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Chapter 1

Introduction

Sequencing and scheduling are forms of decision-making which play a crucial role
in manufacturing as well as in service industries. In the current competitive en-
vironment, effective sequencing has become a necessity for survival in the market.
Companies have to meet shipping dates committed to the customers, as failure to do
so may result in a significant loss of good will. They also have to schedule activities
in such a way as to use the resources available in an efficient manner.

Scheduling concerns the allocation of limited resources to task over time. It is deci-
sion making process that has a goal to optimize one or more objectives.

The resources may take any forms. They may be machines in a workshop, runways
at an airport, crews at a construction site, processing units in a computing envi-
ronment, and so on. Tasks may be operations in a production process, take-offs

and landing at an airport, stages in a construction project, execution of computer
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programs, and so on. Each task may have difterent priority level, earliest possible
starting time, and due date. The objectives may also take many forms. One possible
objective is the minimization of completion time of the last task, and another is the
minimization of the number of tasks completed after the committed due dates.
Scheduling exists in most manufacturing and production systems as well as in most
information-processing environments. It also exists in transportation and distribu-
tion settings and in other types of service industries.

Scheduling can be difficult from both a technical and an implementation point of
view. The type of difficulties encountered in the technical aspects are similar to
the difficulties encountered in other branches of combinatorial optimization and
stochastic modeling. The difficulties encountered on the implementation side are of
a completely different kind and are related to the real-world scheduling problems
and retrieval of information.

In a manufacturing system orders have to be released and have to be translated
into jobs with associated due dates. The jobs often have to be processed by the
machines in workcenters in a given sequence. Jobs may have to wait for processing
on machines that are busy. Detailed scheduling of the tasks to be performed in a

production system is necessary to maintain efficiency and control of operations.

The standard assumptions in scheduling according to French [2] and Pinedo (3]

are:



1. No pre-emption is allowed.

2. No cancellation.

3. The processing times are independent of the schedule.

4. Machine may be idle.

5. No machine may process more than one operation at a time.

6. Machine never breakdown and are available throughout the scheduling period.

7. The technological constraints are known in advance and are immutable.

8. There is no randomness. In particular

(a) The number of jobs is known and fixed.

(b) The processing times are known and fixed.

(c) The ready times are known and fixed.

(d) All other quantities needed to define a particular problem are known and

fixed.

In the problem considered in this thesis all standard scheduling assumptions are
applicable except assumption number 6. In the scheduling problem the machine
may not be available over the whole scheduling period. A machine may become

unavailable during the production process due to preventive maintenance, which is



scheduled in advance, and/or breakdowns, which happen randomly. Only recently

has the study of scheduling problems concerning machine unavailability carried out.

The problem stated by X. Qi et al. [4] has become relavant and important due
to the development of computer aided production planning systems and automated
manufacturing. Automated systems cause high yield but the investment in auto-
mated systems demand higher availability and longer life cycle and must be kept at
higher production rate. This can be achieved by incorporating an efficient mainte-
nance policy. In this situation the jobs and maintenance planning has to be done
simultaneously, so it becomes machine scheduling problem that includes machine
unavailability.

The motivation for studying deterministic unavailability (machine vacation) comes
from production practice. For example, a machine may be designed to be examined,
refueled or maintained after working for a period of time. The problem encoun-
tered belongs to such a case. A machine may also be scheduled to do some other
special works in certain time intervals and thus becomes unavailable. So machine

maintenance is a sort of unavailability.



1.1 Problem Definition

Assume that there are n jobs ready at time zero to be processed on a single machine
for which the maintenance has to be done along with jobs processing. It is required to
schedule these jobs so that certain objective function is minimized. The machine is
needed to be maintained before completing some predetermined time T of continuous
operation. Several objective functions may be of interest such as mean completion
time, makespan, and some other functions related to predetermined due dates.

Suppose there are n jobs Ji, J5, Js, ..., Jn to be processed on a single machine.
The processing time of job J; is p;.

The following assumptions describe the problem.

—

. The jobs are indexed aspy < p; < p3 < ... < Pn.

2. All jobs are available at time zero.

3. The maximum allowed continuously working time of the machine is T and the

maintaining time is &.

4. T is assumed to be more then p,.

5. Processing of a job can not be interrupted by processing another job or a

maintenance operation.

The Schedule m contains a sequence of jobs and the maintenance has to be

inserted in between the jobs such that the total continuous processing time of the



machine does not exceed the time period T. M represents maintenance in schedule.
The preventive maintenance time inserted in job sequence in the span 0 to T. In a
schedule, jobs processed continuously from a batch, denoted as B. Thus a schedule
7 can be denoted as 7 = (B, M, B2, M, ..., M, Br), where M represents preventive
maintenance in 7, which is deterministic and known, and L is the number of batches.
The problem is to determine an optimal schedule that contains order of jobs and
maintenance operations in the schedule along with jobs.

Let Jj be the ith job in a schedule, C; be the completion of job J;,then, Cj; =
Yiot Pi] + (mp — 1)t where my; means J[z] is in batch Bnp - Let g; be total
processing time of jobs in batch B; and n; be the number of jobs in batch B;.

Two important objective functions concerning completion time are the maximum
completion time of jobs Cpar and total completion time. For an optimal schedule
under minimization of C,,,; it must contain minimum number of batches, hence it is
minimizing the maintaining time. The Cpq, problem is NP -hard in the strong sense
[5]. X. Qi et al. [4] discussed this problem under the objectives of minimization of
total completion times (3~ C;). The problem is also shown to be NP -hard in strong

sense. The objective function can be written as



= Z(plll +...+pu+ (m[.-l - 1)t)
i=1

n L
=Zﬁ-”ﬂm+2wqmt

i=2

The f(7) contains two parts in the total completion time, the processing times

n L
> (n —i+ 1)p;| and the maintenance time ) (i — 1)n;t.

i=1 =2

The properties of the optimal schedule studied by X Qi et al. [4] are:

1. In each batch of the optimal schedule jobs are sequenced according to SPT

rule.

2. In an optimal schedule, ny > no>n3 > ... > nt.

3. In an optimal schedule,
L B o9, L1 (1.1)
i Mgy

Under the minimization of the }_ C; the minimum number of batches may not be
the optimal solution. This can be shown by the following example taken from X. Qi
et al. [4].

Let n=4,pi =ps =1, p3s =ps =4, T =5. The schedule m; with the minimum
number of batches is m;, = (J1,J3, M, Jy, J;) with Ly = 2 and f(I;) = 30, Ci =
22 + 2t. Now consider the schedule m = (J,, Jo, M, J3, M, Jy) with L, = 3 and

f(IL)=%%,Ci =19+ 3t. When t < 3, we have f(m) < f(m) and , is optimal.
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X. Qi et al. [4] proposed Shortest Processing '.I‘ime Heuristic SPT, Fewest Batches
Heuristic FBH and a Branch and Bound algorithm. The problem discussed by X.
Qi et al. [4] could be extended in another direction. The suggested extension is to
divide the continuous working time limit of machine into two categories preferred
time T, and maximum allowed time T,,,,. If the machine is maintained within T,
the maintenance time will be ¢,, if it exceeds T, then the maintenance time will be
{2 units.

Other extensions to the problem defined by X. Qi et al. [4] could be by considering

other measures of performance such as minimizing total earliness and tardiness.

1.2 Objectives of Thesis

The objectives of this thesis are following:

1. Develop iterative heuristic algorithm(s) (Tabu search, Simulated annealing),
and compare the results of the iterative heuristic algorithm(s) with the results
of Branch and Bound algorithm proposed by X. Qi et al. [4] for the problem

with objective of minimizing total completion time.

2. Extend the work of X. Qi et al. [4] by considering the objective function
of minimizing the total completion time where continuous working time of
machine is divided into categories (see Section 1.1) preferred to do maintenance

T, and maximum time to do maintenance T, with respective maintenance



time ¢, and ¢;. The proposed work to this extension is as follows:

(a) Study the properties of optimal schedule.
(b) Propose a heuristic based on the properties developed.

(c) Develop a Tabu search (TS) and a Simulated annealing (SA) algorithms

for the problem.
(d) Compare the proposed heuristic with TS and SA.

3. Extend the work of X. Qi et al. [4] by considering the objective function of
minimizing total Earliness and Tardiness about a common due date. Then
perform the following:

(a) Study the properties of optimal schedule.
(b) Propose a heuristic based on the properties developed.

(c) Develop a Tabu search (TS) and a Simulated annealing (SA) algorithms

to the problem.

(d) Compare the proposed heuristic with TS and SA.

1.3 Organization of Thesis

The first chapter of this thesis is used to introduce and define the problem, state the

thesis objective and outline the thesis organization. The second chapter covers the
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selected literature in the areas of scheduling with maintenance, iterative algorithms,
TS and SA. In the third chapter the Tabu search implementation is shown under the
objective of minimizing the total completion time. In this chapter the parameters
of the tabu search algorithm were also tuned using the General factorial design of
experiments. This Chapter also discusses the Simulated annealing implementation
(SA) for total completion time minimization, The SA parameters are also tuned in
this chapter using general factorial design (DOE). Implementation of Branch and
Bound Algorithm (BNB) proposed by X Qi et al. [4] is discussed and computational
experience is presented with BNB, SA and TS. Chapter 4 discusses the proposed
extension to X Qi et al. [4] where the continuous working time limit of machine is
divided into two categories (see Section 1.1). Properties of the optimal schedule are
developed followed by t heuristic, Tabu search and Simulated annealing approach to
the problem. Chapter 5 is about total earliness and tardiness minimization about
a common due date as explained in thesis objectives (see Section 1.2). Chapter 6

concludes the thesis with summary and future research directions.



Chapter 2

Literature Review

This chapter covers the literature reviewed related to the problem under mainte-
nance scheduling, iterative heuristics (Tabu search and Simulated annealing), and
early-tardy minimization about a common due date.

In the first part, the literature regarding scheduling with machine unavailability is
presented.

Schmidt [6] studied parallel machine preemptive scheduling problem where each
job has a deadline and each machine has different availability intervals. An algo-
rithm to find a feasible schedule is presented.

Kenneth and Scudder (7] reviewed the literature regarding basic models that con-
tain symmetric penalties, one machine and a common due date. On these basis they
added features, like parallel machines, complex penalty functions and distinct due

dates.

11
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Adiri et al.[8] considered the scheduling of jobs on single machine with the objective
function of minimization of flow time. The machine is supposed to fail during the
processing of jobs. The time for break down was random variable. The machine
is unable to process the jobs till it is repaired. They showed that in the case of
single break down if the failure distribution is concave then SPT minimizes the flow
time. In the case of multiple break downs SPT also minimizes the flow time, but
with exponential distribution of failure. When the time for single break down and
processing times are known the problem is VP complete. They also calculated lower
bounds for performance of SPT under deterministic case.

Lee and Liman [9] investigated the problem of minimizing the total flow time when
machine is subjected to scheduled maintenance. They showed the problem to be
NP-hard. They proposed a tight bound for SPT sequence at a value of % This
bound is shown to be better than Adiri (8].

Narashims and Addagatla [10] Incorporated early-tardy penalty and machine va-
cation (unavailability) and developed a model. They proposed heuristic methods for
solving the early-tardy minimization problem and presented computational results.
The time (position) of the machine vacation was deterministic and fixed. In X Qi
et al. [4] the machine vacation is non deterministic.

Lee [11] studied the parallel-machine scheduling problem of minimizing the makespan
where machines may not be available at zero ready time.

X. Qi et al. [4] studied single machine scheduling with preventive maintenance. In



13

many cases, a machine must be maintained after it continuously works for a period
of time, but most of the papers neglect the non availability of the machine. In this
paper scheduling of jobs and the preventive maintenance was simultaneous. The
machine was required to be maintained in the interval (0, T]. The preventive main-
tenance time ¢ was deterministic and known. They studied the properties of the
optimal schedule and proposed two heuristic algorithms and the branch and bound
to solve the problem.

Mazzini and Amentano [12] published on single machine scheduling problem with
due time constraints, ready time constraints and shut down constraint on the ma-
chine. The shut down is disruptive event such as holidays, breaks or machine main-
tenance, and has a pre-specified period when the machine will be interrupted. No
tardy jobs are allowed, and if a job is completed earlier than its due time, then shop
holds the job and incurs the holding cost for earliness. They proposed a heuristic
algorithm which manipulates the starting and completion times of the shut down
period so as to minimize the sum of the holding cost and the reduction cost in the
shut down times.

The above problems assume that the maintenance of machine is done in a fixed
time interval known before and study how to schedule jobs under this constraint of
machine unavailability.

Lee and Chen [13] extended the work of X Qi et al. [4] for parallel machine with

the objective of weighted total completion time minimization. Two case studies
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were made. In first case, there was sufficient resources so that different machines
could be maintained if necessary. In the second case, only one machine could be
maintained at any given time. The problem was proved to be NP-hard. Branch
and Bound algorithm with column generation technique was proposed to solve the
problem optimally.

We will now discuss the literature in area of iterative heuristic approaches to schedul-
ing problems.

Barnes and John [14] attempted to minimize the makespan where a set of ma-
chines perform technologically ordered operations unique to each member of a set of
jobs. In the paper an effective Tabu search approach to job shop scheduling problem
was discussed. The procedure starts from the best solution rendered by a set of 14
heuristic dispatching solutions. They used classical disjunctive network represen-
tation of the problem and iterative moves to another feasible solution is obtained
by reversing the order of two adjacent critical path operations performed by the
same machine. They made computational study and proposed some future research
directions.

Bargila and Melloni [15] considered the reduction of mean completion time and
makespan in the single machine scheduling problem with ready times. A Tabu
search based heuristic procedure was proposed to find the sequence that allows to
reach a value of the cost function as close as possible to the global minimum. Com-

putational tests were carried out to compare the performance of the Tabu search
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procedure with other heuristics. Comparison were made both in terms of mean
completion time and makespan.

Colin Reeves [16] studied the problem of scheduling jobs on a single machine
where the jobs have unequal release time. They proposed a heuristic and implement
Tabu search to study the quality of the solution generated by the heuristic.
Tsallis and Stariolo [17] discussed Simulated annealing algorithm for computa-
tionally finding the global optimal of a given (not necessarily non- convex) energy
cost function. They showed that Simulated annealing recovers optimal faster.
Ben-Daya and Al-Fawzan [18] proposed a Simulated annealing approach for solv-
ing the single machine mean tardiness scheduling problem. The results on simulation
indicated that their proposed method provides much better solution then two effi-
cient heuristics. They proved that the solution obtained by Simulated annealing is
less then 1 % of optimal solution.

Al-Fawzan and Al-Sultan [19] developed Tabu search approach to job shop
scheduling problem for the minimization of the makespan.

Lyu et al. [20] selected single machine early-tardy problem to demonstrate the
usefulness of Simulated annealing algorithm. Based on the previous studies they
used factorial experiments to analyze the factors that are critical to the efficiency of
Simulated annealing. The resulting algorithm is compared with Branch and Bound
algorithm and Neighborhood search methods by solving test problems. The results

showed that Simulated annealing is very sensitive to cooling rate, generation mech-
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anism, acceptance criteria and stopping criteria. For small size problems Simulated
annealing was compared with Branch and Bound, it was found to produce same
results. For large problems it was compared with Neighborhood search and it pro-
duced much better solution than Neighborhood search.

Xiaoyaun and Hailong [21] studied the scheduling problem on a single machine
in a job shop production system. A general scheduling model for multiobjective on
a single machine was proposed. Computational experiments were performed using
Simulated annealing.

Torres et al. [22] studied the scheduling problem where the objective is to mini-
mize both the number of late jobs and the average flow-time. Heuristics based on
Simulated annealing and Neighborhood search were proposed with the objective to
compromise between two criteria. Simulation experiments showed that heuristics
perform well when compared with the optimal solution for small size problems.
Marangos et al. [23] proposed heuristic methods to minimize the variance of com-
pletion time when jobs are to be processed by two parallel machines. All the jobs
visit the machine in the same order or technological sequence. The solutions were
compared with the lower bound and found to be promising. A simulated annealing
approach was also developed and it was found that it produces optimal solution for
all problems upto job size 11.

Vinicius and Debora [24] presented Tabu search approach to minimize total tar-

diness of the job shop scheduling problem. The method uses dispatching rules to
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obtain an initial solution and searches for new solution in a neighborhood based on
the critical path of the jobs. They compare the quality of the solution produced by
Tabu search with optimal solution for small size problems and for large size prob-
lems, Tabu search was compared with heuristics proposed in similar literature.
Islam and Eksioglu [25] proposed a Tabu search approach for solving the sin-
gle machine mean tardiness scheduling problem. Simulation experiments obtained
from Tabu search approach and other three approaches were compared. Although
computation time is increased but the results indicated that the proposed heuristic
provides a much better solution then the other three approaches.

