be tested for a stuck-at-p fault, it is cut and considered as pseudo input x;.
Then, the line value is expressed in terms of the function inputs I(x3, X2, ..., X,)-
The function is expressed in terms of its inputs and the line I fi(xy, ..., Xn, Xi)-
Then, the formalized procedures are used to find some set of values (ay, ...., a,) such
that 1(ay, ...., a,) # p and some k # p such that fi(ai, ..., an, k) # fi(ay, ..., an, P).
A solution for two different values of k£ will result in tests for all stuck-at faults at

line L

In the work of Wang et. al. [46], a complete test set (CTS) was defined and
derived for MVL Min/Max networks. The CTS is capable of detecting any single

and multiple stuck-at faults of MVL Min/Max networks. Once this CTS is found
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for a given function, it will be valid regardless of the implementation. It is similar to
the binary Universal Test Set (UTS). The method of generating the CTS starts by
defining the literal truth table for the given function. First, the function is described
in Sum of Products of literals. There is one column, in the literal truth table, for
each literal in the function expression and one row for each possible function value
(listed in the row, the literal values that produced this function value). Then, by
applying enumeration rules and algorithms, the CTS is derived for the function.
This method is reported to be more efficient and time and memory saving than

enumerating the truth table of the function.

There has been some work reported in the literature on testing Sequential Multi-
Valued Logic (SMVL) circuits. Drechsler et. al. [6] presented a fault simulator
for Sequential Multi-Valued Logic Networks (SMVLN). This fault simulator was
an extension of the combinational circuits fault simulator presented in [7]. The
simulator algorithm receives r (the radix of the mvalued MVL), an input sequence,
and a description of the circuit as input and returns the fault coverage achieved as
output. In addition, the set of undetected faults is returned. The algorithm works in
two main steps. First, the list of all possible faults is generated and then simplified
by finding the set of equivalent faults. In the second step, the detectability of these
faults is determined by an event-driven single fault propagation procedure. In this

procedure, the circuit is first evaluated under the input sequence and the value of
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each line is determined. Faults are then injected into the circuit one by one and
only events produced by an inserted fault are propagated to the primary outputs. If,
during this propagation, any primary output changes its value, the fault is marked
detected and removed from the list. To illustrate the event-driven approach, consider
Figure 3.2. Suppose that r = 3, the input vector is [a = 2,b = 2,¢ = 1] and node
b is stuck-at 1. Both min gates have to be re-evaluated which results in a new
event at node u. Accordingly, the maz gate have to be re-evaluated and the fault is
marked detectable since it produces a change at the primary output [7]. To handle
SMVLNSs, the fault simulator was extended by replacing each memory element by
a Secondary Input (SI) and a Secondary Output (SO) [6]. After this replacement,
the SMVLN is converted to MVLN where the value of any SI at time ¢ is defined by

the value of the corresponding SO at time ¢-1.

2 2N 1
b
2/1 2/1
a [ c
211 |1
u v
max
w
21

Figure 3.2: Event driven fault simulation.
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Keim et. al. [23] presented an Automatic Test Pattern Generation (ATPG) tool
for SMVLN based on Genetic Algorithms (GA) and reported experimental results
for large circuits, with up to some thousand gates. The fault models considered
are the stuck-at and skew fault models. There are two types of skew faults. One
raises the logical value of an edge in the circuit by one, and the other lowers the
logical value of that edge by one. The basic concept in GA is: Two parent elements
(genes) are mixed (GA operator) to produce two new generation elements (genes)
each of which has a combination of properties from the two parents. In addition
to the standard GA operators used, a problem specific operator (Free Vertical
Crossover) is defined. The test sequence set is represented by a two-dimensional
matrix. The x-dimension represents the number of inputs and the y-dimension
represents the number of test patterns (see Figure 3.3 [23]). Free Vertical Crossover
is defined as: construct two new elements ¢; and ¢ from two parents p; and ps.
Determine for each test vector ¢ a cut position. Divide each test vector ¢ of p;, and
p» in two parts at its cut position. The first (second) part of each test vector ¢; (c2)
is taken from p; and the second (first) part is taken from ps. Figure 3.3 illustrates
this operator (the black areas are filled with random patterns). The main idea of the
ATPG tool introduced in this work makes use of GA in two phases. The first phase
optimizes a given test sequence set for the length and fault coverage. The algorithm
in this phase runs until no improvement found for 100 consecutive generations. The

second phase increases the size of the set to improve the fault coverage of uncovered
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faults in phase one. The stop criterion for the second phase is set after 50 consecutive

generations with no improvement.

P4

Figure 3.3: Example for free vertical crossover genetic operator.

Other category of research used MVL circuits and concepts to test binary circuits.
Mou Hu [18], for example, discussed Design for Testability (DFT) rules to design
binary systems based on ternary logic. Two values of the ternary logic were used for
normal binary operation. The third value was used only for testing purposes. The
third value will appear only in the test vectors and the function’s normal response
to these vectors. If the function undergoes a fault, its response to the test vector

will be one of the binary values indicating the presence of a fault.



Chapter 4

Physical Defect Modeling and

Simulation

4.1 Physical Defects

On the production lines of ICs, physical defects interfere with the desired circuit
design and result in faulty chips. The occurrence of such defects depends on the
circuit layout, fabrication process, device parameters and many other technology

related factors.

There have been tremendous efforts to understand and characterize physical de-

31
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fects in ICs and their effect on the circuit behavior. Many studies were conducted
on faulty chips taken from actual production lines {12, 2, 40, 26, 29, 5]. The actual
reasons (physical & chemical) behind such defects are not well known. However,
statistical data collected from experiments and actual production lines is available
in the literature. This becomes an important input to realistic fault modeling stud-
ies producing fault models closer to the actual physical defects and guiding test

generation to more accurate decisions.

In general, defects can be classified into two groups:

1. Shifts in electrical parameters (voltage, threshold, etc.): This can grossly affect
the operation of the chip and can be easily detected by parameters measure-

ments.
2. Topological layer deformation: This can be classified further into two types:

(a) Global: such as scratches across the whole chip, photolithography mis-
alignment, line registration errors, too thick gate oxide, too thin polysil-
icon, etc. These defects are easily detected by almost any test pattern.
This is because they tend to have global effects on the chip operation and

functionality.

(b) Local (spot): such as gate oxide pinhole, dust particles on chip or mask.

These defects result in complete, or nearly complete, opens or shorts in
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some signal lines and affect small (local) portions of the chip producing

the hardest faults to detect [4, 3, 19].

4.1.1 Physical Defects & Faults

Defects at the lowest level, the layout level, manifest themselves in a variety of forms
at higher levels, electrical or logical level. The description of these effects at high
levels is known as fault modeling. Fault models should compromise two conflicting
features: the needs for accurate modeling of physical defects and easy-to-deal-with

models that will not complicate the test generation process [19].

For long time, test pattern generation algorithms relied on the assumption that
defects can be modeled at the gate level representation as lines stuck-at 0 or 1. How-
ever, as VLSI device sizes decrease and with the emergence of newer technologies,
e.g. CMOS and BiCMOS, the adequacy of such assumption becomes questionable.
A number of studies showed that the stuck-at model is not adequate to model failure
mechanisms found in practice. For CMOS technology, most of the defects result in
undesirable bridges (shorts), including gate oxide shorts, breaks (opens) and circuit
parameter shifts. These can not be accurately modeled using the stuck-at fault

model [12, 2].
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4.1.2 Spot Defects

The probability that a spot defect will cause a fault depends on the spot size, spot
location, and circuit layout topology. For example, the probability that a spot
will short two wires running in parallel depends on the wires’s length, spot size
(compared to the separation distance), and the location of the spot [5]. If the line
width is w, separation distance of the two lines is d, and the spot is represented by
a circle of diameter z, then the probability of shorting two lines, or more, can be

estimated once these dimensions are known (See Figure 4.1) [19].

Figure 4.1: Spot defects overlapping two or more wires.

The critical area is defined as the area where the spot center is expected to occur
[4]. For example, the overlapping area of two conducting lines of adjacent layers is

critical. Stapper [40] found mathematical models to represent these defects. The
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models related the critical area to the defect size and location. Defect size and
location distribution functions were obtained from statistical data gathered from
different production lines and sites. The critical area can be calculated from the
process masks. For example, a mask-dependent defect size distribution function Dy,

was developed as:

D& for0<z <z

m3
To

D, (z) =

38

Dnp% forzg <z < o0

where z is the spot circle diameter, zo is a technology dependent constant, and Do
is the average defect density for layer m. The average number of faults Ajnotom
(produced at a layer creation process defined by mask m and defect sensitive area
A) can be calculated as:

Aphoto,m = J A(m).Dn(z)dz

These models were then used to estimate the fault occurrence and yield of different
circuits. After studying the effects of spot defects on the circuit behavior, more real-
istic types of faults can be recognized which leads to a more accurate tests. Defects
that create similar electrical behavior are grouped to produce fault lists. Typical
failures found in CMOS technology include: bridging faults (most found), broken
wires, missing contacts, extra contacts and newly created devices (low percentage).
Such failures result in faults that can not be described as stuck-at faults [19, 10, 2, 5].
This shows the need for characterizing the fault types occurring in a specific tech-

nology and not relying only on the stuck-at fault model which in some cases, like
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SRAM, represents only 50% of the actual faults [3].

4.2 Fault Characterization

In general, to find the effects of defects on the circuit behavior (fault characteri-
zation), a defect model is proposed and inserted in the circuit. Then, simulation is
performed to find the circuit behavior under that defect. This process can be done
at two different levels, namely at the device level [34, 44, 10, 48, 15, 17, 24, 25, 27,

31, 32, 41] or at the layout level [4, 3, 33, 40, 26, 19].

4.2.1 Device Level Fault Characterization

The gate level representation of a circuit does not relate directly to the devices
locations and layout. There may be lines and connections at the device level rep-
resentation which do not exist or have no meaning in the gate level representation.
For example, the gate-level symbol of a NAND gate does not show the lines con-
necting its internal transistors. Hence the device level representation is believed to

give more accurate representation of the actual circuit elements.

Based on the studies mentioned in the previous section and other studies on the

effect of transistor gate-oxide shorts [34, 44], a general procedure for device level



37

fault characterization is widely accepted in the literature. Given the circuit level
representation, defects are inserted one at a time. Then, using a standard circuit
simulator (e.g. SPICE), the behavior of the circuit is evaluated in the presence of

the defect to recognize fault types and groups.

At the device level, the possible faults considered are shorts between terminal
nodes (gate-drain, gate-source and source-drain) and opens between these terminals

and other circuit nodes connected to them.

Device level fault characterization found in the literature can be classified into
two main groups. The first one represents shorts as zero resistance connections.
Favalli et. al. [10] simulated faults and compared the analog voltages at relevant
nodes with the logic threshold voltage V}; to find out if the fault generates faulty
logical behavior. This gives detectability tables, for each type of fault for each gate,

which are used by the simulator to find whether or not the fault is detectable.

The work of Zaghloul et. al. [48] also falls into this group. They proposed a graph-
ical technique in which the transfer characteristics of the circuit’s basic elements are
graphically intersected to produce the resultant characteristics of a combination of
elements at a higher level. This process starts at the faulty part and proceeds to
other affected parts up to the primary outputs. This gave more accurate results in

evaluating the complex analog behavior of some faults, such as gate-oxide shorts.
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The second group takes into account the variable short resistance actually found
in practice. Hao and McCluskey [15] showed that for typical CMOS circuits this
resistance value, in some cases, is critical and circuit behavior varies largely for
different values of this resistance. Some shorts can produce normal output, delayed

output (delay fault) or logical fault depending on the resistance value of the short.

Similar studies were conducted on BICMOS technology [17, 24, 25, 27, 31, 32, 41].
These studies showed different behaviors of circuits that can not be detected by tests
generated for stuck-at faults. Ma and McCluskey [23], for example, found new types
of faults in BICMOS that do not exist in other technologies. In some cases the faulty
circuit produced the correct output for some time and then transferred to a faulty

value. In other cases the output was oscillating.

This shows that technology and circuit design and topology largely affect the
type of faults expected to occur during fabrication, and highlights the needs for

techniques to test for these faults.

For this class of fault characterization, it is common to represent the defects at
the transistor level as resistive shorts between terminals and opens between each

terminal and circuit nodes connected to it, see Figure 4.2.
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Figure 4.2: Open and short faults and their models.

