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Chapter 1

INTRODUCTION

Design of digital circuits can be stated as a process of assembling a collection of logic

components to perform a specified function optimized for a number of design objec-

tives and subject to some design constraints, with respect to a specific target tech-

nology. Unfortunately, current design systems tend to depend on domain-specific

knowledge, which is somewhat limited both by the training and experience of the

designer. On the other hand, iterative and evolutionary heuristics, with little do-

main knowledge, may allow us to search in a design space, apply some assumptions

and use domain-independent operators to generate candidate solutions. Therefore,

heuristics have a tendency to search for solutions in a much larger, and often richer

design space beyond the realms of the conventional design techniques.

Ant Colony Optimization (ACO) algorithm [14] is a new meta-heuristic that

combines distributed computation, auto-catalysis (positive feedback) and construc-

1
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tive greediness in finding optimal solutions to combinatorial optimization problems.

Unlike Genetic Algorithms (GAs) [15], ACO involves cooperating agents. In ACO,

interaction between components of the designed system can be easily analyzed.

Some daemon actions or other heuristics can also be incorporated to further im-

prove the quality of solutions. In this context, the central claim of this thesis is:

ACO algorithm can provide a computational tool for the circuit design problem.

1.1 Conventional Logic Design

There are four stages in the production of integrated circuits. These are design,

fabrication, testing and packaging [8]. The design stage itself is divided into three

major tasks: modeling, synthesis and optimization, and validation. The modeling

task consists of casting an idea into a model, that specifies the functionality of the

circuit. Synthesis deals with refining an abstract model into a detailed one that has

all the specifications required. Optimization is performed to maximize some figures

of merits of the circuit that relate to its quality. Some of the important merits for

optimization are: area, delay, power, testability, and fault tolerance.

Circuit models can be classified in terms of levels of abstraction: architectural,

logical, and geometrical. Logic level model deals with all facets of combinational and

sequential circuits. Logic synthesis can be defined as the manipulation of functional

specifications to a model as an interconnection of primitives components. In other
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words, logic synthesis determines the gate-level structure of circuits. The classical

logic synthesis algorithms include the optimization of two quality measures, namely:

area and performance [16, 17, 18, 19, 20, 21, 22]. The design objective can be either

minimizing the area or maximizing the performance. Optimization can be subject to

constraints, such as upper bound on area, as well as upper bounds on performance

and lower bound on delay.

The possible configurations of a circuit are many. These different feasible struc-

tural implementations of a circuit define its design space. Figure 1.1 shows an

example design space of a 64-bit adder circuit, considering delay and area of the

circuit [8].
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Figure 1.1: Design space: area/delay trade-off for 64-bit adder [8].

The design space consists of a finite set of design points. A point in the design

space is called a Pareto point if there is no other point with at least an inferior objec-

tive, all others being inferior or equal [15]. This Pareto point can be easily observed

in a small design space, i.e., small circuit with few design objectives. However, if the
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size of the circuit as well as the design objectives and/or constraints are increased,

the number of design points could be huge. Thus, it is more difficult to find the

most optimal structure for the given circuit. Hence, current available techniques

divide the circuit design problem into some sub-problems with lower dimensionality.

However, this approach is somehow constrained both by the training and experience

of the designer and by the amount of domain specific knowledge available. Thus,

the most optimal representation is unlikely to be obtained from this approach.

1.2 Evolutionary Logic Design

In conventional logic design, circuit designers begin with a precise specification in

the form of truth tables or Boolean expressions. These expressions are manipulated

by applying logic synthesis algorithms, such as factorization and kernel extraction

to minimize circuit representations. Therefore, the outcome of logic synthesis algo-

rithms will be either in two-level, multi-level, or Reed Muller representations.

Iterative heuristic is a non-deterministic algorithm that has a hill climbing prop-

erties. It has a mechanism to bias the search so as to improve the quality of solution.

Iterative heuristics work on a larger space that may not represent the desired func-

tion. Through the process of assemble and test, candidate solutions are built and

evaluated. At the end, an optimal solution could evolve from this process. Fig-

ure 1.2 shows evolutionary algorithms work on space that may not represent the
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desired function, but gradually pulls the specification of the circuit towards the

target truth table.
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Figure 1.2: Evolutionary design process [1].

Furthermore, iterative heuristics may allow designers to define the search space of

circuit design in a way that is natural to both the problem and the implementation.

It may therefore be possible to use iterative heuristics to obtain novel designs that

are difficult to obtain using conventional techniques. Figure 1.3 shows the difference

between the conventional and the evolutionary methods for circuit design.

The first work in evolutionary design of digital circuits, Designer Genetic Algo-

rithms (DGA), was proposed by Louis [10]. This work has led to the establishment

of a new field of research called Evolvable Hardware (EHW) that was suggested by

Hugo de Garris [23]. Later, Zebullum et al. [24, 25], used Evolutionary Electronics

as the name for this field.
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(a) Conventional techniques

 
 
 
 

 
 
 

(b) Evolutionary techniques

Figure 1.3: Circuit design methodologies.

Motivated by de Garris’s idea, Higuchi et al. [26] obtained an evolved circuit to

solve the 6-multiplexer problem [27]. Later in 1995, Thompson managed to evolve

a tone discriminator circuit in XC6200 FPGA [28]. He showed that Evolutionary

Algorithms were able to produce a tone discriminator circuit without input clock,

which is difficult to obtain by any conventional techniques. This work has hinted to

the possibility of a new method of designing circuits.

Koza et al. employed Genetic Programming (GP) [29] and pioneered the evo-

lution of analog circuits using a SPICE simulator. They were able to automati-

cally generate circuits which are competitive with those obtained using conventional

methods. They have shown further that it is possible to produce designs for quite

complex analog circuits, namely: low-distortion op-amps, low-pass filters, and band-

pass filters using GP [30].A functional level evolution was proposed by Higuchi [31].

A complete review and taxonomy of the field is described in [32, 24, 33].
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In a recent development [11, 34], much attention has been given to the evolu-

tionary design of arithmetic circuits as they provide the essential building blocks

needed for larger DSP applications. Such effort has resulted in the development of

arithmetic circuits that range from a simple sequential adder to the more complex

3-bit multiplier. The work of Fogarty [35] and Miller [1] built some arithmetic cir-

cuits that cannot be produced by human designer’s conventional methods. Coello et

al. [11, 36] proposed a similar approach to evolve a circuit, which they showed was

better than that of Miller’s. Several other algorithms such as Ant Colony Optimiza-

tion, Cartesian Genetic Programming and Particle Swarm Optimization have also

been used for evolutionary logic design [6, 34, 37]. A complete review and taxonomy

of the field could be found in [24, 25, 33].

1.3 Motivation

The advent of evolutionary computation has created a new paradigm shift in logic

design and synthesis. It has radically changed the design procedure, and provided

the potential for discovering novel designs and/or more efficient circuits that are

beyond the scope of conventional methods.

Several approaches using evolutionary design of digital circuits were found in

literature. The results shown in the literature were promising. However, the exces-

sive runtimes and scalability characterize the use of iterative heuristics for any hard
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combinatorial optimization problems. This provides incentive for investigating the

effectiveness of using iterative heuristics in logic design. In addition to that, there

are some other aspects that motivated this work. These aspects are listed below.

1. Multiobjective Optimization

Most of the existing techniques used the gate count as their optimization

objective. With the increasing need for circuits that have better performance

and lower power consumption, the objective of only minimizing the gate count

is not anymore acceptable. In addition, the term ‘gate’ or basic module for the

evolutionary logic design depends on the definition of the gate library that is

used. Therefore, optimizing the circuits in terms of area (delay and/or power)

is more appropriate compared to optimizing it in terms of gate count.

2. Heuristics Used

Most of the existing techniques in evolutionary logic design used Genetic Al-

gorithms (GAs) or Genetic Programming (GP) [30]. However, there exists

some other heuristics that are proved to be more efficient than GAs in solving

combinatorial optimization problems. These heuristics include the Ant Colony

Optimization (ACO) algorithm [14].
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1.4 Structure of the Thesis

The rest of this thesis is organized as follows. Chapter 2 provides some background

material. Some definitions in logic synthesis and a brief overview of conventional

logic design are provided. The Ant Colony Optimization (ACO) algorithm is also

described in this chapter.

Chapter 3 presents a literature survey on existing techniques in evolutionary

design of combinational circuits. Observations, drawbacks, and possibility of im-

provements over the existing techniques are detailed in this chapter.

In Chapter 4, the multi-objective evolutionary logic design problem is formulated.

The calculation of area, delay and power consumption and their contribution to the

fitness function are designed.

The proposed algorithm for multi-objective evolutionary logic design problem

is described in Chapter 5. Chapter 6 provides the experiments and results of the

proposed techniques. Comparison with existing techniques is provided in Chapter

7. Finally, Chapter 8 provides some conclusions and possible future directions of

this work.



Chapter 2

BACKGROUND MATERIAL

The dramatic increase in designer productivity over the past decade in the area

of VLSI (Very Large Scale Integration) circuits can be attributed to the develop-

ment of sophisticated Computer Aided Design (CAD) tools. The improvement in

CAD tools has been made possible by the advances in the field of logic synthesis.

Logic synthesis techniques speed up the design cycle and reduce the human effort.

Logic Synthesis algorithms work on circuit model. Circuit representation is there-

fore important to understand [8]. In this chapter, we introduce some definitions and

terminology.

• Definition 2.1. A Boolean network is a directed acyclic graph that represents

a Boolean function f .

• Definition 2.2. A cube is a product of literals (ab, be, acd, ....).

10
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• Definition 2.3. An algebraic expression is a non-redundant set of cubes.

Non-redundant means that no cube contains another; e.g. ab+ c is a non-redundant

expression while ab + b is a redundant expression because {b} ⊆ {a, b}.

• Definition 2.4. A Boolean function can be represented in the sum-of-product

(SOP) form or disjunctive normal form.

• Definition 2.5. A SOP expression is called cube-free if there exists no literal

that appears in all cubes in the expression.

For example, ab + ac is a cube-free SOP expression while ab + bc is not.

• Definition 2.6. Algebraic division is an operation used to compute a quotient

expression Q and a remainder expression R resulting from a given expression

F and divisor expression D such that F = Q ·D + R.

• Definition 2.7. Boolean division is an operation used to compute Q, D and R

of F (similar to algebraic division), using Boolean algebra rules.

• Definition 2.8. The Primary divisors of an expression F , denoted as D(F ),

are the set of quotients that are derived by dividing F by all possible cubes.

• Definition 2.9. The kernels of an expression F , denoted as K(F ), is the set of

cube-free primary divisors of F .



12

• Definition 2.10. The co-kernel is a cube that is used to derive a kernel.

Consider, for example, the function F = ae+ af + bce+ bcf + bde+ bdf . F/bc =

(e + f) is a kernel, and F/b = ce + cf + de is not. The co-kernel bc is used to obtain

kernel e + f .

Each kernel has its own level. The level of a kernel is defined according to the

following rules:

1. If a kernel does not contain any other kernel, the level of the kernel is 0.

2. If a kernel contains kernel of level n − 1 but does not contain kernels whose

level is more than n− 1, its level is n.

Consider the function F = ae + af + bce + bcf + bde + bdf . Function F can

be factorized to obtain F = (a + b(c + d))(e + f). K0 = c + d is a kernel of level

0, since it does not contain any other kernel. (e + f) is also a kernel of level 0.

K1 = (a + b(c + d)), while the function F itself is a level 2 kernel.

2.1 Logic Synthesis Algorithms

Early effort on logic synthesis and optimization algorithms are dated back to the

1950’s [16, 17] and 1960’s [38]. Although these efforts have much historical impor-

tance, their applicability was limited. However, as soon as Large Scale Integration
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technology became available, the importance of logic synthesis was emphasized.

Many algorithms, such as MINI [39] and LSS [40] were proposed.

The advent of PLA (Programmable Logic Array) technology boosted the two-

level logic optimization techniques. ESPRESSO [18] is a well-known two-level logic

minimization tool.

The need for area minimization forces logic synthesis to consider the multi-level

logic representation. The introduction of kernel and kernel extraction techniques

in [19, 20] enhances the quality of multi-level logic optimization techniques. The

MIS [19] and BOLD [22] are examples of such techniques.

At the beginning of 1990s the area of logic synthesis matured. The most well

known logic synthesis tool, SIS, was proposed by Brayton et al. [21]. However, there

are some other recently introduced techniques that produce better quality results as

compared to SIS. The Perturb and Simplify [41] and Redundancy Addition and Re-

moval [42] are two such techniques. These techniques are based on the transduction

(transformation and reduction) method proposed by Muroga et. al. [43].

In addition to the common two-level and multi-level logic representations, there

exist some other techniques to represent Boolean functions. These include the

Binary Decision Diagrams (BDD) [38, 44, 45] and multiplexer based representa-

tions [46]. BDD is a directed acyclic graph (DAG) representation of logic functions.

Multi-level logic provides the optimal representation of Boolean functions in

terms of area. However, there are some Boolean functions that are more efficient
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to implement using XOR-based representation as compared to the multi-level logic.

The n-bit parity checker is one such functions. The most well-known XOR-based

representation is the Reed-Muller (or AND-XOR) form [47]. There are fixed (positive

or negative) and mixed polarity RM forms. Unfortunately, decomposing Boolean

functions using XOR gates is difficult, let alone finding the perfect polarity for

it [48].

Recently, with several new power-constrained applications ranging from mobile

phones to laptop computers, power dissipation has emerged as another important

objective of VLSI circuit design [49, 50, 51]. The optimization of power consumption

can be performed at various levels of circuit design, including the logic level. Thus,

minimization of power consumption has to be reflected in the logic optimization

process. The POSE (Power Optimized Synthesis Environment) [52] is an example

of one technique that considers power consumption of the synthesized circuits.

With the increasing demand for high quality, more efficient and less area circuits,

circuit design has become a multiobjective optimization problem. Therefore, there

should evolve new methodologies for designing logic circuits. These should include

all types of representations, such as multi-level, Reed-Muller and multiplexer-based

representations. It should also consider all design objectives and/or constraints, such

as delay, area and power consumption. Therefore, logic synthesis can be modelled

as a search task in the design space. Deterministic algorithms are not favored due

to the huge size of the design space. The type of algorithms that could be used to
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explore such huge search space size is non-deterministic algorithm. In this context,

the Ant Colony Optimization is a recent heuristic that deserves consideration.

2.2 Ant Colony Optimization Algorithm

The Ant Colony Optimization (ACO) algorithm is a new meta-heuristic that

has a combination of distributed computation, autocatalysis (positive feedback) and

constructive greediness to find an optimal solution for combinatorial optimization

problems. This algorithm tries to mimic the ants behavior in the real world. Since

its introduction, the ACO algorithm has received much attention and has been

incorporated in many optimization problems, namely the network routing, traveling

salesman, quadratic assignment, and resource allocation problems [14].

The ACO algorithm has been inspired by the experiments run by Goss et al. [53]

using a colony of real ants. They observed that real ants were able to select the

shortest path between their nest and food resource, in the existence of alternate

paths between the two. The search is made possible by an indirect communication

known as stigmergy amongst the ants. While traveling their way, ants deposit a

chemical substance, called pheromone, on the ground. When they arrive at a deci-

sion point, they make a probabilistic choice, biased by the intensity of pheromone

they smell. This behavior has an autocatalytic effect because of the very fact that

choosing a path will increase the probability that the corresponding path will be
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Figure 2.1: Double bridge experiment. (a) Ants start exploring the double bridge.
(b) Eventually most of the ants choose the shortest path [9].

chosen again by future ants. When they return back, the probability of choosing

the same path is higher (due to the increase of pheromone). New pheromone will be

released on the chosen path, which makes it more attractive for future ants. Shortly,

all ants will select the shortest path.

Figure 2.1 shows the behavior of ants in a double bridge experiment [9]. In

this case, because of the same pheromone laying mechanism, the shortest branch

is most often selected. The first ants to arrive at the food source are those that

took the two shortest branches. When these ants start their return trip, more

pheromone is present on the short branch than the one on the long branch. This

will stimulate successive ants to choose the short branch. Although a single ant is
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in principle capable of building a solution (i.e., of finding a path between nest and

food resource), it is only the colony of ants that presents the “shortest path finding”

behavior. In a sense, this behavior is an emergent property of the ant colony.

This behavior was formulated as Ant System (AS) by Dorigo et al. [14]. Based on

the AS algorithm, the Ant Colony Optimization (ACO) algorithm was proposed [54].

In ACO algorithm, the optimization problem is formulated as a graph G = (C, L),

where C is the set of components of the problem, and L is the set of possible con-

nections or transitions among the elements of C. The solution is expressed in terms

of feasible paths on the graph G, with respect to a set of given constraints. The

population of agents (ants) collectively solve the problem under consideration us-

ing the graph representation. Though each ant is capable of finding a (probably

poor) solution, good quality solutions can emerge as a result of collective interac-

tion amongst ants. Pheromone trails encode a long-term memory about the whole

ant search process. Its value depends on the problem representation and the opti-

mization objective.

A general outline of the ACO algorithm is presented in Figure 2.2 [54]. Infor-

mally, the behavior of ants in ACO algorithm can be summarized as follows. A

colony of ants concurrently and asynchronously move through adjacent states of

the problem by moving through neighbor nodes of G. They move by applying a

stochastic local decision policy which makes use of the information contained in the

local node and ant’s routing table. By moving, ants incrementally build solutions



18

to the optimization problem. When the solution is being built, every ant evaluates

the solution and puts the information about its goodness on the pheromone trails

of the connection used. This pheromone information will direct the search of future

ants, until a feasible solution is found.

Algorithm ACO meta heuristic();
while (termination criterion not satisfied)

ant generation and activity();
pheromone evaporation();
daemon actions(); {optional}

end while
end Algorithm

Figure 2.2: Ant Colony Algorithm.

The ants in ACO algorithm have the following properties [14]:

1. Each ant searches for a minimum cost feasible partial solution.

2. An ant k has a memory Mk that it can use to store information on the path it

followed so far. The stored information can be used to build feasible solutions,

evaluate solutions and retrace the path backward.

3. An ant k can be assigned a start state sk
s and more than one termination

conditions ek.

4. Ants start from a start state and move to feasible neighbor states, building

the solution in an incremental way. The procedure stops when at least one

termination condition ek for ant k is satisfied.
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5. An ant k located in node i can move to node j chosen in a feasible neighborhood

Nk
i through probabilistic decision rules. This can be formulated as follows:

an ant k in state sr =< sr−1, i > can move to any node j in its feasible

neighborhood Nk
i , defined as Nk

i = {j | (j ∈ Ni) ∧ (< sr, j >∈ S)} sr ∈ S,

with S is a set of all states.

6. A probabilistic rule is a function of the following.

(a) the values stored in a node local data structure Ai = [aij] called ant-

routing table obtained from pheromone trails and heuristic values,

(b) the ant’s own memory from previous iteration, and

(c) the problem constraints.

7. When moving from node i to neighbor node j, the ant can update the pheromone

trails τij on the edge (i, j).

8. Once it has built a solution, an ant can retrace the same path backward,

update the pheromone trails and die.

In order to get more insight about the algorithm, an example of using ACO

algorithm for Traveling Salesman Problem (TSP) is given in the following.

Consider, for example, a 5-city TSP problem shown in Figure 2.3. The objective

is to find the minimal tour required to visit all the 5 cities. The connectivity matrix

of the graph is given in Table 2.1. The values given in the table denotes the distance
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(d) between each city. Assume that it is a symmetric TSP problem, in which dij is

equal to dji.
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Figure 2.3: Example of a TSP problem.

