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A general mathematical model has been developed for predicting the performance and
simulation of a packed bed immobilized enzyme reactor performing lactose hydrolysis,
which follows Michaelis — Menten kinetics with competitive product (galactose)
inhibition. The performance characteristics of a packed bed immobilized enzyme reactor
have been analyzed taking into account the effects of various diffusional phenomena like
axial dispersion, internal, external and simultaneous effects of internal and external mass
transfer limitations. The model design equations are then solved by the method of

weighted residuals such as Galerkin’s method and orthogonal collocation on finite

elements.

The effects of intraparticle diffusion resistances, external mass transfer and axial
dispersion have been studied and their effects were shown to reduce both internal

effectiveness factor and time required to reach final steady — state. The effects of product



inhibition have been investigated at different operating conditions correlated at different
regimes using dimensionless By, (S¢, Bi,0, ¢). Product inhibition was shown to reduce
substrate conversion, and to decrease effectiveness factor when B; > Bo, however it
increases internal effectiveness factor when s < Bxo. The effectiveness factor is found to
be independent of product inhibition at cross — over point at which B, is defined. Effects
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1

INTRODUCTION

1.1 Statement of The Problem

Since the effects of various phenomena such as axial dispersion, internal, external and
simultaneous internal and external mass transfer with reversible Michaelis — Menten
kinetics are strongly coupled, this makes prediction of reactor performance difficult.
Little is published about performance of immobilized enzyme reactor performing
reversible enzyme reaction coupled with internal and external mass transfer in an
immobilized enzyme reactor. Most of the published work assumed either first order or
Michaelis — Menten kinetics with external or internal mass transfer limitations. Little
effort was put into generalizing a model that combines all enzymatic reactions with axial
dispersion (fluid hydrodynamic in the reactor) and mass transport phenomena in various

combinations in an immobilized enzyme on a porous spherical particles.

The proposed model, in this work, is formulated to examine extreme cases considered in

the literature. Hydrodynamics of immobilized enzyme reactor (IMER) can be described



by dispersed plug flow model characterized by a Peclet number. The value of Pe number
is a measure of the degree of dispersion. High values of Pe number (Pe— ) correspond
to a slightly dispersed reactor, approaching plug flow and when (Pe — 0) the reactor
operates as a highly dispersed reactor, approaching CSTR. Thus a finite Pe number can
represent real reactor. Little work has been conducted to study the performance of IME

reactor performing reversible enzyme reaction, competitive product inhibition reaction.

Most work is limited to special cases such as CSTR.

1.2 Motivation and Goals of This Thesis

Therefore, the objective of this thesis is to study the performance of a packed bed
immobilized enzyme reactor performing reversible Michaelis — Menten kinetics at
various operational conditions. The effects of various phenomena such as external,
intemal mass transfer limitations in an enzyme immobilized on a porous spherical
particles and axial dispersion are studied. The performance of packed bed immobilized
enzyme reactor is tested over a wide range of operating conditions in terms of
effectiveness factor and substrate conversion as a function of Thiele Modulus, Peclet

number, Damkholer number, Biot number and product inhibition and Michaelis modulus.

The reactor performance is reduced to a function of the following phenomena that can be

represented by dimensionless parameters

(1) Effect of external mass transfer limitation characterized by Damkholer number.



)

3
Q)]

&)

(6)

Effect of internal mass transfer limitations on an immobilized enzyme on a
porous spherical particles support, characterized by Thiele modulus.

Effect of axial dispersion, represented by Peclet number.

Simultaneous external and internal diffusional limitations described by studying
the effect of Biot number

The enzyme that catalyzes a specific reaction according to reversible Michaelis
— Menten kinetics is immobilized on porous spherical particles. Michaelis
modulus, product inhibition modulus and dimensionless equilibrium modulus
are kinetics parameters used to describe IME reactions.

Study unsteady state behavior.

1.3 Methodology

In this thesis, it is proposed to present a general mathematical model that represents a

packed bed immobilized enzyme catalyzed reactor. This is done, by setting up the

differential material balance considering external and internal diffusional limitations on

the enzymatic reaction. The resulting governing equations are then normalized to

specified dimensionless parameters that describe system behavior and characterize its

nature.

A simplified assumption is then incorporated to predict special cases such as study of the

effects of external mass transfer with enzymatic reaction. Specialized cases for a specific

type of immobilized enzyme reactors such as CSTR or plug flow reactor are studied. On



the other hand, some special cases constraining control rate either mass transfer limitation

or reaction rate control are also developed.

Chapter 2 reviews the modeling of immobilized enzyme reactor encountered in the
literature and related assumptions. In this chapter a more detailed review is classified

according to the reactor hydrodynamic type, isothermal / nonisothermal and effects of

mass transfer diffusional limitations.

Chapter 3 gives a detailes of the proposed mathematical model of an immobilized
enzyme reactor. This general model is set up with its dimensionless parameters that
describe the reactor behavior. A CSTR immobilized enzyme reactor and external mass

transfer model are two special cases studied with simplified assumptions.

Numerical simulations of the nonlinear and non-homogeneous partial differential
equations proposed in chapter 3 are solved using fast and efficient solutions. Much more
emphasis is put on toward spectral method of solution such as collocation method and
Galerkin’s method. The first method is used extensively in this work because it
approximates the Galerkin’s solution. However, Galerkin’s method is used to propose a
more analytical approach to solve the immobilized enzyme catalyzed reactor system. All
this numerical solutions are discussed in chapter 4. Chapter 5 discusses the simulation
results which include effects of kinetic and transport parameters on both substrate
conversion and internal effectiveness factor. In this chapter, both steady and unsteady
state behaviors have been discussed. Finally, chapter 6 concludes the main findings

from this theoretical study with recommendation to be taken in future study.