Yi and Wang [26] studied a job scheduling model of identical parallel machines.
The model assumes that a setup time was incurred when a machine changes from
processing one type of parts to a different type of part, and the scheduling objective
was to minimize the sum of total flow time. The problem was proved as NP- hard.
Two methods were developed, comparison of the solutions showed that Tabu search
combined with heuristic algorithm is more reliable and has abilities to solve larger
scale practical problems.

The following section discusses the literature in early-tardy minimization about a
common due date.

Kanet [27] considered single machine scheduling problem in which penalty occurs
when jobs are completed early or late. The objective is to minimize to total penalty

subject restrictive assumptions on the due dates and penalty function for jobs. A
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procedure was proposed to find the optimal schedule.

Kanet (28] addressed the problem of scheduling jobs on single machine in such a
way that flow time variation is minimized. He showed that when the measure of
variation is the variance of flow time the problem is much more difficult. For this
case a heuristic method for scheduling was proposed.

Sundraraghvan and Mesbah [29] extended the Kanet's work [27] for identical
parallel machines. They proposed a heuristic algorithm for single machine absolute
lateness minimization with no restriction on common due date.

Szwarc [30] considered the single machine scheduling problem to minimize the sum
of absolute lateness given a common due date. They proposed two models depend-
ing on whether the start time of schedule is arbitrary or fixed. They provided the
conditions where both models coincide and developed branch and bound procedure.
Gupta et al. [31] proposed a heuristic based on complementary pair-exchange prin-
ciple for minimization flow time variance on single machine. It was concluded that
the heuristic is superior to other heuristics. The complexity of the proposed heuris-
tic found to be O(nlogn).

Leon and Wu (32] studied single machine scheduling problem in which there are
ready time and due date constraint on the machine. Each vacation has fixed start-
ing and finishing time, without allowing preemption. The objective was to minimize
maximum lateness. They obtained a relaxation of the problem by modeling the

vacations as a set of jobs with flexible ready times and artificial due dates.



Chapter 3

Total Completion Time

Minimization

3.1 Introduction

In this chapter Branch and Bound algorithm proposed by X. Qi et al. [4] is imple-
mented for solving the problem. Then a Tabu search (TS) algorithm and a Simulated
annealing (SA) algorithm will be developed for the problem. The three methods will

be compared to each other along with SPT heuristic proposed by X. Qi et al. [4].
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3.2 Branch and Bound

The Branch and Bound (BNB) algorithm is an implicit enumeration technique.
Apart from heuristics the Branch and Bound is probably the most widely used
solution technique in scheduling. Like Dynamic programming, it is an enumeration
technique, which converges to optimality. A tree structure is used in this technique.
Branches consist of nodes which contain either a semi finished schedule or a complete
schedule. For every node, a Lower Bound (LB) is calculated which consists of actual
cost of known job sequence in a node and ideal cost of remaining unknown part.
The tree enormously grows as the number of jobs increase. A better lower bounding
criteria should be used to prune the tree efficiently. Branch and Bound becomes
computationally prohibitive for medium size problems, and intractable for large size
problems. Some trial solution from an appropriate heuristic could also be used to
prune the tree as an Upper Bound (UB), so that any node with lower bound value
greater then upper bound is fathomed.
Now we will discuss the implementation issues for Branch and Bound algorithm
presented by X.Qi et al. [4]. For any node D, the total number of jobs n are
separated into two groups: jobs scheduled and jobs unscheduled. Suppose np jobs
have been scheduled and occupied positions from 1 to np in node D.

For any job J; in Sp, a new node D; can be reached from node D by placing

job J; at the end of Sp i.e., at the position of np + 1. The following two rules are
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Sp = the partial schedule on np scheduled jobs.

Sp = the set of unscheduled jobs.

pti = total processing time in the second last batch of Sp.
pn, = total number of jobs in the second last batch of Sp.
pta = total processing time in the last batch of Sp,.

pn, = total number of jobs in the last batch of Sp.

very useful in the tree pruning.

Rule 1

if pta + p; < T, then D; should be eliminated if one of the following conditions is

satisfied

1. p; < pas here slb is the set of job in last batch.

2. pn, = pny.

3. pn| = pny + 1 and pt, > pta + p;.

Rule 2

If pto + p; < T, then D; should be eliminated if one of the following conditions is

satisfied.
t F
]_. _p_l > p_t2
pny png

2. pta + Pmin < T, where ppin is the shortest processing time in S, D-

The rules are derived from properties of the optimal schedule developed by X.

Qi et al. [4]. If for any node any of the two rules are not satisfied then the lower
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bound (LB) of that node will be calculated. For a node D, total completion time
of jobs can be divided into two parts, total completion time of Sp, which is known,
and total completion time of Sj,, which has to be estimated. Let fi(D) be total

completion time of Sp, then f;(D) can be computed directly

(D) = écm (3.1)

Given a partial schedule 7' of Sp, consider the contribution of processing time,
fa(n'), and the contribution of maintenance time, f3(r'). Since ' starts at Cl.p),

the completion time of Sp, we have

’

f2(7r ) = (n - nD)C[ﬂD] + (n - nD)p["D+ll

+ (n—=np —1)Ppp+2y + - - + Pinp) (3.2)

Obviously, when 7 is an SPT schedule, fo(') is minimal. We use SPT schedule of

jobs in S}, as lower bound of fo(r'), denoted by fo(D), now

I

fa(m) not+ny.2t +n,.3t + ...

= (n—np—n)t+ngt+ng2+...

> (n—np-n)t. (3.3)
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Then f3(D) = (n — np — n;)t can be used as the lower bound of fs(7'). Therefore,

we have the lower bound of the node D as follows

f(D) = fi(D) + f2(D) + fa(D) (3.4)

The Branch and Bound algorithm is outlined as follows:
1. Use the total completion time of SPT heuristic as the upper bound of BNB.

2. Initialize the root node D such that, Sp = {0}, Sp = {J1,),..., Jn}, Pty =

Oy ml=0pt2=01 pn2=0

3. If the search tree is already empty, then stop. Otherwise, select an unsearched

node D.

4. If D is a leaf node, that is S = {0}, then a complete schedule is obtained.
If total completion time is smaller then the upper bound, update the upper

bound and go to step 3.

5. For each job in Sp, generate a new node by putting the job at the end of Sp.
If the new node satisfies rule 1 or rule 2, eliminate it. Compute the lower
bound of the new node. If the lower bound is greater then the upper bound

eliminate it, otherwise keep this node in the search tree and go to step 3.



3.3 Tabu Search

Tabu search (TS) was introduced by Glover [33], (34] and [35] is an iterative heuris-
tic for solving combinatorial optimization problems. Initial ideas of the technique
were also proposed by Hansen in his steepest acsent mildest descent heuristic. Tabu
search is conceptually simple and elegant, it has a powerful search capability for
many combinatorial optiinization problems. Tabu search is generalization of local
search. At each step, the local neighborhood of the current solution is explored
and the best solution in that neighborhood is selected as the new current solution.
Unlike local search which stops when no improved new solution is found in the cur-
rent neighborhood, tabu search continues the search from the best solution in the
neighborhood even if it is worse than the current solution. To prevent cycling, infor-
mation pertaining to the most recently visited solutions are inserted in a list called
tabu list. Moves to tabu solutions are not allowed. The tabu status of a solution
is overridden when certain criteria (aspiration criteria) are satisfied. One example
of an aspiration criterion is when the cost of the selected solution is better than
the best seen so far, which is an indication that the search is not cycling back, but
rather moving to new solution not encountered before.

Tabu search is a metaheuristic, which can be used not only to guide search in com-
plex solution spaces, but also to direct the operations of other heuristic procedures.

It can be superimposed on any heuristic whose operations are characterized as per-
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forming a sequence of moves that lead the procedure from one trial solution to an-
other. In addition to several other characteristics, the attractiveness of tabu search
comes from ability to escape local optima. There are many applications of Tabu
search, but only recently it is applied to machine scheduling, employee scheduling,
character recognition, telecommunication path assignment, quadratic assignment
problem, graph coloring and partitioning problems, traveling salesman problem and

VLSI placement.

3.3.1 Tabu Preliminaries

We will explain some phrases and terms used in Tabu search.

Trail solution: Trail solution is a solution generated from current solution as a
result of a move.

Tabu restriction: A device to avoid cycling back to previously visited solutions by
making selected attributes of moves tabu (forbidden). They allow the search to go
beyond the points of local optimality.

Aspiration criterion: A device used to override the tabu status of a move when-
ever possible.

Candidate list size: The list containing the subset of neighborhood moves exam-
ined.

Attribute of a move: Any aspect (feature or component of a solution) that

changes as a result of a move from current solution to trial solution can be attribute



of that move. A single move can have several attributes.

In Tabu search initially there is one trial solution, we call it starting solution (Seed
solution). This solution is perturbed randomly. Several moves are made, and with
each move a candidate solution is generated. Among the generated candidate solu-
tions the best solution is selected. The best candidate solution is taken as current
solution. To avoid the possibility of cycling this solution move is made tabu (for-

bidden). Basic algorithm for Tabu search presented is shown in Figure 3.1.



Algorithm Tabu_Search

Q : Setof feasible solutions

S :  Curent solution

S* :  Best solution

Cost:  Objective function

N(S): Neighborhood of S € Q

V* :  Sample of neighborhood solutions
T :  Tabu list

AL :  Aspirartion level

Begin

Start with an initial feasible solution S € Q
Initialize tabu list and aspiration level
For fixed number of iterations Do
Generate neighbor solutions V* < N(S)
Find best S* € V*
If move S to S* is not in T Then
Accept move and update best solution
Update T and AL
Else
If Cost(S*) < AL Then
Accept move and update best solution
Update T and AL
End If
End If
End For

End.

Figure 3.1: Tabu search algorithm (Sait et al. {1]).



3.3.2 Working Mechanism

The Tabu search starts with an initial solution. The initial solution is the best
solution at the start. The initial (current) solution is perturbed to obtain a set of
new candidate solutions. The move which generates the best solution among the set
of candidate solutions is selected. This move is checked in tabu list. If it is not in
the tabu list then the best candidate solution becomes the current solution. If the
best candidate solution is found in tabu list, its aspiration criteria is checked. If it
passes the aspiration criteria, i.e., better than solutions visited so far, then it is also
accepted. Hence aspiration criteria and best solution is updated. Otherwise more
moves are generated to get another set of new candidate solutions and the process is
repeated till termination. Detailed flow chart of Tabu search is given in Figure 3.2.
Tabu restrictions allow the search to go beyond the points of local optimality while
still making the best possible move in each iteration. The tabu list is initially empty,
and it is constructed in number of iterations equivalent to the tabu list size (T LS).
A difficult part in the implementation of Tabu search is to find the right tabu list
size. No single rule gives good sizes for all classes of problems. If the tabu list size is
too small, the search process may start cycling and if it is too large, the search may
be too restrictive. Therefore an appropriate list size has to be determined by noting
the occurrence of cycling when the size is tco small and the quality of solution when

it is too large.
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Figure 3.2: Tabu search flow chart.
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3.4 Tabu Search Implementation

3.4.1 Initial Solution

Initial solution (Schedule) in randomly generated. The initial solution is the job

sequence along with the preventive maintenance inserted in sequence.

3.4.2 Neighborhood Generation

The neighbor sequence is generated as follows.

Two jobs in two randomly selected batches are swapped randomly. The resulting
sequence is checked for feasibility. In case the schedule is infeasible then feasibility
is retained by a procedure given in Figure 3.4. The details of neighborhood gen-
eration are given in Figure 3.3. The quality of the final solution generated by TS
may be dependent on the number of candidate (neighbor) solutions generated. An

appropriate candidate list size works effectively to explore search space.

3.4.3 Tabu List

The attributes of a solution (Schedule) are recorded in tabu list. In our implemen-
tations attributes of a schedule are jobs swapped in a schedule and the positions of

maintenance.



Algorithm NBR 1
(* S = Schedule =)
(s S’ = Neighbor Schedule «)
(s M = Maintenance »)
(* p; = Processing time of job j. )
(* Si = Member of S (either Job or maintenance) at position i. )
Begin
S,_{ﬁ}-BJb{a}vihl'j._l'
Repeat
If (S, = M) Then
Je—j+1
Else
Insert job at S; at the end of batch B,
Endif
t—i+1
Until (i < |S))
Generate two unique random numbers a, and b with U(1, {5{).
Generate r and y with U(1,[Ba}) and U(1, | B|).
§ —s
Swap job at position z in batch B, with job at position y in batch By in s
Sort jobs in batches a and b in SPT order.
If (S’ is feasible) Then
Return
Else
Call Insert M (p, S, S’)
Endif
END

Figure 3.3: Proposed neighborhood scheme (NBR 1).

Algorithm Insert M (p, S, S’)

i1 j—1,K—{0}.S — {0}
Repeat

If (Si # M)Then

K, — S,
J—Jj+1

Endif

te—141
Until (i < |S})

Repeat

i—1,¢9q—00 D~ {0}
Repeat

Add job j, at the end of D

q—q+p,Vi€D
Until (< T || [K|=0)
Generate z ~ U(1,|D|) and remove the jobs beyond position z in D.
Insert jobs in D at the end of s’
Insert A at the end of S~
Remove the jobs in D from K

Until (|K| <0)
End

Figure 3.4: Insert maintenance in sequence (Contd. NBR 1).



3.4.4 Aspiration Criterion

The aspiration criteria used in the implementation is to override the tabu status of
a forbidden (Tabu) solution. If the best neighbor solution of the current iteration
is better than the global best solution. The global solution and aspiration level are

updated.

3.4.5 Stopping Criterion

It is decided to run the algorithm for a fixed number of non improving iterations.
The major reason for stopping after a fixed number of non improving iterations is
that continuing beyond costs run time without any significant improvement in the

results.

3.4.6 Algorithmic Description

The various steps in the proposed Tabu search algorithm are as following :

1. Initialize the tabu lists and iteration counter and assign the processing times

to the job.

)

Arrange the jobs in accsending order of their processing times and index jobs

in ascending order of processing time.

3. Generate a random initial solution.
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The objective value of the current solution is taken as the best value, and thus

the aspiration criteria is initialized.

. The candidate solutions are generated by using the procedure described in

Section 3.4.2.

. The objective value of each candidate solution is calculated and the best can-

didate is selected.

If the solution of best candidate solution is better than the solution visited
so far then it is taken as best solution and the aspiration criteria is updated.

This solution becomes seed for next iteration.

The best candidate solution is checked in Tabu list If the solution of best
candidate solution is not better then best solution so far visited then if there
is any move stored in the tabu list (see Section 3.4.3) then the move of best

candidate is checked with tabu list.

. If the move is not found in the tabu list then tabu list is updated with attributes

of best candidate solution. The selected best candidate solution becomes the

current solution for the next iteration.

The process is repeated until the stopping criteria is achieved.
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3.5 Parameter Selection for TS

Initial experimentation was conducted to fine tune the Tabu search (TS). The Gen-
eral factorial design is used to observe the effect of parameters used in Algorithm.

The General factorial design (DOE) was performed with following factors

1. Number of jobs to be Scheduled (n). Three levels are selected at 10, 50 and

100.
2. Candidate list size (CLS). Two levels are selected at 10 and 20.

3. Tabu list size (TLS). Two levels are selected at 7 and 11.

18 replications for each of the 12 combinations is conducted with two different mea-
sures.
Relative improvement form staring seed solution:
It is the measure of improvement made by algorithm with respect to initial solution
(seed solution) as follows

_ Initial Cost — Best Cost

Relative Improvement (Rij = Tnitial Cost (3.5)

The General factorial design of experiment is done using IMSL libraries on FOR-
TRAN 90 and the output of the program is given in Appendix A. None of the three

factors found to be significantly affecting the performance of TS.
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CPU time:

The similar design described above was used to determine the effect of problem
size and parameters selection on CPU time, details of the experiment are given in
Appendix B. It was found that all three factors were significant in the experiment.
The CPU time increases as Number of jobs, Candidate list size and Tabu list size

increase.

3.6 Simulated Annealing

Simulated annealing (SA) was proposed by Kirkpatrick et al.[36]. It is an iterative
heuristic and belongs to the class of non deterministic algorithms. The term anneal-
ing refers to heating a metal to a very high temperature an then slowly cooling it
down. If the cooling rate is selected appropriately, atoms of the molten metal have
a greater chance to regain proper crystal structure. During this procedure, the free
energy of the solid is minimized. Some issues related to SA were discussed by Eglese
(37].

The SA algorithm simulates the annealing process of a metal. The algorithm starts
with an initial solution, say state s;, and a new state s; is generated by applying
a perturbation mechanism. If the energy E; of state s; is less then the energy E;
of state s;, the move is accepted. Otherwise, the move from s; to s; may still be

accepted probabilistically.