Table 2.1: Connectivity matrix of TSP example shown in Figure 2.3.
A B C D E

A 0 100 125 100 75
B 100 0 50 75 125
C 125 50 0 100 125
D 100 75 100 0 50
E 75 125 125 50 0

Each edge in the graph is given an initial pheromone value (τ) equal to 1. Let

heuristic value (η) is equal to the reciprocal of the distance. The probability of

selecting an edge is then equal to [54]:

pk
ij(t) =

[τij(t)]
α · [ηij]

β

∑
l∈N [τil(t)]α · [ηil]β

(2.1)

where N is the set of neighboring cities, and α and β are two parameters that control
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the relative weight of pheromone trail and heuristic value. In this example, for the

sake of simplicity, the value of α and β are set equal to 1.

Table 2.2 shows the heuristic value (η) for each edge.

Table 2.2: Heuristic value for each edge in Figure 2.3.
A B C D E

A 0.000 0.010 0.008 0.010 0.013
B 0.010 0.000 0.020 0.013 0.008
C 0.008 0.020 0.000 0.010 0.008
D 0.010 0.013 0.010 0.000 0.020
E 0.013 0.008 0.008 0.020 0.000

Since there are 5 cities, assume that the size of the colony of ant is 5. Each ant

will start their tour from different city. For example, the first ant starts from city A,

the second ant starts from city B, and so on. The following explains how the ants

construct the solution.

Iteration 1

The first ant starts the tour from city A. There are four neighboring cities to be

considered by the ant. The probability of choosing any edge leading to a certain

city is calculated using Equation 2.1 and is given in the following table.

B C D E
0.24 0.19 0.24 0.32

Using a stochastic process, i.e., Roulette Wheel, the ant choose the next city. Assume
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that the ant takes city B as the next city to visit. The ant will update its memory

and put city B in its Tabu List

When the ant arrives at city B, there are 3 cities left to visit. The probability of

choosing these cities is given in the following table.

C D E
0.48 0.32 0.19

Assume that city D is taken. The ant will then update its Tabu List by adding city

D.

There are two neighbors of city D: C and E. The following table shows the prob-

ability of choosing each of these cities.

C E
0.33 0.66

Assume that the ant selects city E. The content of its Tabu List is then : A,B,D,E.

Since there is one remaining city to visit, the next process will certainly take C. The

path that was built by the ant is then: A → B → D → E → C. The length of this

path is L = AB + BD + DE + EC = 100 + 75 + 50 + 125 = 350.

The remaining ants will proceed according to the same procedure. The following

table summarize the solutions built by all ants.

The last column in Table 2.3 is the gain obtained by each ant. Since the longest
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Table 2.3: Solutions built by the ant in the first iteration.
Ant Path Length of the path (L) 4τ = 500/L
ant1 A → B → D → E → C 350 1.43
ant2 B → C → D → E → A 275 1.82
ant3 C → B → D → E → A 250 2.00
ant4 D → E → A → B → C 275 1.82
ant5 E → A → B → C → D 325 1.54

distance between cities is 125. The solution built by the ant must not exceed 4 *

125 = 500. Thus, the gain of each ant can be formulated as 500/L, with L is the

length of the path of the solution.

When all ants finish their tour. They will track back and update the pheromone

along their path by putting additional pheromone (4τ). Note that, the amount of

4τ is proportional to the gain obtained by the ant. The new pheromone value is

given by the following.

τ = τ +4τ

Consider, for example, edge AB was used by ant1, ant4 and ant5. The new

pheromone value for edge AB is therefore equal to 1 + 1.43 + 1.82 + 1.54 = 5.79.

Then, pheromone will evaporate according to the following formula:

τ = (1− ρ) ∗ τ

Assume that ρ is equal to 0.2. Then the pheromone value on edge AB is equal to

0.8 * 5.79 = 4.63. The calculation of pheromone value is performed for all edges.
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Table 2.4 shows the new pheromone values on each edge at the end of iteration 1.

Table 2.4: Pheromone values for each edge after iteration 1.
initial pheromone value new pheromone value

A B C D E A B C D E
A 0.00 1.00 1.00 1.00 1.00 0.00 4.63 0.80 0.80 6.54
B 1.00 0.00 1.00 1.00 1.00 4.63 0.00 6.54 3.54 0.80
C 1.00 1.00 0.00 1.00 1.00 0.80 6.54 0.00 0.80 0.80
D 1.00 1.00 1.00 0.00 1.00 0.80 3.54 0.80 0.00 6.45
E 1.00 1.00 0.80 1.00 0.00 6.54 0.80 0.80 6.45 0.00
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(a) (b)

Figure 2.4: (a) Visualization of pheromone values and (b) Best solution built in the
first iteration.

Figure 2.4 (a) shows the visualization of pheromone values on the edges. In this

figure, the darker the edge, the higher the pheromone. The best solution found by

the heuristic in the first iteration is shown in Figure 2.4 (b).

Iteration 2

The same process that were performed in the first iteration is repeated in the second
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iteration. However, the initial pheromone values on all edges has changed. Thus, the

probability of selecting a certain edge will also change. The higher the pheromone

on the edge, the more attractive the edge for an ant to choose.

Assume that all ants have finished their tour construction. The following table

summarize the solutions built by all ants.

Table 2.5: Solutions built by the ant in the second iteration.
Ant Path Length of the path (L) 4τ = 500/L
ant1 A → E → D → B → C 250 2.00
ant2 B → C → D → E → A 275 1.82
ant3 C → B → D → E → A 250 2.00
ant4 D → E → A → B → C 275 1.82
ant5 E → A → D → B → C 300 1.67

The pheromone update and pheromone evaporation procedures are then per-

formed. This will change the value of pheromone on each edges. Table 2.6 shows

these values.

Table 2.6: Pheromone values for each edge after iteration 2.
initial pheromone value new pheromone value

A B C D E A B C D E
A 0.00 4.63 0.80 0.80 6.54 0.00 6.45 0.80 2.47 15.84
B 4.63 0.00 6.54 3.54 0.80 6.45 0.00 15.84 9.21 0.80
C 0.80 6.54 0.00 0.80 0.80 0.80 15.84 0.00 2.62 0.80
D 0.80 3.54 0.80 0.00 6.45 2.47 9.21 2.62 0.00 14.09
E 6.54 0.80 0.80 6.45 0.00 15.84 0.80 0.80 14.09 0.00

Figure 2.5 (a) shows the visualization of pheromone values on the edges. As we

can see, the lines representing edge AE, ED and BC are very thick. These lines

are thicker than the corresponding ones in the previous iteration (see Figure 2.4).



26

A

B

CD

E

 

A

B

CD

E

 

(a) (b)

Figure 2.5: (a) Visualization of pheromone values and (b) Best solution built in the
second iteration.

The thickness of these lines correspond to their high pheromone values. This is

because more ants are using these edges (see Table 2.6). On the other hand, the

lines representing edge AC, BE and CE are very thin. Since no ant is using these

edges, there is no additional pheromone given. In addition, pheromone evaporation

reduces the intensity of pheromone values on these edges. This will make these edges

less attractive for future ants.

The algorithm will proceed until a criteria is met. From Figure 2.5(a), it can be

seen that the best solution for the given TSP problem will likely be equal to the one

illustrated in Figure 2.5(b).

It has been shown that ACO algorithm produced better quality results compared

to those obtained by other heuristics when it is applied to combinatorial optimization

problems such as TSP and QAP [55]. Unfortunately, only few published works found
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in literature that uses ACO algorithm for evolutionary logic design (Coello et al.

[6]). Therefore, there is a need for investigating further the use ACO for evolutionary

design of digital circuits.

2.3 The Multiobjective Optimization Problem

Constraint satisfaction and multiobjective optimization are two aspects of the same

problem. Both involve the simultaneous optimization of a number of functions.

Based on the approach used in handling the constraint, there exists constrained

optimization and multiobjective optimization.

Constraints can be expressed in terms of inequalities of the type

f(x) ≤ g (2.2)

where f is a non-linear, real-valued function of the decision variable vector x, while

g is a constant value.

Without loss of generality, the constrained optimization problem is that of mini-

mizing a scalar function f1 of some decision variable vector x in a universe u, subject

to a number n−1 of conditions involving x, and eventually expressed as a functional

vector inequality of the type

(f2(x), ..., fn(x)) ≤ (g2, ..., gn) (2.3)



28

where the inequalities are applied component by component. It is assumed that

there is at least one point u which satisfies all constraints [56].

A general multiobjective optimization problem (MOP) includes a set of n parame-

ters (decision variables), a set of k objectives, and a set of m constraints. Objectives

and constraints are functions of the decision variables. The optimization goal is

defined in Equations 2.4, and 2.5.

maximize y = f(x) = (f1(x), f2(x), ..., fk(x)) (2.4)

subject to e(x) = (e1(x), e2(x), ..., em(x)) ≤ 0 (2.5)

Where,

x = (x1, x2, ..., xn) ∈ X (2.6)

y = (y1, y2, ..., yk) ∈ Y (2.7)

In this abstract model, x is called the decision vector, y is called the objective vector,

X is called the decision space, and Y is called the objective space. The constraints

e(x) ≤ 0 determine the set of feasible solutions. The feasible set Xf is defined as

the set of decision vectors x that satisfy the constraints e(x).

In order to select a suitable compromise solution from all alternatives, a decision

process is necessary in multiobjective optimization problems (MOP). The decision
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process is performed based on the preference articulation. The preference articula-

tion implicitly defines the utility function to differentiate any candidate solutions.

Three approaches have been used, namely priorities, weighting coefficients and goal

values.

Priorities are real values, which determine the order in which objectives are to be

optimized according to their importance. In this technique, all objectives need to be

assigned different priorities. However, assigning priorities itself is another difficult

problem, mostly for conflicting objectives. Thus, the quality of results obtained

from this technique is rather limited.

In the weighting coefficient scheme, all objectives are aggregated into a single

function. An example of this approach is the weighted sum scheme given by:

min (
k∑

i=1

wifi(x))

where wi ≥ 0 are the weighting coefficients representing the relative importance of

the ith objective function of the problem. It is usually assumed that:

k∑

i=1

wi = 1

This technique is known for its simplicity. However, since the result of solving

optimization model using weighted sum can vary significantly as the weighting co-
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efficient change, the perfect tuning of weight values for each objectives become very

important. In addition, the different scale and behavior of each objective makes it

difficult to determine the perfect weights for each objective and aggregate them into

a single function.

The goal values can accommodate a whole variety of constrained and/or mul-

tiobjective problem formulations. The goal information is often naturally available

from the problem formulation, although not necessarily in an explicit way. The

interpretation of such information should be used to differentiate any alternate so-

lutions. The goal values can be easily incorporated with fuzzy logic [15] for solving

MOP problem. This will be explained in the following section.

2.4 Fuzzy Logic

Fuzzy Logic was introduced by Lofti A. Zadeh in [57, 58]. During the past decades,

fuzzy logic has found numerous applications in the field of engineering and control

[59]. In the field of VLSI design, several techniques based on fuzzy logic are reported

in the literature [60, 61, 62].

The expressive power of fuzzy logic derives from the fact that it contains not only

the classical two-valued and multi-valued logical systems but also probability theory

and probabilistic logic. Fuzzy logic deals with approximate rather than precise

modes of reasoning. This makes fuzzy logic capable of handling the uncertainty of
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data. In addition to that, natural language, which is the basis of fuzzy logic, is more

convenient for expressing engineering problems.

In general, fuzzy logic can be viewed as a nonlinear mapping of an input data

vector into a scalar output. However, the flexibility of fuzzy logic may create lots of

different mapping for a single problem instance. Therefore, a good understanding

of the fuzzy set theory, fuzzy reasoning and fuzzy rules is needed.

2.4.1 Fuzzy Set Theory

Unlike in classical (crisp) theory where each element can either belong to the set

or not, an element in fuzzy logic may partially belong to a fuzzy set by a certain

degree.

A fuzzy set A of universe of discourse X is defined as A = {(x, µA(x)) | all x ∈

X}, where X is a space point and µA(x) is a membership function of x being an

element of A. A membership function µA(x) is a mapping of x in A that maps X

to the membership space M . The range of the membership function is a subset of

the non-negative real numbers whose boundaries are finite [63]. Elements with zero

degree of membership are normally not listed.

Fuzzy Reasoning

Unlike classical reasoning in which propositions are whether true of false, fuzzy logic

establishes approximate truth value of propositions based on linguistic variables and
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inference rules [58]. A linguistic variable is a variable whose values are words or

sentences in natural or artificial language. It is concerned with the use of fuzzy

values that captures the meaning of words, human reasoning and decision-making.

An example of linguistic variable is circuit’s area. This variable can be expressed by

linguistic values like very small, small, average, large and very large circuit, rather

than 20 µm2, 30 µm2, 50 µm2, 75 µm2, and 100 µm2.

A linguistic variable carries the concept of fuzzy set qualifiers, called hedges.

Hedges are terms that modify the shape of fuzzy sets. They include adverbs such as

very, somewhat, quite, more or less, and slightly. They are used as modifiers, truth-

values, probabilities, quantifiers and/or possibilities of a certain linguistic variable.

Formally, a linguistic variable comprises of five elements [64]:

1. The variable name

2. The primary term set

3. The universe of discourse U

4. A set of syntactical rules that allows composition of the primary terms and

hedges to generate the term set

5. A set of semantic rules that assigns each element in the set a linguistic meaning.
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Fuzzy Operators

There are two basic types of fuzzy operators. The operators for the intersection,

interpreted as the logical “and”, and the operators for the union, interpreted as the

logical “or” of fuzzy sets. The intersection operators are known as triangular norms

(t-norms), and union operator as triangular co-norms (t-co-norms or s-norms) [63].

Some examples of s-norm operators are given below, (were A and B are the fuzzy

sets of universe of discourse X).

1. Maximum. [µA
⋃

B(x) = max{µA(x), µB(x)}].

2. Algebric sum. [µA
⋃

B(x) = µA(x) + µB(x)− µA(x)µB(x)].

3. Bounded sum. [µA
⋃

B(x) = min(1, µA(x) + µB(x))].

4. Drastic sum. [µA
⋃

B(x) = µA(x) if µB(x) = 0, µB(x) if µA(x) = 0, 1 if

µA(x), µB(x) > 0].

An s-norm operator satisfies commutativity, monotonicity, associativity and µA
⋃

0(x) =

µA(x) properties.

Following are some examples of t-norm operators.

1. Minimum. [µA
⋂

B(x) = min{µA(x), µB(x)}].

2. Algebraic product. [µA
⋂

B(x) = µA(x)µB(x)].

3. Bounded product. [µA
⋂

B(x) = max(0, µA(x) + µB(x)− 1)].
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4. Drastic product. [µA
⋂

B(x) = µA(x) if µB(x) = 1, µB(x) if µA(x) = 1, 0 if

µA(x), µB(x) < 1].

Like s-norm, t-norms also satisfy commutativity, monotonicity, associativity and

µA
⋂

1(x) = µA(x). Also, the fuzzy complementation operator is defined as follows.

µ̄B(x) = 1− µB(x) (2.8)

2.4.2 Multi-objective Optimization Using Fuzzy Logic

Approximate reasoning can be made based on linguistic variables and their values.

Rules can be generated based on previous experience. The rules are expressed as

If ... Then statements. Connectives such as AND and OR can be used in approx-

imate reasoning to join two or more linguistic values. The If part (antecedent) is a

fuzzy predicate defined in terms of linguistic values and fuzzy operators (AND and

OR). The Then part is called the consequent.

In optimization problems, the linguistic value used in the consequent part iden-

tifies the fuzzy subset of good solutions. Therefore, the result of evaluation of the

antecedent part identifies the degree of membership in the fuzzy subset of good solu-

tions according to the fuzzy rule in question. If more than one rule is used to perform

decision-making, each rule can be evaluated to generate a numerical value. Then,

these numerical values from various evaluations of different rules can be combined
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to generate a crisp value on a higher level of hierarchy.

Consider the circuit design problem with minimization of area, delay, and power

consumption. Three linguistic variables area, delay and power introduced. Then

good solutions can be characterized by the following fuzzy rule.

If the circuit has (small area) and (less delay) and (less power consump-

tion) then it is a good solution.

In the traditional fuzzy logic, the minmax operators are used to build the above

fuzzy rule. However, it was shown in [65] that these operators can lead to undesirable

behavior. This behavior has led to the development of other fuzzy operators such

as the Ordered Weighted Averaging (OWA) operator explained below.

Ordered Weighted Averaging (OWA) Operator

Generally, the formulation of multi criterion decision functions neither desires the

pure “AND-ing” of t-norm nor the pure “OR-ing” of s-norm. The reason for this is

the complete lack of compensation of t-norm for any partial fulfillment and complete

submission of s-norm to fulfillment of any criteria. Also the indifference to the

individual criterion of each of these two forms of operators led to the development

of Ordered Weighted Averaging (OWA) operators [66, 67]. This operator allows easy

adjustment of the degree of “AND-ing” and “OR-ing” embedded in the aggregation.

According to [66, 67], “OR-like” and “AND-like” OWA for two fuzzy sets A and B
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are implemented as given in Equations 2.9 and 2.10 respectively.

µA∪B(x) = β ×max(µA, µB) + (1− β)× 1

2
(µA + µB) (2.9)

µA∩B(x) = β ×min(µA, µB) + (1− β)× 1

2
(µA + µB) (2.10)

where β is a constant parameter in the range [0,1]. It represents the degree to which

OWA operator resembles a pure “OR” or pure “AND” respectively.

2.5 Concluding Remarks

Some background material, definitions and concepts that should helpful in under-

standing this thesis work were provided in this chapter. Basic knowledge about

logic synthesis algorithm, Ant Colony Optimization (ACO) algorithm, MultiOb-

jective Optimization Problem (MOP) and Fuzzy Logic were also presented. Next,

literature review on existing techniques in ELD is given in Chapter 3.



Chapter 3

LITERATURE REVIEW

In this chapter, literature review of evolutionary logic design is presented. Discussion

and observations are also provided.

3.1 Introduction

In recent years, engineers have shown growing interest in Nature wishing to imitate

the observed processes. The reason for this lies in the fact that living beings exhibit

very desirable qualities, such as adaptation and fault tolerance which engineers have

been largely struggling to reproduce. This has led to the birth of such field as

evolutionary computation.

Recently, a new field of research in which hardware design is pursued as biological

organisms has begun to evolve. The new paradigm may radically change the design

37
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procedure and new possibilities for discovering novel designs and/or more efficient

circuits may emerge. The new methodology considers a concept for automatic design

of electronic systems. Instead of using human made models and techniques, it

employs search heuristics to develop efficient designs.

Evolutionary design of digital circuits is a very challenging field. This is due

to two reasons: (a) the complexity of the search space and (b) the existence of

efficient CAD tools for digital design. Thus, it is difficult to develop new iterative

heuristics’-based CAD tools that provide competitive performance when compared

to the already existing ones. Nonetheless, the possibility to find new circuit designs

and the capacity to contemplate a larger set of specifications are some of the reasons

that complement its difficulty [25].

3.2 Classification of Evolutionary Logic Design

Evolvable Hardware (EHW) or Evolutionary Electronics is a field of research that

focuses on using Evolutionary Algorithms (EAs) in the hardware domain. The scope

of this field is vast, ranging from hardware design, fault tolerance, image processing

and pattern recognition to robot control [25, 33]. Nevertheless, EHW can be roughly

classified into two fields, namely design EHW and adaptive EHW. Based on the

application point of view, EHW is further divided into design of analog and digital

circuits. EHW for design of digital circuits is also called Evolutionary Logic Design
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(ELD).

There are three possible representations of digital circuits in ELD, namely func-

tional, gate, and transistor level. These representations differ in the degree of com-

plexity of the basic building blocks used. On the functional level, a circuit is repre-

sented in terms of high level mapping of digital circuits. The basic building blocks

for this representation can be the minterms of a Boolean function or some RTL

blocks such as multiplexers. Gate level representation deals with basic logic gates,

while transistor level uses CMOS transistors and TTL as their building blocks.

Gate level representation is the most widely used representation in the literature.

This is due to the fact that the behavior of the basic building blocks, i.e., logic gates

is not as complicated as transistor level representation, as well as providing a simple

mapping between the circuit’s structure and the representation.

