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Extrusion is a very popular manufacturing technique, especially as it can produce a large
variety of complicated shapes with no requirement for downstream machining or
finishing. Aluminum extrusion finds extensive application in the construction, automobile
and aerospace industries. The thermo-mechanical process is complex in nature. In cold
extrusion, heat is generated due to friction and deformation. In hot extrusion, high
temperatures are involved since billet, die and deformation chamber are preheated.
Irregularities in metal flow add to this complexity, especially in multi-cavity production
and in extrusion of complex solid and hollow profiles. High pressures, elevated
temperatures, and intricate section geometries also lead to repeated mechanical and
thermal stresses in the die and affiliated tooling. Moreover, process aberrations and
tooling related problems directly contribute to extrusion defects and affect product
quality. A comprehensive investigation of the entire operation can thus be divided into
three distinct yet inter-related areas: deformation process, dies and tooling, and product
defects.

The focus of the current work is on two major issues of aluminum extrusion:
extrusion process and extrusion tooling. Some aspects of extrusion product defects have
also been explored to complete the picture. Study-A (Extrusion Process) is an
investigation into the variation of extrusion pressure and how it is affected by different
process parameters (Chapter-2), relationship between extrusion pressure and profile
complexity (Chapter-3), and interaction of various extrusion parameters in the
deformation chamber (Chapter-4). In Study-B (Extrusion Tooling), modes and
mechanisms of die failure are examined (Chapter-5), a probabilistic study of die life is
undertaken (Chapter-6), a complexity-based die-life prediction scheme has been
formulated (Chapter-7), fracture toughness evaluation of extrusion die materials has been
carried out in order to develop an optimum heat treatment strategy (Chapter-8), and a
simulation scheme has been worked out to forecast die failures due to fracture and wear
(Chapter-9). Study-C (Product Defects) covers defect morphology, defect mechanisms
and causes, and remedial measures for various defects encountered in aluminum extrusion
(Chapter-10), along with a brief statistical analysis of product defects in a typical large-
size aluminum extrusion plant (Chapter-11).
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1.1 MOTIVATION AND SIGNIFICANCE

With the invention of the hydraulic extrusion press by S Bramah in 1810, extrusion has an
industrial history of almost 200 years. As a result of spectacular technological advances in
the later half of the twentieth century, the process has gained much wider application and
economic significance. Because of its wide-ranging and abundant application in the
automobile, aircraft, and especially the construction industry, aluminum has been called
the metal of the millennium. As extrusion is the primary manufacturing process for
aluminum alloys, the popularity and importance of extrusion has increased even more.
The main reasons for this popularity are:
1. Large versatility
(a) Light, strong, good manufacturability, good aesthetic appeal
(b) Complex, refined, thin-walled, massive, strong, flexible shapes
2. Relatively modest prototyping costs due to less expensive dies compared to other

metalforming operations

L2

High benefit/cost ratio
(a) No extra metal required for finishing operations
(b) Easy formability
(c) Savings in assembly
4. High strength and excellent corrosion resistance, requiring no maintenance and

minimum protective coating.



Though aluminum extrusion has been an area of active investigation for quite long,
complexity and diversity of the process have restricted researchers from exploring many
critical issues in detail. Most of the research effort has been targeted only at specific
aspects of the process. Hot extrusion being a difficult and costly commercial activity,
laboratory-based research has been confined mostly to cold extrusion and lacks real-
world experimentation. An overall and global research view is therefore needed, covering
the entire set of operations, and presenting a comprehensive outlook of all aspects of the
process.

The work presented here adopts an integrated approach, which aims to cover some
critical aspects of metal extrusion. The work involves simultanecus studies of extrusion
process, tooling, and product. Real-world data for hot and cold extrusion have been
collected and experiments conducted both in the industry and in the laboratory. Stafistical,
probabilistic and numerical techniques are used for modeling and analysis of aluminum

extrusion.

