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The bending, torsional and axial vibration of a rotating drillstring based on Euler-
Bernoulli theory is presented by means of the finite element technique. The drillstring shaft
with circular cross-section is discretized into a number of finite shaft elements with twelve
degrees of freedom each. The equation of motion of the rotating drillstring shaft is derived
using Lagrange approach. Explicit expressions of the finite element mass. stiffness. axial
stiffening. and gyroscopic matrices are derived by using consistent mass formulation. The
developed shaft finite element is integrated into a computational scheme to calculate the
natural frequencies of the drilistring system. Modal transformations are invoked to obtain a
reduced order modal form of the dynamic equations. The computational scheme proceeds
further to integrate the equations of motion and solve for the dynamic response of the

drillstring due to different excitations.
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Chapter |

INTRODUCTION

Drilling is one of the most important operations in petroleum and mining industry.
starting from exploration and continuing through every phase of production until completion
of production activities. Drilling is performed for several processes such as geological
exploration for mineral deposits. making holes for placement of explosives for blasting, for
research purposes, drilling for petroleum and so forth. One of the uses for drilling is in oil
industry and it is a complex technique, which is influenced by many factors. These factors
include bit type and geometry. applied thrust and rotational speed. flushing media and
flushing rate and borehole properties. Among those the first three factors are controllable

parameters where as the last factor is beyond control.

1.1  Drilling methods:

Drilling methods can be classified according to several criteria. These include size of
borehole, method of mounting and type of power used. Mechanical drilling process is the
most successful method for practical applications and it can be performed basically in two

ways. either by percussive action or rotary action, shown in figure 1.1 [1].

1.2 Drilling system components

The three main functional components of any drilling system are drill collar. drill pipe
and the bit. To these may be added a fourth component. the circulation fluid, which cleans

the borehole and cools the bit during the drilling operation.
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The drillpipe is the prime movers and its main function is to convert energy from its original
drive (electrical or combustion engine drive) into mechanical energy to actuate the system
and to support the weight of the lower components of the drillstring. The drillpipe constitute
the longest section of the drillstring and most of its length is under tension. Drillcollars, on
the other hand, transmit the energy from the prime mover or source to the bit and are mostly
under compression in order to supply the weight on bit (WOB). The bit is the applier of
energy in the system, attacking the borehole formation mechanically to achieve penetration.
The lower part of a drillstring is called bottom hole assembly (BHA) and is usually
composed of drilicollars. stabilizers. and the bit. Along each section. the drillstring has nearly

constant geometric and physical properties.

Two separate operations in drilling are involved to achieve penetration of the bit into
the borehole formation. These are fracturing the borehole formation at the bit interface with
ground and removal of the broken fragments formed during drilling. The effectiveness of
drilling, in other words the rate of penetration of the bit. is certainly dependent on drilling
method selected and how the drillstring is behaving. During the fracturing process drillstring
vibrate and that would affect the drillstring performance. Vibration of drillstring has been the

subject of extensive study. since it plays a critical role in drilling efficiency and cost.

1.3 Drillstring vibration
Drillpipe and bottom hole assemblies (BHA) experience a wide range of vibration

during drilling operation. Excessive vibration level can lead to BHA component failure. Even

moderate vibration levels. when sustained for extended periods of time can decrease the



useful life of BHA components. Eventually, the effect of vibration damage leads to the

increase of the drilling cost due to loss of equipment or even loss of borehole.

The nature of drillstring vibration study is quite complicated because axial. torsional
and lateral vibrations are all present at the same time. Axial or longitudinal vibration is
associated with bit and Kelly bounce. which might damage the bit and BHA. Torsional
vibration causes the rotation of the bit to become irregular: thus leading to drilling problems
and deterioration of drill strength due to continuous loading and unloading, which may cause
damage to the bit and pipe connections. Bending. transverse or lateral. vibrations are
associated with drillstring buckling when the drillstring rotates with a center of rotation that
is not coincident with the center of the borehole. which might cause hole enlargement. In
general. the bit/formation interaction. stick-slip motion and drillstring/borehole interactions
are the main cause of vibration in drillstrings. Vibration in drillstring involves other
phenomena such as parametric resonance. whirling and contact with the borehole wall. The
excessive vibrations caused by such phenomena were observed to cause wear. borehole
enlargements, damage to the borehole wall and premature fatigue failure of downhole

components.

When drillstring vibrates sometimes it create excitations that are at the rotational
frequency or multiples of the rotational frequency. This phenomenon creates forces and
stresses that oscillate at frequencies of the excitation mechanisms, which generate resonance
condition with growing stresses. The speed at which resonance occur is called critical speed
and it should be avoided during the drilling operation. Resonance or natural frequency of the

drillstring system can be estimated with high accuracy if drillstring geometry and drilling



parameters are known. Accurate finite element models of drillstring can be used to predict

drillstring resonances [2].

1.4 Literature Review

The analysis of the static deformation due to weight on bit of drillstring in two-
dimensional curved boreholes was studied by Fischer [3]. Drillstring was modeled as elastic
beam-column that has a constant geometric and material property over each element. The
force and moment equilibrium relation along with the relation between bending moment and
curvature of drillstring were used to derive the non-linear equations of motion. which were
replaced by finite-difference equations. The drillstring deflection was obtained by solving the
equations of motion using the standard matrix iterative procedure. Drillstring forces and
deflections in three dimensions were analyzed by Walker et al. [4]. They assumed that the
drilling assembly behaves as elastic bodies and the bit is centered in borehole. A simplified
mathematical model using the ordinary approximate theorv. a generalization of the
Bernoulli-Euler theory, to relate the moments to the curvature was used to obtain the
equations of motion for BHA. Mathematical modeling of drillstring as a straight beam using
finite element technique was performed by Millheim [5], wherein they used a general-
purpose finite element commercial system to study the drillstring deflection and bit forces.
Variational principle or principle of minimum potential energy function was used to obtain
nodal displacement. Two computational procedures to predict response characteristics were
used; the first one used a straight beam element with six degrees of freedom at each node.
and the second procedure employed a curved-beam element. In their formulation. the
drillpipe was not considered, and they used the lumped mass approach at the nodal points of

the drillcollar. Chandra [6] used the beam-column theory to analyze the static deflection of a



drillstring subjected to its self-weight and weight on bit. The drillstring was analyzed for two
dimensions and three dimensions; however, it was restricted to static analysis of non-rotating
drillstring, assuming no bending moment at the bit and no torsional effect. Euler buckling
equation was used to determine the range of the buckling load. which is a function of

modulus of elasticity, moment of inertia and length of drillstring.

Vandiver et al. [7] studied the transverse vibrations caused by whirling of a rotating
unbalanced drillstring. The bending vibration relation was derived from the
moment/curvature relationship. in which it includes the effect of rotating rate and whirling
on bending stresses. Two principal sources of bottom hole assembly bending vibration were
disussed: drillcollar whirling and linear coupling between axial forces on the bit and bending
vibration of an initially curved drillstring. Drillcollar whirling is the centrifugally induced
bowing of the drillcollar that result from rotation. Two types of drillcollar whirling were
discussed forward whirl in which the same side of the collar is in continuous contact with the
side of the hole causing flat wor in one place of drillstring. The other type discussed was
the backward whirl where an expression was extracted from the relative tangential slip
velocity between the drillcollar and the borehole wall assuming constant contact between
drillcollar and borehole wall. The developed relation for the tangential velocity between the
drill collar outside diameter and the borehole wall from which one can deduce the whirl tvpe.
In addition to whirling, they observed from field measurements that transverse vibrations are
coupled with axial vibrations. Five different cases were discussed regarding forward and
backward whirl and concluded that whirling of BHA in the borehole can occur during
normal drilling operation. A predictive model for vibration was not presented. The theory of
rotor dynamics was used by Jansen [8] to describe the dynamics of stabilized drilicollars,

wherein the axial and torsional vibrations were not considered in the model. The equation of



motion for lateral deflection was developed for mass-spring system with two degrees of
freedom by assuming a constant rotary speed and neglecting the influence of gravity on
drillcollars. Virtual work approach was used to obtain the equivalent mass and stiffness

parameters of the system.