3.3 Existing ELD Techniques

Most of the techniques presented in the following section use Genetic Algorithms

(GAs) as the search engine for the ELD. Some adequate background on GAs can be

found in any book on iterative heuristic such as [15].
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3.3.1 EAs Based ELD

Louis [10] introduced the idea of using Evolutionary Algorithms as tools to perform

structure design, in which digital circuits are viewed as structure of interconnected

logic gates. They modelled a given circuit as a matrix. Each cell represents a

primitive gate, such as AND, OR, NOT, and XOR gates with their corresponding

input. Connecting WIRES are simply gates that transfer one of their inputs to their

output. Every cell in a column i + 1 can only gets its input from cells in column i.

This structure is shown in Figure 3.1.

Input Output  

Figure 3.1: A mapping scheme used in [10].

In this figure, gates which are close together in two-dimensional (phenotype)

space may be far apart in one-dimensional (genotype) space. This condition creates

problems for classical genetic operators such as single-point crossover. Therefore,

masked crossover is used to preserve highly fit schemas in the chromosome.

The masked crossover makes use of the relative fitness of the children, with

respect to their parents. When a child is produced, the masks used to produce it

may be modified depending on how well the child does relative to the parents. Initial

masks can be generated randomly and will be propagated along with the evolution
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process. Mask propagation is controlled by a set of rules that depends on the relative

fitness of children to its parents. Thus, three types of children can be defined:

1. Good child: has fitness higher than that of both parents

2. Average child: has fitness between that of both parents

3. Bad child: has fitness lower than that of both parents.

A child’s mask is a copy of the dominant parent’s mask except for the changes

the rules allow. The underlying premise guiding the rules is that when a child is less

fit than its dominant parent, the recessive parent contributed bits reduce the fitness

of the child.

Using the above mentioned approaches, the authors managed to design some

digital circuits, ranging from 2-bit adders to 6-bit parity circuits [10].
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Figure 3.2: Chromosome representation used by Miller et. al., [1, 2, 3, 4, 5].

Miller et al. [3] argued that one aspect of evolution in hardware is geometry.

They suggested that the chromosome representation should match the hardware’s
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geometry configuration. In the case of FPGA, a matrix of n×m array of logic cells

is used as the phenotype representation. The genotype representation, the chromo-

some, is defined as a set of interconnections together with gate level functionality

for cells. This genotype-phenotype mapping is shown in Figure 3.2.

Since the authors were targeting FPGAs, the logic function at each gene of the

chromosome can be any of the possible functions realized by a FPGA cell. Table 3.1

lists all possible cell functions.

Table 3.1: Possible cell functions in [1, 2, 3, 4, 5].

Alphabet Function Alphabet Function

0 0 10 a⊕ b

1 1 11 a⊕ b̄

2 a 12 a + b

3 b 13 a + b̄

4 ā 14 ā + b

5 b̄ 15 ā + b̄

6 a · b 16 a · c̄ + b · c
7 a · b̄ 17 a · c̄ + b̄ · c
8 ā · b 18 ā · c̄ + b · c
9 ā · b̄ 19 ā · c̄ + b̄ · c

Each gene is a sequence of integers representing the target interconnection of

gate’s inputs and the gate type. Consider, for example, the case shown in Figure 3.3.

The first quadruplet of the chromosome is 0-1-0-10, indicating that the first input

of the cell is connected to pin number 0, the second input to pin number 1, and

the third input to pin number 0 (the third input is not used) respectively. The gate

type is 10, two-input XOR. The interconnection between cells is restricted by the
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levels-back parameter, which denotes the number of previous column(s) in the array

that a cell can be connected to. If the levels-back parameter is one, then each cell

must be connected to its immediate neighbor in the previous column. Cells within

any particular column cannot be connected together, and feedback connections are

not allowed.

 
Figure 3.3: Example of genotype-phenotype mapping used in [1, 2, 3, 4, 5].

The authors used Genetic Algorithm in [4] and Evolutionary Strategies in [1] to

produce some evolved circuits including those of a full adder and a 3-bit multiplier.

They have shown that the obtained circuits require fewer number of gates compared

to the ones produced using conventional methods.

Coello [6, 7, 11] used the same chromosome representation of circuits as

those used by Louis [10]. Each cell is a gate of the type AND, NOT, OR, XOR or

WIRE. Each cell is encoded in a triplet of inputs and gate type, as illustrated in

Figure 3.4.

A gate at position (i, j) of the matrix can only be connected to the one at
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Input 1 Input 2 Gate type 

 
Figure 3.4: Encoding of a cell used in [6, 7, 11].

(i, j − 1). This restriction reduces the cardinality of alphabet needed to represent

the chromosome, since the integer number to represent each cell is increasing in a

column wise only.

The evolution runs in two phases, the first phase is to find a fully functional

circuit, and the second one is to find an optimum circuit. The goal of the optimiza-

tion is to maximize the number of WIRES in the chromosome representation. This

translates into less number of gates required to implement a given circuit.

Coello proposed three different implementations of GAs, namely binary GA (BGA),

n-cardinality GA (NGA) and multiobjective GA (MGA). In MGA, multiobjective

optimization is not applied for optimizing different objectives such as delay, area

and power. It is used only to divide the search for correct truth table into several

objectives. Each optimization objective concentrates on a single bit in the truth

table. In addition, one optimization objective is added to unite all the former ones.

Thus, if the length of the truth table is n, then n + 1 objectives have to be found

by the MGA [36].

Hounsel et al. used a fixed length chromosome for circuit representation [12,

13]. Specific sections of the chromosome are reserved for describing the inputs

and outputs of the circuit. Circuit’s inputs are encoded in the first section of the
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chromosome, while the outputs are defined at the end of the chromosome. Logic

elements are referenced by position within chromosome. Figure 3.5 displays the

relative location of each encoded section.

.... Positional
element ....

Main circuit description Output sectionInput section

Input 1 Input n Output 1 Output k

 

Figure 3.5: Chromosome representation [12, 13].

Each logic element in a circuit is allocated at a specific position within the chro-

mosome. Each position can be a primitive gate or macro block such as multiplexer,

adder, etc. Each of these is represented by an ID from a circuit library. Intercon-

nectivity between cells is not restricted to its nearest positional neighbor. Rather,

cells are free to connect to other cells at higher positions within the chromosome.

Feedback connections are not permitted. Figure 3.6 demonstrates the encoding of a

macro block (full-adder) with its connectivity within the chromosome.

FULL
ADDER

In1

In 0Out 1

Out 0

In1

In 0
Full Adder
Macro ID

Position
of adder

Out 0
Position
of NAND

In 0 In 1
Position
of NOR

In 0

Position within
Chromosome

Position of cell to which
first I/O pin is connected

ID from library
of components

First I/O pin
of full adder

I/P pin of
connected cell  

Figure 3.6: Macro blocks and its genotype representation in [12, 13].

Single point crossover is used to generate offsprings. Chromosome repair is used
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to reconnect any broken interconnection during the operation. This guarantees

that an offspring chromosome represents a valid circuit. Mutation is applied to

maintain diversity within the population. There are four types of mutation used in

the evolution process. These are shown in Figure 3.7.

After
mutation

After mutation

FULL
ADDER

FULL
ADDER

Cell Specific pin interchange

Ci

Ci

Si

Si

Connection interchangeCell replacement

new cell

old cell

Inter-chromosome cell mapping

Before
mutation

 

Figure 3.7: Mutation operators proposed in [12, 13].

Evaluation of chromosomes is done by a HDL simulator. The evolved circuit can

then be synthesized to provide a technology specific netlist, ready for transfer onto

the target FPGA. The evolved circuits have been compared with those designed

using conventional techniques. It is shown that some of the evolved circuits have

slightly better performance in terms of delay, compared to the circuits produced by

conventional methods [12, 13].

3.3.2 ACO Based ELD

ACO-based ELD was proposed by Coello et al. [6]. They used a matrix representa-

tion, whereby each cell of the matrix consists of a gate and the gate’s corresponding

input(s). Each column in the matrix is called a state and each cell in a certain
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column is called a sub-state.

All ants have to construct a tour in each iteration. Ants start their movement

from the first column and proceed until they reach the last column. The goal of an

ant in constructing a tour is to fill up the matrix. However, ants can only fill the

first k (k is equal to the number of circuit’s output) number of cells in every column.

The other cells are filled randomly.

The selection of which attribute combination (gate type and its corresponding

input(s)) to be assigned in a newly visited cell is performed by a stochastic process.

For this purpose, all possible combinations of gates and its corresponding inputs are

considered. The probability of choosing a certain combination is determined by the

distance and pheromone value. The distance is the increment (or decrement) in the

number of correct matchings with the target truth table. The probability is then

calculated using the following formula.

pk
i,j(t) = fi,j(t)× hi,j (3.1)

where k refers to the ant that is considered, t refers to the current iteration, fi,j(t)

is the amount of pheromone between state i and state j, and hi,j(t) is the distance

between state i and state j. The selection is then performed by using roulette wheel.

Consider, for example, a two-bit adder circuit. Assume that the size of the matrix

used is 6 × 5. The number of inputs considered is four (without the carry input)
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and the number of outputs is three. First, the ant will select which combination to

be assigned at cell(0,0). The probability of choosing each combination of gate and

its corresponding inputs are calculated. Assume that the result of selection (using

roulette wheel) is WIRE1(3,4). This triplet is then put into cell(0,0). After that,

for the second output of the circuit, again, probability values for each combination

is calculated. Assume that XOR(3,1) is selected. This combination is then assigned

into cell(1,0). Using the same procedure, cell(2,0) is filled. Since there are only three

outputs, the rest of the cells in the first column is filled randomly. Figure 3.8 shows

the matrix’s state for the first column. The shadowed cells are the ones that were

filled randomly.

WIRE1(3,6)     
XOR(3,1)     
XOR(2,4)     
OR(3,4)     
AND(4,2)     
WIRE1(1,1)     
 Figure 3.8: The matrix’s state after the filling of the first column.

By using the same procedure, the ant moves to the second column, the third

column and so on, until it reaches the last column. Assume that the result of its

movement is shown in Figure 3.9

WIRE1(3,4) AND(1,6) OR(1,4) WIRE1(1,1) WIRE1(1,1) 
XOR(3,1) OR(5,2) XOR(4,2) WIRE1(2,2) WIRE1(2,2) 
XOR(2,4) WIRE1(3,3) WIRE1(3,3) WIRE1(3,3) WIRE1(3,3) 
OR(3,4) AND(5,2) OR(6,3) AND(3,4) NOT1(2,5) 
AND(4,2) WIRE1(4,2) XOR(4,4) OR(3,5) OR(5,3) 
WIRE1(1,1) XOR(4,4) OR(3,4) OR(3,5) AND(1,3) 
 Figure 3.9: The matrix’s state after the filling of all cells
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When the ants finish the tour, the solution obtained is evaluated. Note that

not all cells in the matrix are included in the final solution. Figure 3.10 shows an

example of tour built by an ant. In this figure, the shadowed cells are the ones that

are included in the final solution.

WIRE1(3,4) AND(1,6) OR(1,4) WIRE1(1,1) WIRE1(1,1) 
XOR(3,1) OR(5,2) XOR(4,2) WIRE1(2,2) WIRE1(2,2) 
XOR(2,4) WIRE1(3,3) WIRE1(3,3) WIRE1(3,3) WIRE1(3,3) 
OR(3,4) AND(5,2) OR(6,3) AND(3,4) NOT1(2,5) 
AND(4,2) WIRE1(4,2) XOR(4,4) OR(3,5) OR(5,3) 
WIRE1(1,1) XOR(4,4) OR(3,4) OR(3,5) AND(1,3) 
 Figure 3.10: The cells used in the solution by an ant.

All ants will update the pheromone along its track. The pheromone update is

performed using the following formula.

fi,j(t + 1) = (1− α)× fi,j(t) +
m∑

k=1

fk
i,j (3.2)

where 0 ≤ α ≤ 1, k is the index of the ant and fi,j of the solution built. The value

of fi,j is calculated based on the following conditions:

1. If the circuit is not feasible (i.e., not all outputs match their truth table).

fi,j(t) = fi,j(t) + payoff

2. If the circuit is feasible.

fi,j(t) = fi,j(t) + (2 × payoff)

3. If the circuit is the best feasible solution.
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fi,j(t) = fi,j(t) + (3 × payoff)

The value of payoff is given by the number of matches produced between the output

generated by the circuit built by the agent and the target truth table. When all ants

finish their tour, the best solution is saved and the process starts from beginning

again. After the maximum number of iterations is reached, the best global solution

is returned.

3.3.3 Other Related Work

Multiplexer-based Genetic Programming for logic design was proposed by Coello

et al. [68]. A tree structure is used to represent a circuit. An algorithm, the Cartesian

Grid Programming (CGP), was proposed and used for logic design [69, 34]. A

complete automated system for ELD, “The Evolware” was proposed in [70].

Some researchers concentrated on the use of EAs for solving logic synthesis prob-

lems. Their work can be classified into three groups. The first group uses EAs to

optimize the representation of multi-level logic circuits [71, 72]. The second group

works on minimizing the RM representation using EAs [73, 74]. The last group

focuses on the optimization of BDD-based representation of logic circuits using

EAs [74].
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Figure 3.11: Problems that may appear in matrix representation: (a) fitness of F1
< 1 (b) fitness of F2 = 1.

3.4 Discussion

Several techniques in evolutionary logic design are described in the previous section.

Majority of those techniques were able to arrive at solutions that are difficult to

obtain using conventional methods. However, there are still many open problems

that were not addressed. A number of these problems are listed below.

1. Circuit representation

Most of the published work in evolutionary logic design used a two-dimensional

matrix of n × m to represent a circuit. The position of circuit’s outputs will

most likely be placed at cell(0,m− 1). However, it may happen that the best

solution can be found at cell(i, j), 0 < i < n, 0 < j < m. But some redundant

gates existing between this cell and the output cell may degrade the quality of

the solution. The problem becomes complicated even further when the number

of circuit’s output is more than one. Figure 3.11 illustrates the problem arises

from circuit representation.
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Figure 3.12: An evolved two-bit odd parity circuit. (a) Fitness of F1 = 0 (b) Adding
an inverter, fitness of F1 = 1 (c) Toggle the type of gate (XNOR → XOR), fitness
of F1 = 1

2. Functional fitness calculation

The value of functional fitness depends on the number of correct matchings

between the output’s pattern of the obtained solution and the truth table

of the intended circuit. The higher the number of hits achieved, the higher

the value of the functional fitness. This argument is not always true in logic

design. A solution that has low functional fitness can be inverted to have a

high functional fitness (see Figure 3.12).

3. Don’t care values

A key factor in minimization of Boolean functions is the existence of don’t cares

value [20]. However, all techniques presented in ELD have paid no attention to

this factor. Their algorithms can only handle completely specified functions.

It is believed that the inclusion of don’t care values will be indeed beneficial

for the ELD.

4. Inverted inputs

Determining the correct phase (positive or negative) for each primary input
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has been long addressed in conventional logic design techniques. In fact, for

some cases, the use of the complement of some of the primary inputs can lead

to more efficient circuit’s representation.

5. Objectives of the optimization

Most of the existing techniques used the gate count as their optimization

objective. With the increasing need for circuits that have better performance

and lower power consumption, the objective of only minimizing gate count is

not anymore sufficient. In addition, the term ‘gate’ or basic module for the

evolutionary logic design depends on the definition of the gate library that is

used. One may use NAND gates, or a set of AND, OR and XOR gates, or

MUXes, or a combination of them. Each of the aforementioned ‘gates’ has

different characteristics in terms of area, delay and input (output) capacitance

for different target technologies. Therefore, optimizing the circuits in terms of

area (delay and/or power) is more appropriate compared to optimizing it in

terms of gate count.

The ACO-based approach proposed in [6] shows some interesting features. The

problem associated with the circuit representation depicted in Figure 3.12 can be

handled. This is because whenever an ant visits a cell that has truth table equal

to the target truth table, the combination that will be selected for the next state

will most likely be WIREs. In addition, the number of combinations of attributes is
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proportional to the size of the matrix and the number of gate types used. Therefore,

the process of assigning attributes to a new cell is a time consuming task.

In order to tackle the abovementioned problems, there are several possible im-

provements that can be investigated. These are enumerated below.

1. There is no need to fix the position of circuits output in the matrix. The ants

can stop anywhere in the matrix, whenever they found the fully functional

circuit.

2. The ant can have some intelligence to remember or forget some of the paths

that were built. Thus, in agreement with the first assumption, the ant can

return the best possible partial solution (sub-circuit) from the current matrix.

3. In order to support the second assumption, the content of the matrix will be

dynamically filled. At every iteration, the cells that were included in the best

possible partial solution obtained by the ant will be kept, while the other cells

will be removed. These empty cells will be filled again in the next iteration.

3.5 Concluding Remarks

In this chapter, several existing techniques in ELD have been presented. The review

has given insight on what has been done in this area. The discussion section in

this chapter has highlighted the shortcoming of those techniques and provided some
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possible improvements. It has led us to propose a new technique in ELD. This is

the subject of the next chapter.



Chapter 4

PROBLEM AND COST

FUNCTION FORMULATION

In this chapter, the problem and cost function formulation are discussed. Problem

statement, assumptions, inputs and outputs of the designed approach are given.

4.1 Problem Formulation

A Boolean function can be represented in a number of forms. For example, the

following are possible representations of the same function.

1. f = x̄yz + xȳz + xyz̄

2. f = (x̄y + xȳ)z + xyz̄

56
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3. f = (x⊕ y)z + xyz̄

4. f = (x + y)(z ⊕ xy)

The first representation, is a two-level logic representation, where all implicants are

included in the function. If it is assumed that only two input gates are available

(XOR gate is assumed as an atomic gate) and that complemented literals are avail-

able, then the first representation requires nine literals and eight gates (6 AND

gates and 2 OR gates). The second representation, a factored form of function f

(multi-level logic), requires eight literals and seven gates (5 AND gates and 2 OR

gates). The third representation requires six literals and five gates (3 AND gates,

1 OR gate and 1 XOR gate). The last representation requires five literals and four

gates (2 AND gates, 1 OR gate, and 1 XOR gate).

Based on the above analysis, the last representation is considered the best rep-

resentation for function f , in terms of the number of literals. A human designer,

however, cannot easily arrive at this representation. Fortunately, iterative heuris-

tics have shown that they are capable of arriving at such efficient representations.

Another major design objective is the delay of the circuits. Two-level logic rep-

resentation is without doubt the best representation as far as minimum delay is

concerned. Therefore, the first representation has the least delay.

Synthesis and optimization of digital circuits in terms of area and/or delay (per-

formance) have been the focus of most research effort in logic synthesis field in
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the last two decades. Results of several research efforts to optimize area and per-

formance are available in the literature and are summarized in several papers and

books [8, 19, 20, 21, 48]. Nevertheless, with several new power-constrained ap-

plications ranging from mobile phones to laptop computers, power dissipation has

emerged as a major objective of VLSI circuit design [49, 51]. Several published

works on logic synthesis targeting low power are reported in [52, 75, 76, 77, 78].

With the increasing demand of high quality, high performance and less area cir-

cuits, the problem of circuit design requires a multiobjective optimization approach.

However, it should be noted that optimal representation can be obtained by a care-

ful selection of gate types and an innovative ability to combine these in building a

circuit. However, this process is not an easy task. There are 22n
possible n variables

single-output logic functions. This makes the complexity of circuit design problem

NP-hard.

Logic Design: A Search in the Design Space

As has been indicated in the preceding sections, the design space of digital circuits

could be huge. There are 2n (C2n

1 ) possible functions that satisfy 2n − 1 out of

2n correct truth table for an n-input single-output Boolean function. The number

of sub-functions that satisfy half of the truth table is C2n

2n/2. For example, there

are 12,870 possible sub-functions that satisfy half of the truth table of a four-input

Boolean function. The number of intermediate points in the design space that is not
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representing the function is even bigger. In addition to that, there exists a number

of structures representing each of those points. These different structures represent

different design objectives and/or constraints. Exploring the whole search space is

impractical. Therefore, the search space sampled by the algorithm must have its

size limited.

