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Chapter 1

Introduction

1.1 Motivation or Why need MPC?

The PID controller has been a workhorse in process industries for over forty vears.
PID-type controllers are routinely used in single-input single-output applications
with good results, but success with this type of controller for multivariable svstems
has been limited.

It is now recognized that the limitations of the PID-type controller can be traced to
its characteristics. The PID controller came into existence on the basis of hardware
realizability [1]. However, with the evolution of digital computers, much better de-
signs can be produced without any consideration for hardware realizability. This. in
part, has spurred research and development to evolve better control strategies for

process systems.

The second source of incentives for the development of better control systems design

1



(8]

procedures lies in the demands of times. Processes today are much more complex.
requiring high level of steady state optimization and good closed-loop control. A
major source of complexity in process plants is the existence of interacting multivari-
able systems. Good control of these systems is important since they have a strong
influence on smooth operability and overall plant economics. Rising costs of energy
and raw materials combined with the availabilitv of powerful. low-cost micropro-
cessers for control have created an additional incentive to evolve better techniques
for multivariable process control.

Furthermore it is generally accepted that the mos: effective way to generate the
most profit out of our plants while responding to marketplace variations with min-
imal capital investment is provided by the integration of all aspects of automation
of the decision making process.

Although maintaining a stable operation of the process was possibly the onlv ob-
Jective of control systems in the past, this integration imposes more demanding
requirements. In addition. the implementation of such integrated svstems is forcing
our processes to operate over an even wider range of conditions. As a result. the

control problem that any control system must solve can be stated as follows [2].

Online update the manipulated variables to satisfy multiple, changing

performance criteria in the face of changing plant characteristics.

The whole spectrum of process control methodologies in use today is faced with

the solution of this problem. The difference between these methodologies lies in



the particular assumptions and compromises made in the mathematical formulation
of performance criteria and in the selection of a process representation. These are
made primarily to simplifv the mathematical problem so that its solution fits the
existing hardware capabilities. The natural mathematical representation of many
of these criteria is in the form of dynamic objective functions to be minimized and
of dynamic inequality constraints. The usual mathematical representation for the
process is a dynamic mode] with its associated uncertainties. The importance of
uncertainties is increasingly being recognized by control theoreticians and thus are
being included explicitly in the formulation of controllers. However, one of the most
crucial compromises made in control is to ignore constraints in the formulation of
the problem.

It is a fact that in practice the operating point of a plant that satisfies the overall
economic goals of the process will lie at the intersection of constraints. Therefore. in
order to be successful, any control system must anticipate constraint violations and
correct for them in a systematic way: violations must not be allowed while keeping
the operation as close as possible to these constraints. The usual practice in process
control is to ignore the constraint issue at the design stage and then handle it in an
ad hoc way during the implementation.

Model Predictive Control (MPC) techniques provide the only methodology to han-
dle constraints in a systematic way during the design and implementation of the
controller. Moreover, in its general form MPC is not restricted in terms of the

model. objective function and constraint functionality. For these reasons, it is the



only methodology that currently can reflect most directly the many performance cri-
teria of relevance to the process industries and is capable of utilizing any available
process model [2]. This is the primary reason for the success of these techniques in

numerous applications in the chemical process industries.

1.2 Historical Background

The current interest of the processing industry in MPC can be traced back to a set
of papers which appeared in the late 1970s. In 1978 Richalet. Rault. Testud and
Papon described successful applications of “Model Predictive Heuristic Control® [3].
and in 1979 engineers from Shell (Cutler and Ramaker). outlined “Dynamic Matrix
Control” (DMC) [4]. and reported applications to a fluid catalytic cracker. Then
in 1987 Clarke et al. presents the “Generalized Predictive Control” 5], [6). In
all these algorithms an explicit dynamic model of the plant is used to predict the
effect of future actions of the manipulated variables on the output (thus the name
“Model] Predictive Control”). The future moves of the manipulated variables are
determined by optimization with the objective of minimizing the predicted error
subject to operating constraints. The optimization is repeated at each sampling
time based on updated information (measurements) from the plant.

The success of MPC technology as a process control paradigm can be attributed
to three important factors. First and foremost is the incorporation of an explicit

process model into the control calculation. This allows the controller, in principle,
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to deal directly with all significant features of the process dynamics. Secondly the
MPC algorithm considers plant behavior over a future horizon in time. This means
that the effects of feedforward and feedback disturbances can be anticipated and
removed. allowing the controller to drive the plant more closely along a desired
future trajectory. Finally the MPC controller considers process input. state and
output constraints directly in the control calculations. This means that constraint
violations are far less likely. resulting in tighter control at the optimal constrained
steadyv-state for the process. It is the inclusion of constraints that most clearly
distinguishes MPC from other process control paradigms [7]. Some good reviews on
model predictive control can be found in for example [8]. [9]. [10]. [11]. [12]. [13] and
(14].

Besides DMC and MPHC. there are several other commercially available model

predictive controllers available today, some of them are

e MAC (Model Algorithmic Controller) or MPHC (Model Predictive Heuristic

Controller)

GPC (Generalized Predictive Controller)

EPSAC (Extended Prediction Self Adaptive Controller)

PFC (Predictive Functional Controller)

EHAC (Extended Horizon Adaptive Control)

to name a few.



1.3 Linear vs Nonlinear

In this thesis. Model Predictive control is applied to nonlinear processes. Though
manufacturing processes are inherently nonlinear. the vast majority of MPC applica-
tions to date are based on linear dynamic models, the most comnion being step and
impulse response models derived from the convolution integral. There are several
potential reasons for this. Linear empirical models can be identified in a straight-
forward manner from process test data. In addition, most applications to date have
been in refinery processing. where the goal is largely to maintain the process at a
desired steady state (Regulator Problem). rather than moving rapidiv from one set
point to another (Servo Problem). A careful identified linear model is sufficiently
accurate in the neighborhood of a single operating point for such applications. es-
pecially if high quality feedback measurements are available. For these reasons. in
many cases. a linear model will provide the majority of the benefits possible with
MPC technology (7).

Nevertheless, there are cases where nonlinear effects are significant enough to justify

the use of Nonlinear MPC technology. These include atleast two broad categories

of applications:

¢ Regulator control problem where the process is highly nonlinear and subject

to large frequent disturbances.

e Servo control problems where the operating points change frequently and span

a sufficiently wide range of nonlinear process dynamics.
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It is because of this motivation. nonlinear processes are chosen for this thesis. The

next section briefly explains the basic model predictive control algorithm.

1.4 Model Predictive Control Algorithm

In a model predictive control. the process output is predicted by using a model of
the process to be controlled. Anv model that describes the relationship between the
input and the output of the process can be used. Further if the process is subject
to disturbances. a disturbance or noise model can be added to the process model.
thus allowing the effect of the disturbances on the predicted process output to be
taken into account. In order to define how well the predicted process output tracks
the reference trajectory. a criterion function is used. Tvpically the criterion is the
difference between the predicted process output and the desired reference tra jectory.

A simple criterion function [15] is

Hp
J =3 itk +i) = wk +) (1.1)

=]

where j is the predicted process output. w is the reference trajectory, and H, is
the prediction horizon or output horizon. The structure of an MPC is shown in
Figure 1.1.

Now the controller output sequence u,,, over the prediction horizon is obtained by
minimization of J with respect to u. As a result the future tracking error is min-
imized. If there is no model mismatch i.e., the model is identical to the process

and there are no disturbances and constraints, the process will track the reference



trajectory exactly on the sampling instants.
For this thesis, Genetic Algorithms (GAs) are chosen for the optimization of the

Mode! Predictive

............ Controller .
. { cost ) .
: | _Funetion | :
. | Constraints i :
. —_— :
poim ¥ —e(re : | -‘ olk-d) | s 100
—— Optimizer —'  Process -
w(k+) : D ;

Figure 1.1: Structure of MPC.

performance index in nonlinear MPC. There has been not much work done on non-
linear MPC because nonlinear processes are usually linearized about the set point.
Some recent papers and surveys on nonlinear MPC are [16], [17], [18], [19], [20], [21]
and [7]. The next section describes Genetic Algorithms in detail and the advantages

of GAs over other optimization techniques.
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Figure 1.2: Predicted output and the corresponding optimum input over a horizon
H),. where u(k) is the optimum input. g(k) is the predicted output, and y(k) is the
process output.

1.5 Genetic Algorithms and other Optimization

Techniques

The computation of control moves in MPC involve the solution of a constrained
optimization problem where analytical solution is usually not available. These com-
putations are obtained using numerical solution of the constrained optimization
problem at each sampling time, which necessitates the use of efficient optimiza-
tion techniques. Quadratic programming (QP) has been used to solve the MPC

optimization problem [22]. Dynamic Programming is also used to soive the MPC
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optimization problem. but all these approaches deals with a protoype objective func-
tion. MPC applications using Neural Networks has also been reported in [23] and
[24] which requires complex training process. In contrast, Genetic Algorithms has
the advantage of using anv type of objective function and also has the capabilitv
to deal with any type of process model and process constraints. It also avoids the
complex training process of the neural networks and fuzzy algorithms [25]. Genetic
Algorithms are proven to be be successful in many control svstem designs. see for
example [26]. [25]. [27] and [28] to name a few. The next subsection describes a

simple genetic algorithm.

Genetic Algorithms

Genetic Algorithms (GAs) inspired by Darwinian theory. is a powerful non-deterministic
iterative search heuristic. Genetic Algorithms operate on a population consists of
encoded strings, each string represents a solution. Crossover operator is used on
these strings to obtain the new solutions which inherits the good and bad properties

of their parent solutions. Each solution has a fitness value. solutions having hicher
fitness values are most likely to survive for the next generation. Mutation operator

is applied to produce new characteristics, which are not present in the parent solu-
tions. The whole procedure is repeated until no further improvement is observed or
run time exceeds to some threshold [29].