In his experimental work Ford Brett [9] with one type of bits, polvcrystalline
diamond compact (PDC), found that torsional vibration was high in harder rocks. at higher
applied WOB and at low rotary speed. It was found that drillstring vibrations normally
occurred only when the bit was on bottom drilling ahead and it rotated smoothly while off
bottom. In some cases, torsional vibration was eliminated by lifting up the bit off bottom and
allowing the vibration to die, and then go back to the bottom at either a higher rotary speed
or with less WOB. These resolutions might decrease the torsional vibration. however. higher
rotary speed can increase the tendency toward other forms of vibration. A laboratory model
was developed to describe the nonlinear self-excited torsional vibration of drillstring. with
two coupled differential equations. The first equation describing the behavior of the
drillstring as a lumped mass-spring system and the second equation describes the surface
dnve system Thomas [10] attributed some of the drillstring torsional vibration to stick-slip
operation. In the stick-slip operation the bit stops for a finite time interval and then slips at
high angular velocity up to two or three times drillstring rotation. Hasley [11] presented a
mathematical method for the computation of torsional resonance frequencies in drilistring
using the generalized torsional displacement equation. The torsional equation of motion was
solved by Fourier techniques to obtain torsional resonance frequencies. They indicated
through experimental data that frequencies of the torsional resonance are not affected by the
rotation rate of weight-on-bit. The limitation in these models is that it deals only with

torsional vibration. Close {12] presented four experimental case studies of vibration levels in



drillstring attained during commercial drilling operation. They concluded that lateral
vibration levels were larger than longitudinal vibration levels, significant lateral vibration can
occur when reaming to bottom and when drilling a casing shoe. Claver [13] studied the
effect of surface and downhole boundary conditions on torsional and axial vibration of
drillstring. Their conclusions were for torsional vibration damping at the bit is necessary to
obtain good correlation between measured and simulated dynamic properties. In the axial
response case, the bottom boundary conditions are complicated function of time and drilling
parameters. The effective stiffness and damping of the rock appear to depend strongly on the
weight on bit and on many other parameters. such as RPM. mud flow rate and bit type.
Axisa [14] presented the physical phenomena conceming non-conservative coupling effects
between the rotating shaft and the extemnal fluid. Thev modeled the drillstring as a beam
element having two nodes at the ends. The stabilizers were considered as bearing elements
and the drill hole as radial gap element. The mud in the annulus between the drillstring and
the well borehole was modeled with mass. damping-gyroscopic and stiffness matrices. while
the mud inside the drillstring was modeled with a mass matrix only. Lumped parameter
approach were used to obtain mass and stiffness matrices. The effects of gravity and
buoyancy were taken into account in developing the equations of motion. The equations of

motion were solved iteratively after neglecting the axial and torsional vibrations.

Further investigations by Dunayevsky et. al. [15] established the conditions under
which the drillstring becomes laterally unstable as a result of axially induced vibrations. In
their study, they assumed the drillstring to be in permanent contact with the borehole wall
along its entire length. which will eliminate any impact between the drillstring and borehole
wall. In addition, drillstring rotary motion was ignored: as a result, torsional and gyroscopic

forces disappeared from the equations of motion. Parametric resonance theory was used to



develop the drillstring vibration model in which it was assumed that axial and lateral
vibration modes to be coupled only through the parametric resonance mechanism which is
valid for small-curvature boreholes. The governing equations for drillstring motion were
derived in terms of the axial displacement and precession angle. in which, the finite element
equations were obtained by using the variational technique. Solution of the equations of
motion were not carried out, instead. the condition at which these equations had
exponentially growing solutions that would correspond to the onset of rapidly growing
lateral vibrations were established. Drillstring vibration severity with changing drilling
parameters was evaluated using the finite_element analysis approach. Although Yigit and
Christoforou [16] studied the transverse vibrations induced by axial loading and impact with
the wellbore wall. it was restricted to non-rotating drillstrings, therefore. torsional vibration
was not considered. They assumed all deformation to occur in a single plane with an
intermittent contact between the drillstring and the wellbore wall. wherein the impact force
obtained from the Hertzian contact law. The assumed mode method was used to derive the
equations of motion for BHA. In the formulation of the equations several assumptions were
made such as the upper portion of drillcollar is undergoing only axial vibration while the
lower portion is under combined axial and lateral vibration. moreover. torsional vibration
was neglected. The previous model was extended to include the effect of rotation on
drillstring dynamics [17]. The effects of gyroscopic moments. contact with borehole wall.
axial excitation due to bit/formation interactions and hydrodynamic damping were included.
The drilicollars were modeled as Rayleigh beams with simply supported boundary conditions
at the stabilizer locations. In the previous model as well as in this model the drillstring was
assumed to be a solid cylinder of uniform cross section. Neglecting torsional vibration,
equations of motion were obtained by using the assumed modes method and applying the

Lagrangian approach. which were solved numerically for a number of parameter values.



Berlioz et al. [18] focused on laboratory tests concemed with the principal lateral
instabilities. An experimental test rig was built to study the phenomena involved in the lateral
drilling vibration. In their experimental work the effects of fluid, rotation speed, stabilizers,
axial force and torque on natural frequencies and parametric instabilities were investigated. It
was concluded that constant torque and compression forces decrease lateral frequency, on
the other hand. tension force increases lateral frequencies. Drillcollars imbalance effect on
vibration was addressed by Dykstra et al. [19]. Drillcollars imbalance generates high level of
lateral vibration due to centrifugal forces when drillstring components are rotated.
Neglecting axial and torsional deformations equations of motion were obtained bv virtual
work method for single degree of freedom system Field observations showed that
drillcollars were unbalanced initially causing bore misalignment. initial curvature, and gradual

wears during service.

A linear stability approach was used by Abbassian et. al. [20] to describe the nature
of torsional and lateral bit dynamics and identify the underlying relationship between various
parameters such as rotating speed, WOB, string stiffness. bit and top drive characteristics
required for a stable bit motion. Three models were discussed: torsional model. lateral model
and coupled torsional-lateral model. Equations of motion were obtained for the three models
by assuming a permanent contact between the bit and wellbore side. and neglecting axial
deformation. The stability analysis lead to establishing the conditions under which the
constant-speed bit rotation may be stable. Heisig et. al. [21] analyzed the lateral dynamic
behavior of inclined drilistring in continuous contact with wellbore. In the analytical model
developed for the BHA, they used the principle of virtual work to obtain the equation of
motion in which the WOB is considered. In both of the modeled developed in the analytical

and finite element models. only the BHA section is considered and rotation of drillstring is
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not introduced, therefore neglecting the gyroscopic effect. The bit stick-slip motion was
analyzed by Challamel et. al. [22] using rock mechanics considerations coupled with field
bottomhole data. They attributed the self-excited torsional vibration phenomenon to the rock
cutting process, which is an interaction between the bit and the rock. Two different stability
methods (direct method and linearized method) were used to show the effect of rock/bit

interaction in the stability of the drillstring.

1.5 Current Status

Vibration of rotating drillstring cannot be completely eliminated. however. it can be
reduced and one of the techniques to reduce vibration is by operating away from resonance
conditions. because when the excitation mechanisms match these resonances. damaging
vibration can be induced. Considerable work has been carried out on various aspects of
drillstring dynamics. These were mainly concerned either with the drillstring deflection or
with axial. lateral. or torsional excitation mechanisms. Earlier studies focused on static
analysis of the drillstring system due to buckling under WOB and the self-weight of
drillcollar section. Most of the recent studies. however, focused on the dynamic analysis of
drillstrings. Several studies addressed the different types of vibrations in a nonrotating
drillstring. namely the axial. flexural and torsional vibrations. Some investigators also
addressed the effect of drillstring rotation. The increasing demand for gaining more insight
into the dynamics of such a complex dynamic system has directed the investigators to search
for more accurate dynamic modules. In addition, a parallel search for better understanding of
the drillstring dynamics is sought through some experimental studies. Although,
experimental investigations are crucial to grasp what happens in the actual field application,

they are time consuming, costly to perform on a full-scale drillstring, and may be difficult to



perform in a laboratory test rig. Mathematical modeling of dnlistring, on the other hand. is
much less costly, less time consuming, and easier to simulate.

Although many investigations are reported for modeling and analysis of drillstring
dynamics. a comprehensive understanding of all vibration phenomena involved is still
lacking. In the previously cited investigation some were restricted to non-rotating drillstring.
therefore, neglecting gyroscopic effects. and in some other investigations the axial force
generated by WOB was not accounted for. The previous models for drillstrings were
restricted for BHA analysis. which will add more limitations on the model by ignoring the
dynamics of the drillpipe. In addition. most of the reported formulations were either based
on simple lumped mass-spring-damper elements. or on simple beam theory using standard
reliability relations. Few investigations presented dynamic modals utilizing the assumed
modes technique.

The finite element method. which has been established as the most powerful
numerical technique. was not fully utilized in drillstring dynamics. Very few investigators
used the FEM in developing the drillstring dynamic model. However, such finite element
modules were for non-rotating drillstrings. where gyroscopic effects, as well as the
gravitational stiffening effect were ignored. Moreover. the reported analysis using FEM were
limited to modal frequency analysis, or stability analysis. while the time-response calculations

were not addressed.



1.6  Objective and Approach

The objective of this study is to establish an accurate mathematical model to
dynamically analyze drillstrings using the consistent mass FEM approach, which includes
drillstring rotation, gyroscopic effect and gravitational stiffening. The developed model is
derived to include all drillstring components, and made versatile to accommodate various
boundary conditions and extemal excitations that may exist in real life drilling. The
developed model is implemented in a computational scheme that is capable of performing
both modal and time-response analysis. The development of the dynamic model consists of

the following tasks:

l. To formulate a drillstring equation of motion using the Lagrange's approach in
conjunction with the finite element method. The model to be developed accounts for the
bending, torsional and axial vibrations. as well as the effect of rotary inertia. gyroscopic

moments and axial stiffening due to gravitational force field.