Determining the size of the search space is a subtle issue. It should be large

enough to include a good variety of novel circuit topologies, but also small enough

for an iterative heuristic to be able to find good solution(s). Therefore, as stated in

[25], some procedures must be followed:

1. The search space sampled by the heuristics must have its size limited. Al-

though it is important to sample wide variety of topologies, some criteria

should be chosen to control the number of possible solutions.

2. It is usually necessary to adapt the search techniques to the particularities of

the design problem.

4.2 Problem Statement

Formally, the problem considered in this thesis can be stated as follows.

“Given the truth table of a function f of the required circuit and a

target technology to work within, design a combinational logic circuit
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that performs the function f subject to a set of constraints using Ant

Colony Optimization (ACO) Algorithm”

The most efficient structural representation of a circuit will be chosen based

on the cost function used. It should be added that this work focuses on design of

combinational circuits. There are no memory elements and feedback paths allowed

in the circuit’s representation.

4.2.1 Assumptions

Here are some assumptions made before proceeding to the problem and cost function

formulation.

1. The set of logic gates used is available. Only two-input single-output logic

gates are considered. Wires are gates connecting one of its inputs to the

output.

2. The truth table or functional description of the intended Boolean function is

available.

3. The technology parameters are given.

4. The circuit is modelled as a matrix. Each cell of the matrix includes the

information about the gate type used and the index of cells in the previous

column which are connected to both of the gate’s inputs.
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4.2.2 Input and Output

The proposed methodology in this thesis considers the following information as

inputs:

1. The truth table or functional description of the intended Boolean function

is available. The methodology can accept an input file consisting the truth

table of the circuit and parameters required by the heuristics. The file uses

the format described in Appendix A. The methodology can also accept a PLA

file of the circuit. In the case of random circuit experiments, all parameters

will be generated automatically, except for the number of variables, number

of outputs and number of experiments.

2. The file containing information of gates’ parameters is given. The format for

this file is given in Appendix A.

3. In order to have a comparison with SIS tools, the SIS environment should be

available to the system.

The outputs produced are as follows:

1. Structural representation of the logic gates in the matrix.

2. The quality measures of the final representation in terms of power consump-

tion, delay, number of gates used and area requirements.
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The cost function that is used in this thesis includes area, delay and power

consumption of the circuits. The formulation of these cost function is explained

below.

4.3 Cost Function Modeling

This section discusses the modeling of cost functions in terms of gate count, area,

delay and power consumption.

4.3.1 Gate Count Cost Function

Each type of gate has different size, depending on the number of transistors used

to implement its function. The size of a NOT gate is different than the size of a

NAND gate. Thus, the number of gates cannot be used to estimate the area of a

given circuit. However, the increasing applicability of semi-custom VLSI circuits

complements that argument. In FPGAs, for example, a number of logic functions

can be implemented in one cell, regardless whether it is a NAND gate, an AND gate

or even a multiplexer. Therefore, for some target technology, the number of gates

can be used as one of the objective for optimization.

If G is the set of possible gate types and gi ∈ G, the cost for gate count can be

formalized as follows.

Costgate count =
∑

gti (4.1)
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Where

gti =





1 if gi ∈ G, gi 6= WIRE

0 otherwise

(4.2)

4.3.2 Area Cost Function

The size of a VLSI circuit consists of the area for logic gates (blocks) and the inter-

connection wires. With the advanced technology used for implementing VLSI cir-

cuits, the size of transistors become smaller and smaller. Thus, the area requirement

for interconnection wire becomes significant. However, the length of interconnection

wires in VLSI circuits is determined by routing algorithms. Therefore, in this thesis,

only area from logic gates is used to estimate the overall size of the circuit. The size

of these gates is obtained from a VLSI design library.

Formally, the cost for area of VLSI circuits can be stated as follows.

Costarea =
∑

gi∈G, gi 6=WIRES

A(gi) (4.3)

Where A(gi) is the area of gate gi and gi ∈ G.

4.3.3 Delay Cost Function

The overall performance of a VLSI circuit depends upon how fast it can process

signals, i.e., its clock speed. The propagation delay of signals in VLSI circuits

consists of two elements: switching delay of gates and interconnect delay. Due to
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improved technology, libraries with considerably low switching delay are available.

This fact and the increased gate density on the chip make the interconnect delay a

prominent factor in the overall circuit delay.

If a path π consists of nets {v1, v2, ..., vn}, then, the delay Tπ along π is expressed

by the following Equation.

Tπ =
n−1∑

i=1

(CDi + IDi) (4.4)

Where CDi is the switching delay of the cell driving gate vi and IDi is the inter-

connect delay of net vi.

Using the RC delay model, IDi depends on the load factor, interconnect resis-

tance and load capacitance, as shown in Equation 4.5.

IDi = (LFi + Ri)× Ci (4.5)

Where LFi is the load factor of the driving block (which is independent of the

layout), Ri is the interconnect resistance of net vi, and Ci is the load capacitance of

cell i.

The load capacitance Ci of gate i comprises the interconnect capacitance at the

output node of gate i and the sum of the capacitances of the input nodes of the
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gates driven by gate i.

Ci = Cr
i +

∑

j∈Mi

Cg
j (4.6)

Where Cg
j is the capacitance of the input node of a gate j driven by gate i and Cr

i

represents the interconnect capacitance at the output node of cell i.

The overall circuit delay is determined by the delay along the longest path (the

most critical path) in the layout. If the most critical path is denoted by πc then,

the cost function for the circuit delay can be given as follows.

Costdelay = Tπc = max
j
{Tπj

} ∀j ∈ {1, 2, . . . , K} (4.7)

Where K represents the total number of critical paths determined by a timing

analysis program.

4.3.4 Power Consumption Cost Function

In a standard CMOS circuit, the total power consumption can be given by the

following Equation.

Pt =
∑

i∈M

(
1

2
· Ci · V 2

DD · f · Si · β) +
∑

i∈V

QSCi
· VDD · f · Si + Ileak · VDD (4.8)

In Equation 4.8, Pt is the total power consumption, VDD is the supply voltage,
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Si is the switching probability at the output node of cell i, i.e., the number of

transitions per clock cycle at the output of gate i and f is the clock frequency.

The first term in the above equation gives the dynamic power consumption during

charging or discharging of a node in the circuit. Here, M is the set of all nodes in

the circuit, Ci denotes the total capacitance of node i whereas β is a technology

dependent constant. The second term in Equation 4.8 gives the power consumption

due to the short circuit current. Here, V is the set of all wires connecting VDD

to ground during output transition, QSCi
represents the charge carried by the short

circuit current per transition. The third term represents the static power dissipation

due to leakage current Ileak.

In the VLSI circuits with well designed logic gates, the dynamic power consump-

tion contributes about 90% to the total power consumption [79]. Hence, most of

the reported work is focused on minimizing the dynamic power consumption. Also,

in the case of standard-cell placement, the cells are obtained from the technology

library and nothing can be done to reduce the power consumption due to the second

and the third term in Equation 4.8. Due to this fact, the emphasis in this work is

on optimizing the dynamic power consumption. Since the first term is dominant,

Equation 4.8 can be approximated as follows.

Pt '
∑

i∈M

1

2
· Ci · V 2

DD · f · Si · β (4.9)
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Assuming the clock frequency and input voltage to be fixed, the total power con-

sumption of the circuit becomes a function of the total capacitance and the switching

probabilities as shown below.

Pt '
∑

i∈M

Ci · Si (4.10)

Thus, the estimate of cost of the overall power consumption in VLSI circuits can

be approximated as follows.

Costpower =
∑

i∈M

Si · Ci (4.11)

4.4 Weighted Sum Fitness Function Calculation

The fitness of a solution contains two parts, namely functional fitness and objective

fitness. The functional fitness deals with the functionality of the solution, i.e., how

good the solution is in satisfying the truth table of the intended Boolean function.

The objective fitness determines the quality of solution in terms of delay, area,

and/or power consumption.

4.4.1 Functional Fitness

Several functional fitness formulations are reported in the literature [25]. The com-

monly used one is the ratio of the number of correct hits to the length of the truth
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table. If FF denotes the functional fitness, then the formulation below is applied.

FF =
Number of hits

Length of the truth table
(4.12)

The solution has to be ‘inverted’ if the value of FF is less than 0.5. Therefore, the

formulation of normalized FF (FFn) below is applied.

FFn = Max{FF, 1− FF} (4.13)

4.4.2 Objective Fitness

The objective fitness (OF (i)) is a measure of the quality of solution in terms of

optimization objectives such as area, delay, gate count, and power consumption.

It consider two aspects: constraints satisfaction and multiobjective optimization.

In order to indicate whether a solution is satisfying a certain constraint, objective

fitness is formulated as follow.

OF (i) =
Cost(i)

Cost(i) + Constraint(i)
(4.14)

For example, objective fitness of the solution in terms of area is:

OF (area) =
Cost(area)

Cost(area) + Constraint(area)
(4.15)
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With this formulation, a circuit satisfying the constraint in terms of area will

have OF (area) greater than or equal to 0.5. Any solution that has OF (area) less

than 0.5 will not be considered. The constraint values are given by the user. It

states the upper bound for specific optimization objectives. Since there are four

attributes to optimize, there is objective fitness for each of these attributes. These

are computed using Equation 4.14.

The weights assigned to each attributes, wi, indicates the emphasis of the op-

timization process. For example, for area optimization, warea can be set equal to

three while other weights are set to one, each. It is also possible to have more than

one optimization objectives. For example, if we want to build a circuit with less

area and less delay, warea and wdelay can be set equal to k while wgc and wpower are

set equal to l, k > l, k > 1, l ≥ 0. Note that some other weighting scheme can be

applied.

The weighted sum objective fitness function calculation can be expressed as

follows.

OF =

∑
i∈obj Wi ·OF (i)

∑
i∈obj Wi

(4.16)

Where obj represents the set of optimization objectives.



70

4.5 Fuzzy Fitness Function Calculation

In this section a fuzzy-based fitness function is formulated. Similar to the weighted

sum approach, the overall fitness of a solution consists of two parts: functional

fitness and objective fitness. In this approach membership functions are used and

these membership functions will be aggregated into a single function using a fuzzy

operator.

4.5.1 Functional Fitness

Using Equation 4.13, the value of functional fitness lies in the range [0.5, 1]. Thus the

membership function for functional fitness is trivial. It is shown in Equation 4.17.

µfunc(x) =





x if 0.5 ≤ x ≤ 1

0 otherwise

(4.17)

4.5.2 Objective Fitness

In order to build the membership function for all objectives, estimated value for

lower bound and/or upper bound of the objective is required.

Each characteristic of the circuit (area, delay and power consumption) can be

used either as constraint or objective. The membership function for each case (ob-

jective or constraint) will be different. This will be discussed next.
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Area as Optimization Objective

The lower bound on area can be estimated by referring to the VLSI circuit design

and logic synthesis principles. For any n-input single-output circuit, the minimum

area for the given circuit is equal to the area of n − 1 2-input gates representing

binary tree structure. Since any circuit can be implemented using NAND gates and

NAND gates happen to be the smallest among other gate (except NOT gate), then

the minimum area is:

minarea = (n− 1)× Area(NAND gate)

In order to guide the search intelligently, the maximum value must be carefully

estimated. For this purpose, SIS tools [21] are used to obtain circuits with minimum

area. In this context, rugged.script is used to generate the circuits’ netlist files. These

files are then fed to our own tool to obtain the estimated value for area, delay and

power consumption. The reason behind this is twofold. Firstly because the delay

optimization in SIS does not consider switching delay (see Equation 4.5). Secondly,

SIS does not consider power optimization.

Since we want to obtain circuits better than SIS, these values (area, delay, and

power) are used as the target values. In the case of area as optimization objectives,

the target area is equal to the area of circuits obtained by SIS and denoted as tgarea1

(see Figure 4.1). Thus, the membership function for area as optimization objectives
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is:

µarea obj =





1 0 ≤ area ≤ minarea

1− (area−minarea)
tgarea1−minarea

minarea ≤ area ≤ tgarea1

0 otherwise

(4.18)

The shape of the membership function is depicted as the bold line shown in

Figure 4.1.

µµµµ

 

Figure 4.1: Membership function for area.

Area as Constraint

In this case, the area of circuit obtained from SIS is used as target value. For

this purpose, the maxarea and tgarea2 should be defined. The following settings are

applied, tgarea2 = k1 × tgarea1 and maxarea = k2 × tgarea1, k1, k2 ∈ <, 0 < k1 ≤
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1, k2 ≥ 1. The membership function is then:

µarea con =





1 0 ≤ area ≤ tgarea1

1− area−k1

maxarea−k1
1 ≤ area ≤ maxarea

0 otherwise

(4.19)

The shape of the membership function is depicted as dashed line shown in Fig-

ure 4.1.

Delay as Optimization Objective

The minimum delay (mindelay) is estimated as the delay of two-level logic consisting

of NAND gates without considering the switching delay. The tgdelay1 is estimated

from circuit generated by SIS with delay.script executed. The membership function

for delay as optimization objectives is:

µdelay obj =





1 0 ≤ delay ≤ mindelay

1− delay−mindelay

tgdelay1−mindelay
mindelay ≤ delay ≤ tgdelay1

0 otherwise

(4.20)

The shape of the membership function is depicted as bold line shown in Fig-

ure 4.2.
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Figure 4.2: Membership function for delay.

Delay as Constraint

In this case, the following settings are applied, tgdelay2 = k1 × tgdelay1 and

maxdelay = k2 × tgdelay1, k1, k2 ∈ <, 0 < k1 ≤ 1, k2 ≥ 1. The membership

function is then

µdelay con =





1 0 ≤ delay ≤ tgdelay1

1− delay−k1

maxdelay−k1
1 ≤ delay ≤ maxdelay

0 otherwise

(4.21)

The shape of the membership function is depicted as dashed line shown in Fig-

ure 4.2.
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Power as Optimization Objective

The minimum power (minpower) is estimated as the power consumption of minimum

area circuit in which each gate has the least switching activity (see Equation 4.8).

It is assumed that for a given truth table, the output of each gate will be ‘1’ only

once. Thus the minimum power consumption (switching activity) can be estimated

as follows.

minpower = 2 · length of truth table− 1

(length of truth table)2
· capacitance(NAND)

The tgpower1 is estimated from minimum area circuit generated by SIS. The

membership function for power as optimization objectives is:

µpower obj =





1 0 ≤ power ≤ minpower

1− power−minpower

tgpower1−minpower
minpower ≤ power ≤ tgpower1

0 otherwise

(4.22)

The shape of the membership function is depicted as bold line shown in Fig-

ure 4.3.
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Figure 4.3: Membership function for power.

Power as Constraint

The following settings are applied, tgpower2 = k1 × tgarea1 and maxpower = k2 ×

tgpower1, k1, k2 ∈ <, 0 < k1 ≤ 1, k2 ≥ 1. The membership function is:

µpower con =





1 0 ≤ power ≤ tgpower1

1− power−k1

maxpower−k1
1 ≤ power ≤ maxpower

0 otherwise

(4.23)

The shape of the membership function is depicted as dashed line shown in Fig-

ure 4.3.

OWA operator is used to aggregate the above membership functions to calculate

the objective fitness. The choice of which type of membership function used (either
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objective or constraint) depends on the course of the current action. For example,

for minimization of area with delay and power as constraint, the µarea obj, µdelay con

and µpower con are considered. The objective fitness is then calculated as

µobj(x) = β ×min(µarea obj, µdelay con, µpower con)

+(1− β)× 1
3
(µarea obj + µdelay con + µpower con)

(4.24)

Overall Fitness

The formulation of overall fitness (OvF ) calculation is shown in Equation 4.25.

The Wf is the weight for functional fitness. The value of this weight must be

chosen intelligently. The value of Wf must be large enough in order to have better

functionality of the circuit. However, it should not be too large in order to get better

quality solution in terms of design objectives.

OvF = Wf · FF + (1−Wf ) ·OF (4.25)

We proposed two strategies to choose the value of Wf , namely static and dynamic

approaches. In the static approach, the value Wf will be the same throughout

all iterations. Initial experiments showed that the setting of 0.5 < Wf < 0.9 is

appropriate.

In dynamic approach, the value of Wf will be changed during iteration. It will

start with a defined minimum value MinWf . If there is a stagnation in the search,
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i.e., the value of FF does not change after certain number of iterations, the value

of Wf will be increased. In order to check whether stagnation occurs or not, an FF

counter must be asserted. The pseudocode in Figure 4.4 below shows the procedure

of dynamic approach.

Dynamic WF

MinWf Minimum allowed Wf value
MaxWf Maximum allowed Wf value
MAXITER Maximum iteration
CountMax Maximum counter for FF stagnation

counter = 0
Wf = MinWf

Begin
If (counter > CountMax) and (Wf < MaxWf )

Wf = Wf +
MaxWf−MinWf

MAXITER

.....

.....
curfit = FF of solution
If curfit = oldfit

counter = counter + 1
If curfit > oldfit

oldfit = curfit
End

Figure 4.4: Dynamic Wf calculation.

Based on the calculation of functional fitness, three different OvF calculations

exists. These are:

1. Original: The normal value of FF is used.

2. Normalized: The value of FFn is used instead of FF .
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3. Normalized-Penalized: The value of FFnp is used instead of FF .

With FFnp = FFn − (1− FFn).

Performance evaluation of these three approaches will be carried out in the ex-

periments. Results and discussion will be given in Chapter 6 and 7.

4.6 Concluding Remarks

This chapter and the following chapter are the core of this thesis. In this chapter,

the evolutionary logic design problem has been formulated. The problem statement

and cost function formulation for the proposed algorithm are also detailed. In the

following chapter, the proposed algorithm for ELD based on ACO algorithm will be

discussed.



Chapter 5

ACO ALGORITHM FOR

COMBINATIONAL LOGIC

DESIGN

In Chapter 3, literature review was presented. Problem and cost function formula-

tion have been discussed in Chapter 4. In this chapter, the proposed algorithms for

ACO-based ELD are presented.

5.1 Introduction

A logic circuit can be modelled as a graph of interconnected modules. There exists a

number of possible graphs representing a given circuit. These graphs differ in their

80
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Figure 5.1: Figure Illustrating some of the possible paths in function f .

characteristics, i.e., area, delay, and power. As mentioned in the previous chapter,

the number of these graphs could be huge. In this context, the ACO algorithm can

be used as an engine to search the best solution according to a given cost function.

Consider the Boolean function f = xyz + xyz + xyz. This function can be

represented in a number of forms. These representations can be transformed into a

directed acyclic graph G. Figure 5.1 shows some of the possible paths starting from

literal x and ending with two different representations of f .

Using ACO algorithm, the best solution can be found by traversing graph G.

Assume that the objective of the tour construction is to find the shortest path

representing function f . Each ant starts its tour from node x. At each node, the

ant will select the next node to visit. The probability of selecting an edge leading

to a specific node is determined by a pheromone value (τ) and a heuristic value (η)
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on the edge. The pheromone value implies the preference of search obtained from

knowledge of past generation, while the heuristic value represent the objectives of

optimization process.

When the ant reaches a node with no successor, it will track back and put

additional pheromone on all visited edges. The additional pheromone will in turn

guide the next generation of ants towards preferable solution.

Since the objective is to find the shortest path representing function f , the ant

that finds the path x → (x+y) → (x+y)(xy⊕z) would return the best representation

of function f .

The number of paths shown in Figure 5.1 is more than eleven. The actual

number of paths is large. It is impractical to traverse all those paths. Therefore,

some modifications in ACO algorithm are needed to handle this large search space.

This will be detailed in the next section.

5.2 Modified-ACO (MACO) for Logic Design

In this section, the modified ACO algorithm is presented. It starts with the circuit

encoding, followed by the procedures of the modified ACO algorithms.
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5.2.1 Circuit Encoding

A circuit is modelled as a matrix M of size n×m. Each cell of the matrix contains a

triplet of attributes consisting of the type of gate used and its corresponding inputs,

i.e., the row indices of the preceding column (see Figure 5.2).