The flowchart of a simple genetic algorithm is presented in Figure 1.3 and the op-

eration of the GA is explained as follows.
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Figure 1.3: Flowchart of a simple Genetic Algorithm.

To start the optimization. G.A use randomly produced initial solutions. This method
is preferred when a priori knowledge about the problem is not available. After ran-
domly generating the initial population of say N solutions, the GA use the three
genetic operators to yield /N’ new solutions at each iteration. In the selection oper-
ation, each solution of the current population is evaluated by it’s fitness normally
represented by the value of some objective function.

Based on the fitness value, individuals are selected for crossover. Different selection
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methods such as roulette wheel selection and stochastic universal sampling can be
used.

The crossover operator works on pairs of selected solutions with certain crossover
rate. The crossover rate is defined as the probability of applying crossover to a pair
of selected solutions. There are many ways of defining this operator such as single
point crossover . double point crossover, multi-point crossover etc.

Mutation is a random alteration with small probability of the binary value of a
string position. This operator prevents GA from being trapped in a local minima.
The fitness evaluation unit in GA acts as an interface between the G4 and the opti-
mization problem. Information generated by this unit about the quality of different
solutions is used by the selection operation in the GA. Next the stopping criteria
must be decided. This may be the case when there is no significant improvement in
maximum fitness or the maximum allowable time (number of iterations) is passed.
At the end of the algorithm, we return the result as the best solution found so far.

Now we will explore the basic GA operators in detail.

1.6 Statement of the Problem

This thesis deals with Model Predictive Control of nonlinear processes using Genetic
Algorithms. Model predictive control as described before requires the optimization
of some quadratic objective function. The optimization is performed by using the

GAs. The advantage of using GAs includes: applicability to any process model,
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possibility of defining any control objective, and capability of handling any process
constraint. Moreover, as opposed to other optimization techniques. it is capable of
providing global minima.

Some penalty terms are added to the objective objective in addition to the simple
objective function given by Equation 1.1. These penalty terms includes the weighted
sum of the inputs over the prediction horizon and the weighted sum of the rate of
change of inputs over the control horizon. Constraints are taken into account which

are due to physical limitations of the actuators. The modified objective function is

given by
H, H.
J=Y elk+i)TQe(k+1i) + > Au(k+i)TRAu(k+i)
=] . =1
HP
+ > u(k+4)TSu(k + 1) (1.2)
=1
subject to

v < u(k+1) <u*
Ad < Au(k +1) < Au®
¥ <ylk+d) <y
where the superscripts ! and u represents the lower and upper bounds respectively-
Q is the weight on the prediction error
e(k) = §(k) — w(k)

where w(k) is the reference or the desired set point. R and S are weights on the

change in the input Au, and magnitude of the input u respectively.
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Different types of process models are used in this thesis. The focus is mainlv on
Hammerstein and Wiener models. Although some linear examples are taken but
they are just motivating examples. The process models used in this thesis are
both single-input single-output (SISO} and multi-input multi-outpur (MINOQ:. A
nonlinear model involving the noise term is also included.

AModel uncertainty is the major cause of producing instabilityv in Model Predictive
Controllers. It is highly unlikely that the model is exactly equivalent to the plant.
therefore real time implementation of the proposed algorithm is investigated and a

solution is proposed for it by using simultaneous online contro. and identification:.

1.7 Thesis Organization

This thesis is organized as follows. In the first chapter. motivation is provided as
to why MPC is so important. A brief description of the algorithm is presented.
Genetic algorithms are explored and advantages of genetic algorithms over other
optimization techniques are provided.

In the second chapter. MPC is explored in detail. Specifically the two pioneer N[PC
technologies. IDCOM (now MAC). and DMC are presented. Difference between
different predictive controllers are also provided.

In the third chapter. different process models used in model predictive controllers

are described. Linear and nonlinear models are described separately with main em-

phasis on nonlinear models.
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In the fourth chapter. simulation results are presented. The proposed algorithm is
applied to different process models. Both regulator and servo problems are consid-
ered. Real time implementation of the proposed algorithm is also investigated.

In the last chapter. summary of the thesis and future work is presented.



Chapter 2

Model Predictive Control

2.1 Introduction

In Chapter 1. a brief introduction of Model Predictive Control was provided. A
superficial overview of how the algorithm works was also presented. In this chapter,
MPC is explored in detail. A comprehensive discussion of the algorithm is provided,
along with the strategies used by some well known controllers like M PHC and
DAC. Some advantages and disadvantages are also dicussed.

The next section provides some basic concepts related to MPC technology.

2.2 The Predictive Controller Concept

Model Predictive Control (MPC) refers to a class of algorithms that compute a se-

quence of manipulated variable adjustments in order to optimize the future behavior

16
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of a plant. The generation of the optimal sequence is done by using a model of the
process. As said before. any model that describes the input and output relation of

a process can be used. Hence, not only transfer-function models can be used. but =
also step-response models. state-space models and nonlinear models. Further. if the
process is subject to disturbances, a disturbance or noise model can be added to
the process model. thus allowing the effect of disturbances on the predicted process
output to be taken into account [15]. A detailed description of different types of
linear and nonlinear models can be found in Chapter 3.

Now consider again Figure 1.2. Suppose that the current time is denoted by i.

Further u(k).y(k) and (k) denote the controller output, the process output and

the predicted process output at time k, respectively. Now. define

u = [u(k)u(k+1), - ulk+H,—1)]T (2.1)
g = [g(k+1).9(k+2),--- .5k + H,)]" (2.2)
w = [wk+1),wk+2),-- ,wk+ H,)T (2.3)

where w is the desired process output or set point and H,, is the prediction horizon
i.e., the time upto which the output is predicted in the future. Then, a predictive
controller calculates such a future controller output sequence u shown in Figure 1.2,
such that the predicted output of the process 7 is close to the desired process output
w. This desired process output is called the reference trajectory.

Rather than using the complete controller output sequence determined in the above

way to control the process in the next H, samples, only the first element of this
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controller output sequence u(k) is used to control the process. At the next sample.
k + 1. the whole procedure is repeated using the latest measured information. This
is called receding horizon principle. Assuming that there are no disturbances and
no modeling error. the predicted process output y(k + 1) is exactlv equal to the
process output. Now. again. a future controller output sequence is calculared such
that the predicted process output is close to the reference trajectory. In general.
this controller output sequence is different from the one obtained at the previous
sample. The reason for using the receding horizon approach is tha: ir allows us
to compensate for future disturbance or modelling errors. For exampic. due to a
disturbance or modelling error the predicted process output (A + 1) is not equal
to the process output y(k). Then, it is intuitively clear that at time A = 1. it is
better to start the predictions from the measured process output rather than from
the process output predicted at the previous sample. The predicted process output
is now corrected for disturbances and modelling errors. A feed-back mechanism is
activated. As a result of the receding horizon approach the horizon over which the
process output is predicted shifts one sample into the future at every sample instant.
In order to define how well the predicted process output tracks the reference trajec-
tory. a criterion function is used. Typically. such a criterion function is a function

of y.w and u. A simple criterion function is

Hy
J = gk +1i) — w(k + )] (2.4)
=]
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In some controllers. the criterion function is augmented with different penalty terms
usually involving the input u and the rate of change of the input Au, which are used

to penalize them, when thev exceed some desired threshold. The criterion function

is thus
H, H.
= elk+i7Qe(k+1) + Y Au(k+HTRAu(k + 1)
=1 i=]
Hp
+ D u(k+i)TSu(k+1) (2.5)

i=1
where Q. R and S are the weighting matrices. and € represents the error between

the desired output and the predicted output.
e = w(k) — g(k)

Now the controller output sequence u,y, over the prediction horizon is obtained by

minimization of J with respect to u :
Uopr = n:tm J

Then. ugy is optimal with respect to the criterion function that is minimized. As a
result. the future tracking error is minimized. If the model is identical to the process
and there are no disturbances and constraints. the process will track the reference
trajectory exactly on the sampling instants. In summary. Model Predictive Control

algorithm, consists of the following three steps [10].

1. Explicit use of a model to predict the process output along a future time

horizon (Prediction Horizon).
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2. Calculation of a control sequence along a future time horizon (Control Hori-

zon), to optimize a performance index.

3. A receding horizon strategy, so that at each instant the horizon is moved
towards the future. which involves the application of the first control signal of

the sequence calculated at each step which is illustrated in Figure 1.2.

2.3 Process Constraints

For a constrained model predictive control of a physical system, some criteria must
be satisfied along with the minimization of the quadratic objective function. These
conditions are referred to as Constraints. The process becomes nonlinear because of
the presence of these constraints, even if it is linear. The most common constraints
are on the input of the process, or equivalently on the output of the controller. These
constraints are due to the physical limitation of the actuators. Constraints can be

categorized into two types commonly used in MPC technology [7].
1. Hard Constraints

2. Soft Constraints

In hard constraints, no violation of the bounds are allowed at any time. Hard
constraints are usually imposed on the input to the process. For soft constraints,
violation of the bounds can be allowed temporarily for the satisfaction of other

criteria, the magnitude of the violation is generally subjected to a quadratic penalty



21

in the objective function. Soft constraints are usually implemented on the output of
the process. The use of hard output constraints is generally avoided in MPC because
a disturbance can easily cause such a controller to lose feasibility [7]. Various types

of hard and soft constraints are:

e Equality Constraints
e Non-Equality Constraints

End Constraints

Level Constraints

Rate Constraints

Although more or less these constraints are the same but these are the terminologies

which are most frequently used in the literature so it is of worth mentioning them.

