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Chapter 1

INTRODUCTION -

The wisual system of a single human being does more image processing than the

entire world’s supply of supercomputers! (C.A. Mead [1])

The demand for robots to discriminate, recognize and classify objects has very
wide ranging applications. This calls for a highly flexible, robust and intelligent
computer vision system. By flexibility, it is meant that the system should allow for
the recognition (detection) of objects in random positions, orientations, scales and
under partial occlusion. Dominant points (i.e. Corners), having high curvature on
the boundary of a planar object, often prove to be useful descriptive primitives. Such
corner points, as observed by Attneave [2]| in 1954, contain important information
about the shape of the object. Since dominant information regarding shape is usually

1



available at the corners, they provide important features for object recognition,
shape representation, image interpretation and classification. Shape characterization
and analysis is found to be more difficult than initially thought. This is due to the
fact that the digital computer is extremely effective at producing precise answere
to well defined problems. In centrast, the biological systems accepts fuzzy, poorly
conditioned inputs, performs a computation that is illdefined, and produces fairly
good results [3]. Sh;pes can also be characterized using polygonal appreximation
[4, 5]. Such a scheme, however, will not be suitable for objects having curved
boundaries.

In problems related to computer vision, it is difficult to analyze the information
content of an image directly from gray level intensity of image pixels. This is due
to the fact that image intensity depends upon lighting conditions. The size of the
neighborhood where contrast is computed must be adapted to the size of the ob-
jects that needs to be analyzed [6]. This size provides a resolution of reference for
detecting local variations of the image. Several researchers (7, 8, 9] have developed
pattern matching algorithms which process the image at different resolutions. A
multiresolution representation provides a simple hierarchical framework for inter-
preting the input image information [10]. At different resolutions, the details of an
image generally characterize different physical strqctures of the scene. At a coarse
resolution, these details correspond to the larger structures which provide the image

context. It is therefore natural to analyze the image first at coarser resolution and



then gradually increase the resolution. Such type of pattern analysis is seem to be
utilized by primate visual systems. For example, humans usually detect different
objects (such as knife, hammer, etc.) without looking into the details of the ob-
jects. When they are asked to differentiate between similar looking objects (such
as two different knives or hammers), they recognize by utilizing information at finer
resolutions.

A natural candidate for multiresolution analysis is the wavelets. The- wavelets,
developed mostly over the last 15 years, is connected to older ideas in"many other
fields, including pure and applied mathematics, physics, computer science, and engi-
neering. The Wavelet theory provides a unified framework for a number of techniques
which had been developed independently for various signal processing applications.
For example, multiresolution signal processing, used in computer vision {11}, com-
puter graphics [12], subband coding (developed for speech and image compression)
[13], and wavelet series expansions (developed in applied mathematics) [14] have
been recently recognized as different views of a single theory. In fact, wavelet the-
ory covers the continuous and the discrete-time cases [15]. Hence, it provides very
general techniques that can be applied to many tasks in signal processing, and has
numerous potential applications.

Applications of Gabor filters in image processing is well known. Gabor trans-
form [16] was first introduced by Gabor in 1946 to analyse 1-D signals in joint

time-frequency scales. Applications of Gabor transform to image processing started



only when its 2-D extension was introduced in 1985 by Daughman [17]. By defini-
tion, Gabor filter is a filter whose impulse response is the Gabor elementary function
(GEF), where GEF is a Gaussian modulated by a complex sinusoid. GEF's possess
three desirable properties for image analysis. Firstly, The GEFs are the only func-
tions that achieve lower bound of the space-bandwidth product as specified by the
uncertainty principle [18]. This means that they can simultaneously be optimally
localized in both th«: spatial and spatial-frequency domains. Thus, GEFs can be
designed to be highly selective in frequency while enjoying good spatial localization.
Secondly, the shapes of GEFs resemble the receptive field profiles of simple cells in
visual pathways [17]. Finally, they are tunable bandpass filters. Thus, GEF's can be
configured to extract a specific band of frequency components from an image [19].

In this chapter, a literature review is provided in the area of feature extraction,
multiresolution analysis and the corner detection of planar objects in images. Based

on the observations from the literature review, research objectives are stated.

1.1 Literature Review

A typical computer vision system for shape analysis consists of several important
modules such as image acquisition, feature extraction and shape analysis. There
is satisfactory development in the area of image acquisition as images of required

resolution can be obtained from almost all types of environments. But the devel-



opment of the remaining subsystems proved to be more difficult than was initially
thought [1]. Hence, before working on a computer vision system it is imperative to
study existing systems available in the literature. In the literature survey that fol-
lows, feature extraction techniques will be discussed, and followed by multiresolution

analysis and corner detection techniques.

1.1.1 Feature Extraction

Endlich and Wolf [20] presented a method based on pattern recognition that uses
both infrared and visible satellite images to measure cloud displacement. First, land-
marks are matched using cross-correlation after eliminating clouds by thresholding.
This landmark matching is used to detect translation between pictures. Then, clouds
are separated from the background by a variable brightness threshold. Groups
of trackable clouds are then identified. They used the infrared value to detect
clouds at different heights. For the groups selected, the following descriptors were
computed: size, location of the center, average brightness, average infrared value
and rms dispersion along the x and y axes. As can be seen, all these parameters
will not be available from a traditional camera.

Yen and Huang {21, 22] used straight line correspondence of rigid objects and
the geometrical properties of their projections on the unit sphere. Ishikawa et al.
[23] used the projection of the intensity function onto the coordinate axes as a

description of a given shape. Gambitto [24] measured the correspondence based on



the distance between objects in consecutive images and the difference in their areas.
Since these geometrical properties change during occlusion, these techniques are not
suitable under such circumstances.

Kories and Zimmermann [25] evaluated five different feature detectors. Among
point, line and blob detectors, they found that the best results are obtained by com-
bining a blob and a line detector. The method classifies the image into regions with
constant gray va.lues;_ fegions where gray values are monotonically sloped,-and local
maxima. However, finding these regions is not computationally efficienf. ‘Moreover,
this detection will lead to bad results when the input image is noisy.

For the occlusion caused by one object on another, the techniques based on global
features (such as area, perimeter, etc.) would perform unreliably because occlusion
causes change in these features. Local features such as corners [26], protrusions,
holes [27], lines [28, 29], curves [30] and textures [31] can recognize and identify
objects even in the presence of occlusion. Koch and Kashyap [4] provided a robust
feature extraction scheme using polygonal approximation. Liu and Srinath [3]
later proposed a scale-space based polygon approximation technique for pattern
recognition. However, techniques using polygon approximation will not perform

reliably with objects of curve shaped boundary.



1.1.2 Multiresolution Analysis

Before the advent of multiresolution techniques, the Fourier transform was the main
mathematical tool for analyzing transients and singularities. The Fourier transform
is global and provides a description of the overall regularity of signals, but it is not
well-suited for finding the location and spatial distributions of singularities. This
limitation motivated researchers to use multiresolution transforms such as Gabor

Transform, Scale Space Filtering and Wavelet Transform to deal with various com-
puter vision problems. a

The technique of multiresolution analysis is quite old and was used with different
names and variations. Hall et.al. (1976) [7] devised image matching technique using
hierarchical feature extraction. Burt and Adelson [32], Keoderink [10], Marr [33],

and Rosenfeld et. al. [9, 6] established the necessity to extract multiscale image

information. These ideas were later refined by the wavelet theory [34].

Gabor Transform

As already discussed, Gabor transform [16] was first introduced by Gabor in 1946
to analyse 1-D signals in joint time-frequency scales. Applications of Gabor trans-
form to image processing started only when its 2-D extension was introduced in
1985 by Daughman [17]. Porat and Zeevi [35] supported Gabor transform on
neurophysiological evidence that the early processing of simple cortical cells in the

human visual system resemble Gabor profiles. Since then many applications of Ga-
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bor transform in the area of image processing and computer vision were explored.
Gabor functions have the unique property that these are the only functions that
achieve lower bound of the space-bandwidth product as specified by the uncertainty
principle [18]. Hence, they can simultaneously be optimally localized in both the
spatial and spatial-frequency domains. In the area of texture segmentation, Gabor
Transform proved to be very useful due to its above stat:d property [19, 18, 36].
Daughman [37] used Gabor Transform in image compression where Gabor basis
functions were computed using neural network. -

Since spatial and frequency resolution of a Gabor transform is constant [34],
it is mostly suitable for analyzing signals where all patterns appear approximately
at the same scale. On the other hand, if the signal has important features of very

different sizes, an optimal resolution for analyzing the signal cannot be defined [38].

This is particularly the case with images.

Scale space filtering

The notion of scale space filtering was first proposed by Witkin [39]. Here, the idea is
to smooth the input signal with a Gaussian shaped smoothing function with different
scales. The zero crossings of a function of a signal are mapped onto scale versus
location space. Witkin named this representation space as finger prints. Application
of this approach has been applied to solve various problems of computer vision

[3, 40, 41, 42]. Theoretically, scale space filtering requires that decomposition be



computed at all possible scales. Hence, it requires a lot of computations. Moreover,

this representation is not orthogonal (hence inverse transform does not exists) [39)].

Wavelet Transform

In computer vision, generally, the structures that we want to recognize have very
different sizes. Hence, it is not possible to define a priori an optimal resolution
for analyzing imagesT This is the disadvantage of using Gabor/windowed Fourier
transform in computer vision applications. Wavelet theory has been developed as
a unifying framework only recently, although similar ideas and constructions took
place as early as the beginning of the century [43, 44, 45|. Interested reader can go
through the work of Daubechies [46]. Wavelet transform is computed by expand-
ing the signal into a family of functions which are the dilations and translations of
a unique function ¥ (z). Grossmann and Morlet [47] have shown that any func-
tion in L2(R) can be characterized from its decomposition on the wavelet family
(Vs (s(z — u)))(su)erz- A Wavelet transform can be interpreted as a decompo-
sition into a set of frequency channels having the same bandwidth on logarithmic
scale. Good tutorials are available in [14, 48, 13].

The discretization of wavelet transform was carried out by Daubechies [49].
Discrete wavelet transform decomposes the signal into a set of frequency channels
of constant bandwidth on a logarithmic scale. The model proposed by Mallat [34]

provides a mathematical interpretation of the concept of resolution. There is, par-



ticularly a large class of wavelet orthonormal bases which can be computed from
quadrature mirror filters [50]. Subsequently, discrete wavelet transform turned out
to be well known in signal processing community as subband coding and filter banks
[51, 52, 53, 54]. This understanding of wavelets turned out to be a new avenue in
developing fast algorithms for wavelet transform. Mallat and Hwang [55] presented
the analysis and detection of singularities in signals. Mallat and Zhong [56] pre-
sented an elegant te:hnique to characterize signals from multiscale edges. For a

review of wavelet applications one can go through [57, 38, 11, 12, 59, 60, 61].

1.1.3 Corner Detection

Corners in digital images give important clues for shape representation and analysis
[2]. Since dominant information regarding shape is usually available at the corners,
they provide important features for object recognition, shape representation, image
interpretation [62, 63, 64] and motion analysis [65]. Moreover, corners are advanta-
geous to use because the two velocity components can easily be determined at these
points. Corners are the robust features in the sense that they provide important
information regarding objects under translation, rotation and scale change (66].
Moreover, they provide reliable clues regarding objects even under occlusion and
varying background levels [63].

Many algorithms have been developed for the corner detection problem. Corner

detection schemes can be broadly divided into two categories based on their appli-
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cations (a) binary (suitable for binary images) and (b) gray level (suitable for gray
level images) [67]. Corner detection approaches for binary images usually involve
segmenting the image into regions and extracting boundaries from those regions
which contain them. The goal here is to obtain a piecewise linear polygon approx-
imation of the digital curve subject to the specified constraints on the goodness of
fit. A good survey of such schemes could be found in [68] and comparison in [69).
A few sample works could be found in [70, 71, 72, 73, 74].

The techniques suitable for gray level images can be further categorizéd into two
classes (a) Template-based, and (b) gradient-based. The template-based technique
utilizes correlation between a subimage and a template of a given angle. A cor-
ner point is selected by finding the maximum of the correlation output [75]. The
template-based technique is computationally expensive because all possible tem-
plates are to be applied to each subimage. A similar approach can also be found in
[76]. Gradient-based techniques require computing curvature of an edge that passes
through a neighborhood in a gray level image [77, 78, 79, 80]. Gradient-based
techniques, however, are sensitive to noise.

