INFORMATION TO USERS

This manuscript has been reproduced from the microfiim master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

%ﬁ&&@?&ﬁﬁﬁ&iﬂ%ﬁe%&i&&&&l&&&i&@dﬁﬂﬂ%&_

5%

NEW STRUCTURAL SIMILARITY
METRICS FOR UML MODELS

1S

BY

RAIMI AYINDE RUFAI
A Thesis Presented to the
DEANSHIP OF GRADUATE STUDIES

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

COMPUTER SCIENCE
JANUARY 2003

TR 36 s 0 b ae 36 Ae 3k Je gt SR AR e doge g dodede e dodgode dode do e ge ol

P P P P P A P A P A P A A PP

/2 S SE e T S SE SR Se TP S e e S Se S SE SE S S Se e S e S e

UMI Number: 1413039

®

UMI

UMI Microform 1413039

Copyright 2003 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, M| 48106-1346

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN 31261, SAUDI ARABIA

DEANSHIP OF GRADUATE STUDIES

This thesis, written by RAIMI AYINDE RUFAI under the direction of
his thesis advisor and approved by his thesis committee, has been
presented to and accepted by the Dean of Graduate Studies, in partial
fulfillment of the requirements for the degree of MASTER OF

SCIENCE IN COMPUTER SCIENCE.

Thesis Committee

7 //

Dr. Moataz AhmeJ @)ﬁrman)
—_— =)
s
Dr. Muhammad Alsuwaiyel (Member)

___.Q@E%e_b

Dr. Jarallah Alghamdi (Member)

Depanmew

Dean of Graduate Studies

[9- 3-2003

Date

Thesis Abstract

NAME: Raimi Ayinde Rufai

TITLE: NEW STRUCTURAL SIMILARITY METRICS FOR UML
MODELS

MAIJOR FIELD: COMPUTER SCIENCE

DATE OF DEGREE: MARCH 2003

This thesis proposes a conceptual framework for composing a multi-view
similarity metric from a set of similarity metrics, each focusing on a
particular view of software. Software has at least three views: structural,
behavioral, and use-case views. This thesis also proposes a set of structural
similarity metrics for Unified Modeling Language (UML) models. The
design and implementation of a proof-of-concept UML model comparison
tool based on these structural similarity metrics are reported. Resuits from

conducted case studies demonstrate the potential of the proposed metric set.

..

iii

Al) s

o 1 - ae)
JUML z3sal Sl il sana Gaylie @ 4l 3l o gie
,g-\iﬂ Gulall 4 gle : adaddl

2003 %z A3 &S

itie (e Ailida Ao gana (e (5)l danla LIS (i 0 oS3l G) gucd T} Sial 134 sy
20 IV e gl il (5 9 L V) el gzl o GaBaran uy) (e 5S US gl
e As pana ool 13 2 500 eS| Jlandion) Al (5) 648 s (5 3, Ay 5) 15 00
§osadll Jua bl 8ol Bl g asanal (5 g3y o Jae) 5 UML g 3adl 4ladl gLl puplia
o 3aa) alitid) sl o Al LD Guplid o3 el UML g3 4 jial

ikl Gagliall 038 Jlanid AglSa) i ciadd

polall (B phualdl Ay
ol s Jp il 2gh el Gl

2003 i

iv

Table of Contents

Thesis Abstract iii
D h Lk . iv
Table of Contents . v
List of Figures vii
List of Tables . viii
Acknowledgments Jx
Introduction..............c....... 1
1.1 Software Reuse 1
1.1.1 Reusable Software Artifacts 3
1.1.2 Software Reuse Processes 6

1.1.3 Software Retrieval..........coeeeerrerrerrireereneeencereeeesseeeneesesssessanssesees 7

1.2 Software Product Lines 9
1.3 Motivation 10
1.4 Main Contributions 11
1.5 Organization of Thesis 12
Literature Survey.. 13
2.1 Introduction . 13
2.2 Related Work 13
2.2.1 Metric-Based Techniques 14
2.2.2 Deduction-Based Techniques 24
2.2.3 Classification-Based Techniques 26

2.3 The Unified Modeling Language (UML) 29
Conceptual Framework 35
3.1 Introduction 35
3.2 Multiple Views of Software 36
3.3 Fundamental Assumptions 37
3.4 Metric Composition and Cascading 39
3.5 Computing the Inconsistency Penalty 41

Structural Similarity Metrics . 43

4.1 Introduction 43
4.2 Algorithms for Class Model 43
4.2.1 Semantic Distance Measure .44
4.2.2 Shallow Semantic Similarity Metriccceeueeenenee 47
4.2.3 Deep Semantic Similarity Metric..........ccecvrucrruernnnees - 51
4.2.4 Signature-Based Similarity Metric 54
4.2.5 Relationships-Based Similarity Metric ..58

4.3 Implementation 60
Evaluation 65
5.1 Introduction .65
5.2 Theoretical Validation...... 65
5.2.1 Theoretical Validation of SSSM .66
5.2.2 Theoretical Validation of DSSM 67
5.2.3 Theoretical Validation of SBSM 69
5.2.4 Theoretical Validation of RBSM 70

5.3 Empirical Validation 71
5.3.1 Our Intuition about Similarity .72
5.3.2 Goals, Hypothesis and Theories 73
5.3.3 Experiment Plan 74
5.3.4 Results 79
Conclusion 112
6.1 Introduction 112
6.2 Summary and Contributions of Thesis 112
6.3 Limitations and Further Work 113
Bibliography 116
Index 124

Appendix A : Tool Design 127

vi

List of Figures

Number Page
Figure 1: A Software Retrieval System 8
Figure 2: Tree Structure of Diagram Categories . 39
Figure 3: Metric Cascading 40
Figure 4: The Filter Metaphor .62
Figure 5: The Composite Filter Pattern Applied to Class Similarity Metrics........... 64
Figure 6: Comparing JDK versions using SSSM 81
Figure 7: Comparing ANT versions using SSSM..... . 87
Figure 8: Comparing JDK versions using SBSM 90
Figure 9: Comparing ANT versions using SBSM 97
Figure 10: Comparing JDK versions using RBSM .. 100

Figure 11: Comparing ANT versions using RBSM 107

vil

List of Tables

Table 1: Summary of Metric-Based Software Component Retrieval Techniques...23

Table 2: Four-layer Metamodeling Architecture [77]......... 31
Table 3: Table of features for different WordNet-based similarity measures.......... 45
Table 4: Experimental Design for Hs . 76
Table 5: Comparing JDK and J2SDK Versions using SSSM 80

Table 6: Correlation between proportionate changes in number of classes and SSSM

values in the JDK versions 84

Table 7: Correlation between proportionate changes in number of classes and SSSM

values in the ANT versions 85
Table 8: Comparing Apache ANT Versions using SSSM .. 86
Table 9: Rank Correlation Computation for SSSM 88
Table 10: Comparing JDK and J2SDK Versions using SBSM............couervenennen. 89

Table 11: Correlation between proportionate changes in # of classes and SBSM

values in the JDK versions... 93

Table 12: Correlation between proportionate changes in # of classes and SBSM

values in the ANT versions 94
Table 13: Comparing Apache ANT Versions using SBSM 96
Table 14: Rank Correlation Computation for SBSM 98
Table 15: Comparing JDK and J2SDK Versions using RBSM 99
Table 16: Correlation between proportionate changes in number of classes and

RBSM values in the JDK versions 103
Table 17: Correlation between proportionate changes in number of classes and

RBSM values in the ANT versions 104
Table 18: Comparing Apache ANT Versions using RBSM 106
Table 19: Rank Correlation Computation for RBSM 108
Table 20: Comparing JDK against Apache ANT 109
Table 21: Distribution of Naming Anomalies 111

viii

Acknowledgments

All thanks are due Allah first and foremost for his countless blessings.
Acknowledgement is due to King Fahd University of Petroleum & Minerals

for supporting this research.

My unrestrained appreciation goes to my advisor, Dr. Moataz Ahmed, for all
the help and support he has given me throughout the course of this work and
on several other occasions. I also wish to thank my thesis committee
members, Dr. Muhammad H. Alsuwaiyel and Dr. Jarallah AlGhamdi, for
their help, support, and contributions. I simply cannot begin to imagine how

things would have proceeded without their help and support.

I would also like to thank Prof. David Rine (George Mason University),
Prof. Emesto Damiani (University of Milan), Dr. Jacob Cybulski (Deakin

University), and Dr. Philip Bernstein (Microsoft) for valuable discussions.

I also acknowledge my many colleagues and friends who have helped with
this work in some way. Especially noteworthy is Sohel Khan, for valuable

discussions.

Finally, I wish to express my gratitude to my family members for being
patient with me and offering words of encouragements to spur my spirit at

moments of depression.

Chapter 1

Introduction

1.1 Software Reuse

One of the earliest works on software reuse is the seminal paper of Mcllroy
[61], which was an invited talk at the 1968 NATO Software Engineering
Conference. In that talk, Mcllroy made two important observations. First, he
observed that the software industry was far from being industrialized, in the
sense that mass production techniques for software were lacking. Second, he
noted that there was no notion of a software component sub-industry, i.e.
software houses that develop reusable software components. These early
ideas have fueled the interests of many later researchers. Later works
[100])[51][601{9]1[67] have developed these ideas into what is now known as

the field of software reuse.

Different authors have coined their own definitions of the term, software

reuse. The following are some notable ones:

e Software Reuse [66] is the process whereby an institution defines a
set of systematic operating procedures to produce, classify and
retrieve software artifacts for the purpose of using them in its

development activities.

e Software Reuse [51] is the process of creating software systems from

existing software rather than building software systems from scratch.

A commonality of these definitions is that software reuse is a process and
that the process has software artifacts as one of its inputs. What is not
obvious from the definitions is that software reuse is also a field, a discipline
[4] and a paradigm of software development [96]. These extensions are well
known, for instance, Sommerville [96] defines software reuse as “an
approach to software development which tries to maximize the reuse of
existing software.” However, these extensions are not of interest to us in this
work. Of interest to us are the software reuse process and the development
artifacts that form the input to that process. Before proceeding further, we
would like to address the fundamental question: Why should we reuse

software?

Software reuse has clear benefits, although it does suffer from a few
problems too. Apart from reduction in overall development costs, other reuse
benefits include increased reliability, reduced process risk, effective use of
specialists, standards compliance, and accelerated development [96]. Reuse
problems include increased maintenance costs, the not-invented-here
syndrome, lack of tool support, difficulty of maintaining a library of reusable

artifacts, and the cost of locating and adapting reusable artifacts [96].

A step towards a solution to the last three problems, italicized above, is an
effective software retrieval system. Retrieval is one of the activities in a
software reuse process, which takes in a query as input and returns reusable
artifacts (or objects of reuse) as output. Because the goal of software
retrieval is to return reusable software artifacts, we first introduce reusable

software artifacts in the sequel, before going on to introduce reuse processes.

1.1.1 Reusable Software Artifacts
It is customary in the software reuse literature to make the distinction
between the generative or reusable processor approach and the building
blocks approach. In the generative (or reusable processor) approach,
developers reuse development processors such as code generators, wizards,
or high-level specification language interpreters. In the building blocks
approach, the objects of reuse are the products of previous software
development efforts (called software artifacts) such as source code, design,
requirements specification, and analysis models. In this work, our focus is on
the building block approach. In the building blocks approach, different types

of reusable artifacts may form the input to the reuse process.

The following are classes of reusable artifacts:

e Domain Models: These can be reused at the earliest stage of the

software development process, the domain analysis stage. Very few

systems exist that exploits the reuse of artifacts at this stage. An
example of such a system is the work of Blok and Cybulski [10].
Another is the generic application frames in the ITHACA
development environment [24]. Yet, a more recent example can be
found in the software product lines approach, which is often touted as

the newest silver bullet for actualizing software reuse goals

(871[12]{17][38].

Requirement Specifications: These artifacts can be reused during the
requirements analysis phase of the software lifecycle [19]. An
example of how a requirements specification reuse may be assisted
by a software tool is described in a recent paper by Cybulski and

Reed’s [18].

Design: These artifacts can be reused during the design phase. An
example of a design repository is the SPOOL Design Repository

[45]. Another is the work of Lee and Harandi [55].

Documentation: All documentations, both technical and non-
technical documentations about a development project and the

product can be reused [87][12].

Test Data: The test data generated for one project can be reused in

another project if they are sufficiently similar [87].

e Code: Source is perhaps the most often reused part of a software
product [19]. Examples of code reuse abound around us. Works on
automated support for code reuse include works of Michail and

Notkin [64] and Sarireta and Vaucher [91].

We refer to the first three items on the above list as early-stage reusable
artifacts and refer to the rest as later-stage reusable artifacts. Early-stage
reusable artifacts are particularly beneficial, because once a match is found
for them, related later-stage artifacts for the match can also be reused. For
instance, if an analysis model for a previous project A contained in a project
repository is found to match the analysis model of the current project (the
query), then its design, code and documentation may be reused in the current

project.

In this work, our focus is on the early-stage reusable artifacts of the software
development lifecycle that are represented using the Unified Modeling
Language (UML). The UML is a language for visualizing, specifying,
constructing, and documenting the artifacts of a software-intensive system
[11]. We refer to the UML representations of these artifacts as UML models.
In our work, UML models form an input to the reuse processes, which we

discuss in the sequel.

1.1.2 Software Reuse Processes

In the context of software reuse, there are three processes to consider:

Developing for reuse [67][10]: This refers to the process of

developing reusable artifacts.

Developing with reuse [67][10]: This refers to the process of
developing with reusable artifacts. It involves locating reusable
artifacts, possibly modifying them and then integrating them into the

current system.

Reuse within development [104][25]: This marks a paradigm shift
from the preceding process. In this paradigm, reuse is inherently part
of the development process. Task-relevant components from the
repository are automatically displayed in the programming

environment.

Because details of the first are outside the scope of this thesis, we invite

interested readers to consult references [67]{10]. While our work may be

directly relevant to the remaining two, we shall assume in the rest of this

work that our target is “developing with reuse.” Developing with reuse

consists of the following activities [67]: locating reusable artifacts (retrieval),

assessing their relevance to current needs (assessment), and adapting them to

those needs (adaptation). Locating reusable artifacts often involves some

form of comparison of a query with candidate models in the repository.
Assessment and adaptation shall not be discussed further, since these are

outside the scope of our work. In the sequel, we discuss software retrieval.

1.1.3 Software Retrieval
Because the volume of reusable artifact retrieval systems available in the
literature is daunting, frameworks and taxonomies are needed to understand
the works and put them in proper perspective. In the next chapter, we shall
present a survey of related work. Meanwhile, we present an abstract model

of a software retrieval system.

In order to reuse a software artifact, we first have to locate it. Locating
artifacts is essentially a search problem. In every search, a search space, a
search goal, and a comparison function are always defined. In software
retrieval, the search space is known as the software repository. The search
goal is called the query. The comparison function is called a similarity
metric. Repositories often house a large collection of artifacts or
representations of them (called surrogates [65]). How well the retrieved

artifacts match the query depends on the soundness of the similarity metric.

In this work, we, first, investigate existing similarity measures between query
artifacts (i.e., the artifacts described by the query) and artifacts in the

repository and then propose a structural similarity metric for UML models,

while laying the foundations for a multi-view similarity metric (i.e. a

similarity metric that considers multiple views of software in its similarity

assessment).

Retrieval System

Figure 1: A Software Retrieval System

It is noteworthy to mention that the reuse process as described thus far can be
likened to a traditional library system. The repository is the library building.
The artifacts correspond to the monographs, and other library materials
stored in it. Retrieval may be likened to borrowing. Because of this
similarity, some authors have described these approaches to practicing
software reuse as library-based reuse approaches (e.g. see Martin Griss’

paper [39] and Rine’s [87]). These authors have often criticized the so-called

library metaphor of reuse and consider it as a mistake [39][87]. A relatively
newer metaphor for software reuse is now regarded as the magical wand that
will actualize all the goals of software reuse. The metaphor is that of an
assembly line in a manufacturing factory. This factory metaphor of software
development is more commonly known as the software product lines (SPL)

approach, which the next section briefly introduces.

1.2 Software Product Lines

In this section, we examine the software products lines approach, which has
more or less become the consensus of today’s software engineering

community as the most effective way to practice software reuse [12](87].

Over the last decade, there has been a paradigm shift from library-based
reuse programs, such as what we have presented so far, towards the software
product lines (SPL) approach [39][87]. A software product line is a set of
software-intensive systems that share a common, managed feature set
satisfying a particular market segment’s specific needs or mission and that

are developed from a common set of core assets in a predefined way [17].
Organizations practicing SPL have often identified two development roles:
domain engineering and application engineering [72]. Domain engineering is

the development and maintenance of the shared assets across a product line,

10

while application engineering is the development of products in the product
line using the shared assets. The former is analogous to development for

reuse, while the later is to development with reuse (cf. 1.1.2).

Organizations needing to migrate to a product line approach, will often have
to carry over their set of pre-existing assets, a process known in the SPL
literature as asset mining [27][8](7]. Asset mining usually occurs after an
organization divides its products into groups based on the size of the
common feature sets. This is with the aim of defining the product families of

an organization (scoping [92]).

Scoping also occurs at the asset level (asset-centric scoping [92]) which
means deciding what assets should be part of the shared product line
infrastructure. Some of these assets may have to be developed from scratch
or purchased from a vendor or mined from a set of legacy assets. Asset
mining [27][8][7] involves finding out what assets should be carried over
from among the preexisting assets into the shared asset base for a particular

product family.

1.3 Motivation

As noted earlier, the problems with reuse include lack of tool support,

difficulty of maintaining a library of reusable artifacts, and the cost of

11

locating and adapting reusable artifacts. These have long been recognized as

the fundamental problems with reuse [61][51]}[9].

Even though the UML has become more or less the de facto standard
modeling language for representing analysis as well as design artifacts [49],

researchers have done little in proposing a similarity metric for UML models

[88].

Such a metric would have clear benefits. Besides forming the comparison
function for a retrieval system, a similarity metric can also serve the need of
a designer who wants to verify the code developed by his programmers
against the design (tracing) [3](96]. The steps involved in the case of tracing
would be to first reverse-engineer the source code into a UML model. Our
metric can then be used to match the reengineered model to the design, in
order to detect possible inconsistencies. Further, the metric will help in the
clustering of products that will be migrated to the same product line. The
metrics can also be used in asset mining. These clear benefits have fueled our

motivation to investigate this problem.

1.4 Main Contributions

The main contributions of this thesis work are the following:

e Conducting an extensive critical survey.

e Proposing a conceptual framework for composing multi-view
similarity metric from a set of similarity metrics, each of which

focuses on a particular view of software.
e Proposing a set of structural similarity metrics for UML models.

e Designing and building a proof-of-concept UML model comparison

tool based on these metrics.

e Conducting case studies to demonstrate the soundness (or lack

thereof) of a subset of the proposed metrics.

These findings have been reported in this thesis.