2. To develop a finite shaft element to model the shaft geometry using the consistent mass
approach of the FEM method. The finite shaft element has two nodes: with each node
having six degrees of freedom These are two transverse displacements. one axial
displacement. two bending rotations and one torsional rotation. The developed finite
shaft element permits different geometries of the drillstring components. as well as
elements of different lengths and cross-sectional properties. The explicit form of the
mass, stiffness and gyroscopic matrices of drillstring finite element are to be derived and

tabulated in explicit form to enhance the computational efficiency.
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3. To develop a finite element program that generates the consistent element matrices
where the effect of rotary inertia, gyroscopic moments and axial stiffening are accounted
for at the element level. The equation of motion of drillstring, which includes drillpipe,

drillcollar and stabilizers. to be assembled using the finite element coefficient matrices.

4. To perform modal analysis for different drillstring configurations and rotational speeds.
To this end. the generalized eigenvalue problem is obtained and solved numerically for
the modal characteristics of the drillstring. In this regard. the non-self-adjoint eigenvalue
is considered. which resuits in complex eigenvalues and eigenvectors due to presence of

the gyroscopic effects.

5. To perform dynamic response analysis of the drillstring by calculating the time histories
of the drillstring elastic deformations due to different external excitations. In this
context. two forms of the equation of motion are considered. One that represents the
full-order model in terms of the physical nodal coordinates. and another in terms of a
reduced set of modal coordinates. To obtain the later. modal transformations are
established in terms of a truncated set of significant modes and equations of motion are
written in the modal form. In either case. equations of motion are integrated forward in
time to for the dynamic response of the rotating drilistring. Perform a comparison
between full-order model and reduced-order model solutions to test the accuracy and

efficiency of the reduced model.
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Chapter 11
THE DRILLSTRING DYNAMIC MODEL
Introduction

Two reference frames are employed to describe the motion of the drillstring system.

These are the fixed reference frame. and the rotating reference frame.

In this formulation, it is assumed that the material of the drillstring is elastic.
homogeneous and isotropic. The deflection of the drillstring is produced by the displacement
of points of the center-line. The intemal damping and flow-induced forces are neglected.
Drillstring boundary conditions are as shown in figure 2.1. at the top of dnlistring assumed
to be fixed to the rotary table and at the stabilizers area a pin joint condition is assumed.

which will restrict translation in the Y and Z directions.

2.1  Elemental coordinate system of the drillstring

The finite element method is used to model the drillstring [30]. Referring to figure
2.2 let X Y Z be a Cartesian coordinate system with its origin fixed to the undeformed
element. The x y z is a Cartesian coordinate system after deformation of the element. The x y
z coordinate system is rotated with respect to the X ¥ Z coordinate system through a set of
angles as shown in figure 2.3. The general orientation of beam element cross-section can be
described by first rotating it by an angle @ around the X axis, then an angle 6, around the
new y axis (y;), and then by an angle 6. around the final z axis (z,). The instantaneous

angular velocity vector wof the x y z frame can be expressed as
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Figure 2.1: Drillstring layout
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wo=¢pl+6, j, +6,k, Q1
where /. j; and & are unit vectors along the X, y, and z, axes. respectively. Transforming
equation (2.1) into X ¥ Z coordinate system will yield

®=¢I+8,[cos(p)J +sin(p)K]

+6, [— sin(8, )] —sin(@)cos(8,)J +cos(8, )cos(p)K ] 2.2)
Assuming 6, and 6. to be small. which will simplify to
cos(6,) = cos(6.) =1 (2.3)
and
sin(6,) = 6,. sin(8:) = 6. (2.4)
Substituting the relations in equations (2.3)-(2.4) in the angular velocity equation (2.2). one
gets

®=p1+6,[cos(p) +sin(p)K]+6,[-6,1 —sin(p)J + cos(p)K |

= (¢ -6.6, )1 + (éy cos(p) — 6. sin(¢))J + (9': cos(@) + 6, sin( P)K

or

w, ?- éﬁy
=1, =6, cos(p)-6,sin(p) 2.5)
o, 6. cos(p) + 6, sin(p)

2.2 Kinetic energy of the drillstring

Referring to figure 2.2, let p be any point in the undeformed shaft element. The
position of point p is defined by the vector r, with respect to X ¥ Z. The global position of
point p in figure 2.2 can be expressed as

rn=R~+r,+u (2.6)
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Figure 2.2: Generalized coordinates
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Figure 2.3: Rotation angles
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where u represents the deformation vector of point p. Using the finite element analysis u can
be written as

{u} = [NHe} 2.7
The matrix [NV,] is the translation shape function and {e} is the vector containing nodal
coordinates of the shaft element. The time derivative of equation (2.6) can be expressed in

the form

dr

d—: =F, +oxr, =¥, +[w]{rp} (2.8)

where the skew-symmetric matrix [« is given by

0 -w o,
[a)] =| o, 0 -wo,
-0, o, 0

Since there is no change in magnitude of R and r, when the shaft element deforms, the rate

of change of magnitude of the position r, is given by

¥ 1= ta)=[~, Je} 2.9)

Substituting equation (2.9) in equation (2.8). we get

d)

=2 - [V Je)+ [l } (2.10)

The kinetic energy of the element is obtained by integrating the kinetic energy expression of

the infinitesimal volume at point p over the volume ¥. This can be written as
1 drp T drp
=—fu—2l 1 gy @11
29 | dt dr

dr
Where 4 is the mass density of the shaft element. Now. substituting for -d—: from equation

(2.8) in equation (2.11), we get
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7= [ulerInTIv el br VT ol )+
b el v Yed+ & T lof [0k, lav 2.12)

The second and third terms in equation (2.12) are identically zero. because the moments of
inertia are calculated with respect to the center of mass of the element. The first term
represents the kinetic energy due to translation and the last term represents the kinetic
energy due to rotational effects that include gyroscopic moments. The last term can be

evaluated as follows

(0_.: * (t)j o0, -0.0,
[of [0)=| ~0,0, ©!+0} -0, @2.13)
~0,0., -00, o) +0]

Therefore, the last term in equation (2.12) is rewritten as

by, VloT ke, Jav = [ ult, 0 +1,03 + 1,00 ) e @19

Substituting equation (2.5) in equation (2. 14), one obtains

I p{rp }r[a)]" [w]{rp }dV = j' ;4[1 , (¢ -6.6, )2 +1, (9y cos(p) -6, sin(rp))2

+1,(6, cos(p) + 6, sin(p))’ ]d.r (2.15)
Defining
we=ul,=Ip =1, (2.16)
And expressing the variables and their derivatives as
0 = [Nte}. o =|N, Jfe} @17
8 ~Waltel, 6, =[N, fe} (218)
8 =<[Nelle}. 6. =[N, Je} (2.19)
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Where the matrix [N,] is the torsional shape function and [Na). [Na] are the bending
rotational shape functions. Substituting the relations in equations (2.16)-(2.19) in equation

(2.15), we get

2[ b T T lok Jav =20+ Ly [na, Jel-

oY [oe}- €Y [, e} > eV [, Je) 220)

Where

G=[1,, . )ax
CANTRUA (A"
e 1= [, v T B, - [ v, el D

1= fraf o [

Therefore, the kinetic energy of the element can be written as
1. a. b 1y .
= E{e}T[Mr]{e}+ EC¢- +'2-{e}r[hloke}-
. fs . . Ly, .
otV IGlel- eV v, e+ L ¥ o, e
And if we add the similar terms together we get

| a bl L. L
=5 e Ml o™ - olel [Gle) 221
Now, the augmented mass matrix [M] can be defined as

[M] = [M] + [M] + [M,] - 2[M.] (2.22)
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Where [M.] represents the coupling between torsional and transverse vibration, which is

time dependent.

2.3  Strain energy of the drillstring

There are three translations (u.v.w): two of them (v.w) are due to bending. The

rotations (6,,6;) are related to bending deformations by

ov(x.t)
6, = — (2.23)
9. = _owx.t) (2.24)
2.3.1 Strain Energy due to bending:
The strain energy expression due to bending U is given by
1 <
U =3 ! codV (2.25)
where
o =Ee (2.26)
and
£ _ai . &w
N @2.27)
Substituting the relation of equation (2.26) into equation (2.25), we get
v =1 [Ee*av (2.28)
27

Similarly substituting the relation of equation (2.27) into equation (2.28), one can express

the strain energy due to bending as
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E; év  d'w
U, =;M-—y6x2—zax2]dAdx
E; i (oY  L(ew) o°v 8w
=— - Il — +2 2 ———— | dAdx 2.29)
z” y(aﬁ} * (63:') s Bx'} (

It is noted that the last term in equation (2.29) is zero due to symmetry. Now, let us

designate

I = j ydd, ad I, = j z3dA (2.30)
A A

Substituting the relations in equation (2.30) into equation (2.29). we obtain
! 2 2 2 2
U == [ (22 1, 5_‘”) dx 2.31)
29 \ox- ox~

2.3.2 Strain energy due to torsion:

The strain energy expression U due to torsion is given by

g oo\’
U,==|Gr | 22| ax 2.32
| (ax) @32

Where G is the shear modulus and 7, is the polar moment of inertia.

