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Chapter 1

Introduction

1.1 Principles of neural networks

Artificial Neural Networks (ANNSs) are inspired by biological nervous systems. A
neural network is composed of simple processing clements called neurons operating
in parallel. The processing clements are interconnected via unidirectional signal
channels [19]. Each connection has a value, defined as a connection weight. The
weights between the neurons represent the network architecture and determine to
a large extent the network function. Although neural networks have been known
for decades, successful applications have been shown only recently. NNs have been

employed, for instance, in pattern recognition, classification, vision and control sys-



tems [18].

There are two phases in neural information processing: a recall (or retrieving)
phase gnd a learning (or training) phase. In the recall phase, the final neuron outputs
representing the output of the network are computed based on the dynamic equations
of the model [36]. During the learning phase, the weights are updated using learning
rules and information extracted from training patterns, and desired outputs if given.
Learning can be supervised or unsupervised. In supervised networks, such as back
propagation (BP) networks, actual network outputs are compared to desired output
values and an error signal is produced. Then, weights are updated according to
the learning rules in order to minimize the error signal. An unsupervised network
adapts itself according to statistical associations between input patterns [13]. In

this case, outputs are not known in advance.

The neuron model is described by its inputs, weights and a nonlinear transfer
function. Each individual input is multiplied by its corresponding weight, then all

weighted inputs are added and fed to the transfer function (Figure 1.1).

Several neurons may constitute a layer and a network may contain more than
one layer (Figure 1.2). Feed forward networks, for example, consist of ordered layers
with no feedback paths. The lowest layer is the input layer and the highest layer is

the output layer. Each layer sends outputs to higher layers only, and receives inputs



from lower layers only [13].

X1
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Figure 1.1: Neuron model.
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Figure 1.2: Back propagation ncural network model.



1.2  Multi-layer back propagation networks

Back propagation (BP) algorithm is a supervised learning method in which the
output error signal is fed back through the network [36). The weights are altered
so that the error is minimized. This algorithm is the most common neural network
leamir_xg algorithm. It will be used in this thesis to illustrate the principles and

operations needed for the majority of neural networks.

A typical BP network consists of three layers: input layer, hidden layer, and
output layer. The input layer receives the data pattern and passes it to the hidden
one. The procedure is then continued through higher layers until the result is pre-
sented in the output layer. In other BP network architectures, there can be many
hidden layers. The output of each layer goes to the next layer only, and conse-
quently each layer receives its inputs from the previous layer only. The recall phase

is characterized by the following equations [36):

Ny
Net;(l) = Z U.','J'(I) . OJ(I - 1) + @,(l) (11)

J=1

Oi(l) = F(Neti(l)) 1<i< N, (1.2)



The following notation is used to describe the algorithm in Figure 1.2:

: number of layers.

: number of neurons in layer [.

: weight from neuron j to neuron i in layer .
: linear summation of neuron 7 in layer I.

: nonlinear transfer function.

: nonlinear output of neuron ¢ in layer ! — 1.

: actual output of neuron ¢ in the output layer L, that is equivalent to O; :(L).
: desired output at neuron 7 in the output layer.

: number of neurons at the output layer.

: number of data patterns.

: error signal of neuron ¢ in layer ! with pattern m.
: bias or threshold value of neuron 7 in layer I.

The weights are updated in order to minimize the least-square-error between

actual and desired values {36]:

1 .
E= § zl Z (Tm )/im)z (1.3)

The error signal for output units is given by Equation 1.5 and for hidden units

by Equation 1.6. The weights are updated according to the basic gradient type

learning formulas as in Equation 1.7 [36]. The procedure iterates until desired error

is achieved.

§™(L) = (T™(L) = Y"(L)) - T"(Neti(L)) output unit (1.4)



Ny

5P(1) =T (Netj(1). 3 [5"(1+1) - wi(l +1)] hidden wnit  (L5)
i=1

Awp(l) = n.67(1) - O*(l — 1) (1.6)
wi(l) = wi(l) + Awl(l) (1.7)

The procedure described above shows that neural computations involve highly
iterative computations. For a three-layer network (n x n x n), the computation

complexity is shown in Table 1.1. The lcarning and the recall phases have the same

computation complexity.

Table 1.1: Computation complexity of three-layer back propagation neural network.

Operation Recall Phase | Learning Phase
Multiply 0(2n?) O(3n* + 4n)
Add. O(2n?) O(3n? + n)
Nonlinear function O(2n) O(2n)




1.3 Hopfield networks

The Hopfield network is a feedback fixed-weight associative memory network [21,
22). It is the most popular auto-associative network. In such a network, an input
space is mapped mathematically to an output space. When the dimensions of the
input ‘a.nd the output spaces are equal, the association is called auto-association. In

a feedback network, a pattern is not recalled in one shot but after many iterations

via the same network.

All processing elements in a Hopfield network are fully interconnected such that
each receives inputs from all others (Figure 1.3). The processing elements outputs
(Oirs) represent the state of the network. The network is usually characterized by

an energy function of the form:

E=—-;—ZZIUU-OJ"O,‘+ZO;'@; (18)

j=li=1 i=1

n  : number of neurons.

w;; : weight from neuron j to ncuron i.
Net; : linear sum of neuron i.

O; : nonlinear output of neuron i.

©; : threshold value of neuron i.

k : iteration number.



The synaptic weights (w;je,) are determined in advance by a set of input vectors.
Initially, the system’s state (01,0,,03,---,0,) is set to an n binary-valued (0/1)
input pattern. Whenever the processing elements change state, the energy function

decreases. The system’s state iterates until a local minimum of the ener function
gy

is reached.

There are two Hopfield models: a sequential (asynchronous) Hopfield model and

a parallel (synchronous) Hopfield model [27]. The computation complexity of the

Hopfield model is listed in Table 1.2.



Figure 1.3: n-neuron Hopfield neural network model.

Table 1.2: Computation complexity of n-neuron Hopfield neural network.

Operation Complexity
Multiply O(n?)
Add O(n?)
Nonlinear function O(n)
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1.3.1 Sequential (asynchronous) Hopfield model

Here one neuron only updates its output at a time. During the kth iteration, the
network performs state updates in a sequential manner for i = 1,2,---,n. Then

states are thus sequentially updated using Equations 1.9 and 1.10. The process is

repeated until convergence.

Neti(k+1) = Z w,-j.Oj(lc) + O; (1.9)
j=1

¢

1 Neti(k+1)>0

Oi(k+1)=1¢ ¢ Neti(k+1) <0 (1.10)

{ 0,(1\,) Neti(k+ 1) =0

1.3.2 Parallel (synchronous) Hopfield model

In this case during the kth iteration, the net values fori = 1,2,-- -, n are computed in
parallel as in Equation 1.9. The n states are also updated in parallel (simultaneously)

as in Equation 1.10.



Chapter 2

Neural Network Hardware

Requirements

Most future neuro-applications will demand powerful machines. This chapter dis-

cusses neuro-computer design considerations. Some of the existing neuro-computers

are also presented.

2.1 Analog versus digital implementation

The implementation of a neuro-computer can be categorized in three groups: analog,
digital, and hybrid. In the analog case, the ncuron’s output can be expressed as a

12
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voltage from 0 to 5 Volts. Intel, for example, has designed an Electrically Trainable

Artificial Neural Network (ETANN) using the “floating gate” non-volatite memory

technology for analog storage of weights [20]. Advantages and drawbacks of both

analog and digital implementations are summarized in Tables 2.1 and 2.2 respec-

tively [35, 6]. The decision of the circuitry type is application dependent as shown

in Figure 2.1 [35].

Table 2.1: Advantages and disadvantages of the analog implementation.

Advantages

Disadvantages

Neuron is an amplifier

Synapses are resistors, etc..

High speed

Area efficient. Many can fit in one chip
Real time continuous application

Susceptible to noise, crosstalk and temp.
Programming the weights R is not easy
Interfacing to the system environment
Low precision limited to 8 bits

Table 2.2: Advantages and disadvantages of the digital implementation.