1.5 Organization of Thesis

The rest of this thesis is organized as follows. Chapter 2 gives an extensive
literature survey of related work. Chapter 3 presents the conceptual approach
that we have taken. Chapter 4 presents implementation details of the metrics
we have developed. Chapter 5 gives the result of experiments. Chapter 6

gives the conclusion and further work.

Chapter 2

Literature Survey

2.1 Introduction

In this chapter, we discuss related work and introduce the Unified Modeling

Language (UML), along with its cross-product models interchange problem .

2.2 Related Work

In this section, we present related work we have found in the literature. We
discuss each work with respect to the following attributes: artifact

representation, query representation, and matching protocol.

Artifact representation refers to the abstraction that represents the artifact in
the repository. Query representation refers to the structure of the query sent
to the retrieval system. Sometimes, both representations are identical, but not

always. By matching protocol, we mean how queries are matched to

artifacts.

Since the target of our work is the matching protocol, we use it to classify
previous works into the following classes: metric-based techniques,
deduction-based techniques, and classification-based techniques. Metric-

based techniques refer to matching artifacts based on a measure of similarity.

14

Deduction-based techniques rely on deductive reasoning to determine
matches. Classification-based techniques partition artifacts into cluster
hierarchies based on domain ontology, allowing matching artifacts to be
found by navigation through a unique path in the hierarchy. The metrics that

we shall be proposing in this thesis belong to the first category.

In the following sections, we discuss related works using this classification.

2.2.1 Metric-Based Techniques
Some of the earliest works on metric-based matching of artifacts were for
matching source codes. Ottenstein [79], in 1976, published his work on
comparing FORTRAN programs for similarity. He used the four basic
Software Science measures proposed by Halstead [40] as a measure of
program similarity. Grier [37] reports an approach, in which he uses twenty
different measures (Halstead’s inclusive) for judging Pascal program
similarity. Other works of this nature that appeared later include those of
Aiken [1], Whale [101], Verco and Wise [99], and Prechelt ez al. [83]. In all
these works the artifact representation as well as the query representation is
the source code. All these works are useful, for the purpose of which they
have been designed: detecting plagiarized source codes. However, this is not
very useful to the reuse community as it might sometimes be more cost-

effective to build source code from scratch than having to go through the

15

time consuming activities of code understanding and retrofitting. In the next
paragraph, we give some details of the Prechelt et al. approach since it is the

latest and in a sense represents the state of the art in source code matching.

The work of Prechelt et al. [83] describes a tool (called JPlag) for detecting
plagiarism among programming assignment submissions. JPlag starts out by
converting the programs to be compared into an intermediate representation
(token strings). These token strings are compared in pairs for determining the
similarity of each pair. The lengths of the maximum matchings discovered
are used to compute the degree of similarity using the equation below
(Equation 1). The worst-case complexity of the comparison algorithm is
o).

Z.Zlength
|A|+]B|

where A and B are programs to be compared for similarity. This algorithm

sim(A,B) =

has good computational complexity. However, it is aimed at comparing
source code to source code. Given the goal of the authors is to detect
program plagiarisms, their approach is barely suitable for comparing models

that exist at a higher level of abstraction.

Lee and Harandi [55] proposed an approach to retrieve domain models and
design components from a reuse repository. Their representation of design

models and components is a two-part representation. For convenience, we

16

refer to both as designs. Lee and Harandi represent each design as a DFD and
an ER diagram, where the DFDs represent the process component and the
ER diagrams represent the data component. Lee and Harandi define a
mapping from this representation to the object model by considering each
data store in the DFD and entity types in the ER diagrams as an object type.
The attributes from the ER diagram form the attributes in the object model.
Transformations from the DFD diagrams represent operations in the object
model. Further, Lee and Harandi store these designs in a knowledge base,
which also contains some background knowledge. The background
knowledge includes a basic object lattice, a datatype lattice (i.e. an isA
hierarchy), and is-part-of hierarchies for composite types. Lee and Harandi
define a distance metric [56] as follows:

SIM az (MaxScore,,,, ., —ObjectScore) + -
- B Z (MaxScore,,,,,, — AttributeScore) +1

where o and P are weights attached to object type similarity and attribute-
based similarity respectively; ObjectScore is a score to indicate the degree
of match between the two object types; AttributeScore is a score indicating
the degree of match between the attributes of the two object types.
MaxScore pject_nype is computed as the maximum of the following two: length
of the longest isA path in the object type lattice and the maximum number of

attributes expected in an object type. The MaxScorequripue is computed as

17

I+length of the longest path in the data type lattice. It is interesting to point
out here that Lee and Harandi have not considered operations in their

distance assessment.

Girardi and Ibrahim [35] developed a tool called ROSA (Reuse Of Software
Artifacts) for automatic indexing and retrieval of reusable software artifacts.
Users of the tool, both indexers and retrievers give natural language
descriptions of the reusable artifacts. These are then converted into frame-
like representations. Retrieval is achieved using a similarity measure (shown
in Equation 3) that compares the frame representations of queries with those
of components stored in the repository. Every component c in the repository
is represented by a set of natural language descriptions. Each such

description d, has a number of interpretations, I.

S(g.0)= mh%x(Y w,.sc_closeness(SC,;, SC.y;)J 3

VjESC 4y SCosy

A query, g, is usually given in a single description, k, which could have a set
of interpretations, j, too. Equation 3 above shows their metric between query
q and component c. w; represents the weight attached to the interpretation j.
The function sc_closeness computes the similarity between two

interpretations.

18

The work of Damiani et al. [22] does capture some semantic information and
takes care of synonyms by incorporating a thesaurus into their matching
model. Their representation for a component is a software descriptor [22]).
Their technique is interesting because it does recognize the fact that the
process of component retrieval is fraught with uncertainty. Conceptually, the
notion of applying fuzzy reasoning techniques [48] to handle the inherent
uncertainty in feature terms is appealing. However, Damiani et al. have used
singleton fuzzy sets. This way, their work more or less reduces to using crisp
values for fuzzy linguistic variables. Although good empirical results are
currently being obtained from their system, we are optimistic that when the
system is modified to use non-singleton fuzzy membership functions, even

better results will be possible.

Sarirete and Vaucher [91] proposed a similarity measure based on the
semantic relation between the words that identify the concepts in the object
model. WordNet, a widely available computer thesaurus, has been used to
guess the semantic relations between terms. There are three problems with
this approach. First, it concentrates only on the static view of a software
artifact (the class model) and ignores all other views. Second, the approach
as described in their paper is computationally intensive. Third, the inherent

ambiguity of natural language and the chance that developers and analysts

19

may not always choose descriptive names can limit effectiveness of their

approach.

1 N,and N, are identical

Sim(N,,N.) Vo N,and N, are hypernyms; n = level berween concepts
im(N,, =4 7°
bl l- Y. NandN, are synonyms; d = number of common concepts

-1 N,and N, are antonyms

The work of Antoniol et al. [3] has the goal of improving code traceability
by extracting design information from source code and then comparing it
with the original design. The output is a measure of similarity associated to
each matched class, plus a set of unmatched classes. Both the initial design
and that extracted from the source code are represented in a custom OO
design description language called AOL (Abstract Object Language).
Matching of design classes with code classes reduces to textual matching of
attribute and method names using string edit distance. Matching class names,
attribute names and method names may be perfect for the goal of tracing
design into code, but can hardly serve the purpose of matching models in a

sound way.

Michail and Notkin [64], borrowing heavily from the field of Information
Retrieval (IR), represents components (which are mainly modules and
functions) as a vector of weighted terms. Thus, a component D; will be

represented as the vector of pairs, T; = {(t;;, wir), (ti2 wi2), (i3 wi3), -..}

20

where t;; is the j-th term describing the component D; and w;; is its weight.
This representation is identical with that used in the SMART Retrieval
System [89]. They compute a measure of similarity using an unnormalized
variant (equation 5) of the cosine similarity measure (equation 6) of Salton

and McGill [89].
S;; =2, wiOw, () s
D w,(O)w; (1) S

Sii = =
! \[Z w? (t).Z wi(t)

The problem of obtaining terms and generating weights using frequency

analysis techniques make this representation nontrivial [13]. One
disadvantage of this similarity measure is that it requires that terms match
exactly. Consideration is not given to synonymous term. One improvement
to the representation is the various kinds of faceted and controlled

vocabulary schemes and the incorporation of some kind of thesaurus.

Blok and Cybulski [10] proposed a method of matching UML models by
means of their sequence diagrams. Event vectors are used to represent
sequence diagrams. In other words, each UML model is represented by the
set of event vectors that represent its sequence diagrams. Although, an event
vector could simply be represented by a sequence of methods calls made in a

particular sequence diagram, the authors have not chosen this option because

21

they believe computing semantic distance between the events would be
computationally expensive. Instead, they have chosen to obtain it by a series
of steps. First, all events in the domain are assigned to different clusters
based on their semantics. Events from the query model are also assigned to
clusters. Numeric identifiers are used to name clusters. An event vector is the
vector of clusters to which its events belong. The event vectors in the query
model is extracted and matched with likely candidates from the repository
using the metric shown below. Because determining likely candidates can be
hard, the authors have employed the following heuristics. First, they sort all
the event flows of a use case in increasing order of their length, i.e. in terms
of the number of events. Then, they take the first use case and then find a
match for it. This heuristic will prevent having to compare every use-case in
the query model to every other ones in the target model. This heuristic

however does not always produce the optimal matchings [20].

Y similarity(Q,,, D,,.I)

similarity(U,V) ==L 7
x
4.4
similarity(Q,D,I) =—— = = 8
DG.d2).Y G.q2)
c=1 c=l

The first equation defines the similarity metric for matching the query model

22

U and a model V from the repository. Since there will be several use-cases
within each model. The number of use-cases matched depends on the size of
the smaller model (as measured by the number of use-cases), i.e. x =
min(|U|,|V|). Q.: and D,, denote the event vector ¢ from query use case, U and
the event vector ¢ from the use-case, V, from the domain model respectively.
I is the importance vector, computed from the frequency of occurrence of a
cluster in a domain model. The second equation defines how the similarity

between events vectors is computed.

The following table summarizes the works presented here and states their

limitations.

{=2 (£
I Grn<

sjopow ugisap 1o}
YIOM OS|© PINOY) ‘SI0199A
1U9A9 Se pajuasasdas

*pa1apISU0d = =(1'q 'O) s are sjopows siskjeue | [01] 8661
10U 918 S[apow r'p’b ”W puv utewiop jo swei3eip ‘1§sinqLD
sSe[o Inq “TAIN ' O] 198J1MIE SB JWeS aouanbas pue sased as} pue yoig
TAN iv9l 6661
10U ‘Suyorew / d r SuL ‘uyIoN
Suwns a5p () s (n)'m N ="g paiyStom Jo 101997 suonduny pue SAINPORN | pue [IYdIA
swktioun ain Ty pun'n 1-
sidasnos uowmns fo saqumi = p susuouss am typuo'n Y -1 -
sidasnins uramiaq jaaa) = u ‘suuaad ey ain 'y pun'y e =CN"Ns (16] L661
P219PISU0D SI 1pauapt am gy pun'N 1 ‘fayoneA
sjapow ssepd AJuQ 3p0I 9210§ sjopow sse[) | pue eloaes
Sjopowt
01 suondisosop et (W
“IN poos T PSSR iy . ‘sapows siseue | (5€) 5661
oni8 i saxapur | | (08 D8)ssauas0pd ™ os .EN xew = (2b)§ satsonb pue ‘uSisop ‘utewop ‘wyeiq)
9y} sownssy 23enSue [eimeN Jo suoneuasasdoy IN | pue ipreno
14+ (210082mqrunry — """ a1005x0p) g spppow udtsop | [S¢] €661
- = WIS apow udisa ue sis{[oue ‘urewio ‘ipueay,

2= 129(qo _ po Isap p ISA] : p p H
aoN| - +(24005122/90 - 205op) Lo A1onb yg pue q4q | Jo swesSelq A PURQAA | PR odT
lgl+lvi (3]
9p02 30nos = (g'v)uus 200z “Iv
01 Kjuo sanddy 1§i8ua) N.N 3p0y) 90IN0S apop oasnog | 12 1jaydasg

uoneI] P uogjejuasaaday A1and ad4], ey oM

£C

sanbuyaa], (8AaL1)9Y Juauoduio)) AIBM)JOS PIsEg-OLIIJA] Jo Ateurung 3 3[qe,

24

2.2.2 Deduction-Based Techniques
Perhaps, one of the earliest works on deduction-based retrieval is Rich and
Waters’ work on the Programmer’s Apprentice project [86]. They have
represented high-level programming abstractions (or what they termed
clichés) using a formalism called the Plan Calculus. The Plan Calculus is
actually layered on top of frame-like representation. Retrieval is achieved
using a combination of general-purpose predicate logic reasoning and
special-purpose algebraic deduction. The target of the work is locating

program code.

Zaremski and Wing [105] described signature matching in the context of
software libraries. They defined a several flavors of function and module
matching. These matchings are defined formally using match predicates.
Retrieval reduces to reasoning through the software library to find matches

for the query based on the match predicate chosen.

Mili ez al. [69], also working in the context of software libraries, represented
software by its formal functional specification and defined an ordering
relation between specifications called the refinement ordering, which as one
would expect, is a partial order relation. The partial order relations are said to
have lattice properties, which means that only the subset of the specifications

that minimizes the meet and maximizes the join between the query

25

specification and the specifications, need to be examined during retrieval. By
varying the definition of the meet relation, a number of approximate
matching predicates were defined. The target of the work was software

program libraries.

Schuman and Fischer [94] described a tool called NORA/HAMMR, which
uses a pipeline of deductive filters to locate matches from a component
repository, given a query. Both the query and the components resident in the
repository are represented in VDM-SL, which is a specification language.
Thus, users will have to be able to specify their queries in this language. The
tool provides a default set of predicates for matching while allowing users to
specify new predicates (or matching relations) as well. Predicates (called
filters) are applied one after another, with the output of one filter feeding into
the next in a pipeline fashion. This allows for anytime behavior, whereby
matches can be produced whenever requested even before the whole pipeline

has been traversed.

Jilani et al. [43] made a distinction between functional similarity and
structural similarity. The authors argued that while there are situations where
structural similarity measures are desirable (e.g. during retrieval for
adaptation), real world constraints limit their practicality. Thus, they went on

to discuss measures of distance that depend on functional properties of

26

software artifacts. Their representation is the functional specification of the
artifact. While functional specifications often give excellent results in terms
of precision (percentage of retrieved components that are relevant) and recall
(percentage of relevant components that are retrieved), the process of
generating functional specifications is nontrivial [65]. Because these
measures of distance are based on partial ordering relations, quantitative
values cannot be obtained and implementing a system based on this scheme

can prove to be unwieldy.

Other researchers who have proposed deduction-based approaches to
software component retrieval include Zaremski and Wing [106], Penix and
Alexander [81], Fischer [33], Kakeshita and Murata [44] and Luqi and Guo
[59). The central problems common to almost all deduction-based

approaches are those of scalability and usability.

2.2.3 Classification-Based Techniques
Mili et al. [68] described a tool called SoftClass that uses a multi-faceted,
controlled vocabulary representation. They implemented three matching
algorithms: weighted Boolean retrieval, conceptual distance measures, and
classification, all keyword-based. Because this is a hybrid retrieval
technique, we could just as easily have discussed it under metric-based

techniques. However, we have chosen to discuss it here because of the

27

alignment between its hierarchical key-word representation and the
classification-based matching algorithm, which we briefly discuss now. The
classification matching actually depends on the generalization hierarchy of
the controlled set of keywords. A query matches a component if it matches
the component exactly or is a specialization of the component. This is
straightforward to achieve, since we are dealing with a controlled set of the

keywords organized into a generalization hierarchy.

Cybulski and Reed [18] described an approach to representing requirements
specification by means of a weighted multi-faceted classification scheme,
whereby a predefined set of facets are defined and each requirement
specification is analyzed to obtain its faceted descriptors (or terms for each
facet). An advantage of this scheme is that requirements can be compared
easily both with other requirements and some other artifacts, provided they
are also represented using the same faceted classification. The trouble with it
lies in the tedium involved in obtaining sufficiently expressive descriptors.
Furthermore, the automated term extractions are not very reliable [89], which

brings to question the practicality of the scheme.

Pozewaunig and Mittermeir [82] presented an approach whereby software
components are clustered using their generalized signatures and then using

decision trees based on test data to classify the components within each

28

cluster. Generalized signatures are generated by replacing types by their
generalization (e.g. types double and long are replaced by type number).
Retrieval is conducted by navigating through the decision tree of the

appropriate cluster interactively.

Meling et al. [62] proposed a classification tree, which may be used to
describe software artifacts. A prototype tool was implemented based on this
classification tree and several software components indexed using the tree,
however, Meling et al. have not done much on matching component

descriptors based on the tree.

Czamecki et al. [21] described a tool called ClassExpert that uses faceted
classification technique with a controlled vocabulary. The controlled
vocabulary is organized into a taxonomy (or generalization hierarchy), which
is used to obtain generalized matches. Besides generalized match,
ClassExpert can also do exact and partial match. Exact match implies that the
query must be matched exactly, while partial match suggests that only part of
the query need be satisfied. Generalized match means that a query may be
matched with a component as long as its attribute values are a generalization

of the query’s.

29

2.3 The Unified Modeling Language (UML)

Since our work focuses primarily on object-oriented models represented in

the Unified Modeling Language (UML), this section briefly introduces the
UML.

In the early 1990s, the methods of Grady Booch and James Rumbaugh
became very popular. A well-defined method (or software development
method) would have a set of well-defined core modeling abstractions, an
expressive notation for describing software development artifacts in the
target domain(s), a software development process, and a set of metrics to
measure the progress of development activities [23]. The Rumbaugh method,
Object Modeling Technique (OMT) was more structure-oriented, while
Booch covered the commercial and technical areas, including time-critical
applications. In 1995, Booch and Rumbaugh began to combine their
methods, first in the form of a common notation, to create the Unified
Method (UM). This was soon renamed the Unified Modeling Language
(UML), which was actually a more appropriate name, since what is being
unified is in fact the notation for expressing object-oriented models. Methods
are a different issue, altogether. Soon, Ivar Jacobson joined in, bringing in
use-cases from his Object-Oriented Software Engineering (OOSE or simply

Objectory) method, into the UML. The trio is popularly known as the

30

Amigos. In 1997, the Object Management Group (OMG) accepted the UML
Version 1.1 as an OMG standard. Versions 1.2, 1.3, and 1.4 soon followed
[75]. The OMG is an international organization supported by over 800
members, including information system vendors, software developers and
vendors [77][78]. Since the middle of 2001, work has begun on the next
version of the UML, version 2.0. OMG promises it will be a major upgrade

[76].

The UML is a standard graphical notation for expressing a system’s
blueprints, including conceptual things such as business processes and
system functions as well as concrete things such as programming language
statements, database schemas, and reusable software components [77]. The
UML allows expressing these things at varying levels of abstraction. Thus,
the UML is expressive enough for documenting analysis- as well as design-

stage models.