4.2.2 Layout Level Fault Characterization

Although the device level representation is more accurate than the gate level in
representing the actual circuit, the layout level deals with the actual circuit rep-
resentation and highlights the technology and circuit topology dependent features.
Generally, layout fault characterization starts by inserting defects at the layout of
the circuit. Then, the resultant layout is submitted to an extractor to extract the
circuit representation of the modified layout. This circuit representation can then
be simulated, using a circuit simulator, to compare the behavior of the new circuit,
with the inserted defects, to that of the original one. The results of the previous

step are gathered and classified to produce fault lists that are directly related to the
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actual layout. A typical example is the work of Chess et. al. [4] and Dekker et. al.

[5]-

Starting from the layout, defects are inserted into the various masks and the
resultant layout is simulated to extract the faults. Inductive Fault Analysis (IFA)
[35] is a systematic procedure in which defects are inserted in the layout and the re-
sultant faults are extracted. Spot defects are the most important to consider. Spots
ere represented by circles of various radii. At any mask, a circle can be opaque
or transparent resulting in a presence or absence of the corresponding material(s)
defined by the mask. The main input to this stage contains data on probability func-
tions for spot sizes and distributions. This reduces the huge size of the work space
that considers all possibilities. Actual formulas and explanations for the occurrence
of defects and probability distribution functions are not known. However, these
relations and formulas are estimated from practical experiments and data collected

from actual production lines. Examples are found in [40, 26]

After the process of spot insertion in the layout, a process of elimination starts.
The spot size and location determine whether or not the spot is potentially going
to produce faults at higher levels. For example, a spot falling between two parallel
lines will not short them unless its radius is larger than the separation distance.

Also, it should be located properly, i.e., contacting both lines.
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Propagating to a higher level, the resultant defects from the previous stage are
evaluated for their electrical significance. A process of elimination is repeated here
too. A defect which shorts two areas is critical at the layout level but it may be
insignificant at the electrical level if the short, for example, connects two nodes

which are designed to be at the same potential.

The previous stage produces technology dependent primitive defect types which
can be produced once the technology is defined and then used in fault extraction
of any given circuit. The technology related primitive faults are then examined,
simulated and grouped giving circuit faults that can be represented at the device level
and simulated. The resultant fault lists represent the technology and layout related
defects. Further more, these fault lists are ranked according to the probabilities of
defect distributions that caused them. It is possible that a number of defects lead
to the same fault. So, the larger the number of defects that caused the fault, the
more likely it will be found at the end of a production line. Taking this into account

can lead to more efficient testing. Details of IFA are found in [33].

Another class of layout dependent fault analysis is found in [19]. Their work is
based on the same principles of IFA. However, instead of the complicated and time
consuming simulations, this work developed a set of mathematical formulas that
describe fault probabilities and then extract faults from the circuit layout efficiently.

The formulas and relations are based on the work of Stapper [40].
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4.2.3 Comparison

Layout level fault characterization is more accurate in representing the actual phys-
ical defects. However it is related to the circuit layout and the process masks. If
the circuit layout or the process is changed, the characterization has to be repeated.
On the other hand, device level characterization is independent of the layout or the
process. Also it is easier to-deal-with and less time consuming. In this thesis, device

level characterization will be used.



Chapter 5

Fault Characterization of the

MVL Set

The aim of the research work in this thesis is to characterize, at the device level,
faults in the set of MVL circuits presented in chapter 2. Defects will be inserted into
each circuit in the form of shorts and opens. Simulations, of the resultant circuits,
will then be conducted. The circuits behavior in the presence of the defects will be
classified into fault categories to give statistics on the types of faults expected to be

found in these circuits.
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5.1 The Approach

The functionally complete set of MVL operators, introduced earlier, will be used.
It is implemented using the standard binary CMOS technology. This enables us to
use the same techniques used for binary CMOS fault characterization. In this work,
fault characterization will be conducted at the device level. The methodology used

for fault characterization is explained below:

1. Defects are inserted on transistor terminals (3 shorts and 3 opens) and con-

sidered one at a time. This will be performed for each operator circuit.

2. SPICE will be used to determine the output of the circuits in the presence of

each inserted defect.

3. Simulation results will be analyzed to provide statistics on faults and their

occurrences.

4. Recommendations for MVL testability will be made based on the characteri-

zation results.

The resistance of the inserted short faults will be varied. In the literature, typical
resistance values considered for CMOS technology vary from several Ohms up to 4k

Ohms. Shorts may occur with higher resistances but with low percentage and very
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high resistance value that will not affect the circuit behavior [38, 16, 14, 15, 25, 41].
Opens are modeled as 10 Gig. Ohms resistor in parallel with a 0.001pF capacitor
between the transistor terminal and the node it is normally connected to. Figure 5.1

shows the short and open faults and their models.

s

1 to 4k Ohm

i - s

Figure 5.1: Open and short faults and their models.

For the following sections, the transistors in each circuit will be numb=red arbi-
trarily starting with Current Mode CMOS (CMCL) transistors followed by Voltage
Mode CMOS (VMCL) transistors. An open at the gate of transistor number 1, for
example, will be referred to as Olg. Old and Ols will refer to opens at transistor
1 drain and source, respectively. Slgs refers to the inserted short between the gate
of transistor 1 and its source. Each circuit will be presented in a separate section.

Simple description of the circuit operation will be given followed by some examples
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of how this normal operation is affected under the presence of a fault. Each sec-
tion will end with a table showing the fault categories found after the exhaustive

simulations along with their statistics.

The following terms and abbreviations will be used:

SAk means the output stuck-at k£ under the simulated fault.

aSAO faults in the literals caused the value of a in k%[z]® to be as if it was 0.

For example, if the original circuit is k!{z]!, the resultant circuit will be k°[z]!.

bS A3 faults convert the circuit to k?[z]®. This has no effect if b in the original

circuit was 3.

Sequential faults: In the presence of a sequential fault, the output of the

circuit depends on both the current input and the previous inputs of the
circuit. For example, let z; be the current input applied to a circuit having
a sequential fault. Two different outputs may be observed, for the same z;,
depending on the value of the previous input z;—;. Assume the two input
sequences z;—; — Z; = 0 — 1 and 3 — 1. The output, when z; is applied,
can be 3 for the first sequence and 0 for the second sequence. So, for the same
x;, two different output values are observed, depending on the previous input

Ti-1-
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e Functional faults change the circuit’s behavior into a different function from
what it was designed for. The output does not show any stuck-at behavior

but gives faulty results for some (all) inputs.

e Para k fault refers to a parametric change in the value of k. This value is
supposed to be the same for the whole input range in [a, b]. In the presence
of this fault, k takes several current levels, depending on the input value,
which may be read as different logic values. For example, if the circuit 3'[z]3
undergoes this fault, the values of the output current may be different from
60uA (the correct value) for different inputs. For example it could be 15, 40,
60 uA for x = 1, 2 and 3, respectively. This implies that even if the circuit
shows the correct output for some input values in the [a, b] range, it could
be wrong for others. This implies that the output should be checked at every

possible input value in the range.

e 3* faults: the normal value of the 3 logic level is 60uA. 3* faults cause this
value to be higher than 60uA. Typical examples found were in the range of 80
up to 300uA. Also when a fault category is marked with a '*’, this indicates
the existence of a 3* behavior in addition to the other behavior. Sequential*,

for example, indicates that the fault is sequential and produces 3* output.

Test generation for these faults (in all considered circuits) will be considered in

the next chapter.
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5.2 Fault Characterization of the Literal

Figure 5.2 shows the literal implementation with the transistors numbered as sug-
gested before. Like the other circuits implementations, except for the min, it is
composed of two parts. The input/output part is implemented using CMCL tran-
sistors (transistors 1, 2, 3, 4, 3, 6 and 7). The second part determines the logic part
and consists of VMCL transistors (transistors 8, 9, 10, 11, 12 and 13). Depending
on the inputs, the logic part controls the status of the output. Transistors 8 and 9
implement the inverter, in the literal realization shown in Figure 2.6, and feeding
one of the inputs of the NOR. gate (transistors: 10, 11, 12, 13). Transistors 4 and
5 are current to voltage transistors controlling the logic (binary 0 or 1) at points A
and B, respectively. Their sizes are adjusted such that the voltage at point A will
be binary 1 if the input current z is > a and zero otherwise. The voltage at point
B will be binary 1 only if the input current x > b and zero otherwise (a & b in
k*[z]®). For example, for 3*[z]!, if the input is O, transistor 4 will pass the mirror
current of x causing the voltage at node A to be 0. As a result, the NOR output
(transistor 13’s drain) will be 0 closing the output switch (transistor 7) and hence
the output current passing through transistors 6 & 7 will be 0. When the value of
the input is 1 (in the range of [a,b] ), node A will be charged to binary logic 1 and
the inverter output (transistor 9’s drain) will be 0. The other NOR input at node

B will also be zero resulting in binary 1 at the output. This will open the output
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switch and the current will pass through transistor 6. The size of transistor 6 is
adjusted to pass constant current, 60 uA in this case (logic 3), which represents the
literal gate output. Figure 5.3 shows the output of the fault free 3![z]! under the
input sequence z = 0 — 1 —+ 2 — 3 — 0. The current passing through node A
and the resultant voltage are shown in Figure 5.4. Node B current and voltage are

shown in Figure 5.3.

Defects (shorts and opens) will be inserted one at a time. The circuit will then
be analysed to find out the resultant behavior in the presence of the fault. This
step will be repeated exhaustively for all defects (3 shorts and 3 opens per single
transistor) to find resultant fault categories and their statistics. Some examples are

given below.

Example 1: When the short Slgs is applied to the literal circuit, it produced a
stuck-at 0 (SAQ) fault for all inputs. It affects the mirror operation resulting in
almost 0A currents going out of transistors 2 and 3. As a result, Node A and B
voltages will be 0V, independent of the corresponding transistor size, and this will
produce a 0 at the NOR’s output which closes the output current path. The circuit
will show a SAQ for all inputs. Figure 5.6 shows the input and output currents in the
presence of the short Slgs. Figures 5.7 and 5.8 show the faulty currents and voltages
for nodes A and B, respectively. The same simulation is repeated for all possible

configurations of the literal, namely k![z]*, k[z]?, k'[z]3, k*[z]?, k?[z]?, k3[z]? for all
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possible values of £ (1, 2 and 3). The fault produced the same effect, SAQ, for all

combinations and thus will be classified in the SAQ fault category.

Example 2: When the open O9g is applied, the circuit showed a sequential behav-
ior. For different previous inputs of the circuit, different outputs are observed for the
same current input. For the literal 31[z]2, the fault free output is 3 when the input
value of z; = 2 is applied. The faulty circuit’s output is 3 (matching the correct
output) if the previous input was z;_; = 3 and 0 if z;_; = 0. So, depending on the
previous input, the current input can result into two different outputs. Almost all

gate opens resulted in sequential behavior.
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Figure 5.2: Literal transistor diagram.

Table 5.1 summarizes the simulation results obtained and the fault categories

identified for the literal circuit. Four main fault categories were found: sequential,
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Figure 5.3: Response of the literal, 3![z]!.
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Figure 5.4: Node A current and voltage.
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Figure 5.5: Node B current and voltage.
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Figure 5.6: Response of the circuit for literal 3![z]! in the presence of Slgs.
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SAQ, SAk, and functional. Faults resulting in 3* output occurred at low percentage,
2.6% (faults S6sd and O6goutput). The highest percentage of faults, 40.3%, resulted
in stuck-at 0 output (SAQ). Sequential behavior was observed in 33.8% of the cases.
Functional faults are listed and classified according to the resultant faulty functions
into: aSAQ, bSA3, bSA3 + para_k (both bSA3 and para_k observed) and complement
(resulted exactly into the complement of the fault-free circuit). These totaled in 15
functional faults, 19.5%. The others fault category (in Table 5.1) includes Short
S6gd, which resulted in oscillations (between 0 to 60 uA) at the output, and short
S3gd, which resulted in irregular functional change that can not be classified in any

of the above categories.