1.2 EXTRUSION PROCESS AND TOOLING

Derived from the Latin word extrudere (meaning ‘to thrust out’), the process of extrusion
consists of forcing a workpiece (generally a round billet) through a die opening while it is
supported in a container. As the workpiece is in compression, heavy deformations are
possible, and the result is 2 wide range of extruded sections. Due to the nature of the
process, downstream finishing operations are not required. Because of this large variety
and commercial viability, extrusion is one of the most widely used bulk deformation

processes, especially in the building construction sector.
1.2.1 Extrusion Plant Layout

The sequence of operations in commercial hot extrusion of aluminum is outlined
schematically in Fig 1.1 [Arif et al. Sep 2001]. Round billets of aluminum alloy, of 2
diameter compatible with the size of the container in the extrusion press, are brought from
the billet yard and stacked in front of the billet preheat ovens. Billets are then stage-wise

heated to the desired temperature in a series of ovens. Next, they are sheared to the exact



Figure 1.1 Sequence of operations in a typical commercial hot extrusion plant
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billet size required for each profile, and subsequently loaded into the extrusion chamber.
Meanwhile, properly preheated die set is loaded into the chamber, to be replaced by
another one after the completion of one order. Once the ram pushes the entire billet
through the die opening, a small remaining portion called the discard is sheared and sent
to scrap. The extruded profile is gripped into the jaws of a puller, again discarding a small
initial portion of the extrudate by saw cutting, and pulled over an air-cooled (through
blowers) conveying system. This extruded length is stacked in the strefching area for
straightening, and then cut to pieces of desired final length by a saw-cutting machine. The
pieces may go to a roll correction station to remove any shape distortions, if required.
Stacked batches go through an age hardening process in large furnaces, for prescribed
temperature-time cycles, to improve the strength and hardness characteristics of the
metal. They are then sent to painting and anodizing shops, as per customer requirements,

and are later stacked for shipment.
1.2.2 Direct and Indirect Extrusion

Figure 1.2 [TALAT 2004, Kalpakjian 2003] illustrates the essential principle of the
process, and the distinction between the two major working methods. In direct or forward
extrusion, the die is located at one end of the container and the metal to be extruded is
pushed towards it, hence moving relative to the container. In the case of indirect or
backward extrusion, the die is placed on the end of the ram, which is bored out to allow
passage of the extruded section, and moves through the container from one end, the
opposite end being closed. It is generally more convenient for the container to travel and
for the die (die assembly, nowadays) to be attached to a stationary ram. Direct extrusion
is the more widely utilized method, due to the difficulties in ram construction for the

indirect process.
1.2.3 Die and Related Tooling

The die and tooling arrangement employed in direct extrusion of soft and medium grade
aluminum alloys is shown in Fig 1.3 [AEC 2004, Arif et al. Mar 2003]. Functions of

various components shown are listed in Table 1.1. The feeder plate, die, and die backer
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Figure 1.2 The two major working methods: direct extrusion (a), and indirect
extrusion (b) [TALAT 2004, Kalpakjian 2003]
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Table 1.1 Aluminum extrusion press and tooling

Component Function
Die Produces the extrusion shape/profile
Die Holder / Ring | Holds the die, the feeder plate and the die backer together
Die Backer Provides support to the die against collapse or fracture
Transfers the extrusion load from the die to the pressure
Bolster .
ring/pad
Transfers the extrusion load from the bolster to the press platen
Pressure Ring/Pad ) )
and also guards against bolster deflection
Die Carrier/Slide | Holds together the complete die set (bolster and die ring)
Placed in front of the die, it balances the metal flow and allows
Feeder Plate
continuous extrusion without breaks
I Provides protection against thermal and mechanical stresses to
iner
the large and expensive container
g It is fitted with the main ram to force the billet through the
fem
container
Floating or fitted in front of the stem, it protects the life of the
Dummy Pad

costly stem




are fitted inside a die ring. This assembly, together with the bolster, rests on the die slide.
A feeder plate is used in a solid die designed to produce a shape larger than the billet size,
and may not be used in all applications. To produce a hollow shape, an additional
component called a mandrel is used in conjunction with the die, as shown in Fig 1.4 (a)