Recently, Manjunath et al. [81] proposed scale-interaction model for feature
extraction. Similar model was also studied in [82]. These models are based on the
observation that the response to curvature and line endings results from the differ-
ence of two low-pass responses of different bandwidths. This difference is further

passed through a nonlinearity. Hence, these models are highly nonlinear.
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The most common approach for the detection of dominant points is via boundary
information (83, 84]. Here, points which have high curvature at the boundary
are detected as corners [85, 86, 87, 66, 88, 89]. Teh and Chin [66] provided a
good comparison of their approach with techniques in [90, 83, 91, 92, 84]. An
improvement to traditional curvature based techniques has been achieved by using
multiscale analysis. The idea is to observe the curvature at various scales. Asada and
Brady [40] observed that curvature changes that are only found at multiplescales are
most reliably localized at the finest scale at which they are discovered: -Curvature
changes that are only found at fine scales are less compelling determiners of the
global shapes than those found across many scales. All of the scale space techniques
use the Gaussian kernel to smooth the curvature profile at different scales. A few well
known scale space based techniques could be found in [42, 93, 40, 41, 94]. Another
multiscale approach is wavelet transform which is more computationally efficient
than its scale space counterpart. Not much research, however, has been reported
regarding the using the wavelet transform based approach for corner detection [95,
96]. The boundary-based corner detection methods, based on curvature changes are
robust but require to compute curvature at the boundary. There are other techniques
based on facet model [97], neural networks [98], cost minimization [99], mean field
annealing [100] and morphological description [67]. However, the technique based
on facet model requires to use approximation theory, neural network based technique

requires training and morphological description requires nonlinear approximation.
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On the other hand, cost minimization and mean field annealing based technique

require optimization.

1.1.4 Observations from Literature Review

From the given literature review the following is observed:

1.

n

Corners, inflection points and smooth joins are very important features for
the recognition objects. They are also robust under rotation, translation,

scale change and partial occlusion.

Currently, available corner detection schemes lack robustness with respect to
the nature of images (binary and gray level), types of objects (hot and cold)

and varying background.
Frequency domain study of corners is lacking in the literature.

The enormous amount of data in images renders template based techniques

impractical.

Effort is needed to develop corner detection schemes which do not require
elaborate preprocessing such as edge detection, boundary tracking and tangent

or curvature computation.

Wavelet transform is very efficient, robust and insensitive to noise. Detection

of corners and smooth joins using wavelet transform is still at its early stages
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and deserves further research.

1.2 Research Objectives and Organization

The objective of this dissertation is to develop simple and fast algorithms for the
detection of corners, inflection and smooth joins in the images.

This dissertation_is organized as follows. Chapter 2 gives an introduction to
multiresolution analysis. Here two multiresolution techniques are introduc;.d, Gabor
Trasnform and Wavelet transform. Care is taken to keep this introduction brief
without sacrificing the technical depth.

In Chapter 3, a corner detection technique is proposed using Gabor filters. Gabor
filters are known to have optimum localization both in spatial and spatial frequency
domain. In order to develop a filtering based technique for corner detection, a
brief frequency domain study of the corners is presented. Here a flexible technique,
suitable for both binary and gray level images, to detect dominant points is pro-
posed. We use a combination of a set of Gabor filters in a scale interaction model
to detect corners in the image. This approach has another advantage of not using
the preprocessing (such as boundary tracking and tangent or curvature computa-
tion). Comparisons are provided with the available techniques in the literature.
This scheme is also tested under Additive White Gaussian Noise (AWGN).

In Chapter 4 we propose a wavelet transform based scheme for the detection of

14



both corners and smooth joins. Here effort is exerted to develop a computationally
efficient scheme for the detection of corners, inflection points and smooth joins from
single wavelet transform modulus maxima. Since the modulus maxima of wavelet
transform provides quite a significant amount of information with less storage or
processing requirements, the techniques based on wavelet transform modulus max-
ima are expected to be computationally efficient. Comparisons are provided with
various test images. This scheme has also been tested under AWGN noise.

In Chapter 5 we present the conclusions of this research together with proposals

for future work.



Chapter 2

MULTIRESOLUTION .

TECHNIQUES

In this chapter, a brief introduction is provided to introduce the concept of multires-
olution analysis. Multiresolution decomposition provides a scale-invariant interpre-
tation of the image. The scale of an image varies with the distance between the scene
and the optical center of the camera [34]. When the image scale is changed, the
interpretation of the scene should not change. A multiresolution representation can
be partially scale-invariant if the sequence of resolution parameters (r;) ez varies
exponentially. Let us suppose that there exists a resolution step A € R such that
for all integers 7, r; = M. If the camera gets A times closer to the scene, each object
of the scene is projected on an area A? times bigger in the focal plane of the camera.
Hence, the object is measured at a resolution A times bigger. Hence, the details of
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this new image at the resolution M/ correspond to the details of the previous image
at the resolution M*!. Rescaling the image by A translates the image details along
the resolution axis. Here, resolution axis is the axis at which the sacle changes [34].

Multiresolution representation provides a simple hierarchical framework for in-
terpretation of image information. At different resolutions, the details of an image
generally characterize different physical structures of the scene. At a coarse res-
olution, these details~i:orrespond to the larger structures which provide the image
"context”. It is therefore natural to analyze first the image details at a coarse res-
olution and then gradually increase the resolution. Such a coarse-to-fine strategy is
useful for pattern recognition algorithms [101].

In the following, an introduction of Gabor transform and wavelet transform is

presented. Then a study of singularities under wavelet transform follows.

2.1 Notation

The set of integers and real numbers are represented by Z and R respectively. L2 (R)
denotes the Hilbert space of measurable, square-intergrable 1-D functions f(z). For
f(z) € L2(R) and g(z) € L2(R), the inner product of f (z) with g(z) is written
as

+c0
(), f@) = [ g(w)f(w)du

-0
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The norm of f {z) in L2 (R) is given by

171= [ 1 F @) P du

Convolution of two functions f (z) € L2(R) and g(z) € L2(R) is given as

+00
frg@=[_ fwe(z—udu

Fourier transform of f(z) € L2(R) is written as

fr= [ @t

I2(Z) is the vector space of square-summable sequences

1(Z) = {(a,-).-ez: >l |2<oo}

{=—00

Let L2 (Rz) be the vector space of measurable, square-integrable two dimensional

functions f (z,y). For f(z,y) € L? (Rz) and g(z,y) € L? (Rz), the inner product

of f(z,y) with g(z,y) is written as

(F@a@ = [ [ f@v)gay) dedy

The Fourier transform of f (z,y) € L? (Rz) is written as

+00

fwz,wy) = /_co /_oo f(z,y) e~ F W=y v) oy

2.2 Gabor Transform

The Fourier transform of a function f (z) gives a measure of the irregularities (high

frequencies), but this information is not spatially localized. However, the Fourier
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transform f (w) is defined through an integral which covers the whole spatial do-
main. It is therefore difficult to find the positions of the irregularities. In order to
localize the information provided by the Fourier transform, Gabor [16] defined a
new decomposition using a spatial window g (z) in the Fourier integral. This win-
dow is translated along the spatial axis in order to cover the whole signal. At a
position u and for a frequency w, the Gabor transform of a function f(z) € L?(R)

is defined by

Gf (w,u) = /-:o f(z)g(z —u) e ™=dzx - (2.1)

where the function g(z) is a Gaussian function and ™’ indicates its biorthogonal

function. Hence the synthesis equation becomes

f(z)= 51; /:: /:: Gf (w,u) g(u — z)e“*dwdu (2.2)

Since the window function g(z) is real and even function and the energy of its
Fourier transform is concentrated in the low frequencies, it can be viewed as the

impulse response of a low-pass filter. Let us denote

Gesg yue (I) = ejwozg (.’L’ — )

If g (z) is any window, the above equation of Gabor transform can be generalized as
windowed Fourier transform [38]. This can also be interpreted as the inner products

of the function f(z) with the family of functions (gu,« (%)), u)er2:

Gf (w,u) =(f (2}, Gunu (7)) (2.3)
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In quantum physics, such a family of functions is called a family of coherent states.

The Fourier transform of g, 4, (z) is given as
G g (W) = e-juowg (w — wo) (2.4)

where §(w) is the Fourier transform of g(z). A family of coherent states thus
corresponds to a translation in the spatial domain (parameter u) and in the frequency
domain (parameter w) of the function g (z). This double translation is represented
in a phase-space where one axis corresponds to the spatial parameter -ua.nd other
to the frequency parameter w. This is shown in Fig. 2.1. Families of coherent states
have found many applications in quantum physics because they make it possible to
analyze simultaneously a physical phenomenon in both the spatial and frequency
domains [38].

Now we describe how a Gabor Transform and the Windowed Fourier Transform
relates to a spatial or a frequency representation. Let o, be the standard deviation
of g(z)

+o0
ol=[ 2| g(a) P do (23)
)
and the standard deviation of the Fourier transform of g (z)
+o0
ot= [ WP gw) P dw (26)

The function g,,., (z) is centered in uo and has a standard deviation o, in the
spatial domain. Its Fourier transform given by (2.4) is centered in wg and has a
standard deviation o,.
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Figure 2.1: Phase-space representation of Gabor transform. A Gabor transform or
windowed Fourier transform Gf (wy,uo) provides a description of f(z) within the
resolution cell of [ug — 0y, Ug + 0] X [wo — 0w, wo + T

By applying the Parseval theorem to (2.3), we get

Gf (woru0) = J2Z f(T) Gun,uo (T)dz (2.7)
= j::f(w) gwo.uo (w)d“) (28)

where — indicates Complexr Conjugation. The first integral shows that in the spatial
domain, G f (wo, tp) essentially depends upon the values of f () for z € [ug—0ou, uo+
o.). The second integral proves that in the frequency domain, Gf (wo, up) depends
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upon the values of f (w) for w € [wo — 0w, wp + 0,]. The spatial frequency domain
which is covered by Gf (wg,ug) can thus be represented in the phase-space by the
resolution cell [ug — G, ug + 04] X [wp — 0., wo + 0.,] as shown in Fig. 2.1. The surface
and shape of the resolution cell is independent from uy and wy. The uncertainty

principle applied to the function g (z) implies that

N

- 0.f0." 2 5 (2.9)

Thus, the resolution cell can not be smaller than 2v/27. The uncertainty inequality
reaches its upper limit if and only if g (z) is Gaussian, which is the case for Gabor
Transform. Hence, with the Gabor Transform, the resolution in the phase-space is

maximized. This is the most important property of the Gabor transform [18].

2.3 Wavelet Transform

Grossmann and Morlet [47] defined the wavelet transform by decomposing the signal
into a family of functions which are the translation and dilation of a unique function

Y (z), called wavelet. The corresponding wavelet family is given by

(Voo (s (z =) , 1yers

The wavelet transform of a function f (z) € L?(R) is defined as

Wisw= [ f(@)Veb(s(a-u)dz (2.10)
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Let the dilation of ¥ (z) by a factor of s be denoted as

¥, (z) = /()% (s2) (2.11)

A wavelet transform can be rewritten as an inner product in L2 (R)
Wf(s,u)=(f(z),%s(z —u))

Hence, wavelet transform corresponds to a decomposition of f(z) on the family of
functions (¥s (z — ©))(, 4)crs- In the following, both the signal f (z) and wavelet
¥ (z) are assumed to have real values. In order to reconstruct f (z) from its wavelet

transform, the Fourier transform % (w) of ¥ (z) must satisfy
_ [l dw) P
Cp = /o = < +o00 (2.12)

This condition implies that % (0) = 0, and that v (w) is small enough in the neigh-
borhood of w = 0. The function ¥ (z) can be interpreted as the impulse response of
a bandpass filter.

The reconstruction of f(z) from W f (s, u) is given by

+00

f(z) = Ciw [ W E (5,0) ¥, (z — u) dsdu (2.13)

For normalization purpose it is assumed that the energy of ¢ (z) be equal to 1. Let
¥ (z) = ¥, (—z). Hence, the wavelet transform at a point u and a scale s can be
written as

W (s,u) = f*vs(u) (2.14)
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Hence, a wavelet transform can be viewed as filtering f(z) with a bandpass filter

whose impulse response is 1), (z). Now, the Fourier transform of v (z) is given by

- 1 - /w
Y (w) = 7—;1# (;)
In contrast with the Gabor transform (or windowed Fourier transform) here the

resolution of the wavelet transform varies with the scale parameter s. Since ¥ (z) is

real, | ¥ (w) |=| ¥ (@) |. Let wp be the center of the passband of ¥ (w) hence,
+00 . .
| w-w) | 9w Pdw=0
Let o, be the rms bandwidth around wg hence,
0= [ (=) | () P d
0

The center of the passband of 1,5, (w) is swp and that its rms bandwidth is so,,. On
the logarithmic scale, the rms bandwidth of ¥, (w) is the same for all s € R* [38].
In this way, a wavelet transform decomposes the signal into a set of frequency bands
having a constant size on the logarithmic scale.

Let o, be the standard deviation of | ¢ (z) |? around zero. It can be shown that
the wavelet ¥, (z — ug) has an energy concentrated around ug within a standard de-
viation o, /s. In the frequency domain, it can be seen that its energy is concentrated
around swgy within a standard deviation so,,. In the phase-space, the resolution cell
of this wavelet is therefore equal to [ug—(0u/s) , uo+(0u/s)] X [swo — 50w, Swo + 50.].
In contrast with the Gabor transform, here the shape of the resolution cell varies
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with the scale s. This is shown in Fig. 2.2. When the scale s is small, the resolution
is coarse in the spatial domain and fine in the frequency domain. If the scale s in-
creases, the resolution increases in the spatial domain and decreases in the frequency

domain.
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Figure 2.2: Phase-space representation of a wavelet transform. The shape of each
resolution cell depends upon the scale. When the scale increases, the resolution
increases in the spatial domain and decreases in the frequency domain. The area of
all the resolution cells is the same.