Advantages

Disadvantages

Flexibility in precision
Supported by alot of CAD tools

Programming and learning are flexible

Convenient to block design for system design

Relatively low speed
Bulk VLSI layout area
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digital data_ .a.nalog data

.ﬁ.ow precision
& No learning
High precision Low interfacing speed

y

Figure 2.1: Analog versus digital implementation decision [35].

2.2 Neuro-computer design considerations

Recently, neural networks (NNs) have been applied successfully into several ap-
plications, especially in the areas of pattern recognition, vision, and control sys-
tems. When these applications run in rcal time, they demand high performance
systems. Special purpose neural network hardware is warranted to meet this de-
mand. But prior to hardware implementation of neural networks, many factors
need to be considered. Such factors include speed, precision, scalability, generality,

and programmability [6, 7, 19, 32].



15

Speed

Each connection in the recall phase requires a Multiply operation and an Add oper-
ation. Connections Per Second (CPS) or how many connections are evaluated per
second is often used as a speed measure in neural network simulation. This refers
often to the amount of maximum parallelism that can be exploited. It depends on
other factors, e.g., precision of operands. Connection Update Per Second (CUPS)
is another figure which is used to indicate how fast the connections can be updated
during learning. Typically the CUPS number is 20-50% of the CPS number [32].
Real time applications, such as vision, demand very high processing rates. Table 2.3
shows five typical applications and their memory and speed requirements [5]). How-
ever, biological neurons fire pulses at a rate from few to 200 Hertz meaning that the

weights are updated and the outputs of neurons are calculated once every 5 ms 8].

That is about 200 CUPS.

Precision

Several studies have been done to compare fixed-point and floating point models
of computations [38]. Fixed-point error rates are equivalent to what is achieved
through floating-point representations. In particular, precision of weight, input,

neuron output, error term, intermediate values and weighted sum are given.



o Memory |Word in/Out Cps MFlops
Applications Size bits Band- Measure Meas.
width (Recall) (Recall)

Radar Pulse 1/neu. 25 :

Identification <32kw 32/sy.} MBaud 625 MCps | 1.2 GFlops
RobotArm 1 ,5uw | 32 J<e0owsis| <350 < 0.7MFlops
Movement

kCps

isolated Words
Recognition 300 kw 32 2.5kWis | 24 MCps | 48 MFlops

(1024 words)

Low Level 1/neu. 16
Vision 100 6.4 MW | 8/sy. ) 156 MCps | 312 Mops
MBaud

connec./neu.

Risk a1Mw | 2 | <7kWis | 4MCps | 8MFlops
Evaluation '

16

Table 2.3: Hardware requirements related to implementation of the five typical

applications [5].
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It has been found that for neural activations 8-bit representations are ade-
quate [8]. Based on biological arguments, 8 bits are needed to differentiate between
pulses at a rate of 200 Hz. For artificial neural networks, the same precision suffices
a wide range of applications [38]. The quantization error in the [-1,+1] range is 2-7.

The dynamic range using 2’s complement is given in Inequality 2.1.

—1<2, €1 (I,=1,I;=7) (2.1)

where, I, : integer bits, and I : fraction bits.

Regarding weights, a 16-bit resolution is sufficient for most applications. For
example, 16-bit weight values are used in SPERT and MA1G6 [34, 39]. Its dynamic

range is shown in Inequality 2.2.

— 9lw—s <w;j < olw _ 9y (Iw = l’If = 15) (2.2)

Some techniques such as dithering and software manipulations can be used to
improve the network performance using 8-bit weight precision. The same precision
can be used for the weight increment and the crror rate during learning. The quan-
tization error is 27'°. Low precision sclection does not represent truly the sigmoid

function and its derivative. Thercfore, it may make the network untrainable.

For intermediate summations, weighted inputs are summed through 32-bit operand

values. The weighted sum is truncated to 16-bit and fed as an input to the nonlinear



18

function. The precision requirements are summarized in Table 2.4. Digital circuitry

currently is most suitable for implementing high precision networks.

Table 2.4: Precision requirements for wide range of applications.

Operand Precision
Weight 16b
Input and neuron output 9b
Intermediate values 32b
Weight Increment 16b

Scalability

This is another important issue in neuro-computer design. It refers to how many
processing elements can be cascaded in a system at a reasonable cost. Emulation of
biological networks and simulation of large artificial neural networks for real time

applications make scalability essential for future neuro-computers.

Generality

Special-purpose neuro-computers are dedicated to implementation of only certain
neural network models. For example, TINMANN VLSI chip is designed for im-

plementing Kohonen self-organizing feature map neural network [30]. On the other
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hand, general-purpose neuro-computers should implement any neural network model.

Examples of general-purpose neuro-computers are described in Section 2.4.

Interfacing Speed

System interfacing plays an important role in choosing the type of circuitry for
neural network implementation. Analog circuitry, for instance, is not suitable for
vision applications because it requires high speed converters [35]. As shown in
Table 2.2, if the application calls for the on-chip support of learning, then a digital

design should be preferred {35].

2.3 Nonlinear sigmoid function

Neural networks require a nonlinear activation function at the output of each neuron.
The nonlinear sigmoid function is one of the most popular activation functions
for many algorithms such as back propagation and Hopfield networks (Figure 2.2).
Several expressions are available for evaluating the sigmoid function. One expensive
technique in terms of computation time is through the summation of truncated series

expansion. The logistic function is f(x) = TJ{'—T Another nonlinear function which
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has been used has the following form [9]:

0 z < U
F@)=9 jl1-cos(az—a0)] a=-L- ay=apy, po<z<py  (23)
1 T2
\

—
.

w (N}

Figure 2.2: Sigmoid function.

“The nonlinear sigmoid function may be implemented using a lookup table which
can be stored in RAM or ROM. A lookup table of 16-bit inputs and 8-bit outputs
demands 64 KB of memory which occupics a relatively large silicon area. SPERT,

a general-purpose neuro-chip, implements the nonlinear function as a lookup table

of 64KB [39)].

An alternative approach is to approximate the nonlincar function by piecewise
linearities. The break points are stored in memory. The function evaluation involves
a combination of lookup table accesses and a linear interpolation. It has been shown,

however, that the back propagation network did not perform well when used during
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learning. In other words, the training was unstable and failed to converge. This is
due to the fact that the first derivative of the region around z = 0 is higher than the

true sigmoid derivative function. For [-8,+8] input range, the function is represented

by 13 segments [31].

A modified curve based on power of 2 calculations has been proposed with only
7 segments. The break points are: -8,-4,-2,-1,1,2,4, and 8 [31]. The modified piece-
wise linear approximation gives comparable results to what is achieved through true
sigmoid function. The 16-bit 2’s complement input value is mapped to 9-bit 2’s
complement output value. An efficient implementation for digital VLSI neural net-
works has been proposed without using a lookup table. The basic idea is that the
circuit directly implements the positive input portion. For the negative portion,
the input is bypassed through 2's complement at the input and the output of the

positive piecewise lincar approximation circuit using a mirroring technique.

A possible precision representation is I,, = 4, I; = 12 for the input of the function

and [, =2,1 5 = 7 for the function output. The derivative of the sigmoid function

is simply f(z) = f(z)(1 - f(z)).

Proper segmentation of a nonlincar function minimizes the number of break
points and the error of the estimated function. Each segment defines a linear inter-

polation with y = a;(x — 2;) + b; (sce Figure 2.3). In addition, mirroring technique
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exploits the symmetry of the nonlinear function around the y-axis or the ry-axis by

halving the number of break points.

A small-size associative memory can be used to implement a nonlinear (curved)
function (Figure 2.4), for example Gaussian function. The size of the memory is
determined by the number of break points on the positive portion on the x-axis.
Eight break points should be sufficient. The derivative of the nonlinear function is
treated as a stand alone function. The general form is y = a;(X — z;) + b;.

where,

X : input to the nonlinear function.
: break point i.
a; : slope of segment i.
b; : y-offset of the interpolated segment i.
S : symmetry bit. 0 and 1 values represent y-axis and zy-axis symmetry respectively.