2.3.3 Strain energy due to axial deformation:

The strain energy due to axial deformation U is given by
v, =L fecav (2.33)
2]

Where

du
= E .y and = — 2.34
o=Ez¢, £=— (2.39)

Substituting equation (2.34) into equation (2.33) will vield
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Etefdu)
U, ==(| [—) dAdx (2.35)
25 \dx
Assuming constant cross sectional area. equation (2.35) reduces to the following equation:

U, = % | (%)'cu (2.36)

2.3.4 Strain energy due to axial stiffening;

The strain energy associated with the axial stiffening due to gravity can be expressed

Le oulfow) [ov)
= [EAZ| [ M) (™ 2.37
U, Z-EEAax([Bx) +(ox) ]dx (237

In this case, the termEA% represents the gravitation force. Designating the gravitational

force by F. we can write equation (2.37) in the form

U, = %jr(@”_x) +(%):J dx (2.38)

Now. the total strain energy is obtained by adding the strain energies in equations (2.31),
(2.32), (2.36), and (2.38), which can be written in the form

U=U1+U3+U3+U4
! 2 ! o N2
U=Z] 1-(@) 1,(?-‘”-)+A("—“) dx+lj<;1,(—“’)dx
290 lox ox dx 2] ax

+%j'r((%) {%)2] ds (2.39)

Because of symmetry we can set

L=1,=Ix) (2.40)
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Substituting from the relations in equations (2.23), (2.24), and (2.40) into equation (2.39),

one obtains

! 2 - 2
.y F[(%J +(91) )dx 2.41)
23"\ &) &

Equation (2.41) can be written in matrix form as

= %{e}T[K He} (2.42)

Where [K] is the augmented stiffness matrix given by
(K] =[Kc] + [Ka] + [Ko] + [Kus)

[K.] : stiffness matrix due to bending deformation

[K.] : stiffness matrix due to axial deformation

[K5] : stiffness matrix due to torsional deformation

[K.s] : stiffness matrix due to the gravitational force field

2.3.5 Elemental equation of motion

The equation of motion of the element can be derived using Lagrange equation as

dfoL) o _, (2.43)
de\oq ) o9 ~

where

L=T-U Lagrangian function

q : generalized coordinates
Q : vector of generalized forces

T : total kinetic energy
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U : total strain energy

Substituting for L and q in equation (2.43) will vield the following equation of motion
[M]e}+olGle}+ [k Ke} = {0} (244)

where

[M] : augmented mass matrix

[G] : gyroscopic matrix

[K] : augmented stiffness matrix

Equation (2.44) represents the dynamic equation of motion at the element level. The

equation of motion of the whole drillstring is then derived by assembling the discretized

element equations. In the next chapter. the elemental coefficient matrices [M], [G] and 1.4

are established. and the standard finite element modeling assembly procedure is invoked to

obtain the equations of motion of the drillstring.
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Chapter I11

FINITE ELEMENT FORMULATION

3.1 Finite Element Model

The finite element formulation is applied to solve the equation of motion developed
in the previous chapter. The basic concept of the finite element approach is to subdivide a
large complex structure into a finite number of simple elements, such as beam, plate, and

shaft elements. In this case, a set of 7 second-order differential equations are obtained where

h is the number of discretized degrees of freedom. A properly generated mesh of finite

elements can define the drillstring configuration. In this formulation. the drillstring element
has circular cross-section and consists of two nodes. Each node has six degrees of freedom.
two transverse displacements. two bending rotations. one torsional rotation. and one axial

displacement. The drillstring element deformation vector is defined as
{e(D} = {us vi. wy, 6, 6., ¢,. us, v;, w,, 6,3, 6-5, le}T G.1

Utilizing the assumed displacement fields, the transverse and axial deformation of an element

is represented in terms of shape functions as

u(xf)] [Ny, 0 0 0 0 O N, 0 0 0 0 0
vixtf)p={ 0 N, 0 O N, 0 O N, O 0 N, olfen)}
w(x,t) 0O 0 N, N, 0 0 O O N, -N,, 0 0
I‘N"
= [N,(x)]{e(:)}=[1vv o)} (3.2)
N,
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Figure 3.1: Order of degrees of freedom for drillstring element
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The rotation of a typical cross section is expressed as
61_[0 Ny 0 0 N,
6.] o o -N, N, O

= [No,= ] @)= m"’] e} (3.3)

© ©
© o°
=]
f
Z
b
2
)
&

Similarly the torsional displacement of a typical cross section is written as

¢(x.r) =[00000N,,00000N,;]

= [No]{e(n)} G4

Where N, . N, , and N, represent static displacement modes associated with unit

displacement of one of the end point. The matrices Nj, . Ny- represent bending rotation shape

functions, and N, represents the torsional shape function. The explicit expressions of the

aforementioned shape functions are derived in reference [23] and given in table 3.1.

3.2 Stiffness Matrices

The strain energy expression of a rotating drillstring element of length / in matrix

form is given by

U= K€} 3.5)

The matrix (K] is the augmented stiffness matrix given by
(K] = [ke] + [ka] + [K] + [ka] (3.6)

where

{
(k,)=([B.T EN[B,]dx = Elastic stiffness matrix 3.7

30



{
[k.1=[[B.F E4[B,]ax = Axial stiffness matrix (3.8)

!
k,]= j. [BC,]TGI ’ [B‘,]dx =  Torsional stiffness matrix (3.9)
(k)= [F[B.T[B.]dr = Axial stiffening matrix (3.10)
While
[B.]=2[n,] G.11)
e ax ]
(B ]=_a_[,v ] 3.12)
a ax u
d
[5,]= E[Npl (3.13)
o
[8.]=(~.] (.14)

Integrating equations (3.7)-(3.10), the stiffness matrices are obtained in explicit form with

non-zero entries as presented in tables 3.2-3.4.
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Table 3.1
Explicit expression of the shaft element shape functions

{5 4] e =4{(2) )
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Table 3.2

Elastic stiffness matrix of rotating drillstring element [k, ]= Erlk?, |
The non-zero entries of the upper triangular part of [k.] . a. b=1.2........12

e [ e ¢ P P |2
ko =—kig =ky, =—ki =kg =kgy =—

13

' 4 e [ 4 e € € [ 4 e 6
ks =k3, =—k3, =~k =k =—ksg =—kgy, =kg, =[_;

L[4 € [ 4 e 4
ki =k =Kioio =k, =7
[ 4 3 2
ko =k, = 7
Table 3.3
Axial stiffness matrix of rotating drillstring element [k, ] = Edlk2, |
The non-zero entries of the upper triangular part of [kss] . a 6=1.2........12
a _pa _2
ki =kZ = 7
.
17 1
Table 3.4
Torsional stiffness matrix of rotating drillstring element [ka, ] =Gl, lk:},]
The non-zero entries of the upper triangular part of [k.] . a. b=1.2........12

1
kg = —kg2 =k,’;,2 =7

l
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3.3 Axial Stiffening due to Gravitational Field

Drillpipe section is a long section of the drillstring. which has a low resistance to any
applied axial loads and tend to fail by buckling when subjected to a vertical compression
load. Therefore, drillpipe is generally under tension load and the point separating drillpipe
from drilicollar is called neutral point. The neutral point is defined as the point having zero
axial force. Figure 3.2 shows the desired location of the neutral point [1].

The axial stiffening term [4.] is given by equation (3.10) and is written again here to

derive an expression for the force F*

4
k.= F[B,J[B,] dx (3.15)
where
[B.]=Z[w.] (.16)
“r et )

The axial force F due to the weight associated with a differential element located at point p

of the finite element i can be written as

dF =p gd dr, 3.17)

where

A : cross sectional area

g : acceleration of gravity

p : density
In this context. since one needs to refer to a specific element. let us denote /, as the length of
element ;. For drilipipe under tension, referring to figure 3.3, the length r, from the neutral

point to point p can be written as

r, =L, +(, ~x) (3.18)
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where

L=3,

J=i+l

Differentiating equation (3.18) with respect to x

dr,= - dx (3.19)

Substituting for dr, in equation (3.17), the axial force F; due to gravity on point p can be
expressed as

dF, =p g A (-dx) (3.20)
Now. the tensile force acting on a section at point p due to the weight can be calculated by
integrating equation (3.20) over the span between point p and the neutral point. The

resulting tensile force is
Ly ;
F:=—[ jpg&mjpgActrJ (3.21)
Ly-L, x

Where L, is the length of the drillpipe segment under tension. Evaluating the integral in

equation (3.21) while taking p. g, and 4 as constants will yield the following expression
F.=-pgAlL - (I-x)] (3.22)