2.3.1 Continuous Dyadic Wavelet Transform

For most purposes, the wavelet model is not required to keep continuous scale
parameters. To allow fast numerical implementations, it is imposed that the scale
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varies only along the dyadic sequence (27 Jncz- Here a review is presented of the
main properties of a dyadic wavelet transform and the conditions under which it is
complete and stable. A thorough presentation can be found in [38]. Wavelet is a
function ¢ (z) whose average is zero [56]. We denote by ¥»; () the dilation of ¥ (z)

by a factor 27

b

¥ (2) = 5% (5) (2.15)

The wavelet transform of f(z) at scale 27 and at position r is defined by the convo-

lution product

Wai f (z) = f * i () (2.16)

We refer to the dyadic wavelet transform as the sequence of functions
Wf = (Waf(z)ez (2.17)

and W is the dyadic wavelet transform operator.
Now, a brief study of completeness and stability is provided. The Fourier trans-
form of Wa; f (z) is

Was f () = F () & (27w) (2.18)

By imposing that there exists two strictly positive constant A; and B; such that

+o0 . N
VweR, A4S 3 |4(2w) P< By (2.19)

j==—o0
we ensure that the whole frequency axis is covered by dilation of ¥ (w) by (27) ez
so that f(w), and thus f(w), can be recovered from its dyadic wavelet transform.
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The reconstruction wavelet x (z) is any function whose Fourier transform satisfies
+00 A X
> ¥ (2w) % (Pw) =1 (2.20)
j==o0

If property (2.19) is valid, there exists an infinite number of functions X (w) that
satisfy (2.20). The function f(z) is recovered from its dyadic wavelet transform

with the summation
j=+co

-~ f@= Y Waf+*xa(z) (221

j=—oo

This equation is proved by computing its Fourier transform and inserting (2.18)
and (2.20). With the Parseval theorem, we derive from (2.18) and (2.19) a norm

equivalence relation

Jj=+oo
AlFIPS S [ Waf @) IP< B FIP (2.22)
j=-o0

This proves that the dyadic wavelet transform is more than complete, but still stable

as % is closer to 1, it becomes more stable.
A dyadic wavelet transform is more than complete; it is redundant. Any sequence

(9i (2))jez With g; (z) € L2(R), is not necessarily the dyadic wavelet transform of

some function in L2 (R). Let W~1! be the operator defined by

j=too

W (g (2)jez = 2 9i* X2 (7) (2.23)

j=—o0
The reconstruction formula (2.21) shows that (g; (z)),cz is the dyadic wavelet trans-

form of some function in L? (R), if and only if

W (W (g (2)hez) = (95 (2));sez (2.24)
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If we replace the operators W and W~! by their expressions given in (2.16) and
(2.17), we obtain

E g *xKij(z)=g;(z), VieZ (2.25)

I=—00

where

Ki; (T) = Xxot * ¥2i (2) (2.26)

These equations are known as reproducing kernel equations [38]. The energy of the
kernel K ;(z) measures the redundancy of the wavelet transform at the scales 29

and 2.

2.3.2 Discrete Dyadic Wavelet Transform

Input signal is measured at a finite scale in practical applications. Hence, the wavelet
transform at an arbitrary fine scale cannot be computed. Let the finest resolution be
normalized to 1. In order to model this limitation, a real function ¢ (z) is introduced
whose Fourier transform is an aggregation of % (2/w) and % (2/w) at scales 27 larger
than 1
~ +x -~ - -
|6 w) =3 % (2w) % (2/w) (2.27)
i=1

It is supposed here that the reconstructing wavelet x (w) is such that ¥ (w) X (w) is

a positive, real, even function. It can be proved that property (2.20) implies that

the integral of ¢ (z) is equal to 1 and, hence, it is a smoothing function. Let S,; be
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the smoothing operator defined by
Soif(z) = f*ai (2) (2.28)

where
1 =z
o (2= 50(5)
If the scale 27 is larger, the more details of f(cz) are removed by S,;. For any scale

27 > 1, (4.27) yields™
J -
6@ P~ 16(2%) =3¢ (2w) % (2w) (2.29)

Hence, the higher frequencies of S; f (z), which have disappeared in S,sf (z), can
be recovered from the dyadic wavelet transform (W3 f ()),<;<, between the scales
2! and 27.

Let us suppose that the original signal is a discrete sequence D = (dp),cz of
finite energy. If there exists two constants C; > 0 and C; > 0 such that qS(w)
satisfies

+00

VweR,C1 < Y | o(w+2nm) [’ C (2.30)

n=-—oo

then it can be proved [101] that there exists a function f(z) € L2 (R) (not unique)

such that

Sif(n)=d, YneZ (2.31)

The input signal can thus be rewritten as D = (51 f (n)),¢z- Let us denote

Wi f = (Wai f (0 +w)) ez (2.32)
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and
Ssif = (Saif (N + w))nez (2.33)

where w is the sampling shift that depends only on the wavelet ¥ (z). For any coarse

scale 27, the sequence of discrete signals

{sg,, (s )195,} (2.34)

is called the discrete?yadic wavelet transform of D = (S1f(n)),cz-

2.3.3 Wavelet Transform Modulus Maxima (WTMM)

From the discrete wavelet transform, at each scale 2/, we detect the modulus maxima
by finding the points where | Wa; f (n + w) | is larger than its two closest neighbor
values and strictly larger than at least one of them. The abscissa n + w and the
value Wy, f (n + w) at the corresponding locations are recorded.

One signal sharp variation produces modulus maxima at different scales 27. It is
known that the value of a modulus maximum at a scale 27 measures the derivative
of the signal smoothed at the scale 27 [56]. Wavelet theory shows that the evolution
across scales of the wavelet transform depends on the local Lipschitz regularity of

the signal.
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2.4 Detection of Singularities using Wavelet Trans-

form

A remarkable property of the wavelet transform is its ability to characterize the local
regularity of functions [53]. In mathematics, local regularity is often measured with
Lipschitz exponents.

-—

Definition:

e Let n be a positive integer and n < { < n + 1. A function f(r) is said to be
Lipschitz (, at zg, if and only if there exists two constants A and hg > 0, and

a polynomial of order n, P, (z), such that for h < hg

| f(zo+h) = Pa(h) S AR (2.35)

e The function f(z) is uniformly Lipschitz ¢ over the interval |a,b[, if and only
if there exists a constant A and for any zo €]a,b[ there exists a polynomial of

order n, P, (h), such that equation (2.35) is satisfied if zg + h €]a,b[.

e Lipschitz regularity of f(z)and zy, the superior bound of all values ¢ such

that f(z) is Lipschitz ¢ at zo.
e Function is singular at zg, if it is not Lipschitz 1 at z,.

A function f(z) that is continuously differentiable at a point is Lipschitz 1 at this
point. If the derivative of f(z) is bounded but discontinuous at x5, f(z) is still
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Lipschitz 1 at zo. It follows from the above Definition that f(z) is not singular
at zg. It can be proved that if f(z) is Lipschitz ¢, for ( > n, then f(z) is n
times differentiable at = and the polynomial P, (k) is the first n + 1 terms of the
Taylor series of f (z) at o. The Lipschitz regularity {p gives an indication of the
differentiability of f (z) but it is more precise. If the Lipschitz regularity (o of f (z)
satisfies n < (o < n + 1, then it is known that f(z) is n times differentiable at zo
but its nth derivative is singular at ¢ and (o characterizes this singularity.

Theorem(due to [56]): Let 0 < ¢ < 1. A function f(z)is uniformly Lipschitz ¢
over Ja,b[ if and only if there exists a constant K > 0 such that for all z €]a,b], the

wavelet transform satisfies
. 7\¢
| Was f (z) < K (%) (2.36)
From the above equation we derive that
loga | Wai f (z) |< loga (K) + (5 (2.37)

Hence, if the uniform Lipschitz regularity is positive, the amplitude of the wavelet
transform modulus maxima should decrease when the scale decreases. On the other
hand, if the uniform Lipschitz regularity is negative, the wavelet transform modu-
lus maxima increases. This means that such singularities are more singular than
discontinuities. The signal is then viewed as tempered distribution. If the signal
has uniform Lipschitz regularity (o equal to zero, then maxima values of | W, f (z)
remain constant over a large range of scales. At this stage one might wonder how
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to choose a particular wavelet to estimate uniform Lipschitz regularity. In the fol-

lowing, this issue is discussed.

2.5 Various Wavelets And Their Properties

Here, we discuss various wavelets and their propoerties. Details regarding different
types of wavelets are given in [102]. In the following, we discuss various well known

wavelets and their properties.

2.5.1 Haar Wavelet

This is compactly supported, oldest and the simplest wavelet. This is a special case
of Daubechies wavelet [102] with one vanishing moment [15]. In other words this
is the same as dbl. This is shown in Fig. 4.17(a)! and its main properties are

illustrated in Table 2.1.

2.5.2 Daubechies Wavelets

These are compactly supported wavelets with extremal phase and highest num-
ber of vanishing moments for a given support width. Associated scaling filters are
minimum-phase filters. The wavelet function ( [102], p. 113, 132, 194, 242) for db2,

db3 and db4 is shown in Fig. 4.18%(a), (b) and (c) respectively. These wavelets

lsee page 123
2see page 125
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Table 2.1: Properties of Haar wavelet

| Items _Properties |
Family ~ Haar
Short name haar
Examples haar is the same as dbl
Orthogonal yes
Biorthogonal yes
Compact support yes
DWT possible
CWT possible
Support width 1
Filters length 2
Regularity haar is not continuous
Symmetry yes
Vanishing moments 1

Table 2.2: Properties of Daubechies wavelet

| Items Properties
Family Daubechies
Short name db
Order N (strictly positive integer)
Examples dbl or haar, db4, dbl5
Orthogonal yes
Biorthogonal yes
Compact support yes
DWT possible
CWT possible
Support width 2N-1
Filters length 2N
Regularity about 0.2 N for large N
Symmetry far from
Vanishing moments N
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have vanishing moments 2, 3 and 4 respectively [15]. Its main properties [13] are

illustrated in Table 2.2.

2.5.83 Coiflet Wavelets

These are compactly supported wavelets with highest number of vanishing moments
for both ¢ and ¥ for a given support width. These were built by Daubechies at the
request of R. CoiﬁnaTn [102]. The wavelet function for coifl, coif2 and coif3 is
shown in Fig. 4.193(a), (b) and (c) respectively. These wavelets are more symmet-

rical than dbN family. Its main properties [15] are illustrated in Table 2.3.

2.5.4 Symlet Wavelets

These are compactly supported wavelets with least assymetry and highest number
of vanishing moments for a given support width. Associated scaling filters are near
linear-phase filters. These wavelets were built by Daubechies and are more symmet-
rical than the db/N [102] family. These wavelets are implemented using "minimum
phase filter” [13]. The wavelet function for sym2, sym3 and sym4 is shown in Fig.
4.20%(a), (b) and (c) respectively. Its main properties [15] are illustrated in Table

2.4.

3see page 126
“see page 128



Table 2.3: Properties of Coiflets wavelet

| Items __ Properties |
Family Coiflets |
Short name coif
Order N N=12,..5
Examples coif2, coif4
Orthogonal yes
Biorthogonal yes
Compact support yes
DWT possible
CWT possible
Support width 6N-1
Filters length 6N
Symmetry near from
Vanishing moments for psi 2N
Vanishing moments for phi 2N-1

Table 2.4: Properties of Symlets wavelet

|Items | Properties |

Family Symlets
Short name sym
Order N N=23,..8
Examples sym2, sym8
Orthogonal yes
Biorthogonal yes
Compact support yes
DWT possible
CWT possible
Support width 2N-1
Filters length 2N
Symmetry near from
Vanishing moments N
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2.5.5 DBiorthogonal Wavelets

These are compactly supported biorthogonal spline wavelets for which symmetry and
exact reconstruction are possible with FIR filters (in orthogonal case it is impossible).
These were built by Cohen et. al. [103]. It is well known that symmetry and
exact reconstruction are incompatible, if the same FIR filters are used for both
decomposition and reconstruction [15]. Hence they used different FIR filters for
reconstruction and c;composition. This wavelet family is labeled as biorNr.Nd,
where Nt is the filter lengths for reconstruction and Nd is the filter Vlength for
decomposition. The wavelet function for biorl.3, biorl.5 and bior2.2 is shown in

Fig. 4.21%(a), (b) and (c) respectively. Its main properties (13] are illustrated in

Table 2.5.

2.5.6 Meyer Wavelet

This is infinitely regular orthogonal wavelet. This wavelet and scaling function are

defined in frequency domain. Its main properties [13] are illustrated in Table 2.6.