Equality Constraints

Equality constraints refers to the equality of some input or output to a specified
value. e.g., [30]. This constraint can be implemented in regulator problems. where

the process output needs to be maintained at a fix value.

E(z(t), u(t),t) = 0

Inequality Constraints

It refers to the condition that the input or output must be greater or less than some

specified value, e.g., [30].



N
~N

h(z(t). u(t).t) > 0

End Constraints

The constraints imposed at the end of the (finite) prediction horizon are referred to

as End Constraints.

Level Constraints

This constraint is the aggregation of equality and inequality constraints. It refers to

the condition when the controller is restricted between rwo values: the upper limis

Umqr and lower limit uy,;,. i.e..

Umin (k) S w(k) < tmar(F) (2.6)

Rate Contraints

It refers to the condition when the change of the controller output per sample is
limited between two values. This is usually done to avoid large changes in input

moves to limit large changes in the output of the process.

—~
o
.
~1

~—

Atmin (k) < Au(k) < Atmaz (k)

Some papers dealing with constrained MPC are for example [22], [31] and [32].
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2.4 DMC, MAC, GPC and other Predictive Con-

trollers

Although the basic idea underlyving all predictive controllers is the same. they all
differ in their details. Some of the predictive controllers found in industry are
mentioned in Chapter 1. In this section. MAC is explored in detail, while some

basic properties are provided for other controllers like GPC and DMC.

2.4.1 Model Predictive Heuristic Control(MPHC)

Model Predictive Heuristic Control invented by J. Richalet and his companions in
1978 boosts the research in the field of predictive controller. MPHC is now well
known as MAC (Model Algorithmic Controller).

The MPHC strategy relies on three principles [3].

1. The multivariable process to be controlled is represented by its impulse re-
sponses which constitutes the internal model. This model is used online for
prediction. its inputs and ourputs are updated according to actual state of the

process. Though it could be identified online, this internal model is most of

the time computed offline.

2. The strategy is fixed by means of a reference trajectory which defines the closed

loop behavior of the plant. This trajectory is initiated in the actual output of

the process and tends to the desired set-point.
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3. Controls are not computed by a one shot operator or controller but through a
procedure which is heuristic in the general case. Future inputs are computed
in such a way that, when applied to the internal predictive model. thev induce

outputs as close as possible to the desired reference trajectory.

Control Algorithm

MAC generated an optimum control sequence [u(k +1),--- ,u(k + Hp). by mini-

mizing the cost function of the form [1].

Hp
J =3[9k +3) — wlk + 07 (2.8)

i=1
where w is the reference trajectory that specifies the desired response of the output.
y is the predicted output and + is the weighting matrix.
The different steps of the céntrol algorithm are brought up in the diagram given in
Figure 2.1 [3]. The A loop iterates to compute each predicted input vector sequence

needed to obtain a fit between the internal model output and the reference trajec-
tory for a number of sample times in the future.

Loop B iterates on the number of outputs to be controlled.

Loop C iterates on the whole predicted input control vector sequence ensuring con-
vergence. Once this is satisfied only the first input control vector of the prediction

horizon predicted sequences is applied.

Some basic theoretical properties of MAC or MPHC can be found in [33]
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Figure 2.1: Control Flowchart of the MPHC Algorithm.




2.4.2 Dynamic Matrix Control(DMC)

Dymnamic Matrix Control presented by Cutler et al. in 1979 uses a step response
model of the process to predict the future behavior of the plant as contrast to NMIPHC
which uses an impulse response model. In DMC. input moves are penalized. Thus

the cost function in Equation 2.4 for the SISO case is now written as [1]

Hp H.
J = [k +1) — wlk+ i)]*42 + ;[Au(k +i- 1P (2.9)

i=1

where
Auk+i—li=ulb+i;—ullb+=i-1)
7 and 3 are the weighting matrices used in the tuning of the controller. The reason

for adding the manipulated variables into the performance index is to prevent large

swings in the manipulated variable inputs. The bigger the weighting factor 3. the

smaller the changes in the Au’s.

Some of the characteristics [15] of DMC are presented below.
e Only stable processes without integrators can be modelled and controlled by
this controller.

e In DMC, steady state errors do not occur for constant setpoints and/or dis-

turbances. However, nonconstant reference trajectories and/or disturbances

can yield steady state errors.

e The design parameters of the DMC controller make it possible to realize mean-

level and minimum settling time controllers.



e Eliminating certain frequencies in u(k) is not possible.

e Good performance may require an excessive number of step response coeffi-

cients [34].

2.4.3 Generalized Predictive Controller

The GPC uses a Controlled Autoregressive and Integrated Moving Average CARIMA

or simply transfer function model to predict the future behavior of the plant.

(k)
A

L]]

Atg™hylki = BigHu(k = 1) = (2.10)

where A(g™!) and B(¢™') are polynomials in the delay operator ¢~!. y(k) and u(k)
are output and control variables. respectively. and =(%) is an uncorrelated random

sequence. A represents the differencing operator 1 — g~!.

It uses the same objective function as DMC given by Equation 2.9. Some of the

Characteristics of GPC are presented below [15].
e Stable as well as unstable processes can be modelled.

e Nonconstant reference trajectories and/or disturbances can yield steady state

errors.

e Eliminating certain frequencies in u(k) is also not possible.



2.4.4 Other Predictive Controllers

Different predictive controllers are found in industry. Their underlyving principles
are the same, however. some differences are present. These differences are in the
use of the model. in the objective function etc. For example, the PCA controller
uses a finite impulse response model of the process like M AC but does not consider
the control horizon. EPSAC controller considers the control horizon but usually it
is kept constant at H. = 1 [15], however, prediction horizon varies.

A good discussion on some well known commercially available predictive controllers

can be found in [15].

2.5 Advantages and Disadvantages of MPC

Some of the advantages of MPC are [15]

e The concept of predictive control is not restricted to single-input, single-output

processes. Predictive controllers can be derived for and applied to multi-input,

multi-output processes.

e Predictive controllers can be applied to linear and nonlinear processes.

e Predictive control is the only methodology that can handle process constraints

in a systematic way during the design of the controller.

e The concept of predictive control can be used to control a wide variety of

processes without the designer having to take special precautions.
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¢ In a natural way feed-forward action can be introduced for compensation of

measurable disturbances and for tracking reference trajectories.

e Because predictive controllers make use of predictions, pre-scheduled reference

trajectories (for example. used in robot control) or set points can be dealt with.

e Predictive control is an open methodology. That is. within the framework of
predictive control there are many ways to design a predictive controller. As a
result, different predictive controllers, each with different properties. have been

proposed in the literature over the last decade. Some of them are mentioned

in Chapter 1.

Some disadvantages are [15]

e Since predictive controllers belong to the class of model-based controller design
methods, a model of the process must be available. In general. in designing
a control system two phases can be distinguished: modelling and controller
design. Predictive control provides only the solution for the controller design

part. A model of the process must be obtained by other methods.

e A second drawback is due to the fact that the predictive control concept is an
open methodology. It has already been mentioned that due to this, different
predictive controllers can be derived having different properties. Although the
differences between these controllers seem rather small, these small differences

can yield very different behavior of the closed-loop systems. As a result, it can
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be quite difficult to select which predictive controller must or can be used to
solve a particular control problem. One cannot afford the expense designing a
control syvstem that one knows will not work with another process and whose

cost cannot therefore be spread over a large number of applications.

In the next chapter. process models are described in detail with emphasis on non-

linear models. Different models used by the above mentioned predictive controliers

are explained.



Chapter 3

Process Models

The model of the process is the heart of the Model Based Predictive Controller con-
cept. All MPCs explicitly use a model of the process to be controlled to determine
the future behavior or output of that plant or process. For an ideal MPC system,
the model should match the process exactly. However. this is not the case in general.
Different identification techniques have been emploved for that purpose.

There are linear as well as nou-linear models. In the general practice of linear MPC,
the majority of dynamic niodels are derived from plant testing and svstem identi-
fication. Since most of the industrial plants are non-linear, they are emphasized in

this thesis. However linear process models are also described here for completeness.

3.1 Linear Models

1. Impulse Response Model

31



2. Step Response Model

. Transfer Function Model

(Y]

4. State Variable MNodel

3.1.1 Impulse Response Model

The impulse response model can be defined mathematically as [15]
L YT
y(k) = Y hju(k—j—1) (3.1)
7=0
where ngy is the number of impulse response elements k; taken into account. All
other elements A,,.--- are assumed to be equal to zero. This model is called
the Finite Impulse Response Model. This model has been implemented in Model
Algorithmic Control (IDCOM) (3] and in Predictive Control Algorithm (PCA) [15].

The prediction of the process output at ¢ = k + i can be done in a simple manner

with this model:
ny—1

y(k+i)= Y hu(k—j+i-1) (3.2)

=0
The main advantages of using a finite impulse response models are
e The prediction of the process output does not involve complex calculations.

e No assumptions has to be made about the order of the process.

A main disadvantage is that an FIR model many parameters to be known or esti-

mate.
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3.1.2 Step Response Model

The step response model can be defined mathematically as [15]

neg-—1
y(k) = Z s;Au(k —j —1) (3.3)

=0
where A is the differencing operator (A = 1 — ¢~!) with ¢~ ! the backward shift
operator) and ns is the number of step response elements s; taken into account. All
other elements s,,,--- are assumed to be constant. This model is termed Finite

Step Response Model (FSR) and has been implemented in Dynamic Matrix Control

(DMC) [15].

The advantages and disadvantages of using a finite step response model are the same

as the finite impulse response model.