5.3 Fault Characterization of the Complement

of Literal

Figure 5.9 shows the complement of literal implementation with the transistors
numbered as suggested before. It is composed of two parts. The input/output part
is implemented using CMCL transistors (transistors 1, 2, 3, 4, 5, 6 and 7). The
second part determines the logic part and consists of VMCL transistors (transistors
8,9,10, 11,12 and 13). Depending on the inputs, the logic part controls the status of

the output. Transistors 8 and 9 implement the inverter, in the complement of literal



Fault Category

Faults

Count

Percentage

Sequential

Olg, O2g, O3g, O4g,
0Od4s, 04d, Ob5g, OT7g,
0O8g, 08s, 08d, O9g,
Q09s, 09d, O10g, O10s,
010d, Ol1lg, Ol1s,
O11d, O12g, O12s,
012d, 013g, O13s, O13d

26

33.8%

SAO

Sigs, Slsd, S2gs, S3gs,
S3gd, S3sd, S4gs, S4gd,
S4sd, S5gs, S6gs, S7gs,
S8sd, S8gd, S9gs, S9gd,
S10gs, S10gd, Sllgs,
S12sd, S13sd, Ols, O1d,
02s, 02d, O3s, 05d,
O6s, 06d, O7s, O7d

31

40.3%

SAk

S7sd

1.3%

Functional

aSAO:
S2sd, S2gd, S8gs, S9sd,
Sllisd, S12gs, S11gd, S12gd

bSAS3:
S5sd, O3s, O3d, Sl3gs

bSA8 + para_k:
S13gd, S10sd

2

complement:
S7gd

1

total 15

19.5%

3* faults

S6sd(kSA3*), O6g(sequential*)

2

2.6%

Others

S5gd, Sé6gd

2

2.6%

total 77

Table 5.1: Fault characterization of the literal circuit.
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realization shown in Figure 2.7, and feeding one of the inputs of the NAND gate
(transistors: 10, 11, 12, 13). Transistors 4 and 5 are current to voltage transistors
controlling the logic (binary 0 or 1) at points A and B, respectively. Their sizes
are adjusted such that the voltage at point A will be binary 1 if the input current
z is > a and zero otherwise. The voltage at point B will be binary 1 only if the
input current x > b and zero otherwise (a & b in k%[z]?). For example, for 3![z]L,
if the input is 0, transistor 4 will pass the mirror current of x causing the voltage
at node A to be 0. As a result, the NAND output (transistor 13’s drain) will be
charged to binary 1 through transistor 11 opening the output switch (transistor 7)
and hence the output current passing through transistors 6 & 7 will be £ = 3. When
the value of the input is 1 (in the range of [a,b]), node A will be charged to binary
logic 1 opening transistor 12 and closing transistor 11. Transistor 5 will still pass
the mirror current of x resulting in 0 binary voltage at node B. This will drive the
inverter output (transistor 9’s drain) to binary 1 which is connected to the other
NAND input. Since both inputs of the NAND are 1, its output will be binary 0

closing transistor 7 and the complement of literal output will be 0 current (logic 0).

Defects (shorts and opens) will be inserted one at a time. The circuit will then
be analysed to find out the resultant behavior in the presence of the fault. This
step will be repeated exhaustively for all defects (3 shorts and 3 opens per single

transistor) to find resultant fault categories and their statistics. Some examples are
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given below.

Example 1: The short S1gs which resulted in a SAQ for the literal, resulted in a SAk
fault for the complement of literal circuit. Figure 5.10 shows the fault-free and faulty
outputs of 22[z|3 for Slgs (for the same input sequence z =0 —1—-2 =3 — 0

used previously).

Example 2: From the sequential fault category, the open at transistor 10’s drain
(010d) is illustrated below. Figure 5.11 presents the input and the fault free response
of W The faulty sequential behavior is shown in Figure 5.12 along with the input
(repeated for clarity). Two different output values (intervals: 0-200 ns and 800 -
1000 ns) are found for the same input value x=3.
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Figure 5.9: Complement of Literal transistor diagram.

Table 5.2 summarizes the simulation results obtained and the fault categories

identified for the complement of literal circuit. Similar to the literal circuit, four
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main fault categories were found: sequential, SAQ, SAk, and functional. Faults re-
sulting in 3* output occurred at low percentage, 2.6% (faults S6sd and O6g output).
The highest percentage of faults, 35.1%, resulted in stuck-at k output (SAk), oppo-
site to the literal since most faults which caused SAQ in the literal resulted in SAk in
the complement of literal. Sequential behavior was observed in 33.8% of the cases.
The functional faults are listed and classified according to the resultant faulty func-
tions into: bSA3, aSA0, complement (resulted exactly into the complement of the
fault-free circuit) and other functional (irregular faulty functions). These totaled in
15 functional faults, 19.5%. The others fault category (in Table 5.2) includes Short
S6gd, which resulted in oscillations (between 0 to 60 uA) at the output, and short
S3gd, which resulted in irregular functional change that can not be classified in any

of the above categories.

5.4 Fault Characterization of the Cycle

Figure 5.13 shows the cycle representation (transistor level). The operation of the

circuit can be described based on another definition form of the cycle operation [20]:

x+(r-m) ifz<m
X =

X-m ifz>m



Fault Category

Faults

Count

Percentage

Sequential

Olg, O2g, O3g, O4g,
O4s, 04d, O5g, O7g,
08g, 08s, 0O8d, 0O9g,
09s, 09d, C1i0g, O10s,
010d, Ollg, Olls,
011d, O12g, O12s,
012d, O13g, O13s, O13d

26

33.8%

SAk

Slgs, Slsd, S2gs, S3gs,
S3gd, S3sd, S4gs, S4gd,
S4sd, S5gs, S6gs, S7sd,
S8gs, S8gd, S9gs, S9sd,
S10sd, Slisd, S12gs,
S12gd, S13gs, Ols, Old,
02s, 02d, O3s, O5d,

27

35.1%

SAO

S7gs, O6s, O6d, O7s, O7d

[V

Functional

bSA3:
S5sd, S8sd, S9gd, S10gs,
03s, 03d

aSAO0:
S2sd, S2gd, S1lgs

complement:

S7gd

other functional:
S10gd, S11gd, S12sd,
S13gd, S13sd

total 15

19.5%

3* faults

S6sd(kSA3*), O6g(sequential*)

2

2.6%

Others

S5gd, Sé6gd

2

2.6%

total 77

Table 5.2: Fault characterization of the complement of literal circuit.
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In Figure 3.13, transistor 5 sources the (r — m) current value and transistor 8 sinks
m current value. Only one path will be open at any given time. This is controlled by
the two switches: transistor 6 (p-type) and transistor 7 (n-type) which are controlled
by the logic value at node A (transistor 4 will detect if z > m and charge A to binary
1). The two cascaded inverters (transistors: 11, 12, 13 and 14) are only to restore
the exact binary value of A at B for proper operation of the two switches. For
example, if £ < m then node A, and hence node B, value will be binary 0. This will
open the path through transistors 5 and 6 allowing the value of (r-m) to be added
to the mirror of x (transistor 3) and forming to the output. If, on the other hand,
z > m, the path through transistors 7 and 8 will open and subtracts the value of m

from the mirror of x.

Similar to the previous circuits, shorts and opens were inserted and simulated.

Examples are presented below.

Example 1: The short S7sd causes the path through transistors 7 and 8 to be
permanently open. If £ > m when path is normally open in the fault free circuit,
the output will show the correct value. When = < m, the short will subtract the
value of m from the correct output (through path 5 and 6). So, the faulty output will
be less by the value of m. Figure 5.14 compares the faulty output, in the presence
of this short, with the correct output for the circuit X—!. The same input sequence

(r=0—1—2— 3 — 0) was used. The faulty circuit showed the correct output
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for values of z > 1. When x was 0, the faulty output was 2 (40 uA) which is less

than the correct output 3 (60 uA) by 1 (the value of m).

Example 2: The open at transistor 13’s drain is classified in the sequential faults
category. In the presence of this fault, node B voltage is floating when its charging
path (through transistor 13) is open (if node A voltage is binary 1). Figure 5.15
shows the input/output responses of the cycle X 2. The faulty sequential behavior
is shown in Figure 5.16 (the input is repeated for clarity). Two different output

values (intervals: 0-200 ns and 800 - 1000 ns) are found for the same input value

x=3.
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Figure 5.13: Cycle transistor diagram.

Characterization results are tabulated in Table 5.3. Four fault categories were
found: functional, sequential SA3 and SAOQ. The highest fault percentage, 53.7%,

are functional faults. This high percentage, as compared with the literal or its
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Figure 5.14: Response of the cycle, X 1.
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Figure 5.15: Response of the cycle, X 2.
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complement, can be explained by the increased number of logic levels expected to
appear at the cycle’s output. The 4 levels (0, 1, 2 and 3) can appear at the cycle
output while the literal shows only 2 logic levels, either 0 or k (the literal value).
Sequential behavior was observed in 31.7% of the cases. Seven, 8.5%, faults are
classified as SA3. This category is divided into SA3 and SA3* faults. The faulty
circuit output in the presence of a SA3* fault is stuck-at 3* (values higher than 3).

The rest of faults, 6.1%, are SAQ faults.

5.5 Fault Characterization of the tSum

Figure 5.17 shows the tSum representation. Similar to the cycle, there are two paths
that determine the output and only one of which will be active at any given time.
This is controlled by the inverter output (transistors 8 and 9) at point B which
is connected to two switches S1 (n-type transistor 5) and S2 (p-type transistor 7).
Point A, the inverter input, will charge to binary 1 if the sum of input currents
Y > 3 (3 is r-1). This will drive node B to binary 0 closing S1 and opening S2. In
this situation, the output is fed by transistor 6 which sources constant 60uA (logic
3). This will truncate the sum of inputs, Y, to 3 once its value exceeds 3. When
Y < 3, the path through S1 will be enabled passing the sum value of the input

currents.
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Fault Category

Faults

Count

Percentage

Functional

S2sd, S2gd, S3gd, S4gs,
S4sd, S4gd, S5gs, Sogd,
S3sd, Ségs, S6gd, S6sd,
S7gs, S7Tgd, S7sd, S8gs,
S8gd, S8sd, Sllgs, S1llgd,
Siisd, S12gs, S12gd, S12sd,
S13gs, S13gd S13sd, Sld4gs,
Si4gd, S14sd, O9s, O9d,
02s, 02d, 03s, 03d,

0O3s, 05d, O6s, 06d,

08s, 08d, OT7s, O7d

44

33.7%

Sequential

Olg, Ols, O1d, O2g, O3g,

O4g, O4s, O4d, Obg, Ofg,

O7g, O8g, O9g, O10g, Ollg,
Olls, O11d, O12g, O12s, Ol12d,
013g, O13s, O13d, Ol4g, Olds,
O14d

26

31.7%

SA3

SA3:
Slgs, Slsd, S2gs, S3gs

4

SAS*:
S3sd, S10gd, S10sd

3

total 7

8.5%

SAO

S9gs, S9sd, S10gs, O10s, O10d

3]

6.1%

Total 82

Table 5.3: Fault characterization of the cycle circuit.
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Example 1: Short S4gd represents a class of faults that change the tSum into
un-truncated sum function. The output will be the true sum of the inputs. In the
presence of this short, the value of N,.¢ at the gate of transistor 4 will be higher than
normal since it is shorted to the sum of the input currents. This will allow transistor
4 to pass higher currents which keeps Node A at binary 0. Node B will be at binary
1 all the time which results in connecting the output to the true, un-truncated, sum
of the input currents. Figure 5.18 shows the normal and faulty outputs for this
short. The two input currents used are z; =0 — 1 — 2 — 3 — 0 and 29 = 20uA

(constant 1).

Example 2: The open at transistor 3’s drain results in a functional fault. It blocks
the sum value of the input currents (mirrored by transistor 3) from reaching the
output. When the sum of input currents is less than 3, the faulty output will be
0. When the input currents are more than 3, the path through transistors 6 and 7
will be activated resulting in the truncated value at 3. Figure 5.19 shows the faulty

output in the presence of this fault for the same inputs used in example 1 above.

Table 5.4 lists the fault categories for the tSum circuit. Four main fault categories
are found: functional, SA3, sequential (and sequential®*) and SAO. Similar to the
cycle, the highest percentage occurred as functional faults. The faults listed under
the sequential* category are sequential faults in nature but their faulty output will

show 3* instead of 3. Sum®* faults result in un-truncated sum function. The circuit
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Figure 5.17: tSum transistor diagram.

under these faults produces current levels equal to the actual sum. For example, if
the inputs were 3 (60 uA) and 2 (40 uA), the output will show 100 uA. The test
generation for such faults will be discussed in the next chapter. Also note that one
single short (S3gd) results in high frequency oscillations spanning from 0 to 60uA
at the output. S6gd short only affects the logic level 3. It becomes 2.5, i.e. 50uA

instead of 3.

5.6 Fault Characterization of the Min

Figure 5.20 shows the min operator. It was designed using only current mode
transistors. To describe the operation of the circuit, take two examples. If z < v,
then i9o = 44—y =2 —y =0. So,i3 =0and iy =z —i3 = —0 = z. The

output, which is the mirror of iy, will be x. On the other hand, if z > y, then
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Figure 5.18: Response of a tSum circuit.
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Figure 5.19: Response of a tSum circuit in the presence of O3d.