2.5.7 Mexican Hat Wavelet

This is second derivative of the Gaussian probability density function. This wavelet

has no scaling function [102]. It has close form analytical expression. Its main

Ssee page 130
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Table 2.5: Properties of Biorthogonal wavelet

| Items I 1 __Properties
Family — T Biorthogonals
Short name bior
Order Nr,Nd Nr=1,Nd=1,3,5
Examples bior3.1, bior3.5
Orthogonal no
Biorthogonal yes
Compact support yes
DWT possible
CWT possible
Support width 2Nr+1 for rec., 2Nd+1 for dec.
Symmetry yes
Vanishing moments for psi Nr-1

Table 2.6: Properties of Meyer wavelet

| Items | _Properties
Family T ~ Meyer
Short name meyr
Orthogonal yes
Biorthogonal yes
Compact support no
DWT possible but without FWT
CWT possible
Support width infinite
Effective support [-8 8]
Regularity indefinitely derivable
Symmetry yes
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properties [15] are illustrated in Table 2.7.

Table 2.7: Properties of Mexican Hat wavelet

| Items | Properties |

Family Mexican hat
Short name mexh
Orthogonal no
Biorthogonal no
Compact support no

— | DWT no
CwWT possible
Support width infinite -
Effective support [-5 9]
Symmetry yes

2.5.8 Morlet Wavelet

This is a symmetrical wavelet and has no scaling function [102]. It has closed form

analytical expression. Its main properties [15] are illustrated in Table 2.8.

2.6 Selection of Proper Wavelet

It was found [55] that the number of vanishing moments of the wavelet plays a
major role in detecting the required singularity from wavelet transform modulus

maxima. Where a wavelet is said to have n vanishing moments, if and only if for all
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Table 2.8: Properties of Morlet wavelet

| Items | Properties

Family Morlet
Short name morl
Orthogonal no
Biorthogonal no
Compact support no
DWT no
CWT possible

~ | Support width infinite

Effective support [4 4]
Symmetry yes -

positive integer k < n, it satisfies

+o0
/ 8y (z)dz = 0 (2.38)

~c0
If it is needed to estimate Lipschitz exponents up to a maximum value n, a wavelet
with at least n vanishing moments is needed [55]. Using wavelets with more than
one vanishing moments has the advantage of being able to measure the Lipschitz
regularity up to a higher order, but it also increases the maxima hnes The number
of maxima at a given scale often increases linearly with the number of moments of
the wavelet. In order to minimize the amount of computation, the minimum number
of maxima necessary to detect the irregular behavior of the signal [55] should be
known. This means that a wavelet with as few vanishing moments as possible should
be selected, with enough moments, to detect the Lipschitz exponents of highest order
of interest. Another related property that influences the number of modulus maxima

40



is the number of oscillations of the wavelet ¥ (z). For most types of singularities, the
number of maxima. lines converging to the singularity depends upon the number of
local extrema of the wavelet itself. A wavelet with n vanishing moments has at least
n + 1 local extrema. For numerical computations, it is better to choose a wavelet
with exactly n + 1 local extrema [53].

It has been proved [56] that if a signal is singular at a point z, there exists a
sequence of wavelet transform modulus maxima that converge to zo when the scale
decreases. Hence, the detection of all the singularities from the positions of the
wavelet transform modulus maxima is possible. Moreover, the decay of the wavelet
transform is bounded by the decay of these modulus maxima, and we can thus
measure the local uniform Lipschitz regularity from this decay ({56].

In image processing applications, it is often required to detect discontinuities
and peaks that have Lipschitz exponents smaller than 1 [56]. It is, therefore,
sufficient to use a wavelet with only one vanishing moment. Moreover, edges in
the images sometimes have ramp profile. Hence we can model a smooth variation
at o as a singularity convolved with a Gaussian. Mallat and Zhong [56] proved
that Lipschitz regularity in such cases can be obtained if the wavelet is derivative of
Gaussian. However, derivative of Gaussian is not orthogonal. Hence, they developed
a new wavelet which is very close to the derivative of Gaussian. They reported
an error of less than 10 percent due to the approximation. This wavelet has one

vanishing moment, and is a quadratic spline of compact support and is continuously
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differentiable. Fig. 2.3 shows graphical representation of the wavelet ¥ (z) which is
a quadratic spline and its integral 6 (z) which is cubic spline. Fast computational
algorithms, based on Quadrature Mirror Filters (QMF), for this wavelet can be

found in {56].
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Chapter 3

CORNER. DETECTION USING

GABOR FILTERS

3.1 Introduction

As discussed in the literature review, corners in digital images give important clues
for shape representation and analysis. Since dominant information regarding shape
is usually available at the corners, they provide important features for object recog-
nition, shape representation and image interpretation.

According to the requirements stated in the objectives (section 1.2}, a new corner
detection scheme using Gabor filters is proposed here. In this scheme the scale
interaction model discussed in [81, 82 is used after being modified by deleting
the nonlinearity at each filtering stage. The exclusion of the nonlinearity permits
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combining the filtering functions before the filtering operation, resulting in a huge
amount of computational saving. The only nonlinearity present in our model is at
the final output in the form of magnitude operation. These models are based on
the observation that the response to curvature and line endings results from the
difference of two low-pass responses of different bandwidths. In our approach [104],
we first apply the input image to the filter and then allow it to iteratively filter
the previous output until the current output stabilizes. For all the test images the

convergence is achieved within ten iterations.

3.2 Study of Corners in Frequency Domain

Before designing any filtering based technique for corner detection it is imperative
to study corners in the spatial frequency domain. In this section, we provide the
study on where to find corners in the spatial frequency domain.

Fig. 3.1(a) and (b) show images of a corner and lines, respectively. As can be
seen here, both images consist of two lines of the same length and angles. There
are two differences between them. First, the first image forms a corner and the
second one does not form a corner. Second, the first image has two line endings
while the second image has four line endings. Hence, the Fourier transform of both
the images (with dc removed) are quite similar. The difference of the magnitude of

their Fourier transform is computed, as shown in Fig. 3.1(c). Here, we observe that



the maximum of the difference is concentrated very close to the dc. The central
part of this difference is zoomed and is shown in Fig. 3.2(a). Hence, we infer that
the frequencies related to corners and line endings are concentrated very close to
dc. In order to further demonstrate this point we consider the central part of the
Fourier transform of the corner model of the previous figure which is shown in Fig.
3.2(b). The inverse Fourier transform was applied to this part (shown in Fig. 3.2(b))
and the result is shown as a surface plot and as intensity image in Fig. 3.3(a) and
(b), respectively. Here, we observe that the recovered image has high amplitudes at
corners and line endings. This proves our inference that the corners and line endings
generate low frequencies which are very close to dc.

We conducted similar study with corners at larger angles. Fig. 3.4(a) shows a
corner at a wider angle than the previous case and Fig. 3.4(b) shows these lines
without forming a corner. Fig. 3.4(c) shows the difference of the magnitude of
their Fourier transform. Here, we observe that the difference is maximum near dc,
but its magnitude is less than the previous case. Fig. 3.5(a) shows the the central
part of Fourier transform of corner model of the previous figure. Fig. 3.5(b) shows
the surface plot of the inverse Fourier transform was applied to the part (shown in
Fig. 3.5(b)). Fig. 3.6(a) shows a corner at still a wider angle than the previous
case and Fig. 3.6(b) shows these lines without forming a corner. Fig. 3.6(c) shows
the difference of the magnitude of their Fourier transform. Here we observe that

the difference is not maximum near dc. Fig. 3.7(a) shows the central part of the

46



@ ®)

Figure 3.1: Frequency domain study of corners (a) image of a corner (b) input image
of lines (c) surface plot of the difference of magnitude of Fourier transforms of (2)
and (b)
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Figure 3.2: Frequency domain study of corners (a) contour plot of a small section
of the difference of the magnitude of the Fourier transforms (b) contour plot of a
mid section of the Fourier transform of the corner model in the image shown in the
previous figure
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Figure 3.3: Frequency domain study of corners (a) surface plot of the inverse Fourier
transform (b) intensity plot of the inverse Fourier transform
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Fourier transform of the corner model of the previous figure. Fig. 3.7(b) shows the
surface plot of the inverse Fourier transform of the part shown in Fig. 3.5(b). Fig.
3.8(a) and (b) shows the intensity plots of the surface plots shown in Fig. 3.5(b)
and 3.7(b), respectively.

From Figs. 3.1, 3.4 and 3.6 we observe that as the angle at the corner increases,
the frequencies near dc get diminished. Hence at larger angles it is difficult to detect
corners. Moreover, frequencies at the corners are mixed up with those of the edges.
Hence, one has to design a filter which neither passes dc nor high frequencies. Such
a filter should however, respond to edges. Hence a filtering mechanism has to be
devised so that we can have responses only at the corners. In the following section

this is precisely what was successfully done using scale interaction of Gabor filters.

3.3 Scale Interaction Model for Corner Detec-
tion

In this section, we introduce Gabor filter based scale interaction model to detect
corners in images. We also introduce an iterative filtering scheme to detect only the
corners from the images.

In its general form, the Gabor filter is a bandpass filter having impulse response
h(x,y) [92]:

h(z,y) = g(z',y )ezp[—j2n(Uz + Vy)] (8.1)

50



(@) )]

Figure 3.4: Frequency domain study of corners (a) image of a corner (b) input image
of lines (c) surface plot of the difference of magnitude of Fourier transforms of (a)
and (b)
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Figure 3.5: Frequency domain study of corners (a) contour plot of a mid section of
the Fourier transform of the corner model in the image shown in the previous figure
(b) surface plot of the inverse Fourier transform
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Figure 3.6: Frequency domain study of corners (a) image of a corner (b) input image
of lines (c) surface plot of the difference of magnitude of Fourier transforms of (a)
and (b)
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Figure 3.7: Frequency domain study of corners (a) contour plot of a mid section of
the fourier transform of the corner model in the image shown in the previous figure
(b) surface plot of the inverse Fourier transform
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Figure 3.8: Recovered corner images (a) intensity plot of the surface plot shown in
Fig. 3.5(b), (b) intensity plot of the surface plot shown in Fig. 3.7(b)

where (2, y) = (zcosf + ysinf, —zsinf + ycosf) are rotated spatial-domain rectilin-
ear coordinates and (U, V') give the particular 2-D frequency of the complex sinusoid

g(z,y), where

9(z,y) = 2W;=Uyezp {_% [(%)2 + (%)2] } (3.2)

where (0.,0,) characterizes the spatial extent and the bandwidth of ~(z,y). The

Fourier transform of h(z, y) is given as:
H(u,v) = ezp {—-21r2 [(a’,, [u— U]')2 + (ay [v— V]') 2] } (3.3)

where ([u — U} ,[v — V') = ((u—=U)cos8+(v—V)sind, —(u—U)sind + (v —V)cosh)
are rotated frequency-domain rectilinear coordinates, (U, V') is the center frequency
of the complex sinusoid and (u,v) are frequency-domain rectilinear coordinates.
When o, and o, are the same, the resulting filter is circularly symmetric and 6 need
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not be specified. When o, # oy, the resulting filter is elliptic and its major axis is
oriented at an angle 8 from the x-axis. Fig.3.9 shows surface plot and contour plot
of one such filter with 6. =1, 0, =4 and 0 = 7/4.

There are two important properties of the functions given in (3.1) and (3.3).
First, these are the only functions that achieve minimum possible joint resolution in
space and frequency. Second, the shapes of these functions resemble the receptive
field profiles of the si;nple cells in the visual pathways [103].

This bandpass filter can easily be converted to a lowpass filter by substituting
U =V = 0. Hence (3.1) and (3.3) results in a Gaussian shaped lowpass filter with
the orientation according to §. Now we drop the index z and y, and denote such a

filter as h(oz,0y,0). The response of the filter y(z,y,8) is given as
y(z,y,8) = h(oz,0y,0) * f(z,Y) (3.4)

where % indicates 2-D convolution operation and f(z,y) is the input image.

The Scale Interaction model requires that filter response be computed at two
different scales and the difference between the responses will be the required output
[82]. This makes the responses sensitive to line endings and, in general, changes
in the curvature [81]. Such type of processing can be related to the behavior of
endstopped (hypercomplex) cells in the visual cortex [81, 82]. In [82], the following
model is used

gi; = m(c.m (y:(z,9,0)) — cg.m (y;(z,9,9))) (3.5)
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Figure 3.9: Frequency response of the Gabor filter with 0, =1, 0y =4 and § = w/4
(a) Surface plot (b) Contour plot



where y;(z,y,0) and y;(z,y,0) are the output of the filter at two scales 'i’ and 'j’.
m() is the halfwave rectification function which is nonlinear and hence the model
is highly nonlinear. The constants ¢; and ¢, are called gain constants. It is to be

noted that in [81] a somewhat simplified model is used as
a:; = m (v(z,,0) — yi(2,9,9)) (3.6)

where m() is a nonlinear function similar to a sigmoid function. Now, we define the

difference impulse function, in the preferred orientation 4, as,
d‘J(a) = h(a‘,,.. ? Uy.' ’ 0) - h(O':’. H ayj ’ 0) (3.7)

where o, 0y, 02;,0y; determine various values of filter bandwidth. To ensure proper
filtering, the filter characteristics of the two filtering function must be selected such
that o,; < 03, and oy, < 0y,. In the proposed model, we do not employ nonlinearity
and hence instead of filtering at two scales we simply compute the difference between
the two impulse functions at different scales, and do the convolution only once. Here
we intend to filter the input image with d;;(8) (where 6 varies from 0 to 7 with equal
intervals) and sum up the responses. Instead of filtering with different values of 6 in
d;;(8), we compute d;;() at different value of § and linearly combine them into one
filter function, which is possible due to the linearity property of our model. This
gives us a huge amount of computational savings. Hence we end up with the single
filter function p;;

1N
pii == 2 dij(6x) (3.8)
N=
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where 8y varies as 6;,0,, ...y in the orientation interval [0,7]. One such filter (p;;)
is shown in Fig. 3.10 in the frequency domain and its contour plot is shown in Fig.
3.11.