[TALAT 2004].
1.2.4 Solid, Hollow, and Semihollow Dies

Solid dies may have one or more openings (cavities), and produce “open” extrusions
without any enclosed internal voids. The die cavity has the exact cross sectional profile of
the extruded shape. Solid dies are used primarily for the production of bars, channels,
angles, and a variety of custom shapes. Hollow dies turn out “closed” profiles; shapes that
include an entirely enclosed internal void. The desired hollow shape requires two die
components: a mandrel and a cap. Hollow dies are used to produce tubes, boxes, and
many custom hollow shapes. Semihollow dies produce shapes that include partially
enclosed voids with “open” profiles. The void has an area which is generally in a ratio of
3-to-1 larger than the tongue of the die. Semihollow dies are used most often in the
production of atypical channels and other custom shapes. Types and components of the
die used in the three cases are shown in Fig 1.4 (b) [AEC 2004].
Hollow sections of softer metals (such as the aluminum alloy Al-6063) are usually
produced by the use of dies having a welding chamber. Some of the advantages of the
welding chamber process are:

(a) Longer length can be extruded in hollow sections.

(b) Extrusion can be done for very thin hollow sections.

(¢} Complicated hollow sections, finding wide application in the industry and the

construction sector, can be more easily and reliably extruded than other methods.

The three common welding-chamber type dies are bridge, porthole, and spider dies. The
first two types are shown in Fig 1.5 [TALAT 2004, AEC 2004]. Metal is forced to flow
into separate ports and around the bridges, which support the mandrel. These separate
streams of metal flowing through the ports come back into contact in a welding chamber

that surrounds the mandrel. Metal finally exits the die through the space between the
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Figure 1.5 Two of the common die types used for extrusion of hollow shapes:
bridge die (a) [TALAT 20041, and porthole die (b) [AEC 2004]
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mandrel and the die cap in the form of a hollow profile. A high guality weld is formed
because the metal streams are joined inside the die without any atmospheric
contamination. Working principie of a porthole die is shown schematically in Fig 1.6
[Saha 2000].

1.2.5 Flat Face Dies

Flat-face dies (die cone semi-angle of 90°) are generally used in hot extrusion of
aluminum alloys. Configuration of a solid flat-face die is shown schematically in Fig 1.7
[Saha 2000]. The most crucial part of any die is the bearing used to control the
dimensions, profile, surface finish and speed of extrusion. It also plays a vital part in
determining the die life. Friction at the die land (bearing surface) retards and thus controls

the metal flow.

1.3 EXTRUSION PARAMETERS

Prediction or calculation of important physical quantities of the process, such as extrusion
force or pressure, depends upon various factors. These process parameters include
material properties of the workpiece, billet geometry (billet diameter, billet length), die
geometry (die or container diameter, bearing length, die cone half-angle, extrusion ratio,
profile perimeter, profile area, minimum section thickness, circumscribing circle
diameter, etc), ambient conditions (billet preheat temperature, die preheat temperature,
container temperature, billet-container friction coefficient, billet-die friction coefficient),
ram speed, strain rate, complexity of die shape, etc. Some of the more relevant of these

extrusion parameiers are listed in Table 1.2 and shown in Fig 1.8.

1.4 Me7TAL FLOW IN EXTRUSION

Many aspects of product quality are directly affected by metal flow during extrusion,
including material homogeneity, internal defects, surface finish, etc. Metal flow paitern
thus becomes an important process consideration. Characteristic patterns in direct

extrusion using a square die are shown in Fig 1.9 [Laue 1981]. Flow pattern S is found in
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Table 1.2 Terminology used for description of die profiles and extrusion pressure