The axial stiffening stresses resulting from the tensile force F, are incorporated into the

integration of [k,] in equation (3.10), resulting in the stiffening matrix of the rotating

drilistring element given in table 3.5.
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Figure 3.2: Buckling of drillpipe above drillcollar : (a) desired condition and (b) undesired

buckled condition
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Table 3.5

Axial stiffening matrix of rotating drillstring element [k, ]= pgalk |
The non-zero entries of the upper triangular part of [k,). a b=1.2. .......12
for drillpipe (under tension)

k3 =kS =k =k =kE =k =

wiw
+
wn|a

L
4,

as as as as l
k:s =_k34 =kg =_kss =I—OL‘

Ky =~kyo =kgy = —kg, =—I +—L

10" 10"
ke =k = %1} +%L,1,
ke =k =-$1ﬁ —E%L,l,
ke =k = %1,2 +TZ§L,1,
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Figure 3.3: Drillpipe under tension
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For drillcollar under compression, the length 7, from the neutral point to point p. as shown in
figure 3.4, can be written as

re=L +x (3.23)

where

31—

L=%1,
1

e
Differentiating equation (3.23) with respect to x, will yield

dr,= dx (3.24)
Substituting for dr, in equation (3.17) . the gravity force on point p is

dF. =pgAdx (3.25)
The compression force acting on a section at p due to the weight of the drillcollar segment
about this point can be calculated by integrating equation (3.25) over the span between point

p and the neutral point. The resulting compression force is
4 L-x
Ii=]pgAdx+ _..pgAdx (3.26)
0 L

Evaluating the integral in equation (3.26) while taking p. g and 4 as constants will vield the
following expression
Fo=pgA[L:~x] (3.27)

The axial stiffening stresses resulting from this compression force are incorporated into the
integration of [K.] in equation (3.10), resulting in the stiffening matrix of the rotating
dnlistring element given in table 3.6. Figure 3.5 shows the drillstring force distribution due

to gravitational field.
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Table 3.6

Axial stiffening matrix of rotating drillstring element [k, ]= pgalk |

The non-zero entries of the upper triangular part of [k}, a 6=1.2........12
for drillcollar (under compression)

as as as as as as 3 6LC
ki =kyy =—kig =—kyg =kgg =kgg ==+_-=%

551

kZS = —k34 = k-$9 = _kSB = 1_0'1: + l—OL~

as as as as l
kan = —ksio =kojo = —kgyy = —L

811 10 [

as as l 2 2
k‘“ =k55 =;—[ +—L1

O 1] 15 (o 4
as as l 2 l
kuo ‘—'ksn =‘51. “‘;61‘.-1:
as as l 2 2
koo =k =E1x +GLJ:

41




Fir=-pgAlL, #__

Tensile force —
distribution
L,
Neutral point H
) L.
Compression
force distribution
—— v
F.=pgAL. <

rl
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3.4 Inertia Properties

The kinetic energy of a rotating drillstring element of length / derived earlier

(equation 2.8) is given by
T =2k Ml 2cot - ol [Gle) (3.28)

The matrix [M)] is the augmented mass matrix (equation 2.9) given by

M) = [M] + [M,] + [M,] - 2[M.] (3.29)
Where

(M, ] =jl'[N,I’;lA[N,l dx (3.30)

[Mr]'_"j.[NalTID[Noldx 3.31)

[M,l=j'[N,l’1,[N¢ldx (3.32)

e 1= 1, 0, T Bk, 1D, T, e, D (339

Where [M] is the translational mass matrix, [M,] is the rotary inertia mass matrix. [M,] is the
torsional mass matrix. and [M.] is the coupled torsional-transverse mass matrix. The
gyroscopic matrix [G] and can be obtained by the following expression

[Gl =[G/ -G/ (3.34)

For constant rotating speed
il
[G]=[vaT 1, [V, Jix (3.35)
(1]

and for constant /,
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[G|]=1pjl'[NJ[N@]dr (3.36)

Integrating equations (3.30)-(3.33) and (3.36), the mass matrices are obtained with non-zero

entries presented in tables 3.7-3.11.



Table 3.7

Translational mass matrix of rotating drillstring element [M ,]= yAle,,]

The non-zero entries of the upper triangular part of [M.»],

ab=12 .....12

Mj =M% =11
3

|
M” =‘gl

L 4 < L4 L4 l3
My =M =My =M, =3—5‘l

11

¢ _ e _ e _ e _ Tt 2
M =-M; =-M;, =M, = l

210
. . 9
M:s =MMO=7(-)-I
13
M =M =M, =M|‘oxo=ﬁ
~ML, =M, = -M5 =Mz, =23
2 310 %9 * =10
13
M; =M! =-—
410 st 140
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Table 3.8

Rotary inertia mass matrix of rotating drillstring element [M_ ]=1, lM:b]

The non-zero entries of the upper triangular part of [M.s), a b=1.2,.......12
. ag A g _ngr 6
My =M =-Mj,=-M =My =M =5_1

T = M7 =M™ =M =M" = _M" AT — AT _
M“_S-MZH_ M}lO_ M!ll—M‘)lO— M34 -MJIO_ MS9_

10

r r r r 2
My =M =M, =M, =Gl

, , 1
M, =M, = —EI

Table 3.9
Torsional mass matrix of rotating drillstring element [Ma ]= I le;’;]
The non-zero entries of the upper triangular part of [M,,). a. 6=1.2........12

1
M =2M¢, =M}, =§1
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Table 3.10

Torsional and lateral coupling mass matrix of rotating drillstring element [M ,] =1, le,,]
The non-zero entries of [M,), a 6=1.2,.......12

< < 6 l 6 l
Msz =—M68 =¢|_-51Wl+l—0yl+§wz+ﬁ)'ey:]
. i 1 6 |
M, =-M =¢p|—v +—0_ —=v, +—86.,
& R PR TAC I TACRET }
e[ Ly Hg L, M,
O T MRATICIA T 30
. _ [ 2, | U,
=2 10" 5% "1™ T30
) 1 I/ | 2/
Mg, =~¢| —v, -—86,, - —v.+—8_,
810 “"[lo 30" 10° 15 ]
. 1 I 1 2/
M6n=¢’|[l_0wl‘§ 1o Z+Eoy2]
e _ age _ | 6 1
My, =-M, —¢’2_—§7W1 +I60yl +'57W: +|_9y:
. [ 6 1 6 1
Mcﬂ =_ML'V = Qs —V, +—0, -V, +_0.5
1= 1= “’-_51 10t st o ]
1 2 1 U
MC" = =P —V, + — o T T VN T .
124 ¢'[10 ETACENTAE =
1 2/ 1 T
M =¢p,| —w +—60, ——w, — "
12 “"[10 15T 10 30 7
1 I 1 2/
MG, =-p,| —v - L ——V, +—6_,
210 ’p~[|o 30" 10° 15 }
1 1] 1 2/
M, =@, —w, ——8, ——w, +=0..
1211 'p'[lo T30 10 s ]
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Table 3.11
Gyroscopic matrix of rotating drillstring element [G]=/ ’ [G.]
The non-zero entries of the upper triangular part of [G], a. b= 1, 2,

6
Gy =Gy =Gy =Gy =—§

1
G,y =G,y =Gy = Gy, = Gy =Gy = =Gy =Gy, = —

10
2
Gy =Gy, = _BI
|
G, =Gy, = _561
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Chapter IV

EQUATIONS OF MOTION OF THE DRILLSTRING

4.1 The Assembled Equations of Motion

The equations of motion for an element is derived in chapter II, equation (2.44). is

written again here. which is indexed to element i as

[Mm e }+ olG Je. )+ [k e, }= 0.} @.1)

Where [M)], [Ki], and [G,] are the elemental mass. stiffness. and gyroscopic matrices. The
consistent mass FEM approach is used to calculate the elements of these matrices. which are
tabulated in chapter Il for an arbitrary element of the drillstring. Using the standard finite

element assembly procedure. the equations of motion of the whole drillstring can be written

as

[MHg}+ dlGKa)+ [k Ka) = fO) 4.2)

where {g} is the vector of nodal coordinates of the whole drillstring. The matrices [M], [G]
and [K] are the assembled mass. gyroscopic and stiffness matrices. respectively. The vector
{Q} represents the applied force vector acting on the drillstring.

A finite element program that evaluates the elemental mass and stiffness matrices and
assembles them into global matrices is developed. Referring to the computer flow chart
figure 4.1, the dynamic analysis computer program is developed to automatically generate
and assemble the system matrices and solve the eigenvalue problem for the system modal

characteristics. The drillstring assemblies treated by this program can be of any complexity in
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Data File
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[ I |
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Figure 4.1: Computer program flow chart
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terms of number of elements, element length, length ratio of drillpipe/drillcollar or neutral

point location. The developed computer program is written in MATLAB® code and is

described by the following four modules:

I. Main Program

IL.

The main program first calls the data file where the data of the concerned problem is
stored. The data file contains the material properties. problem geometry. boundary
conditions. element connectivity data. and element properties.

Finite Element Module

This module establishes the elemental mass. stiffness and gyroscopic matrices based
on the data given. Apply the boundary conditions at elemental level. for all elements.
The global matrices are then assembled for the whole drillstring system

Modal Characteristics Module

In this module the modal characteristics of the drillstring system are obtained by
solving the eigenvalue problem. The eigenvectors or modes shape, which are

obtained in this module represent the basis for modal transformations.