Input 1 Input 2 Gate type
 

Figure 5.2: Representation of a cell in the matrix.

The value of input 1 and input 2 indicates the row indices from which the current

cell is getting its input from. The value of the gate type indicates the type of the

gate being assigned to that cells assuming a predetermined set of gate types (see

Table 5.1). The input of a gate at position (i, j) can only be connected to the output

of a cell at (i′, (j − 1)) and i′ can be any row index in column (j − 1).

Table 5.1: Gate ID, gate name and output of the gate, considering input a and b.

Gate ID Gate Output

0 WIRE1 a

1 WIRE2 b

2 NOT1 a

3 NOT2 b

4 AND a · b
5 OR a + b

6 XOR a⊕ b

7 NAND a · b
8 NOR a + b

9 XNOR a⊕ b



84

 
Figure 5.3: Example of a circuit and its encoding.

Consider the example shown in Figure 5.3. Cell(1,2) whose attribute is (0,3,4)

is an AND gate (according to Table 5.1). The first input of the AND gate of this

cell is connected to the output of cell(0,1), which is a WIRE, and the second input

is connected to the output of cell(2,1).

5.2.2 Modifications of the Ant Colony Algorithm

It is assumed that all ants originate from a dummy cell called nest (see Figure 5.4).

Each ant visits a cell in a column and moves to a cell in the next column, until it

reaches the last column or a cell that has no successor. The idea is to find a correct

and optimal path consisting of logic gates to implement the required truth table and

satisfying the cost function.

Nevertheless, it is possible that the current matrix contains no solution, even

if the size of the matrix is large. In fact, enlarging the matrix will be counter

productive because the time for traversing the paths will exponentially increase.

In order to tackle this problem, the size of the matrix can be kept small enough
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nest 

S(0,0) S(0,1) ...... S(0,m-1) 

S(1,0) S(1,1) ...... S(1,m-1) 

..... ...... ...... ....... 

S(n-1,0) S(n-1,1) ...... S(n-1,m-1)

Figure 5.4: Nest cell and matrix M for ant to be traversed.

to reduce the time complexity, but the content of the matrix will be dynamically

changed during the iteration.

At first, the matrix will be randomly filled. After the ants finish their tour, the

solution provided will be evaluated. All cells that are included in the best solution

of the current matrix will be kept. Note that, this solution may not represent the

intended function. All un-needed cells will be removed. These empty cells will be

filled up again in the next iteration. The ants will then traverse the new matrix

and return the best possible solution. If the stopping criteria is not met, the same

procedure will be repeated. Figure 5.5 shows the pseudocode of the approach.

The Filling and Removing cells procedures in MACO algorithm shown in Fig-

ure 5.5 are performed to handle the limitation of ACO algorithm due to the huge

search space of circuit design problem. To further accommodate some improvements

mentioned in Section 3.4, the following modifications are suggested:

1. The Intelligent Ant

2. The Veteran Ant
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Algorithm Modified ACO (MACO)

Begin
For 0 < i < iteration

F illing the Matrix
Ant Activity
Removing Unfit Cells

EndFor
End

Figure 5.5: Modified ACO algorithm for logic design.

The Intelligent Ant

The original ACO algorithm works on a clearly defined graph where the number of

nodes and/or edges is mostly static and the quality of best solution is unknown. On

the other hand, the result of ELD must be a functionally correct circuit optimized

according to the cost function. While traversing the matrix, each ant must seek

good solution in terms of circuit’s functionality first. Since the length of the tour

is limited by the size of the matrix, the ant should have intelligence to select which

part of its tour that provides the best solution in terms of functional fitness. The

remaining path will be removed from its memory. Using this approach, the ant will

provide better partial solution in every iteration and that the best solution would

emerge at the end of the iterative process.
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The Veteran Ant

In the original ACO algorithm, all ants will die after finishing their tour. Then, a

new generation of ants is born and use the information of the pheromone trail to

construct their tour. However, if the number of ants is too small to cover all the

existing paths, the quality of new solutions can be worse compared to the old one.

Using larger number of ants will give higher probability of obtaining better or at

least equal solution. However, this will add computation time significantly.

In addition, since the content of the matrix will be dynamically changed, it is

important that the best partial solution is kept in every iteration. This can be

done by saving the paths found by the best ants. Therefore, unlike the original

ACO algorithm, after finishing their tour, some of the best ants will be selected and

upgraded to act as veteran ant (V ant). All ants will die, except the veterans. These

veteran ants will bring their information and ‘lead’ new generation of ants to find

the solution.

For the following reasons, the number of veteran ants used can be more than

one.

1. In order to get the function f = G(f1, f2), both f1 and f2 must be available and

connected through a Boolean operator (a gate) G. If the number of veteran

ants is one, only one partial solution will be saved in each iteration. Both f1

and f2 may be available in the matrix at the same time. Thus, saving f2 as
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well as f1 (using two veteran ants) will increase the possibility of obtaining

the solution faster.

2. There exist a number of different structural representations for a Boolean

function f . The number of sub-functions of f is even bigger. Finding which

is the best representation for sub-function fk is difficult. Some of the fki
can

lead to a good solution, but some of them may lead to a worse solution. Thus,

saving more than one veteran ant can reduce the possibility of getting stuck

in local optimal solutions.

Using more V ants mean more information saved in each iteration. This can

help the search process. However, this can be counter productive since more V ants

means more cells locked during iteration. This will reduce the space for exploring

new solutions. In this thesis, the number of V ant used is two.

As mentioned before, the solution approach has three main steps, namely: filling,

traversing and removing. These three steps will be repeated a number of times until

one of the stopping criteria is met. The details for each of these steps are given in

the following subsections.

5.2.3 Filling the Matrix

The purpose of this step is to fill empty cells in the matrix with randomly generated

attributes. The possible gate type is defined in the gate library. In this procedure,
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the truth table and functional fitness of the cell will be calculated as well. Figure 5.6

shows the pseudocode of the procedure filling the matrix.

Procedure Filling the Matrix();

/* row maximum number of rows allowed */
/* column maximum number of columns allowed */

Begin
For 0 ≤ j < column

For 0 ≤ i < row
If Cell[i][j] is empty

Cell[i][j].gate = random gate from library
Cell[i][j].input[0] = random integer < row
Cell[i][j].input[1] = random integer < row
Calculate truth table();
Calculate functional fitness();

EndIf
EndFor

EndFor
End

Figure 5.6: Procedure Filling the Matrix.

5.2.4 Ant Activity

The Ant Activity procedure contains three parts: the movement of ants, evaluation

of solutions built and the pheromone update. These are discussed next.
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Pheromone and Trail Actualization

As mentioned earlier, each ant starts its tour from a dummy cell called nest and

moves to any of the cell in the first column. Next, the ant will move to the second

column, and so on, until it reaches a cell that has no successor. The selection of

which edge to traverse is determined by a stochastic process using Roulette Wheel.

The probability to choose a specific edge depends on pheromone value (τ) and

heuristic value (η) of the edge. The probability of selecting next node is formulated

below [54]:

pk
ij(t) =

[τij(t)]
α · [ηij]

β

∑
[τil(t)]α · [ηil]β

(5.1)

The value of α and β imply the preference of the search, whether it depends more

on pheromone value or heuristic value, respectively. Every newly created cell will be

given an initial and small amount of pheromone value. This value will be updated

in every iteration made by the ant.

Heuristic Value (η)

The heuristic value (η) depends on the distance of functional fitness values between

cells, and formulated as follows.
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d = FFn(i + 1)− FFn(i) (5.2)

η = d + 0.5 (5.3)

The addition of 0.5 in the calculation of η is meant to normalize the value of η

into [0,1]. A decrease in functional fitness means that the value of η is in the range

of [0,0.5), while an increase in functional fitness makes the value of η in the range

of (0.5, 1]

Tour Evaluation

While traversing the matrix, every ant carries information of the paths traversed so

far, e.g., the row index of all cells that were visited. If an ant reaches a cell that

has no successor, it will evaluate and select which part of its tour results in the best

functional fitness value. The value of OF and OvF of the solution will be evaluated.

Pheromone Update

When all ants finished their tour, pheromone update is performed. However, only a

certain number of ‘the best’ ants can update the pheromone along their paths. These

best ants are the V ants mentioned earlier. The pheromone update is performed

using the following:
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τ(t) = τ(t) + λ ·OvF (t) (5.4)

where OvF (t) denotes the overall fitness of the solution that the ants built and λ is

a constant.

After the pheromone is updated, the pheromone evaporation procedure is per-

formed using the following formula.

τ(t) = (1− ρ)× τ(t), with ρ = (0, 1] (5.5)

In case of multiple outputs circuits, multiple colonies of ants will be used. In this

context, each colony of ants is assigned to find a specific output of the circuit. All

colonies will share the same matrix. The possibility of using the same sub-functions

is established by sharing the pheromone value among different colonies.

5.2.5 Removing the Unfit Cell

After the ants finish their tour, the matrix M will be checked to see which cells are

worth keeping. Each cell can assume two different status, namely l (locked) and r

(removed). The status of a cell is determined by the following rules:

1. A cell is locked if

(a) it is included in the best path



93

(b) it is feeding another locked cell

2. A cell is removed otherwise

The cells that assume r status will be removed at the end of the current iteration.

These empty cells will be then filled up by Filling the Matrix procedure in the

beginning of the next iteration. The example below shows how the algorithm works.

Example 1

Consider, for example, a function f = abc + abc + abc + abc = a ⊕ b ⊕ c. Assume

the first Filling the Matrix is shown in Figure 5.7 (the nest node is not shown).

Let’s take a look at some of the cells in detail. Assume that the initial value of τ is

1, and the value of α = β = 1.

  a   

b   

c   

a '   

b '   

c '   

301 (a)   

326 (a'    c) ⊕ 

024 (a c )   

0 35   (a + a ' )   

245   ( c + b ' )   

5 41   ( b ' )   

308   

324   

409   

149   

237   

037   

0 31   

3 4 5   

111   

425   

125   

516   

432   

407   

249   

540   

245   

328   

550   

505   

036   

332   

129   

207   
 

Figure 5.7: Result of Filling the Matrix Procedure in the First Iteration for Exam-
ple 1.
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1. Cell (0,0)

This is a primary input whose literal is a. The fitness of the node is 0.5. There

are three edges originating from this node, namely to cell (0,1), cell (2,1) and

cell (3,1). These cells have fitness 0.5, 0,5 and 0.5, respectively. Heuristic

values η for edges to those cells are 0.5 each. Sum of τ 1 × η1 = (1×0.5) +

(1×0.5) + (1×0.5) = 1.5. Recall to Equation 5.1, the values of p for these

edges are:

(a) pcell(0,1) = (1×0.5)/1.5 = 0.33

(b) pcell(2,1) = (1×0.5)/1.5 = 0.33

(c) pcell(3,1) = (1×0.5)/1.5 = 0.33

2. Cell (1,0)

This is a primary input whose literal is b. The fitness of the node is 0.5. There

is one edge originating from this node, namely to cell (5,1). This cell has

fitness 0.5. Heuristic value η for edge is 0.5. Sum of τ 1 × η1 = (1×0.5) =

0.5. Therefore, the value of p for the edge is 1.

3. Cell (0,1)

The node is the result of combination of output from cell(0,0) and cell (3,0)

using WIRE1, which corresponds to literal a. The fitness of the node is 0.5.

There are two edges originating from this node, namely to cell (2,2) and cell

(5,2). These cell have fitness 0.75 and 0.5, respectively. Heuristic values η for
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these edges are 0.75 and 0.5. Sum of τ 1× η1 = (1×0.75) + (1×0.5) = 1.25.

Then, the value of p for these edges are

(a) pcell(2,2) = (1×0.75)/1.25 = 0.6

(b) pcell(5,2) = (1×0.5)/1.25 = 0.4

4. Cell (5,1)

This is a primary input whose literal is a. The fitness of the node is 0.5. There

is no edge originating from the node. Thus, if an ant visits the node, the tour

of the ant will stop here.

5. Cell (2,2)

The node is the result of combination of output from cell(0,1) and cell (4,1)

using XNOR gate, which corresponds to ((c+b’) ⊕ a). The fitness of the node

is 0.75. There are two edges originating from this node, namely to cell (3,3)

and cell (4,3). Those cell have fitness 0.75 and 0,75 respectively. Heuristic

values η for these edges are 0.75 and 0.75. Sum of τ 1 × η1 = (1×0.75) +

(1×0.75) = 1.5.

The values of p for these edges are

(a) pcell(3,3) = (1×0.75)/1.5 = 0.5

(b) pcell(4,3) = (1×0.75)/1.5 = 0.5
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Let’s assume that there are two ants that find solutions whose fitness are 0.75.

The paths for these ant are:

1. ant1: fitness = 0.75

path: cell (5,5) → cell (0,4) →cell (2,3) → cell (1,2) → cell (2,1) → cell (4,0)

2. ant2: fitness = 0.75

path: cell (5,5) → cell (0,4) → cell (3,3) → cell (2,2) → cell (0,1) → cell (0,0)

Thus, the new pheromone value for those cells are (assume that λ = 0.5):

1. Pheromone update by ant1

∆τ = λ · f(t) = 0.5 × 0.75 = 0.5 × 0.75 = 0.375

τ(cell (5,5)) = τ(cell (0,4)) = τ(cell (2,3)) = τ(cell (1,2)) = τ(cell (2,1)) =

τ(cell (4,0)) = 1 + 0.375 = 1.375

2. Pheromone update by ant2

∆τ = λ · f(t) = 0.5 × 0.75 = 0.375

τ(cell (5,5)) = τ(cell (0,4)) = 1.375 + 0.375 = 1.75

τ(cell (3,3)) = τ(cell (2,2)) = τ(cell (0,1)) = τ(cell (0,0)) = 1 + 0.375 = 1.375

Note that cells(5,5) and cell(0,4) acquire more pheromones since more ants visit

them in their tour. The pheromone value in each of cell will be:

Note that the bold and underscored values are the cells that were included in the

best tour.
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1.375 1.375 1.000 1.000 1.75 1.000
1.000 1.000 1.375 1.000 1.000 1.000
1.000 1.375 1.375 1.375 1.000 1.000
1.000 1.000 1.000 1.375 1.000 1.000
1.375 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.750

After the pheromone was updated, it will decay using the following rules.

τ =(1 - ρ)× τ , with ρ = (0, 1]

Assume that the value of ρ is 0.8. The pheromone value of each cell will be:

1.100 1.100 0.800 0.800 1.400 0.800
0.800 0.800 1.100 0.800 0.800 0.800
0.800 1.100 1.100 1.100 0.800 0.800
0.800 0.800 0.800 1.100 0.800 0.800
1.100 0.800 0.800 0.800 0.800 0.800
0.800 0.800 0.800 0.800 0.800 1.400

All cells that are included in the paths of ‘the best ants’ will assume status lock.

In addition, the cell that is feeding a locked cell will be locked. After removal of the

unfit cells, matrix M will consist the cells shown in Figure 5.8.

 
a 

b 

c 

a' 

b' 

c' 

301 (a) 

024 (ac) 

035 (a+a') 

245 (c+b') 

324 

401 

237 

034 

111 

425 

125 

432 

245 

Figure 5.8: Removing of cells in the first iteration.
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Filling the matrix, second iteration.

All empty cells in the matrix will be filled with randomly generated attributes.

Assume that the result of filling the matrix is shown in Figure 5.9.

 
a 

b 

c 

a' 

b' 

c' 

301 (a) 

126 (b⊕c) 

024 (ac) 

035 (a+a') 

245 (c+b') 

248 (c+b')' 

100 

324 

401 

154 

237 

034 

026 

134 

111 

425 

125 

550 

432 

015 

249 

056 

245 

152 

018 

110 

146 

252 

459 

207 

Figure 5.9: Filling the matrix in the second iteration

Suppose that there are three ants that found the best solutions.

1. ant1 : fitness = 1

path : Cell (0,0) → cell (0,1) → cell (2,2) → cell (0,3) → cell(3,4)

2. ant2 : fitness = 1

path : Cell (1,0) → cell (1,1) → cell (0,2) → cell (0,3) → cell(3,4)

3. ant3 : fitness = 1

path: Cell (3,0) → cell (3,1) → cell (5,2) → cell (5,3) → cell(3,4)
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Note that the first two ants are basically building the same circuit. However,

if intelligent ants are used, ant1 and ant2 can stop at cell(0,4) and discard other

succeding cells included in the path. Since ant1 and ant2 requires shorter path

compared to ant3, the solution built will be returned by these two ants.

5.3 Improved-Modified ACO algorithm

Initial experiments showed that some further improvements can be made to increase

the performance of the MACO algorithm. In this section, three modifications are

presented.

5.3.1 Dynamic Search Space

Assuming that the size of the matrix M used to represent the circuit is 5 x 5 and the

interconnection between cells are fixed. Since there are ten types of gates available,

the total number of combination in the matrix M will be 1025. If the interconnections

between cells are made random, this number will increase even bigger. However, if

the size of the matrix M is too small, the search space is limited. Then the quality

of solution obtained may suffer.

In this section, a dynamic search space is proposed. The idea is to have a bigger

search space only when it is required. At the beginning of first iteration, the matrix

is set to its initial size. In the course of any iteration, the size of the matrix may be
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increased or decreased. Obviously, there should be a limit on the maximum number

of rows and columns of the matrix. It is assumed that the minimum size of the

matrix is NV × NV , with NV as the number of variables of the intended function.

The maximum size of the matrix is (k1 ·NV )× (k2 ·NV ), k1, k2 > 0. Since logic

circuits have a tree-like structure, the number of rows required to implement the

circuits is generally bigger than the number of columns. In other words, k1 > k2.

Row Adjustment

Row Utilization (RU) is defined as the largest ratio of the number of locked cells in

a certain column to the number of rows, or can be formulated as follows:

LC = number of locked cells

RU = max{ LCi

number of row
} 0 ≤ i < number of column

Additional row(s) will be introduced if RU is greater than MARU (Maximum Allow-

able Row Utilization). The value of MARU can be determined through experiments.

The setting of 0.75 < MARU < 0.9 were used.

Last Row (LR) is defined as the largest row index of the locked cell in the matrix.

The value of LR will be used to reduce the number of rows in the matrix.
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Column Adjustment

Column Utilization (CU) is defined as the ratio of the length of best ant’s tour to

the number of columns, or can be formulated as follows:

CU =
length of the best path

number of column

Additional column(s) will be introduced if CU is greater than MACU (Maximum

Allowable Column Utilization). The value of MACU can be determined through

experiments.

When the best partial solution is returned, the number of columns will be set

equal to the length of best ant’s tour. The pseudocode in Figure 5.10 explains how

the row and column adjustments are performed in the proposed algorithm.

5.3.2 Perturbation

Perturbation can be performed to further avoid getting stuck in local optimal. The

procedure of perturbation imitates the Selection and Allocation procedures in Simu-

lated Evolution (SE) [15]. First, a goodness measure of each cell is calculated. The

formulation of the goodness measure of a cell is given next.
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Row and Column Adjustment;
/* row number of row */
/* column number of column */
/* maxrow maximum number of row allowed */
/* maxcolumn maximum number of column allowed */

Begin
For 0 < i < iteration

F illing the Matrix
Ant Activity

.....
If (RU > MARU) and (row < maxrow)

row = row + 1
If (CU > MACU) and (column < maxcolumn)

column = column + 1
.....

row = LR
column = length of the best path
Removing Unfit Cells

EndFor
End

Figure 5.10: The Use of Row and Column Adjustment.

Goodness Measure

A goodness measure of a cell is determined by a combination of FFns of the cell

and FFns of the neighboring cells, and its position (column) in the current matrix.