The official specification of the UML is contained in an OMG document
titled, OMG Unified Language Specification. This discussion pertains to the
latest version of the document at the time of writing, Version 1.4. It is made

up of six chapters and two appendices. The chapters are titled as follows:

1. UML Summary

2. UML Semantics

3. UML Notation Guide

4. UML Example Profiles

5. UML Model Interchange

6. Object Constraint Language Specification

31

The chapters that are particularly relevant to this thesis are Chapters 2 and 5.

Chapter 2 defines the UML metamodel using a four-layer metamodeling

architecture,

after the fashion of the OMG Meta-Object Facility

(MOF).These four layers are described in the following table, obtained from

the UML Specification [77].

Table 2: Four-layer Metamodeling Architecture [77]

Layer Description Example

Meta-metamodel The infrastructure for a MetaClass, MetaAutribute,
metamodeling MetaOperation
architecture. Defines the
language for specifying a
metamodel.

Metamodel An instance of a Class, Attribute, Operation,
metamodel. Defines the Component
language for specifying a
model.

Model An instance of a StockShare, askPrice,
metamodel. Defines a sellLimitOrder,
language to describe an StockQuoteServer
information domain.

user objects (user data) | An instance of a model. <Acme_SW_Share_98789>,
Defines a specific 654.56, sell_limit_order,
information domain. <Stock_Quote_Svr_32123>

32

The meta-modeling layer forms the foundation for the metamodeling
architecture. This layer defines the language for specifying a metamodel. A
meta-metamodel defines a model at a higher level of abstraction than a
metamodel layer. For example, Class in the metamodel is an instance of
MetaClass in the meta-metamodel. The same can also be said between the
metamodel layer and the model layer, and between the model layer and the
user objects layer. The definition of the UML is actually at the metamodel
layer. Thus, the UML defines a language for use at the model layer. Since the
UML can be used to model entities at different layers of abstraction, the
UML can be used to define itself. Thus, in the succeeding chapters, relevant
portions of the UML metamodel [77], expressed in the UML, shall be used

to bootstrap the discussion.

While the UML notations have been standardized since 1997, the storage
format for representing UML-based models in persistent storage has not been
as lucky. Every UML-supporting CASE tool has come up with own
proprietary formats. It was only recently that the UML community has
agreed on a standard storage format for the UML. Although Chapter 5 of the
OMG UML Specification briefly addresses the issue of an interchange

format, it also points to the OMG XMI Specification for further details.

33

The market is glutted with UML modeling tools such as Rational Rose,
Together J, System Architect, Visio, Microsoft Visual Modeler, Advanced
Tech GD-Pro, Visual UML, Object Domain, Object Team, etc.
Unfortunately, each tool has its own proprietary storage format. This has
made it difficult to interchange models across tools. Rather than building a
polynomial number of bridges from and to every tool existing, a single
standard interchange format for the UML will cut the number of bridges
required to a single one per tool. The standard interchange format adopted
for the UML is the XML Model Interchange (XMI) format. Almost all

CASE tool vendors now have support for XMI in their products.

XMI (XML Metadata Interchange) is the OMG's adopted technology for
interchanging models in a serialized form [78]. XMI version 1.1 was
formally adopted by the OMG in February 2000. XMI focuses on the
interchange of MOF (Meta Object Facility) metadata; that is, metadata

conforming to a MOF metamodel.

XMI is based on the W3C's eXtensible Markup Language (XML) and has

two major components:

1. The XML DTD Production Rules for producing XML Document

Type Definitions (DTDs) for XMI encoded metadata. XMI DTDs

34

serve as syntax specifications for XML documents, and allow generic

XML tools to be used to compose and validate XMI documents.

2. The XML Document Production Rules for encoding metadata into an
XML compatible format. The production rules can be applied in

reverse to decode XMI documents and reconstruct the metadata.

In this work, we are primarily concerned with XMI documents that obey the
UML DTD (78]. For our implementation, we have specifically used UML
1.3 DTD and XMI 1.0 because at the time we were doing the
implementation, these were the versions mostly supported by accessible

CASE tools, such as Together and Rational Rose.

In the next chapter, we present the conceptual framework for our work.

Chapter 3

Conceptual Framework

3.1 Introduction

In this chapter, we discuss some fundamental concepts that underlie our
work. Section 3.2 will introduce the representational viewpoint-oriented
approach for software modeling [32]. Section 3.3 presents some assumptions
we have made in this work. Section 3.4 discusses our metric composition
approach. Sometimes when a set of similarity metrics, each focusing on a
specific view (or aspect) of a software artifact, are composed together, these
metrics might report conflicting instantiations. On the one hand, with the
same instantiations, one metric might report a very high similarity value,
while another might report low similarity. On the other hand, one metric
might report a very high similarity and at the same time, another metric
might report a very high similarity value too, but with different
instantiations. A proposal to compensate for such conflicts is discussed in

Section 3.5.

36

3.2 Multiple Views of Software

A well-known principle of modeling is the representational viewpoint-
oriented approach [32][50][96]. This approach is succinctly echoed in the

UML Specification as follows [77]:

Every complex system is best approached
through a small set of nearly independent

views of a model. No single view is sufficient.

For this reason, the UML was designed to support multiple views viz.: use-
case view, structural view, behavioral view, and implementation view. Each
view may be expressed by one or more diagrams. The use-case view can be
expressed using use-case diagrams; the structural view can be expressed with
class diagrams, the behavioral view can be expressed using a subset of state-
chart, activity, sequence and collaboration diagrams; and the implementation

view can be expressed with component and deployment diagrams [77].

Our survey shows that existing approaches to matching software artifacts
especially, analysis and design models, have often focused only on a single
view at the expense of other views (refer to Chapter 2). For instance, Blok
and Cybulski [10] have focused mainly on the behavioral view and Sarireta

and Vaucher [91] have only considered the class model. Our framework

37

differs from all these approaches by capturing multiple views in its similarity

assessment.
3.3 Fundamental Assumptions

The basic assumptions underlying our approach can be expressed as follows:

Let S; and S, be two software artifacts. Suppose that each
artifact S; has n views viz. V), V3, ..., V.. We denote view V;
of artifact S; by the notation Vi(S;). Further, we denote the
similarity between artifact S; and S by sim(S;,S¢) and the
similarity between views Vi(S;) and V{(Si) by sim(V(S)),
Vi(S¢)). Similarly, we denote the dissimilarity between views
Vi(Sj) and Vi(Sk) by diftVi(S)), Vi(Si))-
We assume the following properties to hold:

o sim(S;,S,)=sim(S,,S;)

o sim(V(S;),V(S,))=sim(V(S,),V(S)))

o diff(V(S;),V(S))=diff (V(S,).V(S)))

o sim(S,,5,) =Y (esim(V,(S,),V,(S) - Biff V(S) V,(S,)

The coefficients a; and B; are weights assigned to the similarities and

differences of the various views. In other word, the similarity of a complex

38

entity can be obtained by aggregating the similarities of its parts less their
differences. Studies in the domain of cognitive psychology have also made
similar assumptions (cf. the contrast model of Tversky [98]). However,
Amos Tversky’s contrast model assumes similarity not to be commutative.
While this is arguably true, we shall stay with this assumption for
simplicity’s sake. In fact, subsequently we shall assume §; to be zeros for the
same reason. Further, we are of the opinion that the differences between
artifacts within the same view are less critical to the overall similarity of
software artifacts. Instead, we regard the consistency in the similarities
reported across the different views to be more significant. We have thus
devised a measure, which we have termed inconsistency penalty. Suppose we
have a structural similarity metric M, which reports that a certain class C; has
the highest similarity to another class C,. Suppose also that another metric
say a behavioral similarity metric M’ (i.e. based on a behavioral view)
reports C,’s similairity to some other class, C; to be higher than to C,. Then,
we say that the metrics, M and M’, have reported an inconsistency. The
inconsistency penalty is a measure of the degree of inconsistency in
component similarity as observed by the similarity metrics for the different
views. These ideas will become clearer as we further explain them in

subsequent sections of this chapter.

39

3.4 Metric Composition and Cascading

In this section we present a schema_for composing higher-level metrics from
lower-level ones. Fundamental to this framework is the concept of views
(also called viewpoints or perspectives [73]) of a software model. The
following list and Figure 2 below give the different views of a UML model

and the diagrams that the UML provides in each view.

1. use case diagram (use-case view)
2. static diagrams (structural view) root
a. class diagram
b. object diagram
3. behavior diagrams (behavioral
view):
a. state-chart diagram

1 2 3 4
b. activity diagram
c. interaction diagrams: /]\ N
i. sequence diagram c

ii. collaboration
diagram
4. implementation diagrams
(implementation view):
a. component diagram

‘ Figure 2: Tree Structure of Diagram Categories
b. deployment diagram

One way to approach the problem of similarity assessment is to devise a
similarity metric (or a set of similarity metrics) for at least one diagram from
each view or from the most vital views depending on our specific goal. Then
using the tree structure above or a scaled down version of it, we can generate
an overall similarity metrics as the product of the inconsistency penalty, [,

and a linear combination of the form shown in Equation 9 below:

sim(A, B) =LY a,.sim(V,(A),V,(B))
i 9

I denotes the inconsistency penalty discussed in Section 3.5. V; and sim
represent views and the aggregate similarity metric as described previously.
Moreover, a; represents a weight attached to that metric, as previously
described. We shall refer to this way of combining metrics from different

views as composition.

However, when combining metrics within the same view, we shall
piggyback them one on top of the other (as shown in Figure 3 below). Each
metric will refine its predecessor and be refined by its successor. Metrics
may be ordered in the pipeline by increasing algorithmic complexity. We
shall refer to this model of combining metrics as cascading. Thus, with
cascading and composition, a vast number of different combinational models

of computing similarity measures are possible.

""""" | Pessssssess, SeSsssssss pEESsEsseeS,
E’_Mc.)flc[1 E-M(.)Eielg. i | Model 1 Model 2 ErModell ' E-M(_)Elel2 i
N Y. . S, \ &

""’E Metric A " Metric B ': Metric C

Figure 3: Metric Cascading

41

Due to time limitation, in this work, we focus only on the structural (static)

view, while discussing a general framework that incorporates multiple views.

Our approach to matching the class view consists in cascading different

measures of similarity. These measures form the subject of the next chapter.

The next section presents an approach to obtaining the inconsistency penalty,

introduced earlier in the chapter.

3.5 Computing the Inconsistency Penaity

Our approach consists in attaching a metric (which in turm may be simple or
cascaded) to each view of interest. Since these view-centric metrics are
computed for each view independent of the other views, we would expect
that the mappings (i.e. instantiations) associated with each metric be
consistent with those of other metrics for true similarity between models. For
instance, suppose that class similarity measure obtained from comparing
models A and B, produces a set of mappings including the mapping
A.methodl—B.method3, while the sequence diagram similarity measure
produces a different mapping, say A.methodl — B.method4. Then, we say
that these mappings are inconsistent and thus, the similarity measures cannot

both be correct.

42

This consistency constraint is desirable for a linear combination of the
metrics to be meaningful. Thus, in cases where this constraint is violated as
in the above example, we try to reflect the impact of this inconsistency on the
overall similarity assessment, by reducing the contribution of the concerned
mapping to the overall similarity measure. We do this by multiplying the
measure associated with the mappings by an adjustment factor, which we

call an inconsistency penalty factor. The inconsistency penalty, I, may be

computed as follows:

-l |B,®B,
|B, + B,
where B, and B, are binary matrices

1

representing the mappings according
to metrics M, and M, respectively.
Operators ® and + are the XOR
and OR logical operators.

The next chapter discusses fundamental similarity metrics for the class view

as well as some related design and implementation issues.

Chapter 4

Structural Similarity Metrics

4.1 Introduction

In this chapter, we discuss different similarity metrics for assessing the
similarity between a pair of UML models based on information gleaned from
their class diagrams. Algorithmic as well as architectural issues relating to

our implementation of these metrics are also presented.
4.2 Algorithms for Class Model

One approach to comparing a pair of UML models is to use the semantics of
the terms that appear in the model such as class names, attribute names,
method names in a class model [88]. For this approach, we have devised two
metrics: shallow semantic similarity metric and deep semantic similarity
metric. The former uses only the class names of the classes in the models to
be compared to compute their similarity, while the latter uses attribute and
method names instead. These two metrics are discussed in Section 4.2.2 and
4.2.3 respectively. Another approach is based on comparing the signatures of
the classes involved. This approach underscores our signature-matching

metric, discussed in section 4.2.4 below. Yet a third approach is to use the

44

relationships among the classes of a class model as the criteria for
comparison of the models to be compared. The relationship-based metric is
the subject of Section 4.2.5. Because the first two metrics are based on an
underlying semantic distance measure, we present in Section 4.2.1 below the

rationale behind our choice of a semantic distance measure.

4.2.1 Semantic Distance Measure
In this section, we discuss the details of the semantic distance measure that
we have chosen and why we have chosen it from the pack of options

available.

The literature of Artificial Intelligence and computational linguistics is
replete with approaches to measure semantic similarity (or more generally,
semantic relatedness). Semantic relatedness is a more general concept in the
sense that it refers to whether two concepts are related in some way, not
necessarily via similarity. For instance, relatedness subsumes such
relationships as meronymy, hyponymy, etc. Budanitsky and Hirst [14]
identified three categories of approaches to measuring semantic relatedness
found in the literature: analytic approaches, statistical and machine learning

approaches, and hybrid approaches.

Analytic approaches attempt to use physical properties of an ontological

network of concepts such as the WordNet online dictionary to estimate the

45

similarity between concepts. Statistical and machine learmming approaches

attempt to use stored-up or leamed statistics as the basis of judging similarity

among concepts. Many of these methods are based on Shannon’s

Information Theory. Hybrid approaches combine both approaches to have

some of the most effective means of assessing semantic similarity and

semantic relatedness.

Table 3: Table of features for different WordNet-based similarity measures

Metric Nouns | Verbs | Adjectives | Adverbs Value
Range'
Jiang & Conrath [42] X O O O 0..1
Lin [57] P3| O O O 0.1
Hirst & St-Onge [41] X X X Bd 0.24
[97][15]
Leacock & X O O O 0.3.47
Chodorow [54]
Resnik [85] X O O O 0.
unbounded

In our work, like Budanitsky and Hirst [14], we have limited the scope of our

search for semantic distance measures to those that make use of the WordNet

network as their knowledge source. This is due primarily to WordNet’s

opensourceness and richness of supporting tools. Table 3 above lists the five

! These value ranges were obtained by experimenting with the Distance-0.11 tool of Pedersen and
Patwardhan [80], which implements these metrics. The author is aware that these ranges might vary
from one implementation to the other, depending on the values chosen for certain parameters in the

underlying algorithms.

46

metrics evaluated by Budanitsky and Hirst [14]. The metrics are compared
based on the parts of speech that they support and the range of values that

they return.

We would prefer our choice metric to return values in the unit interval and to
support comparison of verbs and nouns. A unit interval makes it easy to have
a normalized measure from our metric. Support for nouns and verbs, is
important since modelers typically form the names of concepts they model
out of these two parts of speech most of the time. While none of the metrics
on Table 3 above satisfies both requirements, the Hirst and St-Onge (HSO)
measure supports comparing nouns and verbs and it can be easily scaled onto
the unit interval. Thus, we have chosen HSO as the underlying semantic
distance metric in our computations. HSO is one of those metrics that belong
in the first category (analytic methods). Fortunately, Pedersen and
Patwardhan [80] recently posted a free, open-source Perl implementation of
these metrics in the public domain. By doing minimal modification to the
script, namely to recast it as a socket server, we have built our tool to use

their script for the semantic similarity part of our work.

47

4.2.2 Shallow Semantic Similarity Metric
In the context of class models, we refer to a similarity metric as shallow if it
does not use information within a class (such as its methods and attributes)
for similarity assessment. We refer to a similarity metric as deep if it uses
these types of information for its similarity assessment. In this section, we
shall discuss a shallow similarity metric that uses only the semantics of
words that appear in the class names of a UML model for its similarity

assessment.

The Shallow Semantic Similarity Metric (SSSM) is computed according to
Equation 10 below. Given a pair of models M; and M>, SSSM is computed as
the average maximum similarity between the pair of classes C;and C;, where

the former is from M, and the latter from M> respectively.

1 if max(|M |.|M,]) =0
SSSM(M . M) = 1 hso(name(C,(M,)),

max(|M,|.|M!|)Zm?x{ name(C,(M,)))} if max(m,].|m.) >0

10
As Algorithm 1 below shows, one of the models is designated as the pivot
model. The criterion for choosing the pivot model is the number of classes in
the model. The model with the fewer number of classes is chosen as the
pivot. The rationale for doing this is to facilitate a preconceived performance

tuning, which will reduce the complexity of our algorithm slightly. Each

class in the pivot model is compared with every class in the non-pivot model

48

using HSO. The values returned by HSO are stored in a matrix CM and the
best matches are stored in a Boolean matrix greedyMatrix. To compute
SSSM, the values for these best matches are summed up and normalized by
dividing with the cardinality of the non-pivot model. We have chosen to use
the non-pivot model, in order to forestall obtaining a maximum similarity
value returned when a pivot model happens to be a perfect subset of the non-
pivot model. Consider the case of comparing a class model containing a
single class C; with another class model with hundreds of classes, one of
which happens to bear the same name as C;. The first model will be selected
as the pivot since it has fewer classes and the iteration is controlled by the
cardinality, which is 1 in this case. Thus, the numerator in Equation 10 above
will retumn 1. Had we not normalized with the cardinality of the nonpivot
model, this would have given a similarity of 1 for these two models, in

contrast with our intuitive judgment.

49

Algorithm 1: SSSM

Input: Models Mpior and Moonpivor
Output: A similarity value in the interval [0, 1]
Vi, j:0<i<|M,,,|.0< j<|M, .
CM; i= hso(name(C.(M pivet), name(C i M nonpivot)]
greedyMatrix = computeGreedyMatrix(CM)
bestMatches = applyHungarianAlgorithm(CM)
return computeMeasure(CM , greedyMatrix)

pivot

computeMeasure(CM , greedyMatrix) :
Vi,j:0<i<|M,,,|.0< j<|M
if (greedyMatrix(i][j1)
sum = sum+ CM[i][j]
if(M =0)

return 1.0

nonpivot

nonpivot

else

sum
return

nonpivor

The computeGreedyMatrix() routine in Algorithm 1 above returns a
Boolean matrix that represents pairings that produce maximum-cost
assignments (i.e. maximum similarity values) of classes from one model to
the other with repetition. The algorithm has been called greedy because it
does not consider assignments already made when making new ones. It

simply assigns to each class in the pivot model the class in the nonpivot

50

model that has the maximum similarity values, without consideration for
choices made for other classes in the pivot model. Thus, assigned classes

from the nonpivot model may not be unique to each class in the pivot model.