A neural network model is usually characterized by a single nonlinear function.
Therefore, two blocks of 8-word associative memory should be adequate to represent
a nonlinear function and its derivative. The contents of the memory are loaded
only once prior to the hardware simulation of the neural network. In addition,
the implementation is not only restricted to the nonlinear function of the neuron’s

output. It can implement other nonlincar computations required by some neural

network models.



2's

En

Negative X

<

<— y=aj(dX) +bj

. >x
Xi X Xig

Figure 2.3: Segment interpolation of a nonlinear function.

comp | —>

S
x0 1]la0ibo Jorsi
x1 latibi | oi
x2 lla2ib2]on
x3 a3d|b3jon
x4 adibdjon
x5 {|la5]b5 lon
x6 a6ibé |on
x7 a7 |b7 {01

Associative memory

X; a; (4-bit)

bj

2s | Y
X - * + > | comp | =

23

En

S AND' Negative X

Figure 2.4: Block diagram of a general nonlincar function implementation.



24

2.4 Review of hardware implementations

Neural networks can be fully or wirtually implemented in hardware [19]. Full
implementation of neural networks provides dedicated hardware for each information
processing element (neuron) and each weight of the network. For modest-sized, low

precision, and special-purpose neural network applications, full implementation in

analog hardware is an attractive solution.

In virtual implementation, the hardware used to implement a number of neurons
is time multiplexed. The neural network is typically partitioned and mapped into a
fewer number of physical processors. Each processor is allocated a sub-network to
be simulated locally. The virtual implementation is essentially done in software. It is
an established practice to simulate large neural networks. Moreover, the maximum
generality in both transfer function and connection configuration is often achieved
through wirtual neuro-computers [19]. Virtual implementation is more flexible for

implementing a wider range of neural algorithms.

Neural networks have been simulated on general purpose commercial computers
(Figure 2.5) [33]. Simulations on dataflow machines are described in Section 3.5. In
addition, many special hardware implementations have been developed for neural

network simulation. A selection of several neuro-computers is briefly discussed next.
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Table 2.5: Computational capabilities of neural network simulators versus compu-
tational requirements of some applications [33].

Hitachi has developed a wafer scale integration neural network [29]. The wafer
can have 576 neurons, each mapped to a physical processing element. The processing
element contains a multiplier, an adder, and a register-file holding up to 64 8-bit
weights. The processing elements are connected through a time-sharing digital bus.
The 9-bit neuron’s output is broadcast through the bus to all processing elements in
a time step of 464ns. The implementation is more appropriate for Hopfield model.

The wafer speed performance is 1.2 x 10 CPS. No on-chip learning is supported.

Siemens has developed a synthesis of neural algorithms on a parallel systolic
engine called synapse [34]. It is a gencral purpose neuro-computer that follows a
multiprocessor and memory architecture. Systolic array approach is used at both

chip level, called MA16, and at board level. The systolic design is based on three
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formulae that summarize a range of neural network models. MA16 chip implements
4 x 4 scalar product chains using 16 multipliers. The chip operates at 40MHz offering
a performance of the order of 500 x 10 CPS. Two DRAM banks are interleaved,
supplying MA16 with enough dataflows. These memories are dedicated for stor-
ing the 16-bit synaptic weights. The number of chips and memory boards in this

architecture may vary according to the application requirements.

Nonintensive operations are computed on a Data Unit, DU. MC68040 CPU is

used to perform such operations and take over the communication controls between

the MA16 chips and the DU.

SPERT is a neuro-processor that uses the single instruction multiple data (SIMD)
architecture of an array of eight integer data paths. SPERT is connected to an ex-
ternal SRAM memory that holds weight vectors and the program code. In order
to increase the memory bandwidth, very large instruction word (VLIW) format is
used with 128-bit memory width. The weight resolution is 16-bit. Basically, each
data path implements multiply and add instruction (MAD). The SIMD array exe-
cute simultaneously eight MAD operations over the memory latched data. SPERT
includes a cache and a general scalar data path. It uses 64 K entry lookup table

representing the sigmoid nonlincar function of the system.

For three layer back propagation network, a peak performance of 350 x 106 CPS
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and 100 x 108 CUPS has been achieved for the recall and the learning phase respec-

tively.

A more extensive survey on neural simulation hardware can be found in [32).
In general, neural network simulation systems follow two approaches. The first ap-
proach is the simulation using highly and massively parallel systems with a large
number of processors such as CM-2 and message-passing computers. The other ap-

proach is the simulation on relatively small number of extremely powerful processors

for example SPERT and MA-16.



Chapter 3

Dataflow Computer Architectures

In conventional von Neumann processor architecture, a program counter is needed
to control the sequence of instructions. The instructions are executed sequentially.
Special operators like BRANCH are used explicitly to transfer the control of the
sequence. Two main issues called Memory Latency and Synchronization must be
addressed in a multiprocessor environment [4]. Memory Latency is defined as the
elapsed time between issuing a memory request and getting its response. Synchro-
nization is known as the need to order the instructions according to their data
dependency. In conventional parallel processors, explicit operators such as Fork and
Join are used to synchronize instruction exccution among different processors [23].

As a result, large overhead is wasted even with the use of different techniques like

28
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context switching, which are aimed at reducing the overhead effect.

Data-driven or dataflow approach is an alternative architecture that addresses
the issues of memory latency and. synchronization. The fundamental feature of
dataflow is in its execution paradigm. An instruction is enabled for execution based
on the availability of its operands. The program is transformed into a dataflow graph
(DFG). DFG represents the data dependency between the instructions. Each node
of the dataflow graph often represents an asynchronous instruction. Synchroniza-
tion between instructions is achieved implicitly by the flow of data rather than by
using explicit operators. It also allows concurrency between the operations. Once
the instruction is executed, the result is contained in a token. The token is for-
warded to subsequent instructions as an operand through éommunication paths (or
arcs) defined by the DFG. Consequently, both issues are treated by the dataflow
architecture. Furthermore, dataflow supports the building of highly parallel and
asynchronous architectures. There are two types of dataflow architectures: static

and dynamic.

3.1 Static architecture

DFGs generated by the compiler are loaded into memory during initialization and

allow one instance of a node to be exccuted. A node in a DFG is executed according
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to the following rule:

A node is fired as soon as tokens are present at all input arcs and there is no

token at any of its output arcs [16].

In order for a node to fire, all its tokens in the output arcs should be consumed.
A maximum of one token is allowed per arc and there is no overlapping of concur-
rent unfolded iterations. Acknowledgment signals are fed back to the node from

subsequent instructions to indicate that the node result has been consumed.

MIT static dataflow architecture was a major step toward the development. of
new dataflow architectures [16]. This static dataflow model comprises a set of pro-
cessing elements (PEs) interconnected through a communication network. A single
PE architecture of the static dataflow model is described next (Figure 3.1). At the
machine level, DFG is represented by a collection of Activity Templates stored in
the Activity Storc. Each template contains instruction Op-code, Operands, and
the Destination addresses. The destination addresses contain both the addresses
of subsequent instructions for storing the result and the acknowledgment addresses.
Whenever a result packet is received by PE, the Update Unit finds the corresponding
template and places the result value in the appropriate operand slot. If the instruc-
tion is ready to exccute, its template address is placed on the FIFO Instruction

Queue. The Fetch Unit fetches the first address, reads its corresponding template,
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sends it for execution, and resets the template. Once the instruction is executed,
the result is put into a result packet. The packet is passed to the Send Unit which
decides whether to send it to the local PE or to an external PE through the network.

The architecture implements a circular pipeline.

This model has some drawbacks, however. The parallelism is limited to folding
iteration of the loop body. Code sharing of consecutive and concurrent unfolded
iterations is not allowed. Only pipelining effect is achieved. The parallelism is

limited to the critical path of the loop body. Moreover, acknowledgment signals

double the number of tokens and the destination lists.
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3.2 Argument-fetching architecture

Recent static dataflow architectures implement the principles and issues of the basic
pipelined static dataflow model. The principles of argument-fetching architecture
have been incorporated in a modern static architecture [16]. Argument-fetching
a.rchitgcture has two parts: Dataflow Instruction Scheduling Unit (DISU) and a

Pipelined Instruction Processing Unit (PIPU) [12].