36

During annealing, a metal is maintained at a specific temperature T for a prede-
termined amount of time, before reducing the temperature in a controlled manner.
At higher temperatures, atoms are more free to move, this analogous to the higher
acceptance rate of uphill (bad) moves at higher temperature is SA. As the temper-
ature goes down, the probability of accepting uphill moves becomes lower and at a
absolute zero, the SA become greedy, accepting downhill (good) moves only. Hence
the rate at which the temperature is lowered becomes critical parameter to tune so
as to avoid premature convergence of the algorithm. The similar concept is applied
to determine the optimal solution of several combinatorial optimization problems.

Figure 3.5 shows outline of basic Simulated annealing algorithm.



Algorithm Simulated annealing (S, T, & B.M Maxtime)
(*So is the initial solution *)
(*BestS is the best solution *)
(*To is the initial temperature *)
(*a is the cooling rate *)
(*B is a constant *)
(*Maxtime is the total allowed time for the annealing process *)
(*M represents the time until the next parameter update *)
Begin
T= Tn;
Cur§=3S,.
Best S = Cur S; /* Best S is the best solution seen so far */
CurCost = Cost (CurS);
BestCost = Cost (BestS);
Time=0;
Repeat
Call Metropolis (CurS, CurCost, BestS, BestCost, T, M)
Time=Time+M,;
T=al,
M= M,
Until (Time > MaxTime);
Return (BestS)
End. (*of simulated_annealing*)

Algorithm Metropolis(CurS, CurCost,BestS,BestCost, T.M)
Begin
Repeat
NewS = Neighbor(CurS); /*Return a neighbor from aleph(CurS)*/
NewCost = Cost(NewS);
A Cost = (NewCost - CurCost);
If (A Cost <0 ) Then
CurS = NewsS;,
If (NewCost < BestCost) Then
BestS = NewsS;
endif

Else

If (RANDOM < e V") Then
CurS = NewsS;

endif

endif

M=M-1

Untill (M=0)
End

Figure 3.5: Simulated annealing algorithm (Sait et al. [1]).
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SA starts with initialization of some parameters which include cooling rate .
and number of iterations, the algorithm is supposed to run. The initial temperature
is also calculated at the start of algorithm.

The metropolis function is an important issue in this algorithm. At a particular
temperature the predefined number of moves are made. The function accepts the

good moves readily, and bad moves are accepted with some probability.

3.6.1 Initial Solution

Initial solution is required as a starting (Seed) solution in simulated annealing algo-
rithm. The initial solution is generated randomly. Unlike other iterative heuristics,

Simulated annealing (SA) works with one solution rather than a population.

3.6.2 Neighborhood Generation

A transition mechanism generates a new solution (Schedule) S’ from a current so-
lution (Schedule) S. The transition mechanism is analogous to transition operator
used in other iterative heuristics. Neighbor solution is generated with the method

discussed in Section 3.4.2.

3.6.3 Cooling Schedule

Simulated annealing (SA) converges to a global optimum if an infinite number of

transitions are allowed at each temperature 7; and the temperature approaches
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to zero as the time approaches to infinity. However, the number of iterations at
each temperature 7; and the number of temperature steps are usually finite in real
implementation. Therefore SA can not find the optimal solution all the time. The

three important issues which need to be considered for cooling policy are:
1. The initial temperature value.
2. The final temperature value or the stopping criteria (condition).
3. The decrement rule of the temperature of the number of temperature steps.

Initial temperature should be set such that almost all possible transitions at the
initial temperature T, are accepted, i.e. e"T ~ 1. Thisis approximated by defining
the acceptance ratio x, which is obtained by dividing the number of accepted trial
solutions by total number of trial solutions. We use the idea proposed by Junaid et
al. [38] to determine the initial temperature. N neighbor solutions are generated
on a trial solution (sequence). In our implementation we use N = 2n. The standard

deviation of the cost for N trial moves is calculated. Initial temperature is taken as

twice the standard deviation of N neighbor solutions obtained from initial solution.

To=20N (3.6)

Annealing starts at T, again, N Neighbor solutions are generated and number of

accepted moves k are counted. If k is greater than or equal to 90 percent of the
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total number of neighbor solutions at T, then we keep this temperature and continue
the process till stopping criteria is reached. Otherwise a new initial temperature is

o /‘ r o i

Again k is calculated. This process continues till the k satisfy the 90 percent ac-
ceptance criteria. This is a robust process of temperature generation and the initial
temperature is updated without delaying annealing process automatically. In An-
nealing process, if temperature drops below 1 x 107, then it is kept constant at this

level for the remaining iterations.
Tiv1 = aT; (3:8)

where i > 0, 0 < a < 1, T; is the current temperature and T}, is the new temper-

ature to be set from the current temperature by decrement rule.

3.6.4 Markov Chain Length

The purpose of calling Metropolis loop (Figure 3.5) several times (i.e., M times) is
to attain quasi equilibrium state at a given temperature during annealing process.

This Metropolis loop size is also called the Markov chain length. In this thesis the
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Markov chain length A is made fixed and M is determined by experimentation.
The Metropolis loop is called M times. and process is repeated till there is no
improvement observed in best visited solution so far during last A transitions at a

given level of temperature.

3.6.5 Stopping Criterion

The stopping criterion used in our experimentation was fixed number of non im-
proving iterations. In this thesis all implementations of Simulated annealing (SA)

have the stopping criteria of 10000 non improving iterations.

3.6.6 Parameter Selection for SA

To test the effect of the parameter selection on the performance of Simulated an-
nealing (SA) factorial design of experiments (DOE) are conducted. Three factors

are selected for the test.

1. Number job to be Scheduled (n). Three levels of jobs are selected at 10, 50

and 100.

(8]

. Number of initial trial solutions generated. Two levels at n and 3n are selected.

3. Cooling rate (a). Three levels selected are .90, .95 and .99.

Relative Improvement:

The problem size (number of jobs) was found to be significantly affecting the perfor-



43

mance of the algorithm. The relative improvement in solution quality decreases as
the number of job increase. All main effects and interactions were found insignificant
( Appendix C).

CPU Time:

A similar experiment was performed with CPU time. The number of jobs (n) was
found significant. The interactions between number of jobs and cooling rate, and
that between initial temperature criteria and cooling rate a were also found signifi-

cant (Appendix D).

3.7 Proposed Lower Bound

A lower bound (LB 1) scheme is proposed by relaxing the maintenance requirement
for the job sequence that would be optimal for a given objective (e.g., total com-
pletion time) without any maintenance requirement (discussed in Section 1.1). For
example the Shortest Processing Time (SPT) sequence is optimal for total com-
pletion time minimization if no maintenance is performed. Now the maintenance
requirement is relaxed in each batch such that the summation of processing times
of jobs in each batch either equates or exceeds continuous working time limit 7" by a
maximum of the processing time of last job in each batch only. The performance of
LB 1 is dependent on the continuous working time limit (T'), and the maintenance

time (t). For a given continuous working time limit (T), LB 1 is tight for lower
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values of ¢t and loose for higher values of t. Similarly for given maintenance time (¢t)
the LB 1 is tight for higher ranges of (T') and loose for lower ranges of (T'). Details

of Lower bound (LB 1) are given in Figure 3.7.

Sort Jobs in non decreasing order of
processing time q=0
j =1, i=t, n=total jobs

N Insert Job Ji to the fast position of Bi
i=i+l

j=j+t

q.=0

Insert Job Ji to the last position of B,
9, =9, *tp;
j=j+1

Schd , = (B,,t,B,.1,..,1,8,)

Calculate the objecitive value of Schd

Figure 3.7: Proposed Lower Bound (LB 1) scheme for total completion time mini-
mization.
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3.8 Results

In all experimentation of this thesis test problems are randomly generated. In all the
test problems the processing times are generated with uniform distribution between
1 and 30. All algorithms were coded in FORTRAN 90 and all problems are tested

on DELL Pentium-IIT 950 MHZ processor.

3.8.1 Comparison of TS and SA With BNB

Implementation issues of Simulated annealing (SA) and Tabu search (TS) have
been discussed in this chapter earlier. Experiments are performed to determine
the suitable parameters for TS and SA Algorithms. For Tabu search algorithm
the selected parameters are; Candidate list size (CLS) = 20 and Tabu list size
(TLS)= 11. For Simulated annealing Cooling rate (a) = .95, acceptance at initial
temperature is at least 90 % and Markov chain length (M) is 20. Both algorithms
stop at 10,000 iterations if there is no improvement observed in the best visited
solution.

Table 3.1 shows the total completion time and the CPU time required for each
method for ¢t = 10, 20, and 40 for n = 9 and T = 40. The results of the two
problems of each combination is given. Similarly results are obtained for other
values of T and n are presented in Appendix F. Tables F.1- F.18 show the result

for n=9, 10,11, T= 40, 50, 60, 70,80 and t= 10, 20, 30, 40.
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TS SA BNB

t| C CPUTime| YC CPUTime| >C CPU Time

sec sec sec
10 | 389.2 1.2 389.2 1.0 389.2 4
10 | 855.8 1.7 855.8 1.2 855.8 86
201 931.6 1.5 931.6 14 931.6 30
20 | 936.8 1.5 936.8 1.1 936.8 45
30 | 1220.3 14 1322.2 0.3 1220.3 70
30 | 806.3 2.0 806.3 0.7 806.3 27
40 | 1322.2 1.4 1322.2 14 1322.2 670

40 | 1241.2 1.7 1244 4 14 1241.2 60

Table 3.1: Comparison of TS, SA & BNB for n =9, T = 40.

3.8.2 Comparison of TS, SA With SPT

Experiments are performed to compare the Tabu search (TS) and Simulated an-
nealing (SA) with SPT heuristic for large size problems. Stopping criterion is to
stop both TS and SA at 10,000 non improving iterations. For Tabu search (TS)
Candidate list size (CLS) is 150 and Tabu list size (T'LS) is 13 for more than 20
jobs otherwise it is 7. For Simulated annealing (SA), Metropolis loop size is same
as Candidate list size (CLS), Cooling rate « is 0.99 and acceptance rate is at least
90 % at initial temperature.

Tables 3.2 - 3.5 show the average of 10 runs for each combination of T' and ¢ ranging

from T = 50 to 80 and ¢ = 10 to 40. The tables show the average of total completion
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time (3 C) for 10 randomly generated problems for each of the Shortest processing

time (SPT) heuristic, Tabu search (TS) and Simulated annealing (SA). The average

CPU time for the 10 runs is also given for TS and SA.

SPT TS SA
T t YC|XC CPUTime|YC CPU Time
sec sec
50 10 2643 | 2625 46 2612 62
50 20 2843 | 2831 40 2811 65
50 30 3595 | 3562 41 3508 66
50 40 3802 | 3726 40 726 66
60 10 2416 | 2400 37 2400 43
60 20 3172 | 3146 38 3146 47
60 30 3735/ 3662 43 3662 45
60 40 3382 | 3348 37 3348 44
70 10 2130 | 2118 35 2118 54
70 20 2671 | 2671 35 2671 55
70 30 3650 | 3622 37 3622 92
70 40 3254 | 3225 53 3203 57
80 10 2638 | 2637 38 2637 50
80 20 3294 | 3288 40 3288 46
80 30 2870 | 2852 37 2855 48
80 40 3426 | 3402 35 3350 59

Table 3.2: Comparison of SPT heuristic with TS and SA for n = 20.



SPT TS SA
T t ¥£C | ¥XC CPUTime| 32C CPU Time
sec sec
50 10 7472 | 7456 82 7456 95
50 20 10161 | 10138 79 10138 131
50 30 10610 | 10320 100 10320 133
50 40 13455 | 13305 92 13374 148
60 10 7223 | 7197 68 177 139
60 20 8698 | 8667 69 &360 108
60 30 11091 | 11043 76 11031 125
60 40 11413 11294 76 11275 134
70 10 6676 | 6670 69 6640 110
70 20 8161 | 8082 66 8082 118
70 30 11032 | 10873 70 10856 128
70 40 10912 ) 10741 73 10708 115
80 10 7904 | 7881 74 7878 116
80 20 10123 | 10019 65 10019 117
80 30 9453 | 9384 66 9384 113
80 40 10374 | 10238 64 10195 110

Table 3.3: Comparison of SPT heuristic with TS and SA for n = 35.



SPT TS SA
T t £C | £C CPUTime| >C CPU Time
sec sec
50 10 10332 | 10264 98 10264 114
50 20 13696 | 13582 99 13567 122
50 30 14210 | 14197 97 14197 145
50 40 17515 | 16896 125 16896 136
60 10 9598 | 9583 82 9598 126
60 20 11976 | 11882 87 11963 121
60 30 14288 | 14092 88 14116 158
60 40 14746 | 14700 83 14700 135
70 10 8829 | 8781 89 8781 137
70 20 10415 | 10356 83 10353 141
70 30 13637 | 13624 97 13624 153
70 40 14498 | 14432 85 14432 149
80 10 10256 | 10200 79 10200 132
80 20 13005 { 12977 89 12916 137
80 30 11975 | 11907 77 11820 135
80 40 13742 | 13663 74 13663 128

Table 3.4: Comparison of SPT heuristic with TS and SA for n = 40.



SPT TS SA

T t YC | £C CPUTime{ C CPU Time
sec sec

50 10 16333 | 16274 160 16274 193
50 20 21142} 20920 185 21077 210
50 30 23406 | 22892 192 22813 200
50 40 28922 | 28488 187 28632 267
60 10 16365 | 16347 112 16347 183
60 20 17187 | 17111 141 17111 145
60 30 22352} 21700 140 21700 128
60 40 23338 | 23338 123 23338 259
70 10 14617 | 14617 122 14617 176
70 20 16518 | 16513 143 16518 241
70 30 20584 | 20474 117 20584 208
70 40 22899 | 22559 196 22830 171
80 10 15172 15162 102 15162 182
80 20 19386 | 19300 119 19300 218
80 30 18187} 18171 139 18171 176
80 40 20380 | 20328 99 20216 209

Table 3.5: Comparison of SPT heuristic with TS and SA for n = 50.
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3.8.3 Deviation of TS, SA and SPT From Lower Bound

Finally we are computing percentage relative deviation of Tabu search (TS). Sim-
ulated annealing (SA) and SPT heuristic from Proposed lower bound (LB 1) for
large size problems. This study will give an idea about how far the solution meth-
ods are from their super optimal values (Lower Bounds). In Tables 3.6 - 3.7 average
percentage of relative deviation is presented for each combination of T and £. 10
problems are solved and the average percentage relative deviation is reported for

each method.

n T t |SPT| TS | SA

20 50 101} 4.10 | 3.44 | 3.01
20 50 20 5.59 | 5.04 | 4.45
20 50 30| 5.35|7.03|5.35
20 50 40| 8.12 | 5.96 | 5.96
20 60 10| 1.10 | 1.10| 1.10
20 60 20| 5.09 | 4.01 | 4.01
20 60 30| 6.87|4.74 | 6.87
20 60 40| 7.39|6.21|7.39
20 70 10| 2.20 | 1.69 | 1.69
20 70 20} 2.11}2.11|2.08
20 70 30| 4.57 | 4.57 | 3.62
20 70 40| 6.77 | 5.91 | 5.09
20 80 10| 142 142]|1.38
20 80 20| 2.57 | 236|236
20 80 30} 3.97|3.32|341
20 80 40| 4.88 | 4.19 | 2.57

Table 3.6: Percentage relative deviation of SPT, TS and SA from lower bound.



n T t|SPT| TS SA
35 50 10| 4.71 |} 451 | 4.71
35 50 20 9.26 | 8.15 | 9.04
35 50 30)1222| 8.18 | 9.711
35 50 40| 13.07 | 11.99 | 12.50
35 60 10| 298 | 265 | 2.34
35 60 20| 6.14 | 5.68 | 5.48
35 60 30| 8.02 | 751 | 7.39
35 60 40| 9.78 | 8.67 | 8.48
35 70 10| 230 | 221 | 1.74
35 70 20 3.85 | 3.85 | 2.85
35 70 30| 6.72 | 5.28 | 5.09
35 70 40| 746 | 5.78 | 5.49
35 8 10| 1.70 | 1.41 | 1.38
35 80 20| 3.66 | 3.66 | 2.62
35 80 30| 356 { 2.92 | 2.92
35 80 40| 5.46 | 4.18 | 3.66
40 50 10§ 5.39 | 4.74 | 4.90
40 50 20| 805 | 735 | 7.20
40 50 30| 10.17(10.17|10.17
40 50 40| 15.68 | 11.66 | 12.79
40 60 10| 2.89 | 2.72 | 2.89
40 60 20| 6.39 | 5.67 | 6.21
40 60 30| 8.07 | 6.52 | 6.69
40 60 40| 8.26 | 8.26 | 8.26
40 70 10| 221 | 1.94 | 1.65
40 70 20{ 3.65 | 3.05 | 3.06
40 70 30| 5.50 | 540 | 5.44
40 70 40| 7.34 | 6.76 | 6.76
40 80 10} 1.86 | 1.86 | 1.86
40 80 20| 4.03 | 3.78 | 3.23
40 80 30| 5.31 | 4.67 | 3.84
40 80 40| 5.23 | 5.23 | 4.59

Table 3.7: Percentage relative deviation of SPT, TS and SA from lower bound.