The applyHungarianAlgorithm() routine is similar, but with a 1-1
constraints that ensures that no two classes from one model is assigned to the
same class in the other model. As the name implies, this routine is an

implementation of the Hungarian algorithm [52].

4.2.2.1 Algorithmic Complexity of SSSM
The algorithm has the complexity O(|Mpivorl-IMuonpiver|-|[HSO]), where
|Mpivor},and |Mponpiver| are the number of classes (and interfaces) in models
Mpivor and Mionpive: TEspectively, while |HSO| is the algorithmic complexity of
the hso() algorithm. The hso() algorithm essentially searches for the
shortest path between two nodes in a semantic network (i.e. a directed
graph). A well-known algorithm for this problem is Dijkstra’s algorithm
which has a square complexity [2]. Thus, SSSM has a time complexity of the
form O(|Mpivor|.|Muonpive: |-m?), where m is the number of nodes in the
semantic network. Since m is constant (albeit, a very high one) and
independent of the number of classes in the models under comparison, we

could say that SSSM is O(n?), where n=max(|Mpior|.|Muonpiver])- The actual

31

running time of this algorithm is high because the multiplicative constant

(mz) involved is also high.

4.2.3 Deep Semantic Similarity Metric
The Deep Semantic Similarity Metric (DSSM) does not use the name of the
classes in the matching. Rather it goes right into the classes and calls on
HSO to match attribute names with attribute names and method names with

method names.

The computation of DSSM is shown as a series of steps. First, we compute
the average maximum similarity among attributes of classes from model M,
and those of classes from model M; as Equation 11 below shows. Second,
we compute a similar value for operations of classes from both models as
shown in Equation 12. Given a pair of models, M; and M,;, DSSM is
computed as the average. Finally, we compute the weighted average of these
two values across the two models as indicated in Equation 13 below.

1 if max(M, |.|M,p =0
X(C,.C,)= Zp:mgx(hso(A,(c,),Aq(C,)»

if max((M,(,]M,) >0
rera e S ’

1 if max(M,|,|M,} =0

Y(C,.C,) ={ 2. max(hso(M, (C;),M,(C,))
- if max(M, |.|M. >0
max((M, |.|M,) -

52

1 if max(|M,|.|M, =0
aX(C,(M,),.C;(M,))

DSSM (M, M,) =
M) .Zm?"{«»ﬂr(qwl).c,wz»

max((M,[.|M]

} if max(|M|.|M,}) >0
13

As Algorithm 2 below shows, DSSM algorithm is similar to that of SSSM
but it is doubly nested. Each pair of classes is matched (using
deepClassCompare routine of Algorithm 2) by matching their attribute
sets using HSO and then taking the maximums and normalizing. We do the
same thing for the method sets. Then, we take a linear combination of these
two. In the current implementation, we have used fixed weights for
computing the linear combination. A future improvement would be to
experiment with different weighting schemes and then settle for one that
produces the most effective results. At the higher level, the UML model pair
are matched by summing the maximums of class similarity measures
(computed using deepClassCompare) and normalizing as before using

the cardinality of the bigger model.

53

Algorithm 2: DSSM

Input: Models Mpi0r and Muonpivor
Output: A similarity value in the interval [0, 1]
deepSemantic :
Vi, j:0<i<|C(M)]0 < j <|C(M pppier)|
CM, ; = deepCompareClasses(C(M ..),C;(M
greedyMatrix = computeGreedyMatrix(CM)

bestMatches = applyHungarianAlgorithm(CM)
return computeMeasure(CM , greedyMatrix)

pivot)

nonpivot))

deepClassCompare(C,,C,):
Vi, j:0<i<|A(C)),0< j<]A(C,)

SA,, =hso(A(C)), A, (C,)))
gAMatrix = computeGreedyMatrix(SA)
Vk,1:k <|M(C))|,0 <l <[M(C)|

SM, ; = hso(M,(C))),M ;(C,)))
gMMatrix = computeGreedyMatrix(SM)
return @ * computeMeasure(SA, gAMatrix)

+ B*computeMeasure(SM , gMMatrix)

4.2.3.1 Algorithmic Complexity of DSSM
DSSM has a time complexity of the form O(|Mpuo.[Muonpivarl-|CI?).m?),
where |C| denotes the number of features” in class C (the class with the
largest number of features in the two models under comparison), m is the

number of nodes in the semantic network. Since m is constant and

54

independent of the number of classes in the models under comparison, we
say that DSSM is O(n’|C]), where n = max(|Mpivorl. |Muonpivarl)- This
algorithm is quite expensive. The concept of cascading can help improve the
running time of a retrieval engine that uses this metric by placing less
expensive algorithm early in the filter pipeline and then placing DSSM at the

end, thus reducing the number of classes to compare using DSSM.

Besides the high cost of this algorithm, another factor that makes it less
attractive is the following naming malpractices that exist among developers:
shortened words (e.g. exec for execute), uncapitalized acronyms (e.g. Xml
for XML), multiple words without initial capitals (e.g. Copyfile for
CopyFile). These malpractices make it nontrivial to tokenize names and

compare them with other names semantically.

4.2.4 Signature-Based Similarity Metric
The algorithm for this metric is very similar in structure to that of the deep
semantic metric. Rather than using the names of attributes and methods, it
uses their signatures for comparison. For an attribute, we define its signature
simply as its type, while a method’s signature includes the types of its

parameters and its return type.

2 A feature is an attribute or operation (i.e. method) of a class or an interface [77].

55

The computation of SBSM is shown as a series of steps. First, we compute
the average maximum similarity among attributes of classes from model M,
and those of classes from model M, as Equation 14 below shows. Second,
we compute a similar value for operations of classes from both models as
shown in Equation 15. Given a pair of models, M; and M, SBSM is
computed as the average. Finally, we compute the weighted average of these

two values across the two models as indicated in Equation 16 below.

1 if max(M, .M, =0
X(.C)= nglx(f)’Pe-"im(Ap (C).A,(C))
p

if max(M, |.|]M,]) >0

max(|A,|,'Aq|) 14
1 if max(M, |.|M,) =0
Y(C,.C,)= > max(signsim(M, (C,),M, (C,)))
z if max(M, .M, >0
max(]M, |.|]M,) 15
1 if max(IM,|.|M,]) =0
aX(C,(M,),C,(M,))
SBSM (M, M,) =
(M. M) z,.‘-'“i"‘{wY(cf(M,),C,(M,))} ,
if max(|M,|.|M,]) >0
max(|M, |.,|M]) 16

In our current implementation, the weights are chosen as a = 0.4 and B = 0.6
to reflect the relative complexity of attribute types and method signatures
respectively. Algorithm 3 below implements this metric. It works more or
less the same way as DSSM, except that here, two new methods typesim

and signsim are used to match attributes and methods respectively. The

56

first method, typesim simply does a string comparison of the types, more
or less, like what Zaremski and Wing [105] termed “exact match.” The
second method, simply invokes typesim for comparing the parameter
types and for the return types of the methods from both classes being

compared.

57

Algorithm 3: SBSM

Input: Models Mo and Myonpivor
Output: A similarity value in the interval [0, 1]
Vi, j:0<i<|CM,,,,)|,0< j<|cm
CM, ; = signcompare(C,(M ,,,,.),C;(M,))
greedyMatrix = computeGreedyMatrix(CM)

bestMatches = applyHungarianAlgorithm(CM)
return computeMeasure(CM , greedyMatrix)

pivot)

nonpivot)

signcompare(C,,C,):
Vi, j:0<i<|A(C))|.0< j<|A(C,)
SA, ; =typesim(A(C)), A;(C,))
Vi, j:i <[M(C))|,0 < j <|M(C,))
SM, ; = signsim(M,(C,),M ;(C,))
gAttrMatrix = computeGreedyMatrix(SA)
gMethodMatrix = applyHungarianAlgorithm(SM)
return a* computeMeasure(SA, gAttrMatrix)
+ B* computeMeasure(SM , gMethodMatrix)

4.2.4.1 Algorithmic Complexity of SBSM
SBSM has a complexity of the form O(|Mpivor]. |[Muonpiver]-|C|>.m)), where €|
denotes the number of features in class C (the class with the largest number
of features in the two models under comparison), and m is the complexity of
signsim(). Since m is constant, the complexity of SBSM reduces to
O(|Mpivor|-IMuonpiver |-|CI).The concept of cascading can heip improve the

running time of a retrieval engine that uses this metric by placing less

58

expensive algorithm early in the filter pipeline and then placing it towards

the end, thus reducing the number of classes to compare using it.

4.2.5 Relationships-Based Similarity Metric
We define the fingerprint of a class, C, as the tuple F¢ = (G, I, S), where G
denotes the set of direct superclasses of C; I the set of interfaces

implemented by C; and S the set of direct subclasses of C.

The Relationships-Based Similarity Metric (RBSM) is computed, as shown
in equation 17 below, as the average maximum similarity between the

fingerprints of classes C; and Cj, where the former is from M, and the latter

from M; respectively.
1 if max(M,|,|M.]) =0
RBSM (M ,.M,) = 1 relsim(fingerprint(C,(M)).| . M LM 0
' max(]M,l.lel)Z { fingerprint(C,(M,))) if max((M,|.|M.) >
!

|[G(FYNG(F| . ﬂll(F)nl(F')l L ISPIOSEFY

where relsim(F.F)=a
|GRYUGEY) IRV IEFY T S(FYUSF) 17

The symbols G(F), I(F), and S(F) denote respectively, the sets G, [, and S in
the tuple F. The weights a, 8 and y add up to unity. They denote the relative
importance of each type of relationship in similarity assessment. In our

current implementation, the weights have been assigned equal values of '5.

59

Algorithm 4: RBSM
Input: Models Mpior and Mponpivar
Output: A similarity value in the interval [0, 1]

vi,j:0<i<|M,,,|0<j<

M nonpivot
CM, ; = relsim(fingerprint(C,(M ...,), fingerprint(C (M ,,.,;.0.)))

greedyMatrix = computeGreedyMatrix(CM)

bestMatches = applyHungarianAlgorithm(CM)

return computeMeasure(CM , greedyMatrix)

pivot

4.2.5.1 Algorithmic Complexity of RBSM
The RBSM algorithm has a complexity (O(|Mpivor|. [Mnonpiver|-m), where m is
the complexity of relsim(), which depends on the size of the fingerprints
of the classes in the models under comparison. The size of the fingerprint of
a class is essentially the number of relationships it has with the rest of the
model. This number is bounded above by the number of classes in the bigger
model. In other words, m = O(max(|Mpivor|, |Muonpiver]))- Thus, RBSM is o)
where n = max(|Mpivo|, |[Mnonpivar). Although, this algorithm has a higher
time-complexity than SSSM, the actual running time of the latter is much

higher in most cases because of its high multiplicative constant.

60

4.3 Implementation

In our implementation, each of the four metrics discussed above is
represented by a class of its own. For instance, SSSM is implemented as a
class called ShallowSemanticFilter, DSSM by the class
DeepSemanticFilter, SBSM by SignatureFilter, and RBSM by
RelationshipsFilter. Recall from Section 3.4 above that each metric
within the same modeling view is envisioned as a filter in a pipeline. This
has informed the choice of the Filter suffix at the end of each of these

class names.
Each of these classes has the following private attributes:

double [][] simMatrix
boolean (][] greedyMatches
boolean [][] bestMatches

Each of these two-dimensional arrays represents a matrix whose columns
correspond to classes from one of the models under comparison, while the
rows correspond to the other. The elements of the matrix, simMatrix,
contain the class-to-class similarity value as computed by the metric
concerned. The elements of greedyMatches and bestMatches contain
Boolean values, indicating whether the corresponding pair of classes is

considered a matching that would contribute to the computation of the

61

overall model-to-model similarity value. The greedyMatches matrix is
computed using a greedy approach while the bestMatches matrix is

computed using the Hungarian Algorithm. Both of these approaches are

described above in section 4.2.2.

In order to create a loosely coupled design and because of the commonality
among filters, each metric class has been made to implement the

AbstractFilter interface, shown below:

public interface AbstractFilter {
void apply():
void apply(AbstractFilter filter):
double []1[] getSimilarityMatrix();
boolean [][] getGreedyMatrix():;
boolean [][] getBinaryMatrix();
}
The crux of the logic implementing each metric is contained in its apply ()
method. The apply () method for each of the metrics has the following

sequence of steps:
Step 1: Compute simMatrix
Step 2: Compute bestMatches

Step 3: Compute greedyMatches

62

Step 4: Compute overall measure using bestMatches
Step 5: Compute overall measure using greedyMatches

Each of these steps is identical for all the metrics, except Step 1. Each metric
computes this matrix according to the definition of the particular metric. For
instance, in the case of SSSM, each element of simMatrix is computed as
the semantic distance between the class names of the classes corresponding

to the element’s row and column.

Figure 4 below further presents a pictorial view of the filter metaphor. The
dotted lines indicate that a preceding filter may or may not be present. The

same also goes for the succeeding filter.

gessssssssS (I i (N sonunmnesm——— T ——t T afadatdatdaattr’ y Poosmmssses
{ Model 1} | Model2 | [Model 1| [Model2 | { Model 1 | i Model2 !
A v R ‘.

“*% Filter A || Filter B ["} FilterC |

Figure 4: The Filter Metaphor

Figure 5 below shows a part of the architecture of our tool that shows how
the classes that make up the metrics in the structural view are organized.

These classes and two utility classes are weaved together according to the

63

Composite Filter Design pattern [103]. The Composite Filter pattern
integrates three well-known design patterns, viz. the Straregy pattem [34], the
Composite pattern [36] and the Filter pattern [34]. The Strategy design
pattern makes it possible to deal with the different metrics the same way. The
client class would deal with all the metrics the same way, irrespective of
whether the metric is a cascade of several other metrics or a hierarchy of
them. The hierarchy part is made possible by the Composite pattern, which
can be used to compose metrics from different views into a higher-level
aggregate metric in a tree-like fashion. Finally, the filter pattern is used to
realize the filter metaphor as depicted in Figure 4 above. Metrics within the
same view are strung together one after the other in a pipeline fashion, each
filter being fed with input from the previous filter (if one exists), and itself

feeding into the next filter (if one exists).

< . : (| *applyvoid
2 2k 5| *aWolyvoid
+addvold i i *add:voig
*applyvaid : g . S *ramovevoid
shasNextbociean - v
*nextObject i i binaryMatracbooiean(l
sremovevoid Ty ¢ similamyMatrocdoudle 00
esnnvvNin : 7, ‘3

greecyMatricboolean 0 [€]
dinaryMatrcbociean(](K
similartymatricdoudie 60 I
grescyMatrichoolean()

*RelstionshipsFilter smainvoid smainveid
*applyvoid *ShaliowSematicFilter *DespSemanticFilter
*applyvold iK5| copplyvoid ~appiyvoid

ARl spplyvaid *applyvold

binaryMatrcboolean() |IS
similartyMatiicdousle () [} Dinanwatrcboo :mw"“:’:::::,“‘nun
0 grescyMatrxboolean(

Figure LH e Comsi Filr Patn Applied to Class Silarity Metcs |
This structuring of things makes it possible to combine metrics in a variety
of ways and to grow our metric set easily and seamlessly, with minimal
maintenance overhead. For instance, in order to add a new metric, say one
that computes the consistency of these four, we simply add a new class that
implements the AbstractFilter interface and code the required logic,

and then we can use it from the client classes just like any of the existing

metrics.

In the next chapter, we present a validation of the metrics presented in this

chapter. Attempt is made to validate all four metrics theoretically and

empirically.

Chapter 5

Evaluation

5.1 Introduction

In this chapter, we present an evaluation of our metrics. We present two
kinds of evaluation. In Section 5.2, we present a theoretical validation of the
metrics using a set of axioms[57][90](88][95](42]. These axioms are actually
features that we expect a valid similarity metric to have and most of them are
based on assumptions that agree with our intuitive understanding of
similarity. Section 5.3 presents an empirical validation of our work, using

case studies to practically test if our metrics agrees with our intuition.

5.2 Theoretical Validation

Traditionally, similarity metrics (or more precisely distance metrics) have
often been analytically verified using the metric axioms
[571(90](88]1[95}{42]). These axioms can be stated as follows (adapted

slightly to conform to a similarity function):

1. Maximum self-similarity: For all classes C;, Ca, sim(C;, C;) = sim(Cy,

Ca).

66

2. Symmetry: For all classes C, Cs, sim(C, C3) = sim(C>, C;).

3. Monotonicity{42]: The similarity will monotonically increase when
there is a common part added to the two objects being compared.

4. Triangular Inequality: For all classes C;, C3, C;. Let diff(C,, C:) denote
the structural distance between classes C; and C,, expressed as:
diff (C;, C3) = 1 — sim(C;, C2). Then this property states that the

distance function diff, satisfies the inequality:

difftC1, C3) < diffiC;, C3) + diffi C2, C3).

Our metrics can be shown to satisfy the first three axioms, viz. self-similarity,
maximality, and symmetry. The fourth (triangular inequality) has been
shown not to be such a very important property [57], so we have ignored it in

the following discussions.

5.2.1 Theoretical Validation of SSSM
Maximum Self-similarity: There are essentially two cases to consider. The
first case is when two trivial models (i.e. two empty models) are to be
compared. In that case, SSSM (reproduced below for readability) evaluates
to 1. The other case is when two identical non-trivial models are to be
compared. In that case, hso() will always return 1 and thus the whole

expression evaluates to 1. In all other cases, SSSM will always return a value

67

less than 1, since the numerator in Equation 18 below will then always be

less than the denominator.

1 if max(|M,|,|M.])=0
SSSM(M .M ,) = 1 max hso(name(C,(M))),
max(M,|.|M,p5* "+ | name(C,(M.)))

} if max(|M,).|M,)) >0 18
Symmetry: To show this, it suffices to show that hso() is symmetric. There

is experimental support for this.

Monotonicity: As can be inferred from Equation 18 above, when common
components are added to the two models under comparison, both the
numerator and denominator of the right hand side (RHS) expression increase
equally, causing their ratio (SSSM) to also increase, unless it is already equal
to unity. In that case, it remains the same. In other words, SSSM has a direct
positive correlation with the number of common components between the

two models.

5.2.2 Theoretical Validation of DSSM
Maximum Self-similarity: There are essentially two cases to consider. The
first case is when two trivial models (i.e. two empty models) are to be
compared. In that case, DSSM (reproduced below for readability) evaluates
to 1. The other case is when two identical non-trivial models are to be

compared. In that case, expression in within braces in Equation 19 below

68

will always return 1 and thus the whole expression evaluates to 1. In all other
cases, the similarity value returned by DSSM will always be less than 1. This
can easily seen in Equation 19 by observing that the bracketed expression in
the numerator of the lower part of Equation 19 will always result in a value
less than 1.

1 if max(|M,|,|M,)) =0
{aX(C,(M.).C,(Mz»

+BY(C,(M,),C;(M,))
max(|M,[,|M)

My) =
DSSM (M. M,) Zm?x

} if max(M,|,|M,)) >0

19
Symmetry: To show this, it suffices to show that the both functions X and Y
in Equation 19 are symmetric. An observation of the definition of these
functions (in Equations 11 and 12 respectively, shows that indeed that we

only need to show that Aso() is symmetric (cf. Section 5.2.1 above).