3.2.1 Dataflow instruction scheduling unit

The program is represented by a pair of graphs (P,S). P graph represents the in-
struction list of the program and S graph represents the instruction sequence. Each
node in P corresponds to an actor in the DFG of the program. It does not contain
information about the sequence of the instructions. On the other hand, the sequence

is represented by a signal graph S held by DISU. S has the following features:

1. Each node in S contains a reference to an instruction.
2. S has no information about instruction exccution.
3. S arcs are signal arcs corresponding to the instruction sequence.

4. Each node in S has two fields: counter field and reset ficld.
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The counter indicates the number of signal arrivals to an actor. The counter counts
both the predecessor ready instructions and the acknowledgement of the successor
instructions. Each signal arrival decrements the counter. When the counter reaches
zero, a fire signal is generated by DISU indicating the availability of the instruction

to be executed. Counter value is replaced by the reset value when the node is

enabled.

The signal graph has to identify the subset of enabled instructions among all.
DISU sends fire signals with the referenced address to PIPU. DISU supplies PIPU
with enabled instructions. When the instruction is executed in PIPU, done signal

is generated by PIPU holding the referenced address of the result (Figure 3.2) [12].

3.2.2 Pipelined instruction processing unit

This is a conventional pipelined processor. It consists of four sections: instruction
fetch, operand fetch, operation exccution, and result store. There can be no pipeline
gaps in the PIPU as long as DISU continuously supplies enabled instructions. The
sequence of the dataflow guarantecs the absence of data conflict in PIPU. Each of
the four PIPU sections may consist of several pipeline stages in order to match the

timing requirements of memories and operation units [12].
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3.3 Dynamic architecture

The dynamic model maximizes parallelism by allowing concurrency between un-
folded consecutive iterations. More than one token is allowed per arc. Each token
has a distinct tag assigned to it. It requires a matching unit for distinguishing the
labels of an instance. The hardware cost of the matching unit makes it impractical
even with the use of hashing techniques. MIT tagged-token dataflow model was the

first to use the dynamic dataflow principles [16).

The concept of an Explicitly Addressed Token Store has been proposed as a part
of the Monsoon architecture in order to climinate the need for associative memory
search [16]. The basic idea is to allocate a separate memory frame for every active
loop iteration. The number of concurrent iterations is limited by the number (k) of

frames. Only k consecutive iterations may be active at a time.

3.4 Notation and terminology

A DFG is a directed graph in which the vertices (nodes) denote entities called
actors; links (arcs) represent paths that carry cither data or control values between
nodes. There are five primitive operations: copy, operator, decider, switch, and

merge (Figure 3.3) [11].
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Copy or Link: It is a node with one input actor and two or more output arcs.
Its function is simply to copy a token from its input arc to all its output arcs.
Operator: It performs arithmetic or logic function. It fires by consuming all its
input tokens and produces a token on its output arc.

Decider: It fires by consuming all its input tokens and produces a Boolean token
based on a decision operation.

Switch: It has two inputs one of which is a conditional Boolean token. The second
input value is passed to either one of the output arcs based on the Boolean input
condition.

Merge: It has a conditional input arc and two inputs. The output value takes one

of the two inputs based on the conditional Boolean value.

¥ oo Y Y
a) copy or link b} f operator ¢) declder
A A B
| N 7
@4——— Boolean P ——— Boolean P
s Y
= AifP=F
AllP=T AlIP=T
Bi P=F
d) switch or branch @) merge

Figure 3.3: Primitive dataflow operations [11].
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3.5 Simulation of neural networks on dataflow

machines

A back propagation network has been transformed and simulated on the MIT-tagged
dataflow machine [26]. As mentioned earlier, the major feature of the dynamic ma-
chine is that it allows concurrency between different iterations using tagging tech-
nique. One serious drawback of this approach is the lack of locality of computations,
since all the data arrays are stored in a remote memory. Another constraint is the im-
plementation of the non-linear function by a relatively large number of instructions.

Due to the single assignment rule, a dataflow graph generates large intermediate

values.

Alhaj and Terada propose a data-driven implementation of back propagation
learning algorithm [2]. They transform the algorithm into a parallel implementation
employing Q-v1 which is a general data driven processor developed by Osaka univer-
sity, Sharp and Mitsubishi corporations. The implementation is based on partioning
the network into sub-networks. Each sub-network is allocated to a processor. Dif-
ferent processors, connected in a two dimensional torus configuration, cooperate in

computing the weighted sums.

The authors simulated an image data compression back propagation network on
o
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the system. The network consists of three layers with 256 neurons in the input
and the output layers and 128 neurons in the hidden layer. With 16 processors,
the network simulation was 14.68 times faster than with a single processor, thus

achieving 92% system utilization rate. Recently, they achieved a speed performance

of 50 MCUPS with 64 processors [3].

In addition, an estimated performance of neural network simulation on the Mon-

soon architecture is 2-3 MCPS per processor [37].



Chapter 4

A New Neural Dataflow

Processor Architecture

4.1 Rationale of dataflow approach to neural com-
puting

This section presents the motivation for building neural dataflow machines. A neural

network is a parallel and distributed information processing structure that consists of

highly interconnected processing clements. Each processing element performs local

computations. Necural networks can be mapped into a large number of physical

39
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processors in different ways [2, 17, 19, 27]. The major mapping criterion is to
minimize the messages to be transferred between physical processors, as well as to
maintain the locality of distributed computations. The distributed computation
structure of neural networks makes shared memory systems not suitable for neural
network simulations [19, 24]. Highly and massively parallel computers with large
number of processors, on the other hand, may offer attractive solutions for simulating

the distributed computations of neural networks.

Ghosh and Hwang [17] have investigated the architectural requirements for neural
network simulation on highly and massively parallel multiprocessors. They have
developed an asynchronous, multi-message model in order to estimate the volume
of interprocessor communications based on neural network demands. The study has
been performed on different processor interconnection networks such as hypernets,

hypercubes, and toruses. It supports the building of distributed-memory, multi-

Neuro-processor.

As mentioned earlier, simulation of large neural networks for real time applica-

tions make scalability an essential demand in ncural system design.

Neural networks offer parallelism at different levels: bit, node (or neuron), layer,
pattern, training example, and training session [32]. Many of the dedicated hardware

architectures that have been developed and implemented for several neural network
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models exploit only the node parallelism [29, 32, 34, 39].

Many neural network algorithms (or models) have been suggested. The essential
characteristics of these models are: network topology, processing element character-
istics, and training rules [24]. The connectivity between the processing elements can
be fully or sparsely connected [24, 32). The Hopfield model, for example, has full
neuron connectivity. The adjacent layers are also fully connected in the back propa-
gation model. The processing elements read the weight and the output value, mul-
tiply them, and accumulate the result. SIMD architectures such as systolic arrays
allow simultaneous calculation of many weights through broadcasting [24, 29, 34].

Therefore, they provide best hardware simulation for such type of networks.

In sparsely connected networks, many neural connections do not exist. In SIMD
architectures, the sparsely connected networks can be treated as if they were fully
connected networks by representing the weights of sparse connections with zero val-

ues for consistency [24].

Sparse activations mean that a small number of ncurons change their output
values at any time. Many computations are wasted due to the ignorance of this
feature. Not surprisingly, the percentage of active neurons at any time is very low,

1-10% in competitive learning networks [24].

For a successful neural system design, the following rule is considered:
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An application can be at best speed up by a factor of 1/(fraction of nonconnectionist

computations) [39].

To permit generality and simulation efficiency, the neuro-computer should be
flexible for a variety of neural network models including new models that are con-

tinuously emerging.