Consider cell(i, j) and its surrounding neighbors shown in Figure 5.11. Functional

fitness (FFn) of cell(i, j) is affected by the FFns of its inputs, cell(p1, j − 1) and

cell(p2, j−1) and is affecting the FFn of cell(q, j+1). Thus, the balance of functional

fitness (BFF ) for cell(i, j) is calculated as follows.
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p1, j-1FF

p2, j-1FF

i, jFF

q, j+1FF

 

Figure 5.11: How the Neighboring Cells Affect the FFn of Cell(i, j).

P = set of predecessor cells

S = set of successor cells

BFF =
∑

k∈P
(FFn(i,j)−FFn(k,j−1))+

∑
k∈S

(FFn(k,j+1)−FFn(i,j))

Number of neighbors

If FFn of the cells in the first column, i.e., the literals, are assumed to be 0.5

and the FFn(sol) is FFn of the solution, then the expected FFn (EFF ) of cell(i, j)

is equal to:

EFF = 0.5 +
(FFn(sol)− 0.5) · j
length of best ant

The goodness of the cell is then calculated as:

G = FFn + BFF

A random number RN is then generated. The maximum value of this random
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number is set equal to the value of EFF . If G ≥ RN , the cell will be kept.

Perturbation will be performed otherwise.

The move is carried out by replacing the gate type of a cell by a new random

type of gate. The perturbed solution is then evaluated. The perturbed solution

is considered a new solution if its quality, according to the cost function, is better

compared to the original solution.

Perturbation;

Row and Column Adjustment;
/* row number of row */
/* column number of column */
/* M current solution */
/* M ′ temporary solution */

Begin
M’← M
For 0 ≤ j < column

For 0 ≤ i < row
RN = rand() % ((int) EFF )
G = BFF + FFn

If G < RN
cell[i][j].gate = assign random gate
Calculate truth table cell[i][j]
Calculate fitness cell[i][j]

EndIf
EndFor

EndFor
Calculate fitness of M’
If M’.fitness > M.fitness
M ← M’

End

Figure 5.12: Perturbation Procedure.
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 Figure 5.13: Effect of perturbation on functional fitness value (a) FFn = 0.9375 (b)

FFn = 1.
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 Figure 5.14: Effect of perturbation on objective fitness (a) gate count = 10 (b) gate

count = 8.
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Perturbation can affect both functional fitness and objective fitness of solutions.

Figure 5.13 shows an example of how perturbation affect the functional fitness. By

changing the circled NAND gate into an XOR gate, the FF of the solution is changed

from 0.9375 into 1. In Figure 5.14, changing the circled OR gate into a WIRE reduce

the number of gate count (area) of the solution. Note that both solutions have the

same FF s.

When the maximum number of iterations is reached, but no functionally correct

circuit is produced, the search process can be continued using the residual function.

This is discussed below.

5.3.3 Residual Function

Given suitable time to evolve, the proposed algorithm could find the target truth

table. However, it could happen that after a given maximum number of iterations,

functionally correct circuits are not produced. In this case, two approaches can be

used, either to have another run of the algorithm, or to extend the search by using

current solution as initial state for the heuristic. No modifications are needed to

perform the first approach. The second approach requires some modifications so

that the extension of the search is performed intelligently. This section addresses

the approach used for extending the search in ELD.
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Extending the Search

The goal of ELD is to produce functional and optimized circuits. A solution whose

functional fitness is 0.9 is not considered as a good solution. However, in terms of

evolution process, it is 90% functional. Given the time to evolve, it is hoped that by

extending the search into a more directed solution space, the fully functional circuits

can emerge from this solution.

Consider, for example, the target truth table (F ) for the algorithm to be gener-

ated is 10010011. Assume that after maximum iteration is reached, the best solution

returned by the algorithm has the truth table (f1) 10010000. The functional fitness

of the solution is ‘only’ 0.75. Assume that the searching process is continued by

targeting residual truth table (f2) 00000011. Then, if f2 is obtained, both f1 and

f2 can be merged using an OR gate to build the intended truth table F . Since the

search space for f2 is likely to be smaller than the search space for F , the possibility

to find f2 is greater compared to F .

The residual function f2 is obtained by decomposing function F to f1 OR f2.

The decomposition procedure in Boolean algebra allows the use of don’t care values

(*). Thus, the truth table of f2 will be *00*0011. The don’t care values will allow

us to explore richer solution space. In addition to that, the target solutions will

increase, since there are four representations for f2: 00000011, 00010011, 10000011,

and 10010011. This makes the searching process more promising. The procedure of
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how the decomposition is performed is discussed below.

Decomposition Rules

Decomposition plays an important part in the conventional logic design algorithms.

The idea is to divide a Boolean function into some lower complexity sub-functions, so

that the overall representation can be minimized. Decomposition can be formulated

as follows. Given F as a Boolean function, find f1,...,fk so that F = G(f1, ..., fk),

where G is a Boolean operator (a gate). The sub-functions f1 or fk can be decom-

posed further to obtain simpler functions.

Decomposition can be performed in many ways. Since only two inputs gate are

used, there are three types of decomposition considered, namely: OR, AND and

XOR decomposition. These names denote the gate used for the decomposition.

Thus, decomposition process can be formulated as follows.

Given Boolean function F and known sub-function f1

AND decomposition : find f2 so that F = f1 · f2

OR decomposition : find f2 so that F = f1 + f2

XOR decomposition : find f2 so that F = f1 ⊕ f2

Unfortunately, not all functions can be decomposed using AND or OR decompo-

sition. There is a need of a procedure to check whether a function is decomposable

by AND (OR) decomposition or not. Table 5.2 and Table 5.3 show the value of
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Table 5.2: AND decomposition table.
F f1 f2 Meaning Coding
0 0 * don’t care 2
0 1 0 logic 0 0
1 0 - can’t happen 3
1 1 1 logic 1 1

f2 for different input pattern of F and f1 for AND and OR decomposition, respec-

tively. If the value of f2 is ‘-’ (can’t happen condition), then the function F is not

decomposable using f1.

Table 5.3: OR decomposition table.
F f1 f2 Meaning Coding
0 0 0 logic 0 0
0 1 - can’t happen 3
1 0 1 logic 1 1
1 1 * don’t care 2

In contrast with the AND and OR decomposition, function f2 can always be

produced by decomposing F to f1 by XOR decomposition, since f2 = F ⊕ f1.

However, in XOR decomposition, the f2 will be in the form of completely specified

functions, i.e., the truth table of f2 does not have don’t cares values, as shown in

Table 5.4. Thus, it is possible that f2 is more complex than f1 (or F ) itself.

Merging the solutions

Using the concept of residual function, the algorithm will work in at least two

stages. The first stage is to find f1, while the second one is to find f2. At the end

of the second stage, f1 and f2 will be merged to obtain a new solution. Consider,
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Table 5.4: XOR decomposition table.
F f1 f2 Meaning Coding
0 0 0 logic 0 0
0 1 1 logic 1 1
1 0 1 logic 1 1
1 1 0 logic 0 0

for example, a function F with truth table 1000111111100101. Assume that the

first stage of the algorithm found f1 whose truth table is 0000111110100101 (see

Figure 5.15 (a)). Assume that OR decomposition is used. Using OR decomposition

table, truth table of f2 is then 1000*****1*00*0*. Assumed that the second stage of

the algorithm find f2 with truth table 1000001001000001, shown in Figure 5.15 (b).

With OR gate as operator, the function F ′ obtained from merging f1 and f2 is shown

in Figure 5.15 (c).

If F ′ = F , it means that the algorithm found the functionally correct circuits.

However, it is possible that f2 was not found and F ′ 6= F . In this case, another

stage of decomposition must be performed. The new f2 will be calculated by using

F ′ as f1. This process is continued until the maximum number of decomposition
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Figure 5.15: Example of using the residual function.
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Decomposition()

If (s = 0) and (solution.FF = 1)
Return solution

Else
If (s > 0)

Merge(f1, f2, G, F ′)
If (F ′ = F )

Return solution
EndIf

f1 ← solution
If (s = 0)

G = OR gate
ElseIf (s = 1)

G = AND gate
Else

If Check decompose(F , f1, OR) > 0
G = OR gate

ElseIf Check decompose(F , f1, AND) > 0
G = AND gate

Else G = XOR gate
EndIf

Decompose(F , f1, G, f2)

EndIf

Figure 5.16: Decomposition procedure.
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stages allowed is reached.

In order to get the benefit of the don’t care values, both of AND and OR decom-

position get higher priority compared to the XOR decomposition. The justification

is that the unneeded minterms from f1 can be removed using AND decomposition

and the required minterms can be added using the OR decomposition. Note that the

“can’t happen” condition will be treated as normal don’t cares. If both decomposi-

tions fail, the XOR decomposition is performed. Figure 5.16 shows the pseudocode

of decomposition procedure.

Improved Modified ACO (IMACO) algorithm

/* MAXITER Maximum iteration */
/* MAXSTAGE Maximum decomposition stage */

For 0 < s < MAXSTAGE
For 0 < i < MAXITER

Filling the Matrix();
Ant Activity();
Removing Unfit Cells();
Perturbation();

End
Decomposition();

End
Return best solution

End

Figure 5.17: Improved-Modified ACO algorithm for logic design.
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Putting It All Together

Having the perturbation and decomposition procedures incorporated, the improved

modified ACO (IMACO) algorithm for logic design is presented in Figure 5.17.

The IMACO algorithm is more complex compared to the previous one (see Fig-

ure 5.5). However, the probability of obtaining better quality result is higher. Ex-

perimental results and comparison between the proposed algorithms will be given

in the next chapter.

5.4 Concluding Remarks

In this chapter, a Modified Ant Colony Optimization (MACO) algorithm for the

design of digital logic circuits is introduced. The need for a modification to the

original ACO algorithm is discussed. Moreover, an improved version of the MACO

algorithm that includes the use of perturbation and residual function is also pro-

posed. In the next chapter, performance evaluation, experiments and results of the

proposed algorithm are presented.



Chapter 6

EXPERIMENTS AND RESULTS

This chapter and the following one are dedicated to experiments and results obtained

from applying the proposed algorithms. This chapter concentrates on the evaluation

of different possible schemes, while the next chapter will present comparison with

existing techniques.

6.1 Experimental Setup

A number of procedures needed for conducting the experiments are first introduced.

This includes the setting of inputs, tools and parameters.

Input: In order to perform the experiments, some benchmark circuits are used as

test cases. The benchmark consists of twenty randomly generated truth tables of

different complexity in addition to twelve circuits obtained from ISCAS’85 bench-

114
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mark. All circuits are in PLA format. Using this format, the proposed algorithm

can accept don’t care inputs as mentioned in Section 3.4. Details of these circuits

are given in Appendix A. Table 6.1 shows a summary of these circuits.

Table 6.1: Summary of circuits used for the experiments.
Single Output Multiple OutputCircuits

Number of
Specification

Number of
Specification

Notesused
circuits circuits

Random 20
Number of

- - -inputs: 2 - 6
Number of Number of arithmetic circuits:
inputs: 3 - 7 inputs: 3-7 majority, parity,ISCAS’85 3 9

Number of adder and multiplier
outputs: 2-10

Technology parameters used in the experiments is obtained from MOSIS 0.25 µ

library [80]. These parameters are written into a text file using a certain format.

This can be seen in Appendix A.

Parameters for the Algorithm: Performance of iterative heuristics depends on

the fine-tuning of its parameters. Otherwise mentioned explicitly, in general, these

parameters listed below are used. Note that NV is the number of variables for a

specific circuit.

• α = 1

• β = 1

• ρ = 0.1

• Number of ants = 10 * NV

• Number of generations = 2 * NV

• Maximum number of iterations = 500 * NV



116

• Number of runs = 20

• Minimum size of the matrix = NV ×NV

• Maximum size of the matrix = (k1 ·NV )× (k2 ·NV ), 2 ≤ k2 < k1

• Maximum number of decomposition stages = 6

Four types of experiments are carried out to measure the performance of the

proposed algorithms. These include experiments for different fitness function calcu-

lation, effect of dynamic search space, effect of perturbation and decomposition, and

different optimization objectives. The quality of solutions are measured according

to the area, delay and power of the circuits. These metrics are measured in µm2, ps

and pW units, respectively.

6.2 Performance of Different Fitness Calculation

The objective of this experiment is to know which fitness function calculation works

best for the proposed algorithms. This includes the selection of weighting scheme

and calculation of FF .

6.2.1 Effect of Different Weighting Scheme

As mentioned in Chapter 4, two approaches can be used to select the value of WF ,

namely: static and dynamic. These are examined below.

For the purpose of this experiment, the size of the matrix is set as (2 · NV ) ×

(2 · NV ). The circuits used as test cases are those having four or five inputs. In
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addition to the quality of results in terms of cost function, a measure called design

rate is used for comparison. Design rate is defined as the percentage of functionally

correct circuits delivered by the algorithm from the whole runs of experiment using

a given maximum number of iterations.

Table 6.2, Table 6.3 and Table 6.4 show the experimental results, assuming the

value of WF is 0.5, 0.75 and 0.875, respectively.

Table 6.2: Experimental results for WF = 0.5.

Circuit design rate
Best result

Area Delay Power
circuit1 55 15066 5.94 6.572
circuit2 70 15066 5.94 6.572
circuit3 45 10692 3.05 3.818
circuit4 100 1458 0.01 0.666
circuit5 25 12150 3.90 5.076
circuit6 55 10935 3.34 3.818
circuit7 60 12393 6.66 4.732
circuit8 100 7290 2.96 3.161
circuit9 0 - - -
circuit10 5 12393 5.32 4.483

Table 6.3: Experimental results for WF = 0.75.

Circuit design rate
Best result

Area Delay Power
circuit1 100 14823 5.89 6.57
circuit2 100 14823 5.89 6.57
circuit3 70 11421 3.35 3.82
circuit4 95 1458 0.01 0.67
circuit5 85 12150 3.90 5.08
circuit6 100 10935 3.34 3.82
circuit7 85 12636 6.66 4.73
circuit8 100 7290 2.96 3.16
circuit9 65 17496 5.42 5.27
circuit10 35 12393 5.32 4.48
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Table 6.4: Experimental results for WF = 0.875.

Circuit design rate
Best result

Area Delay Power
circuit1 100 14094 5.55 5.28
circuit2 95 14823 5.89 6.57
circuit3 85 10692 3.05 3.82
circuit4 90 1458 0.01 0.67
circuit5 85 12150 3.90 5.08
circuit6 100 10935 3.34 3.82
circuit7 100 12393 6.27 4.48
circuit8 100 7290 2.96 3.16
circuit9 80 16038 6.00 5.27
circuit10 25 12393 5.32 4.48

It was expected that the setting of WF equal to 0.5 will give the best solution in

both FF and OF . However, this happened to be a wrong assumption. Indeed, the

setting of WF = 0.5 is the worst among the others. The average design rate for this

setting is only 51.5%, which is quite low. It gives 100% design rate only for small

circuits (circuit4 and circuit8) and even fails to deliver working circuit for circuit9.

The reason behind this is that the algorithm was trying to satisfy both FF and OF

at the same time during the course of iteration. It is more difficult for the algorithm

to move to a new solution with higher FF if its OF is low. Thus, the algorithm will

spend more time with solutions that have low FF value, which in turn reduces the

possibility of delivering correct circuits.

In terms of design rate, both the setting of WF = 0.75 and WF = 0.875 are

much better compared to WF = 0.5. The average design rate is 82.5% and 86%

respectively. In terms of OF , the setting of WF = 0.875 gives the best results
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compared to other settings. This happens because the algorithm reached the solution

having FF equal to 1 in the early stages of iteration.

The highest value that can be assigned to WF is equal to MAXWF = L
L + 1

,

with L is the length of the truth table. The proof is the following.

The overal fitness function (see Equation 4.13) can be rewritten as.

OvF ∗ (M + N) = FF ∗M + OF ∗N (6.1)

Note that FF and OF are fractions in [0, 1], with

FF =
H

L

where H is the number of hits and L is the length of the truth table.

If M is set equal to L, the first term in Equation 6.1 will be equal to H, which

is a decimal number. By setting N equal to 1, the second term in Equation 6.1

will stay as a fraction. Since the value of M determines the importance of FF in

contrast to OF , the ratio of M to N is equal to L : 1. Setting M equal to a value

larger than L will not give any effect since the second term of Equation 6.1 is already

a fraction. The value of MAXWF is then

M

M + N
=

L

L + 1
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If the value of WF is increased, the importance of OF will decrease. Consider,

for example, the use of MAXWF as WF . During the iterations, solutions that

have higher number of matching truth table will be taken, regardless of the value

of OF . The value of OF will be considered if there exist two solutions having the

same value of FF . In this case, the solution having higher OF will be considered.

Table 6.5: Experimental results for dynamic WF .

Circuit design rate
Best result

Area Delay Power
circuit1 90 14823 5.89 6.57
circuit2 95 15066 5.94 6.57
circuit3 50 10692 3.05 3.82
circuit4 90 1458 0.01 0.67
circuit5 75 12150 3.90 5.08
circuit6 95 10935 3.34 3.82
circuit7 100 12393 5.05 4.38
circuit8 100 7290 2.96 3.16
circuit9 55 15066 5.42 5.27
circuit10 25 12393 5.32 4.48

For small circuits, it is better to use higher WF values as shown in Table 6.2,

Table 6.3 and Table 6.4. However, for larger circuits, the use of higher WF values

can be counter productive. Because, it may happen that a solution having high FF

with low OF value is obtained. However, low OF value means less in satisfying the

objectives, i.e., the solution may have large area, or delay, or power. Consider, for

example, in the case of larger area. The solution will require quite a number of cells

to be locked during the iterations. If this happened quite often, it will be difficult

for the algorithm to escape local optimal because the number of empty cells in the
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matrix to explore new solution space will be less. An answer for this problem is the

use of dynamic WF (see Chapter 4).

The experimental results for dynamic WF is shown in Table 6.5. For the purpose

of the experiment, a minimum WF value is set equal to 0.5 while the maximum value

is set to 0.9. As can be seen from the table, the design rate of this approach is lower

compared to the one with WF = 0.875. In terms of OF , the use of dynamic WF

leads to worse or similar results for small circuits, i.e., circuit1 to circuit8. However,

as the size of the circuits is increased, i.e., circuit9, the use of dynamic WF leads

to results that are better compared to those obtained using static WF .

6.2.2 Effect of Different FF Calculations

Using dynamic WF , performance of different functional fitness calculations is car-

ried out using larger circuits. Recall to Chapter 4, there are three types of func-

tional fitness calculations considered, original (FF ), normalized FF (FFn), and

normalized-penalized FF (FFnp). Table 6.6 shows results of the experiments.

The original FF calculation suffers a lot for larger circuits. It fails to deliver

working circuits for three out of seven cases. The normalized FF (FFn) also fails

for those same circuits. However, the design rate for FFn is better compared to FF .

This is due to the ‘normalization’ done to the calculation of FF . By normalizing

FF , the algorithm will find both the intended Boolean function and the inverted

Boolean function. Whichever comes first will be considered.



122

Although it fails to deliver working circuits for circuit12, the normalized-penalized

FF (FFnp) is the best compared to the other two. Note that, circuit12 is one ex-

ample that needs to be highlighted since the size of the circuit is quite large. It

will be shown later that this circuit can be generated using the concept of residual

functions.

Table 6.6: Results obtained for different FF calculations.

Circuit
Design Rate

Original FF Normalized (FFn) Normalized-penalized (FFnp)
circuit9 55 60 80
circuit10 25 45 40
circuit11 10 20 55
circuit12 0 0 0
circuit13 25 55 50
circuit14 0 0 20
circuit15 0 0 25

From this time onward, except if it is mentioned explicitly, the experiments will

be carried out using dynamic WF with FFnp.

6.3 Dynamic Search Space

The purpose of this experiment is to show how the use of dynamic matrix size affects

the performance of the proposed algorithm. Table 6.7 shows a comparison in terms

of design rate and execution time for both static matrix size (SM) and dynamic

matrix size (DM) approaches.