Monotonicity: When more of common components are added to the two
models under comparison in Equation 19 above, both the numerator and
denominator of the right hand side (RHS) expression increase equally,
causing their ratio (DSSM) to also increase, unless it is already equal to

unity. In that case, it stays the same. (cf. 5.2.1 above.)

69

5.2.3 Theoretical Validation of SBSM
Maximum Self-similarity: There are essentially two cases to consider. The
first case is when two trivial models (i.e. two empty models) are to be
compared. In that case, SBSM (reproduced below for readability) evaluates
to 1. The other case is when two identical non-trivial models are to be
compared. In that case, the numerator will always return 1 and thus the
whole expression evaluates to 1.

1 if max(M,|,|M,[) =0
{aX(C,(Ml).C,(Mz))

+BY(C,(M,),C,(M,))
max(|M,|.|M.))

]

SBSM (M, M,) ={ 3" max

} if max(|M,|,|M,|) >0
20

Symmetry: To show this, it suffices to show that the both functions X and Y
in Equation 20 are symmetric. An observation of the definition of these
functions (in Equations 14 and 15 respectively, shows that indeed that we

only need to show that typesim() and signsim() are symmetric.

Monotonicity: It can be inferred from Equation 20 above that as the
common components between the two models under comparison increase,
both the numerator and denominator of the right hand side (RHS) expression
increase equally, causing their ratio (SBSM) to also increase, unless it is

already equal to unity, in which case, it stays constant.

70

5.2.4 Theoretical Validation of RBSM
Maximum Self-similarity: There are essentially two cases to consider. The
first case is when two trivial models (i.e. two empty models) are to be
compared. In that case, RBSM (reproduced below for readability) evaluates
to 1. The other case is when two identical non-trivial models are to be
compared. In that case, relsim() will always return 1 and thus the whole

expression evaluates to 1.

1 if max(M,|.|M,[) =0

RBSM (M. M,) = 1 3" max {relsiM(ﬁngerprim(C. M),
)5

—— 0
max(M | M, fingerprint(C,(M,)))>
y)

} if max(M|.[M,

21

Symmetry: To show this, it suffices to show that relsim() is symmetric.
Since fingerprints are set and the relsim() function is defined in set-theoretic

terms, it follows logically that relsim() is symmetric.

Monotonicity: It can be inferred from Equation 21 above that, as the
common components between the two models under comparison increase,
both the numerator and denominator of the right hand side (RHS) expression
increase equally, causing their ratio (SBSM) would also increase, unless it is

already equal to unity. In that case, it stays the same.

71

5.3 Empirical Validation

In this section, we present an empirical validation of our metrics. Knowing
the difficulty of this task [5], we adopt the characterization scheme of Lott
and Rombach [58], as recommended by Miller [70]. Before getting into the
validation itself, we first introduce the representational theory of

measurement.

Measurement is defined as a mapping from the empirical world to the
formal, relational world [31]. This means that measurement usually starts out
as a set of intuitive judgments and opinions that we make about things. For
instance, we have a notion of height and can tell when one person is taller
than another is, but we most often cannot put a figure to the height of either
of them. Our intuition is not precise enough to do that. In order to be able to,
we need a more sophisticated measurement system. Whatever measurement
system we adopt must agree with our intuitive understanding and judgments
about the entities involved. This condition is called the representation
condition. The representation condition lies at the heart of the
representational theory of measurement. While there are other theories of
measurement, the representational theory of measurement has attracted the

most attention in the software engineering community [31][30].

72

According to Fenton [30], “Validating a software measure in the assessment
sense is equivalent to demonstrating empirically that the representation
condition is satisfied for the attribute being measured.” Thus in the next
section, we attempt to show that our similarity measures preserve our
intuition about similarity by conducting a series of case studies using UML
models of pieces of software that are easily accessible so that our study can

be repeatable and independently verified by other researchers.

5.3.1 Our Intuition about Similarity
The following list presents our intuition about the similarity between a pair
of UML models. We note the equivalence between this list and the first three
axioms presented in Section 5.2 above. They have been repeated here for

easier reference in the succeeding discussions.

Intuition I: Maximum similarity is reached when a model is compared

with itself (cf. Axiom 1 in Section 5.2).

Intuition 2: If A is similar to B by some degree, then B is also similar to A

by the same degree (¢f. Axiom 2 in Section 5.2).

Intuition 3: Similarity grows with commonality and reduces with
difference. The more models have in common, the greater their

similarity. The more differences they have the smaller their

73
similarity (¢f. Axiom 3 in Section 5.2).

Intuition 1 suggests that if we take the UML model of a version of a software
product, and compare it with itself using a similarity metric, we should
obtain a 100% similarity. Intuition 2 suggests that a similarity metric should
be symmetric. Intuition 3 suggests that given a product with muitiple
versions, we would expect a good similarity metrics would report higher
similarity values for versions that are closer to each other and lower values

for versions that are farther apart.

5.3.2 Goals, Hypothesis and Theories

The goal of this empirical validation can be stated as follows:

To analyze our metrics (SSSM, DSSM, SBSM and RBSM) for assessing their
effectiveness at matching UML models from the viewpoint of the software

architect in the context of software reuse.

5.3.2.1 Hypotheses

The hypotheses to test can be stated as follows:
H, sssm: SSSM satisfies intuition 1 in Section 5.3.1 above.
H sssm: SSSM satisfies intuition 2 in Section 5.3.1 above.

Hs sssm: SSSM satisfies intuition 3 in Section 5.3.1 above.

Hi pssv: DSSM satisfies intuition 1 in Section 5.3.1 above.
H pssm: DSSM satisfies intuition 2 in Section 5.3.1 above.

H; pssm: DSSM satisfies intuition 3 in Section 5.3.1 above.
H; sasm: SBSM satisfies intuition 1 in Section 5.3.1 above.
H> sesm: SBSM satisfies intuition 2 in Section 5.3.1 above.
H; sesm: SBSM satisfies intuition 3 in Section 5.3.1 above.
H, resm: RBSM satisfies intuition 1 in Section 5.3.1 above.
H> resm: RBSM satisfies intuition 2 in Section 5.3.1 above.
H; resm: RBSM satisfies intuition 3 in Section 5.3.1 above.
5.3.2.2 Theories

74

Each of the following is an aspect of a class model that contributes to class-

model similarity assessment [88]: signature, class name semantics, semantics

of attribute and method names, and relationships. Thus, each one of them can

be used in a similarity assessment.

5.3.3 Experiment Plan

Owing to the difficulty of obtaining UML models, our selection of

experimental objects could not be randomized. However, we have used

CASE tools to generate UML models of software that are freely available in

the public domain in the interest of repeatability.

75

5.3.3.1 Experimental Design
In order to test hypotheses H,_ sssm, Hi, pssm, Hi, sesm, and Hj, rgsm, we shall
compare each model in our set of experimental objects to itself and compute

the percentage of times when each metric results in a value of 1.

To test hypotheses Hz'sssm, Hz, DSSM» Hz_sasm, and Hz'ggsm, we shall
exhaustively compare every pair of models using SSSM, DSSM SBSM and

RBSM respectively.

In order to test hypotheses Hj sssm, H3 pssm, H3.sBsm, and H3 rpsm, we adopt a
the partial factorial design shown in Table 4 below, where Model_i denotes
the UML model of the i-th version of a piece of software. The assumption is
that as we move down the Model_1 column, the difference between the pair
of models increases, since later versions usually preserve some of the
existing code and add some additional code as well. As we move down the
Model_n column, however, we assume that the common code between the
pairs of models being compared is increasing gradually, since later versions

tend to have more in common with the latest version than earlier ones.

Table 4: Experimental Design for H,.

76

Model_1 Model_n
Intuitive | <Metric> <Metric> | Intuitive | <Metric> <Metric>

Model | Model Rank Rank Rank Rank
Name Size Greedy | 1-1 Greedy | 1-1
Model_l1
Model_2
Model_3
Model_n

Each similarity metric is used to measure the similarity between Model_1

and each of the other models. The same is also done with Model _n. The

intuitive rankings are recorded into the Intuitive Rank column, raw

measurements <Metric> and the corresponding ranks are entered into the

<Metric> and <Metric> Rank columns respectively.

5.3.3.2 Treatments (Similarity Metrics)

The treatments that are applied to the experimental objects (namely, pairs of

UML models) are the four UML model similarity metrics discussed in the

previous chapter, viz. SSSM, DSSM, SBSM, and RBSM.

77

5.3.3.3 Objects

The experimental objects used include the following:

1. The java.lang package of JDK1.1 through J2SDK1.4

2. Apache ANT 1.1 through Apache ANT 1.5
The jar files for each of the products is first reverse-engineered into a rose
model using Rational Rose 2000. The rose models are then exported as XMI
1.0 for UML 1.3 files using Together J 5.0, which form the input to our

UML Model Comparison Tool.

5.3.3.4 Subjects

Treatment application is completely automated, so effects of subject bias and

differences are not a consideration.

5.3.3.5 Data Collection and Validation Procedures
Results are logged automatically to a text file by the program. Extensive
testing had earlier been carried out using small UML models. Bugs

discovered in the process were fixed.

78

5.3.3.6 Data Analysis Procedures
With hypotheses H; «+sp and Hj»+sm , we compute the average number of
cases on which the associated intuition is satisfied. Thus, our test statistic is
the arithmetic mean. The rejection criteria will be:
Reject H, essm, Ha sy if X <.95
In the context of hypotheses Hj+ssm, We attempt to obtain a measure of
correlation between the intuitive ranking and the ranking generated by
applying our metrics. Spearman rank correlation coefficient [63] will be

computed for each case.

Spearman’s nonparametric test for rank correlation [63] will be used to test
the hypotheses Hj +»sm stated in the Section 5.3.2.1 above at the significance
level of o = 0.01 (i.e. we have a 99% confidence in our conclusions). Our test
statistic is the Spearman rank correlation coefficient, r;.

Gi d? 22

= i=l

T ant -1
where d; is the difference between the ranks of the two ranks of the i-th
observation. A hypothesis is rejected if r; (Spearman’s rank correlation

coefficient computed for the sample) is less than the estimated population

79

rank correlation coefficient at the specified significance level, r,. The
Rejection criteria for hypotheses H3 »+gm can be stated as follows:

Reject Hysssm , if 7, <7,
Estimates of the population’s rank correlation coefficient can be obtained
from a statistical table for small sample sizes (n < 30). For a sample size of

20 and a =0.01, rp0; =0.534 for a one-tailed test.

5.3.4 Results

5.3.4.1 Data (i.e. raw data collected during study)
Each of the JDK versions (viz. JDKI1.1.7 through J2SDK1.4.0) and ANT
versions (ANTI1.1l. through ANTL.5) were given to the metrics SSSM,
SBSM, and RBSM for self-comparison. In all cases, the similarity metrics
produced a maximal value of unity. This strongly supports hypotheses
H, »+sm. The raw values have not been shown here because of their repetitive
nature. A small subset of them can however be seen in Table §, 8, 10, 13, 15,

and 18.

Every pair of models compared and shown in Table 5, 8, 10, 13, 15, and 18
are compared in reverse order. In other words, for every pair of models,
whenever we compute a similarity metric for m; and m;, we also compute it
for my and m,;. In all cases, we found the pair of computed values to be

identical. This strongly supports hypotheses Hj «ssm.

08

I 01 o1 I Y €090 0190 S LET | O'¥' 1IASTS
C €880 L88°0 C € LL90 €890 14 ccl | 1'e'1Iaset
4 €880 L3880 € € LL9'0 €890 € ¢cl | 0'e' 1dASTo
14 e80 9¢8°0 14 c 8ILO LcL'o ré CIl conar
Y €090 0190 ¢ I 0l 01 I 8 crniar
SNSUNOY ONSUNJY sasse|o [9POIN
- I's - Apaas
yuey I-1 p3a1n yuey | yuey -1 pa’in Nuey ..B,."”:z
INSSS INSSS aAnimuf | INSSS JNSSS aAmmu
o'y’ 1ddSc Lrriar

JNSSS dursn suossap HASZI pue YAl Juuedwo) 3§ Iqe],

NSSS Suisn suoissaa Jdf Suneduo) :9 aandyy

SUOISIOA

(sso) ansyney |-} —e—
(sso) Apasin —m—
(Mas2r) osunay |-} —¥—
(aszr) Apsai —¥—
(Mar) onsuney |-} —e—
(mar) Apsain —e—

I8

NSSS Yum suospedwod ASZIMar

2l

82

An observation of Figure 6 above shows that when we compare the JDK
versions with JDK 1.1.7 using SSSM, we see a gradual decrease in similarity
values. When JDK 1.1.7 is compared with itself, we obtain the maximum
value of 1.0. The values drop gradually as we compare JDK 1.1.7 with later
versions, until we obtain a value of about 0.6 when it is compared with
J2SDK 1.4.0. This indicates that as additional parts are added to one of the
models, SSSM similarity values decrease gradually. This supports the
Intuition that similarity reduces with growing differences (i.e. Intuition 3).
This observation holds true for both the Greedy version as well as the 1-1
Heuristic version of our metric, although the values obtained from the latter

tend to be slightly less in nearly all cases investigated.

A similar observation can be made from Figure 7 below conceming Apache
ANT versions. A comparison of ANT 1.1 with itself gives a maximal SSSM
value of 1.0. Comparing with successive versions of the ANT, we obtain
decreasing SSSM values, with one exception: ANT 1.3 reports an increase
rather than a decrease. This becomes understandable when we note that the
number of classes in ANT 1.3 reduced from 147 in ANT 1.2 to 146,
suggesting that ANT 1.3 may just have been a reorganization or a refactoring

of ANT 1.2 classes.

83

On comparing the JDK versions against J2SDK 1.4.0, we see a gradual
increase in the SSSM values. When J2SDK 1.4.0 is compared with JDK1.1.7
we obtain an SSSM value in the neighborhood of 0.6 as we can see from
Figure 6. The SSSM value grows gradually as we compare J2SDK 1.4.0 with
later versions of the JDK (i.e. 1.2.2 through 1.4.0), and reaches a maximum
value of 1.0 when J2SDK 1.4.0 is compared with itself. This observation
supports the intuition that similarity increases with commonality (Intuition

3).

In the same fashion, Figure 7 also includes a comparison of ANT 1.5 against
the other versions of Apache ANT. A gradual growth in the values of the
SSSM similarity metric is observed as expected. This also supports Intuition

3 as discussed above.

It is interesting to note that the proportionate change, A (see Equation 23
below), in the SSSM values from one comparison to the next somewhat
correlates with the proportionate change in the number of classes in the
corresponding models from the previous version. We define a proportionate
change, A, between the values a; and a; as follows:

A_ln-al 23
min(a;,a,)

84

Table 6 and 7 below show this correlation for the JDK and the ANT versions

respectively.

Table 6: Correlation between proportionate changes in number of classes and
SSSM values in the JDK versions

Models #of | Ain# JDK1.1.7 J2SDK1.4.0

classes | of Greedy 1-1 Greedy 1-1
classes A Heuristic A Heuristic

A A

JDK 1.1.7 84 - - - - -
JDK 1.2.2 115 0.37 0.38 0.39 0.37 0.38
J2SDK1.30 | 122 0.06 0.06 0.06 0.06 0.06
J2SDK1.3.1 122 0.00 0.00 0.00 0.00 0.00

J2SDK1.4.0 | 137 0.12 0.12 0.12 0.13 0.13

85

Table 7: Correlation between proportionate changes in number of classes and

SSSM values in the ANT versions

Models #of | Ain# ANT!.1 ANTIL.5

classes | of Greedy 1-1 Greedy 1-1
classes A Heuristic A Heuristic

A A

ANT .1 97| - - N - .

ANT 1.2 147 0.52 0.53 0.54 0.37 0.36
ANT 1.3 146 0.01 0.01 0.01 0.11 0.12
ANT 14 204 0.40 0.40 0.40 0.38 0.38
ANT 1.5 318 0.56 0.58 0.58 0.61 0.62

Figure 6 and Figure 7 also show the result of comparing JDK versions

against ANT versions (labeled “cross” in the legends of Figure 6 and Figure

7). As one would expect, the SSSM values of these comparisons are much

lower than the values obtained when JDK versions are compared with one

another or when ANT versions are compared among themselves.

S'TILNV
1 01 01 I 60 86C°0 S 8it ayoedy
¥'1 LNV
[4 819°0 90 [4 14 S9°'0 0LY'0 L4 0T ayoedy
€T LNV
¢ 6’0 (434 t [4 £59°0 LS90 £ bidl ayoedy
CILINV
14 00+'0 8040 14 £ 6v9°0 759°0 (4 Lyl ayoedy
I'T INV
Y §6C°0 86C°0 S I 01 1] I L6 ayoedy
onsunoy S1SUNIY Sasse[0 [9POIN
suey I-1 Apaain suey suey I-1 Apaain suey Jo Jaquini
NSSS INSSS aAnimuy | JANSSS INSSS AU

¢'1 LNV 9yoedy

I'T INV 9yoedy

98

NSSS Sursn suoisiap INV pedy Supedwo) :g 3jqey,

JNSSS Suisn suoissdA NV Sunteduio)) £ dandyy

SUOISI0A
S 1 4 € 2 {

/./.TM\A

(sso0) onsuney |- —e—
(sso) Apsair) ——
(5' 1Y) opsunay |-) ——
(5'11uy) Apeasy —w—
(1 11uy) onsunay |- —a—
(1*1y) Apeaiy —e—

/.KT

L8

TN

/ AN

WSSS Bumsn uospedwod INV/INY

20

¥0

8'0

el

88

The table below shows the computation of the spearman’s rank correlation of

the SSSM data

Table 9: Rank Correlation Computation for SSSM

Intuitive Ranks SSSM Ranks | D D’

1 1 1 0 0
2 2 2 0 0
3 3 3 0 0
4 4 3 1 1
5 5 5 0 0
6 5 5 0 0
7 4 4 0 0
8 3 2 1 1
9 2 2 0 0
10 1 1 0 0
11 1 1 0 0
12 2 3 -1 1
13 3 2 1 1
14 4 4 0 0
15 5 5 0 0
16 5 5 0 0
17 4 4 0 0
18 3 3 0 0
19 2 2 0 0
20 1 1 0 0
T D’ 4

N 20

Spearman's rank correlation Coefficient, r;. | 0.996992

Since r; = 0.996992 does not fall in the rejection region (i.e. r; =< rgg; =
0.534), we conclude that there is a direct positive correlation between

intuitive rankings and SSSM with 99% confidence.