Tuning the hardware architecture for neural computing involves complex tasks
in order to build successful neuro-computers. Intensive computations, for example
multiply operation and nonlinear function evaluation, should be supported. The

localized and distributed computations should be maintained.

Neural networks can be naturally represented by dataflow graph (DFG) [37].
They can be considered as macro dataflow graphs. They seem to be a natural
subclass of MIMD systems such as dataflow architectures, which support the flexi-
bility of simulating different neural models with large varieties of conne;ctivity. The
dataflow approach offers a suitable platform for simulating DFGs. More parallelism

is exploited in this approach. Furthermore, dataflow machines are scalable and

highly concurrent.

Therefore, dedicated neural dataflow processors scem promising. The purpose of
this thesis is to determine the neural computation requirements and propose a new

dataflow processor architecture dedicated to this computation. This architecture is
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then evaluated by extensive simulations.

4.2 Dataflow graph model

A neural network is decomposed and transformed into fine grain low level dataflow
graph (DFG) in order to execute on the proposed dataflow machine. This follows
virtual implementation of neural networks. For a specific application, the dataflow

graph can be fully implemented with the use of hardware pipelining.

Dedicated DFG primitives have been sclected based on neural network compu-
tation requirements (Figure 4.1). The following primitives have been defined: (1)
arithmetic operations: Mul, Add, Sub, Nonlinear (NL) function, (2) IF operation,
(3) logical operations: And and Not, (4) control: Copy and Join. The arcs of the
DFG are of two types: data and control arcs. A data arc corresponds to a data
token and a signal. These are used by the processing unit and the scheduling unit,
respectively (see Section 4.3). The data token is to be stored in the data memory,
while the signal is to activate a subscquent instruction, indicating the availability of
the data token. The control arc holds only a signal address to update a subsequent
instruction. The data arc and the control arc can be represented graphically by a

normal arrow and a dotted arrow respectively as shown in Figure 4.2.



44

All arithmetic operations are carried with 2's complement fixed-point represen-
tation. The number of input arrows for an actor determines the number of waiting

signals. Each actor may wait for a maximum of two signals.

4.2.1 Dataflow graph primitives

The DFG primitives (Figure 4.1) are described as follows:

Operator: An operator can be one of the following: Multiply, Add, Subtract and

»

nonlinear function. It should be flexible for other simple operations such as absolute
value operation.

IF: During learning, the loop body iterates till desired error is obtained. There-
fore, IF instruction compares two operands and signals one of the two output arcs
based on the condition value. The instruction enables one of next two instruction
templates. It should be noted that IF statement replaces both the decider and the
switch primitives.

Copy: Its function is to signal the arrival of a token to more than one next instruc-
tion. In our case, the copy instruction signals two next instructions. For example,
if the instruction calls for signaling next four instructions, three copy instructions
are needed. The copy instruction operates locally to the scheduler. The instruction

deals only with the program memory.
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Join: The architecture is static and flexible to exploit different levels of parallelism
through software pipelining. In other words, the acknowledgment signal is not nec-
essarily sent back directly after the consumption of a token. However, a number of
neurons might be acknowledged at a later stage, e.g., at the output layer. One major
drawback of the basic static architecture is that it duplicates the number of tokens.
Moreoyer, the scalar product operation, common in neural networks, requires large
number of acknowledgment addresses. Fan-in points at neuron outputs in DFG are
adequate for join instruction. As a result, join instruction is used to collect the
arrival of different signals, e.g., at the output of a layer, then it acknowledges the
previous instructions, e.g., the input of that layer through copy instructions. This

is to reduce the acknowledgment token overhead due to the static dataflow model.

4.2.2 Software pipelining

‘The proposed model supports software pipelining at fine-grain instruction level and
at different network levels, e.g. layer and pattern levels. More parallelism is exposed
explicitly by the use of copy and join operations. As an example, DFG of the recall
phase of back propagation XOR nctwork is shown in Figure 4.2. Different patterns

can be pipelined using explicit control instructions.



XOR network

e => represent a signal address only.

Figure 4.2: DFG of the recall phase of XOR2 network.
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4.3 Proposed architecture

4.3.1 Basic principles

The proposed architectural model is based on the argument-fetching principles. The
scheduling unit of the modern static architecture has incorporated the argument-
Jetching principles [12, 16]. The main feature of this architecture is that data never
flows while the scheduling unit remains data-driven. Once a data result is stored
in the data memory, a signal is sent to the scheduling unit. The scheduling unit
is to signal all instructions waiting for this data result and supply ready instruc-
tions to instruction execution unit, without moving the data. This leads to a clear
separation between the instruction execution unit and the scheduling unit. There-
fore, the model is divided semantically into two parts: instruction scheduling unit
(SU) and instruction processing unit (PU), as described earlier. In this architecture,
the instruction (or program) memory belongs to the scheduling unit, and the data

memory is exclusively available for the processing unit.

Scheduling unit: The node in the DFG represents a low level instruction that

is composed of two parts: program part (P) and signal instruction part (S). The
S-instruction holds two fields that are part of the dataflow instruction scheduling

mechanism. It has two signal Dbits (ag,by) indicating the arrival of a maximum of



49

two operands, and reset bits (a;,b;), to be placed on the signal bits when the node is
enabled (fired) for execution. Each signal arrival indicates the availability of a data
operand. The sequence of the instructions can also be represented by a separate
directed signal graph. The scheduling unit identifies instructions that are available

for execution and supplies them to the processing unit.

Processing unit: This is a conventional pipelined processor. It executes the pool

of enabled instructions. There can be no pipeline gaps in the processing unit, as long
as scheduling unit continuously supplies enabled instructions. The sequence of the
dataflow éuarantees the absence of data conflict in the processing unit. After the
instruction is executed and the result is stored, the processing unit delivers a signal
address (done) to the scheduling unit, indicating the availability of a data token for a
subsequent instruction. Both the processing unit and the scheduling unit implement

a single circular pipeline dataflow path with separate data and instructions.

4.3.2 Machine architecture

The dataflow processor (DFP) described in this thesis is intended to be a basic
component in large message-passing ncural systems. The DFP has its local pro-
gram memory that contains a sub-network graph instructions allocated to it. More-

over, the DFP has its own local data memory. The processor implements a single
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datapath on a ring pipelined architecture that consists of five sections: instruction

update, operand fetch, ready instruction queue, exec, and result store as shown in

Figures 4.3, and Figure 4.5.

Program memory

Each DFG node corresponds to a fixed instruction cell in the program memory
(Figure 4.1). The instruction may wait for one or two signals represented by two
signal bits. An instruction is fired upon the arrival of the required signals and sent
to the execution unit. Once the instruction is fired, the signal bits are reset. A

typical arithmetic cell contains the following ficlds:

e ag,bp: two signal bits indicating the arrival of a maximum of two input signals
required to fire the instruction.

® a;,b: two bits that represent the reset bits of the instruction.
e opcode: 4-bit opcode are assumed.

o A: address of the first operand in data memory.

¢ B: address of the second operand in data memory.

e C: address of the result in data memory.

o D: address of the subsequent signal instruction in the program memory, sig-
naling a data token arrival.

Other instruction formats are shown in Figure 4.1. The program memory has an

update unit which updates ag and by bits. If the instruction is fired, it is supplied
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Figure 4.3: Block diagram of the proposed DFP architecture.
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to the next stage where operands are fetched and supplied to the proper Ready

Instruction Queue.

Signal queue

Once the processing unit stores the result in the data memory, it should signal a
subsequent instruction. A signal address is written into the FIFO signal queue. The
address refers to one of the signal bits ag or by of an instruction cell. The update

unit on the scheduling unit is busy with signal updating so long as the signal queue

is not empty.

Copy and join instructions are not executable. They signal other instructions
while the result stored in the data memory never flows. They also feed the queue

with additional signal addresses.