In terms of design rate, DM clearly outperforms SM . In addition to that,
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circuit12 that was not generated using SM was delivered by DM . In terms of

execution time, DM was superior compared to SM for small circuits (circuit1 to

circuit8) by up to 25% time saving. Note that both approaches use the same number

of iterations. The difference in execution times is caused by the different sizes of

the search space explored by both approaches. For bigger circuits, DM provides

faster execution time for circuit9 and circuit10, with 37.5% and 42.5% time saving

as compared to the ones obtained using the SM . For the remaining circuits, SM

requires less computation time compared to DM . Consider the case of circuit13.

The execution time of DM is three times higher compared to the one for SM .

For this circuit, it was observed that the algorithm can achieve solutions having

FF equal to 0.969 in a very short time. However, it was very difficult to obtain

solutions higher FF value. Therefore, the design rate for the circuits is low in SM .

On the other hand, when local optima is observed, DM will increase the size of the

matrix. This will in turn increase the execution time of the algorithm. However, the

probability of obtaining functionally correct circuits will increase. In other words,

the design rate of DM is higher as compared to the one of SM .

Table 6.8 shows a comparison of quality of solutions in terms of area obtained

using SM and DM . Except for circuit12, DM provides better circuits in six out

of fourteen cases, with 1% to 13% reduction in area. Both approaches produce the

same quality of circuits in the remaining cases.

For large circuits, i.e., circuit9 to circuit15, except for circuit14, DM produces
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Table 6.7: Experimental result for static and dynamic matrix in terms of design rate
and computation time.

Circuit
design rate time
SM DM SM DM

circuit1 100 100 21.00 15.27
circuit2 100 100 20.95 15.30
circuit3 100 100 21.10 14.53
circuit4 100 100 4.30 3.50
circuit5 100 100 20.60 17.03
circuit6 100 100 20.70 14.80
circuit7 100 100 21.10 16.27
circuit8 100 100 21.15 12.90
circuit9 80 100 131.44 82.13
circuit10 40 100 134.13 77.07
circuit11 55 93 39.36 57.63
circuit12 0 13 - 151.50
circuit13 50 100 39.20 121.43
circuit14 20 87 132.75 208.13
circuit15 25 93 132.60 188.64

Table 6.8: Area result obtained using static and dynamic matrix size.
Circuit SM DM Ratio
circuit1 14823 12879 0.87
circuit2 14823 13122 0.89
circuit3 10692 10692 1.00
circuit4 1458 1458 1.00
circuit5 12150 13365 1.10
circuit6 10935 10935 1.00
circuit7 12150 12393 1.02
circuit8 7290 7290 1.00
circuit9 15066 15066 1.00
circuit10 12393 11178 0.90
circuit11 17739 17496 0.99
circuit12 0 45684 ∼
circuit13 20169 19683 0.98
circuit14 22842 26730 1.17
circuit15 21870 20655 0.94
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better or equal quality results compared to SM . In circuit14, the area of the ob-

tained circuit using DM is higher compared the one obtained using SM . However,

the design rate of SM for this circuit is 20% compared to 87% using DM . In other

words, compared to SM , DM has much higher probability of arriving at solutions.

6.4 Residual Function

The MACO algorithm depicted in Figure 5.5 failed to deliver some large circuits,

i.e., circuit18 up to circuit20. The use of residual function, as included in IMACO

algorithm (see Figure 5.17), for these circuits is found necessary. Table 6.9 shows

experimental results for these circuits considering residual function. Note that cir-

cuit12 is added in addition to those of large circuits since this circuit is one of the

hard to implement circuits as indicated in the previous sections.

Table 6.9: Results obtained using IMACO algorithm.

Circuit design rate
Best result Average result

timeArea Delay Power Area Delay Power
circuit12 70 45684 14.30 17.36 83891.08 21.80 28.51 1920.85
circuit18 55 63666 23.83 22.01 81162.00 26.09 26.85 1046.70
circuit19 50 54432 11.34 19.68 78570.00 21.14 25.56 1241.50
circuit20 55 60264 12.43 20.23 73483.20 23.78 25.68 1016.00

As can be seen from the table, all considered circuits in the experiment were

delivered by the algorithm. In addition, an improvement in the design rate for

circuit12 was observed. The design rate for this circuit is 70%, as compared to

13% in the previous experiment (see Table 6.7). However, as has been expected,
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the execution time for IMACO algorithm is increased tremendously. The execution

time of IMACO algorithm is up to 5 times as compared to the MACO algorithm.

6.5 Different Optimization Objectives

The cost function considered in this work includes area, delay and power consump-

tion of the circuits. Three sets of experiments are performed. These are:

1. Area optimization with delay and power as constraints (AODPC)

2. Delay optimization with area and power as constraints (DOAPC)

3. Power optimization with area and delay as constraints (POADC)

Basically, since fuzzy logic is used to aggregate the cost functions, the algorithm

will try to find solutions that are optimized for area, delay and power at the same

time. The term constraints used above is used to imply that the solutions obtained

must have area (delay or power) less than or equal to the stated maximum value.

AODPC

In order to understand how the optimization is performed, it is important to observe

the behavior of the proposed algorithms during the course of experiments. Figure 6.1

shows the behavior of OvF , FF and OF (overall fitness, functional fitness and

objective fitness) against time during one of the experiment performed for circuit1.
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As can be seen from the figure, the value of FF increases with time. Since the

circuit is relatively small in size, the functionally correct circuit (FF equal to one)

is found in less than 50 iterations. In contrast with FF , the value of OvF will never

be one, unless if the circuit contain only wires. In fact, the value of OvF depends

on the value of FF and OF .

The value of OF may increase or decrease during the course of iterations. Fig-

ure 6.2 shows the behavior of fitness function for the first 50 iterations. As can be

seen from the figure, at about iteration number 25, the value of OF was decreas-

ing. However, the value of FF is increasing. As mentioned in the previous chapter,

whenever solution with higher FF value is obtained, the move to the new solution

is preferable. However, if there is no increase in FF , optimization in OF will be

carried out.

The optimization of OF is performed according the fuzzy rule applied in the

experiment. Figure 6.3 and Figure 6.4 show the behavior of OF during the first 50

iterations and 150 iterations, respectively. The value of area, delay and power are

normalized to the highest value achieved during the iterations.

As can be seen from Figure 6.3, the value of OF at iteration number 40 reaches

its lowest value because the value of area, delay and power reach their largest value

at the same time. However, after iteration number 40, the value of OF is increasing

(see Figure 6.3 and Figure 6.4). This means that the optimization in terms of

objective functions is performed.
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Figure 6.1: Behavior of functional fitness function for circuit1 in the first 2000
iterations using AODPC.
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Figure 6.2: Behavior of functional fitness function for circuit1 in the first 50 itera-
tions using AODPC.
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Figure 6.3: Behavior of objective fitness function for circuit1 in the first 50 iterations
using AODPC.
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Figure 6.4: Behavior of objective fitness function for circuit1 in iteration 50 to
iteration 200 using AODPC
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In AODPC, it is expected that the circuits obtained will have less area as com-

pared to the ones produced by other set of experiments. Figure 6.4 illustrates this

behavior. As can be seen in the figure, at about iteration number 140, new solution

with less area is accepted although it has higher delay compared to the old solution.

Table 6.10: Results of different optimization objectives.

Circuit
AODPC DOAPC POADC

area delay power area delay power area delay power
circuit10 11178 5.42 4.06 12393 5.32 4.48 11178 5.42 4.06
circuit11 17253 5.91 7.22 22599 5.61 9.30 18225 6.29 6.95
circuit12 45684 14.30 17.36 57591 13.88 20.56 45684 14.30 17.36
circuit18 63666 23.83 22.01 77760 16.68 28.75 64638 20.04 21.09
majority 13851 4.57 5.06 16038 4.19 5.02 14580 4.53 4.72
xor8 20655 5.90 9.32 20655 5.90 9.32 20655 5.90 9.32
xor9 23328 8.84 10.65 27216 8.84 11.48 23814 9.57 10.65
add2 24300 11.48 9.96 31347 8.96 11.46 25029 13.30 9.57
add3 49086 21.96 18.47 53703 12.98 21.48 54675 14.36 20.55
mul2 12636 3.56 4.66 18225 2.96 5.99 14823 4.44 4.66
mul3 59292 15.03 17.54 74358 13.14 21.65 73386 16.33 19.11
con1 38151 6.70 13.74 38394 6.24 12.65 42282 9.79 13.97

The results of the experiments for a number of selected circuits are shown in

Table 6.10. The table shows the value of area, delay and power for the best solution

obtained by different set of experiments. In order to measure the performance of

the algorithm for different objectives, the results in this table are normalized with

respect to the results of AODPC experiment.
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DOAPC

Table 6.11 shows the normalized value of DOAPC. As can be seen from this table, the

percentage of improvement in delay varies. The improvement is, however, mostly

accompanied by additional area and power consumption. Figure 6.5 shows the

normalized area, delay and power for DOAPC. As can be seen in the figure, the

value of normalized delay is always less than one. It means that for the given single-

output circuits, DOAPC provides circuits with better or at least the same delay as

compared to the ones produced by AODPC.

Table 6.11: Results of DOAPC experiments normalized with respect to results of
AODPC.

Circuit Area Delay Power % area % delay % power
circuit10 1.11 0.98 1.10 -10.87 1.79 -10.36
circuit11 1.31 0.95 1.29 -30.99 5.01 -28.84
circuit12 1.26 0.97 1.18 -26.06 2.97 -18.42
circuit18 1.22 0.70 1.31 -22.14 30.02 -30.62
majority 1.16 0.92 0.99 -15.79 8.29 0.69
xor8 1.00 1.00 1.00 0.00 0.00 0.00
xor9 1.17 1.00 1.08 -16.67 0.00 -7.83
add2 1.29 0.78 1.15 -29.00 21.98 -15.07
add3 1.09 0.59 1.16 -9.41 40.90 -16.29
mul2 1.44 0.83 1.29 -44.23 16.76 -28.56
mul3 1.25 0.87 1.23 -25.41 12.59 -23.40
con1 1.01 0.93 0.92 -0.64 6.82 7.91

For multiple output circuits, i.e., the longest delay appear in the circuits is

considered (see Table 6.10). Figure 6.6 shows the normalized area, delay and power

for multiple output circuits. It is observed that the value of normalized delay is

always less than one. In general, DOAPC has performed its objective by producing

circuits with better delay as compared to the one produced by AODPC.
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Figure 6.5: Normalized results of DOAPC for single output circuits.
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Figure 6.6: Normalized results of DOAPC for multiple output circuits.
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POADC

Table 6.12 shows the normalized value of POADC. As can be seen, the percentage of

improvement for power is less compared to the percentage of improvement for delay

in DOAPC. Figure 6.7 shows the normalized area, delay and power in POADC for

single output circuits. It is observed that the value of normalized power for these

circuits are less or at least equal to one, which means the optimization of power is

achieved.

Table 6.12: Results of POADC experiments normalized with respect to results of
AODPC.

Circuit Area Delay Power % area % delay % power
circuit10 1.00 1.00 1.00 0.00 0.00 0.00
circuit11 1.06 1.06 0.96 -5.63 -6.36 3.73
circuit12 1.00 1.00 1.00 0.00 0.00 0.00
circuit18 1.02 0.84 0.96 -1.53 15.94 4.20
majority 1.05 0.99 0.93 -5.26 0.88 6.59
xor8 1.00 1.00 1.00 0.00 0.00 0.00
xor9 1.02 1.08 1.00 -2.08 -8.24 0.00
add2 1.03 1.16 0.96 -3.00 -15.86 3.96
add3 1.11 0.65 1.11 -11.39 34.62 -11.24
mul2 1.17 1.25 1.00 -17.31 -24.54 0.00
mul3 1.24 1.09 1.09 -23.77 -8.66 -8.92
con1 1.11 1.46 1.02 -10.83 -46.12 -1.64

Figure 6.8 shows the normalized area, delay and power for multiple output cir-

cuits. The figure shows some discouraging results. Improvement in power are ob-

served for add2 (2-bit adder) and mul2 (2-bit multiplier) circuits. POADC however,

failed to produce circuits with better power consumption in contrast to AODPC.
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Figure 6.7: Normalized results of POADC for single output circuits.
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Figure 6.8: Normalized results of POADC for multiple output circuits.
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From the three sets of experiments it was observed that the performance of

POADC is the worst. There is no much improvement in power consumption as

expected. The reason behind this behavior is twofold:

1. By using OWA operator of fuzzy logic, the optimization of area, delay and

power are performed at the same time.

2. Power consumption of a given circuit is proportional to the number of gates

it has. Thus, in agreement with point 1, the quality of obtained circuits in

POADC are generally the same with the ones produced by AODPC.

6.6 Concluding Remarks

In this chapter, performance of the solution approach was evaluated. It began with

the performance of different fitness function calculations and continued with the

dynamic search space and improved-modified ACO algorithm. The approach was

able to arrive at acceptable solutions in all test cases. The performance of different

set of experiments has also been presented. Comparison of the solution approach

with the existing technique is presented in the next chapter.



Chapter 7

COMPARISON WITH

EXISTING TECHNIQUES

In this chapter, a comparison of the results obtained using the introduced techniques

is presented.

7.1 Comparison with Existing ACO-based Tech-

nique

In this section, the results of our experiments are compared to the results obtained

from the existing ACO-based technique proposed by Coello [6]. Since this technique

tries to minimize the use of gate count only, the comparison is performed using the

results of AODPC of the proposed algorithm. This includes comparison in terms of

136
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Table 7.1: Comparison with Coello [6] in terms of design rate.
Circuit Coello [6] MACO
circuit1 70 100
circuit2 70 100
circuit3 90 100
circuit4 100 100
circuit5 30 100
circuit6 100 100
circuit7 50 100
circuit8 100 100
mul2 100 100

design rate, quality of results and performance of the algorithm.

7.1.1 Comparison of Design Rate

Table 7.1 shows comparison of both Coello’s [6] technique and the proposed algo-

rithm in terms of design rate. For this purpose, the same test cases were used. It

should be noted that the technique described in [6] failed to deliver any valid results

for large single-output circuits.

Since the test cases are relatively small, the MACO algorithm is used. As can

be seen from Table 7.1, the MACO algorithm outperformed the existing ACO-based

technique in terms of design rate. The average design rate for MACO algorithm is

100% as compared to 78.89% for Coello [6].
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7.1.2 Comparison of the Quality of Solutions

Table 7.2 shows a comparison of the quality of solutions in terms of gate count,

area, delay and power consumption as a result of using both techniques. The table

shows that there are significant improvements in terms of area for all cases, except

for circuit4 that contains a single gate only. The highest improvement is obtained

in circuit5, which is 60.98%. Except for circuit7 and mul2, the solutions provided

by MACO are better in terms of delay and power. In addition to that, although

AODPC is targeting area minimization, some improvements in terms of gate count

are also observed.
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Figure 7.1: Results of MACO normalized with respect to Coello [6].

Figure 7.1 shows the results of MACO algorithm for the given test cases. Note

that the results are normalized with respect to Coello’s [6] technique. It can be seen

that the normalized area for these circuits are always ≤ 1 which means that the

obtained circuits require less area compared to the ones produced by Coello’s [6].
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Figure 7.2: 2-bit Multiplier obtained by Coello [6].
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Figure 7.3: 2-bit Multiplier obtained by MACO.

Case study: 2-bit multiplier

Figure 7.2 and Figure 7.3 show the 2-bit multiplier circuits obtained from Coello [6]

and MACO respectively. Each circuit consist of seven gates. However, as can

be seen from the figures, MACO results in the use of NAND and NOR gates in

contrast to AND and XOR gates. Since both NAND and NOR gates requires less

area, the circuits obtained by MACO has less area in contrast to the one produced

by Coello [6]. In addition, as can be seen in Figure 7.2, output out2 of the circuit
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has the longest delay, i.e., the level of out2 is 3. However, the highest level in the

circuit produced by MACO is 2. Thus, delay of the circuit produced by MACO will

be less than the one produced by Coello [6].

7.1.3 Comparison of Execution Time

Here comparison of execution time for both techniques is conducted. The experi-

ments were carried out using P4 2GHz CPU, 512 MB RAM. Although the length

of execution time depends on some variables such as the number of iterations, size

of the matrix and the number of gate types, comparison is performed in order to

contrast the performance of both techniques.

Table 7.3 shows the average execution time for the given test cases. It is shown

that for single-output circuits (except circuit4), MACO results in a saving of more

than 70% in execution time. Since circuit4 requires only one gate, the deterministic-

like approach of [6] provides faster execution time in contrast to MACO. In addition

to that, Coello’s approach is worse when it comes to multiple-output circuits. As can

be seen in the case of mul2 circuit, MACO saves 98% execution time as compared

to [6].
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Table 7.3: Comparison with Coello [6] in terms of execution time.
Circuit Coello [6] MACO % time
circuit1 61.43 15.27 75.15
circuit2 61.43 15.17 75.31
circuit3 49.70 14.67 70.49
circuit4 0.40 3.50 -775.00
circuit5 76.00 16.97 77.68
circuit6 50.70 14.83 70.74
circuit7 75.60 16.10 78.70
circuit8 50.40 12.70 74.80
mul2 2876.29 57.20 98.01

7.2 Comparison with Existing Conventional Tech-

niques

In this section, comparison of the proposed algorithm with an existing conventional

technique is given. For this purpose, SIS tools are used. However, SIS does not

consider load capacitance in their delay calculation and does not consider power

optimization. Therefore, the results obtained from SIS are in the form of netlist files.

These netlist files will be used as input to the cost function calculation procedures

of the proposed algorithm to determine the area, delay and power of the circuits

obtained.
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Area Optimization

In order to compare the performance of the proposed algorithm based on area op-

timization, AODPC experiment was performed. The results from SIS are the area

optimized circuits obtained by executing rugged.script, mapped for area minimiza-

tion. Both SIS and the proposed algorithm use the same gate library.

Since the circuits used as test cases are large circuits, the results obtained using

IMACO algorithm are considered. Table 7.4 shows the results for single-output

circuits using both techniques. The table shows that except for circuit20, IMACO

produces circuits with lesser area than SIS. The highest improvements are obtained

for 8-bit and 9-bit odd parity circuits. Parity circuits are best implemented using

XOR (XNOR) gates. Unfortunately, SIS is unable to perform XOR decomposition.

Thus, the parity circuits obtained by SIS will require larger area as compared to the

ones obtained by IMACO.

Table 7.4: Comparison of IMACO and SIS in area optimization for single output
circuits.

IMACO SIS % ImprovementCircuit
Area Delay Power Area Delay Power Area Delay Power

circuit11 17253 5.91 7.22 17496 7.08 6.01 1.39 16.51 -20.02
circuit12 45684 14.30 17.36 52731 17.34 19.11 13.36 17.51 9.16
circuit18 63666 23.83 22.01 69984 21.16 25.19 9.03 -12.63 12.64
circuit19 54432 11.34 19.68 54918 18.00 19.83 0.88 37.01 0.78
circuit20 60204 12.43 20.23 60021 12.36 22.53 -0.30 -0.51 10.21
majority 13851 4.57 5.06 14823 6.28 5.41 6.56 27.18 6.48
xor8 20655 5.90 9.32 27945 27.69 10.82 26.09 78.70 13.89
xor9 23328 8.84 10.65 33048 33.25 12.65 29.41 73.40 15.83
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Figure 7.4 shows the graphical view of the results obtained from IMACO. Note

that these results are normalized with respect to the ones obtained using SIS. As

can be seen the normalized area for these test cases are ≤ 1, which shows that

the IMACO algorithm produces circuits better or equal to SIS in terms or area.

However, the table shows that IMACO produces circuits that are better not only in

terms of area, but also in terms of delay and/or power consumption.
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Figure 7.4: Results of IMACO with AODPC for single output functions, normalized
to SIS.

The results for multiple outputs circuits for area optimization are shown in Ta-

ble 7.5. As shown in the table, the improvement in area varies. The highest im-

provements are observed for multiplier circuits and cm82a circuits. However, MACO

failed to deliver better circuits in terms of area for large multiple output circuits (the

reason behind this will be explained later). The graphical view of MACO results,

normalized with respect to SIS is shown in Figure 7.5.
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Table 7.5: Comparison of MACO and SIS in area optimization for multiple output
circuits.