It should be noted here that p;; is complex (since h(z, y) is complex in (3.1))and
its frequency domain counterpart is real (from (3.3)). The magnitude response of
this filter is given as

Z(l’, y) =| Dij *f(z’ y) l : (39)

where, f(z,y) is the input image. The only nonlinearity introduced by our model is

the magnitude operator (| . |) at the final output of the filter.

0.6

'l'

// ;'0:0‘ “\
w
m‘
i

“‘\\\\ I
OW: ok

/ " ’...‘
000 ‘.“..‘ . & : N
A8

™
(X
‘ \

Figure 3.10: Frequency response of the filter with o;; = 1,0y, = 2,0, = 3,0y, =4
and ; = 0,0, = 7/2
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Figure 3.11: Contour plot of the frequency response of the filter

Since our objective here is to detect corners and since the filter function p;; has
a larger response at the curvature changes than at the straight edges ([81], we do
filtering iteratively in order to extract only the corners in the input image. Based
on the study in Section 3.2, it follows that corners consist of frequencies very close
to DC. The magnitude operator (| . |) creates dc and high frequency components
in a zero-crossing signal. It can be seen from Fig. 3.10 that the filter is designed
to restrict DC as well as signals of high frequencies. Hence, repeated filtering and
magnitude operation effectively removes signal at the edges much faster than at the
corners. Hence, as the number of iteration increases, the change in the output gets
progressively smaller. Thus, after applying the input image only once, the output is

allowed to be fed back at the input and the process is repeated until the change in
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the output is below a certain threshold. A flow chart representation of this iterative

filtering scheme is illustrated in Fig. 3.12.

3.4 Simulation results and parameter selection

In this section we present the results of our scheme implemented using Matlab with
an input image of size 128 x 128. We took the input image, shown in Fig. 3.13(a),
which consists of different angles at the corners with different sizes of eciges. The
filter was designed with o, = 1,0;; = 2,0y, = 3,0y, =4 and 6, = 0,0, =7/4,0; =
7/2,04 = 3w /4 with a region of support of size 128 x 128. The 2-D convolution
operation was implemented in frequency domain utilizing the power of FFT. The
stopping criterion for the iterative filtering operation was assumed to be reached
when the mean square value of the change in the output image was less than 0.001.
The result after the convergence is shown in Fig. 3.13(b) where it can be observed
that outputs at the corners are in the form of circular bright spots. The exact

locations of the corners are at the center of these circular bright spots. In order to

get these center-spots, we used the algorithm discussed in the following subsection.
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input Image f(x,y) &
P(u,v)=FFT{pj(x.y)}

l

1: F(u,v)=FFT{f(x,y)}
2: Z(u,v)=F(u,v)*P(u,v)
3: z(x,y)=l InvFFT{Z(u,v)} |

]

Z4 (X,Y)‘—'Z(X,Y)

l. f(x.y)=lzp(cy)!

1: F(u,v)=FFT{f(x,y)}
2: Z(u,v)=F(u,v)*P(u,v)
3: z(x,y)=I InvFFT{Z(u,v)} |

'

22(x1y)=z(xvY)

z4(x,y)=z5(x.y)

NO

mean({lz4(x,y)-2o(x,y)I} < 0.001

Output=iz5(x,y)|

Figure 3.12: Flow chart representation of iterative filtering scheme
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(c)

Figure 3.13: Results of processing (a) Input image (128 x 128) (b) Output of the
filter after convergence (c) Extracted corners

3.4.1 Extraction of corner points

Fig. 3.13(b) shows that corner points are located at the center of the circular bright
spots. Another point to be noted here is that the response is not the same for all
corners. In this algorithm we consider a spot to be a correct representative of the
corner if its amplitude is greater than 40% of the maximum peak in the response.
This threshold is selected after testing with large number of test images. There are

various techniques to locate the center points from these bright spots. Here, we have
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used a technique similar to maxima filtering as follows:

Step 1: Find the maximum value of the output and let it be M.

Step 2: Find the location of the maximum output and let it be (zm, Ym)

Step 3: If the response at this point is greater than the 0.4M consider this point a
valid corner. Otherwise, exit the algorithm.

Step 4: Replace a neighborhood of the corner detected in Step 2 with zeros in the
output of the filter. (Ih our case we took 3 pixels of the corner point). -

Step 5: Goto Step 2.

The result of the above algorithm is shown in Fig. 3.13(c).

3.4.2 Simulation Study

In order to study the behavior of this technique, a comprehensive simulation is
provided here. Now we provide step by step operation of the filtering operation.
For the sake of explanation, the filter response is computed at two different scales
and the difference between the two responses is taken as the final output. In actual
practice, however, we compute the difference impulse function and do the filtering
once. Fig. 3.14 shows the input image and its surface plot. Fig. 3.15 shows the
responses (using (3.4)) with two different values of o’s. Fig. 3.16(a) shows the
difference of the responses shown in Fig. 3.15(a) and (b). Fig. 3.16(b) shows the
difference response after the second filtering iteration. Fig. 3.17(a) and (b) shows

the difference response after the third and fourth iteration, respectively. Here, we
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observe that the ratio between responses at the corners and the responses at the
edges increases with more filtering. The overall response, however, decreases with
more filtering which is due to the loss of gray levels. This problem can be tackled
by rescaling the filtered response after each iteration.

Since there are four parameters (o, 0;, 0y, and oy,) involved, these parameters
will lead to a huge number of filters to be tried. In order to reduce this problem, we

define two new parameters as

a = oy, (3.10)
and
B =0y, — oy, (3.11)
And we take
Oy, _ Ty; __ n:
Oz, O

where « is a constant.

Hence, all the four parameter can now be calculated from various values of &
and 3 thereby reducing the dimensionality of the parameters. More precisely, here
a provides a measure of the spatial extent of the filter and 3 provides a measure of
the difference between the bandwidths.

Now, in order to measure the performance of our corner detection scheme we

further define (similar to [106]:

cDC
Recall = (CDC + MC) (3.12)
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Figure 3.14: (a) Input image 128 x 128 (b) Surface plot of the image
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Figure 3.15: (a) Filtered response with o; = 1 and o,

with o, =3 and 0, =6
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Figure 3.16: (a) Difference response (b) Difference response after the second filtering
iteration
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Figure 3.17: (a) Difference response after the third filtering iteration (b) Difference
response after the fourth filtering iteration
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and

. . CcDC
Precision = (CDC 1 FC) (3.13)

where CDC is the number of Correctly Detected Corners, MC is the number
of Missing Corners and FC is the number of False Corners. Here, the overall

performance measure of the corner detection scheme will be taken as

_ Goodness = Recall + ;reczszon (3.14)

The variation of the Goodness measure with varying values of a and @ with

x = 2. Here for each image a and § are varried from 0.1 to 4 in steps of 0.1. Hence
sixteen hundred experimants were carried out for each image and the results are
reported as follows:
For the gray level image (256 x 256) shown in Fig.3.18(a), the profiles of Recall,
Precision and Goodness are shown in Figures 3.18(b), 3.19(c) and 3.19(d), respec-
tively, with various values of a and §. Another set of these profiles for gray level
image (Fig. 3.20(a)) is shown in figures 3.20 and 3.21.

For the binary line drawing image (128 x 128) shown in Fig.3.22(a), the profiles of
Recall, Precision and Goodness are shown in Figures 3.22(b), 3.23(c) and 3.23(d)
respectively, with various values of o and §.

For the binary image (128 x 128) shown in Fig.3.24(a), the profiles of Recall,
Precision and Goodness are shown in Figures 3.24(b), 3.25(c) and 3.25(d) respec-

tively, with various values of a and 3.
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Figure 3.18: (a) Gray level input image 256 x 256 (b) Recall profile for various values
of a and
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Figure 3.19: For the image shown in the previous figure: (c) Precision profile for
various values of @ and 8 (d) Gooduness profile for various values of @ and 8
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Figure 3.20: (a) Gray level input image 256 x 256(b) Recall profile for various values
of a and 3
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Figure 3.21: For the image shown in the previous figure: (c) Precision profile for
various values of @ and 8 (d) Goodness profile for various values of & and
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Figure 3.22: (a) Binary line drawing input image 128 x 128 (b) Recall profile for
various values of o and 8



(d)

Figure 3.23: For the image shown in the previous figure: (c) Precision profile for
various values of @ and 3 (d) Goodness profile for various values of & and 8

76



Figure 3.24: (a) Binary input image 128 x 128 (b) Recall profile for various values
77

of @ and G



Figure 3.25: For the image shown in the previous figure: (c) Precision profile for
various values of @ and 8 (d) Goodness profile for various values of a and 3
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For all the test images, maximum performance is achieved for a and § somewhere

between 0.2 and 1.0.
Profile of iterations for various values of a and f for line drawing image (Fig.

3.22(a)) is shown in Fig. 3.26. Similar profile were observed for other sample images.

14

Figure 3.26: Profile of iterations for various values of @ and §

3.4.3 Comparison

Singh and Shneier ({78] proposed a good corner detection scheme using a novel
combination of both template and gradient based approach. They also used practical
gray level images for evaluation. Here we used the same images to compare our

results with their results. From Fig.3.27 and Fig.3.28, we observe that the proposed
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technique outperforms the technique [78] in terms of positional accuracy and false

detection.

3.4.4 Detection Under Noise

Proposed corner detection scheme has also been tried for noisy images with AWGN
noise. Fifteen images were synthesized with corners at varying angles (at 10, 20,
30, 45, 60, 70, 80 96, 100, 110, 120, 135, 150, 160 and 170 degrees). “Each one
was subjected to varying degree of noise. For each value of signal to noise ratio
(SNR) and angle ten experiments with proposed corner detection algorithm were
conducted. Fig. 3.29 shows the results of these experiments. Here we observe
that at smaller angles (sharp corners) the performance is best but as the angle
increases the performance deteriorates. This is also demonstrated in Fig. 3.30.
Here Probability of Detection is defined as the probability of the correct detections
in 100 experiments. For the sake of reader’s information, Fig. 3.29 was obtained
after 69000 experiments!!

Here SNR is measured as

(3.15)

SNR = 10log (Power of signal )

Power of notse
e 2y £z, 4)?
> 5y (e, y)?) (3.16)

= 1010910 (

Fig. 3.31 shows the Goodness with respect to the signal to noise ratio (SNR) of

the gray level image shown in Fig. 3.19(a). Here we observe that, in general, the
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(b)

igure 3.27: (a) Result obtained by Singh and Shneier(b) Result obtained by present

approach (¢ = 0.6 and 8 =1.1)
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(b)

Figure 3.28: (a) Result obtained by Singh and Shneier(b) Result obtained by present
approach (¢ = 0.4 and 8 = 1.0)
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Figure 3.29: Probability of Detection with various values of angles and signal to

noise ratios (SNR) where (a) and (b) are two views of the same plot
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Figure 3.30: Probability of Detection with various values of angles and signal to
noise ratios (SNR)

Goodness improves with higher SNR. Goodness reaches its maximum when SNR
is above 15 db level. For the binary line drawing image (Fig. 3.22(a)), the best
performance is achieved when SNR is above 5 db. For the similar binary image

(Fig. 3.24(a)) the best performance is achieved when SNR is above 14 db.

3.4.5 Sensitivity with other parameters

Here we briefly describe the results of the variations with other parameters as follows:
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Figure 3.31: Goodness under noise for the gray level image shown in Fig. 3.18(a)

1. The ratio between major and minor axis of the elliptical profile (x) is tested
with other values (than 2) and no noticable variation in the overall result is

observed.

2. The interval between the different values of 4 is varied and no noticable vari-

ation in the overall result is observed.

3.5 Conclusions

A corner detection technique which is suitable for both binary and gray level images,

without requiring tracking the object contour, has been proposed. It is directly
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Figure 3.32: Goodness under noise for the binary line drawing image shown in Fig.
3.22(a)

applicable to multiple objects and under occlusion (see Fig. 3.28(b)). It also detects
line intersections and line endings. This technique gives acceptable results under
noise with SNR more than 10 db. It is robust in the sense that it is suitable for
both hot and cold objects in addition to being suitable for both binary and grey
level images. This technique has the limitation that it misses the corner points when
angle at the corner is large (see Fig. 3.28(b)). We have also studied its performance
under AWGN noise. We have defined a new performance measure with respect to
missing and false corners. As far as speed is concerned, this technique took only 1 to
2 sec to processes the image of size 256 x 256 on Pentium Pro Processor (166MHz)

running under Matlab (version 4.2C) environment. Significant improvement in the

86



04 , . \ . L . e
2 8 10 12 14 16 18
SNR (db)

Figure 3.33: Goodness under noise for the binary image shown in Fig. 3.24(a)

speed is expected when this technique is implemented as a stand alone application.
Part of this work has already been presented in [104]. Following is the list of

contributions:

—

. A study of corners in frequency domain is presented.