Update unit

It belongs to the scheduling unit. It rescts the signal bit of an instruction cell
referenced by a signal address fetched from the signal queue (Figure 4.4). If the
signal bits are zero, the instruction is fired. The exccutable fired instruction is

supplied to the next fetch operand stage. The two signal bits are replaced by the
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reset bits of the instruction. If the signalbits of the instruction are not zero, it means
that the instruction waits for another signal address. Thus, the signal bits are stored
and no executable instruction is fired. The update unit identifies instructions that

are available for execution.

Program Mem. Signal Address

| Signal Address
- OAn Updale

Ready lnst.

Unit

ja0b0asibt ABCD 2050, atb1 3
Insl. -

o 00bO

Figure 4.4: Block diagram of the connectivity of the update unit.

Operand fetch

A maximum of two data memory operands are fetched at any time. The resulting
packet contains the opcode, operands, result address, and signal address. Then,
the packet is routed to the proper queue for execution. All executable instructions,
supplied by the scheduling unit, are independent. If the scheduling unit supplies
instructions continuously, a triple-port data memory will be used efficiently, where
two ports are used for reading operands and the third port is used for writing the

result.



54

Single and multi queue

The execution units are divided into two types: single and multi cycle units. The
receiving packet is routed to either the single or the multi queue according to its
opcode. Independent instructions may overlap in time during execution. The mutli
queue is dedicated to queue the multi cycle multiply instruction packets through a
simple distribution bus. Other instructions are queued in the single cycle queue for

ALU executicn and nonlinear function evaluation.

Multipliers

The fixed point arithmetic multiplication can be implemented by a series of shift
and add operations. The period of exccution may vary according to the operand
data value in order to exploit the bit parallelism of the multiplication operation. A
set of asynchronous multipliers are used in order to reduce the multi queue waiting
time. They inherently represent a pipelined multiplier. The queued multiply packet
is routed to a multiplier that is not busy through a simple distribution bus. It is
assumed that the maximum period of multiply exccution is m cycles. Therefore,
m asynchronous multipliers guarantce a minimum service time for multiplication.

Once the multiplication result is ready, it is written into the data memory through

an arbitration bus.
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ALU

All other instructions such as Add, Sub and IF are executed within the ALU. Ded-

icated digital circuitry is used to implement the sigmoid function (see Section 2.3).

Result store unit

This unit writes the result into data memory. The result may be taken from different
execution units through the arbitration bus. While the result is stored in the data
memory, the signal address is written into the signal queue. This guarantees the

availability of the result for consecutive instructions.

The processor architecture is flexible for sending and receiving messages from other
processors (Figure 4.5). A message typically contains a data value, an address of the
data memory, and a signal address of the instruction memory of the target processor.
Once the message is received by a processor, the data value is first stored in the data

memory, then the signal address is supplied to the signal queue of the processor.
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4.4 Conclusion

In this chapter, The motivations for building dataflow systems to neural computing
have been presented. A set of dedicated DFG primitives have been selected based on
neural network computation requirements. A new neural dataflow architecture based

on argument-fetching principles has been proposed. Different levels of parallelism

are exposed through the use of software pipelining.
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Chapter 5

Simulation and Performance

Evaluation

The architecture should be modeled and studied to see how the performance is
affected. In this chapter, the simulation model is described and simulation results
of the back propagation and the Hopficld networks are presented. These are widely

used as hardware benchmark networks [32).
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5.1 Simulation model

The system is not simple enough for analytical evaluation due to the nature of
neural computations. In tilis case, we resort to simulation. Simulation is used as an
alternative when analytical solutions are not possible. In simulation, a computer is
used to evaluate a model numerically, and data are calculated in order to estimate

specific characteristics of the model [28].

The system simulation model adopts a discrete-event view. It evolves in time
by a representation in which the system state variables change instantaneously at a
fixed-increment time interval (At). The simulation clock is advanced every At time
interval. The time interval is a characteristic of the common pipeline stage delay.
It is a reasonable assumption since all events occur at At, based on real hardware

realizations of the architecture’s pipecline stages.

The simulation model is deterministic as no probabilisctic components are em-

ployed. True program instructions are mapped on the proposed architecture and

simulation results are reported.

The high level language C has been chosen for the simulation of the dataflow

processor architecture. Its popularity and portability make it a convenient tool.
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5.1.1 Components of the system

The proposed processor architecture is characterized by five pipelined procedures:
Update_Unit, Fetchdata, Qroute, Exec and Storedata. The logical relationship be-
tween components or blocks of the system is shown in Figure 5.1. Each block has
its own characteristics in terms of functional representation and time delay. Once
the simulation clock is incremented, a check is made of all blocks to determine the
events that should occur at the end of the time interval. Then, the system states are
updated accordingly. The main procedure of the simulator is shown in Figure 5.2.

The scheduled events in the next cycle in different blocks may overlap in time.

Additional queues are added to the simulation model to make the model flexible

for future development. These queues are: Rdypakqu, Fetchqu, and Resultqu.
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Figure 5.2: Simulation algorithm.
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5.1.2 Performance measures

"The purpose of simulation is to simulate real neural network programs on the ma-
chine and analyze their impact on overall performance. System utilization and

throughput measures are computed.

Several parameters that determine the machine configuration are varied each

time a simulation test is conducted. These parameters are:

e U: number of signal updates allowed per time cycle in the update unit.

e M: number of asynchronous multipliers.

¢ m (multiplication period): number of cycles required for multiplication ex-
ecution through shift and add operations. Each shift and add operation is
equivalent to a 1-bit multiplication. When M = m, the set of asynchronous
multipliers implements inherently a multiplication with a period of 1 cycle.
In test cases, the value of m is chosen to be 8 cycles. This is based on the
minimum precision of the multiply operands (9 bits). When M > m, the

performance measures are independent of .
¢ Multiplication mode: the multipliers can optionally be data dependent.

e Nonlinear function period: number of clock cycles required to evaluate the

nonlinear function.
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Other user parameters such as initial simulation clock, maximum simulation time

(T') and observed intervals are set for each simulation run.

The simulation study is conducted by running different sizes of back propagation
and Hopfield networks on different machine configurations in which mainly M and
U are varied. The test case networks are transformed into DFG instructions and

simulated on the proposed architecture.

Three main simulation outputs are considered:

e S: speed measure in connections per clock cycle (CPC). This refers to the

numbers of connections evaluated during one clock cycle:

F x W

S(CPC) = —

(5.1)

where:

F: number of nonlinear function evaluations (same as number of neurons in
the recall phase).

W: average number of weights per neuron.

T: total execution time in clock cycles.

e 7: rate of executable instructions supplied to the fetch data unit. This is an

important parameter that refers to how frequently the scheduling unit supplies
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instructions.

e U;: processor utilization. It indicates how long the DFP is busy with exe-
cutable packets. The availability of one or more executable instructions in the

execution units indicates that the processor is busy during that cycle.

Other performance measures are found in [1].
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5.2 Back propagation networks

Back propagation (BP) algorithm is a supervised learning method in which the
output error signal is fed back through the network as described in Section 1.2.
This algorithm is the most common neural network learning algorithm. It is used to

illustrate the principles and operations needed for the majority of neural networks.

5.2.1 XOR network

Recall phase

The recall phase of the XOR back propagation network is transformed into fine grain
DFG instructions. Two transformations of the recall phase are presented. The first
is when only one pattern per iteration is allowed (XOR1, Figure 5.3). This case

corresponds to a strictly static dataflow transformation.

A more elaborate way is to allow successive waves of patterns per iteration using

software pipelining. In this case, two pipelined patterns per iteration are allowed

(XOR2, Figure 4.2).

Figures 5.4 and 5.5 show two output measures of XOR network simulation. The

throughput of the network is increased by 55% when two successive waves of pipeline
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patterns are allowed. Moreover, the utilization is increased by nearly the same
percentage. The performance measures for the second transformation are listed in
Table 5.1. Due to the small size of the XOR network, the parallelism is limited.
The output measures are independent of U when M > 4. The main purpose of this

XOR test case is to study the effect of software pipelining.



...... > represent signal addreses only.