. Dynamic Analysis Module

The dynamic analysis module solves for the drillstring transient response based on
initial displacement conditions and/or any forcing function chosen by the user. The
equations of motion are constructed using either

~ Full-order model using physical (nodal) coordinates

— Reduced-order model using a truncated set of modal coordinates that

includes the significant modes.
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4.2 The Eigenvalue Solution
In order to define the eigenvalue problem, the force vector is dropped from equation
(4.2). Thus the differential equations of motion goveming the free vibrations of the rotating

drillstring can be written in the general form as
[MKa}+ elGKa}+ [k Ka} = Do} .3)

Where [M)] is the global assembled mass matrix of the system, [G] is the gyroscopic matrix
of the system, [K] is the global assembled stiffness matrix of the system. and {e} is the
deformation vector. The mass matrix [M] is symmetric and consists of the following

constituent matrices
M) = [M] + [M,] + [M,] - 2[M,] “4.4)

Where [M] is the translational mass matrix. [Af,] is the rotary inertia mass matrix, [M,] is
the torsional mass matrix. and [M,] represents the inertia coupling between torsional and
transverse vibrations. The time-dependent coupling matrix [M,] does not contribute to the
modal characteristics of the drillstring, and therefore is neglected in the eigenvalue solution.
The stiffness matrix [K] is also symmetric while the gyroscopic matrix [G] is skew
symmetric.

The solution of the general equation of motion for free vibration. equation (4.3). is

obtained by representing it in the following state space form:

[[1[‘04]] —[%]]{gi}{[f:]] [Ezlﬁ{gi}:{"} @.5)
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4.2.1 Solution Scheme

To find the natural frequencies of the drillstring system, the equation of motion can
be viewed in two ways. In the first approach, the natural frequencies are extracted from
equation (4.5), which is the free vibrational equation derived with respect to the fixed
reference frame and rewritten in state variable form. The solution of the eigenvalue problem
described by equation (4.5) can be obtained by using any eigenvalue solver. Forward and
backward frequencies are obtained from the same eigenvalue.

In the second approach, the system equation of motion is transformed to the rotating
frame. In this case, only bending frequencies can be found as the transformation to the
rotating frame looses track of the torsional and axial motion. Due to this reason the first
method will be used to obtain not only the bending frequencies. but also the torsional and

axial natural frequencies of a rotating drillstring.

4.3 Modal Transformation

The equations of motion are either solved by direct method for a full-order model
solution, in which it will take a long time for a huge system. or use reduction scheme. The
modal reduction method is used to reduce the number of equations to be solved for dynamic
response. Eliminating the insignificant modes. which are. in general, higher modes that do
not contain an appreciable amount of the system’s kinetic energy sets a pre-determined
reduction. However. the retained modes must include the first few lower ones in terms of
which the dynamic characteristics of the system must be preserved. The advantage of this
method is the reduction in computer calculation time with accurate dynamic response results.
In general, the results obtained by this method are very close to those obtained by solving

the full-order model.
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In this context, two modal reduction schemes are established in the literature
[34,36,37]. The first employs planar modes, which are obtained by solving the self-adjoint
eigenvalue problem, while the second invokes the complex modes of the non-self-adjoint
eigenvalue. The self-adjoint problem is obtained by ignoring the gyroscopic and damping
terms in the equations of motion. On the other hand, the complex or non-planar modes
represent the accurate deformations of the drillstring, whereas they account for the effect of
gyroscopic forces. Accordingly, we will adapt the scheme of complex modal transformations
to obtain a reduced set of the equations of motion.

Now. the state space form of equation (4.5) can be written in the compact matrix

form as

[4}}+[BYy} = {0} (4.6)

where

[0 B

M] [a]

] [o]
5= 1

bl {y)

(N
©)={ iy

Where the matrix [B] is symmetric while matrix [4] is skew-symmetric. Notice that the
dimensions of [M], [K] and [G] are (6n x 6n) where 7 is the number of nodes, and therefore
the dimensions of [4] and [B] are (12n x 12n). The forcing vector {F} represent the force
applied at each node of the drillstring system. The two homogeneous adjoint equations can

be written as
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[4Ky}+ (B} = {0} @.7

And

[ Y +[BT () = o} (4.8)

Assuming a solution of the form
v} ={Flexpwr) 4.9)

Where {7} is the vector of displacement amplitudes. w is the vibration frequency and

i = =1 . Substituting equation (4.9) in equations (4.7) and (4.8). one can write

(4,[4])+[BD{R} = o} (4.10)

And

(A[A] +[BT i} = {o} @.11)
Where A, =+iw denotes the ith eigenvalue associated with right-hand and lef-hand

eigenvectors {R} and {L}, respectively. For symmetric [4] and [B]. the eigenvectors {R}
and {L} are equal, otherwise they are distinct.
Let [R] and [L] denote the complex modal matrices for the differential operators of

equations (4.7) and (4.8), respectively. Introducing the transformation
Wi =1(R] {u} 4.12)

Where {u} is the vector of modal coordinates. Because only the significant modes are
retained pre-multiplying both sides of equation (4.6) by [L]" and substituting for {y} from

equation (4.12), the truncated modal form of the equations of motion can be written as

[T [a}{r}a}+ [LT [BIRKee} = [LT {0} (4.13)
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Where [R] and [L] contain only those complex eigenvectors that represent the n lowest
mode shapes of equation (4.10) and (4.11) obtained by solving the eigenvalue problem.

Equation (4.13) can be written as

[4, ¥} +[B Ju}= 0.} (4.14)

Where [4:] and [B:] represent the reduced [4] and [B] matrices and {Q,} represent the

reduced force vector. Equation (4.14) represents the reduced-order model using complex

modal reduction.
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Chapter V

NUMERICAL SIMULATIONS

S.1 Modal Analysis

In this case study, a drillstring of the specifications adopted in reference [16] and
given in table 5.1 is considered. The numerical simulations are designed to cover a range of
situations including uniform, rotating and non-rotating dnillstring.

The results are obtained using the consistent mass FEM formulation with 25 nodes
connected by 24 equal finite shaft elements. A total of 140 degrees of freedom is attained
after applying the boundary conditions for the drillstring system. Each node consists of 6
degrees of freedom; that is two translations, two bending rotations, one axial and one
torsional. The discretization data for the drillstring elements is listed in table 5.2. The
following discussion is primarily meant for drillstring in vertical borehole where no initial
curvature or normal load is involved.

The natural frequencies of the drillstring system are extracted from the equation in
the state space form, which is the free vibrational equation derived with respect to the fixed
frame and written in state variable form. Every lateral mode of the rotating drillstring shaft
gives rise to two distinct modes; direct or forward mode and retrograde or backward mode.
The frequency of the backward mode decreases when drillstring rotation is increased while
the forward mode frequency increases. Such a distinction between forward and backward

modes disappears for a non-rotating drillstring.
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Table 5.1

Drillstring configuration data
Drillpipe specification
Drillpipe length (L,) 1000m
Drillpipe outer diameter (D,) 0.127m
Drillpipe inside diameter (D)) 0.095m
Drilicollar specification
Drillcollar length (L.) 200m
Drillcollar outer diameter (D,) 0.2286m
Drillcollar inside diameter (D,) 0.0762m
Material specification
Drillstring density (p) 7850 kg/m’
Modulus of elasticity (£) 210 X 10° N/'m?
Shear modulus (G) 7.6923 X 10'° N/m?
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Table 5.2

FEM discretization data

Node No. | Node location (m) | Inner radius(m) | Outer radius(m)
1 0 0.095 0.127
2 50 0.095 0.127
3 100 0.095 0.127
4 150 0.095 0.127
5 200 0.095 0.127
6 250 0.095 0.127
7 300 0.095 0.127
8 350 0.095 0.127
9 400 0.095 0.127
10 450 0.095 0.127
11 500 0.095 0.127
12 550 0.095 0.127
13 600 0.095 0.127
14 650 0.095 0.127
15 700 0.095 0.127
16 750 0.095 0.127
17 800 0.095 0.127
18 850 0.095 0.127
19 900 0.095 0.127
20 950 0.095 0.127
21 1000 0.0762 0.2286
22 1050 0.0762 0.2286
23 1100 0.0762 0.2286
24 1150 0.0762 0.2286
25 1200 0.0762 0.2286

59




The natural frequencies of drillstring could not be extracted from existing literature
due to lack of some information. Consequently, to check our approach and the developed
computer program results, an alternate means of solving the problem is needed. A model is
generated for a drillstring using ANSYS™ in order to extract the natural frequencies. The
comparison of the results tabulated for torsional and axial natural frequencies shown in
tables 5.4-5.26 (only even number tables) display a very good agreement with the results
obtained by our model. Results for bending natural frequencies could not be obtained due to
complexity of the drillstring force distribution. The effect of the gravitational force field,
which includes both tension and compression, on such long flexible structure is significant.
Such an effect is not considered by standard ANSYS® finite elements. A Further check by
ANSYS® of the developed approach for simple boundary conditions is presented in the
Appendix.