Fault Category

Faults

Count

Percentage

Functional

Sbgs, S6gs, ST7gs, S7gd,
03s, 03d, O35s, 03d,
O6s, 0O6d, OT7s, O7d
Sum*:

S4gd, S4sd, S3sd, S6sd,
S8sd, S9gs, O2s, O2d

20

37.7%

SA3

S2gd, S2sd, S3sd, S4gs,
S8gs, S9sd, Ols, O1d,
Od4s, 04d

SA3*:

Sbgd, S7sd, S8gd, S9gd

14

26.4%

sequential

Olg, O2g, O3g, O4g,
Ob5g, O7g, O8g, O8s,
08d, 09g

10

18.9%

Sequential*

O6g, 09s, 09d

w

5.7%

SAO

Slgs, Slsd, S2gs, S3gs

7.5%

Others

S3gd (High freq. Osc.)
S6gd (3 becomes 2.5)

N i~

3.8%

total 53

Table 5.4;: Fault characterization of the tSum circuit.
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to=(z—y)=13. So, iy =z —iz3 =z — (z — y) = y and the output will be y.

Example 1: The short S7gs resulted in a SAQ fault. It raises the gate voltage of
transistor 7 to Vdd value which closes the path for the output. Short 7gd on resulted
in a SA3 fault. Transistor 7 gate voltage under this short is lower than normal.
This allows more current (even more than 6uA) to pass through all the time and
independent of the inputs. Figure 5.21 shows the normal and faulty outputs in the
presence of the short 7gd. The inputs used were: y = constant 2and =0 — 1 —

2—-3-0.

Example 2: Figure 5.22 shows the faulty outputs in the presence of the Open at
transistor 3’s source (O3s). The subtraction process by the current i3 (Figure 5.20
is disabled and hence the faulty output follows the input x regardless of the other
input (y) value.

vdd vdd

"\
4 5 6 7

L orhrd

w -— - Minl

i —TLI L -

Figure 5.20: Min transistor diagram.
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Figure 5.21: Response of a min circuit.
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Figure 5.22: Response of a min circuit in the presence of Obs.

Table 5.5 lists the simulation results. Four fault categories are characterized for

the min: SA0, SA3, functional and sequential. The highest percentage (33.3%) was

SAQ faults. Functional faults are encountered in 30.8% of the cases. Sequential

faults occurrence is also at high percentage 28.2%. The lowest occurrence, 7.7%, is

for the SA3 faults.

Fault Category | Faults Count Percentage
SAO Slgs, Slsd, S2gs, S2sd, 13 33.3%
S3gs, S3sd, S6gs, S6sd,
S7gs, O3s, 03d, O7s, O7d
SA3 S3sd, S7gd, S7sd 3 7.7%
Functional S2gd, S3gd, S4gs, S4sd, 12 30.8%
S3gs, Sagd, O2s, 02d,
O4s, 04d, O3s, O3d
Sequential Olg, Ols, O1d, O2g, 11 28.2%
0O3g, O4g, O5g, Ofg,
O6s, 06d, O7g
total 39

Table 5.5: Fault characterization of the min circuit.
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80

The fault characterization conducted on the MVL set in this work resulted in 4 main

fault categories:

1. Sequential faults: which have sequential behavior.

2. SAO0: the output is stuck-at zero level.

3. SA3: the output is stuck-at level 3. In the case of literals, this appeared as

stuck at the literal value (the value of k).

4. Functional faults: which change the circuit functiorn into a different one

from what it was designed for.

In addition, some other peculiar faults were found with low percentages. The per-

centages of each category against the circuits studied are summarized in Table 5.6.

Fault category | Literal | Comp. of Literal | Cycle | tSum | Min
Sequential 33.8% 33.8% 31.7% | 24.6% | 28.2%
Functional 20.8% 20.8% 53.7% | 37.7% | 30.8%
SAOQ 40.3% 6.5% 6.1% | 7.5% | 33.3%
SA3 1.3% 35.1% 8.5% | 26.4% | 7.7%
Others 3.9% 3.9% 3.8%

Table 5.6: Summery of the characterized fault categories.



Chapter 6

Testing of the M VL Set

For a given circuit under test, the aim of any test generation process is to find the
proper inputs that have their fault-free outputs different from the faulty output(s).
Once these inputs are applied to the circuit, they will produce noticeable wrong
output(s), which are different from the fault free output(s), if the circuit is faulty.
For example, the fault-free output for z—, when x = 0, is 3. To test for SAQ fault
at the output, 0 is a valid test because if it is applied, it will produce a fault-free
output of 3 which is different from the faulty output (0). On the other hand, x =
1 is not a valid test because if it is applied, it will produce a fault-free output of
0 which is not distinguishable from the faulty output. Sequential faults need two

test vectors since the circuit output under such faults depends on both the previous
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state and the current input. One vector is needed to initialize the circuit and the

second vector to excite the fault.

For each of the circuits studied, test vectors were generated by simulation of
each fault against all possible input variations (a sequence of two different inputs
for sequential faults and single input for other faults). In the following sections, lists
of the valid tests for every circuit under all possible faults (shorts and opens) are
provided. From these lists, minimal sets or input sequences that test for all faults
are extracted. A special testing procedure for the peculiar 3* faults will be presented

at the end of the chapter.

6.1 Testing of the Literal

Table 6.1 lists the faults and their tests for the literal operator. The table is di-
vided into six main columns each for one instance of the literal, namely k!'[z]!,
klz]?, k'[z]®, k3[z]?, K3[z]®, k3[z]®. Other possible configurations, like £°[z]!, can

be represented by an equivalent complement of literal instance [20, 21].

For each single fault (or two equivalent faults), there is one corresponding entry.
Valid test vectors are listed along the rows. These tests are obtained and verified by

simulation. Sequential faults have their tests listed as pairs of the initializing input
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and the test input as (x1, x2), where x1 is the first input which should be followed
by x2 to excite the fault. Functional and other non-sequential faults need only one
input test. Valid tests are listed separated by commas. Entries marked with n/a
are for faults that resulted in fault-free behavior. For example, the fault O4d results
in a sequential behavior in the k?[z]? circuit. The test (3, 1) is listed as a valid
test. First, the circuit is initialized by the input x1 = 3 and then x2 =1 is applied
to excite the fault and detect a faulty value at the output. Other (non-sequential)
faults can be tested by a single input value. To test for a SAk fault in the k'[z]!
circuit, the input value x = 0 can be applied. The fault free output in this case is 0

and the faulty output is k.

In order to find the minimal test set(s) / sequences, we have applied the concept
of fault coverage table. In a fault coverage table, each test vector is represented by
a row and each fault by a column. If a test detects a given fault, the corresponding
row-column intersection is checked (marked). For example, Table 6.2(a) shows the
fault coverage table for the non-sequential faults for k![z]!. The fault coverage table

can be simplified according to the following rules:

1. If a column A is included in column B, then column B can be deleted. Column
B includes column A if all A’s checks (marks) are included in B. This indicates
that picking any test for A will definitely test for B. So, no need to list column

B.



84

2. If row A is included in row B, then row A can be deleted. All faults covered

by A are also covered by B. So, B can be used instead.

3. If a column has only one location checked, it indicates that the corresponding

test vector is essential (must be included in any test sequence).

Table 6.2(a) is obtained directly from the non-sequential part (single tests) in
Table 6.1. After applying column simplification, the simplified coverage table for
k'[z]! is listed in Table 6.2(b). Column bSA3, in Table 6.2(a), is included in columans
SAk, S5gd and S13gd/S10sd and so they are deleted and only column bSA3 appears
in Table 6.2(b). Similarly, column SAQ is included in column S6sd and hence only
column SAOQ appears in Table 6.2(b). Column aSAOQ is essential and is also included
in Table 6.2(b). From the simplified fault coverage Table 6.2(b), it is found that any
test sequence must include 0 and 1. Also, either 2 or 3 must be included. This can be
written as: 0, 1, [2 (3)]. Required tests are listed separated by commas. When there
is a choice between a number of tests, they will be placed inside square brackets ||
separated by the small brackets ’()’. This notation will be used throughout the next
sections. Sequential tests have two values for a single vector. These will be listed as
pairs of (x1, x2). Table 6.2(c) lists the simplified coverage table for the sequential
faults occurring in k*[z]'. The tests (0, 1), (1, 0) must be included. Either (1, 2)
or (1, 3) must be included too. Finally, one of the test (2, 1) or (3, 1) must be

included. This can be written as:



(0, 1), (1, 0), [(1, 2(3)], [2(3), 1].

Combining tests obtained form sequential and non-sequential faults (0, 1, [2 (3)] and
(0, 1), (1, 0), [(1, 2(3)], [2(3), 1]), the following minimal sets of vectors are obtained:
{(0, 1), (1, 0), (1, 2), (2 ,1)} or

{(0,1), (1,0), (1, 3), 3.1)}

To obtain the minimal test sequence, the above pairs have to be ordered to obtain
the shortest possible sequences. For the above sets, the minimal test sequences that
test for all faults are:

x=1—-0—-1—2—1or

x=1—-0—-21—-23—-1

Note: other possible sequences can be obtained but they are similar and of the same
size. They are

x=1—-2—-1—0—1o0r

x=1—-3—-21—-0—1

Following similar steps and simplifying coverage tables, the tests for the rest of
the instances can be written as in Table 6.3. The resultant minimal test sets and

minimal test sequences are listed in Table 6.4.
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Fault | k1[x]* k'[x]* k'[x]® k*[x]* k*[x]® k*[x]?
O1g | (0,1)(2,1)|(0,1)(0,2)|(0,1)(0,2)|(0,2)(1,2)](0.2)(0,3) |(0,3) (1,3)
3, 1) (2,1) (3, 1) 1 (0,3) (1,2) | (3, 2) (L, 2) (1,3) | (2, 3)
(1,3) (2. 1)
(2,3) 3, 1)
3. 2)
O2g [(0,1)(1,0)](0,1)(0,2)|(0,1)(0,2) | (0,2) (L, 2){(0,2)(0,3) | (0,3) (1,3)
(2,0) (3.0) | (1,0) (2,0) | (0,3) (1,0) | (2,0) (2, 1) | (1.2) (1,3) | (2,3) (3,0)
(3. 0) (2,0)(3,0) 1 (3,0)(3,1) | (2,.0)(2,1) | 38, 1) (3, 2)
(3,0) (3, 1)
O3g (0,2) (0,3) | (0,3)(1,3) | n/a (0, 3) (1, 3) | n/a n/a
(1,2) (1,3) | (2,3) (3, 1) (2, 3) (3, 2)
(2,1) (3,1) | (3,2
O4s/ | (1,0) (2,0) [ (1,0) (2,0) [ (1,0) (2,0) | (1,0) (2,0) | (1,0) (2,0) | (1, 0) (2, 0)
04d (3,0) (3,0 (3, 0) 3,00(2,1) | (3,00 (2,1) 1 (3,0) (2, 1)
3. 1) 3, 1) 3, 1) (1, 2)
(3, 2)
O4g | n/a n/a n/a (0,2) (1, 2) | (0,2)(0,3) { (0, 3) (1, 3)
(2,1) (3, 1) | (1,2)(2,1) | (2,3) (3, 2)
(3, 1)
O5g (0,2) (0,3) | (0,3)(1,3) | n/a (0, 3) (1, 3) | n/a n/a
(1,2) (2,1) | (2,3)(3,2) (2, 3) (3, 2)
3, 1)
O7g | (1,0)(1,2) | (1,0)(1,3) [(1,0)(2,0) | (2,0) (2,1) | (2,0) (2,1) | (3,0) (3, 1)
(1,3)(0,1) | (2.0) (2,3) | (3,0) (0,1) [ (2,3) (0,2) | 3,0) (3, 1) | (3, 2) (0, 3)
(2,1) (3,1) | (0,1) (0,2) | (0,2) (0,3) | (1,2) (3,2) | (0,2) (0,3) | (1,3) (2, 3)
(3, 1) (3,2) (1, 2) (1, 3)
O8s/ | (1,0) (2,0) | (1, 0) (2,0) | (1, 0) (2, 0) | (2,0) (2, 1) | (2,0)(2,1) | (3,0) (3, 1)
08d (3,0) (3,0 (3, 0) (3,0) (3,1) | (3,0)(3,1) | (3,2)
O8g (0,1) (1,0) | (0,1)(0,2) | (0,1) (0,2) | (0,2) (1,2) | (0,2) (0,3) | (0,3) (1,3)
(2,0) (3,0) | (1,0)(2,0) | (0,3)(1,0) { (2,0) (2, 1) { (1,2) (1,3) | (2,3) (3,0)
(3. 0) (2,0) (3,0) [ (3,00 (3,1) { (2,0)(2,1) | (3,1) (3,2)
(3,0) (3, 1)
0O9s/ | (0. 1) (0,1) (0,2) | (0,1)(0,2) | (0,2) (1,2) | (0,2)(0,3) | (0, 3) (1, 3)
09d (0, 3) (1,2) (1,3) | (2, 3)
O9g | (0,1) (0, 1) (0,2) | (0,1) (0,2) | (0,2)(1,2) ] (0,2)(0,3) | (0,3) (1, 3)
(0, 3) (1,2) (1,3) [ (2,3)