68

I 01 01 I S| v8¥S0| TH9S0 ¢| Letfoviasu
¢| ssT8'0| L8S8'0 4 €| Lvego| ¥S¥9°0 v| TT1 | 1renase
¢| sstg0| L8380 £ €| Lye9o| ¥S¥9°0 €| cerfoeriase
v| 8¥LL'O| LSO8'0 ¥ z| 8¢590(82890 ¢| st| zoniar
s| v8¥5°0| TH9s'0 S i 01 01 1 v8| Lriidar
IMNSUNAH INSUNdH SasSE 1PPON
11 | Apeaip 11 | kpoarp o4
yuey yuey | juey yuey
NS4S nsds oAt | NSES NS4S aAnImu]
0¥’ INASTS L1 Iar

ISgS Susn suojssap ASZI pue Ndf Supedwo) 30y 3jqey,

NSAS Suisn suoisiaa Ydf Suuedwo) :g andyg

SUORBIOA
14 € c 3

(ss010) opsuney |-} —e—
(ssa1D) Apsaig —w—
NASer) oNSUney L) ——
(Maser) Apeasn —v—
(Mar) onsunay |- —=—
(>ar) Apsain —e—

06

Wsas yum suosuyedwo) yaszrar

20

90

80

A

91

An observation of Figure 8 above shows that when we compare the JDK
versions with JDK 1.1.7 using SBSM, we see a gradual decrease in similarity
values. When JDK 1.1.7 is compared with itself, we obtain the maximum
value of 1.0. The values drop gradually as we compare JDK 1.1.7 with later
versions, until we obtain a value of about 0.5 when it is compared with
J2SDK 1.4.0. This indicates that as additional parts are added to one of the
models, SBSM similarity values decrease gradually. This supports the
Intuition that similarity reduces with growing differences (i.e. Intuition 3).
This observation holds true for both the Greedy version as well as the 1-1
Heuristic version of our metric, although the values obtained from the latter

tend to be slightly less in nearly all cases investigated.

A similar observation can be made from Figure 9 below concerning Apache
ANT versions. A comparison of ANT 1.1 with itself gives a maximal SBSM
value of 1.0. Comparing with successive versions of the ANT, we obtain
decreasing SBSM values, with one exception: ANT 1.3 reports an increase
rather than a decrease in the case of the 1-1 heuristic version of SBSM. This
is explained by the fact that the number of classes in ANT 1.3 reduced from
147 in ANT 1.2 to 146, suggesting that ANT 1.3 may just have been a
reorganization or a refactoring of ANT 1.2 classes. In that case, the reliability

of the Greedy version of SBSM is then open to question.

92

On comparing the JDK versions against J2SDK 1.4.0, we see a gradual
increase in the SBSM values. When J2SDK 1.4.0 is compared with JDK1.1.7
we obtain an SBSM value in the neighborhood of 0.5 as we can see from
Figure 8. The SBSM value grows gradually as we compare J2SDK 1.4.0
with later versions of the JDK (i.e. 1.2.2 through 1.4.0), and reaches a climax
when J2SDK 1.4.0 is compared with itself. This observation supports the

intuition that similarity increases with commonality (Intuition 3).

In the same fashion, Figure 9 also includes a comparison of ANT 1.5 against
the other versions of Apache ANT. A gradual growth in the values of the
SBSM similarity metric is observed as expected. This also supports Intuition

3 as discussed above.

It is interesting to note that the proportionate change, A (see Equation 23
above), in the SBSM values from one comparison to the next somewhat
correlates with the proportionate change in the number of classes in the

corresponding models from the previous version.

93

Table 11 and Table 12 below show this correlation for the JDK and the ANT

versions respectively.

Table 11: Correlation between proportionate changes in # of classes and SBSM
values in the JDK versions

Models # of Ain# JDK1.1.7 J2SDK1.4.0

classes | of Greedy 1-1 Greedy 1-1
classes A Heuristic A Heuristic

A A

JDK 1.1.7 84 - - - - -
JDK 1.2.2 115 0.37 0.46 0.53 0.43 041
J2SDK1.3.0 122 0.06 0.06 0.03 0.07 0.07
J2SDK1.3.1 122 0.00 0.00 0.00 0.00 0.00
J2SDK1.4.0 137 0.12 0.14 0.16 0.16 0.21

94

Table 12: Correlation between proportionate changes in # of classes and

SBSM values in the ANT versions

Models #of | Ain# ANTI1.1 ANTL.S

classes | of Greedy 1-1 Greedy 1-1
classes A Heuristic A Heuristic

A A

ANT 1.1 97 - - - - -
ANT 1.2 147 0.52 0.71 0.85 0.50 041
ANT 1.3 146 0.01 0.01 0.01 0.05 0.14
ANT 14 204 0.40 041 0.46 0.45 047
ANT 1.5 318 0.56 0.57 0.54 0.68 0.75

Both Figure 8 and Figure 9 also show the result of comparing JDK versions
against ANT versions (labeled “cross” in the legend of Figure 8 and Figure
9). One would have expected the SBSM values of these comparisons to be
lower than are those that would be obtained when we compare versions of
the same product, since versions of the same product are supposed to have
more things in common and fewer things in difference. However, what we
observe is that this is more or less true for the 1-1 Heuristic version of
SBSM. The Greedy version is producing results that conflict with the

intuition that models having greater commonality (in this case, versions of

95

the same product) have greater similarity than models having fewer things in
common (in this case models of different products). This leads us to believe

that the 1-1 Heuristic version is more reliable than its Greedy counterpart is.

ST INV

i 01 o1 I S| 9TtvTc0o| €6STO S gIg| oyoedy

¥'1 LNV

z| LoLso| 6£650 z | LeLeo| €80v'0 ¥ 0| oyoedy

€1 INV

€| o9Lsc0| 960+0 € €| 9SpS0| S9LSO € 9p1 | oyoedy

1INV

v| orveo| 168€0 12 z| vivso| 9€850 / Lb1 | 9yoedy

I'l INV

S| 9wco| €650 S I 01 01 [L6]| 9yoedy

SNSUNSH NSUNdH $asse|o [9pOIN
Juey I-1 Ap3ain N pe— -1 Apaa1n yuey o

INSHS INSLS oanmmup | WSS INSLS oAnImU]

S'1 LNV ayoedy

1'T1 INV dyoedy

96

JNSAS Suisn suoiszap INV 3pedy Suusedwo) :g| 3|qe,

NSES Suisn suoisioa INV Suntedwio)) :6 2undiy

SUOISIGA
S 14 € 4 l
. . . : 0
20
¥'0
(sso10) onsuney |-| —e—
(ssop) Apaaln) —w—
(5 Liuy) onsuney |-| —— N\ 80
(s Wuy)psery —w—
(1*1wuy) onsunay |-} —a—
(1 nuy) Apasio —e—
80
I
2l
wsas busn uospeduio) INV/INY

L6

98

Table 14 below shows the computation of the Spearman’s rank correlation

coefficient for the SBSM values.

Table 14: Rank Correlation Computation for SBSM

Intuitive Ranks | SBSM Ranks | D D’
1 1 1 0 0
2 2 2 0 0
3 3 3 0 0
4 4 3 | 1
5 5 5 0 0
6 5 5 0 0
7 4 4 0 0
8 3 2 1 1
9 2 2 0 0
10 1 1 0 0
11 1 1 0 0
12 2 2 0 0
13 3 3 0 0
14 4 4 0 0
15 5 5 0 0
16 5 5 0 0
17 4 4 0 0
18 3 3 0 0
19 2 2 0 0
20 1 1 0 0
T D’ 2
N 20
Spearman'’s rank correlation Coefficient, r;. | 0.998496241

Since r; =0. 998496241 does not fall in the rejection region (i.e. rs "< rgg; =
0.534), we conclude that there is a direct positive correlation between

intuitive rankings and SBSM with 99% confidence.

| 01 01 1 S £19°0 €190 ¢ LET | OV 1ASTU
[4 0680 0680 [4 £ 889'0 889'0 14 el 1Ie'rxasaa
[4 068°0 0680 £ £ 889'0 8890) | oe1Iasa
14 6£8°0 6£8°0 14 [4 0eL’0 0eL'0 [4 134 conrar
S £19°0 £19°0 S 1 01 01 I ¥8 Lriar
onsunay SUSLINAY SISSE[O [9POIN
1-1 Apaa1D I-1 Apaain) Jog
yuey yuey yuey juey
NSHd NS&8d Ayl | INSHY NS AnImu]
0y 1dST Lrmniar

66

INSHY Sursn suoisiap NASZI pue MAf Suueduio) :SY Aqe],

INSHY Suisn suoisiaa Jaf Juuedwo)) g aandiy

SUOISIOA
€

(sso0) onsuney |-) —e—
(ssop) Apesin ——
(Masar) onstiney |-} ——
(wasar) Apssin —9—
(xar) onsunay |-| ——
(Mar) Apsain —e—

001

—

nsSaY yum uospedwo) xaser/Mar

20

14y

9'0

8'0

2

101

The first thing to notice from Figure 10 and Figure 11 is that both the Greedy
and the 1-1 Heuristic versions of RBSM produce identical results. This
suggests that the additional overhead involved in computing the 1-1
Heuristic version is unnecessary. An observation of Figure 10 above shows
that when we compare the JDK versions with JDK 1.1.7 using RBSM, we
see a gradual decrease in similarity values. When JDK 1.1.7 is compared
with itself, we obtain the maximum value of 1.0. The values drop gradually
as we compare JDK 1.1.7 with later versions, until we obtain a value of
about 0.6 when it is compared with J2SDK 1.4.0. This indicates that as
additional parts are added to one of the models, RBSM similarity values
decrease gradually. This supports the Intuition that similarity reduces with

growing differences (i.e. Intuition 3).

A similar observation can be made from Figure 11 below conceming Apache
ANT versions. A comparison of ANT 1.1 with itself gives a maximal RBSM
value of 1.0. Comparing with successive versions of the ANT, we obtain
decreasing RBSM values, with one exception: ANT 1.3 reports an increase
rather than a decrease. This becomes understandable when we note that the
number of classes in ANT 1.3 reduced from 147 in ANT 1.2 to 146,
suggesting that ANT 1.3 may just have been a reorganization or a refactoring

of ANT 1.2 classes.

102

On comparing the JDK versions against J2SDK 1.4.0, we see a gradual
increase in the RBSM values. When J2SDK 1.4.0 is compared with
JDK1.1.7 we obtain an RBSM value in the neighborhood of 0.6 as we can
see from Figure 10. The RBSM value grows gradually as we compare
J2SDK 1.4.0 with later versions of the JDK (i.e. 1.2.2 through 1.4.0), and
reaches a maximum value of 1.0 when J2SDK 1.4.0 is compared with itself.
This observation supports the intuition that similarity increases with

commonality (Intuition 3).

In the same fashion, Figure 11 also includes a comparison of ANT 1.5
against the other versions of Apache ANT. A gradual growth in the values of
the RBSM similarity metric is observed as expected. This also supports

Intuition 3 as discussed above.

It is interesting to note that the proportionate change, A (see Equation 23
below), in the RBSM values from one comparison to the next somewhat
correlates with the proportionate change in the number of classes in the

corresponding models from the previous version.

Table 16 and Table 17 below show this correlation for the JDK and the ANT

versions respectively.

103

Table 16: Correlation between proportionate changes in number of classes and
RBSM values in the JDK versions

Models #of | Ain# JDK1.1.7 J2SDK1.4.0

classes | of Greedy 1-1 Greedy 1-1
classes A Heuristic A Heuristic

A A

JDK 1.1.7 84 - - - - -
JDK 1.2.2 115 0.37 0.37 0.37 0.37 0.37
J2SDK1.3.0] 122 0.06 0.06 0.06 0.06 0.06
J2SDK1.3.1 122 0.00 0.00 0.00 0.00 0.00

J2SDK1.4.0 | 137 0.12 0.12 0.12 0.12 0.12

104

Table 17: Correlation between proportionate changes in number of classes and
RBSM values in the ANT versions

Models # of Ain# ANTI1.1 ANTI1.5

classes [of Greedy 1-1 Greedy 1-1
classes A Heuristic A Heuristic

A A

ANT 1.1 97 - - - - -

ANT 1.2 147 0.52 0.52 0.52 0.51 0.51
ANT 1.3 146 0.01 0.01 0.01 001 0.01
ANT 14 204 0.40 0.40 0.40 0.40 0.40
ANT 1.5 318 0.56 0.56 0.56 0.56 0.56

Figure 10 and Figure 11 also show the result of comparing JDK versions
against ANT versions (labeled “cross” in the legends of Figure 10 and Figure
11). Contrary to expectation, the RBSM values of these comparisons are not
any lower than the values obtained when JDK versions (or ANT versions)
are compared with one another. This conflicts with Intuition 3, which states
that models that have greater commonality (in this case versions of same
product) should have greater similarity than models that have fewer things in
common (in this case models of different products). This is an indication that
RBSM is not so reliable in this case. The reason for this is that relationships

can sometimes be nonexistent in a class, and at other times, several classes

105

can derive from a common superclass, such as the Object class in Java-based
systems. When such classes pervade the two models being compared, one
would often end up with relationship sets that are identical in both models.
This will then lead to the spuriously high similarity values obtained from by
RBSM. One solution to this problem is to combine RBSM with one of the
other similarity metrics discussed earlier, say in a cascade fashion. However,
in some other cases such as when models are tightly coupled or when models
being compared are within the same product line, RBSM produces reliable

results.

901

ST INV
! 01 01 I S S0€'0 S0€'0 S gI¢ ayoedy
¥'1 INV
¢ 1%9°0 1¥9°0 / 12 SLY'0 SLY0 14 0T ayoedy
€1 .INV
v 6st’0| 6SH°0 € z $99°0 $99°0 € 4 ayoedy
T1INV
€ 90| 990 4 € 659°0 659°0 / Lyl ayoedy
I'l INV
¢ S0E0| SOE0 S I 01 01 | L6 ayoedy
onsunay ansunay sassejo [SPOIN
— ey | yuey | F1 Apsaig guey | 0¥
wsay (Y b sAmmuf | NSHY NSad oARIMU]

¢'1 LNV ayoedy

I'1 LNV 9yoedy

IS Suisn suogsiap INV ypedy Sunsedwo) g1 qe,

NSEY Suisn suoisida NV Suuteduio) :y| 3an3ig

SUOBISA
1 4 €

(ss01D) onsuney |-} —e—
(ss501D) Apasig) —m—

(S* LuY) oNSUNBH L-| —X—
(s* 1Y) Apaarn —e—
(1'10v) opsuneH |- —=—
(1 1LuYy) Aposin —e—

L0l

wsau yum uosuedwod LNV/LNY

20

9'0

8'0

't

108

Table 19 below shows the computation of the Spearman’s rank correlation

coefficient for the RBSM values.

Table 19: Rank Correlation Computation for RBSM

Intuitive Ranks | RBSM Ranks | D D’

1 1 1 0 0
2 2 2 0 0
3 3 3 0 0
4 4 3 1 1
5 5 5 0 0
6 5 5 0 0
7 4 4 0 0
8 3 2 1 1
9 2 2 0 0
10 1 1 0 0
11 1 1 0 0
12 2 3 -1 1
13 3 2 1 I
14 4 4 0 0
15 5 5 0 0
16 5 5 0 0
17 4 3 1 1
18 3 4 -1 1
19 2 2 0 0
20 1 1 0 0
D 6

N 20

Spearman's Rank Correlation Coefficient, r;. | 0.995488722

Since rs = 0. 995488722 does not fall in the rejection region (i.e. rs "< rgg; =
0.534), we conclude that there is a direct positive correlation between

intuitive rankings and RBSM with 99% confidence.

109

Table 20: Comparing JDK against Apache ANT

SSSM SBSM RBSM

Greedy 1-1 Greedy iI-1 Greedy | 1-1

Heuristic Heuristic Heuristic
JDK1.1.7 |0.3475 | 0.2011 | 0.6963 | 0.3568 | 0.865 | 0.865

vs. ANTI.1

JDK122 | 03250 | 0.1860 | 0.6538 | 0.3108 {0.782 [0.782
vs. ANT1.2

J2SDK1.3.0 | 0.3385 | 0.1851 | 0.6922 | 0.3467 | 0.835 | 0.835
vs. ANT1.3

J2SDK1.4.0 | 0.2842 | 0.1584 | 0.5594 | 0.3778 | 0.671 | 0.671
vs. ANT
14.1

Comparing these results to those obtained when comparing versions of the
same product, one would expect that these values would be lower than values
obtained from comparing versions of the same product. However, this has
not been the case for SBSM and RBSM. This can be explained by the fact
that class signatures and fingerprints are not very distinctive. It is easily
possible to have identical signature and fingerprints from classes belonging
to completely different products. The same explanation goes for SBSM,
since attribute types and signatures are not very distinctive either, especially

with the Greedy version.

Observing the SSSM columns of Table 20, however, we find the values to be

generally lower than the values observed for comparisons within the same

110

product lines. This suggests that SSSM is more sensitive to differences than
SBSM and RBSM. Since our previous observations have suggested that the
three metrics are comparative in their similarity assessment, for comparisons
of versions of the same product (cf. Table 5 through Table 19), the current
observation suggests that the three metrics rank as follows in terms of overall
agreement with human intuition (from best to worst): SSSM, SBSM, and
RBSM. SSSM appears to be the most reliable. It is followed by SBSM and
RBSM appears to be the least reliable of the three. By reliability here, we
mean the ability to assess similarity accurately irrespective of whether

models under comparison come from the same domain or not.

5.3.4.2 Interpretations (i.e. statements about the hypotheses)
The rankings based on shallow semantic similarity metric (SSSM),
signature-based similarity metric (SBSM), and relationship-based similarity
metric (RBSM) show near perfect correlation with our intuitive rankings.
The Deep semantic similarity metric (DSSM) could not be executed to

completion on the treatments, due to its excessive time complexity.

The tendency of developers to abbreviate identifier names, not to always
capitalize acronyms and beginnings of words within an identifier, can
somewhat reduce the effectiveness of semantic similarity metrics in general.

Table 21 below shows the distribution of these kinds of naming anomalies

111

found in the ANT and JDK packages studied. Abbreviated words and
multiple words without initial capitals account for up to about 12% and 11%
of identifiers in ANT 1.3 for instance. This can greatly influence the

effectiveness of semantically based similarity metrics, in general.

Table 21: Distribution of Naming Anomalies

Number | Uncapitalized | Shortened Multiple
of Acronyms Words words

classes without initial

capitals

% # % # %
JDK1.1.7 84 0 |000%| 0 | 0.00% 1 1.19%
JDK1.2.2 115 0 |000%| O | 0.00% 1 0.87%
J2SDK1.3.0 122 0 |000%| O | 0.00% 1 0.82%
J2SDK14.0 137 0 |000%| O | 0.00% 1 0.73%
ANTI.1 97 3 1309 | 7 | 722% | 17 7.22%
ANT1.2 147 5 (340% | 11 | 748% | 15 | 10.20%
ANT1.3 146 S |342% | 17 |11.64% | 16 | 10.96%
ANT1.4.1 204 10 |490% | 14 | 6.86% | 14 | 6.86%
ANT1.5 318 21 |6.60% | 25 | 7.86% | 10 | 3.14%
Ave. 15222 | 4.89 | 2.38% | 8.22 | 4.56% | 7.33 | 4.67%

An inspection of the classes studied shows that class names across product
versions tend not to change at all. This means that within a product line,

exact matches tend to be frequent.