3.9 Discussion

A comparative study is made between Branch and Bound (BNB) algorithm, Tabu
search (TS) and Simulated annealing (SA) for small size problems. For large size
problems, SPT heuristic is compared with TS and SA. The following conclusions

could be drawn:

TS SA BNB % Relative error
n| YC CPUTime| C CPUTime| ¥>C CPU Time| TS SA
sec sec sec
9 | 817.5 1.0 850.03 1.0 845.7 57.25 0.22 0.51
10 | 1936.8 1.0 1936.35 1.1 1934.5 1664.92 { 0.12 0.10
11 | 1187.0 1.6 1187.92 1.7 1186.3 9168.44 0.05 0.14

Table 3.8: Overall comparison of TS, SA and BNB with different number of jobs.

From Table 3.8, we note that TS and SA produced results that are within 1 % of
the optimal solution. Table 3.8 shows the overall comparison of average 3~ C of
BNB, TS and SA for different number of jobs on over 100 tested problems. 3 C
represents the overall average of total completion time for the tested problems. CPU
time comparison of BNB with TS and SA (Figure 3.8) shows that the CPU time
for BNB increases exponentially with job size, but the increase in CPU time for TS
and SA is insignificant in comparison to BNB.

In Tables 3.2 - 3.5 and Tables 3.6 - 3.7 the comparison of SPT heuristic is made
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Figure 3.8: CPU time Comparison of TS and SA with BNB.

with TS and SA. The following conclusions can be drawn:
The percent relative deviation of SPT heuristic from lower bound (LB 1) increases
with the increase in number of jobs.This is because as the problem size increases the
number of possible solutions increase exponentially. Figure 3.9 shows the logarithmic
plot of CPU time variation with problem size. For a given value of maximum
continuous working time (T), the relative error of SPT heuristic increases with
the maintenance time t. Figures 3.10 shows the effect of maintenance time ¢ on
performance of SPT, TS and SA heuristics based on % relative deviation form lower
bound (LB 1).

Similarly Figure 3.11 shows the effect of maintenance time ¢ on the error of SPT

heuristic when it is compared with TS and SA. This is because as we know that
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Figure 3.9: Effect of Number of jobs n on performance.

in SPT heuristic total cost of maintenance times may not be optimal, therefore as
the maintenance time (t) increases the contribution of total cost of maintenance
increases. Maintenance contribution to the total cost of resulting schedule becomes
significant, under this condition the scheduling of maintenance becomes more im-

portant than sequencing of jobs. This is why the error of SPT heuristic increases.

Similarly for a given value of maintenance time ¢, the error of SPT heuristic in-
creases with a decrease in maximum continuous working time of machine T. This
is because of the fact that as the maximum continuous working time T decreases,
the maintenance constraint gets tighter i.e. more requirement of maintenance. As

it is discussed earlier that the total cost of schedule is total cost of processing time
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of jobs and the total cost of maintenance. SPT heuristic is optimal with respect to
contribution of total processing time of jobs, but it may not be optimal for total
contributions from maintenance times. With reduction of T the maintenance re-
quirement increases and total contribution of maintenance becomes significant and
therefore SPT heuristic produces higher relative errors. Figure 3.12 shows effect of
maximum continuous working time T on the performance of the SPT, TS and SA

when the comparison is made based on proposed lower bound (LB 1).
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Figure 3.12: Effect of Continuous working time on performance.

Similarly Figure 3.13 shows the effect of T on the error of SPT heuristic when

it is compared with TS and SA.
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Chapter 4

Scheduling With Delayed

Maintenance Operations

In this chapter, we will study the problem of scheduling jobs on a single machine
that is subject to preventive maintenance. The study is an extension to the problem
studied by X. Qi et al. [4]. The objective is to minimize the total completion time

of jobs.

Maximum continuous working time of machine is divided into two categories.
The first category is preferred time (7},) and the other is maximum allowed continu-
ous working time (Tnez). If the machine is maintained during (0, 7p), the preventive
maintenance time is ¢;. If it is delayed till Tina., that is during (7, Tinaz), then

preventive maintenance time will be ¢, such that t; > ¢; and Trmar = T, When

59
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T, = Trnaz OF t; = ta, the problem reduces to the problem studied by X. Qi et al. [4].
We will develop some properties of the optimal schedule and propose a heuristic
and a lower bound based on these properties. Tabu search and Simulated annealing
approaches will be used to find the solution to the problem. Finally comparative

study will be made.

4.1 Assumptions

The assumptions used are similar to those defined in Chapter 1, some other specific

assumptions are:

1. The maximum delay allowed, Ty, is less than twice the preferred time T),.
This assumption is made to simplify the problem, otherwise there would be
another option of maintaining the machine preventively with maintenance time
t, during period (73,27},), and that would make problem very complex. This
assumption seems to be practical also, because usually preventive maintenance
is done well before the time period where the hazard of machine breakdown is

high to avoid the failure.

2. Machine will be maintained preventively if it exceeds continuous working time

limit of Tp.
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4.2 Notations

T, = Preferred time to perform maintenance (Continuous working time of machine).
Max allowed time to perform maintenance.
Maintenance time if performed in [0, T}].

ey
R
| I

ty = Maintenance time if performed in (T}, Traz|-

B; = Set of jobs in batch i.

qi = Summation of processing times of jobs in batch B;.
n; = Number of job in batch B;.

T, = Max allowance after T, T, = Traz — T).

L = Total number of batches.

4.3 Properties of Optimal Schedule

In this section some properties of optimal schedule are developed. In developing the
properties we will focus on a batch in the optimal schedule. A batch is defined to
be a set of jobs between two consecutive maintenance operations. The summation
of the processing times of jobs in batch can not exceed T, We will develop
some properties of the optimal schedule and proposed a heuristic (HSTC), based on
the properties studied. The proposed heuristic (HSTC) will be compared with the

iterative heuristics, Tabu search (TS) and Simulated annealing (SA).

Property 4.1 In each batch of an optimal schedule, jobs are sequenced in non de-

creasing order of their processing times.

Proof

This property can be proved by contradiction using the interchange argument. Con-
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sider an optimal schedule S in Figure 4.1, which does not satisfy this property. Con-
sider two jobs K and [ in batch B;. The processing times of jobs K and I are px
and p; respectively, such that p; < px. The contribution to total completion time
by jobs k and I is 2a + 2px + p;. Now consider another schedule S’ where job /
precedes job K. The contribution of jobs k and I will be 2a +2p; + px. As we know
that p; < pr and the completion time of all remaining jobs in S and S’ is the same,
the total completion time of schedule S’ is less than the total completion time of

schedule S.

t B, t
S g Wl 9 2
a Py P a+2p,+p,
t B, t
S 2 L 2
a
B Py a+p,+2p,

Figure 4.1: SPT property with each batch.
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The following property indicates that in the optimal schedule the total processing
time of jobs in any batch is less than the smallest processing time among all jobs
in subsequent batches. In the following property T represents both T,,..-, and T,

respectively. Similarly ¢ represents both ¢; and 5.

Property 4.2 In an optimal schedule for any batch B;

T—q,-<p,~ VjEBk, k=1i4+1,1+2,...,L

Proof

This property will be proven by a contradiction argument. Suppose there is an
optimal schedule S where batch B; does not satisfy this property. Let ¢; < T and job
J; with processing time p; be the first job satisfying p; < T —¢q;, J; € By, and k > u.
Let A be the set of jobs which are sequenced after batch B; and before job J;, and
n4 be the number of jobs in set A. A new feasible schedule S’ can be obtained by
putting job J; at the end of B; without changing the completion time of other jobs
except J; and other jobs in set A. In the new schedule S’, completion time of job
J; will decrease by (k — i)t + Y px and the completion time of jobs in set A will

keA
increase by n,p;. The completion time of all other jobs in schedule S and 5’ will

remain the same. As we know J; is the first job with processing time p; satisfying

p; £T —q, J; € Bk, k > i, therefore all jobs in set A will satisfy p; <p V&£ € A



and S will be superior to S'.

The following lemma extends the SPT ( sequencing in non decreasing order of
processing times) property at the level of batch. In the lemma, ¢ represents the

maintenance time for both ¢,, and £,.

Lemma 4.1 The optimal schedule(s) is such that

B &l 193, L-1 (4.1)
n; it

where L is the total number of batches of jobs.

Proof

This lemma can be proved by interchange argument of adjacent batches. Suppose
that S is a schedule in Figure 4.2 that does not satisfy this property, and there are
two batches (strings) B; and B;4, such that B;;,; immediately precedes B; with
relationship % Z’—:ll Let S’ be the schedule formed by interchanging the batches
B; and B;,; (see Figure 4.2). The resulting change in the total completion time
arises from two sources. The contribution from batch B;,, increases by the amount
n;i+1Gi, since each job in batch B;,, has its completion time increased by amount

gi- The contribution of jobs from batch B; decreases by amount n;q;;, since each

job in B; has its completion time decreased by ¢;.;. There is no change in the
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Figure 4.2: SPT property on batch.

completion time of any other job. From % < S+t , we have n;q;41 > niy1¢;. Here,
i Titt

Nie1qi — Nii+1 is the net decrease in the total completion timeof new schedule S,

therefore interchange of batches B; and B, brings net decreases in total completion

time. This lemma is the extension of SPT rule to the level of batches.

Property 4.3 In an optimal schedule,

t+Qi<t+Qi+l
ng T My |

i=1,23,...,L-1 (4.2)

where t represents both t; and t;.
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Proof
This property is the extension of SPT rule on batches with inserted maintenance

time at the end of each batch. The proof is similar to Lemma 4.1.

Property 4.4 If there are two adjacent batches B; and By such that each batch

follows same maintenance time, then in an optimal schedule n; > n,y1.

Proof
Suppose S is an optimal schedule in which there exist two batches B; and Bi,, such

that n; < ny,,. Here T represents both T, and Tma:- According to Property 4.3, we

t+ qivs
Nigl

hav , then

t
o LXE
n;

< NiGivr + (i — Nig1)t (4.3)

N1

Substituting the value of ¢; from equation 4.3 in following expression, we get.

n;lg; +t) — n; t
T-q > T—( (Gis1 ) +1)
it
Nig1T — nigiyy — nit + nigid

Nyl
n; - N T i T- i Ny — Nt
( +1 Tl) +Tl( Q+l)+( +1 ) (44)
Nity Nt Nig1

Let w be the shortest processing time of a job in batch By and ni > ny,

w=min{p; |j € Bin}, w < ;;-T;;
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(nigr —n)T + (Mig1 — M)t

T_ t Z 4.5
q Mgl Ti+1 o
> (niry —ni)T Since njyy —n; >1
il
> w (4.6)

Hence if n;;; > n;, then it contradicts the Property 4.2 of optimality which states
that, in any arbitrary batch of optimal schedule none of the jobs in following batches

could be shifted to that batch.

Property 4.5 If there are two adjacent batches B; and B, such that maintenance

time t, immediately follows B; and maintenance time t, immediately follows B;,,,

. X n; Tnaz + to
then in optimal schedule —= < =72 = 2
ni Tp + tl - w

Proof

Consider two batches B, and B;,, as shown in Figure 4.3. Let w be the shortest

q; Qi1
t, * t,
SR
i Ny

Figure 4.3: Batch B; followed by t, and B;y, followed by t».
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my

processing time in batch By, w = min{p; |j € Bis,}, let w <

= (Average

iy
processing time of a job in batch). Maintenance for time t; is performed if the
continuous working time does not exceed T,, otherwise if it exceeds T}, then time ¢,
is required for maintenance. Batch B; contains the jobs such that the summation
of the processing times of jobs in B; does not exceed T, and summation of the

processing time of jobs in batch By, exceeds Tin,o.

Now consider the batch B;. Again from Property 4.3 we can write

t +q < t2 + Qi1

< 4.7
ny Nit1 (*7)
The equation 4.7 can be rewritten as
n;(t2 + g
. < ni(t2 + givt) _ b (4.8)
Nyt
Substituting the value of ¢, from equation 4.8 in the following expression.
ni\q; +t
T,—q = Tp,-— (_(_(ﬁi‘l__il_tl)
Nit1
i Tp — nigigr — nuita + Nty
Mit]
_ (nt+l - ni)Tmar + n; (Tma.r - Qi+l) - nH—lTa — n;ite + ity
Nig1
> (Mis1 = 1) Trnaz — Mie1 Ta — nuibo + nug ity
- Ti+1
_ (nix1 = 1) Trnaz — Pit (Tinaz — Tp) — nita + niga s (4.9)

LEES



69

From Property 4.2, we know that in any batch of an optimal schedule none of the
jobs from following batches could enter into the batch without violating feasibility
of schedule. Therefore if T, — g; is more than w, then we could transfer job from
batch B;,, to batch B; without increasing the cost of schedule. For a schedule to
be optimal, Property 4.2 must be satisfied. The expression T — ¢; must be less than

shortest processing time of job in batch B, ;, hence we can write.

i1 Ty + Nty — NiTmar — nity

<w
i

st Tma:: + tg
n; TP + tl - w

(4.10)

Property 4.6 If there are two adjacent batches B, and B, such that t, immedi-

ately follows B; and t, immediately follows B;., , then in optimal schedule Qixt <

n;
T, +1,

Proof

Let w be the shortest processing time in batch B;,;, w = min{p; |j € Bi+1}, let
T, . . . . .

w < —£- ¢, and ¢, are as defined in Section 4.2. Considering Figure 4.4 maintenance
Nig1

for time t, immediately follows batch B; and t; immediately follows batch B;.;. The

summation of processing times of jobs in batch B; exceeds T, but the summation of



q; '2 q 23] t1
B = 8 i =

J a a
n i n B3]

Figure 4.4: Batch B; followed by t; and B, followed by ¢;.

processing times of jobs does not exceed T,,. Again from Property 4.3 we know that

b+ q < by + Giv1

4.11
ny - MNip ( )
The equation 4.11 can be rewritten as following
gt (4.12)
Nigl
Substituting the value of ¢; from equation 4.12 in the following expression.
Towe— @i > Tonas — (ni(Q:'+l + ) — ni+lt2>
Mgt
_ (ni1Trmaz — MiGivr — Tuby + Nisaty)
Niyl
_ (niv1 = )T + ni(Tp = Gi1) + i1 Ta — nity + nialn
Niv1
> (nig1 — 1) Tp + niga Ta — nity + nigato (4.13)

Nit1
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Here we use the similar argument presented in Property 4.5, and according to that

following condition must be satisfied

(Rig1 = )T + N1 Ta — ity + nigibn

w
Nip1
i ortl2—W i
n Ni+1(Tmaz + t2 — w) (Since Ta = Thar — Tp)
T+t
Niy1 T+t
. 4.14
n; Tma;r +i—w ( )

4.4 Proposed Heuristic

We propose a constructive heuristic (HSTC) based on the properties studied. The
idea in HSTC is to schedule the jobs in non-decreasing order of their processing
times and insert maintenance either at limit T, or T,,,, whichever gives the least
cost. This decision is made at T}, either we perform preventive maintenance with
time ¢; or we delay it till T;,,; with maintenance time t,. Detailed algorithm of

HSTC is discussed in Figures. 4.5, 4.6, 4.7 and 4.8 respectively.



Algorithm HSTC
(» S = Schedule »}
(¢ U = Universal set of jobs. s)
(s SU = Set of unassign jobs. =)
(* SA = Set of assign jobs. s)
(e B, = Set of jobs assigned to batch. i «)}
(= p; = Processing time of job j. +)
(+ B; = Set of jobs assigned to batch i.s)
(» M1 = Maintenance in sequence for time duration ¢}.s)
(s M2 = Maintenance in sequence for time duration ¢3.«)
(» C, = Completion time of job j. ¢ )

i—1, j—1, By — (0}, ,q—00,54— (0}
Repeat
If (¢s +p; £ Tp) Then
Insert job J, to sets S, B,, and S.
Remove job J, from and SU
Ci — Cj-1 +py
J— 3+l
Elseif (7 < n) Then
51— {0}, S2 — (0}, Rl — {0}, R2~— {0} , D — {0}
S1—S8A, Rl —SU,S2—51,k—j,D~5U,d—00,h—1

Repeat
Insert job J, h € D to 52 set
dt—d+ph.VhED
k—k+1l,h—h+1

Until (¢, + prh+ d < Tmaz & k< |U})

R2—U-52

Call Optionl (S1, R1, Tp, Tmax, t1.t2,C, COST1)
Call Option2 (S2, R2, Tp, Tmasz. t1,t2,.C, COST2)

If (COST1 < COST?2) Then

Insert M1in S

i—i+1

Insert job J; in S

J~Jj+1
Elseif (COST2 < COST1) Then

Call Update_Batch (S1,R1,52,R2,i,j,C,SA,SU, B, S)
Endif

Elseif (j = [U]) Then
Insert M1 to the last position in S
te—t+1
Insert job j to the last position in B;
Jj—i+l!