Table 6.1: Exhaustive test list for the literal circuit
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Fault ki[x]t k' [x]4 k'[x]® k*[x]* k*[x]® k3[x]®
O10s/ |(0,) D |G, 1D©,2) | @ 10,2 ](@,2 L2 ]2 O3] s3) Q4?3
o1od | (3, 1) 3,1) (3, 2) | (0, 3) (3, 2) (1,2) (1,3)] (2, 3)
O10g (2,1) (3, 1) (38,1)(3,2) | n/a 3, 2) n/a n/a
O11s/ |(0,1)(2,1)](0,1)(0,2) | (0,1)(0,2) | (0,2)(1,2) ]| (0,2)(0,3)]| (0, 3) (1, 3)
o11d | (3,1) (3,1) (3,2) | (0, 3) (3, 2) (1,2) (1,3)] (2, 3)
Ollg (0. 1) (0,1) (0,2) | (0,1) (0,2) | (0,2) (1,2) | (0,2) (0,3)] (0, 3) (1,3)
(0, 3) (1,2) (1,3)] (2,3)
0125/ | (1, 0) Lo (20| (L0 (2020 ED|E0ED| G061
012d (3,0) (3,0) (3,1)| (3, 2)
O12g (0,1) (1,0) | (0,1) (0,2) | (0,1)(0,2) | (0,2) (1,2) | (0,2)(0,3)] (0, 3) (1, 3)
(1,0) (2,0) | (0,3) (1,0) | (2,0) (2, 1) | (1,2) (1,3)]| (2,3) (3,0)
(2, 0) (3,0) (2,0)(2,1)| 3,1) 3,2
3.0 3, 1)
013s/ (1,2) (1,3) | (1, 3) (2,3) | n/a (2, 3) n/a n/a
013d
O13g (1,2) (1, 3) | (1,3) (2,3) | n/a (2,3) (3.2) | n/a n/a
(2,1) 3, 1) 1B, 1) (3, 2)
Oé6g (0,1) (2,1) { (0,1) (0,2) | (0,1)(0,2) | (0,2) (1.2) | (0.2) (0,3) | (0, 3) (L, 3)
(k*) 3, 1) 3.1) (3,2) | (0, 3) 3. 2) (1,2) 1,3)] (2, 3)
SAO 1 1,2 1,23 2 2,3 3
SAk 0,2,3 0,3 0 0,1,3 0,1 0,1,2
aSA0 |0 0 0 0, 1 0, 1 0, 1, 2
bSA3 2,3 3 n/a 3 n/a n/a
S5gd 2,3 3 Para k at: 1.3 1 2
all 1,2 & 3
S13gd/ | 2,3 3 Para k at: 3 Para_k at: | Para_k at:
S10sd all 1,2 & 3 all 2 & 3 3
S6sd k* at: k* at: k* at: k* at: k* at: k* at:
1 lor2 1,20r3 2 2o0r3 3

Table 6.1 Exhaustive test list for the literal circuit (continued)




Test vector

SAO | SAk

aSAQ

bSA3 | Sogd | S13gd/S10sd

S6sd

0

1
2
3

Pa| P4
P4| P4

X
X

a. non-sequential faults

SAQ

bSA3

aSAQ

X

X

WINIHO

X

X

b. non-sequential faults (simplified)

09s/d

O1l0g

O12s/d

O13s/d

0—1

X

0—2

0—3

1—20

1 —2

1 —3

olks

2—0

2 —=1

2 —3

3—0

3—1

X

3—2

c. sequential faults (simplified)

Table 6.2: Fault coverage tables for k'[z]!
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Literal | Test

K'[z]' | sequential: (0, 1)y (1, 0), [(1, 2(3)], [2(3), 1]
non-sequential: 0, 1, [2 (3)]

kl[z]* | sequential: [0, 1(2)], [1(2), 0], [1(2), 3], [3, 1(2)]
non-sequential: 0, 3, [1{3)]

kKlz]* | sequential: [(0, 1(2)(3)], [L(2)(3), 0]
non-sequential: 0, 1, 2, 3

K?[z]* | sequential: (3, 2), (2, 3), [2, 0(1)], [0(1), 2]
non-sequential: 2, 3, [0(1)]

k[z]* | sequential: [(0, 2(3)) (1, 2(3))], [(2, 0(2)) (3, O(1))],
[(0, 2(3)) (1, 2) (2(3). 1)]
non-sequential: 1, 2, 3

R3iz]® | sequential: [0(1)(2), 3], [3, 0(1)(2)]

| non-sequential: 2, 3, [0(1)]

Table 6.3: Literal tests.

6.2 Testing of the Complement of Literal

Table 6.5 shows the test vectors for the complement of literal faults.
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The fault

coverage table method and similar steps to those used for the literal resulted in the

complement of literal tests as listed in Table 6.6. The resultant minimal test sets

and sequences are listed in Table 6.7.

6.3 Testing of the Cycle

Table 6.8 shows the test vectors for the cycle operator. The simplified test lists

obtained by simplifying the coverage tables are listed in Table 6.9. The resultant



Literal | Test Sequence

kl[l‘]l
{0, 1), (1, 0), (1, 2), (2, D} or {(0, 1), (1, 0, (1, 3), (3, 1)}
Minimal test sequence:
1-0—1—-2—>1lorl=-0—-1—3—-1

k1[$]2
{(0, 1), (1, 0), (L, 3), (3, 1)} or {(0, 2), (2, 0), (2, 3), (3, 2)}
Minimal test sequence:
1-0—-1—-3—=10r2—-0—42—>23—2

kl[xls
{(0, 3), {1, 0), 2} or {(1, 0), (0, 2), 3} or {(2, 0), (0, 1), 3}
{(2, 0), (0, 3), 1} or {(3, 0), (0, 1), 2} or {(3, 0), (0, 2), 1}
Minimal test sequence:
1——0—-3—-20rl—-0—-2—-30r2—-0—1—3o0r
2—-0—-3—=10r3—-0—-1—-20r3—-0—-2->1

k2[.’1,‘]2
{(3,2), (2,3), (2,0), (0, 2)} or {(3,2), (2, 3), (2, 1), (1, 2)}
Minimal test sequence:
2—-3—-2—-0—-20r2—-3—22—>21—2

kz[l.]s
{(1,2), (3, D} or {(1, 3), 2, 1)}
Minimal test sequence:
3—-1—20r2—-1-—3

k3[$]3

{(2,3). (3,2)}
Minimal test sequence:
2—-+3—2

Table 6.4: Minimal test sets/sequences for the literal.
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Fault | k1[x]! k1[x]? ki[x]3 k2[x]? k2[x]3 k3[x]3
O1g | (0,1)(2,1)|(0,1)(0,2) | (0,1)(0,2) | (0,2)(1,2) | (0,2)(0,3) | (0,3) (1,3)
(3, 1) (2,1)3,1) 1 (0,3) (1,2) | (3. 2) (1,2) (1, 3) | (2, 3)
(1,3) (2, 1)
(2,3) (3, 1)
(3. 2)
O2g | (0,1) (L0)|® 1) (0,2 010,202 {2 ]0?20,3)]0,s3) d a3
(2,0) (3,0) [ (1,0)(2,0) | (0,3) (1,0) [ (2,0) (2, 1) | (1,2) (1, 3) | (2, 3) (3,0)
(3,0 (2,0)(3.0) | (3,0) (3. 1) [ (2,0) (2. 1) | 3,1) 3,2)
3,0 (3, 1)
0O3g | (0,2) (0,3)1](0,3)(1,3)]|n/a (0, 3) (1,3) | n/a n/a
(1,2) (1,3) | (2,3) 3, 1) (2,3) (3,2)
(2,1) 3,1) | (3,2)
O4s/ | (1,0) (2,0) | (1,0) (2,0) | (1,0) (2,0) | (1,0) (2,0) | (1,0) (2,0) | (1,0) (2,0)
0O4d | (3,0) (3, 0) (3, 0) (3,0)(2,1) | 3,0 (2,1) | (3,0 (2, 1)
(3, 1) (3. 1) (3,1) (1, 2)
3, 2)
O4g | n/a n/a n/a (0,2)(1,2)](0,2) (0,3) | (0, 3) (1, 3)
(2,1)(3,1) | (1,2) (2,1) | (2,3) 3, 2)
Os5g (0,2) (0,3) ]| (0,3)(1,3) | n/a (0, 3) (1, 3) | n/a n/a
(1,2) (2,1) | (2. 3) (3. 2) (2,3) 3.2)
3.1
O7g | (1,0)(1,2) [ (1,0)(1,3) [ (1,0)(2,0) [ (2.0)(2,1) | (2,0) (2,1) | (3,0) (3, 1)
(1,3) (0,1) [ (2,0) (2,3) | (3,0) (0, 1) | (2,3) (0.2) | (3,0) (3, 1) | (3,2) (0, 3)
(2,1) (3,1) [ (0, 1) (0,2) | (0,2) (0,3) | (1,2) (3,2) | (0,2) (0,3) | (1,3) (2,3)
(3,1) (3, 2) (1,2)(1,3)
08s/ | (2,1)(3,1) | 8,1)(8,2) | n/a (3, 2) n/a n/a
0O8d
08z |[(2,1)(3,1)](3,1)(3,2) | n/a (3., 2) n/a n/a
09s/ | (0,2) (0,3) | (0, 3) (1, 3) | n/a (0, 3) (1, 3) | n/a n/a
09d | (1,2)(1,3)] (2, 3) (2, 3)
09¢g | (0,2)(0,3) ] (0, 3) (1, 3) | n/a (0, 3) (1,3) | n/a n/a
(1, 2) (1,3) ] (2. 3) (2, 3)

Table 6.5:

Exhaustive test list for the complement of literal.
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Fault kl[x]1 k1[x]? kl[x]3 k2[x]? k2[x]3 k3[x]3
010s/ | (L, 2) (L, 3) | (L, 3) (2,3) | n/a (2. 3) n/a n/a
o10d
O10g | (1,2 (L3) | (L3) (2 3) | o/a (2, 3) n/a n/a
O11s/ | (1,0) (1,0)(2,0) | (1,0) (2,0) | (2,0) (2,1) [ (2,0) (2, 1) | (3,0) (38, 1)
O11d (3, 0) (3,0) (3,1) | (3,2)
O11g (1,0) (1,0) (2,0) | (1,0) (2,0) | (2,0) (2,1) | (2,0) (2,1) | (3,0) (3, 1)
(3. 0) (3,0) (3, 1) | (3,2)
O12s/ |(0,1)(2,1) | (0.1) (0,2) | (0,1) (0,2) | (0.2) (1, 2) | (0,2) (0,3) | (0,3) (1, 3)
o12d | (3,1) (3,1) (3,2) | (0, 3) (3, 2) (1,2) (1, 3) | (2, 3)
O12g @, 1) (0,1) (0,2) | (0,1) (0,2) | (0,2)(1,2) | (0,2) (0,3) | (0,3) (1,3)
(0, 3) (1,2) (1,3) | (2,3)
O13s/ | (0,1) (2, 1) | (0,1)(0,2) | (0, 1) (0, 2) | (O, 2)(L,2) | (0,2)(0,3) | (0,3) (1,3)
013d | (3,1) (3,1) (3,2) | (0, 3) (3, 2) (1,2) (1, 3) | (2 3)
O13g (2,1)3,1) | (38,1)(3,2) | n/a 3,2) n/a n/a
Oé6g (1,0)(1,2) | (1,0)(1,3) [ (1,0) (2,0) | (2,0) (2, 1) | (2,0) (2,1) | (3,0) (8, 1)
(k*) (1, 3) (2,0)(2,3) | 3,0 (2, 3) (3,0 (3,1) [ (3,2
SAO 0,23 0,3 0 0,13 0, 1 0,12
SAk 1 1,2 1,23 2 2,3 3
aSA0Q 0 0 0 0,1 0,1 0,1, 2
bSA3 2,3 3 n/a 3 n/a n/a
Si0gd/ | 1, 2,3 1,23 1,23 2.3 2,3 3
S13gd
Silgd |1 1,2 1,23 2 2, 3 3
S12sd | 0 0 0 0, 1 0, 1 0,1, 2
S13sd | 2,3 3 n/a 3 n/a n/a
Seésd k* at: k* at: k* at: k* at: k* at: k* at:
0,2o0r3 Oor3 0 0,1or3 OQorl 0,lor2
S5gd 2,3 3 Para k at: 1,3 1 2
0