Chapter 6

Conclusion

6.1 Introduction

In this chapter, we give a summary of our work and give indications of how

it can be improved upon in the future.

6.2 Summary and Contributions of Thesis

In this thesis, we have presented a survey of the literature of software
similarity assessment approaches and touched upon the attendant issues of
software artifact retrieval, artifact representation, repository technology and

the software product lines approach.

We have described conceptually an approach for matching UML models in a

manner that accounts for the multiple views of UML models.

We have devised, implemented, and validated a suite of metrics for matching

UML class models.

The empirical results reported indicate high positive correlation with human

intuitive similarity judgments.

113

6.3 Limitations and Further Work

Further work is required to devise and validate similarity metrics for the
other views (and diagrams) of the UML, such as the dynamic and use-case

views (sequence diagrams and use case diagrams).

In Section 3.3, we suggested that the difference between two models would
not be used in our similarity assessment. A future work may further
investigate this assumption by defining a difference metric (i.e. a diff
function) for each of our proposed metrics, incorporate that into the metric,

and compare results that will be obtained with ours.

In Section 3.5, we suggested a formula for the computing the inconsistency
penalty, /, that indicates the degree of inconsistency among a set of metrics

that are composed together hierarchally. Further is needed to generalize this

formula and to validate its use.

In Section 4.2.1, we mentioned that there are other semantic distance
measures besides HSO. Further work is needed to compare results of using

other semantic distance measures in our metrics with current results.

We also stated in Section 4.2.1 that our current implementation makes use of

a Perl script [80] developed by Ted Pederson and his team in the University

114

of Minnesota. Interfacing Java with Perl has performance penalties. Further

work is needed in porting these metrics to Java for better performance.

Further work is also required to implement and experiment with the cascade
metaphor discussed in Section 3.4. The cascade metaphor allows metrics
within the same view to be composed together in a pipeline fashion. Several
different cascades may be implemented and their results compared with each

other and to our present results.

In Sections 4.2.3, 4.2.4, and 4.2.5, we stated that our current implementation
uses fixed weights in the computation of our metric set. A dynamic weight
determination scheme or at least a more rigorous weight determination

approach can be pursued a future work.

In the implementation of DSSM and SSSM, we send each pair of identifier
names (after tokenizing and shredding off numbers, etc.), to the semantic
distance server to compute the semantic distance for the pair. Sometimes,
pairs could be sent multiple times if they occur in multiple parts of the
models. Further work is required to improve on this by first generating a set
of pairs for which semantic distances will be calculated in a batch. The set is
then sent to the server all at once rather than each pair at a time. This way,

performance will be boosted considerably.

115

In Section 4.2.3.1 and Table 21, we identified a number of naming anomalies
that are often found in models and source codes. Further work will be
required to implement algorithms that can detect and cope with such
anomalies. For instance, disambiguating short words and determining the
actual word they stand for can probably benefit from work in word sense
disambiguation [15][97]; and tokenizing words with uncapitalized initial

capitals can benefit from research results in spelling correction [53].

In Section 5.3.3.3, we stated that our current implementation accepts UML
models in XMI 1.0 for UML 1.3 as input. Further work is required so that
our tool can accommodate a wider range of input formats, especially the

newer versions of the XMI format.

In Section 4.2.4, we stated that our current implementation of SBSM, the
typesim() routine simply does an exact string match when comparing
attribute types and method signatures. It does not take into consideration
scope subsumption, specialization, generalization, and interface realization
relationships that exist among types. Determining type equivalency in SBSM
can take advantage of classification trees in a future work for greater

sensitivity to these considerations.

116

Bibliography

1] Aiken, A. MOSS (Measure of Software Similarity) Plagiarism Detection
System. (http://www.cs.berkeley.edu/~moss/). University of Berkeley,
CA.

[2] Alsuwaiyel, M.H. Algorithms: Design Techniques and Analysis. World
Scientific, 1999.

[3] Antoniol, G., A. Potrich, P. Tonella and R. Fiutem, "Evolving Object
Oriented Design to Improve Code Traceability”. Proc. of the
International Workshop on Program Comprehension (IWPC), pp. 151-
160, Pittsburgh, PA, USA, May 5-7, 1999.

[4] Atkinson, S. Formal Engineering of Software Library Systems. PhD
Thesis, Dept. of Comp. Sc. & Elec. Eng., Univ. of Queensland, 1997.

[5] Basili, V., F. Shull, and F. Lanubile, Using Experiments to Build a Body
of Knowledge, Proceedings of the Third International PSI Conference,
Novosibirsk, Russia, pp. 265-282, July 1999.

[6] Basili, V.R., G. Caldiera, and H.D. Rombach. Goal Question Metric
Paradigm. In John J. Marciniak, editor, Encyclopedia of Software
Engineering, volume 1, pages 528-532. Wiley & Sons, 1994

[7]1 Bayer, J., J.-F Girard, M. Wuerthner, J.-M. DeBaud, and M. Apel.
Transitioning Legacy Assets to a Product Line Architecture. In
Proceedings of the Seventh European Software Engineering Conference
(ESEC’99), LNCS 1687, pages 446-463, Toulouse, France, September
1999. Springer.

[8] Bergey, J., L. O’Brien, and D. Smith. Mining Existing Assets for
Software Product Lines. Technical Note CMU/SEI-2000-TN-008,
Software Engineering Institute, Carnegie Mellon University, May 2000.

[9] Biggerstaff, T.J. and A.J. Perlis. Software Reusability: Concepts and
Models, Vol. 1. Addison-Wesley, 1989.

[10] Blok, M.C. and J.L. Cybulski. Reusing UML Specifications in a
Constrained Application Domain. Proc. 5* Asia Pacific Software
Engineering Conference (ASPEC’98), pp. 196-202. Dec. 2-4, 1998.

[11] Booch, G., J. Rumbaugh, and I. Jacobson, The Unified Modeling
Language User Guide, Reading, MA: Addison-Wesley, 1998.

[12] Bosch, J. Software Product Lines: Organizational Alternatives. In
Proceedings of the 23rd International Conference on Software
Engineering, pages 91-100. IEEE Computer Society Press, Nov. 2001.

[13] Bouchachia, A. and R.T. Mittermeir. Coping with Uncertainty in
Software Retrieval Systems. Proc. of the 2nd Intl. Workshop on Soft

117

Computing Applied to Software Engineering (SCASE’01), pp. 21-30,
Feb. 2001.

[14] Budanitsky, A. and Hirst G. Semantic Distance in WordNet: An
Experimental, Application-Oriented Evaluation of Five Measures. Proc.
Workshop on WordNet and Other Lexical Resources, Second Meeting of
the North American Chapter of the Association of Computational
Linguistics, Pittburgh, PA, 2001.

[15] Budanitsky, A. Lexical Semantic Relatedness and Its Application in
Natural Language Processing. Technical Reoort CSRG-390, Computer
Systems Research Group, University of Toronto, August 1999.

[16] Burkard, R.E. and E. Cela. Linear Assignment Problems and
Extensions. Handbook of Combinatorial Optimization. Kluwer Academic
Publishers, pp. 75-149, 1999.

[17] Clements, P. and L. Northrop. A Framework for Software Product Line
Practice, Version 3.0 [online]. Pittsburgh, PA: Software Engineering
Institute, Camegie Mellon University, 2000.
<http://www.sei.cmu.edu/plp/framework.htmi>.

[18] Cybulski, J.L. and K. Reed. Requirements Classification and Reuse:
Crossing Domain Boundaries. Proc. 6™ International Conference on
Software Reuse, Vienna, Austria, June 27-29, 2000.

[19] Cybulski, J.L. Introduction to Software Reuse. Technical Report
TR96/4, University of Melbourne, Melbourne, Australia, July 1996.

[20] Cybulski, J.L. Personal Email Communication. May 25, 2002.

[21] Czamecki, K., R. Hanselmann, U. W. Eisenecker, and W. Kopf.
"ClassExpert: A Knowledge-Based Assistant to Support Reuse by
Specialization and Modification in Smalitalk." In Proceedings of the
Fourth International Conference on Software Reuse, Orlando, Florida,
1996, Murali Sitaraman (Ed.), [EEE Computer Society Press, 1996, pp.
188-194.

[22] Damiani, E., M.G. Fugini and C. Ballettini. A Hierarchy-Aware
Approach to Faceted Classification of Object-Oriented Components.
ACM Trans. and Software Engineering and methodology, 8(3):215-262,
July 1999.

(23] De Champeaux, D. Object-Oriented Development Process, and Metrics.
Prentice-Hall, Sept. 1996.

[24] De Mey, V. and O. Nierstrasz. The ITHACA Application Development
Environment. Visual Objects (ed. D. Tsichritzis), Centre Universitaire
d'Informatique, University of Geneva, July 1993, 297-280.

[25] Drummond, C.G., D. Ionescu, and R.C. Holte. A Learning Agent that
Assists the Browsing of Software Libraries. IEEE Transactions on
Software Engineering, Vol. 26, No. 12, Dec. 2000.

118

[26] Edwards, S.H. The State of Reuse: Perceptions of the Reuse
Community. Software Engineering Notes. Vol. 24, no. 3, May 1999, pp.
32 -36.

[27] Eisenbarth, T. and D. Simon. Guiding Feature Asset Mining for
Software Product Line Development. In Proc. of the International
Workshop on Product Line Engineering - The Early Steps: Planning,
Modeling, and Managing (PLEES’01). IESE-Report No. 050.01/E. Sept.
2001.

[28] El-Emam, K. A Methodology for Validating Software Product Metrics.
National Research Council of Canada, NRC/ERB 1076, June 2000.

[29] Fellbaum, C. (Ed.). WordNet: An Electronic Lexical Database. MIT
Press, 1998.

[30] Fenton, N. Software Measurement: A Necessary Scientific Basis. I[EEE
Transactions on Software Engineering, 20(3), Mar. 1994.

[31] Fenton, N.E. and S.L. Pfleeger. Software Metrics: A Rigorous &
Practical Approach. PWS Publishing Co. 1997.

[32] Finkelstein, A., J. Kramer, and M. Goedicke. ViewPoint Oriented
Software Development. Proc. of 3rd Int. Workshop on Software
Engineering and its Applications, Toulouse, December 1990.

[33] Fischer, B., "Specification-Based Browsing of Software Component
Libraries", Proc. 13th IEEE Conf. on Automated Software Engineering
(ASE’98:), Honolulu, Hawaii, 1998, pp. 74-83.

[34] Gamma, E., R. Helm , R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Reading, MA: Addison-
Wesley, 1995.

[35] Girardi, M.R. and B. Ibrahim. Using English to Retrieve Software.
Journal of Systems and Software, 30(3): 249-270, September 1995.
(Special Issue on Software Reuse)

[36] Grand, M. Patterns in Java, Volume I: A Catalog of Reusable Design
Patterns. John Wiley & Sons, 1998.

[37] Grier, S. A Tool that Detects Plagiarism in Pascal Programs, Twelfth
SIGCSE Technical Symposium on Computer Science Education, pp. 15-
20, 1981.

[38] Griss, M. Product-Line Architectures. In Component-Based Software
Engineering, Edited by George T. Heineman and William Councill,
Addison-Wesley, May 2001,

[39] Griss, M. Software Reuse: From Library to Factory. IBM Systems
Journal 32(4): 548-566 (1993).

[40] Halstead, M.H. Elements of Software Science, Elsevier, North Holland,
New York, 1977.

119

[41] Hirst, G. and D. St-Onge. Lexical Chains as Representations of Context
for the Detection and Correction of Malapropism. In [29], pp. 305 — 332.

[42] Jiang, J. and Conrath, D. Multi-word complex concept retrieval via
lexical semantic similarity Proceedings International Conference on
Information Intelligence and Systems, 1999, pp. 407- 414

[43] Jilani, L., J. Deshamnais, and A. Mili. Defining and Applying Measures
of Distance between Specifications. IEEE Transactions on Software
Engineering. Vol. 27, No. 8, pp. 673-703; August 2001.

[44] Kakeshita, T. and M. Murata. Specification-Based Component Retrieval
by Means of Examples. Proc. 1999 Intl. Symposium on Database
Applications in Non-Traditional Environments (DANTE'99) November
28-30, 1999 Kyoto, Japan, pp. 143-151.

[45] Keller, R.K., J.F. Bédard, and G. Saint-Denis. Design and
Implementation of a UML-Based Design Repository. Proc. 13th
International Conference on Advanced Information Systems Engineering
(CAISE2001), Interlaken, Switzerland, June 4-8, 2001.

[46] Kitchenham, B., S.L. Pfleeger and N. Fenton. Reply to: Comments on
“Towards a Framework for Software Measurement Validation.” IEEE
Transactions on Software Engineering, 23(3), Mar. 1997.

[47] Kitchenham, B., S.L. Pfleeger and N. Fenton. Towards a Framework for
Software Measurement Validation. IEEE Transactions on Software
Engineering, 21(12), Dec. 1995.

[48] Klement, P. and W. Slany. Fuzzy Logic in Artificial Intelligence. CD-
Technical Report 94/67, Technical University of Vienna, Austria, June
1994.

[49] Kobryn, C. UML 2001: A Standardization Odyssey. Communications of
the ACM, Vol. 42, No. 10, October, 1999, pp. 29-37.

[50] Kruchten, P.B. The 4+1 View Model of Architecture. I[EEE Software,
Nov. 1995, pp. 42-50.

[51] Krueger, C.W. Software Reuse. ACM Computing Surveys, 24(2), June
1992.

[52] Kuhn, H.W. The Hungarian method for the assignment problem. Naval
Research Logistics Quarterly 2, March-June 1955, pp 83-97.

[53] Kukich, K. Technique for automatically correcting words in text, ACM
Computing Surveys (CSUR), v.24 n.4, p.377-439, Dec. 1992.

[54] Leackok, C., and Chodorow, M., 1998. Combining Local Context and
WordNet Similarity for Word Sense Identification. In C. Fellbaum (ed.)
WordNet: An Electronic Lexical Database, 265-283. Cambridge, Mass:
MIT press.

120

[55] Lee, H-Y. and M.T. Harandi, An Analogy-Based Retrieval Mechanism
for Software Design Reuse. Proc. of the 8th Knowledge-Based Software
Engineering Conference (KBSE’93), pp. 152-159, Chicago, 1993.

[56] Lee, H-Y. Automated Acquisition and Refinement of Reusable Software
Design Components. PhD Dissertation, University of Illinois at Urbana-
Champaign, 1992.

[57] Lin, D. 1998. An Information-Theoretic Definition of Similarity. In
Proceedings of the Fifteenth International Conference on Machine
Learning. Madison, Wisc: Morgan Kaufmann.

[58] Lott, CM. and H.D. Rombach. Repeatable Software Engineering
Experiments for Comparing Defect-Detection Techniques. Journal of
Empirical Software Engineering, Spring 1997.

[59] Lugqi and J. Guo, Toward automated retrieval for a software component
repository. Proc. IEEE Conf. and Workshop on the Engr. of Computer-
Based Systems (ECBS '99), 1999 pp.: 99 -105.

[60] McGregor, J. and D. Sykes. Object-Oriented Development: Engineering
for Software for Reuse. Van Nostrund, 1992.

[61] Mcllroy, M. D., Mass produced software components, Proc. NATO
Software Eng. Conf., Garmisch, Germany (1968) 138-155. Also available
at http://www.cs.dartmouth.edu/~doug/components.txt

[62] Meling, R., E.J. Montgomery, P.S. Ponnusamy, E.B. Wong, and D.
Mehandjiska. Storing and Retrieving Software Components: A
Component Description Manager. Proc. of the 2000 Australian Software
Engineering Conf., Canberra, Australia, April 2000, pp. 107 --117.

[63] Mendenhall, W. and T. Sincich. Statistics for Engineers and the
Sciences. Prentice-Hall, 1995.

[64] Michail, A. and D. Notkin. Assessing Software Libraries by Browsing
Similar Classes, Functions and Relationships. Proc. 21st International
Conference on Software Engineering, Los Angeles, 1999, pp 463-472.

[65] Mili, A., R. Mili, and R. Mittermeir. A survey of Software Reuse
Libraries. Annals of Software Engineering, 1998.

[66] Mili, H., F. Mili and A. Mili. An Introduction to Software Reuse.
Technical Report ISR-98-08-23-MMM, August 23, 1998.

[67] Mili, H., F. Mili and A. Mili. Reusing Software: Issues and Research
Directions, IEEE Transactions on Software Engineering, Vol. 21, No. 6,
June 1995.

[68] Mili, H., O. Marcotte, and A. Kabbaj. Intelligent Component Retrieval
for Software Reuse. Proceedings of the Third Maghrebian Conference
on Artificial Intelligence and Software Engineering, pp. 101-114, Rabat,
Morocco, April 11-14, 1994.

121

[69] Mili, R., A. Mili, and R.T. Mittermeir. Storing and Retrieving Software
Components: A Refinement Based System./JEEE Trans. On Software
Engineering, Vol. 23, No.7, July 1997.

[70] Miller, J. Replicating software engineering experiments: a poisoned
chalice or the Holy Grail. [Draft Book Chapter]. Oct. 2000. Available at
http://sern.ucalgary.ca/courses/SENG/693/F00/readings/JamesMiller.pdf
[Accessed 2002-12-10].

[71] Morasca, S., L.C. Briand, V.R. Basili, EJ Weyuker and M.V.
Zelkowitz. Comments on “Towards a Framework for Software
Measurement Validation.” IEEE Transactions on Software Engineering,
23(3), Mar. 1997.

[72] Northrop, L.M. SEI's Software Product Line Tenets. IEEE Software,
19(4):32-40, July/August 2002.

[73] Nuseibeh, B., J. Kramer, and A. Finkelstein. A framework for
expressing the relationships between multiple views in requirements
specification, IEEE Transactions on Software Engineering, Vol.20,
Iss.10, 1994, pp. 760- 773.

[74] Objects by Design, Inc. Transforming XMI to HTML.
http://www.objectsbydesign.com/projects/xmi_to_html.html (Accessed
2002-12-20).

[75] Oestereich, B. Developing Software with UML- Object-Oriented
Analysis and Design in Practice (2" Ed.). Addison-Wesley, 2001.

[76] OMG. Introduction to OMG’s Unified Modeling Language.
http://www.omg.org/gettingstarted/what_is_uml.htm (Accessed 2002-07-
o1).

[77] OMG. OMG Unified Modeling Language Specification (Version 1.4).
Object Management Group (OMG). Sept. 2001. Available at
http://www.omg.org/technology/documents/formal/uml.htm (Accessed
2002-07-01). .