Endif

Until(j < |U])
End Algorithm

Figure 4.5: Proposed Heuristic HSTC.



Algorithm Optionl (51, R1, Tp, Tmaz. t1,t2,C, COST1)

(» a = Min number of batches if maintenance is performed in interval of T} )

(= b = Min number of batches if maintenance is performed in interval of Tmaz *)

(s na; = Max number of jobs in within window T, ,with preemption allowed for last job in batch + )
(= nb, = Max number of jobs in within window Tynar,with preemption allowed for last job in batch « )

Ry
S
i=1
Begin a= |1L £ ’:l
[ IR1] )
z Pi
t=1
p= |iERL
1511 iR1} a
COSTa = Z C. + |RUC|sy, + IRty + Z (IRL} =i + )p; +Zna,(i -t
i=1 t=1 1=2
ie Sl i€ Rl
tS1 |R1| b
COSTb = Z C. +|R1Cysy; + |RL[ty + Z (IR1] — i + U)p, +an,(i - 1)t
i=1 i=1 1=2
i€ Sl i€ R1,

COST1! = maz(COSTa, COSTb)
End

Figure 4.6: Cost of Option 1 (Contd. HSTC).



Algorithm Option2 (52, R2, Ty, Tmax, t1. t2,C, COST2)

(* a = Min number of batches if maintenance is performed in interval of T}, =)

(» b = Min number of batches if maintenance is performed in interval of Trnar *)

(= na, = Max number of jobs in within window Ty, with preemption allowed for last job in batch « )
(* nb; = Max number of jobs in within window Tmar,with preemption allowed for last job in batch = )

[ 1R2|
Y w
.i=l
Begin a= | L€ ’:2
IR2| ]
>
1=
b |iER2
182} | R2! a
COSTa = Z C. + |R2Csq + |R2Jts + Z (IR2 - i+ V)pi + Zna.(i— e,
i=1 i=1 i=2
i€ S? i€ R2
182] |R2} b
COSTb = Z C. +|R2(Csa + |R2|tz + z (IR2 - i+ l)p.+an,(i — 1)tz
it=1 1 =1 1=2
i€ s2 i€ R2

COST2 = maz (COSTa, COSTb)

End

Figure 4.7: Cost of Option 2 (Contd. HSTC).

Algorithm Update_Batch (S1, R1,52,R2,¢,5,C,S4,SU, B, S)
Begin A~ 52-SL
he—1
Repeat
delete job J,,Yh € A from SU
Add job Jj, to S, and SA.
C; — Cy_1 +pn-
1—J3+1L
he—h+1.
Until (h < |A})
Insert M2 to S.
ie—i+41.
End

Figure 4.8: Insert job in batch (Contd. HSTC).
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4.5 Implementation of TS and SA

Implementation of Tabu search (TS) and Simulated annealing (SA) requires an
efficient Neighborhood scheme. We proposed a new Neighborhood scheme, details
of scheme are given in Figure 4.9. In order to tune TS and SA, initial experiments
are performed with different problems, some values of ¢,, ¢2, T, and T, are used to
determine the suitable parameters for TS and SA. For Tabu search Candidate list
size (CLS) is 150 and Tabu list size (TLS) is 13. For Simulated annealing Cooling
rate (a) is .99, acceptance rate at initial temperature is kept at 90 % at least and
Metropolis loop size (M) is same as Candidate list size. Both the algorithms stops

at 10,000 non improving iterations.

4.6 Proposed Lower Bound

The Lower Bound (LB 2) could be obtained by using the idea presented in Figure3.7
but here the continuous working time limit T = T}, and maintenance time and

t=t1.



Algorithm Neighbor.Gen 2

(= S = Schedule «)

{* S’ = Neighbor schedule =)

(= K = Job sequence s)

(* M = Maintenance in sequence i.e M1 or M2 s)

(* S, = Member of S (either job or maintenance) at position i »)
(» p; = Processing time of job j. »)

Begin
S —{0},B; — {0}, i—1,5— 1
Repeat
If (S, = M) Then
J—J+1
Else
Insert job at S; at the end of batch B,
Endif
i—itl

Until (i < |S])
Generate two unique random numbers a, and b with U(L, [j]).
Generate r and y with U(1,|Bal) and U(1,|Bs]).
s'—s
Swap job at position z in batch B, with job at position y in batch By respectively in s’
Sort jobs in batches a and b in SPT order.
If (S’ is feasible) Then
Return
Else
i1, -1
Repeat
If£(S, # M1 or S, # M2)Then
K; — S,
Je—Jj+1
Endif
te—i41
Until (i < |S'))
Endif
Repeat
i—1,4¢~00 D~ (0}
Repeat
Add job j; at the end of D
q—q+p.YieD
Until (¢ € Tmaz or |K| =0)
Generate z ~ U(1,|D]), and remove the jobs beyond position z in D.
i—1,q—00 8 — {0}
Repeat
g—q+p.,.VieD
te—i41
Until (i < 2)
If (¢ < Tp) Then
Insert jobs in D at the end of S’ followed by Af1 at the end of S
Else
Insert jobs in D at the end of S’ followed by M2 at the end of §’.
Endif
Remove the jobs in D from K
Until (K] <0)
End

Figure 4.9: Proposed neighborhood scheme (NBR 2).
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4.7 Results

4.7.1 Comparison of Heuristic HSTC with TS and SA

The proposed heuristic (HSTC) is compared with TS and SA. Average improvement

(AI) and Relative improvement average (RIA) made by TS and SA over HSTC of

Tma.:r t .
10 randomly generated problems for each combination of T,, ¢i. T and t—2 is
p 1
reported in Tables 4.1 - 4.4.
TS SA

Tmaz t2 , .

Tp t T . Al %RIA CPU time | AI %RIA CPU time

P 1

sec sec
40 10 15 2|64 242 111 8 3.07 150
40 10 19 2| 3 0.16 80 8 0.37 121
40 10 15 3117 3.89 126 123  4.15 119
40 10 19 3 |116 4.02 97 143  4.96 141
60 15 15 2|65 242 88 76 2.89 117
60 15 1.9 2|14 048 68 14 048 72
60 15 1.5 3 {243 T7.19 7 259 7.68 107
60 15 19 3|95 343 73 91 3.53 88
70 20 125 2|45 1.8 69 52 2.18 101
70 20 15 299 370 83 106 3.91 106
70 20 125 3|15 0.53 70 15 0.53 93
70 20 1.5 3 |240 8.08 75 252 8.45 108

Table 4.1: Improvement made by TS and SA over HSTC for n = 20.



TS SA

Tma:: ta : H

Tp t T 4 Al %RIA CPU time | AI %RIA CPU time
’ sec sec
40 10 19 2|66 086 177 66 0.86 259
40 10 15 3 |347 523 165 351 5.10 263
40 10 19 3301 435 230 299 4.4l 254
60 15 15 2 {213 3.64 155 213 365 226
60 15 19 215 022 127 15 0.22 150
60 15 1.5 3 [777 10.59 193 825 11.17 233
60 15 19 3|28 443 103 334 521 202
70 20 125 2 |126 228 123 165 299 226
70 20 15 2197 325 118 219  3.55 185
70 20 125 3|66 087 142 66 0.87 224
70 20 15 3 [678 9.62 166 743 10.50 268

Table 4.2: Improvement made by TS and SA over HSTC for n = 30.



TS SA

Traz U2 . .

Tp t T t Al %RIA CPU time | AI %RIA CPU time
’ sec sec
40 10 15 2 |179 279 229 258 3.15 348
40 10 19 2|9 1.06 219 130 1.46 311
40 10 15 3 |374 444 209 243  2.60 318
40 10 19 3 |440 4.57 310 437  4.62 337
60 15 15 2 {272 3.44 241 270  3.38 313
60 15 19 2|18 020 135 50 0.60 197
60 15 1.5 3 (945 9.19 139 986 9.59 270
60 15 19 3 |440 4.87 227 474  5.24 244
70 20 125 2 |254 330 125 321  4.18 269
70 20 15 2 (240 2091 135 283  3.37 261
70 20 125 3|8 0.8 133 97 1.00 346
70 20 15 3 |98 9.89 146 1061 10.59 256

Table 4.3: Improvement made by TS and SA over HSTC for n = 35.



TS SA

Tmer t2 . .

Tp ¢, T 5 Al %RIA CPU time| Al %RIA CPU time
’ sec sec
40 10 1.5 2 | 311 2.74 367 352 3.09 448
40 10 1.9 2 | 166 1.39 483 177 1.48 378
40 10 1.5 31499 4.25 298 505  4.30 496
40 10 19 3| 465 3.78 353 501 4.07 376
60 15 1.5 2 | 288 2.66 290 302 2.85 401
60 15 1.9 2 | 127 1.10 198 171 1.44 304
60 15 1.5 3 | 1155 8.81 279 1249  9.53 376
60 15 1.9 31 713 5.87 286 677 5.57 327
70 20 125 2| 360 3.53 230 371 3.63 359
70 20 1.5 2 {391 3.65 271 448 4.15 344
70 20 125 3| 440 3.08 173 352 2.44 266
70 20 1.5 3 | 1297 9.86 180 1456 10.93 310

Table 4.4: Improvement made by TS and SA over HSTC for n = 40.

4.7.2 Deviation of TS, SA and HSTC from Lower Bound

The average of percent relative deviation from lower bound (LB 2) is calculated

for Simulated annealing (SA), Tabu search (TS) and proposed heuristic (HSTC).

Tnax
T,

For each combination of T, = 40,60, 70, ¢, = 10, 15,20, = 1.25,1.5,1.9 and

2 =23 10 randomly generated problem are tested. The average percentage
1



relative deviation of each method is reported in tables from Tables 4.5 - 4.6.

n T, & m= 2ipsre| s | sA
Tp t;
20 40 10 15 21337 |1063| 9.89
20 40 10 19 2| 1034|1016/ 9.92
20 40 10 15 3| 17.26 | 1263|1232
20 40 10 19 3| 1873 |1395|1283
20 60 15 15 2| 1120 | 850 | 7.9
20 60 15 19 2| 920 | 8.66 | 8.66
20 60 15 L5 3| 1914|1056 9.98
20 60 15 19 3| 1639|1239 1230
20 70 20 125 2| 026 | 828 | 6.87
20 70 20 L5 2| 1249 | 833 | 8.09
20 70 20 125 3| 806 | 8.06 | 7.49
20 70 20 15 32015 |1043| 9.9
30 40 10 19 2] 1230 | 1133|1133
30 40 10 15 3| 2163 |1521]15.39
30 40 10 19 3| 2090 | 1565|1558
30 60 15 15 2| 1277 | 8.66 | 8.66
30 60 15 19 2| 997 | 9.89 | 9.73
20 60 15 15 32312 |1008| 9.36
30 60 15 19 3| 1876 |13.50|12.57
30 70 20 125 2| 977 | 7.22 | 6.46
30 70 20 15 21379 | 1009 9.75
30 70 20 125 3| 864 | 8.16 | 7.68
30 70 20 L5 32307 1117|1011

81

Table 4.5: Percentage relative deviation of HSTC, TS and SA from lower bound.



n T, & Zme P2lpsre| Ts | sa
o &
35 40 10 15 2| 1562 | 12.05 | 1144
35 40 10 19 2 | 13.17 |11.98 | 1152
35 40 10 15 3| 2096 | 1550 | 17.80
35 40 10 19 3| 2239 |16.79 | 16.74
35 60 15 15 2 | 1268 | 8.80 | 8.86
35 60 15 19 2| 1080 | 1050 | 10.13
35 60 15 1.5 312315 |11.79 | 11.29
35 60 15 19 3| 2000 | 14.16 | 13.71
35 70 20 125 2| 1184 | 8.15 | 7.16
35 70 20 15 2| 1385 | 1053 | 1001
35 70 20 125 3| 921 | 883 | 8.12
35 70 20 15 3| 2395 |11.66 | 10.78
0 @0 10 15 2| 543 [ 1226 1165
40 40 10 19 2| 1356 | 1197 | 1187
40 40 10 15 3| 2095 | 17.80 | 15.68
40 40 10 19 3| 2284 |19.26 | 17.84
40 60 15 15 2| 1338|1035 |10.14
4 60 15 19 2| 1053 |10.30 | 9.93
40 60 15 15 32342 |12.56 | 1165
40 60 15 1.9 31 21.19 | 14.08 | 14.43
40 70 20 125 2| 1268 | 8.70 | 8.58
40 70 20 1.5 2 | 15.18 | 10.97 { 10.39
40 70 20 125 3| 1357 | 9.97 | 1174
40 70 20 1.5 3| 2641 | 13.88 | 12.57

Table 4.6: Percentage relative deviation of HSTC, TS and SA from lower bound.
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4.8 Discussion

The percentage relative deviation of HSTC heuristic from lower bound (LB 2) in-
creases with the increase in number of jobs. This is because of problem size. As
the problem size increases, the number of possible solutions increases exponentially.
HSTC heuristic sequences jobs in non-decreasing order of their processing times
and schedules maintenance time on that sequence either at continuous working time
limit of T}, or at Tp,e. If there is no maintenance requirement, then job sequence on
non decreasing order of their processing times is optimal. The total cost of schedule
is cost of total processing time of jobs and cost of total maintenance time. HSTC
heuristic is optimal with respect to the total cost of processing, if no maintenance is

considered. It may not be the optimal with respect to the total cost of maintenance.

]
i

. 20.00

" 18.00
16.00 |-—----
14.00
12.00 = | =—HSTC!
10.00 U eTS
800 4 ——--—- - - | —SA

6.00 - -
400 |- o m e
200 - - - -
0.00

% Relative deviation

20 30 35 40
Number of jobs

Figure 4.10: Effect of Number of jobs (n) on performance.
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Effect of t Effect of Tma:
t, T,
t2 Tma.::
Z | HSTC TS SA HSTC TS SA
13} 1,

2| 1097 9.09 857 | 15 | 1560 10.18 9.71
3]1662 11.34 1082| 19 | 1366 11.29 10.93

Table 4.7: Effect of — and Tmaz

¢ . -

; T on the percentage relative deviation from lower

1 P
bound.

For a given ratio of Timer and T, the relative error of SPT heuristic increases with
the ratio of ¢, and ¢;, Table 4.7 shows the effect of i—f- on performance of HSTC, TS
and SA heuristics. The comparison is made based on percentage relative deviation
from lower bound (LB 2). Similarly Table 4.8 shows % relative error of HSTC when
it is compared with TS and SA. This is due to the fact that in HSTC heuristic,
total cost of maintenance times may not be optimal. Therefore, as the maintenance
time ¢ increases the contribution of total cost of maintenance times increases and its
contribution to the total cost of resulting schedule becomes significant. Under this
condition, the scheduling of maintenance becomes more important with sequencing

of jobs. That is why the error of HSTC heuristic increases.
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t2 Tmaz:
Effect of S Effect of T,

2|15 sA | Ine

, T, TS SA

21220 250 1.5 [449 471
31549 571 19 |282 3.10

t Tm N
t_2 and T” on the percentage relative error of HSTC.
1 P

Table 4.8: Effect of

Similarly, for a given ratio of t2 and ¢;, the error of HSTC heuristic increases with

max

the decrease in . This is because of the fact that as the maximum continuous

p
working time limits T;,.- and Tp decreases, the maintenance constraint gets tighter

( i.e., more requirement of maintenance). As discussed earlier, the total cost of
schedule is total cost of processing times of jobs and the total cost of maintenance
time. HSTC heuristic is optimal with respect to contribution of total processing

times of jobs, but it may not be the optimal for total contributions from maintenance

Tmtu:

times. With reduction of , the maintenance requirement increases and total

14
contribution of maintenance time becomes significant and HSTC heuristic produces

max

higher relative errors. Table 4.7 also shows the effect of on the performance of

P
three heuristics. The comparison is made based on the percentage relative deviation
from lower bound (LB 2). Similarly Table 4.8 shows the effect on error of HSTC

when it is compared with TS and SA.