2. A novel Gabor Filter-based corner detection algorithm is porposed which is

computationally efficient.

3. A technique is also presented to extract corners from filtered image.

4. Ertensive simulation results with the proposed technique is presented.

. This technique does not require preprocessing.

ot
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6. This technique is suitable for both binary and gray level images and also can
be applied directly to images containing multiple and occluded objects. This

technique does not require any changes for both hot and cold objects.

7. New performance measures are also given for the evaluation of corner detection

schemes.

8. Performance under AWGN noise is also presented.
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Chapter 4

CORNERS AND SMOOTH
JOINS USING WAVELET

TRANSFORM

4.1 Introduction

A multiresolution representation provides a simple hierarchical framework for inter-
preting the input image information [10]. In the literature, scale-space based tech-
niques are used for developing multiscale corner detection algorithms [42, 93, 40, 94].
Wavelet theory provides a unified framework for a number of techniques which had
been developed independently for various signal processing applications. Also there
exist efficient algorithms to compute wavelet transforms using subband filtering
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techniques. Despite its advantages, it has not been fully explored in the area of
computer vision. Recently, some work has been reported on boundary and surface
representation using wavelet transform [107, 108, 109]. Few results have also been
reported regarding the use of wavelets for corner detection such as [95, 96]. The
detection of corners, inflection and smooth joins together using single wavelet, how-
ever, has not been attempted by previous authors. There have been attempts to
solve this problem usmg linear approximation [74]. These techniques, however, lack

the advantages of multiresolution analysis.

4.2 Assumptions Regarding Preprocessing

All techniques for feature detection from the shape of the object boundary require

some preprocessing of the input image. This preprocessing includes
e extraction of object silhouettes,
e edge detection,
e thresholding,
e separating objects (if there are multiple objects), and

e boundary tracking.

In addition to the considerable computation involved, these steps require selection
of appropriate algorithms. This selection depends upon the expected background
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noise, the operating environment (lighting arrangements and nature of the objects
etc.), the quality and setting of camera (mono/stereo, contrast, viewing angles etc.)
and the computational overhead, which is again constrained by the overall speed
requirement of the system. The speed requirement again heavily depends upon the
available computing platform which along with the other subsystems determine a
significant part of the cost of the overall system.

Here it is assumed:as has been done by almost all the authors, that these prepro-
cessing steps have been done properly and with the least possible cost. Hence, after
tracking the boundary of the planar object, the boundary information is represented
in parametric form as

C={z(t),y(t),t=1,.,n} (4.1)

where t is the index of the boundary pixels.

4.3 Computation of Curvature Information

The boundary information in parametric form is useful only when proper information
of the boundary curvature is obtained. In the literature, there are mainly three types
of measures that are employed for the curvature analysis of planar 2-D objects.
These representations reduce the dimensionality of the problem from a 2-D object

contour to a 1-D signal that has the rotation invariance property.
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4.3.1 Curvature Function

The curvature function is defined as the derivative of the slope with respect to the
arc length (¢). It can be defined in terms of the derivative of the functions z (t) and

y(t) as [42]

b

CF(z,y) = 8 4.2
(l' 7)) [1 N (%)2]3/2 (4.2)

Furthermore, the functions z (¢) and y (¢) must be related by

?_‘E = cosyY @ = siny

ot ot

where ¥ indicates the orientation of the tangent along the curvature. Hence, after

few mathematical manipulations, it yields the curvature expression given by

cren-B)G)-@E) e

Since the curvature function depends on the first and second derivatives of the
parametric curve C(z,y), it is highly sensitive to boundary noise. Approximate

digital computation of the derivatives of (4.3) is described in [42].

4.3.2 Radial Function

Here the boundary is approximated by an ordered sequence of angularly equispaced
vectors projected between an arbitrary reference point (such as centroid) and the
boundary points. This is often called the radial representation or the radial function.
This way, the boundary of an object is described in polar form as r(¢), where r
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represents the length of a line joining a point on the boundary with the reference
point, and ¢ is the angle that this line makes with the reference axis. To make
the representation invariant to translation and independent of the object contour
starting point, the centroid of the object is selected as the reference point.

If, however, any of the radial vectors intersects the object more than once, the
function r (¢) will be multivalued and cannot be directly used to represent the con-
tour. To overcome this restriction, Tieng and Boles [107] proposed a modification
to the radial function. The main feature of this representation is that it directly
facilitates the reconstruction of the object contour. Its main drawback is that the
representation is very sensitive to the occlusion because occlusion changes the loca-

tion of the centroid and hence the overall representation.

4.3.3 Orientation Space

This function relates the orientation of the tangent to the curve to the arc length ¢

along the curve. The orientation is defined as [5]

(t) = tan"l%i- (4.4)

where A, = dy/8t = dy/dt and A, = 0z/0t ~ dz/dt. Since the arctangent
function only returns an angle in the range of (-, 7), any angle direction outside
this range is wrapped around, thus resulting in artificial discontinuity in the edge

gradient direction. The normalization step traces the function and searches for local
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discontinuity greater than 7 or less than —m. An offset of £27 is added to the
function at the following point to correct the wraparound. This will result in a
continuous function along the entire contour, with the exception of the initial and
final points of the contour. For a closed contour, these points will always have an
artificial discontinuity of 2w [5].

If the orientation at some point is defined by simply replacing the derivative
above by the first diﬂ'érence, the orientation resolution, is only /4. To improve the

orientation resolution, the orientation at a point P; is defined as
o(t) = tan™! {(Virq — Yi~q) [ (Titq — Ti=g)} (4.5)

for some ¢ > 1 to obtain a smoothed version of orientation. The parameter g
depends on two conflicting factors, namely, the orientation resolution and the corner
discrimination capability. The larger q is, the higher is the orientation resolution
and the less is the corner discrimination ability. This is because two corners may
be merged if they are separated with less than the smoothing length. The proper
choice is to select the smallest g that can provide acceptable orientation resolution.
It has been found that ¢ = 3 is a reasonable choice ([96]. This choice causes the
orientation profile of a corner to become a ramp-like profile instead of a step with a
variation interval equal to the smoothing length (2¢+1 = 7). Fig. 4.1(b) and 4.1(c)
show the orientation profiles of the image shown in Fig. 4.1(a) for ¢ =1 and ¢ = 3,

respectively. Here, we continue to take g = 3.
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Figure 4.1: Orientation-space representation (a) Input image 128 x 128 (b) orienta-
tion profile with ¢ = 1 (c) orientation profile with g =3
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4.4 Detection of Corners Points

In this section, the derivation of some corner indicators based on the evolution of
the wavelet transform magnitudes across scales at the corner positions is presented.
Here, the results are summarized and will be used to derive certain properties that
will be exploited in developing an algorithm for corner detection. Consider the
wavelet function ¥ (t) = %ﬂ where, ¥ (t) and 6(t) are shown in Fig. 2.3(a) and
2.3(b). For simplicity, 8 () is considered to be the Gaussian function. Hence

90ty = —L t2
0= Tama® (‘27)

Lee et al. [110] presented an analysis of the behavior of wavelet transform mod-

ulus maxima with different corner models. A summary of this analysis is presented

from which several properties will be observed.

4.4.1 The Generalized Single Corner Model

Fig. 4.2(a) shows a generalized single corner, consisting of two arcs having curvatures
ki and ks, enclosing an angular discontinuity of ¢. Fig. 4.2(b) shows smoothed
version of its orientation profile where d = 2¢ + 1. This smoothed corner model is
defined as

kit+c "d/2>t

6(t) =1 c—dky /2 +[(ky + k2) /2 +8/d] (t + d/2) —d/2<t<d/2  (46)

kot +c+6 df2 <t
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Figure 4.2: Corner models: (a) Generalized corner model, (b) Orientation profile
of generalized corner model, (c) A T type corner, (d) Orientation profile of " type
corner, () An END type corner, (f) Orientation profile of END type corner, (g)
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The wavelet transform of ¢ (t) at scale 27 is the convolution of ¢(t) with the

wavelet function ¥ (¢) and is given by,

Wio(t) = (1 / (2-7'\/%0')) {k2 /: :!/2 exp (_52 /22j+10,2) ds

2 192j+1
+ k1/t:/2e:z:p(—s /27 az)ds

t+d/2 .
+ [(k1+k)/2+ J/d]/: 2 exp (—32/22"“02) ds} (4.7)
Differentiating (4.7) with respect to ¢t with the limit d — 0 we get,

Tis®) (1) (2VEr0)) {(3/2) s + kol exp (~2/2%1?)

+ [8/d]ezp (—t2/2%*10%)} (4.8)

From (4.8) one can observe that the local maximum of W;¢(t) exists at ¢ =
0 and this maximum position is independent of the corner angle J, the curva-
ture k and the scale factor j. Hence, the local extremum will produce a consis-
tent peak in the wavelet transform. Following [110], one can show that Inter —

Scale Dif ference Decay Rate (ISDDR) is given by

(1= 1/v2) - (d2/96.2%.0%) (2 — 1/ V2)
I5DDR; = (V2 -1/2) - (d2/48.2%.0%) (2v2 - 1 /2) (49)

Here, we observe that ISDDR does not change much across the scales (7). Hence a

corner survives through most of the scales.
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4.4.2 The I Type Corner Model

We now consider another corner model as shown in Fig. 4.2(c). Clearly this corner
model is just a special case of the generalized single corner model (if k; = k2 = 0).
This corner model is very important since it is encountered frequently in practical
applications, e.g. robot vision and industrial inspection. Fig. 4.2(d) shows the

smoothed corner model in the orientation space. This smoothed corner model is

defined by
r c —df2>t

o(t) =1 c+(8/d)(t+d/2) —df2<t<d/2 (4.10)
| ¢+ ) dj2<t

Following ([110], one can obtain the indicator for this corner model, Inter-Scale

Decay Rate (ISDR), which is defined as

ISDR; = Wj41,20(0) /W;6(0)

24.2%j.0% — d&?/2
24./2.225.02 — /2d?

(4.11)

Here, also we observe that ISDR does not change much with the change of the scales

(7). Hence, a I" type corner survives through most of the scales.

4.4.3 The END Type Corner Model

The END type corner model consists of two corners whose angle changes are with

the same sign and separated by a width of d as shown in Fig. 4.2(e). The profiles of
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this type of corner model in the orientation space are sketched in Fig. 4.2(f). The

corresponding definition of Fig. 4.2(e) is given as

c —(a+d)/2>t
c+ (8:/d) [t + (a +d) /2] —(a+d)/2<t< —(a—d)/2
o(t)=3 c+6 ~(a—d)/2<t<(a-d)/2 (412)

ct6+(G/dt-(@—d) /2] (a—d)j2<t<(a+d)/2

c+6; + 6 (a+d)/2<t

\

The wavelet transform of ¢(t) is given as

; —(a~d)/ _
Wie(t) = (1/21 21ra') {(&/d) t:(a+d)/22 ezp (_32/2214-10.2) ds
+ (8:/d) /,:(:,d,)f ezp (—s/2%%157) ds} (4.13)

Following [110], one can obtain the indicator of this corner model, Spatial Difference

Decay Rate (SDDR.), which is defined as (§; # d2)

_ IT; 4172 = OTje1p2
SDDR; = (1/V?2) T 0T, (4.14)

where
+d/2 )
1= [ —s?/2%+15?) d
Ll . e:rp( s®/ ) s
and

OT; = /; i:j:z exp (—32/ 22j+102) ds
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We also observe here that ISDR does not change much with the scales (7).
Hence, an END type corner survives through most of the scales. Now if 7 3> d then

IT; = OT; and hence END type corner converges to a single corner.

4.4.4 The STAIR Type Corner Model

The STAIR type corner is like END type corner except that the changes in the
corner angles are of -opposite signs as shown in Fig. 4.2(g). Its corresponding

orientation profile is shown in Fig. 4.2(h). Mathematically it is given as

4

c —(a+d)/2>t
c+ (8,/d) [t + (a+d) /2] —(a+d)/2<t<—(a—d)/2
o(t)=19 c+6 —(a-d)/2<t<(a-d)/2 (413)

c+ 6 — (&/d) [t — (a — d) /2] (a—d)/2<t<(a+d)/2

c+6y — 6o (a+d)/2<t

\

Following [110] one can find that for STAIR type corner model,

SDDR; = (1/v?2) 173*}‘:,’,2_ OT’*‘” (4.16)

which is the same as the result of END type corner but here IT; and OT; are of
opposite sign. Hence, when the scale increases the two extrema move away from

each other.
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4.4.5 Properties

The analysis presented in the previous subsections results in few properties which
can be summarized as follows:

Property 1: If the local variation is the result of an isolated single corner, then the
corresponding extremum survives at every scale. In case of a double corner, at least
one will persist at higher scales in the wavelet transform domain.(From the analysis

of Generalized and T type corner model.)