Table 6.5 Exhaustive test list for the complement of literal (continued)




Comp. of Literal

Test

klz]! sequential: (0, 1), (1, 0), [(1, 2(3)], [2(3), 1]
non-sequential: 0, 1, [2(3)]

kt{z]? sequential: [1(2), 0], [0, 1(2)], [1(2), 3], [3, 1(2)]
non-sequential: 0, 3, [1(2)]

kl[z]3 sequential: [0, 1(2)(3)], [1(2)(3), 0]
non-sequential: 0, [1(2)(3)]

k2[z]? sequential: (2, 3), (3, 2), [2, 0(1)], [0(1), 2]
non-sequential: 2, 3, [0(1)]

k2(z]3 sequential: [(0, 2(3)) (1, 2(3))], [(2, 0(1)) (8, 0(1))]
non-sequential: 1, [2(3)]

k3[z]3 sequential: [0(1)(2), 3], [3, 0(1)(2)]

non-sequential: 2, 3

Table 6.6: Complement of literal tests.
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Complement of Literal

Test sequence

k?l[.'l,']l

{(0. 1), (1, 0), (1, 2), (2, D} or {(0, 1), (1, 0), (1, 3), (3, 1)}
Minimal test sequence:
1-0—-1—-2—-10or1l1—-0—-1—-3—1

{(1, 0), (0, 1), (1, 3), (3, 1)} or {(2, 0), (0, 2), (2, 3), (3, 2)}
Minimal test sequence:
1—-3—-1—-0—-1l0or2—-3—-2—-0—2

K [z]?

{(1, 0), (0, 1)} or {(2, 0), (0, 2)} or {(3, 0), (0, 3)}
Minimal test sequence:
l1—-0—1lor2—-0—20r3—-0—3

{(2,3), (3,2),(2,0), (0, 2)} or {(2, 3), (3, 2), (2, 1), (1, 2)}
Minimal test sequence:
2—-23—-2—-0—-20r2—-3—-2—-1—2

B2z

{(1, 2), (2, D)} or {(1, 3), (3, 1)}
Minimal test sequence:
l1—-2—>1lorl—3-—1

{(2, 3), (3, 2)}
Minimal test sequence:
2—+3—2

Table 6.7: Minimal test sets/sequences for the complement of literal.
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minimal test sets and sequences are listed in Table 6.10.

6.4 Testing of the tSum

Tables 6.11 and 6.12 list the tSum tests. The tests in these tables are listed in terms
of Y = x1 + x2. This is possible since all input currents x1 and x2 are summed at a
common node which is connected to the mirror’s input (transistor 1 in Figure 5.17).
This is why values greater than 3 appear in the table. The maximum is when x1
= 3 and x2 = 3 making Y = 6. When the final results are obtained, they can be
expressed in terms of x1 and x2. Table 6.11 lists the tests for the sequential faults.
Tests for the sequential™ faults are also included. Sequential* faults produce a 3*
output when the fault is excited. So, listed valid tests initialize the circuit and then
excite the fault with the 3* output. The 3* testing procedure, described later in this
chapter, is required in this case. The functional faults tests are listed in Table 6.12.
The sum* fault category, which produce 3* output, also require 3* testing. The
tests listed excite the 3* output. The SA3* faults, in Table 5.4, can be tested by
the same tests of the the SA3 since these test produce a faulty output different from
the fault free output. The resultant tests (in terms of Y = x1 + x2) are tabulated
in Table 6.13. As a result, the minimum test set is:

(Y1,1),(1,Y3) or



Fault

X!

Xc—-2

X

Olg

(0. 1) (0, 2)
(0, 3) (1,2)
(1.3) (2, 1)
(2,3) 3, 1)
(3, 2)

(0, 2) (0, 3)
(1,2) (1,3)
(2. 1) (2,3)
(3,1) 3,2)

(0, 2) (0, 3)
(1, 2) (1, 3)
(2, 1) (2, 3)
3,1 @8, 2)

O1s/01d

(0, 1) (0, 2)
(0,3) (1,2)
(1,3) (2, 1)
(2,3) 3, 1)
(3,2)

(0, 2) (0, 3)
(1,0) (1, 2)
(1.3) (2,0
(2,3) (3,0)
3. 2)

(0, 2) (0, 3)
(1, 0) (1, 2)
(1, 3) (2, 0)
(2, 1) (2,3)
(3,0 (3,2

(0, 1) (0, 2)
(0,3) (1,0)
(2,0) (3. 0)

(0,3) (1,0)
(1, 2) (1, 3)
(2,0) (2,1)
(3,0) (3,1)

(0, 3) (1, 3)
(2,3) (3, 2)

O3g

(0,2) (0, 3)
(1,2) (1, 3)
2.1) (2, 3)
3. 1)

(0, 1) (0, 3)
(1,0) (1, 3)
(2,0) (2,3)
(3,0) (3,2

(0, 1) (0, 2)
(1, 0) (1, 2)
(2,0) (2, 1)
(3,0) (3,1)

O4g

n/a

(0, 2) (0, 3)
(1,2) (1,3)
(2,1) 3. 1)

(0, 3) (1, 3)
(2, 3)

04s/04d

(1,0) (2,0)
(3. 0)

(2,0) (2,1)
3.0036, 1)

(3.0) (3, 1)
3, 2)

O5g

n/a

(1, 3) (2,0
(3, 0)

(3,0) 3. 1)

06g/07g

(0, 1) (0, 2)
(0,3) (1,0)
(2,0) (3,0

(0, 2) (0, 3)
(1, 2) (1, 3)
(2,0) (2,1)
(3,0) (3,1)

(0, 3) (1, 3)
(2, 3) (3,0
3.1 @3, 2)

O8g

(0, 3)

(0,3) (1, 3)

n/a

0O9¢g

(0, 2) (0,3)

(1,2) (1, 3)
(2,3) 3, 2)

(0,3) (1,0)
(1,3) (2,0
(2,3) 3,0

(0, 1) (1,0)
(2,0) (2, 1)
(3,0 8. 1)

Olog

(0, 1) (0, 2)
(0, 3) (1, 0)
(1,2) (1, 3)
(2,0) (2, 1)
(2,3) (3,0)
3,1 G, 2)

(0, 1) (0, 2)
(0, 3) (1. 0)
(1,2) (1,3)
(2,0) (2,1)
(2,3) (3,0
3.1 G, 2)

(0, 1) (0, 2)
(0. 3) (1,0)
(1, 2) (1, 3)
(2,0) (2. 1)
(2,3) 3,0
(3, 1) 3,2

Table 6.8: Exhaustive test list for the cycle.
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Fault X1 X~ X3

O11s/011d (1,0) (2,0) | (2,0) (2,1) | (3,0) (3, 1)
(3, 0) (3.0 3, 1) | (3,2)

012s/012d (0, 1) (0, 2) | (0,2) (0, 3) [ (0, 3) (L, 3)
(0, 3) (1.2) (1, 3) | (2,3)

O11g/0O12g (0, 1) (0, 2) | (0,2) (0, 3) | (0,3) (1, 3)

O13g/O1l4g 0,3)(1,0) | (1,2) (1, 3) [ (2, 3) (3, 0)
(2,0)3.0) | (2,0) (2, 1) { (3,1) (3, 2)

(3,0) (3, 1)

013s/013d 0, 1) (0, 2) | (0, 2) (0, 3) | (0, 3) (L, 3)
(0, 3) (1,2) (1,3) ] (2, 3)

O14s/014d (1,0) (2,0) | (2,0) (2, 1) | (3,0) (3, 1
(3, 0) (3,0 (3. 1) | (3.2)

S2gd 0,2,3 0,2,3 0,1,3

S2sd/S5gs/Ségs/ 0 0,1 0,1,2

S7sd/S12sd/S13sd

S3gd 0. 1,3 1,2 0, 1,2 3

S4gs/Ségd/S1i1gd/ | 0,1,2,3 0,1,2,3 0,1,2,3

S13gd

S4gd/S4sd/ST7gs/ 1,2,3 2,3 3

S11sd/S14sd

S5gd 0,3 0, 1 2

S5sd n/a 0 0,1

S6sd 1,2 3 2. 3 n/a

S8gd 1, 2 1,2 2,3

S8sd 2,3 3 n/a

02S/02D 1,23 2, 3 3

03S/03D 2,3 1,3 1,2

05S/05D 0 0, 1 0, 1,2

06S/06D 0 0,1 0,1,2

07S/07D 1,2, 3 2. 3 0, 1,3

08S/08D 1,2 3 2, 3 0, 1,3

09S/09D 1,2,3 0,2,3 0,1

SA3 1,23 0,2, 3 0, 1,3

SAO 0,2 3 0. 1,3 0, 1,2

Table 6.8 Exhaustive test list for the cycle (continued)
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Cycle | Test

x—" sequential: (0, 3), [1(2)(3). 0]
non-sequential: 0, 2

sequential: (1, 3), [(2, 0(1)) (3, 0(1))] or
[2(3), 0], [0(1), 3]

non-sequential: 0, 3, [1(2)]

x sequential: [3, 0(1)], [0(1)(2), 3]
non-sequential: 3, 2, [0(1)]

Table 6.9: Cycle tests.

Cycle | Test sequence
1

(0, 3), (2, 0)
Minimal test sequence: 2 — 0 — 3

(1, 3), (3, 0) or (2, 0), (0, 3)
Minimal test sequence: 1 -3 — 0or2 — 0 — 3

(2, 3), (3, 1) or (2, 3), (3, 0)
Minimal test sequence: 2 - 3 — lor2 — 3 —0

Table 6.10: Minimal test sets/sequences for the cycle.




(Y1,2),(2,Y2) where Y1,Y> € {4,5,6}
The resultant minimal test sequence is:

Y —-1—=Ys0r

i—2-Y1

Fault Tests

Olg (0,1)(0,2)(1,2)(2,1) (3,1) (3, 2)
(4,1) (4,2) (4,3) (3,1) (5,2) (5, 3)
(5, 4) (6, 1) (6, 2) (6, 3) (6, 4)

02g (3,0)(3,1)(3,2)(4,0) (4,1) (4, 2)
(3,0) (5,1) (5,2) (6,0) (6,1) (6, 2)

03g (0,1) (0,2)(1,0) (1,2) (2,0) (2, 1)
(3,0)(3,1)(3,2) (4,0) (4, 1) (4, 2)
(3,0) (5, 1) (5,2)(6,0) (6,1) (6, 2)

Odg (3,2) (4,1) (4,2) (5, 1) (5,2) (6, 1)
(6, 2)

O5g (3,1)(3,2) (4,1) (4,2) (5,1) (3, 2)
(6,1) (6, 2)

OT7g (0, 3) (0, 4) (0, 5) (0, 6) (1, 3) (1, 4)
(1, 3) (1, 6) (2, 3) (2, 4) (2, 3) (2, 6)

0O8g (3,0)(3,1)(3,2) (4,0) (4, 1) (4, 2)
(5, 0) (5, 1) (5, 2) (6,0) (6,1) (6, 2)

O8s/d |(3,0)(3,1)(3,2)(4,0) (4,1) (4, 2)
(5,0) (5,1) (5, 2) (6,0) (6, 1) (6, 2)

O9g (3,0)(3,1)(3,2)(4,0) (4, 1) (4, 2)
(5,0) (3, 1) (5, 2) (6,0) (6,1) (6, 2)

O6g* (0, 3) (0, 4) (0, 3) (0,6) (1,3) (1, 4)
(1,5) (1, 6) (2,3) (2,4) (2,5) (2, 6)

09 s/d* | (0, 3) (0, 4) (0, 3) (0, 6) (1, 3) (1, 4)
(1,5) (1,6) (2, 3) (2, 4) (2,3) (2, 6)

Table 6.11: Exhaustive test list for the sequential faults in the tSum.
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Table 6.12: Exhaustive test list for the functional faults in the tSum.