Chapter 5

Early-Tardy Minimization

In this chapter, we will study the problem of scheduling jobs on a single machine,
that is subject to maintenance for another performance measure. The study is an
extension to the problem studied by X. Qi et al. [4] for a different performance
measure. The measure is to minimize total earliness and tardiness of jobs about a

common due date.

5.1 Assumptions

All assumptions used in X. Qi et al. [4] are applicable. Other assumptions related

to this problem are following;:

1. All jobs have a common due date that is deterministic and known in advance.
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2. The due date is large enough to be unrestrictive.

5.2 Notations

A; = Batch 7 containing tardy jobs.
B; = Batch ¢ containing early jobs.
t = Time to perform preventive maintenance.
ga; = Summation of processing times of jobs in batch A;.
gb; = Summation of processing times of jobs in batch B;.
na; = Number of job in batch A;.
nb; = Number of job in batch B;.
La = Total number of batches of tardy jobs.
Lb = Total number of batches of early jobs.

T = allowable continuous working time limit.
SA {Ay, Az, A3, ..., ALa}-

SB {B\,Ba, Bs,..., B}
SAT = {Ajt, Ay t,Ast,... b AL}
SBT = {Blyt, B2,t,33,t,...,t,BLb}.

5.3 Properties of Optimal Schedule
Some properties of an optimal schedule are developed in this section.

Property 5.1 In an optimal schedule the due date d can not be during the main-

tenance period.

Proof
We will prove it by contradiction argument. Suppose there is an optimal schedule

S such that the maintenance is performed before due date d and continued after



88

d. Now consider the case where |SB| > |SA| (Number of early jobs are more
than number of tardy jobs). Consider another schedule S’ such that maintenance is
performed immediately after d, and the rest of the configuration in S’ is the same
as S. Let Z be the cost of schedule S and Z’ be the cost of schedule S’. Let tg and
t,, be maintenance times before d and after d respectively. Due to the unrestrictive
assumption of due date, changes could be made such that {4 = tg without violating
any feasibility constraint. The change in the cost of the two schedules due to this

shift is

Z'-7 = —|SBltg + [SAltg <O

Since |SB| > |SA|, therefore the cost of the schedule improves.

Similarly if |[SB| < |SA|, then a new schedule S’ could be obtained by shifting
maintenance such that it is finishing at d. In case |[SB| < |SA|, it is obvious that
the cost of new schedule S’ will improve. In case |SB| = |SA|, an alternative

schedule could be obtained.

Z'—7Z = ~|SB|ta +|SA|ta <0

Corollary 5.1 The problem of total tardiness minimization about d = 0 is equiva-

lent to total completion time minimization.
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Proof

When the due date is zero no job could be processed earlier than the due date d.
hence the problem is to minimize the average deviation from the completion time of
all jobs about the a common due date d. Since all the deviations are measured from
a common value d i.e, d = 0, therefore minimizing average completion time from
zero ready time and minimizing average deviation of completion time minimization

about d = 0 results in the same solution (Schedule).

Corollary 5.2 The optimal schedule to a total completion time minimization prob-
lem could be transformed to obtain optimal schedule to a total earliness minimization

problem about an infinitely large due date.

Proof

Schedule the jobs for objective of total completion time minimization ignoring the
due date d. Let the optimal schedule S be {By,t, B, t,...,Br_y,t, BL} , where B;
is the ith batch of jobs and L is the total number of batches. Cpq is the resulting
makespan of the schedule S. The schedule can be transformed to total earliness
minimization about a common due date d. The optimal schedule to total earliness
minimization will be §' = { LB, t... t, Byt B{} , where batches B; and
B, represents the same jobs, but in batch B! all jobs are arranged in non increasing

order of their processing times. The schedule S starts at d — Craz-
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One may conclude from corollary 5.1 that the optimal schedule for the early-tardy
scheduling problem with unrestrictive due date is not necessarily V- shape, since for
above degenerate case X. Qi et al. (4] showed the optimal schedule is not necessarily

SPT schedule for total completion time minimization.

Property 5.2 Maintenance operations after the due date should be scheduled as

late as possible.

Proof

Consider S = (SBT, SAT) with tardy set SAT = {Ay,t,....¢t, Ai,t, Aipr, k.- .. JALa}s
such that there is a batch A;, with J; at last position in batch A; and Ji is the first
job in the immediately following batch A;4,, qa; is the summation of the processing
times in A;, and qa; + pr < T. Another feasible schedule S’ could be obtained
by adding the job Ji at the last position of batch A;. The tardiness of the job Ji
will be decreased by an amount ¢, and the tardiness of rest of the jobs in the both
schedules will remain unchanged, thus schedule S’ is improved over schedule S. This
procedure could be continued till none of the jobs in the batches following batch A;
could be inserted to A; without delaying maintenance for a period more than T.

This rule applicable to all batches of tardy jobs.

Property 5.3 Maintenance operations before the due date should be scheduled as

far as possible from the due date.
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Proof

The argument similar to proof of property 5.2 will be used. Consider a schedule
S = (SBT,SAT) with early set SBT = {By,t,...,Bi_1,t,Bi.t,...,t, By}, such
that there is a batch B;_; with Ji at the last position. Batch B;_, is immediately
followed by B;. Let J; is the first job in batch B; and g¢b; is the summation of the
processing times of batch B; such that gb; + pr < T. Another feasible schedule S’
could be obtained by putting job Ji at the first position of batch B;. The earliness
of job Ji will decrease by ¢, and earliness of the rest of the jobs in schedule S’ will
remain same. This procedure could be continued till none of the jobs in the batches
preceded by B; could be inserted without delaying maintenance for a continuous

working time more than T.

Property 5.4 In an optimal schedule jobs in each of the tardy batches are sequenced

in non decreasing order of their processing times (SPT order).

Proof

We will prove this property by an interchanging argument of two adjacent jobs in
a batch. Consider a schedule S such that there are two adjacent jobs Ji and J; in
batch B; with px > p;. Another schedule S’ could be obtained by interchanging the

positions of jobs J; and Ji

Tardiness of jobs i and kin S = (a+ pr —d) + (a + px + pi — d)



Tardiness of jobsi and kin §’ = (a+ p; —d) + (a + px + p; — d)

Total change in cost of two schedule = p; —pr <O

The cost of the two schedules will be the same for all the remaining jobs. Hence S

is superior to 5.

Property 5.5 In an optimal schedule the jobs in each batch of early job set are

sequenced in non increasing order of their processing times (LPT order).

Proof
We will again use interchanging argument. Consider a schedule S such that there
are two adjacent jobs J; and Ji in batch B; with px > p;. Another schedule S’ could

be obtained by interchanging the jobs J; and Ji in schedule S.

Earliness of jobs iandkin S = (d—a+p:.)+(d—a+ pe+ pi)
Earliness of jobs tand kin S’ = (d—a+ pc)+(d—a+pe + pi)

Total change in cost of two schedule = p; —px <O

The cost of the two schedules will be the same for all the remaining jobs. Hence S’

is superior to S.

Property 5.6 In an optimal schedule, all the batches of the jobs in tardy set are

. . qa;
sequenced in non decreasing order of —.
na

1
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99 . 9%+
na; = NGy

i=1,23,. .. La-1 (5.1)

Proof
This property is the extension of the SPT rule on batch level. Similar interchange

argument can be used to prove this property.

Property 5.7 In optimal schedule, all the early batches are sequenced in non in-

gb:

creasing order o
g f b

gﬁ > gbia
nb; — nbiy

i=1,23,...,Lb—1 (5.2)

Proof

The argument is similar to the one given in property 5.5 on batch level.

5.4 Proposed Heuristic

We have proposed a heuristic (HSET) based on the properties of optimal schedule
developed in the previous section. The idea is to schedule the jobs in V-shape about
the common due date d. The last job in the early set is scheduled on the due
date. The maintenance is scheduled starting from first tardy job till the last tardy
job as late as possible. Similarly, the maintenance is schedule starting from last

early job till the first early job as late as possible. The effort is made to schedule
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maintenance along with jobs such that total deviation from the due date of all the
jobs scheduled is minimized. Details of HSET heuristic are given in Figures 5.1, 5.2

and 5.3 respectively.

Algorithm HSET

(¢ S = Schedule «)

(s SA = Tardy jobs set s)

(= SB = early jobs set s)

(* U = Universal job set in non increasing order of p; )

Begin
SA— {9}, SB—{9}.i—1,iel.
Repeat

If (U, #0) Then
Add job J; to theend of SB
te—i+1
Endif
If (U, # 0) Then
Add job J; to the end of SA
t—i+1
Endif
Until (i < |U])
Call Insert_SA2_M(p.t,T,SA.SA")
Call Insert SB2_M(p,t, T .SB.SB")
Call Improve_SA'(SA’,SA")
Call Improve_SB’(SB’,SB")
S — (SB"”,SA")
End

Figure 5.1: Proposed heuristic HSET.

5.5 Implementation of TS and SA

A neighborhood scheme (NBR 3) is proposed to search the solution space. Initial
temperature was determined using the criteria discussed in Section 3.6.3. Initial ex-
perimentation was performed to chose the suitable parameters for Tabu search (TS)
and Simulated annealing (SA). In our implementation of Simulated annealing (SA),

the initial temperature is kept high enough such that at the initial temperature at-



Algorithm I[nsert SA2_M(p,t,T.SA.S4’)

(* S = Schedule ¢)
(s« SA = Tardy jobs set =)
(= SA’ = Tardy jobs set with maintenance inserted =)
(» qa, = Summation of processing times in batch i +)
(¢ T = Max delay allowed s)
(= M = Maintenance in sequence )
Begin
SA' = (@)} i—1.j—1Yj€eSA, T .-g.
Repeat
qa; — 0.0
If (qa; +p; < T') Then
qa; ~— qa, + pj
Insert J, last position of SA’
j—i+1
Else
T —T
P41
qa; — 0.0
Insert A last position of SA’
Endif
Until (j <|S4|)
End

Figure 5.2: Insert maintenance in tardy set (Contd. HSET).

Algorithm Insert_ SB2.M(p.t,T.SB,SB’)

(« SB = early jobs set s}
(» SB’ = early jobs set with maintenance inserted =)
(+ gbi = Summation of processing times in batch i «)
(« T = Max delay allowed =)
Begin
SB' —{8},i—1,j—|SB| V;€SB, T — g qb; — 0.0.
Repeat
If (gb: + p; <T') Then
gb; — qb; + Pj
Insert J; to the first position in SB’
j—3i-1
Else
T —T
fe—i+1
qb; — 0.0
Insert M to the first position in SB'
Endif
Until G2 1)
End

Figure 5.3: Insert maintenance to early set (Contd. HSET).
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least 90% of the moves are accepted. The temperature is kept high to moderate the
annealing process. It effects its ability to converge to a global minimum. Cooling
rate is taken at 0.99, and Metropolis loop is called at least 100 times at each temper-
ature level. In Tabu search implementation the candidate list size is taken as 100,
and tabu list size is 13 for problems with number of jobs more than 20, otherwise
it is 7. Both algorithms are allowed to run to 10,000 non improving iterations. The
major issue in implementation of Tabu search and Simulated annealing is neighbor-

hood scheme. Details of the neighborhood scheme is explained in Figures 5.4 - 5.6.



Algorithm Nbrhood_gen 3

(* S = Schedule &)
(» S’ = Neighbor schedule s)
(¢ M = Maintenance in sequence s)
(¢ T = Max delay allowed +)
Begin
A-—{0}.B——(6},i-—l.j——l,v-—|’%1
Repeat
Insert member (job or maintenance) at S; to B at position j.
If(S,#M)i—i+1
J—Jj+1
Until (i <v)
If (S¢+1 = M)Then
Bj+l Aoud A’, ] -1
Repeat
A]' -5
J—j+1
Until(i < |S])
Else
j—1
Repeat
Aj— S,
JeeJj+li—it+1d
Until(i < [S))
End if

Generate £ with U(0.1)

If(z<))
Call Schemel (S, S’)
Else
Call Scheme2 (S, S')
Endif
If(S’ infeasible) than
Call insert.M (p, S, S’)
Endif )
Sort all Early batches in LPT and all Tardy batches in SPT order in § .
End

Figure 5.4: Proposed neighborhood (NBR 3) for Early-Tardy minimization.
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Algorithm Schemel(S,S'")
Repeat
Generate two distinct integer random numbers a and b with U(1,15]).
Do i — a,b
If (S, = M) Break
Enddo
Until(Break)
S'—5
Swap S_, with S;

Figure 5.5: Algorithm for scheme 1 (Contd. NBR 3).

Algorithm Scheme2(S,A,B,S’)

Repeat
Generate two distinct integer random number a and b with a ~ U(L,[B|), & ~ U(1,]A4]).
If (Sa # M and Sp # M) Break

Until{Break)

S'—S

Swap §’(a) with S'(b)

Figure 5.6: Algorithm for scheme 2 (Contd. NBR 3).

5.6 Proposed Lower Bound for Early Tardy Min-
imization

The approach of relaxing maintenance constraint with the properties of the opti-

mal schedule developed in Section 5.3 is used to construct the lower bound. The

algorithm starts by considering the optimal schedule for the problem when no main-

tenance is required (Kanet's Algorithm). Maintenance operations are then inserted

in schedule such that there is at most one job violating maintenance constraint T

in each batch. Details of lower bound procedure is explained in Figure 5.7.



Sort Jobs i non g order of g ime
Insert jcb 1 non wcreasing order of indaxes 1n U set
wl Aai}. Bxi})

y

i Insert j0b Ji to the flast position ot B set

1 et

Insert job Ji to the lirst position of A set

tostel

m?, qu0 . s 1, SA={ }. 5Bs( }

I

Ifq+p, ST inset  J ig A toSAandt
ie A N 1aiel Qa0
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={e
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b 4
¥ il
Y
> Schd , = (SB.SA)

Figure 5.7: Proposed lower bound for Early -Tardy minimization.
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5.7 Results

5.7.1 Comparison of Heuristic HSET with TS and SA

The proposed heuristic (HSET) is compared with the Tabu search (TS) and Simu-
lated annealing (SA) in this section. The average percentage relative improvement of
Tabu search (TS) and Simulated annealing (SA) over the proposed heuristic HSET
is computed. This study will give an idea about the error of HSET heuristic and
effect of maintenance parameters on performance. Tables 5.1 - 5.4 summarizes the
results obtained. For each combination of T ranging from 50 to 80 and ¢ ranging
from 10 to 40, 10 problems are solved by each algorithm and Average Improvement
(AlI) and Relative Improvement Average (RIA) over HSET is computed based on
the solution found by TS and SA respectively. In all the test problems the process-
ing times are randomly generated with uniform distribution from 1 to 30 and the
problem sizes are 10, 20, 35 and 50. The common due date d is taken by summing
the processing times of all job and maintenance time inserted in the sequence if the

preemption is allowed. The due date is determined by following equation.

n
n ZP;’

d = p1+ =l (53)
Fonr | =



TS

SA

Al

%RIA CPU time

Sec

Al

%RIA CPU time

sec

50
50
50
50
60
60
60
60
70
70
70
70
80
80
80
80

10
20
30
40
10
20
30
40
10
20
30
40
10
20
30
40

15
20
38
65
7
8
28
80
7
7
30
12
1
8
10
13

3.31
3.38
5.81
14.02
1.79
2.03
4.86
13.08
1.94
2.64
6.95
1.78
0.45
1.50
3.68
3.30

33
33
30
38
39
37
30
30
28
33
36
33
36
37
23
36

20
27
40
40
7
8
6
79
7
7
20
12
1
8
10
13

5.63
6.17
6.09
14.41
1.79
2.03
1.16
12.90
1.94
2.64
5.34
1.78
0.45
1.50
3.68
2.08

43
44
47
43
40
42
42
42
41
40
40
40
40
41
41
42

Table 5.1: Average improvement made by TS and SA over HSET for n = 10.
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TS SA

T ¢t | Al %RIA CPU time | AI %RIA CPU time

sec sec
50 10} 38 292 83 38 292 110
50 20 60 4.30 93 60 4.30 115
50 30| 130 5.65 90 133  5.75 114
50 401} 111 5.60 81 112 5.65 123
60 10| 33 2.76 76 25 2.05 95
60 20| 80 5.17 7 80 5.17 98
60 30| 92 4.75 81 80 4.15 119
60 40 95 5.39 79 95 5.39 83
70 10y 3 033 74 9 092 89
70 20| 46 3.14 74 52  3.55 86
70 30| 78 4.02 75 87  4.55 88
70 40| 78 4.09 76 88  4.88 94
80 10{ 17 1.27 74 17 1.27 79
80 204 60 3.76 73 60 3.76 99
80 30} 29 2.08 71 40 278 81
80 40| 27 155 69 35 202 89

102

Table 5.2: Average improvement made by TS and SA over HSET for n = 20.