Now, the developed FEM scheme will be utilized in calculating the modal
characteristics of the drillstring detailed in table 5.1. Three cases were studied and reported
in this section; one is to study the effect of neutral point location on drillstring natural
frequencies, another one to study the effect of drillpipe length on the natural frequencies,
and the third one is to study the effect of drillpipe/drillcollar length ratio on the natural
frequencies. In all reported frequencies, the axial stiffening effect due to the weight of the
section under compression and the section under tension is included. The effect of drillstring
rotation speed is also studied in the range from 0 rpm up to 1000 rpm (104.7 rad/sec).

a) Effect of neutral point location:
The first simulation, the effect of different position of neutral point is studied. The

neutral point is the interface point at which there is a force change from tension to
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compression to provide the needed weight on bit (WOB) for drilling. In order to study its
effect on the bending, torsional and axial natural frequencies, the neutral point was located
at four different locations; the bottom of drillstring (bit), at 100m above the bit, at 200m
above the bit, and at 400m above the bit. The first ten forward (F) and backward (B)
bending, torsional and axial natural frequencies of drillstring are tabulated in Tables 5.3-
5.10. For a drillstring with two stabilizers, one at bottom and the other at 200m from
bottom, neutral point is located at bottom, implies that the drillstring is under tension, the
results were shown in table 5.3 for bending natural frequencies and the first three F and B
modes were plotted in figure 5.1 which shows the effect of speed on bending modes.
Relocating neutral point to 100m above the bit, implies that the lower 100m of the
drilicollar section is under compression, the drilistring becomes less stiff as shown in figure
5.2 for the first three modes and tabulated for the rest of the ten modes in table 5.5. Further
raising the neutral point to 200m and 400m above the bit, shown in figures 5.3 and 5.4 for
the first three modes and tabulated in tables 5.7 and 5.9, the drilistring becomes even less
stiff. As the neutral point is raised up further the drillstring becomes less and less stiff This
is visible in the bending frequencies for drillstring results plotted in figure 5.5 for the first ten
modes of different location of neutral point.

Torsional and axial natural frequencies were not affected by the rotation speed.
Moreover, the neutral point location also did not affect the torsional and axial natural
frequencies as shown in figure 5.6 and tabulated in tables 5.4, 5.6, 5.8 and 5.10 for different

location of neutral point.
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b) Effect of drillpipe length:

In this case, different drillpipe length were considered while keeping drillcollar
length constant, which would simulate the drilling operation of adding drillpipe segments.
Drillpipe lengths in the range from 300m up to 1000m are considered to study their effect
on the natural frequencies. The bending natural frequencies for 200m long drillcollar and
300m long drillpipe were shown for the first three modes in figure 5.8 and tabulated in table
5.13 up to the tenth mode. Increasing the drillpipe length to 600m, shown in figure 5.10 for
the first three modes and tabulated in table 5.17, will decrease the drillstring stiffness. As the
drillpipe length is increased more to 1000m, shown in figure 5.3 for the first three modes,
the drillstring becomes even more flexible. Figure 5.11 compares each mode of the different
lengths of drillpipe with their stiffness.

Unlike the first case of different neutral point locations, the change of the drillpipe
length influenced the torsional and axial natural frequencies as shown in figures 5.12 and
5.13. The same affect is noticed on torsional and axial frequencies as was noticed on the
bending frequencies that is as the length of the drillpipe is increased the drillstring becomes
less stiff, as expected .

On the other hand the stabilizers location along a constant length of drillcollar had
no significant effect on the bending stiffness. Moreover it did not affect the torsional or axial
stiffness as shown for 300m drillcollar length in figure 5.14 for bending stiffness and tables
5.12 and 5.14 for torsional and axial stiffness and for 600m drillcollar length in figure 5.14

for bending stiffness and tables 5.16 and 5.18 for torsional and axial stiffness.
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c) Effect of drillpipe/drillcollar length ratio

In this case, different values of the drillpipe/drillcollar length ratio are considered.
The length ratio (y) is varied in the range from 5 to 2. This would correspond to drillpipe
length of 1000m and 200m long drillcollar for the first length ratio and 900m/300m for the
second length ratio and 800m/400m for the third length ratio. For the first length ratio
figure 5.3 shows the first three modes of the bending frequencies. Figures 5.15 and 5.16
show the first three modes of the bending frequencies for the second length ratio and
tabulated in tables 5.19 and 5.21. For the third length ratio figures 5.17 and 5.18 shows the
first three modes of the bending frequencies and tabulated in tables 5.23 and 5.25. No
significant change in the bending natural frequencies in case of changing length ratio as
shown in figure 5.19. The number of stabilizers was increased as the drilicollar length
increased; however, no significant effect was noticed on the bending natural frequencies.

Torsional and axial frequencies are also not significantly affected by changing the
length ratio nor by the number of stabilizers as shown in figures 5.20 and 5.21 and tabulated

in tables 5.20, 5.22, 5.24. and 5.26.
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Figure 5.7: Bending frequency for drillcollar 200m long and drillpipe 300m long with

one stabilizer at bottom and the other at 100m above bottom
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Figure 5.8: Bending frequency for drilicollar 200m long and drillpipe 300m long
with one stabilizer at bottom and the other at 200m above bottom
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Figure 5.9: Bending frequency for drillcollar 200m long and drillpipe 600m long with

one stabilizer at bottom and the other at 100m above bottom
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Figure 5.11: Bending frequency for different length of drillpipe
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Figure 5.15: Bending frequency for drillcollar 300m long and drillpipe 900m long

with one stabilizer at bottom and the other at 200m above bottom
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Figure 5.19: Bending frequency for different length of drillpipe/drillcollar
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Figure 5.20: Torsional frequency for different length of drillpipe/drilicollar
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5.2 Modeling Accuracy

The number of elements used to represent the drillstring system plays an important
role in establishing the accuracy and required computation time in the developed model. A
study is conducted with different number of elements in order to establish a measure of
accuracy for a particular number of finite elements used in the system model. The only
notable differences occur with the models that have elements less than 20 elements for the
drillstring system and no changes are apparent beyond the model discretized into 24
elements, based on that a full drillstring system with 24 elements are selected for the study.
Figures 5.22-5.24 show good convergence of frequency parameter values with the increase
number of elements for both rotating and non-rotating drillstring.

The behavior of the frequency parameter with the increase in the speed rate is
studied and shown in figures 5.25 and 5.26. The backward frequency decreases while the
forward frequency increases, as the speed is increases. The difference between the backward

and forward frequencies becomes larger at higher modes.
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Bending frequencies of drillstring
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Figure 5.22: No. of elements Vs. frequency for non-rotating drillstring
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Backward bending frequencies of drillstring

| 06
0.55ﬂ: O mode 4
i i S~
i 0.5 -
= | -~ mode 3
B T
' | - mode 2
| = i e
o - 2 ; St e e et — it tt— e -
'® 04-
- e !
| :
0.35 -
!
03 - ~—— mode 1
0 10 20 30 40 50 60

No. of elements

70 .

Figure 5.23: No. of elements Vs. frequency for backward bending freq.
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Forward bending frequencies of drillstring
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Figure 5.24: No. of elements Vs. frequency for forward bending freq.

100




Backward bending frequencies of drillstring
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Figure 5.25: Speed Vs. frequency for backward bending frequency
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Forward bending frequencies of drillstring
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Figure 5.26: Speed Vs. frequency for forward bending frequency
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5.3 Transient Response Analysis

The drillstring transient response is obtained by three methods:; response to initial

displacement, response to initial velocity and response to applied impulsive force.

5.3.1 Response to Initial Displacement

The transient response of the rotating the drillstring due to initial displacement is
calculated. The initial displacement field calculated is shown in table 5.26. It is noted,
however, that the existing boundary conditions imply zero lateral displacements at the first
node, neutral point, and the bit (last node), as shown in figure 2.1. Applying a force at
approximately midway of drillpipe and calculating the displacement from the following

static defection equation, we obtained the initial nodal displacements

vi=[KT'{F} (5.1)
where : {y} is the lateral displacement of all nodes

[K] is the global stiffness matrix

{F} is the applied force
Because the drillcollar section is short and due to drillcollar thickness compared to drillpipe
section, the initial displacement in the drillcollar section is very small and can be neglected.

Figures 5.27-5.29 show the drillstring dynamic response at different nodes for both
full-order and reduced-order solutions at rotation speed of 10.47 rad/sec (100 rpm),
wherein the reduced-order curve is shown as dashed line while the full-order curve is shown
as solid line. All nodes start with the specified deflection in table 5.26 and continue to vary

for the rest of the simulation time.
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Table 5.27
Nodal lateral initial displacement of drillstring

Node No. | Initial displacement (m)
1 0

2 0.0051
3 0.0109
4 0.0172
5 0.0238
6 0.0309
7 0.0385
8 0.0466
9 0.0554
10 0.0649
11 0.0754
12 0.0868
13 0.0987
14 0.0957
15 0.0912
16 0.0858
17 0.0791
18 0.0705
19 0.0583
20 0.0374
21 0

22 0

23 0

24 0

25 0
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deflection (m)
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deflection (m)
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Figure 5.29: Transient response of node 15 due to initial displacement
(— Full-order, ----Reduced-order)
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The dynamic responses of the same nodes are shown in figures 5.30-5.32 with
different rotation speed 104.7 rad/sec (1000 rpm). It can be noticed from the figures that

there is a close match between the full-order and reduced-order modules.