Fault Test

sequential [(3, 2)(4,1(2))(5,1(2))(6,1(2))],
(0,3(4)(5)(6))(1, 3(4)(5)(6))(2, 3(4)(5)(6))]
non-sequential | [1(2)], [4(5)(6)]

Table 6.13: tSum tests.
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6.5 Testing of the Min

A number of points have to be distinguished before listing the min tests. The
min has two inputs each of which is connected to a different node of the circuit,
Figure 5.20. Some faults may be specific to a certain node of one of the inputs.
This may require that test vectors be specific to that node. For example, the test
vector < z,y >=< 0,1 > indicates that input x = 0 and y = 1. x is connected to

transistor 1 and y to transistor 2 (Figure 5.20).

When the min is used as a block in larger circuits, the physical order of x and
v is irrelevant. The logic operation of the min is symmetric and there should be no
difference between applying < 1,0 > or < 0,1 > . If the test vector < 0,1 > works,
then < 1,0 > should give the same result. However, as will be seen below, some
faults are sensitive to the order in which x and y are applied. To avoid producing
test lists with vectors sensitive to the order of x and y, two ways are used during

the simulations conducted in this work:

1. If it is found that testing for a certain fault imposes a condition on one node,
z or y, the same condition is applied to the other node. This will result in
tests independent of the order of applying x or y. For example, if testing a
fault requires that node z # 0 (z connected to traasistor 1 in Figure 5.20),

the same condition will be applied to y. This forces y # 0 too (y connected
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to transistor 2 in Figure 5.20). This will produce test vectors that are valid

regardless of the order.

2. If applying 1, above, is not possible, then both < z,y > and < y,x > are
included in the test list. This will guarantee that the fault is detected and,
at the same time, the test list is independent of the order of applying z and
y. For example, S4gs can be tested by < 0,1 > in that order (0 is applied to
transistor 1’s drain and 1 to transistor 2’s drain in Figure 5.20). As a result,
both < 0,1 > and < 1,0 > are listed in the test list for Sdgs. This makes the

test list independent of the x, y order.

Another issue is the test generation for sequential faults. Testing such faults
requires initializing the circuit by < z1,yl > input followed by < z2,y2 >. The
number of such possible transitions from < zl,yl > to < z2,y2 > is 16 x 16 =
256 (there are 4 x 4 = 16 variations of < zl,yl > which can be followed by any
of the 16 variations of < z2,y2 >). This is a huge number to apply for each fault
during the simulations. Instead, the circuit is investigated to find which internal
current could actually affect a given transistor. Only transitions of this current are
considered and later translated into input pairs of < z,y > to find valid tests for
faults in that transistor. For a fault in transistor T, for example, only transitions
of the gate current I, which controls the state of the transistor, are considered

(I;=0—1,0—2,0—3,1—-0,1—2,.. 12 different transitions). Then, I; values
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are translated into input pairs of < z,y > to simulate the fault. Accordingly, the

min sequential faults simulations are grouped into three different groups.

1.

Sequential part 1: The gates of transistors 1, 2 and 3 in Figure 5.20 are
connected to input z. This suggests considering z transitions only (0 — 1,
0—2,0—3,1—0, .., 12 different possibilities) when simulating faults in
these transistors. The resultant tests are listed in Table 6.14. The test pairs
represent (x1, x2) values. We will assién y the same value as z, if possible,
to avoid generating order sensitive test vectors. For example, the input test

sequence resulting from the pair (x1, x2) = (0, 1) is: < 0,0>—=<1,1>.

Fault | Tests in terms of (x1, x2)

Olig |(0,1)(0,2) (2,1)(3,1) (3, 2)
O1s/d [ (0, 1) (0,2) (1,0) (1,2) (2,0) (2, 1)
(3,0)(3,1) (3, 2)

O2g (3,1)(3,2)

O3g (0, 1) (0, 2) (0, 3) (1,0) (1, 2) (1, 3)
(2,0) (2,1)(2,3)(3,0) (3,1) (3,2)

Table 6.14: Exhaustive test list for the min, sequential part 1.

Sequential part 2: The gates of transistors 6 and 7 are connected to 14
(Figure 5.20). 14 transitions will be used (I4 = min(x, ¥)). In this case, values
of y can also be the same as = to avoid z,y order dependant tests. Table 6.15

lists the resultant tests in terms of (x1, x2) for this category.

3. Sequential part 3: Faults O3g and O6g depend on I2 = x - y (Figure 5.20).
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Fault | Tests in terms of (x1, x2)

Oég (0,1) (0,2) (1,2) (2,1)(3,1) (3, 2)
O6s/d | (0, 1) (0,2) (1,0) (1, 2) (1, 3) (2,0)
(2,1) (3,0) (3, 1)

O7g |(0,1)(0,2) (0, 3) (1,0) (1, 2) (1, 3)
(2,0)(2,1)(2,3)(3,0)(3,1) (3, 2)

Table 6.15: Exhaustive test list for the min, sequential part 2.

So, I2 transitions were used to find the tests. Table 6.16 lists the resultant
tests in terms of I2 values. It should be noted that the minimum list for this
category is the O4g tests since they are all included in the list of O5g. To
translate 12 values into input sequences of < z1,yl >—< z2,y2 >, Table 6.17
is used. < 0,y >, < z,0 > and < 3,3 > pairs will be excluded to avoid
making the faulty output equal to the correct output in the presence of SAQ
or SA3 faults. In the case of I2 = 3, < 3,0 > was the only choice since no
other value of z and y satisfy 3 = z - y. The resultant tests in terms of z and
y for each I2 pair are listed in Table 6.18. It should be noted that these tests
(in Table 6.18) are sensitive to the order in which = and y are applied and it
is not possible to assign = and y the same values. So, to avoid order sensitive
test lists, as described earlier, both of < z,y > and < y,z > should be added
to the test list. So, each {< z1,yl >, < 22,y2 >} in Table 6.18 have to be
applied as follows:

1. <zl,yl >—>< z2,y2 > and

2. <yl,zl >—=< y2,22 >
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This will resolve the dependency on x, v order. For example, if the pairs
{<1,3>,<2,1>} are added to the test set, the pairs {< 3,1 >, < 1,2 >}
have to be added too. The resultant test sequences from these two pairs are

<l,3>=<2,1>and <3,1>—><1,2>

Fault | Tests in terms of ([2;,125)

O4g |(0,1)(0,2)(1,2)(2,1)(3,1)(3,2)
O5g | (0,1)(0,2)(0,3)(1,0)(1,2)(1,3)
(2,0)(2,1)(2,3)(3,0)(3,1) (3, 2)

Table 6.16: Exhaustive test list (in terms of I2) for the min, sequential part 3.

I2 | Corresponding < z,y > input
(order is significant)

0 | <0,0>,(0,1><0,2>,<0,3>
<1,1><1,2>,<1,3>
<2,2><2,3>,<3,3>

1 1<1,0>,<2,1>,<3,2>
2 <2,0>,<3,1>
3 < 3,0 >

Table 6.17: I2 values and the corresponding < z,y > input values.

For the functional faults (SAO and SA3 are included), two categories are found:
faults that can be tested by vectors independent of the order in which = and y are
applied and faults sensitive to the order of z and y. Table 6.19 lists the simplified
test list for faults independent of the z, y order. Any < z,y > test input in this
table can be applied as either < z,y > or < y,z >. Table 6.20 lists the tests for

the z, y order sensitive faults. To make the list independent of the z, y order, both



I2 pair | Tests in terms of {< x1,yl >,< x2,y2 >}
(x, y order is significant)

(0, 1) {<1,1>,<2,1>} {<1,1>,<3,2>},{<1,2>,<2,1>},
{<1,2>,<3,2>} {<1,3>,<2,1>},{<1,3>,<3,2>},
{<2,2>,<2,1>},{<2,2>,<3,2>},{<2,3>,<2,1>},
{<2,3>,<3,2>}

(0, 2) {<1,1>,<3,1>} {<1,2>,<3,1>}{<1,3>,<3,1>},
{<2,2>,<3,1>},{<2,3>,<3,1>}

(1, 2) {<2,1>,<3,1>},{<3,2>,<3,1>}

(2, 1) {<3,1>,<2,1>},{<3,1><3,2>}

(3, 1) {<3,0>,<2,1>},{<3,0>,<3,2>}

(3, 2) {<3,0>,<3,1>}

Table 6.18: Exhaustive test list for the min, sequential part 3.
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< z,y > and < y,r > tests are required. For example, if < 0,1 > is selected to test

for O2d, < 1,0 > have to be applied too.

Fault | Tests in terms of < z,y >
(order is not important)
S3gd | <0,0><0,1><0,2><0,3>
<L,1><1,2><1,3><2,2>
<2,3>

S2gd | <3,3><3,2><2,1><2,2>
<1l,1>

S5gd | <3,1 ><3,3 >

Table 6.19: Exhaustive test list for the min, functional part 1.

The above procedure reduced the time needed to find valid tests. There may

be other tests that were not investigated by considering only certain node currents

in finding tests for the sequential faults. However, the procedure is supported by

some selective simulations and found to cover all possible tests (further proof or

exhaustive simulation to prove this has not been done). Fortunately, the resultant
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Faults Tests in terms of < z,y >
(order is significant)
S4gs, S4sd, S5gs, [ < 0,1 > & <1,0>

02s and O2d <0,2>&<2,0>
<0,3>&<3,0>
<1,2>&<2,1>
<1,3>&<3,1>
<2,3>&<3,2>

Table 6.20: Exhaustive test list for the min, functional part 2.

tests produced short minimal sequences that test for all faults. The minimal test
sequence is obtained by first combining and simplifying the tests for the sequential
parts 1/2 (Tables 6.14 and 6.15). The result will also test for the functional part 1
(Table 6.19). The minimal test sequence for the min is then found by combining with
the tests for the sequential part 3 (Table 6.18) and functional part 2 (Table 6.20).
The detailed steps and the minimal test sequences for the min are listed in Table 6.21.
The table also lists longer test sequences to avoid the transition < 3,3 >—< 1,1 >

which requires both inputs to jump from 3 to 1 at the same time.

It should be noted that the issue of test invalidation is not considered in this
work. For example, when the sequence < 3,3 >—< 2,2 > is applied it could pass
through intermediate stages like < 3,3 >—< 3,2 >—< 2,2 > which may, or may

not, invalidate the test.
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Step | Test sequence

1 from sequential parts 1 and 2:
minimal (x1, x2) set is {(3, 1)}
the corresponding test sequence is:
<3,3>—<1,1>

2 1 (above) will test for the functional part 1

3 combining with sequential part 3 and functional part 2,
the minimal test sequences for the min:
<3,3>-<1,1>><2,1>=<1,1>=<1,2>o0r
<3,3>—-<1,1>=<3,2>=<1,l1 >><2,3>o0r
<3,3>-<1,1>=<3,1>5<1,1>-<1,3>

4 to avoid the transition < 3,3 >—< 1,1 >,
longer test sequences are used:
<3,3>—-<2,2>-<2,1>-<2,2>2<],2>-<2,2>=<1,1>o0r
<3,3>—<2,2>—-<2,1>-<2,2>-<1,2>>< 1,1 >=<2,2>o0r
<3,3>-<2,2>59<3,2>-5<2,2>5<2,3>5<2,2>-<1,1>

Table 6.21: Minimal test sets/sequences for the min
6.6 Peculiar Faults Testing and Fault Coverage

Some faults result in unusual or unstable faulty behavior. One fault in three circuits

(literal, complement of literal and tSum) results in oscillations at the output. One

fault in the tSum circuit reduces the logic 3 current (normally 60 uA) to 50 uA. The

3* fault, defined earlier, results in current levels higher than 60 uA (the fault free

maximum value). Description of these faults along with a testing procedure for 3*

faults are presented below.
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6.6.1 Oscillations Fault

Under this fault, the circuit’s output is not stable. It oscillates over the whole range
from 0 to 60uA with high frequency. This fault is not covered by the test sequences
derived earlier. However, only one short produced this type of fault (S6gd in the
literal and complement of literal, and S3gd in the tSum) which is a low percentage

(1.3% for the literals and 1.9% for the tSum).

In the literal and complement of literal circuits, this fault is caused by the con-
tinuous charging / discharging paths affecting the gate voltage (N,s) of transistors
4, 5 and 6 in Figures 5.2 and 5.9. The charging path sources from the output current
(when the switch transistor 7 is open) through the short to the gate of transistor
6 (which is connected to the gates of 4 and 3). The discharging path (when tran-
sistor 7 is closed) passes through the short to the grounded source of transistor 6.

Figure 6.1 illustrates the charging and discharging paths in the literal circuit.