Symbol Term Beseription Unit
Section or profile ) i .
Py . Outside perimeter of die profile (mm) mm
perimeter
Section or profile ) i , s
4 Cross-sectional area of die profile (mm™) mm
s area
] ) Circumference of a solid circular profile
Equivalent circle . .
Py . having same cross-sectional area as profile mrm
perimeter
under study
Weight per unit ] ) .
W Weight of extruded section per unit length g/m
fength
Minimum  section o . ) i
T . Minimum section thickness of die profile mm
or wall thickness
Circumscribing Diameter of circle that contains the die
CCD . . mm
circle diameter profile
N Number of cavities | Number of same profiles in a die Number
] ) Ratio of billet or container arca to extruded 5
R Extrusion ratio . mm
section area
Section or ) . _
s . Actual maximum exirusion pressure MPa
extrusion pressure
Equivalent circle | Maximum exirusion pressure for an equal- MP
Po . . a
pressure area circular profile, calculated analytically

i4
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Figure 1.8 Schematic illustration of some of the basic variables (a) and
profile parameters (b) in direct extrusion



Figure 1.9 Different types of metal flow in direct extrusion [Laue 1981]
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the absence of friction at the container and die interfaces, during extrusion of
homogeneous materials. This can be achieved by using a very effective lubricant or in
indirect extrusion. Flow paftern 4 is obtained in extrusion of homogeneous materials in
the presence of friction at the dic interface only. A dead-metal zone (DMZ) is formed,
creating a funnel-shaped high-shear area near the die exit, as seen in Fig 1.10 [TALAT
2004]. When billet surfaces, together with their oxide layer and lubricant, are extruded
through this high-shear zone, defects can occur. Flow pattern B is obtained in
homogeneous materials when there is friction at both die and container interfaces. An
extended dead metal zone is formed. If the container wall friction is considerably high
(slowing down the flow of the billet), or if we have a material in which flow stress drops
steeply with rising temperature, the high-shear zone extends quite farther back, giving
flow pattern C. Such a flow pattern can also be observed with billets having
inhomogeneous material properties or with nonuniform temperature distribution in the
billet. In hot extrusion, where material near the container walls cools at a faster rate,
material in the inner region can flow more easily. Such a flow pattern can lead to a defect
called pipe or extrusion defect. The two most dominant factors influencing extrusion flow
pattern are billet-container-die friction, and billet thermal gradients. Studies also show

that for die cone semi-angles under 45°, the dead metal zone does not form.

1.5 EXTRUSION PRESSURE

Referring to Fig 1.8 (a), let us assume the simplest case of the extrusion of a solid round
bar. The process is cold extrusion of a strain-hardening material (neglecting strain-rate

sensitivity of material properties, etc). The extrusion ratio or the reduction ratio is

defined as
R {g, (1.1)

where 4, is the cross-sectional area of the billet, and 4; is the final cross-sectional area of

the extruded section.
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Figure 1.10 Metal flow and dead metal zone formation in extrusion [TALAT 2004]
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The ram force in direct extrusion has to account for three contributing factors: ideal
work (for energy dissipated in plastic work), frictional work (to overcome friction at
billet-container and billet-die interfaces), and redundant work (caused by inhomogeneous
deformation). For the case of ideal deformation, with no redundant work and no friction,

the true strain in extrusion is
e=InR. (1.2)
Ram pressure for ideal deformation is then given by

p=Ye=Y,InR, (1.3)

wheref’; is the average flow stress during deformation. Flow stress, defined as the

instantaneous value of stress required for continued deformation of the material, is the

yield strength of the metal as a function of true strain:
Y, =Ke", (1.4)

where K is the strength coefficient, and » is the strain-hardening exponent. In the case of

hot working, flow stress is given by

Yf=Cé‘m, (1.5)

where C is the strength coefficient, & is the average strain rate, and m is the strain rate
sensitivity exponent.