3.1.3 Transfer Function Model
The transfer function model can be defined mathematically as [15]

—dpnf,—~1
y(k) = q—%um -1 (3.4)

where d is the time delay of the process and the A and B are polynomials given by

A(q"l) =1+ alq‘1 + - Fan,q "

B(q"l) =b,+bgt+---+ bnpq "B

where n4 and ng are the degrees of the polynomials A and B. The prediction of the

process output can be determined by the following relation using a transfer function
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model.
g~?B(¢™})

A u(k+i-1) (3.7)

y(k+4) =

Transfer function model has been implemented in GPC [35].

The advantages of a transfer function model includes
e a minimal number of parameters is required to describe a linear process.

e stable and unstable processes can be described by using the transfer function

model.
The main drawbacks are
e an assumption about the order of the process must be made

e prediction of the process output described by a transfer function model is more

complex than that of a process described by an FIR or FSR model.

3.1.4 State Variable Model
Every linear lumped svstem can be described by a sct of equations of the forn: [3G°

x(t) = Ax(t)+ Bu(f) (3.8)
y(t) = Cx(t)+ Du(t) (3.9)
for a system with p inputs, ¢ outputs, and n state variable, A, B, C. and D are,

respectively n x n.n x p.g x n, and ¢ x p constant matrices. Here z are the states,

T represents the derivative of the state, u is the input and y is the output of the
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process. The I-step ahead prediction of the output of the process can be done using

state space equations in a simple manner given by

x(k+1lk) = Ax(klk) + Bu(k|k) (3.10)

vik+1]k) = Cx(klk) + Du(klk) (3.11)

where z(k -+ 1|/) means the prediction of r at time k + 1 given the information at

time k.

3.2 Non-linear Models

Since the focus in this thesis is on nonlinear processes. therefore thev are explored
in detail. This section describes some common and well known nonlinear models

which are used in predictive control. some of them are

1. Hammerstein Model

o

Wiener Model

3. NARMAX (Noulinear Auto Regressive and Moving Average with Exogeneous

Inputs)
4. Nonlinear State Variable Model

These are explored in the following section.
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3.2.1 Hammerstein Model

The Hammerstein model has a special structure that facilitates the analysis of non-
linear processes. Mlany practical examples that are modelled by a Hammerstein
model can be found. These include: the distiliation colunu: {21]. heat exchanger
[37]. pH neutralization processes [21]. furnaces and reactors. It consists of a linear

dynamic element followed by a nonlinear zero-memory block. The Hammerstein

model of a nonlinear system is shown in Figure 3.1.

i
! ; H '
i ) } !

i
d(k) ,
i _ . |
' u(k) i :ox(k) y k)
( | Static ; ? Linear - TN vtk l
! Nonlinearity | ! Dynamics 4 !

Figure 3.1: Hammerstein Nodel.

The static NL element scales the input u(/k) and transforms it to z(k), and the
dynamics are modeled by a linear discrete transfer function G(z~!), whose output
is y(k). The advantage of a Hammerstein model is thai. it effectively isolates the
nonlinearity from the linear dynamics keeping the inlierent advantages of a linear
MPC. The Hammerstein model models the N L effects as an input-dependent gain
nonlinearity. The slope of the nonlinearity at a certain operating point is the in-
stantaneous gain of the system. If the static NL system function is assumed to

be approximated by a finite polynomial expansion, the Hammerstein model can be



described by the following equations [37].

y(k) +aiy(k—1) + ---+a,y(k—n)

= bir(k—1)+box(k—2)+---+ boz(k—n) (3.12)

(k) = N(u(k)) (3.13)

where u(k) is the input to the system. y(k) is the output of the svstem. A\ is the
nonlinearity and z(¢). the output of the nonlinear block is the intermediate or state
variable. The nonlinearity can be separately parameterized as shown in F igures 3.2
2 svstem. The commonly parameterized nonlinearity is the more

aud 3.3 fora 2. 2

general case given by Equation 3.14 for a two-input two-output system.

T1(k) = Ny(ui(k), ua(k)) (3-14)

Ta(k) = Na(ui(k). ua(k)) (3.15)

Simulations examples for both types of nonlinearities are provided in Chapter 4.

Equation 3.12 can be written in the following form in which the intermediate variable

(i) has been removed.

-1 m
t) = Ze > W) (3.16)
=]

where the polvnomial A(¢™!) and B(g™!) are
Alg)=1+a1g7 '+ - +ang™

BlgY)=bg '+ -+ b,g™
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3.2.2 Wiener Model

The Wiener model of a nonlinear systems is the model which is constructed bv a
nonlinear gain cascaded after a linear subsystem or in other words. it is the transpose
of a Hammerstein Model. The choice of the nonlinear element is virtuallv unlimited.
For the linear element, a variety of options are also available including the step
response and the transfer function-based models. Many practical examples are found
based on Wiener models. Some of them are Control Valve [38]. pH Neutralization

[19] and an Industrial C-2 Splitter [18]. The structure of Wiener model of a noniinear

svstem is shown is Figure 3.4.

d(k) l f
k x(k K
1) Linear o Static TN v :
Dynamics Nonlinearity N
|
Figure 3.4: Wiener Model.
where y(k) is the output of the nonlinearity given by
y(k) = N(z(k)) (3.19)

The linear subsystem of the Wiener model is presented by the following ARMAX

model:

z(k)=bju(k— 1) + ---+ bypu(k ~ nb) (3.20)

+ az(k—1)+ - + anoz(k — na) (3.21)
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or in transfer function form as

mu(k) (3.22)

=) = T

where u(k) is the input to the process and z(k) is the state variable.

The Wiener niodel for the case of a two-input. two-output system is shown in Figure

3.6.

NL

-
' . r’ Y2

u, f '( G,,(2) }—/

Figure 3.5: Commonly Parameterized Wiener Model for a two-input. two-output

system.

3.2.3 NARMAX Model

An Nth-order NARMAX model can in general be expressed by

y(n) = Fly(n—1),--- ,y(n — N).u(n).u(n —1),--- ,u(n — N)) (3.23)
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where F'(-) is some nonlinear function. y(n) and u(n) are the current ourput and
input, and y(n — i)’s and u(n — i)’s for ; # 0 are the delayved output and inputs.

As of wiener and hammerstein models. identification of NARMAX also consists
of two mutually independent parts, the linear part and the nonlinear part. The
nonlinear characteristics of these models are often assumed to be of polyvnomial forn:.
and usually with memory. For identification of the nonlinear PArt. SOWE regression

method is usually employed.



3.2.4 Nonlinear State Variable Model

Most physical systems are nonlinear and time varving. Some of them can be de-
scribed by the nonlinear differential equation of the form
x(k+1lk) = h(x(klk).u(k|k). k) (3.24)

vk +1[k) £(x(klk). u(k|k). k) (3.25)

where h and f are nonlinear functions. The behavior of such equations can be very

complicated.

3.3 Disturbance Models

In order to predict the output of the process the disturbances must also be con-
sidered and modeled as theyv cannot be ignored in practice. In order to take these
disturbances into account when predicting the output of the process, the disturbance
must also be modelled. For this purpose the models which were defined before can
be extended to include the effect of the disturbance. Since disturbances are mostly
additive in nature an extra term must be added to the model of the process. Lets

take the case of Transfer function model. If n(k) is the disturbance then this term

can be included in the model in the following way.

—dp(,—1
y(k) = %u(k - 1) + n(k) (3.26)

Disturbances can be classified into the following categories.

1. Deterministic disturbances
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2. Stochastic Disturbances

where the deterministic disturbance is a disturbance which can be measured. while
the stochastic disturbance is a dicrete white noise sequence with zero mean and

variance 0. Some disturbance models can be found in {15].



Chapter 4

G A Based Model Predictive

Control

The proposed genetic-based control algorithm is shown in Figure 4.1. The GA-based
controller uses the process model to search for the control moves, which satisfies the
process constraints and optimizes some cost function. The process model used could

be of any type. The algorithm is described by the flowchart in Figure 4.2. and is

explained in the following section.

4.1 Problem Formulation

The proposed algorithm mainly consists of applying Genetic Algorithms to the op-
timization phase of nonlinear model predictive controller. The algorithm starts by

generating random numbers in some desired range. These random numbers form

44
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Figure 4.1: Proposed GA-based \PC.

the initial population of the GA and also the initial inputs to tie process. Initially
we don’t have any information about the process so the population must be random.
The set of inputs generated are applied to the model of the process and an objective
function is evaluated from which a fitness function is evaluated. The fitness function

used throughout this thesis is given by

) 1
fitness = T3 (4.1)

where J is the performance index or the cost function.

The GA then manipulates these inputs according to the ob jective function values
and finds the optimal inputs or control moves for the process. The population
taken consists of real valued chromosomes. The real coded GA in this case has two
advantages. First, it does not require a conversion from one base to another, thus

saving computation time and second is that, most of the real world problems deal
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Figure 4.2: Flow chart of the proposed GA-based MPC.
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with real numbers so the simulations will give us much better view than what we
have if we use binary numbers or integers. The length of the chromosome represents
the length of the prediction horizon (H)). If there are more than one inputs then
the length of the chromosome will be doubled for every input added to the system.
The performance index or objective function evaluated usuallyv is the sum of the
square of the errors between actual and predicted outputs over a finite prediction
horizon (H}) augmented with the weighted sum of the square of the change in inputs
over the control horizon and the weighted sum of the square of the input moves over
the prediction horizon. The goal is to minimize this objective function which is

given by Equation 4.2.

Hp He
J=> e(k+i)TQe(k+i) + N Au(k + )T RAu(k + i)

i=1 =1

Hp
+ > u(k+i)TSu(k + i) (4.2)

=1
subject to
u < u(k +17) < u*
Au! < Au(k + i) < Au*
¥ <ylk+1) <y
where the superscripts [ and u represents the lower and upper bounds respectively.