Property 2: For an END type corner, the two extrema have the same signs
and move towards each other as the scale increases and get merged into one. As to
a ST AIR type corner, the two extrema are with opposite sign and move away from
each other when the scale increases. (From the analysis of END and STAIR type

corner model.)

Property 3: For an END type corner, the interaction between the two corners
is constructive, hence the wavelet transform magnitudes at the two corner positions
are larger than that of a single corner. On the contrary, for STAIR type corner, the
interaction between the two corners is destructive. Hence, the wavelet transform
magnitudes at the two corner positions are smaller than that of a single corner.

(From the analysis of END and STAIR type corner model.)
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Property 4: In wavelet transform domain, any important event is detected
easily at higher scales, while good localization of the events is obtained at lower
scales [42].

Fig. 4.3 shows an illustration of these properties when spline wavelet (discussed in
Chapter 2) is used instead of the first derivative of the Gaussian. We observe that

these properties are also valid for spline wavelet also.

4.4.6 Corner Detection Algorithm

In this subsection, a robust corner detection algorithm using spline wavelet is pro-
posed. Corners and arcs are relative terms and largely depend upon the shape of the
object under consideration. For example, if there are sharp corners at the boundary,
small curvature changes will not be recognized as corners. On the other hand, if the
shape consists only of small curvature changes then these curvature changes will be
recognized as corner points. Hence, in order to provide such robustness, this algo-
rithm starts with the normalization of wavelet transform modulus maxima. This
normalization is obtained at each level regarding the global maxima of that level.
This normalization also makes the algorithm adaptive when a different wavelet is
used for the decomposition. This is done in Step 1 of the algorithm.

Step 1:

Orientation profile ¢ (t) is decomposed using wavelet transform at scales 2!, 22 23
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Figure 4.3: A demonstration (a) input image 128 x 128 (b) orientation space ¢ ()
(Top), wavelet transform modulus maxima at scales 2!, 22, 23 and 2! thereafter.
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and 2*. Wavelet transform modulus maxima (WTMM)is computed at each of these
levels. These WTMMs at each level are normalized with respect to the maximum
peak at that level.

Step 2:

The events (valid corners) are observed at the highest scale (2*). The peaks higher
than some threshold 7; are recognized as valid events. These events are successively
tracked at lower scales (23, 22, 2!) to find their exact locations. (Property 1 and 4)
Step 3:

Those events which are increasing at decreasing scales and are greater than some
threshold 7 (< 7;) at scale 2* are also taken as valid events. This step is to take
care of STAIR type corners. These events are also successively tracked at lower
scales (23, 22, 2!) to find their exact locations. (Property 3 and 4)

Step 4:

Find a large (greater than some threshold 73) events in the vicinity of already de-
tected events in the previous steps from the lowest scale (i.e. 2!). This step is to

find any END type corner model. (Property 1 and 2)

4.4.7 Results and Comparisons

Result of corner detection using the proposed scheme is shown in Fig. 4.4, where
71 = 04, » = 0.1 and 3 = 0.65. Comparison of the proposed technique with

that of Asada and Brady [40] and Lee et. al [96] is done in Figs. 4.5, 4.6 and
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4.7. Here we observe that the performance of the proposed technique is better, or
at least the same as the one presented in the literature. A test image consists of
three digital arcs is taken from ([42] and comparison is presented with the works
of Rattarangsi and Chin [42], Sankar and Sharma ([92], Teh and Chin [66], Free-
man and Davis [90], Rosenfeld and Johnson [91], Anderson and Bezdek ([72] and
Rosenfeld and Weazka [111] (Figs. 4.8 and 4.9). This test image, shown in Fig.
4.8(a), can be interpreted in two ways. It could be interpreted as having corners
at each discontinuity, or, alternatively, it consists of having only three small digital
semicircles followed by a larger one. Fig. 4.8(b) shows the result according to the
first interpretation whereas Fig. 4.8(c) shows the result according to the second
interpretation. Fig. 4.8(d) and 4.9 show the results of previously reported works.
Here we observe that the proposed technique performs best with respect to both
interpretations of the test image. Moreover, the technique reported in [40] is time
consuming because it requires computing decompositions using both first and sec-
ond derivatives of Gaussian function. Since these derivatives are not orthogonal,
fast computing techniques using subband approach does not exists. The technique
presented in [96] is computationally complex because it requires taking derivative
of the ratio of wavelet transform modulus maxima and then splitting the orienta-
tion profile to detect corners. The proposed technique is computationally efficient
because it requires decomposing the orientation profile only once using very fast

wavelet decomposition algorithms (proposed by Mallat et. al. [56]). Moreover,
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corner detection steps, proposed here, are very simple to implement efficiently on
digital computers and does not require segmenting the orientation profile. Hence,

the proposed technique is computationally efficient and simple to implement.

Figure 4.4: Result using wavelet-based corner detection algorithm with 7, = 0.4,
7 = 0.1 and 3 = 0.65

4.5 Smooth Joins using Wavelet Transform

As already discussed, corners, inflections and smooth joins are important features
for shape representation and analysis. Here, a wavelet-based technique is proposed
to detect all these features from the orientation space of the object. Given the
multiresolutional nature of wavelets along with the efficient computation algorithms,
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Figure 4.5: Comparisons: (a)-(c): Corners detected using proposed technique; (d)-
(f): Corners detected by Asada and Brady
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Figure 4.6: Comparisons: (a) Corners detected using proposed technique, (b) Cor-
ners detected by Asada and Brady
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Figure 4.7: Comparisons: (a) Corners detected using proposed technique, (b) Cor-
ners detected by Lee, Sun and Chen
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Figure 4.8: Comparisons (a) Test image (256 x 256) consists of one large semi-
circle and three small semi-circles, (b) corners detected using proposed scheme with
1 = 0.4, » = 0.1 and 73 = 0.65, (c) corners detected using proposed scheme with
. = 0.9, 7» = 0.7 and 73 = 0.65, (d) corners detected by Rattarangsi-Chin
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Figure 4.9: Comparisons (a) corners detected by Sankar-Sharma, (b) corners de-
tected by Teh-Chin, (c) corners detected by Freeman-Davis, (d) corners detected by
Rosenfeld-Johnson, (e) corners detected by Anderson-Bezdek, (f) corners detected
by Rosenfeld-Weazka,
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it is a natural candidate for such a task. Arcs in the orientation space, however,
cannot be detected by directly using wavelets with only one vanishing moment. At
the same time, wavelets with more than one vanishing moments will not be able
to locate properly the sharp changes in the orientation space. Fig. 4.10 shows this
difficulty.

To solve this problem, discontinuities are introduced deliberately. These dis-
continuities are formed by an operation similar to Sample and Hold. Hence ramp
profiles of the arcs in the orientation space become stair type. Now the wavelet
with one vanishing moment can be used to detect these artificial discontinuities and
thereby providing detection of arcs along the boundary in the orientation space.

Fig. 4.11 shows the proposed detection process of smooth joins. Here Fig. 4.11(a)
shows WTMM of three segments. At the top, a segment is taken from starting point
to point 1 of the orientation profile shown in Fig.4.10(b). Here, we observe that the
inflection point can be detected by observing the sign of WIMM which is marked
as label 3. The middle figure shows the WITMM of the segment from point 1 to
point 2 and the last one is for the segment from point 2 to the end. Here we can
detect smooth joins by observing a discontinuity in the amplitude of WIMM which
is marked as label 4. Fig. 4.11(b) shows all the corners and smooth joins detected.

The Sample and Hold operation (for the ith segment) is done at the interval 7;
given by

L.
.= L 17
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Figure 4.10: Profiles of smooth joins (a) Original image 256 x 256 with corners(1,2),
inflection (3) and smooth join (4) 'S’ indicates starting point of boundary tracking.
(b) Orientation space (top) with corresponding points in the image and three levels
of WITMM
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Figure 4.11: Detection of smooth joins (a) WTMMs (at scale 23) after the introduc-
tion of discontinuities of the segments start — 1 (top), 1 — 2 (middle) and 2 — end
(bottom)(b) detected corners and smooth joins.
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where [; is the length of a valid ith segment, and C is a constant. It can be seen
that increasing this constant would increase the suceptibility to the noise. On the
other hand, decreasing this constant would lead to more error in the detection of

smooth joins. Here, C = 5 is found to be satisfactory.

4.5.1 Algorithm for the Detection of Smooth Joins

This algorithm is invoked only after the corner points have been detected as ex-
plained in subsection 4.4.6.

Step 1:

Segment the orientation profile, from start to end, with break points at corner points
already detected. WTMM is computed at scale 23 for each segment (see Fig. 4.11(a).
Step 2:

The arcs are extracted by observing those impulses which have approximately the
same amplitude and are appearing consecutively. Here 3 or more consecutive im-
pulses, of approximately the same heights, are taken as an indication of a valid arc.
Step 3:

A point of inflection is obtained at the mid point between the sign change of the
two valid and consecutive arcs. This point is labled as (3) in Fig. 4.11(a)(top).
Step 4:

A smooth join is detected by observing the sudden change in amplitude of consec-

utive impulses belonging to the two valid and consecutive arcs. The smooth join is
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labled as (4) on the bottom of Fig. 4.11(a).

4.5.2 Results and Comparison

Here, for the sake of comparison, two test images are taken from a recent work
of Chen, Ventura and Wu [74]. These gray level test images are shown in Fig.
4.12. The comparisons are shown in Fig. 4.13. For both the test images we see
that the performance of both techniques is almost the same. It is to be noted that,
the technique of [74] is computationally expensive because it requires dynamic
programming. However, the proposed algorithm to detect inflections and smooth
joins, requires splitting and Sample and Hold operation on the orientation profile

only once. As can be seen the detection process is very simple to implement.

4.6 Noise Performance

We also performed corner detection tests under AWGN noise. Noise was added in
the coordinates of the tracked boundary. We took a test image shown in Fig. 4.14
and performed corner detection tests with added different standard deviation (o)
of Gaussian noise. These results are shown in Figs. 4.14 and 4.15. We also tested

smooth join detection under noise and the results are shown in Fig. 4.16.
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Figure 4.12: Test images (a) First gray level test image (b) Second gray level test
image
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(a) (b)

() (d)

(e) (f)

Figure 4.13: Comparisons of the proposed method with Chen et. al. (a),(b) Edge
images after thresholding and boundary tracking of the test images (c),(d) Corners
and smooth joins detected using proposed scheme (e),(f) Corners and smooth joins
using the technique presented by Chen et. al.
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4.7 Suitability of Other Wavelets

Here, we discuss the suitability of other wavelets for corner detection algorithm we
proposed. Details regarding different types of wavelets are given in {102]. Morlet (
[102], p. 76) and Mexican Hat wavelets ( [102], p. 75) yield only continuous wavelet
transform. In other words, these do not provide a complete discrete representation.
Moreover, fast algorithms for their computation (using Quadrature mirror filters
(QMF)) does not exist [15]. Although Meyer wavelet ( [102], p. 117, 119, 137, 152)
does have discrete representation, however, it does not have fast algorithms (based
on QMFs) for computation. In the following we provide corner detection results

only with those wavelets which have fast computation algorithms based on QMF's.

4.7.1 Haar Wavelet

Figure 4.17 shows the result of corner detection algorithm using Haar wavelet. This
is a special case of Daubechies wavelet ( [102], p. 115, 132, 194, 242) with one
vanishing moment [15]. This is shown in Fig. 4.17(a) and the result on the test
image is shown in Fig. 4.17(b). Since the evolution of wavelet transform modulus
maxima (WTMM) across dyadic scale is not related with the Lipschitz regularity
of the singularities in the signal, the performance is not satisfactory. Sharp corners

have more than one detected corners and some relatively smooth corners are missing.
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Figure 4.17: Corner detection with Haar wavelet (a) Wavelet function (b) corner
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4.7.2 Daubechies Wavelets

Figure 4.18 shows the result of corner detection algorithm using Daubechies wavelets.
The wavelet function ( [102], p. 113, 132, 194, 242) for db2, db3 and db4 is shown in
Fig. 4.18(a), (b) and (c) respectively. These wavelets have vanishing moments 2, 3
and 4 respectively [15]. The results using these wavelets on the test image is shown
in Fig. 4.18(d), (e) and (f). Since higher vanishing moments leads to more number
of WTMMs at sharp discontinuities, the proposed algorithm detects more than one

corner at these points.

4.7.3 Coiflet Wavelets

Figure 4.19 shows the result of corner detection algorithm using Coiflet wavelets.
These wavelets were built by Daubechies at the request of R. Coifman ( [102], p.
258-259). The wavelet function for coif1, coi f2 and coif3 is shown in Fig. 4.19(a),
(b) and (c) respectively. These wavelets are more symmetrical than dbNV family.
The results using these wavelets on the test image is shown in Fig. 4.19(d), (e) and
(f). Since higher vanishing moments leads to more number of WITMMs at sharp

discontinuities, the proposed algorithm detects more than one corner at these points.
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Figure 4.18: Corner detection with Daubechies wavelets (a)-(c) Wavelet functions
of db2 to db4 (d)-(e) Results using db2 to db4 wavelets
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Figure 4.19: Corner detection with Coiflet wavelets (a)-(c) Wavelet functions of
coif1 to coif3 (d)-(e) Results using coif1 to cotf3 wavelets
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4.7.4 Symlet Wavelets

Figure 4.20 shows the result of corner detection algorithm using Symlet wavelets.
These wavelets were built by Daubechies and are more symmetrical than dbN ( [102],
p- 194, 254-257) family. These wavelets are implemented using "minimum phase
filter” [15]. The wavelet function for sym2, sym3 and sym4 is shown in Fig. 4.20(a),
(b) and (c) respectively. The results using these wavelets on the test image is shown
in Fig. 4.20(d), (e) and (f). Since higher vanishing moments leads to more number
of WTMMs at sharp discontinuities, the proposed algorithm detects more than one

corner at these points.