In a metal forming situation such as extrusion, flow stress is a function of both the
strain rate applied and the temperature. Temperature in hot extrusion depends on billet
preheating and container temperature as well as on the heat generated due to friction and
deformation. Determination of flow stress for a particular metal is thus a complicated
task. Fortunately, some researchers have conducted extensive experimental work and
have developed correlations for flow stress in terms of temperature-compensated strain

rate, especially for commercial aluminum alloys [Sheppard 1999]. If we know the

average temperature during extrusion, the average flow stress ?] can be found from these

correlations or charts for the given metal alloy.
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Due to friction between the billet and the container walls, the additional ram force

required to overcome friction is

7D,’
B = ip DL, (1.6)
where py is the additional pressure required to overcome friction, 4, = 7D3*4 is the billet
cross-sectional area, u is the coefficient of friction at the billet-container interface, p. is
the pressure of the billet against the container wall, L is the billet length remaining to be
extruded, and D,/ is the area of the billet-container interface.

Assuming the worst case where sticking occurs at the container wall, the friction

stress equals the shear yield strength of the work material (o)
. D, L=1 D, L. (1.7)
Assuming that 7, = 17}/2, and combining (1.5) and (1.6), we get

2L

pfsz;..l—);., (1.8)

Total extrusion pressure is now the sum of ideal and friction pressures (p = p; + py):

p= }7}(8+%§J = f’}(ink%j-) : (1.9)
It should be noted that extrusion pressure p goes down as the remaining billet length L
decreases during the process. Typical plots of ram pressure as a function of ram stroke for
direct and indirect extrusion are shown in Fig 1.11 [Groover 1999]. Obviously, the higher
values in direct extrusion result from friction at the container wall. The shape of the initial
pressure buildup at the beginning of the plot depends on the die angle, and is steeper for
higher die angles. The pressure increase at the end of the stroke is related to butt (or

discard) formation.
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Figure 1.11 Variation of ram pressure with ram advance along
the container [Groover 1999]
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1.6 SOLUTION METHODOLOGIES
There are several methods of analysis for theoretical determination of various quantities
such as stresses, strains, forces and pressures in bulk deformation processes (forging,

rolling, extrusion, etc).
1.6.1 Slab Method

The slab, freebody, or equilibrium method is one of the simpler methods of analyzing the
stresses and loads in extrusion and other deformation processes. It requires the selection
of an element of the workpiece and identification of all normal and frictional stresses
acting on that clement (similar to the block-diagram technique utilized in design
problems). Homogenous deformation is assumed throughout the deformation zone.
External friction effects are included but internal shear losses are neglected. Predicted
extrusion pressures may thus be lower than those actually required, and represent lower-
bound solutions.

Figure 1.12 [Mielnik 1991] shows a cylindrical rod being extruded through a conical
die, and the free body equilibrium diagram of an element of the billet in the process of
being reduced. For the free body to be in static equilibrium, the axial components of the
forces in the x direction are those due to (a) longitudinal stress oy, (b) die pressure p
(normal pressure at the die surface), and (c) frictional drag p along the length of billet
being extruded L. Coulomb coefficient of friction g is assumed to be the same at the
billet-container and billet-die interfaces. By combining the vield criterion with the

equilibrium equation, integrating the resulting differential equation, and simplifying, we

o. (1+B DY’
w-(52)-(2]") 10

B is a constant depending upon various factors. As applied to hot forward extrusion

get

through conical dies, the above equation can be converted after expansion and

simplifications fo
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Figure 1.12 Slab method representation of a eylindrical billet being drawn through
a conical die, and free body equilibrium diagram at an element in the reduction
section [Mielnik 1991]
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iéi\
A

L Tln(4,/4)

: n (1.11)
SN COSY

~o, =Y, in(

5 J
where -Gy 1s pressure at the extrusion end of the die, and In(4y/4,) = 2 In(Dy/ D).
1.6.2 Upper-Bound Method

These solutions assume a velocity field that is kinematically acceptable, and predict
extrusion forces that are expected to be above those actually required (as opposed to the
lower-bound solution just presented, which gives a value equal to or less than the stress).
The technique requires breaking down the overall deformation zone into a number of
smaller ones within which velocity of a particle remains constant. Adjacent zones,
however, may have different velocities. Because of the practical need to satisfy power
requirements, this is a preferred theoretical approach as it yields a more conservative
solution. As reported by Mielnik [1991], Avitzur derived the following equation for
forward extrusion stress of round sections for a constant frictional shear factor with no

forward tension:

2
sin” & "

£

«—,—q————cosox+m(cosoz)ln%”—+m§-} (1.12)

In this equation, oy is the back push stress, E7f is the flow stress of a perfectly plastic metal

under von Mises yield criterion, m is constant frictional shear factor, and o) is a
complex function involving sin“e and cose terms, varying from 1 to 1.666 as o varies
from 0° to 90°.