Q is the weight on the prediction error

e(k) = g(k) — w(k)
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where w(k) is the reference or the desired setpint. R and S are weights on the
change in the input Au and magnitude of the input u.

Next the three genetic operators (selection, crossover and mutation) are applied to
the inputs. The selection is performed on the basis of the fitness value from the
objective function. Solutions having larger fitness value or lower objective function
value have a higher chance to survive for the next generation.

The inputs now obtained are again applied to the process and new response is eval-
uated by using the model of the process. Again the objective function is evaluated
over the prediction horizon and is given to the GA-based controller which again
manipulates it and generates a new input sequence. This process is repeated upto
a pre-specified number of generations. The sequence of inputs obtained at the end
of this generational loop are thus optimal.

Now only the first input of the sequence is applied to the process discarding the rest
of them. The advantage of GA is that multiple solutions are available from which
the best solution which optimized the objective function and satisfy the process
constraints can be selected.

The optimized or optimal input is thus applied to the process and new or updated
response is obtained. This updated response is fedback to the GA-based controller

which now evaluate the next input sequence by taking the feedback output as its

initial value or starting point.
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Constraints Formulation

The constraints are placed on inputs. and rate of change of inputs. The input con-
straints are implemented by generating initial population. which is usually random.
in the desired range.

For the implementation of rate of change of input constraint. the input for current
time instant. k is compared with the input of the previous time instant. £ — 1. If the
difference Au of the two inputs is violating the constraint. i.e.. if it is higher or lower
than the desired range, it is set to the extreme value accordingly by manipulating
the input at the current time instant. k. Thus not allowing the rare of chungs of

inputs to violate the constraint.

4.2 Simulations

In this section. simulation results are presented. Results for the case of nonlinear
SISO and MIMO systems are shown with different process models. Results for the
case of linear SISO and MIMO systems are also shown for the completeness of the
algorithm. All simulations were done in MATLAB runninc on « 500 MHz Pentiun-
ITT machine with extensive use of different toolboxes.

An example involving constraints on rate of change of input is considered. Model un-
certainty is dealt next. Simulation results are presented for the case of model/plant
mismatch and a solution is proposed for this problem. The proposed solution is

called GA-Based Adaptive Predictive Conrtrol.
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Some noisy' environment measurements are discussed then. In the last section. tun-
ing parameters of the proposed algorithm are discussed which are mainly prediction
and control horizons. population size and number of generations in a time instant.

Some comparisons and simulation results are also presented.

4.2.1 GA-MPC of a Linear SISO Process

In this section the proposed algorithm is applied to a Linear system. The process
taken is described by the following transfer function.

0.0712¢~! + 0.0639¢2

1—=1.591¢q-! + 0.726¢-2 (4.3)

Gigh =

This is a simple second order linear system. The block diagram of the proposed
control scheme for the case of a linear process is shown in Figure 4.3 The model is

GA-MPC Controlier

. Cost H

-i__Function | -

l l Constraints i
set L3 H i
S R » u(k-d) J yik)
wiksi) S i CPIMERT 3

T.

Figure 4.3: Proposed GA-based MPC for a Linear Process.

assumed to be identical to the process. The parameters used in the simulation are



given in Table 4.1.

Population | Number of | Mutation Crossover | Prediction Control
size Generations | Probability Probability | Horizon H, | Horizon H,
Tracking 100 30 0.005 0.7 10 1
Servo 100 30 0.005 0.7 10 1 !

Table 4.1: Parameters used in the simulation of a Linear SISO Process.

Two cases are discussed here. The first case is for a constant reference i.e.. the
tracking performance of the algorithm. The second case is for step changes in set

point or the servo performance. Input constraints for both cases are taken as

“1<u<l (4.4)

For the first case. the set point was taken as 0.7 and for the second case. it was taken
as [0.8.0.4.0.8.0.4] with step changes at every 100 sec. The weights used in the ob-
jective function are 1, 0 and 0 for Q. R and S respectively. The proposed algorithm
was applied to the system and the response of the system is shown in Figure 4.4
and Figure 4.6 for constant reference and change of reference respectively.

The optimal inputs generated by the controller are shown for the two cases in F ig-
ures 4.5 and 4.7. The output response shows good tracking behavior. There is some
overshoot, however, which can be minimized by proper selection of the tuning pa-
rameters or limit the rate of change of input by imposing constraints on it.

For the set point change case, the behavior is quite remarkable as the controller

quickly adjusts itself for a change in desired operating point as seen in Figure 4.7.
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4.2.2 GA-MPC of Nonlinear SISO Processes

The proposed algorithm was applied to two different types of noulinear systems.
The first one is a control valve which is described as a Wiener Model in [38]. The

second is a heat exchanger which is described as a Hammerstein model in {37]. These

are presented below.

Control Valve

The control valve is used to control fluid flow. It is simply an opening with adjustable
area. Normaliy it consists of an actuator. a valve body and a valve plug. The
actuator is a device that transforms the control signal to movement of the stem and
valve plug. The model was obtained from {38]. which describes the control valve as a
wiener model. Wiener model is a special type of nonlinear model which consists of a
linear dynamic block followed by a nonlinear zero memory block. Wiener model has
been described in detail Chapter 3. The model is described by the linear dynamics

in Equation 4.5 and the nonlinearity in Equation 4.6.

. 0.0616q™" + 0.0543¢~2
(k= k 4.5
Tl = 15714g + 0.6873¢—= “(F) (4.5)

L :z:(kL ‘
+/0.10 + 0.90z2(k) (16)

i

y(k)

where u(k) is the control pressure, z(k) is the stem position, and y(k) is the flow

through the valve which is the variable of interest. The nonlinear characteristic of

the control valve is shown in Figure 4.8.
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The proposed control strategy for a wiener model is shown in Figure 4.9. It is clear

that for this scheme to be.applicable. the inverse of the nonlinearity should exist.

otherwise the system response will go unbounded.

The parameters used for the simulation are provided in Table 4.2.

Population | Number of | Mutation Crossover Prediction Control
size Generations | Probability | Probability | Horizon(H,) | Horizon(H_)
I
{ Tracking 100 30 0.005 0.7 10 1
Servo 100 100 0.005 0.7 3 3

Table 4.2: Parameters used in the simulation of a Control Valve.

The weights Q. R and S are taken as 1.0.02 and 0. The control objective is to keep

the process output as close as possible to the reference.

From the nonlinear characteristic curve. one can conclude that the input should not
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Figure 4.9: Block diagram of the proposed control strategy for Wiener Model.

exceed the saturation limit of the control valve. The saturation limit of the control
valve is -1 on the lower side and +1 on the upper side, therefore the inputs for this
svstem must be within this range. The constraints on input for both cases( tracking

and set point change) is taken as
0<u<li

The proposed genetic-based control algorithm was simulated and the results
are shown in Figure 4.10 which clearly demonstrates the successful performance of
the proposed control algorithm. The performance of the proposed algorithm for
different set points can be seen in Figure 4.12. The parameters used for this case are
also provided in Table 4.2 and the weights are 1,0 and 0 for Q,R and S respectively.

Again the performance of the proposed algorithm is excellent in tracking different
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operating points. The inputs are converging to their optimal values which can easily
be verified from the nonlinear characteristics. The optimal inputs generated for the

two cases are shown in Figures 4.11 and 4.13.

Heat Exchanger

In this section, the proposed algorithm is applied to a heat exchanger. The process
flow rate is the manipulated variable and the process exit temperature is the con-
trolled variable. It is desirable to keep the exit temperature at a constant level. The

model for the heat exchanger problem was taken from [37] which describes the heat

exchanger as a Hammerstein Aodel given by

z(k) = —31.549u + 41.732u° — 24.201u3 + 68.634u* (4.7)

0.207¢~"! — 0.1764¢~2
k) = k :
y(k) 1 1.608¢1 + 0.6385g2° %) (4.8)

where z(k) is the nonlinearity, u is the process flow rate and y(k) is the process exit

temperature. The nonlinear characteristics of the heat exchanger is shown in Figure

4.15.

The parameters for this simulation are provided in Table 4.3 and the weights Q. R

and S used in the objective function are 1,0 and O respectively. The constraints on

the inputs are imposed as

0<u<l1

The proposed genetic-based control algorithm was simulated and the results are
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Population | Number of Mutation Crossover Prediction Control
size Generations | Probability | Probability | Horizon(H, ») | Horizon(H )
Tracking 50 400 0.005 0.7 10 1

Table 4.3: Parameters used in the simulation of a Heat Exchanger.

shown in Figure 4.16 which clearly demonstrates the successful performance of the

proposed control algorithm. The optimal inputs generated by the controller is shown

in Figure 4.17.
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Figure 4.16: Application of the proposed algorithm to Heat Exchanger .
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Population | Number of Mutation Crossover Prediction Control
size Generations | Probability | Probability | Horizon(H ») | Horizon(H_)
Tracking 50 400 0.005 0.7 10 1

Table 4.3: Parameters used in the simulation of a Heat Exchanger.

shown in Figure 4.16 which clearly demonstrates the successful performance of the

proposed control algorithm. The optimal inputs generated by the controller is shown

in Figure 4.17.
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Figure 4.16: Application of the proposed algorithm to Heat Exchanger .
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Figure 4.17: Optimal Inputs Generated by the controller for the Heat Exchanger.

4.2.3 GA-MPC of Linear MIMO Models

In this section. simulation results for the case of linear multi-input multi-output

system is presented. The model taken is a 3-input 2-output linear model which is

shown below.

1—1.5¢"'+0.7¢72 0.4 (g™

—0.2¢7' +0.01¢™2 1—0.7¢"2 y2(q7t)

0.2¢7% +0.3¢™> 04-0.1g7' +0.1g2 0 ui(g™!)
(4.9)

1 2¢~4 3g7! + 4q™2 uz(g™!)