4.7.5 Biorthogonal Wavelets

Figures 4.21, 4.22 and 4.23 shows the result of corner detection algorithm using
Biorthogonal wavelets. These wavelets were built by Cohen et. al. [103]. It is well
known that symmetry and exact reconstruction are incompatible, if same FIR filters
are used for both decomposition and reconstruction [13]. Hence they used different
FIR filters for reconstruction and decomposition. This wavelet family is labeled as
biorNr.Nd, where Nt is the filter lengths for reconstruction and Vd is the filter
length for decomposition.

The wavelet function for biorl1.3, biorl.5 and bior2.2 is shown in Fig. 4.21(a), (b)

and (c) respectively. The results using these wavelets on the test image is shown in
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Figure 4.20: Corner detection with Symlet wavelets (a)-(c) Wavelet functions of
sym2 to sym4 (d)-(e) Results using sym2 to sym4 wavelets
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Fig. 4.21(d), (e) and (f). Since wavelet function biorl.3 is quite close to the wavelet
used in for the proposed algorithm (shown in Fig. 2.3(2)), the corner detection
result in Fig. 4.21(d) is quite close to the result presented in Fig. 4.8(c). However,
higher vanishing moments leads to more number of WTMMs at sharp discontinuities,
hence, the proposed algorithm detects more than one corner at these points. For
the wavelet function biorl.5 (shown in Fig. 4.21(b)) the wavelet transform oscillates
too much at the discontinuities, hence the proposed algorithm could not localize
the corners accurately (see Fig. 4.21(e)). Here also more than one corner at each
sharp discontinuities is detected. We also observe the same problem with other

Biorthogonal wavelets (see Figures 4.22 and 4.23).

4.8 Conclusions

Here a wavelet based scheme is presented for the detection of both corners and
smooth joins. The first stage detects corners and the second stage detects the
smooth joins. The algorithm for the first stage is adaptive to the object geometry
and the type of wavelet used in the analysis. To the best of the author’s knowledge,
no wavelet-based technique for detecting both corners and smooth joins has been
published before. Comparisons have demonstrated that the proposed method gives
competitive results with respect to the other available techniques. We also justified

the use of Mallat’s wavelet (defined in [56]) by using the proposed algorithm with

129



o b b Ak
——r——T

g
@
-
¢

®

Figure 4.21: Corner detection with Biorthogonal wavelets (a)-(c) Wavelet functions
of biorl.3, biorl.5 and bior2.2 (d)-(e) Results using biorl.3, biorl.5 and bior2.2

wavelets
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Figure 4.22: Corner detection with Biorthogonal wavelets (a)-(c) Wavelet functions
of bior2.4, bior2.6 and bior2.8 (d)-(e) Results using bior2.4, bior2.6 and bior2.8

wavelets
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Figure 4.23: Corner detection with Biorthogonal wavelets (a)-(c) Wavelet functions
of bior3.1, bior3.3 and bior3.5 (d)-(e) Results using bior3.1, bior3.3 and bior3.5
wavelets
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other wavelets. The proposed technique has the advantage that it is computationally
inexpensive when compared with the other techniques available in the literature.
Moreover, the proposed algorithm is robust with respect to object geometry and the
type of the wavelet used for the decomposition. Hence, the proposed algorithm does
not require any change when the wavelet used in the analysis is changed. Following

is the list of contributions:

1. A computationally efficient scheme for the corner detection is presented. The
work presented in [96] regquires to compute derivative of the ratio of wavelet
transform modulus mazima at two scales which may not be computationally
stable. It also requires to segment the boundary to detect the corners. The

proposed algorithm does not require any such step.

2. The corner detection algorithm is adaptive to the object geometry and the

wavelet used in the decomposition.

3. The suitability of Mallat’s wavelet [56] (against other fast wavelets) for corner

detection application was proved qualitatively.

4. First time single wavelet transform is used for the detection of both corners

and smooth joins.

5. Performance under AWGN noise is also presented.
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Chapter 5

CONCLUSIONS AND

SUGGESTIONS

Two computationally efficient and simple to implement schemes for detecting cor-
ners are proposed. The first scheme is based on Gabor filtering. It detects only the
corners and does not require preprocessing. The second scheme is based on wavelet
transform. It detects corners, inflection points as well as smooth joins. In the follow-
ing, we first discuss the features of each of these two corner detection schemes and
then provide a comparison among them. Finally, we give suggestions for extending
this work.

Firstly, a corner detection technique, based on Gabor filters, has been proposed
which is suitable for both binary and gray level images, without requiring tracking
the object contour. It is directly applicable to multiple objects and under occlusion.
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It also detects line intersections and line endings. It is robust in the sense that it
is suitable for both hot and cold objects. In addition, it is suitable for both binary
and gray level images. This technique has the limitation that it misses the corner
points when the angle at the corner is wide. We have also studied its performance
under AWGN noise. We synthesized fifteen images each of them consisting of corner
at particular angle. Each of them were subjected to varying degree of noise and the
probability of detection is plotted. Here we observe that when angle is small (i-e.
corner is sharp) probability of detection is very good. However, as angle at the
corner increases the detection performance deteriorates. We have also defined a
new performance measure regarding missing and false corners. It was observed that
performance is good at low values of & and 8.

Secondly, a wavelet based scheme has been presented for the detection of both
corners and smooth joins. The first stage detects corners and the second stage
detects the smooth joins. Both stages are computationally inexpensive as compared
to other techniques. Comparisons are also given and we have demonstrated that
our results are competitive with those of other available techniques in the literature.
The proposed technique has additional advantage that it is computationally efficient
because it uses a very fast wavelet decomposition algorithm [56] and utilizes a fast
algorithm for the detection of corners, inflection points and smooth joins. The use of
quadratic spline wavelet [56] is justified through qualitative analysis. Here we tested

various well known wavelets in the literature and it was shown that the suggested
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wavelet performs better than others. The reason for such an observation is also
discussed. We subjected the test images with varying degree of AWGN noise and
demonstrated that the proposed technique performs better under noise.

In what follows, we provide a comparison between the two proposed corner de-
tection techniques. For the image shown in Fig. 4.8(a), the results of the proposed
corner detection schemes using Gabor filters and wavelet transform are shown in
Figs. 5.1(a) and (b), respectively . For this image we observe that wavelet based
technique performs better than Gabor filter based scheme. This is because the ma-
jority of the angles in this test image are larger than 90 degrees. Hence, Gabor
filter-based technique does not perform well. For the image shown in Fig. 3.22(a),
the result of corner detection schemes using Gabor filters and wavelet transform
is shown in Figs. 5.2(a) and (b), respectively. Here, the wavelet based technique
misses the corners which do not touch the boundary. This is not the case with Gabor
filter-based technique and thus for this image it outperforms the wavelet-based tech-
nique. It is important, however, to note that the performance of the wavelet-based
technique in this example is not due to the technique itself. Rather, it is due to the
boundary tracking algorithm in the preprocessing stage which is not able to track
the edges inside the outer boundary. In general, wavelet based scheme will perform
better because it requires preprocessing. However, given the advantages of Gabor
filter-based scheme, it is an attractive choice, particularly, when preprocessing is to

be avoided and there are multiple objects and occluded objects in the image.
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Figure 5.1: (a) Result obtained by Gabor filter based scheme (b) Result obtained
by wavelet based scheme
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Figure 5.2: (a) Result obtained by Gabor filter based scheme (b) Result obtained
by wavelet based scheme
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As far as scope for future work is concerned, there are several directions along
which Gabor filter-based scheme can be extended. Some of them are discussed as

follows:

e In order to better understand this scheme, the iterative nonlinear filtering

process is to be mathematically analyzed.

e There is also a possibility to find more efficient ways to extract corner point
after filtering. In this regard, variable threshold (based on some criterion) can

be tried.

e There is also a possibility to explore, analytically, the selection parameters for

different applications and different types of images.

In case of wavelet-based corner detection scheme there could be following ways to

extend the work:

e The relation between the number of wavelet decompositions of wavelet trans-
form and the size and types of the corners in the image can be analyzed

mathematically.

e There is a possibility to use variable threshold (based on some criterion) which

will make the algorithm adaptive to the type and class of objects in the image.

e There is a possibility to develop a similar corner detection algorithm by using
other than the orientation profile as a 1-D representation of the boundary
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information. This work will help to explore the relation between these 1-D

representation of the boundary information.
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APPENDIX: MATLAB Code For
Algorithms Developed

This appendix provides the actual MATLAB code developed for the implementation
of the algorithms discussed in this thesis.

Function filgn

This function implements iterative filtering scheme. It input arguments are input
image matrix in, filtering function in frequency domain H and mean square error
criterion err for termination of the iterative filtering. This function outputs filtered
image and the number of iterations.

function [out,il=filgn(in,H,err)
% Repeatitive GAbor filtering
% By: Azhar Quddus

i=0;

[out,ft]=filg(in,H);

msqr=10000;

while msqr >= err
outb=out;

[out,ft]l=filg(out,H);
msqr=mean(mean((abs(outb-out))."2));
i=i+l
end
return

Function clustr

This function implements the algorithm to find corner points from filtered image.
It input argument is filtered image matrix outf. This function outputs the detected
corners.
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function p=clustr(outf)
%This function finds the cormers
%after filtering

out=outf;
[ro,co]l=size(out);
o=zeros(ro,co);

%Treat for boundary points
out(1:3, :)=zeros(3,co);
out(ro-2:ro, :)=zeros(3,co);
out(:,1:3)=zeros(ro,3);
out(:,co~2:co)=zeros(ro,3);

%Finding Max. Point
mx=max(max(out));

mmx=10;
i=0;

while mmx > 0.4*mx,
i=i+1;
[coor,mmx]=maxval(out);
if mmx < 0.55*mx
break;
end

r=coor(l);
c=coor(2);
p(i,1:2)=[r c];

out(r-4:r+4,c-4:c+4)=zeros(9,9);

end
return

Function mycor

This function implements the detection of wavelet-based corner detection algorithm.
It input argument is the wavelet trasnform of the orientation profile w. This func-
tion outputs the detected corners.
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function c=mycor(w)

[r,cl=size(w);
level=r-1i;

% Compute WIMM
for i=1:level
wmm(i, :)=mymodm(w(i,:));
end
awm=abs (wmm) ;

% Compute Score at each level
for i=1:level

cmx=max (awm(i,:));

score(i, :)=awm(i,:)/cmx;
end

%Start from last level
pos=find(awm(level,:));
lp=length(pos);
count=0;

for p=1:1p
cp=pos(p);
cwm=wmm(level,cp);
cscr=score(level,cp);
for l=level-1:-1:1
cw=wmn(l,:);
while sign(cw(cp))~=sign(cwm) & cp>1,
cp=cp-i;
end
if (score(l,cp)>0.1 & score(l,cp)-cscr>-0.1) | score(l,cp)>=0.4
flag=1,;
cwm=wmm(1l,cp);
cscr=score(l,cp);
else
flag=0;
break
end
end
if flag==1 & cscr>0.1
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count=count+i;
c(count)=cp;
end
end

% clearing WIMM from first phase corners
len=length(c);

x1=score(l,:);

x1(c)=zeros(1,len);

%Extracting end cormers
lastf=find(x1>0.65);

c=sort([c lastf]);

return

Function myinflec

This function implements the detection of wavelet-based smooth join detection al-
gorithm. It input arguments are the orientation profile z and the detected corners
in the prevous algorithm cn. This function outputs the detected corners and smooth
joins.

function c=myinflec(x,cn)

%This function finds point of inflection
% given input vector is ’x’

% cn-> corner vector

len=length(cn);
ccount=0;
lenx=length(x);
ccount=0;
i=1;
for i=1:len+1
if i==1
st=1;
en=cn(l);
elseif i==len+l
st=cn(len);
en=lenx;
else
st=cn(i-1);
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en=cn(i);
end

curx=x(st+1l:en~1);

curl=length(curx);
cj=floor(curl/S);
if ¢j==0
sp=myshld(curx,cj);
xw=myndwt(sp,3);
xwm=mymodm(xw(3,:));
[pc,ncl=mycrv(zxwm) ;
%subplot(3,1,1),stem(xwm)

cc=sort([pc;ncl)
[row,col]=size(cc);
if “isempty(cc)
for k=1l:row-1
ccount=ccount+i;
c(ccount)=st+cc(k,2)+round((cc(k+1,1)-cc(k,2))/2);
end
end
j=i+l;
end
end

return
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