MACO SIS % ImprovementCircuit
Area Delay Power Area Delay Power Area Delay Power

add2 24300 11.48 9.96 29889 17.22 11.38 18.70 33.31 12.48
mul2 12636 3.56 4.66 18225 6.59 5.56 30.67 45.94 16.21
cm42a 38880 7.45 13.25 40824 8.86 13.65 4.76 15.95 2.90
cm82a 25272 10.45 9.96 39609 19.54 14.88 36.20 46.53 33.03
mul3 59292 15.03 17.541 112752 43.39 37.75 47.41 65.36 53.53
add3 49086 21.96 18.474 42282 24.99 15.68 -16.09 12.13 -17.79
cm138a 37908 8.919 11.878 39366 11.65 11.48 3.70 23.43 -3.42
con1 38151 6.698 13.741 31590 8.64 11.21 -20.77 22.46 -22.55

Table 7.5 shows that the improvements in the case of add3 and con1 circuits

are negative. The reason behind this can be attributed to the procedure employed

by MACO to find multiple output circuits. As indicated in Chapter 5, MACO

used multiple colonies of ants to find a multiple output function. The sharing

between different outputs was assumed to be established by the sharing of pheromone

between colonies of ant. For simple multiple output circuits such as multipliers, this

assumption is true. However, the experiments proved that the sharing of pheromone

itself is not enough to imply the sharing of common sub-functions mostly for large

multiple output circuits or multiple output circuits having excessive common sub-

functions. Therefore, the sharing of sub-functions between solutions built by the

ants has to be measured. This should be used to guide the search further. It will

be interesting to investigate this in the future work.
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Figure 7.5: Results of MACO with AODPC for multiple outputs functions, normal-
ized to SIS.

Delay Optimization

For delay optimization, the results obtained using SIS are those obtained by exe-

cuting delay.script, mapped for delay minimization. Both the proposed algorithm

and SIS used the same gate library during the experiments. The test cases used are

the same circuits used for area optimization in the previous section. Table 7.6 and

Table 7.7 show the results for single output circuits and multiple output circuits,

respectively.
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Table 7.6: Comparison of IMACO and SIS in delay optimization for single output
circuits.

IMACO SIS % ImprovementCircuit
Area Delay Power Area Delay Power Area Delay Power

circuit11 22599 5.61 9.30 33291 7.39 9.42 32.12 24.01 1.35
circuit12 57591 13.88 20.56 69741 14.21 20.84 17.42 2.36 1.33
circuit18 77760 16.68 28.75 113238 17.51 33.55 31.33 4.74 14.32
circuit19 54432 11.34 19.68 75087 13.69 22.74 27.51 17.19 13.47
circuit20 84564 15.83 32.46 91854 17.54 27.43 7.94 9.75 -18.34
majority 16038 4.19 5.02 18711 7.53 5.40 14.29 44.34 7.11
xor8 20655 5.90 9.32 32805 9.53 11.65 37.04 38.11 20.04
xor9 27216 8.84 11.48 41067 15.42 14.15 33.73 42.64 18.85

Table 7.7: Comparison of MACO and SIS in delay optimization for multiple output
circuits.

MACO SIS % ImprovementCircuit
Area Delay Power Area Delay Power Area Delay Power

add2 31347 8.957 11.463 50787 11.77 14.63 38.28 23.90 21.64
mul2 18225 2.96 5.99 25272 4.33 7.16 27.88 31.57 16.30
cm42a 46170 6.396 15.267 43740 8.46 12.23 -5.56 24.41 -24.80
cm82a 48843 7.75 17.09 64638 19.01 18.94 24.44 59.23 9.78
mul3 74358 13.138 21.645 174231 31.66 47.16 57.32 58.51 54.10
add3 53703 12.979 21.484 118827 19.20 35.21 54.81 32.40 38.98
cm138a 38880 10.428 12.689 53217 15.84 14.69 26.94 34.15 13.60
con1 38394 6.241 12.654 40338 10.09 12.02 4.82 38.14 -5.30
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Figure 7.6: Results of IMACO with DOAPC for single outputs functions, normalized
to SIS.
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Figure 7.7: Results of MACO with DOAPC for multiple outputs functions, normal-
ized to SIS.
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The tables show that the improvement in delay range from 2.36% (circuit12)

up to 59.23% (cm82a). In addition to that, significant area improvement of delay

optimized circuit is also observed. The graphical view of these results normalized

with respect to SIS is given in Figure 7.6 and Figure 7.7 for single output function

and multiple output functions, respectively.

As can be seen from the tables and figures above, in contrast with AODPC,

the results of DOAPC is very positive. The experiments show that the results

obtained from DOAPC is better compared to the ones obtained from SIS in all cases.

The reason behind this is the following. As mentioned in Chapter 2, ACO can be

easily modeled as a shortest path finding problem. Since delay can be considered

proportional to the length of the path, ACO algorithm, which is the basis for MACO,

provides a good computational tool for delay optimization problems.

7.3 Comparison with other Techniques

In this section, the proposed algorithm is compared to some other ELD techniques.

This includes a GA-based ELD and SimE-based ELD.

7.3.1 Comparison with GAs

The proposed algorithm is compared to the existing GA-based technique. Table 7.8

shows the comparison of MACO and GA [7]. The test case used is the first ten
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randomly generated circuits. It should be noted that GA failed to deliver any

circuit bigger than those represented in the table.

The table shows that, except for circuit4, the proposed algorithm performs better

than GA in terms of area, delay and power. The highest improvement is obtained

in the case of circuit8, i.e., 90.29% area improvement, 78.41% delay improvement,

and 86.09% power improvement. Since circuit4 consists of one gate only, it can be

said that in general, MACO outperforms GAs.

Table 7.8: Comparison with GAs [7] technique in terms of area, delay and power.
Coello [7] MACO % ImprovementCircuit

Area Delay Power Area Delay Power Area Delay Power
circuit1 18954 6.92 6.61 12879 5.57 4.97 32.05 19.57 24.77
circuit2 21870 6.18 6.61 13122 5.18 5.28 40.00 16.13 20.06
circuit3 19926 4.34 5.15 10692 3.05 3.82 46.34 29.84 25.86
circuit4 1458 0.01 0.66 1458 0.01 0.67 0.00 0.00 0.00
circuit5 27945 8.76 7.89 11664 5.57 5.08 58.26 36.46 35.67
circuit6 40338 13.24 14.21 10935 3.34 3.82 72.89 74.77 73.13
circuit7 83835 21.74 28.85 12393 5.59 4.37 85.22 74.28 84.85
circuit8 75087 13.69 22.73 7290 2.96 3.16 90.29 78.41 86.09
circuit9 104004 20.25 30.76 15066 5.42 5.27 85.51 73.23 82.85
circuit10 97686 21.40 28.44 11178 5.42 4.06 88.56 74.67 85.72

Figure 7.8 shows the results of MACO algorithm for the given test cases. These

values are normalized with respect to the results obtained using GAs. It can be seen

that the area, delay and power of the solutions obtained by MACO are always ≤ 1.
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Figure 7.8: Comparison with GA: normalized area, delay and power are always ≤
1.

Comparison in terms of execution time is given in Table 7.9. The percentage of

improvement is ≈ 99%. The table clearly shows that MACO algorithm is superior

as compared to GAs in terms of execution time. This result is not surprising since

GAs is a population-based heuristic. The time needed to find the solutions depends

not only on the number of iterations but also the size of the population used.

Table 7.9: Comparison with GA [7] technique in terms of execution time.
Circuit Coello [7] MACO % Improvement
circuit1 8100 15.27 99.81
circui2 12240 15.17 99.88
circuit3 11052 14.67 99.87
circuit4 11160 3.50 99.97
circuit5 21132 16.97 99.92
circuit6 30780 14.83 99.95
circuit7 49068 16.10 99.97
circuit8 57240 12.70 99.98
circuit9 44784 83.21 99.81
circuit10 61704 78.96 99.87
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There exists other powerful iterative heuristics that have been used for solv-

ing optimization problem in VLSI design. One such heuristic is Simulated Evolu-

tion (SimE) [15]. Below, the proposed algorithm is compared to SimE-based ELD

technique [81].

7.3.2 Comparison with SimE

Table 7.10 and Table 7.11 show a comparison of the proposed algorithm with SimE-

based technique for area optimization and delay optimization, respectively.

Table 7.10: Comparison with SimE technique in terms of area, delay and power for
area optimization.

MACO SimE % ImprovementCircuit
Area Delay Power Area Delay Power Area Delay Power

circuit1 12879 5.57 4.97 12879 3.90 4.97 0.00 -42.75 0.00
circuit2 13122 5.18 5.28 13122 5.18 5.28 0.00 0.00 0.00
circuit10 11178 5.42 4.06 9963 6.42 3.33 -12.20 15.58 -21.98
circuit14 24786 7.25 9.20 23814 6.80 9.20 -4.08 -6.59 0.00
circuit16 12393 5.71 4.26 9720 8.50 4.30 -27.50 32.78 0.88
circuit17 10692 4.43 4.39 10692 4.43 4.39 0.00 0.00 0.00
add2 24300 11.48 9.96 24300 11.48 9.96 0.00 0.00 0.00
add3 49086 21.96 18.474 40265 26.73 14.83 -21.91 17.85 -24.57
mul2 12636 3.56 4.66 12636 3.56 4.66 0.00 0.00 0.00
mul3 59292 15.03 17.541 74358 13.14 21.65 20.26 -14.40 18.96
cm42a 38880 7.45 13.25 38456 9.44 12.60 -1.10 21.08 -5.17
cm82a 25272 10.45 9.96 25029 11.84 9.24 -0.97 11.78 -7.89
b1 13851 1.53 5.91 11206 2.91 2.78 -23.60 47.46 -112.45
con1 38151 6.698 13.741 30233 6.90 14.23 -26.19 2.93 3.44
rd53 35235 15.32 14.00 38073 14.75 15.34 7.45 -3.88 8.75
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Table 7.11: Comparison with SimE technique in terms of area, delay and power for
delay optimization.

MACO SimE % ImprovementCircuit
Area Delay Power Area Delay Power Area Delay Power

circuit1 14823 3.86 6.41 15360 4.20 5.80 3.50 8.14 -10.47
circuit2 17739 3.70 7.16 16870 3.88 6.90 -5.15 4.54 -3.70
circuit10 12393 5.32 4.48 13771 5.50 4.77 10.01 3.22 6.02
circuit14 30132 9.75 10.63 24786 7.25 9.20 -21.57 -34.52 -15.47
circuit16 13122 5.71 4.26 10340 7.60 5.22 -26.91 24.82 18.35
circuit17 12150 4.43 4.72 12354 5.30 5.38 1.65 16.47 12.23
add2 31347 8.957 11.463 35270 9.37 12.66 11.12 4.41 9.45
add3 53703 12.979 21.484 53703 12.98 21.48 0.00 0.00 0.00
mul2 18225 2.96 5.99 18225 2.96 5.99 0.00 0.00 0.00
mul3 74358 13.138 21.645 74358 13.14 21.65 0.00 0.00 0.00
cm42a 91854 7.072 32.885 42768 5.19 15.02 -114.77 -36.37 -118.97
cm82a 48843 7.75 17.09 55872 14.25 18.56 12.58 45.61 7.95
b1 14580 1.49 6.24 12745 2.08 7.05 -14.40 28.61 11.49
con1 38394 6.241 12.654 30233 6.90 14.23 -26.99 9.55 11.08
rd53 53946 15.45 19.00 40201 13.10 15.98 -34.19 -17.90 -18.88

It can be seen in Table 7.10 that in eight out of fifteen cases, SimE produced

better circuits in terms of area. The worst solution produced by MACO is obtained

for circuit16, where the area improvement is -27.5%. There are only two cases in

which MACO produced circuits having better area, namely rd53 and mul3 circuits.

These results support our previous observation. The sharing of common sub-

functions that should be established by the sharing of pheromone trail, is not working

as expected. It is believed that there should be a new method to incorporate the

sharing of sub-functions in addition to the pheromone trails. It will be interesting

to further investigate this idea.

On the other hand, MACO algorithm provides some positive results in terms

of delay optimization. As shown in Table 7.11, in nine out of fifteen cases, MACO
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provides better circuits in terms of delay. The highest improvement is obtained for

cm82a circuit. There are only three cases, in which SimE provides better results

in terms of delay. These results also support our previous observation in delay

optimization. Since ACO algorithm is basically a shortest path finding, MACO

works best for delay optimization.

7.4 Concluding Remarks

In this chapter, the results obtained using the introduced techniques were compared

with those obtained using the existing techniques. The proposed algorithms are

better in terms of design rate, quality of solution and execution time compared to

the existing ACO-based techniques. The proposed algorithms were also compared

to existing conventional tools, represented by SIS. It was observed that the area

optimization applied by the introduced algorithms performs better in most of the

cases, except for some multiple output circuits. However, the performance of delay

optimization of the proposed algorithms was better as compared to SIS.



Chapter 8

CONCLUSIONS AND FUTURE

DIRECTIONS

The dramatic increase in designer productivity over the past decade in the area of

VLSI (Very Large Scale Integration) circuit design can be attributed to the develop-

ment of sophisticated computer-aided design tools. The improvement in computer

aided design has been made possible by the advances in the field of logic synthesis.

In conventional logic design techniques, circuit designers begin with a precise

specification in the form of truth tables or Boolean expressions. These expressions

are manipulated by applying logic synthesis algorithms, such as factorization and

kernel extraction to minimize circuit representations. The outcome of logic synthesis

algorithms will be either in two-level, multi-level, or Reed Muller representations.

On the other hand, iterative heuristics work on larger space. Through the process
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of assemble-and-test, candidate solutions are built and evaluated. At the end, the

optimum solution could evolve from this process.

This thesis offered a perspective for the automatic design of digital circuits

through evolutionary techniques. The use of assemble-and-test via iterative heuris-

tics has enabled the sampling of larger search space in circuit design problems. In

addition, modern issues in digital circuit design, such as low power and high perfor-

mance are addressed.

8.1 Conclusion

In this thesis, ACO-based evolutionary logic design techniques have been intro-

duced. The performance of the introduced algorithms have been compared to those

of existing conventional and evolutionary techniques.

Here are the concluding statements regarding the thesis work:

1. The introduced techniques successfully address the issue of circuits design,

considering modern design issues such as area, delay and power through the

use of iterative heuristics, multiobjective optimization and fuzzy logic.

2. It was observed that the introduced techniques have outperformed some of the

existing techniques in evolutionary logic design. The comparison is based on

the quality of solutions and time requirements.
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3. Comparison with existing conventional techniques (represented by SIS) showed

that the introduced techniques produced better quality results in terms area,

delay and power for most of the test cases.

4. The improvement obtained using the introduced techniques in delay optimiza-

tion is better than area optimization.

8.2 Future Directions

Some possible directions for future work could be stated as follows:

1. Investigation of how to incorporate the sharing of sub-functions into the ACO

algorithm.

2. Investigation of the incorporation of some rules from logic synthesis domain

such as kernel extraction in order to improve the performance of the introduced

techniques.

3. Investigation of the use of some other iterative heuristics and possible hy-

bridization scheme can be performed in order to further improve the quality

of solutions.

Although the experiments have shown some good results, currently, the goal of

evolutionary logic design system is still far. The most stumbling block for evolu-

tionary techniques is the time taken to produce solutions. Approaches to improve
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the execution time of current techniques such as parallelization are thus important

to explore. In addition, the advance of technology could allow us to use faster and

better machine as the platform for evolutionary logic design systems. Thus, the

dream of automated and efficient circuit design systems can be reached.



Appendix A

File Format and Circuit Used as

Test Cases

The following are the format of the required input files and the list of circuits used

as test cases during the experiments.

A.1 Library File Format

The gates’ parameters are obtained from CMOS MOSIS 0.25 m library. These

includes the following information:

1. The number of transistors (TRCOUNT)

2. The size of the gate (AREA)

3. The switching delay of the gate (BDELAY)

4. The input capacitance (CIN)
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5. The output capacitance (COUT)

6. The load factor (LF)

Except for inverters and wires, there is more than one value for input capacitance.

In this regards, the higher value is considered. The same applied for the load factor.

The following shows the format of the library files used.

<GATE NAME> <TRCOUNT> <AREA> <BDELAY> <CIN> <COUT> <LF>

Using the above format, the library file considered in this thesis is given next.

WIRE 0 0 0 0 0 0

NOT 2 1215 3 2.661 0.005 516

AND 6 2187 9 2.661 0.005 553

OR 6 1944 11 2.661 0.004 567

XOR 10 3159 12 5.321 0.006 688

NAND 4 1458 5 2.661 0.007 444

NOR 4 1458 7 2.661 0.005 694

XNOR 10 2916 12 5.321 0.004 551

A.2 Input File Format

The proposed algorithms use PLA files as input. The parameters required by the

proposed algorithms are then generated automatically. However, if the circuits’

specification is not in the form of PLA files, the input file required by the algorithm

must contain the following information.
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Field Description

maxrun The number of maximum runs to be performed by the algorithm

maxiter The number of maximum iterations for a single run

objtype The optimization objective of the current action.

(0 = gatecount, 1 = area, 2 = delay, and 3 = power)

ifdweight Static (0) or dynamic (1) weight is employed

weight The value Wf at the beginning of the iteration

ifphase Positive (0) or negative (1) phase is used.

In positive mode, all literals are uncomplemented. In negative mode,

some literals can be in the complemented forms, depending on its

functional fitness. (not used, default = 0)

dataset The number of input dataset. Useful for generating truth table for

arithmetic circuits such as adders, multipliers. For example, a 2-bit

adder has dataset value equal to 2. (not used, default value = 1)

numvar Number of inputs

numout Number of outputs

invin Set to ‘1’ if complemented literals are used in addition

to uncomplemented ones. (default = 0)

row The number of rows at the beginning of the iteration

level The number of columns at the beginning of the iteration

iflocal Set to 1 if local search is employed (not used)

gatemode The type of library used. Values are within [0-7]

gcmax Set the maximum number of gates allowed for a circuit (not used)

gcmin Set the minimum number of gates allowed for a circuit (not used)

numant Set the number of ants used
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Field Description

maxgen Set the maximum number of generations of ant

gamma Set the constant for pheromone update calculation

rho Set the pheromone evaporation rate

range tau Set the maximum range of pheromone values allowed

ttf[0] The string of truth table of the first output of the circuit

ttf[1] The string of truth table of the second output of the circuit (if available)

ttf[k] The string of truth table of the k+1 output of the circuit (if available)

A.3 Randomly Generated Circuits

There are 20 randomly generated circuits used in the experiments. These circuits are

listed below.

circuit input(s) output(s) circuit input(s) output(s)
circuit1.pla 4 1 circuit11.pla 5 1
circuit2.pla 4 1 circuit12.pla 6 1
circuit3.pla 4 1 circuit13.pla 5 1
circuit4.pla 2 1 circuit14.pla 6 1
circuit5.pla 4 1 circuit15.pla 6 1
circuit6.pla 4 1 circuit16.pla 6 1
circuit7.pla 4 1 circuit17.pla 5 1
circuit8.pla 4 1 circuit18.pla 6 1
circuit9.pla 6 1 circuit19.pla 6 1
circuit10.pla 6 1 circuit20.pla 6 1

A.4 Benchmark Circuits

There are 14 benchmark circuits used in the experiments. These circuits are listed below.
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circuit input output circuit input output

majority.pla 5 1 b1.pla 3 4

xor8.pla 8 1 C17.pla 5 2

xor9.pla 9 1 cm138a.pla 6 8

add2.pla 5 3 cm42a.pla 4 10

add3.pla 7 4 cm82a.pla 5 3

mul2.pla 4 4 con1.pla 7 2

mul3.pla 6 6 rd53.pla 5 3
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