Derivation of this equation involves minimizing the energy or power consumed in {(a)
causing the reduction in cross-section, (b) shearing at the surfaces of tangential velocity
discontinuity, and (c) overcoming friction at the interfaces. The first term represents the
internal energy of deformation, which is slightly angle-dependent. The first two terms in
the square brackets represent the shear losses at the spherical surfaces of the tangential

velocity discontinuities. The third term in the brackets represents the external friction loss
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over the conical die surface. The last term in the brackets represents the external

Jrictional loss of the cylindrical surface of length L at die entry.
1.6.3 Slip-Line Field Methed

The method of slip-line analysis is more readily applicable to plain-strain conditions. It is
assumed that the billet is rigid, perfectly plastic, and isotropic. A family of straight (or
curvilinear) lines known as slip-line field is constructed, intersecting orthogonally,
corresponding to directions of maximum shear stress; Fig 1.13 [Lange 1985]. Requiring
time consuming graphic representation, the method can yield solutions for stress and
strain rate in a few cases of plane-strain problems.

With the advent of fast and efficient numerical procedures, methods such as upper-

bound technigue and slip-line analysis have lost most of their former importance.
1.6.4 Finite Element Method (FEM)

The finite-element method is a numerical technique and divides the elastic-plastic body
into a number of elements that are interconnected at a finite number of nodal points
[Kalpakjian 2003]. A set of simultaneous equations is then developed and solved for
actual velocity and stress distributions. The technique can incorporate friction conditions
at interfaces and actual material properties, and can be applied to relatively complex
geometries. Accuracy is influenced by the number and shape of finite elements, the
deformation increment, and the methods of calculation. A detailed picture of the actual
stress and strain distributions throughout the workpiece or die can be obtained. The
technique can also be used to predict microstructural changes in the material during hot
working, temperature distribution throughout the workpiece, and the onset of defects
without actual experiments. Inputs required may be stress-strain characteristics of the
material as a function of strain rate and temperature, and heat transfer characteristics of
the die and workpiece. Figure 1.14 is a sample of stress distribution obtained from FEM

simulation of extrusion through a solid circular die.
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Figure 1.13 Slip-line field for backward extrusion with unlubricated die
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Figure 1.14 Finite element solution of stress distribution in
extrusion of a symmetrical profile
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1.6.5 Empirical and Statistical Methods

Empirical solutions, utilizing statistical and probabilistic technigues, are primarily based
on experimental (laboratory) and production (industrial) data. An equation is generally
fitted to the data by regression or some other curve-fitting ?rocecﬁuren The larger the data
set, the higher the accuracy of the regressed model. Depending on the type of the
problem, and the behavior and spread of the data set, different regression models can be
more suitable (such as linear, quadratic, cubic, logarithmic, etc). Some problems are
nonlinear in nature, but can be linearized through the use of appropriate strategies.
Simple linear regression may be sufficient in some specific cases, but the majority of
linearized actual problems require multiple linear regression. For instance, many physical
quantities such as force, pressure, energy, and power have been found to naturally behave
in an Arhenius manner. Assuming that extrusion pressure also follows this Arhenius
trend, the pressure for a complex profile may be expressed as
pe=po X" X7 L, (1.13)
where p. is the pressure for a complex profile, py is a reference pressure (for a circular
solid profile, say), (X;, X2, ..., Xy) are the geometrical parameters of the complex profile
(such as billet diameter, billet area, profile perimeter, profile area, etc), and (a1, aa, ..., ax)
are constants to be determined by regression performed on a reasonably large set of
experimental data. The model may be linearized by taking natural log on both the sides:
Inp.=Inpg+a InX; +a InXs + ...+ ay InXw. (1.14)