In the tSum circuit, this fault is caused by the continuous charging / discharging
paths affecting the gate voltage of transistors 1, 2 and 3 in Figure 5.17. The charging
path sources from vy through transistor 3 (when conducting) to its gate through
the short. This will charge the gate and will close transistors 1, 2 and 3. As a
result, no current will flow through transistor 2 and node A voltage will be binary 0

making node b voltage binary 1. This in turn will open transistor 5 which activates
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Figure 6.1: Fault S6gd charging and discharging paths (the literal circuit).

the discharging path and transistors 1, 2 and 3 will conduct again. Now node A
will be binary 1 and node B will be binary 0 which cleses transistor 5 allowing the
charging path to be activated again and the cycle will repeat continuously. Figure 6.2

illustrates the charging and discharging paths in the ¢Sum circuit.
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tsumpe e Xa, ... X,
%2 2

Figure 6.2: Fault S3gd charging and discharging paths (the tSum circuit).
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This can be solved (verified by experiment) for the literal and complement of
literal if the positions of transistors 6 and 7 (see Figures 5.2 and 5.9) are swapped
(a Design for Testability (DFT) issue). In this case, the fault will be converted to
a normal fault that can be detected by the test sequences. No similar solution was

found for the tSum.

6.6.2 A Soft Error

This soft fault slightly changes the output into values which may, or may not, be
different from the fault free output. One short, S6gd in the tSum, resulted in a
slightly different output from the fault free circuit. It only changes the current
value of logic 3 (normally 60uA) into an intermediate level (50uA) between 2 and
3. This current level can be read as 3, and passes undetected, or as 2 which can be

detected. This fault is considered uncovered by the test sequences produced.

6.6.3 3* Faults

As mentioned earlier, the normal currents of the logical levels in the circuits studied
are: 0 for logic 0, 20uA for logic 1, 40uA for logic 2 and 60uA for logic 3. 3* faults
refer to any fault that results in current levels higher than 60uA. Typical values

found in the simulations range from 80uA to 300uA.
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If a 3* value is produced at the output of a faulty circuit, it may act as an input
to another circuit. If the fault free value for a 3* fault is 0, 1 or 2, then the fault
will be detected. However, when the fault free value is 3, then the behavior of each
circuit needs to be studied to find out whether this fault will produce an observable

effect on the output or not. The results of this study are summarized below.

1. Literal, complement of literal and tSum gates will read the 3* value as 3 and
their outputs will not be affected. This is due to the current threshold elements

at the inputs of these circuits which read any value > 60uA as 3.

2. The cycle will always produce different outputs for 3 and 3* inputs. Therefore,
the fault can be detected. The cycle output is determined by two main cur-
rents: the input current, z, (mirrored through transistor 3 in Figure 5.13) and
a constant added (transistor 5 in Figure 5.13) to z or subtracted (transistor 8
in Figure 5.13) from z. So, the actual input current value will always partici-
pate in generating the output and will produce a distinguishable difference if

it is higher than 60 uA.

3. The min will respond to a 3* fault in two different ways. First, if one input
is 3* and the other input # 0, it will read 3* as if it was normal 3. On
the other hand, if the input was < 3*,0 > (or < 0,3 >) the output will be
a recognized logic level higher than 1 and the fault will be detected. This

can be explained by the min implementation which relies on accumulative
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subtraction and addition operations performed on the input currents. The
accumulative error will be higher if one of the inputs is 0. This was also

verified by simulation.

In the previously generated test sequences, the following should be noted:

1. The 3* fault can be detected if there is a fault free output different from 3.
For example, SA3* fault in the cycle can be detected by tests that produce an
output that is different than 3. For the cycle X! the fault free output is 0
when the input 1 is applied. This fault free output is distinguishable from the
3* faulty output and the fault is detected. If a 3* fault is detectable, the test

sequence will generate a test for it.

2. The 3* fault can not be detected directly by a test input if the fault free output
is 3. In this case, the faulty output is 3* and the fault free output is 3. For
example, the literal 3'[z]? fault free output is 3 when the input 1 is applied.
In the presence of a 3* fault, the faulty output will be 3*. In this case, the
input value of 1 is not a test for the fault but it excites the 3* behavior and
further steps (3* testing procedure below) need to be applied. If the 3* fault

can not be detected, the test sequence is designed to excite the fault.

The circuits that produce un-detectable 3* faults are: literal, complement of
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literal, and tSum. For the literals, if the kis 1 or 2 and a 3* output is produced, it
will be detected since it will produce different logic level, 3. For literals when k is
set to 3 and the tSum, special propagation procedure needs to be taken when the
correct output is 3 and the faulty output is 3* (this happens when x in [a, b] for the
literal, x outside [a, b] for the complement of literal, and z; 4+ z9 > 3 for the tSum).

The recommended procedure is shown below.

1. If the subsequent circuit, whose input is connected to the 3%*, is literal, comple-
ment of literal or tSum, it will not be affected and will produce correct values.

In this case, the error will be redundant.

N

If the subsequent circuit is a cycle, it will always produce faulty output which

can then be propagated to an observable output.

3. If the subsequent circuit is a min, then the test algorithm should propagate
the expected 3* twice. Once with the other min’s input set to 0 and once when

it is set to 3. The 0 will detect a 3* fault and the 3 will detect other faults.

3* Effect on the Fault Coverage

The fault coverage figures for the generated test sequences in this work are tabulated

in Table 6.22. Two figures are given, one if the 3* procedure is applied and the other
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if the procedure is not applied. The first assumes that the above procedure of 3*

testing is applicable. The second is when the 3* procedure is not applied.

Circuit Un-covered | Coverage, 3* # of un-detectable | Coverage, 3*
faults test applicable | 3* faults test not applicable
Literal S6gd (Osc.) | 98.7% 2 98.7 - (2.6 x @)
(S6sd, O6g) 98.7% if =0
96.1% if =1
Comp. of | S6gd (Osc.) | 98.7% 2 98.7 - (2.6 x @)
literal (S6sd, O6g) 98.7% if =0
96.1% if =1
Cycle 0 100% 0 100%
tSum S6gd (Osc.) | 96.2% 11 75.4%
S3gd (Para.) (sum* + sequential®)
Min 0 100% 0 100%

Table 6.22: Fault coverage figures and 3* testing.

@, in Table 6.22 is the ratio of the number of literal / complement of literal gates

that are designed with k¥ = 3 compared tc the number of literal / complement of

literal gates in the whole network. It appears from the above that the 3* fault is

more serious in the tSum gate. For this, a number of recommendations for testability

will be introduced and discussed in the following chapter.




Chapter 7

Design for Testability

Based on the results obtained in this work, the following general recommendations

for Design for Testability (DFT) can be made for the set of MVL circuits considered:

1. Literals and tSum should not be used as output stages. This is to avoid 3*
values at the output where its effect can propagate to another circuit. In a
typical MVL circuit, literals appear at the input stages and do not appear

afterwards.

2. If a tSum has to be used at the output, it should be followed by 2 consecutive
cycle gates. This will guarantee the detection of the 3* faults if they appear

at the tSum output.
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3. Apply 3* test procedure for every min preceded by literals or tSum. This is
done in order to properly propagate possible 3* values generated by the literals

or the tSum.

4. For the Literal and Complement of Literal gates, swap the positions of tran-
sistors 6 and 7. This will eliminate the oscillation fault caused by the S6gd

short and will convert it to a testable fault.

From the above, the following general statement can be made:
MVL sets that include tSum gates should be avoided. This is because the tSum
requires to be followed by 2 Cycle gates, to avoid passing 3* faults. However, to
validate this statement, two costs have to be compared. First, using MVL sets
that do not include the #Sum may increase the number of operators (and hence the
number of circuits) required to implement a given function. This cost needs to be

checked against the cost of having tSums followed by Cycles.

7.1 An Application

After using the testability recommendations in this work, the given test sequences
can be used in testing larger circuits. There are already some approaches which use

hierarchical testing with pre-computed test sets for the basic blocks in the network.
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The work of Sarfert et. al. [33], and Calhoun and Breglez [3] are typical examples. In
this method, pre-computed test sets for the basic blocks of larger networks, are used
during testing. Faults on the other lines in the network are propagated normally.
When a block is to be tested, its pre-computed test set inputs are propagated to the
block inputs through the network. Then, its output is propagated to final network

outputs.

For example, this concept can be applied to an MVL full adder. The truth table
of the adder is given in Table 7.1. The inputs are a;, b; and the previous stage
cartryv C;_;. The output sum is S; with the carry C;. The corresponding circuit
shown in Figure 7.1. Two tSum operators are found in the circuit. As recommended
above, each tSum circuit has to be followed by two cycle circuits. Another solution
is to design the full adder using sets that do not contain the tSum operator. The
full adder circuit is modified by adding cycles after each t{Sum and presented in

Figure 7.2. The inserted cycle circuits are numbered as DFT1 to DFT4.

The following sequence of a; b; will test for all faults in gates 1 to 7:
a; =1,0,1,2,1,2,3,2,0,2,1,1,1,2,2,2,3,3,3,0,1,2,3

b; =2,3,2,1,2,1,0,1,3,1,2,3,1,1,3,0,2,0,3,0,3,2, 1.

Similarly, the sequences can be extended to test the rest of the circuit. It should

be noted that it may not be possible to propagate the minimal test sequence for
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a given gate inside the circuit. In this case, other longer test sequences should be
used (all test are pre-computed earlier) and if still not possible to propagate, then

the gate will be un-testable for some faults.

ajb; | Ci—1|S; | G
00 |0/I |0/L]0/0
01 |0/1 |1/2[0/0
02 [0/1 |2/3]0/0
03 |0/1 |3/0[0/1
10 |0/1 |1/2|0/0
11 [0/T |2/3]0/0
12 |0/1 [3/0]0/1
13 [0/T |0/1|1/1
50 |0/1 |2/3|0/0
21 |0/ |3/0|0/1
52 |0/T |0/I|1/1
53 [0/1 [1/2|1/1
30 [0/1 |3/0|0/1
31 |0/1 |0/1|1/1
32 [0/1 |1/2|1/1
33 |0/1 |2/3|1/1

Table 7.1;: Truth table for an M VL full adder.
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Chapter 8

Discussion and Conclusions

In this work, fault characterization and testability considerations in a set of MVL
basic gates were considered. To achieve this, faults (shorts and opens) were inserted
one at a time and each circuit was simulated for all possible input transitions to
determine which inputs are valid to test for the fault inserted. The process was
repeated for each circuit for all its faults and the resultant test vectors for all faults
were tabulated. These tables were then used to generate minimal test sequences for
each circuit. These sequences are derived by using the fault coverage table method.
They form along with the whole tests lists an essential input for any test procedure

for MVL networks built using the considered primitives primitives.
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8.1 Summary of the Main Results of the Thesis

The fault characterization conducted on the MVL set in this work resulted in 4 main

fault categories:

1. Sequential faults: which have sequential behavior.

2. SAO0: the output is stuck-at zero level.

3. SA3: the output is stuck-at level 3. In the case of literals, this appeared as

stuck at the literal value (the value of k).

4. Functional faults: which change the circuit function into a different one

from what it was designed for.

In addition, some other peculiar faults were found with low percentages. The per-

centages of each category against the circuits studied are summarized in Table 8.1.

Fault category | Literal | Comp. of Literal | Cycle | tSum { Min
Sequential 33.8% 33.8% 31.7% | 24.6% | 28.2%
Functional 20.8% 20.8% 53.7% | 37.7% | 30.8%
SA0 40.3% 6.5% 6.1% | 7.5% | 33.3%
SA3 1.3% 35.1% 8.5% | 264% | 7.7%
Others 3.9% 3.9% 3.8%

Table 8.1: Summery of the characterized fault categories.

The main conclusions that can be derived from this work are:
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1. The stuck-at fault model is inadequate for representing faults in the MVL

circuits. Actually, it represents less than 40% of the total faults.

2. High percentage of faults appeared as functional faults, which change the
circuit output into different function. They ranged from 20% in the literals

53.7% in the cycle.

3. Only SAQ or SA3 faults appeared. There are no stuck-at faults at the other
logic levels 1 or 2 (stuck-at the literal value, in the literals, is a special case of

SA3).

8.2 Future Work

The use of the fault categories and pre-computed tests, found in this work, is a
subject for future work. Fault categories found can be used to define realistic fault
models to be used by ATPGs. The pre-computed test sets can be used in hierarchical
testing where small blocks in larger networks are tested using their pre-computed
tests. Also, as a result of the low testability of the tSum circuit, cost comparison
studies need to be conducted. The cost of using MVL sets that do not contain the
tSum operator needs to be compared against those sets that use tSums where each
tSum is followed by two extra cycle circuits to improve testability. Other similar

fault characterization studies on other MVL implementations are needed since this
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area of research has remained un-attended. The fault models, being used in MVL
testing, are heavily based on the stuck-at and skew fault models. Other fault models

should be subject to future work.
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