Figure 5.3: DFG of the recall phase of XOR1 network.
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Table 5.1: The output measures for XOR2 network, T=30000.
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Learning phase

The learning phase of the network is transformed into DFG instructions (Figure 5.6).
The speed is expected to be lower than the speed of the recall phase due to the weight
data dependency as well as the critical path of the computations. The speed is found
to be equal to 0.053 CUPC with U = 1, and M = 8. Learning of one pattern is
assumed. The speed can be improved by allowing more than one training pattern to
be used concurrently. The weight increments produced by a set of training pattern
are added. Then weights are updated. In addition, more than one training session
can be active at a time. In the case of four XOR networks with one training pattern
each, the speed is increased to 0.1765 CUPC with U = 2. This gives about 4.4

MCUPS if 25 MHz clock frequency is assumed.
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Figure 5.6: DFG of the learning phase of XOR network.
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5.2-2 BP4x4x4x4x4 network

In order to obtain realistic speed and utilization measures that reflect the true
performance of the architecture, larger networks with more parallelism should be
simulated. Three networks have been chosen for this purpose, one back propagation

(BP) network with five layers B Pjxaxaxax4, an image filter, and a Hopfield network

of six neurons.

The purpose of the BPjy4x4x4x4 test case is to obtain more realistic performance
measures of the architecture. This network consists of five layers, including the
input layer, with four neurons each. Three pipelined patterns per iteration are
allowed through the use of fan-in points (Figure 5.7). The recall phase representation
shows the capability for simulating different feed-forward networks with various
connectivity patterns. The simulation results are shown in Table 5.2. Figures 5.8

and 5.9 show an alternative representation of the simulation results.

For different values of U, the speed (S) and the rate of supplied instructions (r)
saturate with the maximum number of multipliers (M = m = 8). The speed (S)

increases by about 5% when U is changed from 2 to 4 with M = 8.
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Figure 5.7: The recall phase of BPyx4x4x4x4 network.

Table 5.2: The output measures for BPjx4x4xax4 network, T=30000.
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5.2.3 An image filter network

Back propagation learns Marr’s operator is a neural network model of the retinal
responses to stimuli whose architecture is inspired by neurophysiological data [25].
With this model, a feed-forward network of an image filter that consists of four
sub-networks, each having three layers (16 x 4 X 1) is simulated (Figure 5.10). The
perforinance measures are listed in Table 5.3. Figures 5.11 and 5.12 show the effect
of U and M on the performance. The size of the network is relatively large, con-
sequently sufficient parallelism is offered and high processor utilization is achieved.

The distributed parallel sub-networks reduce the cost on the scheduling unit (U = 2).



Figure 5.10: Connectivity of a single set of the image filter.

Table 5.3: The output measures for image filter network, T'=30000.
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5.3 Hopfield networks

Generality is an importatnt characteristic of the processor architecture. The ar-
chitecture is flexible for different neural network models with various connectivity
patterns. Hopfield networks are popular associative neural networks. In this section,

the simulation of the parallel model of Hopfield networks is presented.

5.3.1 3-neuron Hopfield network

The parallel model of 3-neuron network is transformed into DFG instructions (Fig-
ure 5.13). The network simulation results are listed in Table 5.5 and shown in
Figure 5.14 and Figure 5.15. The small size of the network does not reflect the
actual performance of the architecture. Therefore, a larger Hopfield network of six

neurons, as described in the next section is used.



3-Hopfisld network

Figure 5.13: DFG of the 3-neuron Hopfield network.
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Table 5.4: The output measures for 3-neuron Hopfield network, T'=30000.
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5.3.2 6-neuron Hopfield network

This network is similar to the previous one but it has six neurons. As described
earlier, the purpose is to simulate relatively larger networks in order to obtain true
performance measures. The performance measures are listed in Table 5.5. Fig-

ures 3.16 and 5.17 show the effect of U and M on the performance.

The speed (S) and the rate of instructions (r) saturate with M = 5 when U = 2.
The performance measures increase slightly when U > 2. This is due to the overhead
effect of the control instructions on the update unit. The update unit with capacity

of U > 2 is expected to supply more instructions, consequently r increases.



Table 5.5: The output measures for 6-neuron Hopfield network, T=30000.
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5.4 Effect of asynchronous multiplication

In all test cases, the multiplication mode is varied in order to study the effect of
the data-dependent asynchronous multipliers. The speed of the XOR learning phase

increases by 8% when asynchronous multiplication is assumed over the fixed period

multiplication.

However, the speed does not increase more than 1% with all other test cases as
shown in Table 5.6. In such cases, the multiplication results are added to form a final
linear summation (sum of products). Each add operation waits for the slowest of
its two operands before execution. Thus, the time saved by the use of asynchrc;nous

multiplication is wasted in the consecutive add operations.

Table 5.6: The effect of asynchronous multipliers on the speed performance.

Test cases Speed (F) Speed (F)
Fixed mult. mode | Async. mult. mode

XOR (learning) 696 830

XOR (recall) 2021 2043

BPjxaxaxaxs (recall) 1796 1804

6-Hopfield 1302 1302
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5.5 Theoretical analysis

This analysis is based on relatively large neural networks, namely the BPyy4xaxaxs,

the 6-neuron Hopfield, and an image filter network.

Number of updates allowed per cycle (U):

The scheduling unit supplies a single stream of executable instructions at a rate
of r. This rate (r) depends heavily on the capacity of the scheduling unit that is
determined by the number of signal updates (U) allowed per cycle in the update
unit. An important output of the study is to find out what is the minimum value of
U that keeps the scheduling unit supplying executable instructions to the processing

unit continuously or at a high rate.

From Figures 5.9, 5.12, and 5.17, it is seen that r increases considerably when

U is changed from 1 to 2. The average signal density for program instruction (n) is

defined as [16]:

_ _ total required signals  YI_ (a; + by);
" total executed instructions Y, exec(i)

(5.2)

where,
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a;,b,: two bits that represent the reset bits of the instruction.

1 for executable instruction
exec(i) = (5.3)
0 else

The average signal update capacity for the test cases is less than two (S < 2) as

shown in Table 5.7. Therefore, a scheduling unit with U = 2 theoretically should be

sufficient.

Table 5.7: Average signal density for several networks.

Test cases Average signal density (S)
XOR 32/17
BPyyaxaxaxa 14/8
6-Hopfield 23/12
Image filter 91/56

Although the computations of the these networks are of the same type (sum of
products), the networks differ in connectivity. As a result, the degree of parallelism
offered by these networks varies. The image filter test case contains larger paral-
lelism, therefore the performance measures such as r saturate with U = 2. There is

no benefit in increasing U.

However, r increases by a small amount with U = 3, and 4. The special sequence

of control instructions (copy and join) that are shown in the DFG’s is a major cause
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of this increment. Since each copy instruction produces two signal addresses that
are queued in the signal queue, the scheduling does not generate any executable

instruction during this time. The copy instructions add an overhead to the update

unit.

From Figures 5.8, 5.11, and 5.16, the parameter U has the same performance
impact on the speed. The processor utilization (U,) decreases as M increases. This
is due to the increase of the service rate. However, the value of U; never drops below
the value of r as shown in Table 5.2 and Table 5.5. Full utilization can be achieved
although parallelism is applied with U = 2 as shown in Table 5.3. Consequently,
the parameter U plays a decisive factor in performance. An overhead to the update

unit is introduced by the use of control instructions (copy and join).

Number of asynchronous multipliers (M):

As shown in Section 5.4, the effect of data-dependent asynchronous multipliers on

these networks is negligible. Connectivity of the network has a major impact on the

parameter M.