The power-law format of the problem expressed by equation (1.13) has been reduced to
the linear form by equation (1.14). The problem can now be solved by performing
multiple linear regression on available experimental data. As an illustration of an
empirical solution, Figure 1.15 gives two types of regression models fitted to a set of
experimental extrusion data. Cold extrusion (at room temperature) is performed inhouse
on a lead billet, and variation of extrusion force is recorded as the ram advances along the
container. Linear curve fitting will yield a rather poor model of the process, while a cubic

polynomial fit will yield a much more accurate regression model.
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1.7 SHAPE COMPLEXITY

Equation (1.9) given above for extrusion pressure is valid for the simple case when both
the billet and the die have a solid circular cross section, and when only billet-container
friction has been taken into account, billet-die friction being neglected. What if the
extrusion profile is a complex one? As the word shape complexity implies, complexity is
a measure of how complicated the geometry or shape or form of an extrusion die is. The
simplest shape is a solid circular section. Even a solid square or rectangular profile is
more complicated because it has four corners or sharp bends that act as stress raisers. In
general, a hollow shape has a higher complexity than a solid one, since hollows cannot be
extruded without the inclusion of an additional component in the die set called the
mandrel. Semi-hollows are shapes that are not completely hollow, but still require a
mandrel for extrusion. Figure 1.16 [Schey 2000} demonstrates how complexity
progressively increases in solid, semi-hollow, and hollow die profiles.

When we say that one die is more complex than the other, it is intuitively implied that
it will require a larger amount of extrusion force or pressure than that required for the
simpler profile. That is why one fundamental definition of extrusion shape complexity is
that it is the ratio of the pressure required fo extrude a complex profile as against the
pressure required for a solid circular profile of equal area. Based on this higher
complexity-higher pressure premise, various definitions for shape complexity of extrusion
dies have been proposed in published literature.

If the perimeter of a profile is larger than the perimeter of another profile of the same
area, it would definitely involve more twists or turns. More shearing would thus be
required in the deformation zone, adding to the complexity. This led to one of the earliest

definitions of complexity index [Schey 2000] of an extrusion profile:
CI:PS/AS (115)
A modified form of the above is

Cy=Py/ W, (1.16)
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Figure 1.16 Increasing order of complexity in solid (a), semi-hollow
(b), and hollow (c) extrusion die profiles [Schey 2000]
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P,, A, and W, are the perimeter, area, and weight per unit length of the extruded section
respectively.

It has been observed that larger diametral size of the die requires a higher pressure.
Also, extrusion pressure increases as the wall thickness of the section is reduced. These

observations resulted in another complexity index known as the form factor [Laue 1981}
C3=CCD/ T, (1.17)

where CCD is the circumscribing circle diameter and T}, is the minimum wall thickness
of the extruded section.

Going back to the fundamental definition (solid circular die being considered the least
complex), Mielnik [1991] describes shape factor as a function of the perimeter ratio

PJP,:
C = f(Ps/ Py). (1.18)

Perimeter of the extruded section under consideration is P, while that of a round shape of
the same cross-sectional area is P,. The definition based on such a shape factor, proposed

by Altan et al. [1983] and reported by Groover [1999], is

225
C, =0.98+0.02(§) . (1.19)

0

The relationship may be invalid beyond a Py/P, range of 1.0 to 6.0 [Groover 1999].

1.8 FAILURE OF EXTRUSION DiIES

Some samples of die failures are shown in Fig 1.17. Any failure analysis of extrusion dies
must include their manufacturing and service history. Improper die material composition,
presence of quench cracks, scales or inclusions, can all lead to premature die failure. A
large percentage of die failures can be traced back to heat treatment problems. Other
sources can be distortion during heat treatment, machining or service, erosion and/or
pitting, corrosion, etc [Laue 1981, ASM 1986]. Once a die is passed after some trial runs,

the most common modes of in-service failure are fatigue (brittle failure through crack