TS SA

T t | Al %RIA CPUtime| Al %RIA CPU time

sec sec
50 10| 63 1.68 189 69 1.86 302
50 204165 3.28 201 187 3.68 260
50 30288 4.55 233 317 5.00 271
50 40508 7.19 207 502 7.12 238
60 10| 50 1.39 156 52 1.46 231
60 20179 185 292 68 1.63 239
60 30|164 292 211 167 2.98 247
60 40233 3.90 173 214  3.59 254
70 10| 51  1.57 185 4 133 235
70 20 (127 3.03 183 137  3.25 204
70 30 (173 3.02 180 184 3.24 238
70 4018 3.19 161 200 3.49 230
80 10§ 47 118 172 46 1.17 199
80 20| 57 1.16 174 65 1.29 222
80 30 (118 240 167 132 2.70 229
80 40| 141 2.77 203 146 2.85 230
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Table 5.3: Average improvement made by TS and SA over HSET for n = 35.



TS SA

T t | Al %RIA CPUtime | Al %RIA CPU time

sec sec
50 20{273 255 514 340 3.18 529
50 30575 4.79 541 606 5.04 473
50 40460 3.18 511 501 3.45 538
60 10| 56  0.69 302 65 0.80 422
60 20164 203 422 179 2.19 429
60 30388 3.38 470 387 3.37 488
60 401|241 201 425 241 2.01 423
70 10| 30 042 299 43  0.59 442
70 20| 165 1.99 292 162 1.96 450
70 30| 247 238 389 248 2.38 436
70 40| 133 1.21 431 139 1.27 427
8 10| 43 0.61 309 36 0.1 391
80 201|100 1.05 383 91 0.95 368
80 30198 2.11 430 191 2.02 426
80 40207 203 328 224  2.20 391
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Table 5.4: Average improvement made by TS and SA over HSET for n = 50.

5.7.2 Deviation of TS, SA and HSET from Lower Bound

To test the performance of the three heuristics TS, SA and HSET, their average

percentage relative deviation from the proposed lower bound (LB 3) is computed.

This study will give an idea about how far the solution methods are from their super
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optimal values (Lower Bounds). In Tables 5.5 to 5.8 average percentage of relative
deviation is presented for each combination of T ranging from 50 to 80 and ¢ ranging
from 10 to 40, 10 problems are solved and the average percentage relative deviation

is reported for each method.

n T ¢ |HSET| TS SA
10 50 10| 13.58 | 849 | 6.79
10 50 20| 20.04 | 15.98 | 12.62
10 50 30| 30.44 | 22.58 | 22.22
10 50 40| 34.44 | 17.90| 17.90
10 60 10| 6.57 | 4.62 | 4.62
10 60 20| 17.21 | 15.24 | 15.24
10 60 30| 24.76 | 18.65 | 23.34
10 60 40| 3240 | 1524 | 15.24
10 70 10| 764 | 551 | 5.51
10 70 20| 11.98 | 9.11 | 9.11
10 70 30| 18.54 | 10.35| 12.34
10 70 40| 23.57 | 21.40 | 21.40
10 80 10| 590 | 543 | 543
10 8 20 907 | 739 | 7.39
10 80 30| 14.30 | 10.17 | 10.17
10 80 40| 21.06 | 16.95 | 18.68

Table 5.5: Average deviation of TS, SA and HSET from lower bound for n = 10.



n T t |HSET| TS SA
20 50 10} 825 | 5.09 | 5.09
20 50 20| 13.96 | 9.01 | 9.02
20 50 301} 20.17 | 14.17 | 13.26
20 50 40| 21.78 | 15.68 | 14.75
20 60 10 7.11 | 4.14 | 4.93
20 60 20| 12.17 | 6.34 | 6.34
20 60 30| 16.82 | 11.24 | 11.94
20 60 40| 19.59 [ 13.37 | 14.57
20 70 10} 4.11 | 3.77 | 3.15
20 70 20| 8.74 | 5.30 | 4.84
20 70 30| 14.15 | 10.15 | 8.96
20 70 40| 1342 | 8.68 | T7.82
20 80 10| 431 | 2.98 | 2.98
20 80 20| 897 | 4.88 | 4.88
20 80 30} 9.83 | 7.52 | 6.75
20 80 40} 1096 | 9.23 | 8.69
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Table 5.6: Average deviation of TS, SA and HSET from lower bound for n = 20.

n T t |HSET| TS SA
35 50 10} 5.90 | 4.11 | 3.92
35 50 20| 12.12 | 9.07 | 7.99
35 50 30| 14.78 | 9.50 | 8.98
35 50 40| 20.73 { 12.05| 12.53
35 60 10} 5.38 | 3.91 | 3.83
35 60 20} 7.06 | 5.07 | 5.31
35 60 30| 1253 | 9.23 | 9.16
35 60 40| 14.72 | 10.23 | 10.60
35 70 10| 4.12 | 2.48 | 2.73
35 70 20| 7.86 | 4.57 | 4.34
35 70 30| 10.50 | 7.49 | 6.92
35 70 40| 13.47 | 9.83 | 949
35 80 10| 405 | 2.82 | 2.84
35 80 20| 5.78 | 4.55 | 441
35 80 30| 963 | 7.00 | 6.67
35 80 40| 10.75 | 7.68 | 7.59

Table 5.7: Average deviation of TS, SA and HSET from lower bound for n = 35.



n T ¢t |HSET| TS SA

50 50 10| 6.70 | 5.06 | 4.87
50 50 20| 12.01 | 9.16 | 845
50 50 30| 13.22 | 7.71 | 7.70
50 50 40 17.93 | 14.17 | 13.86
50 60 10| 4.13 | 3.41 | 3.29
50 60 20 7.54 | 5.36 | 5.18
50 60 30| 11.87 | 8.10 | 8.11
50 60 40| 12.15 | 9.90 | 10.45
50 70 10| 3.33 | 2.90 | 2.72
50 70 20| 7.04 | 491 | 4.94
50 70 30| 891 | 6.32 | 6.32
50 70 40 10.47 | 9.12 | 9.06
50 80 10| 2.80 | 2.17 | 2.28
50 80 20| 5.61 | 4.50 | 4.61
50 80 30| 842 | 6.14 | 6.23
50 80 40| 848 | 6.28 | 6.09
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Table 5.8: Average deviation of TS, SA and HSET from lower bound for n = 50.

5.8 Discussion

Comparative study is made over the proposed heuristic HSET with Tabu search

(TS) and Simulated annealing (SA). Tables 5.1- 5.4 show relative error of HSET

heuristic when it is compared with TS and SA. Tables 5.5 - 5.8 extend the same

idea but here, the comparison of three heuristics HSET, TS and SA is made with

the proposed lower bound (LB 3). In Tables 5.1 - 5.4 the following observations

could be made:

The error of heuristic HSET increases with the increase in the problem size. HSET
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sequences jobs in V- shape about the common due date d and the maintenance is
scheduled on that V-shape sequence. The total cost of schedule is the cost of total
earliness and tardiness caused by the jobs and the cost by maintenance. The V-shape
job arrangement is optimal if no maintenance is performed. HSET is optimal for
early-tardy problem where machine is continuously available. It is not optimal when
planned maintenance is involved. With the increase in number of jobs, maintenance
requirement also increases and therefore contributions from maintenance increase
and become significant. Figure 5.8 shows the variations in the average percentage

relative deviation of the three methods with the number of jobs.
! 20.00

‘ 18.00
16.00 +-—-
14.00
12.00
10.00 -
800 | - - --

600 | -~ - e e
4.00 e e e
2.00 e e e
0.00

% Relative deviation from Lower
bound

10 20 35 50
Number of Jobs (n)

Figure 5.8: Effect of number of jobs on performance.

For a given value of maximum continuous working time T', the error of HSET heuris-

tic increases with the maintenance time ¢. Figures 5.9 and 5.10 show the effect of
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different maintenance time ¢ on the error of HSET heuristic. As the maintenance
time ¢ increases the contribution of total cost of maintenance increases and its contri-
bution to the total earliness and tardiness of resulting schedule becomes significant.
Similarly for a given value of maintenance time ¢, the error of HSET heuristic in-

creases with the decrease in maximum continuous working time 7" of machine. As

20.00

1800 |- -
16.00
1400 | — -
12.00 — - -
10.00 {-
8.00
6.00 |- -—-
400 | -
200 | - o e e e— e e
0.00

% Relative Deviation

10 20 30 40
Maintenance time (t)

Figure 5.9: Effect of maintenance time ¢ on performance.

the maximum continuous working time T decreases the maintenance constraint gets
tighter i.e., more maintenance is required. With reduction of T, the maintenance
requirement increases and total contribution of maintenance time becomes signifi-
cant and HSET heuristic produces higher relative errors. Figure 5.11 the effect of
max allowed time to do maintenance T on the performance of the three heuristics

and Figure 5.12 shows the effect of T on the error of heuristic HSET when it is
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Figure 5.10: Effect of maintenance time ¢ on HSET error.

compared with TS and SA. Tables 5.5 - 5.8 show the deviation of heuristics HSET,
TS and SA from lower bound (LB 3). Lower bound (LB 3) is also sensitive to T
and ¢. Since lower bound is obtained from relaxation of maintenance constraint, as
the maintenance requirement increases (i.e., maximum continuous working time of
machine T decreases), the lower bound gets weaker (results lower value). With the
increase in maintenance time ¢, deviation to the maintenance constraint violation

increases and hence the lower bound becomes weaker.
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Figure 5.11: Effect of continuous working time T on performance.
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Figure 5.12: Effect of continuous working time T on HSET error.
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Chapter 6

Summary, Conclusion and Future

Work

In this thesis, jobs scheduling and maintenance operations on a single machine is
studied. Tabu search (TS) and Simulated annealing (SA) approaches are developed
to the problem proposed by X. Qi et al. [4], and to two other extensions. Extensions
to the problem are analytically studied and heuristics are proposed. A brief summary
of the work done, followed by conclusions and some future extensions of this work

is provided in following sections.

6.1 Summary

The main contributions to the thesis are:
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e Tabu search (TS), Simulated annealing (SA) approaches and a lower bound
are developed to problem of X. Qi et al. [4]. The Branch and Bound (BNB)
algorithm is implemented to evaluate the methods. The general factorial de-
sign of experiments are performed to determine the suitable parameters for
Tabu search (TS) and Simulated annealing (SA). Solutions obtained by Tabu
search (TS) and Simulated annealing (SA) are within 1 % of optimal solutions
obtained by Branch and Bound (BNB) for the objective of total completion
time minimization. In real time applications the proposed heuristic is more
practical than the Tabu search (TS) and Simulated annealing (SA) when com-

putation time is a significant factor.

e Comparisons are made between TS, SA and BNB for small size problems.
For Large size problem, the average relative deviation from Lower Bound is
studied for the heuristic (SPT) proposed by X. Qi et al. [4], Tabu search (TS)

and Simulated annealing (SA) approaches.

e Two extensions to the problem are studied. In the first one the maintenance is
allowed to be delayed with longer maintenance duration. The second extension
studies the original problem with total earliness and tardiness as a performance

measure. For each problem the following is done:

— Properties of the optimal schedule are derived analytically.

— A constructive heuristic is proposed based on the properties developed.
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— Tabu search (TS) and Simulated annealing (SA) approaches are devel-
oped and comparative study is made between TS. SA and proposed

heuristic.

— A lower bound is developed and the relative deviation of TS, SA and the

proposed heuristic from the lower bound is studied.

In the situations where the maximum continuous working time limit is high
the proposed heuristics to extensions find good solution for small values of
maintenance time. As the maintenance time increases, the performance of
heuristics becomes worse and Simulated annealing and Tabu search get good
solutions. Therefore it is recommended to use heuristics when the maintenance

time is low and maximum continuous working limit is high.

6.2 Future Work

Scientific research is an ongoing process and there is always some room for improve-
ment. The following is a brief list of suggestions for possible future work in this

area.

e The problem can be considered for scheduling maintenance activity on parallel

machines.

e Error bound analysis of proposed heuristics can be carried out.
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e The development of Hybrid evolutionary techniques can also be considered for

the original problem and its proposed extensions.

e Other objectives related to the due date like total lateness, maximum lateness

can be considered as future work.

e Unplanned maintenance requirement may also be considered.

e Multiple machine scheduling problem with maintenance requirement can also

be considered for a future research.



Appendix A

DOE for Setting TS Parameters

w.r.t Relative Improvement

Design of experiments for Tabu Search with Objective value = (initial cost- best cost
observed)/initial cost
A = Number of Jobs (n) B = Candidate list size C = Tabu list size Levels of

A = 3 (10 50 100) Levels of B = 2 (10 20) Levels of C = 2 (7 11)

Dependent R-squared Adjusted Est. Std. Dev. Coefficient of
Variable  (percent) R-squared of Model Error Mean Var. (percent)
Y .000 .000 8.464 19.5 43.4

* * % Analysis of Variance * # *

Sum of Mean Prob. of
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Source DF Squares Square Overall F Larger F
Model 11 .0 .00 .000 1.0000
Error 204 14614.1 71.64

Corrected Total 215 14614.1

* * * Variation Due to the Model * = =

Sum of Prob. of
Source DF Squares F Larger F
A 2 0 .000 1.0000
B 1 0 .Q00 1.0000
c 1 o] .000 1.0000
A+B 2 0 .000 1.0000
A=C 2 0 .000 1.0000
B=C 1 ] .000 1.0000
A«B+C 2 0 .000 1.0000

*

* * Subgroup Means * * *

A Means (N=72)

1 19.5017
2 19.5017
3 19.5017

B Means (N=108)
1 19.5017
2 19.5017

C Means (N=108)
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1 19.5017
2 19.5017

A*B Means (N=36)

1 1 19.5017
1 2 19.5017
2 1 19.5017
2 2 19.5017
3 1 19.5017
3 2 19.5017

A*C Means (N=36)

1 1 19.5017
1 2 19.5017
2 1 19.5017
2 2 19.5017
3 1 19.5017
3 2 19.5017

B*C Means (N=54)

11 19.5017
1 2 19.5017
2 1 19.5017
2 2 19.5017

A*B*C Means (N=18)
1 1 1 19.5017
1 1 2 19.5017

1 2 1 19.5017
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Appendix B

DOE for Setting TS Parameters

w.r.t CPU Time

Design of experiment with Cpu time A = number of jobs B = Candidate list size (10 20) %

C = Tabu list size (7 11)

Dependent R-squared Adjusted Est. Std. Dev. Coefficient of
Variable (percent) R-squared of Model Error Mean Var. (percent)
Y 96.381 96.185 1.297 7.949 16.32

* * * Analysis of Variance * * #

Sum of Mean Prob. of
Source DF Squares Square Overall F Larger F
Model 11 9138.8 830.8 493.851 .0000
Error 204 343.2 1.7
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Corrected Total 215 9482.0

* *+ & Variation Due to the Model * = =

Sum of Prob. of
Source DF Squares F Larger F
A 2 8345.96  2480.537 .0000
B 1 303.02 180.126 .0000
c 1 209.93 124.787 .0000
A*B 2 82.38 24.486 .0000
AsC 2 197.05 58.566 .0000
B*C 1 .13 .080 7779
AsB*C 2 .32 .095 .9096

* * * Subgroup Means * * =*

A Means (N=72)

1 1.4677
2 6.0466
3 16.3329

B Means (N=108)
1 6.7646
2 9.1335
C Means (N=108)
1 6.9632
2 8.9349

A*B Means (N=36)



3

2

.9991

1.9363

4.3377

7.1556

14.3572

18.3086

Means (N=36)

1.4261

1.5093

5.4252

6.6681

14.0384

18.6274

B#C Means (N=54)

1

2

2

1

2

1

2

5.7539

7.7754

8.1726

10.0944

A*BsC Means (N=18)

1

1

1

2

.8782

1.1199

1.9740

1.8987

4.3181

5.5573

(]



6.5322

7.7789

12.0653

16.6490

16.0116

20.6057



Appendix C

DOE for Setting SA Parameters

w.r.t Relative Improvement

Design of Experiment for Simulated Annealing with
objective function = (initial solution cost -best cost )/initial cost,

A

number of jobs (n),

B = Number of initial trial solutions for initial temperature,

c

Alpha Cooling rate (Alpha),

Levels of A = (10 50 100),

Levels of B = (1#*n 3#n),

Levels of C

(.90 .95 .99),

Dependent R-squared Adjusted Est. Std. Dev. Coefficient of

Variable (percent) R-squared of Model Error Mean Var. (percent)