5.3.2 Response to Initial Velocity

The transient response for the rotating drilistring due to initial velocity is also
calculated. Initial velocity application is essentially equivalent to an impulsive force
application. The initial velocity application can be applied at any node along the drillstring.
The transient dynamic responses for nodes 3, 9, and 15 are shown in figures 5.33-5.35.
When velocity is applied as initial condition, it will excite the higher modes as shown in
figures 5.33-5.35. Modal reduction is used in order to compare the reduced-order model
(dashed line) with the full-order model (solid line). Two sets of results for the reduced-order
model were presented; the first set is for a reduced-order model in terms of the first 5
modes, shown in figures 5.33-5.35, while figures 5.36-5.38 shows the response obtained
from a reduced-order model of 10 modes. The more modes included in the reduction
scheme the closer the reduced-order solution is to the full-order solution. It is noted that, in
this case, including other modes higher than the 10" mode would only resuit in negligible

improvement in the calculated solution.

108



ASERE LTS

100

l 1 L L 1
20 30 40 50 60 70 80
Time (sec)

i
10

0.02

-0.02

(w) uogosyep

(— Full-order, —---Reduced-order )
109

Figure 5.30: Transient response of node 3 due to initial displacement
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5.3.3 Response to Impulsive Force

The drillstring model developed is capable of applying an impulsive force at any
node to simulate the impact between drillstring and borehole wall. An impulsive force is
used at node 12 to excite the drillstring. The transient dynamic responses for nodes 3, 9, and
15 are shown in figures 5.39-5.41. When an impulsive force is applied, it will excite the
higher modes as shown in figures 5.39-5.41. Modal reduction is used in order to compare
the reduced-order model (dashed line) with the full-order model (solid line). Two sets of
results for the reduced-order model were presented; the first set is for a reduced-order
model in terms of the first 5 modes, shown in figures 5.39-5.41. while figures 5.42-5.44
shows the response obtained from a reduced-order model of 10 modes. The same
observation is noticed in this case as the response to initial velocity condition, that is the
more modes included in the reduction scheme the closer the reduced-order result are to the
full-order solution. It is noted that, in this case, including other modes higher than the 10"
mode would only result in negligible improvement in the calculated solution.

Impulsive force can also be applied axially to simulate the axial force from the bit.
Figures 5.44-5.46 show the axial transient responses of nodes 3, 9, and 15. The figures
show both the full-order solution as well as the reduced-order solution. Modal reduction is
used in order to compare the reduced-order model (dashed line) with the full-order model
(solid line). Unlike the previous cases, where the first 5 or 10 modes are selected to obtain
the reduced-order solution, in this case the axial modes are to be included, which is not
necessarily in the first few modes. An excellent agreement between the reduced-order and

full-order solutions is observed.
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CONCLUSIONS

A dynamic model is developed for studying bending, torsional and axial vibration of
rotating drillstring using the finite element formulation. The equation of motion of the
drillstring is derived using Lagrangian formulation that account for the rotation of the
drillstring as well as the stiffening effect due to the gravitational force field. The consistent
finite element approach is employed, and explicit expressions of the finite element matrices
are derived. The formulation addresses a general drillstring geometry, wherein elements of
different lengths and material properties are permitted by the model.

A dynamic analysis computer program is developed using MATLAB® code. The
program numerically generate and assemble the FEM matrices, construct the equations of
motion, solve for the eigenvalues, perform modal transformations, and integrate the
equations of motion to obtain time-histories of the drillstring response.

The developed drillstring dynamic analysis and simulation scheme has the following
important features:

a) Generality, which is manifested by the versatility of the FEM in handling large-

scale complex structural configurations.

b) Efficiency, which is achieved by great saving in computational time as implied by

using reduced-order model instead of the full-order model of the equations.

¢) The computational scheme is programmed on MATLAB® code, thus availing the

utilization of the powerful numerical tools associated with thisversatile software.
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Dynamic simulations are performed, and numerical results are obtained and
presented to serve two purposes; (a) to demonstrate the applicability and reliability of the
developed dynamic analysis scheme, and (b) to gain more insight into the dynamic behavior
of the drillstring system.

The presented numerical results show that backward bending natural frequencies
decreases while the forward bending natural frequency increases with increasing drillstring
rotation speed. The modal reduction scheme is also shown to obtain very accurate solutions
as compared to the full-order model. In addition, the versatility of the developed dynamic
model is utilized in studying the dynamic behavior of the drillstring when different values of
the location of the neutral point, and when different drillpipe/drillcollar length ratios are

considered.
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RECOMMENDATIONS FOR FUTURE WORK

Although this investigation lays down the foundation for a general FEM dynamic
model of a rotating drillstring, several extensions to this work are foreseen to arrive at a

comprehensive dynamic model. The following are some issues for future research work:

l. Modeling the drilling fluids and the associated inertia and damping effects.

2. Including the effect of the dynamic coupling between axial and flextural
deformations.

3. Modeling of the dynamics of contact impact between the drillstring and the borehole,

which is known to give rise to impulsive excitations.
4, Modeling of inclined or horizontal drillstring, which will have different forces

associated with it.
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APPENDIX (A)

[n this appendix, a test case is studied for static and dynamic analysis using the developed
computer program and the results are compared with exact solution and with results
obtained from ANSYS model. Consider a cantilever Euler-Bernoulli circular beam as in
figure (A-1). The beam is 10 m long, 0.1 m in diameter and modeled by ten finite elements.
The beam modulus of elasticity and shear modulus are 2.1 x 10"' N/m?and 7.69 x 10",

respectively. A force (p) of I N is applied at the free end.

Analytical static deflection solution

DM, =px (A-1) ALY
AN
dy
El—= = px A-2
=P (A-2)
L
Integrating equation (A-2) X
x* L
EI%: ”2 +c, (A-3) Yy U _ 5y
Figure (A-1)
Integrating equation (A-3)
3
E]y:px +cx+c, (A-4) M
6 v
—
Boundary conditions X
@x=L y=0, I p
x=L dy/dx=0 >

Figure (A-2)

131




Applying boundary conditions on equations (A-3) and (A-4), the following displacement

equation is obtained

ye Ell_(p;cs _ pl;x . Pf] (A-5)
The deflection, equation (A-5), for the data given above was calculated and compared with
the results obtained through the finite element solution and with a ready made program,
ANSYS, the results are shown in table A-1. The three method used are in good agreement,
the maximum difference does not exceed 0.1%. The bending natural frequencies, shown in
table A-2, were calculated using the developed FEM and compared to the exact solution
equation (A-6) and with results from ANSYS: the results are in very good agreement.
Likewise, the torsional and axial natural frequencies. shown in table A-3, were calculated

using the developed FEM and compared to the exact solution equations (A-7) and (A-8)

and with the results from ANSYS; the results are in very good agreement

o, =k £ (A-6)
pA
where k.l = 1.875, 4.694, 7.855, 10.996, (2n-1)v/2

o, ="% |G (A-7)
P

W, = — 2 (A-8)
P
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Table A-1

Lateral deflections of the test case

x y(m) y(m) y(m)
(m) Exact ANSYS Developed
FEM
0 0.323345E-03 | 0.32340E-03 | 0.323362E-03
1 0.275005E-03 [ 0.27505E-03 | 0.275020E-03
2 0.227635E-03 | 0.22767E-03 | 0.227647E-03
3 0.182205E-03 [ 0.18224E-03 | 0.182215E-03
4 0.139685E-03 | 0.13971E-03 | 0.139693E-03
5 0.101045E-03 [ 0.10107E-03 | 0.101051E-03
6 0.672558E-04 | 0.67273E-04 | 0.672594E-04
7 0.392864E-04 | 0.39298E-04 | 0.392885E-04
8 0.181073E-04 | 0.18115E-04 | 0.181083E-04
9 0.468851E-05 | 0.46921E-05 | 0.468876E-05
10 0 0 0
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Table A-2

Natural bending frequencies of the test case

fi (rad/sec) | f;(rad/sec) | f; (rad/sec) | f, (rad/sec)
Non-rotating | Exact 4.5458 28.491 79.782 156.34
Shaft ANSYS 4.5459 28.474 79.677 156.06
Developed FEM 4.5463 28.4897 79.7785 156.4111
Developed FEM 47127 28.6382 79.9317 156.5722
(Compression)
Developed FEM 4.8605 28.8949 80.0996 156.6978
(Tension)
Rotating Developed FEM (B) | 4.3093 28.2609 79.5727 156.2362
Shaft Compression) (F)
(30 RPM) Developed FEM (B) | 4.6231 28.6660 79.8938 156.5229
(Tension) (F)
Rotating Developed FEM (B) | 3.8065 27.7343 79.0945 155.8287
Shaft (Compression) (F) | 5.4300 29.2657 80.4685 156.9957
(100 RPM) | Developed FEM (B) | 4.1161 28.1392 79.4156 156.1155
(Tension) (F) | 5.7395 29.6709 80.7896 157.2824
Table A-3
Torsion/Axial natural frequencies of the test case
fy (rad/sec) f; (rad/sec) f; (rad/sec) fs (rad/sec)
Developed FEM | 492 1489 2522 3617
Torsional | ANSYS 492 1489 2522 3616.3
Exact 491.6 1475 2458 3442
Developed FEM | 813 2460 4167 5976
Axial ANSYS 813 2460 4167 5976
Exact 812.4 24373 4062.2 5687
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