The parameters used in this simulation are given in Table 4.4.
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Population | Number of Mutation Crossover Prediction Control
size Generations | Probability | Probability | Horizon(H,,) | Horizon(H.,)
Tracking 100 300 0.005 0.7 10 2

Table 4.4: Parameters used in the simulation of a Linear MIMO System.

The weighting martrices Q. R and S in the objective function are taken as

Q = L. R = 0.000021;. S=0.071;3
where -
[- 1 0 o0
1 0
IQ = ] I3 - 0 1 0
0o 1
O 0 1
and the input constraints are
-1 S Uj S 3
-1 S U, < D
-1 < Us S 1

For this system, constraints on the rate of change of inputs are also considered which

are taken for all inputs as

-0.3 £ Auy; £0.3, 1=1,2,3

The two outputs of the process are shown in Figures 4.18 and 4.19 and the three
optimal inputs generated by the controller are shown in Figures 4.20, 4.21 and 4.22.
The outputs shows good tracking performance while the inputs are converging to

their optimal values. There are some oscillations in the beginning, however, the
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algorithm did well in suppressing the oscillations. There is also a large overshoot
which can minimized by proper selection of the rate of change of input constraint

or the tuning parameters in the objective function.

GA~MPC of a 3~-input 2-output Linear MIMO System (First Output)
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Figure 4.18: Application of the proposed algorithm to a 3-input 2-output Linear
Model (First Output).
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Figure 4.19: Application of the proposed algorithm to a 3-input 2-output Linear
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GA-MPC of a 3-input 2-output Linear MIMO System (Second Intput)
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Figure 1.21: Optimal Inputs generated by the controller for a 3-input 2-output

Linear Process (Second Input).
GA-MPC of a 3~input 2-output Linear MIMO System (Third intput)

-0.45

¥

o

Optimal Inputs to the System

e |

1 1 1 l

20 40 60 80 100 120 140 160 180 200
Time (sec)

Figure 4.22: Optimal Inputs generated by the controller for a 3-input 2-output
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4.2.4 GA-MPC of Nonlinear MIMO Processes

First Example

For the simulation of nonlinear MIMO process. a two input. two output hammerstein

model has been chosen. The model was obtained from [39] and is given by

A(g™hY (1) = B(g™H)X(2) (4.10)
with
Alg™) = T+ Aq™! (4.11)
B(g™') = (&(@))'(Bo+ Big™" (4.12)
The linear dynamic part is
0.10 0 0.199 0.612
A= By =
0 0.09 0 0.798
0.290 0.695
By =
0 0.702
and
0
€(g) =
0 q

The static nonlinearities are

i(t) = 0.1+4u(t)+0.7u(2)? (4.13)

—0.2 + 0.805u3(t) + 0.58u(t)3 (4.14)

Zo(t)
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Both tracking and servo performances are shown for this svstem. The set points for
the tracking case are chosen as 0.5 and 0.8 for the two outputs. For the servo per-

formance, the set points are chosen as [0.5,1.2] and [1.2,0.5]. The input constraints
are
-1< u3 <1

—ls U»s _<_1

The parameters used in the simulation are provided in Table 4.5. and the weighting

matrices are taken as

Q =1, R = Og 5 = Oo
where
1 0 0 0
I, = s 02 =
0 1 0 0
Population | Number of Mutation Crossover Prediction Control
size Generations | Probability | Probability Horizon(H,) | Horizon(H,)
Tracking 100 50 0.005 0.7 3 3
Servo 100 50 0.005 0.7 3 3

Table 4.5: Parameters used in the simulation of a MIMO Hammerstein Model.

Figures 4.23 and 4.24 show the tracking performance of the algorithm and F igure
4.27 and 4.28 show the servo performance. The algorithm did not find any problem

in tracking the set point. The inputs for the two cases are also shown.
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Figure 4.23: Application of the Proposed Algorithm to Nonlinear 2-input 2-output
Hammerstein Model (First Output). Tracking Case.
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Figure 4.24: Application of the Proposed Algorithm to Nonlinear 2 input 2 output
Hammerstein Model (Second Output). Tracking Case.
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Figure 4.25: Optimal Inputs generated by the controller for a Nonlinear 2-input

2-output Hammerstein Model (First Input), Tracking Case.
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Figure 4.26: Optimal Inputs generated by the controller for a Nonlinear 2-input

2-output Hammerstein Model (Second Input). Tracking Case.
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Figure 4.27: Application of the Proposed Algorithm to Nonlinear 2 input 2 output
Hammerstein Model (First Output) Servo Case.
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Hammerstein Model (Second Output) Servo Case.
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Figure 4.29: Optimal Inputs generated by the controller for a Nonlinear 2-input
2-output Hammerstein Model (First Input) Servo Case.
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Figure 4.30: Optimal Inputs generated by the controller for a Nonlinear 2-input
2-output Hammerstein Model (Second Input) Servo Case.



Second Example- Case Study of a Binary Distillation Column

This section examines the control of an ideal binary distillation column as an ex-
ample of a MIMO nonlinear system. The reflux flow and the vapor boilup are the
manipulated variables used to control the top composition and the bottom compo-
sition. The steady state properties of the distillation column are 0.98 and 0.02 for
the top composition and bottom composition and 128.01 and 178.01 for the refiux
flow and vapor boilup respectively. The model has been obtained from [21]. which
describes the distillation column as a 2-input 2-outpur hamumerstein model. The
nonlinearities in this case are commonly parameterized as conrrast to the previous

case in which the nonlinearities were seperately parameterized. The linear dynamics

is shown in Equation 4.15.

—0.0157¢~! , —0.0047 o
T 109522 T T 0027540 (4.15)
—0.0201¢7! , —0.0302
Y2 = 17090601 ' T 1= 099914122 (4.16)
while the commonly parameterized nonlinearities are given by
Iy = u;-— 0.0236'&1112 (4.17)
To = wup— 0.1823u;u, (4.18)

The parameters used in the simulation for the distillation column example are pre-

sented in Table 4.6. The weighting matrices used in the objective function are taken



Population | Number of Mutation Crossover Prediction Control
size Generations | Probability | Probability | Horizon(H,) | Horizon(H._)
Tracking 200 10 T 0.002 1 50 1

Table 4.6: Parameters used in the simulation of a Distillation Column.

as
Q=15I R =0, S5=0,
where
0 O
02 =
0 o
Constraints imposed on the inputs are
-04<u; <04
~04 < u <04

Figures 4.31 and 4.32 show the dynamics of the bottom product and the top com-
position using the Hammerstein model.

The overshoot for bottom composition is quite high but this can be minimized by
selecting proper tuning parameters in the objective function and also by limiting
the rate of change of inputs by imposing constraints on it.

The top composition tracks the set point well and there is no overshoot. Looking
at the input plots, the reflux becomes saturated for a short time when its lower

constraint becomes active. However, the controller never allows the input to violate

its constraints.
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Figure 4.32: Application of the proposed algorithm to Nonlinear 2-input 2-output

Distillation Column (Top Composition).
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Figure 4.34: Optimal Inputs generated by the controller for a Nonlinear 2-input
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Third Example- Case Study of a Power System

The svstem simulated in this section is a single-machine infinite-bus power syvstem
installed with a STATCOAMI (Static Synchronous Compensator) and has been bor-
rowed from [40]. It is a continuous time system and is discretized at a sampling rate
of 1 sec. This example is a Hammerstein model with two inputs and two outputs.

The linear system is of fifth order and is given in the state space form in Equations

4.19 and 4.20.
z = Az-Bx (4.19)
y = Cz+Dx (4.20)
where.
, T c E’
Z=[6 w E:l Efd Udc] X = Y =
T Vdc
0 377 0 0 0
—-0.0576 -0.6667 —0.1717 0 —0.0128
A= _0.0458 0 —0.3175  0.1387  0.0°05
51.4152 0 —515.1560 —100 —7TT.2500
—0.5292 0 0.1503 0 —0.0058
- -
[ 0 0
-0.2 0.1
100 00 00
B= 0.3 0.1 C= D=
0 00 01 00
-1271.3 -29.1
-0.1 -0.7




0 — Rotor angle
« —— Angular frequency
E, —— Voltage behind transient reactance
E;; —— Internal Excitation Voltage
tqc — DC Voltage
¢ = mk.where k is the ratio between AC and DC voltage and
m is the modulation ratio defined by the PWN\I

v» —— phase defined by the PWM

The nonlinear part is a saturation nonlinearity given by Equation 4.21.

u(k)

k)= ———e—t
v/0.10 + 0.90u2(k)

The goal in this simulation is to minimize the oscillations of the power plant when

(4.21)

a step disturbance occur at one of the inputs at a certain time. The outputs of the
svstem under consideration are the rotor angle and DC Voltage. First the system is

simulated without any rate constraints. The constraints on the inputs are

-1<c¢<1

-1<v¥<1
The weighting matrices Q. R, and S in the objective function are taken as

Q =1, R = 0.0011,, S = 0.001/,



where

1 0
I, =

0 1

Other parameters used in the simulation are provided in Table 4.7.

Population | Number of Mutation Crossover Prediction Control
size Generations | Probability Probability- | Horizon(H, ») | Horizon(H,)
100 100 0.008 0.8 100 1

Table 4.7: Parameters used in the simulation of a Power svstem.