124



Y 41.289 38.027 .07203 .2348 30.68

* = * Apalysis of Variance #* * s«

Sum of Mean Prob. of
Source DF Squares Square Overall F Larger F
Model 17 1.117 .06569 12.659 .0000
Error 306 1.588 .00519
Corrected Total 323 2.705

* & * Variation Due to the Model * * =

Sum of Prob. of
Source DF Squares F Larger F
A 2 1.09669 105.674 .0000
B 1 .00124 .239 .6251
C 2 .00253 .243 .7841
AsB 2 .00177 171 .8433
AsC 4 .01159 .558 .6930
B*C 2 .00125 -121 .8864
As*BsC 4 .00159 .077 .9893

* » * Subgroup Means * % *
A Means (N=108)
1 .3046
2 .2374

3 .1622



B Means (N=162)
1 .2328
2 .2367

C Means (N=108)

1 .2387
2 .2329
3 .2326

A*B Means (N=54)

11 .2995
1 2 .3098
2 1 .2379
2 2 .2369
3 1 .1610
3 2 .1634

A*C Means (N=36)

1 1 .3197
1 2 .2937
1 3 .3006
2 1 .2347
2 2 .2412
2 3 .2364
3 1 .1617
3 2 .1640
3 3 .1610

B*C Means (N=54)

126



3 1

3 2

.2373

.2330

.2280

.2401

.2328

.2372

AsB+C Means (N=18)

1

2

.3178

.2898

.2910

.3217

.2975

.3101

.2344

.2468

.2324

.2350

.2355

.2403

.1598

.1625

. 1606

. 1635

. 1655

.1613
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Appendix D

DOE for Setting TS Parameters

w.r.t CPU Time

Design of Experiment for annealing with objective of cpu time) A = Number of

Jobs (n) B

Dependent
Variable

Y

Source

Model

= initial temperature trial solution C = Alpha

R-squared Adjusted Est. Std. Dev.
(percent) R-squared of Model Error Mean

58.985 66.707 5.688 6.408

*  » Analysis of Variance #* * *

Sum of Mean
DF Squares Square Overall F
17 14236.1 837.4 25.887
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Coefficient of
Var. (percent)

88.75

Prob. of
Larger F

.0000



Error

Corrected Total

Source

A=B

A=C

BsC

A*B=C

-

>

Means (N=108)

.7882

4.5613

13.8755

B Means (N=162)

6.0112

6.8054

C Means (N=108)

7.1859

6.4340

DF

* *# Subgroup Means * * *

9898.9

24135.0

Sum of
Squares
9801.71

51.09

135.04

104.77

633.19
1129.86

2380.44

+ ¢ & Variation Due to the Model

151

17.

18.

F

.498

.579

.087

.619

.893

463

396

32.3

Prob. of
Larger F
. 0000
.2098
. 1258
.1997
.0008
.0000

.0000



3 5.6051

A*B Means (N=54)

1 1 .7419
1 2 .8344
2 1 4.6155
2 2 4.5071
3 1 12.6763
3 2 15.0747

A*C Means (N=36)

11 .6714
1 2 .6984
1 3 .9946
2 1 4.4224
2 2 3.8049
2 3 5.4567
3 1 16.4638
3 2 14.7988
3 3 10.3640

B+C Means (N=54)

11 4.3735
1 2 8.1696
2 1 5.4906
2 2 9.9982
3 1 4.6984

3 2 5.7196
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AsB+C Means (N=18)

1

20

24.

10

.6142

.6624

.9491

.7287

.7344

.0402

.5402

.6372

.66390

.3045

.9726

.2444

.9661

.2092

.8538

9615

.3884

.8742
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Appendix E

DOE for Setting TS Parameters

w.r.t Relative Improvement

Objective value is Relative improvement over proposed heuristic HSTC

A = Candidate list size (60 100 150)
B = Tabu list size (7 11 20)
C = stopping criteria iteration (10000 20000)
Dependent R-squared Adjusted Est. Std. Dev. Coefficient of
Variable (percent) R-squared of Model Error Mean Var. (percent)
Y .426 .000 3.332 4.344 76.69
* * * Analysis of Variance * * *

Sum of Mean Prob. of

Source DF Squares Square Overall F Larger F
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Model 17 16.2 .96 .086 1.0000
Exror 342 3796.0 11.10
Corrected Total 359 3812.3

* » ¢ Variation Due to the Model * = »

Sum of Prob. of
Source DF Squares F Larger F
A 2 1.78717 .081 .9227
B 2 . 14380 .006 .9935
c 1 2.27052 .205 .6514
A*B 4 3.65189 .082 .9878
AsC 2 2.59456 117 .8897
B=C 2 2.25061 .101 .9036
A*B+C 4 3.54504 .080 .9885

* » s Subgroup Means * * =

A Means (N=120)

1 4.3435
2 4.2582
3 4.4307

B Means (N=120)

1 4.3506
2 4.3647
3 4.3171

C Means (N=180)



2

1

AsB

1

2

4.2647
4.4236
Means (N=40)
4.4445
4.2253
4.3608
4.1975
4.4640
4.1130
4.4097
4.4050
4.4775
Means (N=60)
4.3700
4.3170
4.0768
4.4395
4.3473
4.5142
Means (N=60)
4.2327
4.4685
4.3955
4.3340

4.1660
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2

3

4.4682

AsB*C Means (N=20)

1

1

2

4.

4

3325

.5565

.4460

.004S

.3315

.3900

.0535

.3415

.4610

.4670

.7160

.5100

.3120

.5075

.2795

.5305

.4505

.5045
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Appendix F

Tables

TS SA BNB

t| C CPUTime| “C CPUTime| ¥C CPU Time
sec sec sec

20 | 582.3 2.0 582.3 0.2 582.3 3
20 | 1016.2 1.3 1016.2 0.6 1016.2 148
30 | 1181.9 1.5 1181.9 1.2 1181.9 148

30| 951.8 1.6 955.0 0.1 951.8 14
40 | 932.2 1.6 933.7 0.3 932.2 59
40 | 1149.1 2.0 1148.7 0.4 1148.7 242
50| 714.3 1.2 715.6 0.4 656.7 11
50 | 1249.1 1.7 1257.2 0.9 1249.1 12

Table F.1: Comparison of TS, SA & BNBforn=9, T =50
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TS SA BNB
t | ¥C CPUTime| >C CPUTime| >C CPU Time
sec sec sec
50 | 540.1 1.7 540.8 0.48 540.1 22
50 | 1560.5 1.4 1560.5 0.38 1560.5 185
50 | 4354 1.6 4354 0.12 435.4 13
50 | 9184 1.8 9184 1.15 918.4 2
50 | 572.8 1.5 572.8 0.72 572.8 11
50 | 11376 1.7 1137.6 1.40 1137.6 15
50 | 794.2 2.0 794.2 0.75 794.2 6
50 | 729.5 1.3 729.5 0.69 729.5 20
Table F.2: Comparison of TS, SA & BNB for n =9, T =60
TS SA BNB
t SC CPUTime| ¥C CPUTime{ >C CPU Time
sec sec sec
30| 5104 2.0 5104 1.7 5104 17
30 | 309.0 1.5 309.0 1.2 279.0 2
40 | 1027.3 2.1 1026.7 1.5 1026.7 94
40| 614.8 1.2 614.8 1.0 614.8 13
50 | 1063.3 1.3 1063.2 0.8 1063.1 46
50 | 483.9 0.9 483.9 0.6 483.9 20
60 | 1167.2 1.8 1167.2 0.6 1167.2 80
60 | 634.1 2.2 634.1 1.5 634.1 21

Table F.3: Comparison of TS, SA & BNBforn=9, T =70
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TS SA BNB
t | ¥C CPUTime| ¥C CPUTime| >C CPU Time
sec sec sec
40| 931.5 1.7 931.5 0.8 931.5 6
40| 586.5 1.1 586.5 1.2 586.5 17
50| 619.1 1.7 619.1 0.6 619.1 18
50| 930.1 1.7 930.1 1.5 930.1 25
60 | 922.7 1.3 922.7 0.9 922.7 27
60 | 521.0 1.3 521.0 1.8 521.0 23
70 | 1030.3 1.5 1030.3 1.8 1030.3 20
70 | 1299.6 1.6 1299.7 1.3 1299.6 153
Table F.4: Comparison of TS, SA & BNB forn=9, T =80
TS SA BNB
t| ©C CPUTime| C CPUTime| >C CPU Time
sec sec sec
50 | 796.4 1.3 796.4 1.1 796.4 15
50 | 376.6 0.9 376.6 1.8 376.6 21
60} 576.7 14 576.7 1.7 576.7 21
60 | 1380.5 1.2 1380.5 1.4 1380.5 118
70 | 403.2 1.3 403.1 1.7 403.1 5
70 | 549.9 14 550.1 14 549.9 21
80 | 1089.3 1.3 1089.3 0.9 1089.3 40
80 [ 690.5 1.5 690.5 0.8 690.5 24

Table F.5: Comparison of TS, SA & BNB forn =9, T = 90
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TS SA BNB

t | ¥C CPUTime| C CPUTime| 3C CPU Time

sec sec sec
10 | 1095.3 0.8 1093.2 0.7 1093.2 48
10 } 1350.9 1.3 1350.9 1.1 1350.5 44
20} 940.7 3.1 940.7 1.4 940.7 98
20 | 1588.6 1.1 1588.6 0.7 1588.6 896
30 | 1448.5 2.0 1448.5 1.5 1448.5 402
30 | 1461.5 0.2 1461.5 1.1 1461.5 157
40 | 1874.9 1.6 1880.5 0.8 1874.9 896
40 | 1207.4 3.0 1207.4 1.3 1207 .4 190

Table F.6: Comparison of TS, SA & BNB for n = 10, T =40

TS SA BNB
t { ¥C CPUTime| ¥C CPUTime| >C CPU Time

sec sec sec
10 | 1000.4 0.3 1000.3 1.1 1000.3 8
10 ] 1426.9 0.7 1424.5 0.9 1424.5 38
20| 1130.4 1.2 1130.4 1.3 1130.3 67
20 | 2055.0 0.7 2055.0 1.2 2055.0 2560
30 | 2096.6 0.4 2095.8 1.5 2095.8 1641
30 | 2345.0 0.6 2345.0 1.7 2345.0 4437
40 | 2336.7 2.2 2335.8 1.0 2335.8 2387
40 | 2635.0 1.6 2635.0 1.6 2635.0 STT7

Table F.7: Comparison of TS, SA & BNB for n =10, T =50
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TS

SA

BNB

>C CPU Time

C CPU Time

> C CPU Time

sec sec sec
10 | 1885.4 0.0 1885.4 0.5 1885.4 119
10 | 1658.5 0.6 1658.5 1.8 1658.5 44
20 | 1715.9 0.6 1713.3 0.6 1713.3 30
20 | 1856.6 0.4 1856.6 0.6 1856.6 350
30 | 2174.6 0.8 2174.7 1.6 2174.6 295
30 | 1841.8 1.9 1838.1 14 1838.1 113
40 | 2076.2 0.9 2073.3 04 2073.3 127
40 | 2613.2 1.1 2611.9 0.2 2611.9 881

Table F.8: Comparison of TS, SA & BNB for n = 10, T = 60

TS

SA

BNB

> C CPU Time

>C CPU Time

> C CPU Time

sec sec sec
10 | 1796.4 0.6 1790.5 1.7 1790.5 18
20 | 2048.9 1.7 2048.9 0.5 2048.9 28
20 | 2010.5 0.2 2010.5 0.7 2010.5 217
30 | 2104.6 0.5 2103.9 1.3 2103.9 207
30 { 2230.5 2.3 2230.5 0.7 2230.5 547
40 | 1279.5 1.6 1279.1 1.0 1279.1 36
40 | 1500.1 0.7 1503.0 0.3 1500.1 180

Table F.9: Comparison of TS, SA & BNB for n =10, T =170

140



TS SA BNB

t| ¥C CPUTime| ¥C CPUTime| YC CPU Time

sec sec sec
10 | 2228.5 1.0 2226.7 1.2 2226.7 118
10 | 2128.2 1.3 2128.2 0.9 2128.2 17
20 | 2648.1 1.0 2648.1 1.1 2648.1 103
20 | 2924 .4 2.2 2924 .4 0.8 2924 .4 816
30 | 2358.6 0.0 2374.7 0.9 2354.4 173
30 | 1759.6 1.0 1759.5 0.6 1759.5 67
40 | 3504.4 0.5 3504.4 1.2 3214.4 2158
40 | 2948.5 1.2 2946.7 1.5 2946.7 3296

Table F.10: Comparison of TS, SA & BNB for n = 10, T = 80

TS

SA

BNB

SC CPU Time

sec

> C CPU Time
sec

C CPU Time
sec

10
10
20
20
30
30
40
40

2413.7 1.5
2388.2 0.8
2102.4 L5
2651.8 0.4
2872.7 0.1
2451.6 12
3084.9 1.0
1772.4 0.6

2413.1 1.1
2388.7 1.3
2098.2 0.6
2651.8 08
2874.9 1.5
2451.6 1.4
3084.8 1.0
1772.9 1.2

2411.8 1543
2386.6 8
2098.2 10
2651.8 15780
2826.6 240
2451.6 22
3080.8 22805
1761.9 35

Table F.11: Comparison of TS, SA & BNB forn =10, T =90
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TS

SA

BNB

>C CPU Time

> C CPU Time

$C CPU Time

sec sec sec
933.2 1.6 934.6 1.7 933.2 13
714.5 20 712.2 2.0 712.2 14
647.8 1.7 650.0 20 647.5 76
10 | 1033.8 0.8 1037.4 1.7 1032.4 5002
804.0 0.8 811.2 1.2 804.0 9
1070.1 1.4 1075.6 1.2 1070.1 500
1562.3 0.7 1568.8 0.8 1562.3 21539
939.5 1.6 943.6 1.5 939.5 207

Table F.12: Comparison of TS, SA & BNB for n =11, T =40

TS

SA

BNB

Y C CPU Time

>C CPU Time

SC CPU Time
sec

sec sec
795.4 2.3 795.4 20 795.4 512
757.9 0.9 757.9 0.8 7579 251
20 | 1033.3 0.8 1027.4 1.5 1026.8 2760
1562.3 2.1 1568.8 22 1562.3 21539
939.5 2.1 943.6 24 939.5 207
Table F.13: Comparison of TS, SA & BNB forn =11, T =40



TS

SA

BNB

°C  CPU Time

> C CPU Time

>C CPU Time

sec sec sec
1391.9 0.7 1387.3 2.3 1387.3 10912
1212.1 0.7 1212.1 0.9 1212.1 3623
30 { 1330.5 1.1 1330.5 1.7 1330.5 19787
1273.0 1.4 1279.2 1.3 1273.0 384
959.7 1.6 961.8 1.5 959.7 1776

Table F.14: Comparison of TS, SA & BNBfor n =11, T =40

TS SA BNB
t | ©C CPUTime| >C CPUTime| ¥C CPU Time
sec sec sec
2039.0 1.7 2049.6 24 2038.8 50518
917.2 1.5 916.3 1.8 916.3 185
40 | 1243.8 1.1 1239.8 2.0 1239.8 1381
1797.9 2.3 1797.9 2.8 1797.9 139244
1181.4 2.3 1178.4 2.2 1178.4 20011

Table F.15: Comparison of TS, SA & BNBforn =11, T =40
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TS

SA

BNB

>>C CPU Time

> C CPU Time

>>C CPU Time

sec sec sec

1503.0 1.0 1502.4 1.0 1502.4 2662
936.6 1.7 936.6 1.5 936.6 20

20 [ 1196.2 2.3 1196.2 14 1196.2 907
912.0 2.8 912.0 1.5 912.0 25

1342.5 1.3 1342.5 1.2 1342.5 2014

Table F.16: Comparison of TS, SA & BNB for n =11, T =50

TS

SA

BNB

>C CPU Time
sec

>C CPU Time
sec

S>C CPU Time
sec

30

1173.9 1.3
932.8 2.7
1256.9 1.2
1130.6 2.6
1268.1 2.8

1173.9 1.6
932.8 2.1
1258.1 1.0
1130.6 0.8
1268.1 1.8

1173.9 3049
932.8 68

1256.9 4595
1130.6 2349
1268.1 7332

Table F.17: Comparison of TS, SA & BNB for n =11, T =50

TS SA BNB
t| ¥C CPUTime| YC CPUTime| >C CPU Time
sec sec sec
1503.0 1.0 15024 1.0 1502.4 2662
936.6 1.7 936.6 1.5 936.6 20
20 | 1196.2 2.3 1196.2 1.4 1196.2 507
912.0 2.8 912.0 1.5 912.0 25
1342.5 1.3 1342.5 1.2 1342.5 2014

Table F.18: Comparison of TS, SA & BNB for n =11, T =50
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