When a layer in the BPyyqxaxaxs is acknowledged, the acknowledgment signal
fans out to 16 multiplications. The performance measures for the BPjx4xaxax4

require the maximum number of multipliers A/ = m = 8. For the 6-neuron Hopfield
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network, the neuron’s output fans out to 6 multiplications letting the performance
measures saturate with M = 5. On the other hand, three multipliers (M = 3) are
enough to saturate the performance measures for the image filter test case. This is
due to the special connectivity of the network. For different network’s connectivity
and different sizes of offered parallelism, the number of required multipliers M for
a maximum multiplication service rate is determined by M = m. A fast multiplier
can be a suitable alternative for the recall phase of back propagation and Hopfield

networks.
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5.5.1 Comparison to other machines

The simulation has shown a speed performance of 0.3948 CPC for the 6-neuron
Hopfield network with U = 2. If it is assumed that the processor runs at 25 M Hz
(40ns clock cycle), the speed in connections per second is 0.3948 CPC x25 MHz =
9.87 MCPS . An approximate comparison of speed measure of neural network

simulations on other dataflow architectures is presented in Table 5.8.

Table 5.8: Speed performance of neural network simulation on several dataflow
architectures.

DataFlow machines Speed
Qv-1 (16 PE) 11 MCUPS
Monsoon (1 PE) 2-3 MCPS
Proposed DFP (1 PE) 10 MCPS
MIT- tagged dataflow machine ?

The simulation of the 6-neuron Hopfield network on the proposed architecture
is approximately 15 times faster than the network simulation on a Sun 10 machine.
As mentioned earlier in the literature review, there are recent neural network hard-
ware simulators that achieved a speed of several hundreds of MCPS as shown in
Table 5.9 [8]. The processor of such a system is powerful for neural network sim-
ulation. However, most of these systems are not highly scalable. An alternative
approach is to simulate neural networks on highly and massively parallel systems

with a large number of physical processors. One of the strong characteristics of
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the dataflow approach is the support for building highly and massively parallel sys-
tems. As described before, Goash and Hwang [17] have developed an asynchronous,
message-passing model for highly and massively parallel systems in order to estimate
the volume of interprocessor communication based on neural network demands. The
study has been performed on different processor interconnection networks such as

hypernets, hypercubes, and toruses.



92

Table 5.9: Speed performance for several non-datflow neural systems [8].
weights activities performance system -
(bits) (bits) (10° CPS) reference
1 1 5 [10]
4-8 low resol. 5 ETANN chip {20]
Intel 80170NX
6 3 5 ANNA chip [14]
16 1 .01 Micro Devices
MD1220 chip [15]
16 16 8 Siemens
MAI16 chip [34]
8 9 1.9 48-chip wafer [29]
16 8 1 SPERT [39]
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5.6 Conclusion

In the proposed architecture, the scheduling unit supplies a single stream of fine
grain scalar executable instructions to the processing unit at a high rate and low
cost. Full processor utilization has been reached with low cost on the scheduling
unit (U = 2) as shown in Figure 5.18. A scheduling unit capacity of U = 2 can
be achieved by mapping the program, _especially concurrent instructions into two or

more memory blocks, each has an update rate of U = 1.

For the learning phase of back propagation networks, the effect of using asyn-
chronous multipliers in the processing unit varies according to the nature of the
program computations and the values of the data operands. However, the effect
of data-dependent asynchronous multipliers on other test cases is negligible. The

number of required multipliers M for a maximum multiplication service rate is de-

termined by M = m.

Software pipelining has been used to expose more parallelism of neural networks
through the use of the control instructions. The special connectivity, such as fan-in
connections, found in neural networks ease software pipelining in exploiting different

levels of parallelism, e.g. layer level.
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Chapter 6

Conclusion and

Recommendations

6.1 Conclusion

In this thesis, the computational and hardware requirements of neural networks
have been studied. Review of current neural network implementations have been
presented. The motivations for building dataflow systems for neural computing have
been addressed: (1) neural networks offer parallelism at different levels for example
layer and pattern levels, (2) they are suitable for parallel and distributed systems

(a) neural networks can be mapped into a large number of processors and (b) lo-

95
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cality of computations should be maintained and communication latency should be
minimized, (3) the dataflow approach permits generality and simulation efficiency
for a variety of neural network models including: (a) Sparsely and fully connected

networks and (b) neural networks with sparse activations.

A new neural dataflow architecture based on argument-fetching principles has
been proposed. Different levels of parallelism are exposed through the use of soft-
ware pipelining. The architecture has been extensively studied and tested through
simulation using several neural network examples with various parameters of the
architecture. The simulation of proposed architecture shows good performance re-
sults. In the proposed architecture, the scheduling unit supplies a single stream of
fine grain scalar executable instructions to the processing unit at a high rate and

low cost. Full processor utilization has been reached with low cost on the scheduling

unit (U = 2).
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6.2 Recommendations

Two recommendations are presented in this section. The first is concerned with
eliminating the overhead introduced by the control instructions on the scheduling

unit. Next, The extension of the dataflow architecture to a hybrid architecture is

discussed.

The signal addresses in the signal queue are fetched by the update unit in order
to update the signal bits of both executable and control instructions. A sequence of
copy instructions is used to signal a list of executable instructions; therefore they
add an overhead to the update unit. This reduces the rate of supplying executable
instructions to the processing unit. By eliminating the overhead introduced by the
control instructions, the simulation of the test cases with U = 2 has achieved the

same performance measures that were obtained previously with U = 4.

As a result, the control instructions should be stored in a separate block of mem-
ory, called control instruction memory, and handled separately. Basically, the signal
addresses are divided into control and executable signal addresses (Figure 6.1). The
control signal address is forwarded to a controller that deals with the control instruc-
tion memory, while the executable signal address is forwarded to the update unit
which deals with the executable instructions, stored in the executable instruction

memory. The first address in the signal queue is forwarded to either the update unit
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or the controller of the control instruction memory. When a controller receives an
address for a copy instruction, it reads a list of executable signal addresses from the
control instruction memory. Then, it supplies a list of executable signal addresses
to the update unit at a rate of one executable signal address per cycle. The formats

of these instructions can be modified as shown in Figure 6.2.
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The scheduling unit supplies a pure fine grain instruction to the processing unit.
The instruction can be considered as a thread to a fine grain instruction. In this
thesis, the study emphasizes exploiting different levels of parallelism of neural net-
works, thus the architecture is pure dataflow. Argument-fetching dataflow models
can be easily extended to hybrid models [16]. In a hybrid architecture, the thread
may reference a sequence of instructions. Once the thread receives its n signals
that determine the availability of n data operands, it is fired and the sequence of
instructions are supplied to the processing unit in a pipeline manner and executed

sequentially. The set of instructions can be considered as a macro dataflow graph

node.

For example, a typical dataflow graph node found commonly in neural networks
is shown in Figure 6.3. It represents a set of computations that fan-in to a final
computation of the neuron output evaluation. There are two main advantages of
executing sequentially such example in the hybrid architecture. First, large inter-
mediate values that are introduced by the pure dataflow architecture are eliminated
in the extended hybrid architecture. In this macro dataflow node example, 2°~!
intermediate values are eliminated. In addition, the number of signals required to
execute the set of instructions in the macro dataflow node is § instead of %" +1in
the pure dataflow architecture. Consequently, the scheduling unit deals with less

signals. The average signal ratio for an instruction in this example is reduced to



101

S = 0.5 instead of S = 1.5. The disadvantage of this approach is that no con-
currency is allowed among the set of instructions within the dataflow graph node.

Therefore, the extended architecture seems more suitable to neural networks.

Since the proposed architecture is a pure dataflow, large intermediate values
have been introduced. Moreover, the static architecture limits the parallelism. The
extension of the pure dataflow architecture to a hybrid one has been discussed.
The hybrid architecture is efficient for fan-in computations. Such computations are

commonly found in neuron evaluations.

A macro
dataflow node

Figure 6.3: A typical macro dataflow graph node for neural computations.
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6.3 Future work

The following points can be subject of future research:

e Extend the pure dataflow architecture model to a hybrid model, based on
argument-fetching principles. NNs are naturally macro-dataflow graphs. The

hybrid model is expected to show better performance with low cost of the

scheduling unit.

¢ Explore dynamic dataflow architectures in order to maximize the parallelism

offered by NNs.

¢ Extend the study of neural network simulation on highly and massively dis-

tributed dataflow parallel multiprocessors with large number of processors.

¢ Study other simulation aspects.
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