It is assumed that the system is initiallv at steady state and a step disturbance has
occured at & = 30 on c for 2 sampling times as shown in Figure 4.37. The optimal
inputs generated by the controller are shown in Figures 4.37 and 4.38, for which
the outputs of the svstem obtained are shown in Figures 4.35 and 4.36. Clearly,
both outputs settle down after some oscillations. The magnitude of the oscillations
is quite large which can be minimized by incorporating the rate constraints at the

inputs. For this purpose the rate constraints are taken on the inputs as

—0.05 < Ac<£0.05

-0.05 < Ay <£0.05

The system is simulated again with the same parameters as before and the outputs
are shown in Figures 4.39 and 4.40. Again the outputs settle down after some
oscillations but this time the magnitude of the oscillations subsides considerably.
The inputs generated by the controller are also shown to be in the constrained

limits in Figures 4.41 and 4.42.
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Figure 4.35: GA-MPC of a Power Plant with no Rate Constraints (Rotor Angle).
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Figure 4.36: GA-MPC of a Power Plant with no Rate Constraints (DC Voltage).
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Figure 4.37: GA-MPC of a Power Plant with no Rate Constraints (c).
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Figure 4.38: GA-MPC of a Power Plant with no Rate Constraints (Phase).
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Figure 4.39: GA-MPC of a Power Plant with Rate Constraints (Rotor Angle).
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Figure 4.40: GA-MPC of a Power Plant with Rate Constraints (DC Voltage).
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Figure 4.41: GA-MPC of a Power Plant with Rate Constraints (c).
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Figure 4.42: GA-MPC of a MIMO Power Plant with Rate Constraints (Phase).



4.2.5 GA-MPC Performance in Noisy Environment

In this section, the performance of the proposed algorithm in noisy environment is

considered.

n

The block diagram for this case for a hammerstein model is shown in Figure 4.43.

The example from Section 4.2.4 is taken . but now a noise term is augmented to it.

GA-MPC Controlier

—_— :
:; FUEI:::O!! D('k)
,Cemtmnu ! : k
set l— '+
point :f\ °““'?. GA-MPC u(k-d) - R S
' : * | Optimizer —»  Process — —
w(k+i) : ! | | - -

Nonlinear DLmea:f ; “y(k+i)
, : ynamic o
5 Block —*  Block

................
...........................................

Figure 4.43: Proposed GA-based MBPC of a Hammerstein model with Noise.

The process model is given by

A(g)Y (k) = B(g~")X (k) + C(g~")D(k) (4.22)



with
A(@™h) = I+ Ay (4.23)
B(g™') = (£(9)) N (Bo+ Big™Y) (4.24)
Tl = I+Ci(g™H and (4.25)
D) = I+Dyg! (4.26)

The linear dynamic parz is

- o

,- G.10 0O 0.199 0.612
-"&E = | .Bl =
L 0 0.09 J 0 0.798
] i
0.290 0.695 —1.86 1.099
Bo = . Cl =
0 0.702 ] -192 -1.533
and
q 0
£(q) =
0 q
The static nonlinearities are
1.'1(7‘) = ().lf'ul(l‘.)-é—O.Tul(t)"" (4.27)
z2(t) = —0.2+ 0.805uy(t) + 0.58us(t)? (4.28)

D(k) = Ae(k), with X the gain matrix or the variance of the noise and e(k) the white

noise.
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Population | Number of | Mutation Crossover Prediction Control
size Generations lirobabilit}’ Probability | Horizon(H, ») | Horizon(H,)
Tracking 100 100 0.005 0.7 3 1

Table 4.8: Parameters used in the simulation of a Hammerstein Model with Noise.
The parameters used in this case are provided in Table 4.8 The input constraints

are

—].S u) Sl

-1< u <1

The aigorithm is simulated and the outputs are shown in F igures 4.44 and 4.45. The
controller output or the process inputs are shown in Figures 4.46 and 4.47.
The controller still able to track the set point despite the presence of the noise.

However. there are oscillations present about the set point. The inputs are also

converging to their optimal values.
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Figure 4.44: Application of the proposed algorithm to a Nonlinear 2-input 2-output
Hammerstein Model considering the noise (First Output).
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Figure 4.45: Application of the proposed algorithm to a Nonlinear 2-input 2-output
Hammerstein Model considering the noise (Second Output).
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GA-MPC of a MIMO Hammerstein Model Including Noise
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Figure 4.46: Optimal Inputs generated by the controller for a 2-input 2-output
Hammerstein Model including noise (First Input).
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Figure 4.47: Optimal Inputs generated by the controller for a 2-input 2-output
Hammerstein Model including noise (Second Input).
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4.3 Adaptive GA-Based Predictive Control

It is highly unrealistic to think that the model which is to be used in a model
predictive controller is equivalent to the actual process. This process model is usually
made available at the controller design stage. after conducting open loop tests on the
process. Performance of MPC could become unacceptable due to a very inaccurate
model. thus requiring a more accurate model. Such a model frequently has to be
developed while the process is kept under MPC. Therefore the need to study the
model/plant mismatch is a must. This task has an element of duality in it: learning
and regulation. For learning. it ensures that inputs to the process are exciting enough
to vield information about the process dyvnamics. With regard to regulation. the
process input tries to keep the process outpur at a desired set point. The difficulty of
closed loop identification or learning is that the input of the process to be identified
is not directly selected by the designer but ultimately by the controller. Therefore
special control signals are needed which are used for both identification and control.
There are different methods employved to encounter this problem, see for example
[41]. [42]. aud [43]. In general. there is something calied Persistant Ezcitation which
is a condition the inputs must meet for identification. Parameter identification is
feasible if the input to the process are persistantly exciting so as to excite all the
modes of the system. For this purpose external dithering signals are added to dither
the input before applying it to the process. This is realizable in practice. because

there is always present some noise on the input and output of the process.
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In the next subsection, simulation results are provided for model/plant mismatch

condition and the control strategy for the proposed solution is described along with

simulation results.

4.3.1 Simulations

First. the performance of the proposed GA-MPC algorithm is shown for a model /plant
mismatch condition. Next, the proposed Adaptive GA-MPC Controller is presented
along with parameter convergence and input/output plots. The linear mode! from

Section 4.2.1 is simulated again but now the model uncertainty is taken into account.

GA-MPC with Model/Plant Mismatch

Lert the real behavior of a linear process be described by the transfer function

. 0.0712¢7! + 0.0639g~2
hy= 2
Glg™) 1+ 1.591¢—! — 0.726g~2 (4.29)

The process input u must satisfy the constraints 0 < u < 5 at all times %. Assume

that the linear model

0.077¢~! + 0.066g~2
1+ 1.55¢—! —~ 0.77¢~2

G(g™') = (4-30)

is available for the above process from previous data. The GA-MPC algorithm is
applied to the system and the results are shown in Figure 4.48. It is clear that
the controller is not able to track the set point. There is always some offset present

between process output and the set point which is vanished when the model matches

the process exactly.
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Figure 4.48: GA-MPC of Linear Process with Model/Plant Mismatch.
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Figure 4.49: GA-MPC of a Linear Process with Model/Plant Mismatch.



Adaptive GA-MPC of a Linear Process

This section introduces the adaptive GA-MPC of a linear process. The control

strategy is shown in Figure 4.50. In addition to the proposed GA-Based Model

Adaptive GA-MPC Controlier

N
set e(ksij —Y L k) ,
point +f\ : , GA-Based ;/l\q. : 'F Process f y(k)
‘ o e : —
wikei) '; II Optimizer +u : Il §
: Process | | Parameter | :
— " Model d-J -—  Adjustment n—' :
y(k+3) ’ Mechanism :

Parameters Updation

Figure 4.50: Proposed Control Strategy for Adaptive GA-MPC.

Predictive controller, there are two additional blocks. The first one is the identifier
which updates the parameters of the process model. The other block is producing
the dithering signal which is required to develop persistant ezcitation in the input
signal to the process.

Consider again the real behavior of the linear process described by Equation 4.29,
while its available model from previous data is given by Equation 4.30. The pro-
cess input was dithered through addition of a normally distributed signal with zero

mean and variance of 0.01. The parameters used in the simulation are provided in

Table 4.9. Constraints imposed on the inputs are
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Population | Number of | Mutation Crossover Prediction Control
size Generations | Probability | Probability | Horizon(H,) | Horizon (H)
Tracking 100 30 0.005 0.7 5 5

Table 4.9: Parameters used in the simulation of an Adaptive GA-MPC of a Linear
System.

—-1<u<l1

The algorithm was simulated and the results are shown in Figures 4.51. 4.52 and
4.53. Figure 4.53 shows the parameters of the model converging towards their real
values. Figure 4.51 is the output of the process which is oscillating around the
desired set point. The osciliations are due to the dithering of input signal shown
in Figure 4.52. The parameters are updated using the Least Mean Squares (L)IS)
algorithm with a learning rate of 1.2. The update equation of LMS algorithm is

given by

Wiy = W, + uEX (4.31)

where W, is the current estimate of the parameters, W, is the updated parameter
estimate, 4 is the learning rate, E is the error between the output of the process and

the output of the estimated model, and X contains the regressions. For an ARMA

model,
y(t) =D _aw(t—i)+ > bu(t - j) (4.32)
i=1 i=1
or in terms of g~ operator
B(g™Y) _
y(t) = Lq “u(t) (4.33)

T A(gTY)




Wo.. £ and X are given respectively as

Mo =laj.as, - .an. by bo -+ by (4.34)
E=y-3 (.35)
X=[gk—-1).9(k=2).--- .glk—n)ulk—1).u(k=2).--- .ullk—m) (1.36)

where a,.bm are the parameters to be identified. ¥ is the output of the process. j

is the predicted output of the estimated process model and u is the input to the

process.