[78] OMG. OMG XML Metadata Interchange (XMI) Specification (Version
1.2). Object Management Group (OMG). Jan. 2002.
http://www.omg.org/technology/documents/formal/xmi.htm (Accessed
2002-06-01).

[79] Ottenstein, K.J. An Algorithmic Approach to the Detection and
Prevention of Plagiarism, SIGCSE Bulletin, Vol. 8 No. 2, Dec. 1976.

[80] Pedersen, T. and S. Patwardhan. Semantic Distance Measures Perl
utility version 0.11 (distance-0.11) Readme, University of Minnesota,

Duluth, 2002. http://www.d.umn.eduw/~tpederse/Code/Readme.distance-
0.11.txt (Accessed 2002-12-10)

122

[81] Penix, J. and P. Alexander: Using Formal Specifications for Component
Retrieval and Reuse. Proc.31* Annual Hawaii International Conference
on System Sciences (HICSS), 1998, pp. 356-365.

[82] Pozewaunig, H. and R.T. Mittermeir. Self Classifying Reusable
Components: Generating Decision Trees from Test Cases. Proc.
International Conference on Software Eng. and Knowledge Eng.
Chicago, IL., July 6-8, 2000.

[83] Prechelt, L., G. Mahpohl, and M. Phlippsen. Jplag: Finding Plagiarisms
among a set of Programs. Technical Report 2000-1, Universitat
Karlsruhe, March 2000.

[84] Prieto-Diaz, R. Status Report — Software Reusability. IEEE Software,
10(3):61-66, May 1993.

[85] Resnik, P. Using information content to evaluate semantic similarity in
a taxonomy. Proceedings of IJCAI-95, Montreal, Canada, 1995, pp. 448-
453.

[86] Rich, C. and R. C. Waters. "The Programmer's Apprentice: A Research
Overview", IEEE Computer, vol. 21, no. 11, Nov. 1988, pp. 11-25.

[87] Rine, D.C. Success factors for software reuse that are applicable across
domains and businesses. Proc. of the ACM Symposium on Applied
Computing, 1997: 182-186.

[88] Rufai, R., M. Ahmed, and J. AlGhamdi. Towards a Unified Software
Component Representation. Proc. SCI-2002, Orlando, FL, July 2002, pp.
146-150.

[89] Salton, G. and M. J. McGill. Introduction to Modern Information
Retrieval. McGraw-Hill. 1983: 118 - 156.

[90] Santini, S. and R. Jain. Similarity Measures. IEEE Transactions on
Pattern Analysis and Machine Intelligence, Sept. 1999.

[91] Sarireta, A. and J. Vaucher. Similarity Measure in the Object Model.
Proc. ECOOP’97, Jyvaskyala, Finland, June 9-13, 1997.

[92] Schmid, K. A Comprehensive Product Line Scoping Approach and Its
Validation. In Proceedings of the 24th International Conference on
Software Engineering (ICSE’02), pages 593-603, May 2002.

[93] Schneiderwind, N.F. Methodology for Validating Software Metrics.
IEEE Transactions on Software Engineering, 18(5), Mar. 1992.

[94] Schumann, J. and B. Fischer: NORA/HAMMR: Making Deduction-
Based Software Component Retrieval Practical. Proc. Automated
Software Engineering (ASE-97), Lake Tahoe, November 1997, pp. 246-
254.

[95] Simon, FE., S. Loffler, and C. Lewerentz. Distance-Based Cohesion
Measuring. FESMA99, Amsterdam, 4-8 October, 1999.

[96] Sommerville, . Software Engineering, 6™ Ed. Addison-Wesley, 2000.

123

[97] St-Onge, D. Detecting and Correcting Malapropism with Lexical
Chains. MS Thesis. Department of Computer Science, University of
Toronto, Toronto, Canada, March 1995.

[98] Tversky, A. Features of Similarity. Psycological Review. 84:327-352,
1977.

[99] Verco, K.K. and M.J. Wise. Software for Detecting Suspected
Plagiarism: Comparing Structure and Attribute-Counting Systems. Proc.
of I"* Australian Conference on Computer Science Education, Sydney,
July 1996.

[100] Wegner, P. Capital-Intensive Software Technology. IEEE Software,
1(3), July 1984.

[101] Whale, G. Identification of Program Similarity in Large Populations.
The Computer Journal, 33(2):140-146, 1990.

[102] Wilson, WM., L. H. Rosenberg, and L.E. Hyatt, Automated Quality
Analysis of Natural Language Requirement Specifications, Proc. Pacific
Northwest Software Quality Conference, Oct. 1996, pp. 140-151
http://satc.gsfc.nasa.gov/support/PNSQC_OCT96/pnq.PDF (Accessed
2002-12-10).

[103] Yacoub, S.M.. Composite Filter Pattern, Proc. EuroPLoP 2001, Irsee,
Germany, 4-8 July 2001.

[104] Ye, Y. Supporting Component-Based Software Development with
Active Component Repository Systems. PhD Dissertation, University of
Colorado, Boulder, CO, 2001.

[105] Zaremski, A. M. and J. M. Wing. Signature Matching: a Tool for
Using Software Libraries. ACM Transactions on Software Engineering
and methodology, 4(2):146-170, April 1995.

[106] Zaremski, A.M. and J.M. Wing. Specification Matching of Software
Components. ACM Transactions and Software Engineering and
methodology, 6(4):333-369, October 1997.

activity diagram, 39

ANT, viii, 77, 79, 82, 83, 84, 85, 86, 87,
91,92, 93,94, 96, 97, 101, 102,
104, 106, 107, 109, L1}

application engineering, 9

asset mining, 10, 11

behavioral view, 36, 38, 39

building blocks approach, 3

cascading, 40, 41, 54, 57, 63, 105, 114

class diagrams, 36, 39, 43

class model, 18, 23, 36, 43, 47, 48, 74,
12

classification trees, 28, 115

collaboration diagrams, 36

component diagram, 39

composite filter pattern, 63

composite pattern, 63

composition, 35, 40

contrast model, 38

cosine similarity measure, 20

decision trees, 27

deduction-based retrieval, 24

deployment diagram, 36, 39

deployment diagrams, 36

design repository, 4

development process, 3, 6, 29

DFD diagram, 16, 23

domain engineering, 9

DSSM, vi, 43, 51, 52, 53, 55, 60, 67, 68,
73,74,75,76, 110, 114

early-stage reusable artifacts, 5

124

Index

empirical validation, 65, 71, 73

ER diagram, 16

factory metaphor, 9

filter pattern, 63

functional similarity, 25

functional specification, 24, 26

fuzzy sets, 18

generalization, 27, 28, 115

Hungarian algorithm, 50

hypothesis, 73, 75, 78, 79, 110

implementation view, 36, 39

inconsistency penalty, 38, 39, 40, 41, 42,
113

information theory, 45

intuition, 48, 65, 71, 72, 73, 74, 76, 78,
83, 88,92, 94,98, 102, 108,
110, 112

Java, 105, 114, 118

Java Software Development Kit, viii, 79,
80, 81, 82, 83, 84, 85, 89, 90,
91, 92,93, 94, 99, 100, 101,
102, 103, 104, 109, 111

JPlag, 15

later-stage reusable artifacts, 5

library metaphor, 9

matching, 13, 14, 18, 19, 20, 21, 23, 24,
25, 26, 28, 36, 41, 43,51, 52,
60,73, 112

meta-modeling, 31, 32, 33

metric axioms, 65

multi-view similarity, iii, 8, 12

naming malpractices, 54

NATO software engineering conference,
1

object diagram, 39

Object Management Group, 30, 31, 32,
33,121

Object Modeling Technique, 29

Objectory (OOSE), 29

Perl, 46, 113, 121

Plan Calculus, 24

process, 1, 2, 3, 6, 8, 10, 16, 18, 26, 29,
77

product family, 10

proportionate change, viii, 83, 84, 85, 92,
93, 94, 102, 103, 104

RBSM, vi, viii, 58, 59, 60, 70, 73, 74, 75,
76, 719, 99, 100, 101, 102, 103,
104, 106, 107, 108, 109, 110

recall, 26

representation condition, 71, 72

requirements specification, 3, 4, 27, 121

retrieval engine, 54, 57

retrieval systems, 3,7, 11, 13

reusable artifacts, 2, 3, 5,6, 7, 10, 17

reusable processor approach, 3

reusable software, 1, 3, 17, 30

SBSM, vi, viii, 54, 55, 57, 60, 69, 70, 73,
74,75,76, 79, 89, 90, 91, 92,
93, 94, 96, 97, 98, 109, 110, 115

scoping, 10, 122

semantic distance, 21, 44, 45, 46, 62,
113,114

semantic network, 50, 53

125

semantic relatedness, 44

semantic relation, 18

sequence diagram, 20, 23, 39,41, 113

signature matching, 24

similarity metric, iii, 7, 8, 11, 12, 21, 35,
38, 39,40, 42, 43, 47, 65, 73,
76, 79, 83, 92, 102, 105, 110,
113

similarity metrics, iii, 7, 8, 11, 12, 21, 35,
38, 39, 40, 42, 43, 47, 65, 73,
76,79, 83,92, 102, 105, 110,
113

software product lines, 4,9, 10, 112

software repository, 7

software retrieval, 3, 7, 112

software reuse, 1, 2, 3,4, 6, 8,9, 73, 122

software reuse process, 2, 3

Spearman rank correlation, 78

specialization, 27, 115

SSSM, vi, viii, 43, 47, 48, 49, 50, 52, 59,
60, 62, 66, 67, 73,75, 76, 79,
80, 81, 82, 83, 84, 85, 86, 87,
88, 109, 110, 114

state-chart diagrams, 36, 39

strategy pattern, 63

string matching, 23, 56

structural similarity, iii, 7, 12, 25, 38

structural view, 36, 39, 62

surrogates, 7

test data, 4, 27

theoretical validation, 65

theory of measurement, 71

tools, vi, 77, 118, 123, 127

GD-Pro, 33
Microsoft Visual Modeler, 33
Object Domain, 33
Object Team, 33
Rational Rose, 33, 34,77
System Architect, 33
Together J, 33, 77
Visio, 33
Visual UML, 33

traceability, 11, 19

UML models, 5, 7, 11, 12, 20, 43,72, 73,

74,776,717, 112, 115

126

Unified Modeling Language, iii, iv, v, 7,
11, 12, 13, 20, 23, 29, 30, 31,
32,33, 34, 36, 39, 43,47, 52,
72,73,74,75,76,77, 112, 113,
115, 116, 119, 121

use-case view, iii, 36, 39, 113

VDM-SL, 25

viewpoint-oriented approach, 35, 36

WordNet, viii, 18, 44,45, 117, 118, 119

XMI, 32, 33, 34,77, 115, 121

Appendix A: Tool Design

127

PO AFINSADN-

(++:iBusy [olxnew > (0 = {wiho) [
(++)/qiBusyxynew > g = § wjlio}
1) uestooq:(xpienisiseysiepipseipeinduos=:seystepipeet iy,

Fr—

xineyyisogueuebuny .
(1w =¢ xnswy

(10 uesiooq:(xpiewis)seyiepisegmndwor=iseynemiseq \g

(+sxniyiBuey xpneps > %:0 =% wiho) |
(o = xpspepmuns)i
proa(oaiducy ‘load ‘xinewwis)aineNwISeTISIeS (2

(++]'uiBueyroaduou

(++x'uBusrrond > o =y wiho) [
e
(0 == (u1Bueyioarduoy ‘YiBusy toAd W ieph
o ‘roard) spyuospedwos S uSteB=:niepaINs i
i
ploa:(dde :t
| L
TR0
senmnuosyedwod 1aydonumuagMolieus %
IR THO

(p)Aidde st gonuewagmolieys ‘1’1

(P)A1dde spgonunwagmoyieys 1|

-

‘“1duoi ‘Soyd1eNISeq ‘xiriepNS) " 2uUNSiteIsn0 (g

(++{iBusyiixtnemuns > 110 = [wikop |
(+1tnBusysyriemus > 1'0 = o) 1 L

(07== sz tonduouly

U0l ‘SIYIIEWAPISIB ‘KN eNUA SIS NTRINBINAWIO = LUNGHEINOD 1"

“{10aduou ‘10ad ‘saydienApeest ‘tajmd)ssydieyissgeziesies g .
e,

3

i

{(nBusyroatduou > f) 9% (Wibusyioad > x) g [Niniseusiemseqly

+

(tBuegroarduou == iy
(++f:iBusy(niseyarepnseq > (g = | .s.a. ‘

(wiBusyrond == nly |
(++x'(1BusysoyaemIseg > %0 = ¥ .s.a.
pioa:(ioaduou ‘toald ‘saydieisaq eipmdiseydtenisegen)eises (g

(s+lmBusy{olnews > 10 = f1uphsop
(+stturBusyxsneds > %0 = | ursoy |
00 uesiooq:(xpnewwisisoynepipssspaindwos=saynewipeest iy’

et

()0} vesjooq:(juenebunyhidde=-yndino :g'1g°1 |}

=

e ¥ ¥ -

— - - - W - - R I
pioa:(ioaiduou .‘ozm ‘soydeNISaq Snumdissusienisegez||eyies

B

(++l'nBusy{obunew > [0 = wi)op §
_ (++1:nBuey xNEW > 10 = § U110}

(0 < wiBueI'XEW P |INV =} xiNEW))
(1) uesjooq:(xs Wwis)seysjepipacinaindwos=:ssysiepipeest ;¢

— #

.

“ (Il} ussjooq:(JuspeBunyhidde=:ndino :¢'1°2'L

xpepisopueebuny
“uspeBuny

(++[{Buarfolxinepwis > (10 = | wikio)
(+e%'yBuarxinewis > ¥!0 = ¥)10}

(1nu =; xunewunsh l

pioA:(joaiduou ‘joard ‘XN WIS)XNeNWISOTIRIS |

ploA:(xpeisodiijunpsoddoAndsip :2°1°2'4 {

POE—
| poa(Aidde 4

sefmnuosyeditod
nns

1elgouewesdeeq

woea0

-

(1Aidde sagonuewagdasq ‘1|

(1)Aiddesaytgonuewagdaad ‘1°1

-

]

(Nxeneywunrew)n
(++l:nrBusy [inepyus > [0 = wikto}
(++1yiBusy e WIS > 110 = 1 W10

[]
_
|
|
_
“uou ‘{susteApes:s ‘UIENWISIRINTEONIMAGUIOT= | WISIIISND i
_
_
|
_
_
|
_
| P
_

(0 == ezis"jonduouly I
.........o— ‘seydepiseq ‘sureNwis)eInseennnduwod= LIS INISAO (g

| [
*:(j0aduoy ..e.f ‘sayoiepApoaiB apmdiseycienisegoz|ieyas ig

| e ©

|

|

|
..59..33_%9_ > [) 99 (nBusrionid > %) 22 [fiinlsausieniseal

|

| " (wBuerronduou ==y |

| (++]'wiBusy [nsaydiepniseq > 0 = f 1ihio)

|

| (wbuoyiond ==w)t |

_ (++n!iBual'sayIEINISeq > N0 =) wiko)

pioa:(joaiduou Joz._ '‘sgydewiseq samdissyaiepisegaziienies iy
L

s — ey cand e c— —

» -

L}
pioa:(joaiduoy ._e._.. ‘saydieNIeaq Jaumdissyunepnisegeriieues iy

e

sejmnuosyedwo)d
ns

(++1nBusy ninews > 10 = § Jui)io)

;| 4 §
(++1iBusy{olenew > ‘o = fruos |31
(++pBuerinew > 10 = | WiHio)

(0 < BUS) NpEW 9P (1N =] XpNEW))
(11} ueaiooq:(xijemwis)sauysienipacsoainduod=:seudienipoest g

vl

I
' _ [1[] uesiooq:)uspeBunpiidde=:indino '€ 12's |

ploa:(xinepnsodAiunioddoAedsip 212’

xaepIsoueeGUNH
“epebuny

(++['wBuayfohxnemwis > f'o = [wutho) 5
(++n'piBuoy xpiewuis > %0 =% Wu)i0) B
(unu =} xpenwis)i

proa:(1oaiduou ‘yonid ‘xnENWIS)XNENWISIZIeeS { L
L -

-—————1
ploa()dde {4

lol4emeubls
[T

T5ela0

(1)Adde s gaimeudis : 'l

(DAdde sapgammeudts ‘11

senn
o

pioA:(1oaiducu ._o>..__ ‘sayaiepieeq oMd)ssydiensagoziByes (i

=

~you ‘beydepipenit ‘wnepwisionsesyoinduwod= | WSO 9

(1oa|duou ..9__._ ‘s9Y21eWAPoa.B ‘191 MU)SOUIIENISETRZ| RIS (G

e ——

‘SeyNeNISIy ‘g nepuisienseenandwod=ZWISIIEIAO L

((hixprewyareun)y |

(++1tyiBuay filxnewwis > (' = (widiop |
(++1twBua) xpnewwis > 1'0 = | ko)

s

(0 == sz;s"10aduou)y|

| ,

. (qiBuayioaiduou == ij -
(++:piBuarinlssysiepiseq > [0 = [wikio)

(++3'pBUSY SIUNENISEq > 10 = % JUIHO)

ws(iixpnew xou:_..!._.. Werel §
(++1:pbuayxpiew > 10 = 110}

-

|

I
(osf:snBuerofrinorane > o = { wybay .;
(sox'snBuorsimopeere > w'o = wouiko) BB

((Madws 3013 29 (Medworeln

A o RYNNY

r & dwm LT

aanop:{(hoad L

(sofwBuorroaduou > f'o « | rubsey [
{son'nbuoriond > w'o = wruiies |

{0 »= (wBuerioaduou ‘wBusytoaidixou- won i
(iesanop:(10asduou ‘toard) RSoineBe nineyws i

(DAdde s gsdiysuoneay ‘1'|

(1Adde sgsdiysuoneidy ‘1°1

_ |

1

e
i

:so...:!.?o.._. 1) w9 {wBuerioar > 1) ve (fkaiseunopmosain

(soy'inBuny Tiamws > {9 = | Aoy 1
{0 < \BuersiATw §F W | TiNeu|

_____________’__.F__'.i.___

\
y e} U

TeuTBuny tnnu = taewt
H

Vita
Raimi Ayinde Rufai, who hails from Shaki, Nigeria, obtained the B.Sc. degree in
Computer Science from University of Ilorin, Ilorin, Nigeria in 1997. Prior to attending
King Fahd University of Petroleum and Minerals (KFUPM), he worked in
Sheladia/Yolas & Associates, Abuja, Nigeria, from March 1998 to August 1998 on the
World Bank funded “Nigerian National Road Network Study” project as a Programmer.
He then moved to iTECO Nigeria Ltd. (now called SoftWorks Ltd.), where he worked as
a Programmer/Analyst until August, 2000. In August 2000, Mr. Rufai joined KFUPM as
a Research Assistant to pursue the MS Computer Science degree. Mr. Rufai’s research
interests include software reuse, software metrics, OO software modeling, UML, XML,

and software process modeling and process improvement. He can be reached at

rrufai@acm.org.