GA-MPC Adaptive Control of Linear Process
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Figure 4.51: Adaptive GA-based MPC of Linear Process with Model/Plant Mis-
match (Process Output).
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4.4 Discussion

4.4.1 Effect of Prediction and Control Horizons

The prediction and control horizons play a major role in the tuning of a predictive
controller. It is typically tuned by means of these two parameters. To recall. pre-
diction horizon H, represents the time in the future upto which predictions for the
output are made. and control horizon H. is the time in the future after which the
input is held constant. In general H. < H,. Increasing the prediction horizon H,
has « generaliy stabilizing effect on the closed loop system. However, increasing H,
increases the computation load in solving the equations which must be satisfied in a
least-squares sense by the controller optimization. Increasing the control horizon H,
gives more degrees of freedom to the control optimization and it may result in better
control syvstem performance. However this causes larger changes in the control vari-
able and a reduction of the closed-loop robustness [20]. The effect of changing the
control horizon on the robustness of the controller can be seen in Figures 4.54 and
4.55. The input to the controller becomes more and more sluggish as the control
horizon is increased. however, the controller is still able to track the set point.

Therefore the choice of a short control horizon (H, = few units) and a large difference
between H, and H, generally improves the stability properties of the closed-loop sys-
tem [15]. Therefore, for robustness reasons it is better to use a large value for H,. In
[44]. it was argued that the prediction horizon should be chosen upto the time where

the output equals atleast 90 to 95% of the steady state value. A comparison table is
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Effect of Hc on the Performance of the Proposed Algorithm, H'D =10
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provided below to compare different values of prediction horizon with the standard

deviation of the output error. For this purpose. white gaussian noise with zero mean

The mean square error and variance of the outpurt error is calculated for each value

of prediction horizon and is shown in Table 4.10. Initially botk the mean square

No. | Prediction | Mean Square ! Variance
Horizon Error ;
1 2 0.0538 | 0.0349
2 3 0.0389 | 0.0374
3 5 | 0.0248 : 0.0302
3 T 0.02% 0.0280
3 10 } 0.0290 ¢ 0.0292
6 | 15 i 0.0281 | 0.0273
7 20 I 0.0291 i 0.0227

Table 4.10: Effect of the Prediction Horizon on the Qutpu: of the Process.

error and variance of the output error decreases. however. as H, is increased bevond
a certain value, the mean square error and variance becomes almost constant.

In this thesis, however, the prediction horizon and control horizon are chosen for
which best results were obtained. During the course of simulations it was found that
with H. = 1, best results can be obtained. so iu most of the simulations the control
horizon is taken as 1. The value of the prediction horizon varies. From extensive
simulation work it has been observed that the minimum value of the prediction
horizon must be equal to the maximum delay in the system.

Thus.

H, = maximum delay in the process

Pman
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A simulation example is now presented for which the prediction horizon is taken
less than the maximum delay in the system. The control valve from Section 4.2.2
is taken. From the linear dynamics of the control valve in Equation 4.5, it can be
readily seen that the maximum delay of the syvstem is 2. Thus a prediction horizon
of 1 has beew selected and the system is simulated keeping the other parameters at

the same vaiue. The input constraints are also changed to
0<u<4

The results are showw in Figures 4.56 and 4.57 for the output and input respectively.

It is clear that the controller could not be able to track the set point.

4.4.2 Effect of GA Parameters

For the simple GA which is used throughout in this thesis, there are basically four
GA parameters which can be tuned to obtain the desired performance. These are
population size. number of generations, mutation probability and crossover probabil-
ity. Generaliv these parameters are tuned by hit and trial method by performing
extensive simulations. In this section, the effect of these parameters to the proposed
algorithm. specifically the population size and the number of generations will be
presented. Results are compared on the basis of marimum and average fitness of
the population. The results presented in Tables 4.11 and 4.12 were obtained by

simulating the heat exchanger from Section 4.2.2 for different values of population

size and number of generations.
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Figure 4.56: Effect of Prediction Horizon on the Performance of the GA-NPC Con-
troller (Output Response).
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No. || Population Size || No. of Generations f| Maxmimum Fitness || Average Fitness
1 25 I 100 0.0904 | 0.0903

2 50 100 0.0927 0.0903

3 75 100 0.1691 0.1603

4 100 100 0.5379 0.5135

5 125 100 0.7183 0.6769
6 150 100 0.8533 i 0.8278 ’
T 175 100 U.8G17 ! 0.8177 .
8 200 100 0.9330 0.7440 !
9 225 100 09172 0.8778

10 250 100 0.9580 i 0.9250 i

Table 4.11: Effect of Population size on

the performance of the Controller.

No. || Population Size || No. of Generations

AMaxmimum Fitness

i Average Firness

1 75 25 0.013 0.006¢
2 75 50 0.0635 0.0398 ,
3 75 75 0.0831 0.0776 ,j
4 75 100 0.2182 0.2048 :
5 75 125 0.4893 | 0.4764 ;
6 75 150 0.5652 0.4710 :
7 75 175 0.6987 0.6661
8 75 200 0.8648 0.8327 g
9 75 225 0.9200 0.8830

10 75 250 0.9200 0.8900

‘Table 4.12: Effect of Number of Generations on the performance of the Controller.

The tables shows the maximum and average fitness for different values of population

size and number of generations. Both tables shows improvement in the fitness value

as the population size or number of generations increases. An increase in anv of the

values increase the performance and the computation time. Therefore compromise

between these values must be made for optimum performance.
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4.4.3 Computational Complexity

There are myTiad factors on which the time complexity of the proposed algorithm
depends. The major is the control loop itself. Since in predictive control one has
to predict future outputs of the process over a finite horizon so it is clear that the
longer the prediction horizon the more is the time consumptior:. The computation
time also depends on the GA parameters which includes popuiation size. number
of genes and number of generations. The population size represents the number of
solutions available so the larger the popuiation size the more will be the accuracy
and the more is the compuration time. The number of genes in this case is equivalent
to the prediction horizon i.e.. the prediction horizon is represented by the number of
genes in a chromosome or a solution. The number of generations or the generational
loop also affects the computation time. Usually some stopping criteria is imposed
on this loop, for example one can let this loop stop on the condition of achieving a
pre-specified value of number of generation or it can also be discontinued when the

inputs are converged or in other words. there is no further change in the solution.



Chapter 5

Summary, Conclusion and Future
Work

In chis thesis. Genetic Algorithms (GAs) are applied to the Model Based Predictive
Controllers as an optimization tool. Nonlinear processes are mainly discussed with
emphasis on chemical plants. The algorithm was applied to SISO as well as MIMO
svstems. A brief summary of the work done, followed by conclusions and some future

extensions of this work is provided in the next section.

5.1 Summary

The main points in the thesis are

e The proposed method formulates MPC as an optimization problem and Ge-

netic Algorithms are used in the optimization process. The proposed algorithm

104
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is called GA-MPC.

Genetic Algorithms (GAs) are applied to nonlinear chemical processes. Differ-
ent process models are used throughout the thesis. Nonlinear as well as linear
processes are used. Some case studies are also dealt. An example involving a

disturbauce model is also considered.

The thesis deals only with the model predictive control of processes with no

eve towards the identification of the model being considered.

Process constraints are taken into account during the optimization. Input con-

straints and rate of change of input constraints are considered and simulated

on different processes.

Model uncertainty is also considered and a solution is proposed for it. The
resulting solution uses the Least Mean Square (LMS) algorithm to identify
the model parameters. However the structure of the model is assumed to

be known. The proposed solution is called Adaptive GA-Based Predictive

Control.

Single-Input Single-Output as well as Multi-Input Multi-Output processes are

simulated. Case studies for both cases are considered.

The effect of different tuning parameters is also considered. These include the
basic MPC parameters i.e.. prediction and control horizons and the weighting

matrices in the objective function. Effect of GA parameters is also considered
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and a comparison table is provided involving different values of population size

and number of generations.

Conclusion

Most of the work done on nonlinear model predictive controllers uses a lin-
earized model to represent a nonlinear process around a certain operating
point. This possesses drawback in cases. where rapid fluctuations in set point
are present. The proposed algorithm deals with this probien: nv consider-
ing the nonlinear model, which can drive the output to any sei point. The
only limitation is from the input side where it is constrained due to phvsical

limitations of actuators.

The predictive control problem is well formulated and Genetic Algorithms
(GAs) are effectively implemented to minimize the cost function subject to
constraints. Real coded GAs are used throughout to get the real life flavor.

The outputs seem to converge well to the desired set point.

Real time implementation (model uncertainty) of the proposed algorithm is
also considered. for which quite impressive results are obtained. However. it

is assumed that the model structure is exactly known.

Input and rate constraints are shown to be effectively imposed in the controller

design. Output constraints are not considered.
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e Only stable systems are considered. The algorithm was not applied to unstable

systems. as the basic MPC algorithm itself is not well suited for unstable

svstems.

5.3 Future Work

Scientific research is an ongoing process and there is alwayvs some room for improve-

ment. The following is a brief list of suggestions for possible future work in this

area.

e In this thesis. Genetic Algorithms are used as an optimization tool to control
nonlinear processes using model predictive control. Other evolutionary algo-

rithms like Simulated Annealing. Tabu Search. Simulated Evolution etc. can

also be used for this purpose.

e The basic GA operators, mutation. crossover etc. are used in their simplest
form. Modified form of these operators can also be used to ensure global
convergence. For exaniple. one can use a4 mutatiol: operaior whicl: is dependent
on the number of generations. As the number of generations increase or in
other words, the steady state value is attained. the effect of the mutation
becomes negligible. This property causes this type of operator to make a
uniform search in the initial space, and very locally at a later stage, favoring
local tuning. An excellent review of different forms of crossover and mutation

operators for real coded Genetic Algorithms can be found in for example [45].
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e Only chemical processes identified by Hammerstein and Wiener Models are
mainly cousidered in this thesis. However. the algorithm is general to any
type of nonlinear constrained and unconstrained process. It can easily be

modified to accomodate any tvpe of nonlinear process.
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