2

LITERATURE REVIEW

2.1 Mass Transfer Limitations In Immobilized Enzyme
Reactors

Enzyme immobilization offers a number of advantages over enzymes in suspension.
Immobilization permits the reuse of the enzyme and may provide a better environment
for catalyst activity and also it reduces the cost of downstream processing in addition to
good product quality. These factors make it widely used in industry where many enzyme

— catalyzed reactions are of industrial interest.

Continuous processes with immobilized enzymes can be carried out in different types of
reactor. Lortie and Pelletier (1992) have shown that plug-flow reactor model with
external mass transfer resistance can represent adequately a fixed bed immobilized
enzyme reactor for moderate or low dispersion. However, dispersed plug flow reactor
model is superior in predicting the performance of packed bed reactor for isomerization

of glucose to fructose (Ching and Ho, 1984). Furthermore, a comprehensive model for a



general rate expression such as reversible Michaelis — Menten kinetics was developed by
Abu-Reesh (1997) neglecting internal mass transfer resistance. A fluidized bed reactor
model taking into account the reversibility of the reaction, inhibition by substrate and

products or diffusional limitations was developed (Bodalo et al., 1995; Kisser et al.,

1990).

In a continuous stirred-tank reactor (CSTR), the average reaction rate is lower than it
would be in a plug flow or packed bed reactor. Moreover, ease of replacement of
immobilized enzyme catalyst and easier control of temperature and pH are plusses for a
CSTR. Furthermore, CSTR performance is superior to that of a packed bed, when the
immobilized enzymes are kept suspended at fairly high agitation rates. Bodalo et al.

(1993) put forward a general mathematical unsteady state model for the analysis and

simulation of such a CSTR.

One way of immobilizing an enzyme is by encapsulation of enzyme in a Hollow fiber
bioreactor (HFBR) by placing the enzyme solution within the fiber lumen. The enzyme
solution saturates the porous sponge section of the fiber wall and substrate passes through
the fiber lumen (the reactant which is fed through the inner tube). The enzyme is
immobilized in the spongy matrix and cannot pass through the matrix of membrane skin.
This method of immobilization has several advantages such as the enzyme is prevented
from leaving the spongy matrix due to the sponge-gas interface at the shell-side fiber
boundary. Also, it serves to minimize mass transfer diffusional resistances, thereby
making it a very attractive method for enzyme immobilization where, the substrate and

enzyme are physically separated. Another very important practical advantage of this type



of enzyme immobilization is the fact that the enzyme is only immobilized with respect to
the solution flowing in the fiber lumen. Furthermore, by the simple expedient of flushing
solution through the annular sponge, it is possible to remove and replace the enzyme (or
introduce another enzyme) as desired. So, it is well suited for the conduct of multi-

enzyme conversions and to the use of highly labile enzymes, which cannot tolerate

chemical immobilization.

Many models are available for the theoretical description of HFBR (Belfort, 1989;
Kelsey et al., 1990; Kleinstreuer and Agramel, 1987). Waterland et al. (1974) have
solved both linear and nonlinear reaction kinetics in membrane reactors. The behaviors of
HFBR are studied in terms of bulk concentration and dimensionless axial coordinate as a
function of Thiele modulus, radial profile and Michaelis — Menten modulus. Also, an
exact analytical solution for substrate concentration profile throughout an idealized fiber,
which incorporates the membrane and hydrodynamic mass transfer resistances, are
obtained for first order enzyme reaction and numerical finite difference solution for
nonlinear Michaelis-Menten reaction kinetics. Furthermore, numerical finite difference

solution are employed for nonlinear kinetics.

However, the coupled set of model equations describing the behavior of this reactor
represents an extended Greatz problem in the fiber lumen, with diffusion through the thin
membrane skin and reaction in the micro-porous spongy matrix. Kim and Cooney (1976)
and Jayaraman (1992) have obtained compact solution to the first order reaction kinetics
in HFBR. Jayaraman and Kulkami (1997) have solved nonlinear reaction kinetics, by

developing a general iterative algorithm based on evaluation of effectiveness factor. They



have a good agreement between their results and that of finite difference method.

Willaert et al. (1999) studied diffusional mass transfer limitations in hollow fiber
bioreactors. Theoretical analysis was used for steady-state diffusion and reaction model.
Analytical expressions were derived for zero- and first — order kinetics including the
effects of Thiele modulus on effectiveness factor for first order kinetics. Moreover, the
influences of effective diffusivity ratio, and the thickness of membrane on the reactor
performance were studied. Deviation from Newtonian fluid behavior was considered in

the analysis for designing HFBR, where the first order and Michaelis — Menten kinetics

was assumed in the analysis (Jayaraman, 1994).

Paunovic et al. (1993) developed a one-dimensional mathematical model of isothermal
anaerobic biodegradation in HFBR with Monod type of growth in recycle reactor. Kumar
and Modak (1997) studied the effect of various operating conditions, such as substrate
feed rate, length of bioreactor and diffusivity of substrate, on the reactor performance.
Diffusion is assumed to be the dominant process in the radial direction while axial
convection dominates in the lumen of the bioreactor. The diffusion reaction and
convection control regimes are identified based on Peclet number and Thiele modulus.

Moving boundary of biofilm was considered in their analysis.

Among these reactors, packed bed enzyme-catalyzed reactors have promising
applications in many biochemical processes (Abu-Reesh, 1997; Hassan et al., 1996 &
1995) and biological processes (Hassan and Beg, 1987) having advantages of longer solid

retention times and ease of operation and relatively high conversion rates.



In spite of the well-established industrial application of packed bed immobilized enzyme
reactors, little effort has been made toward mathematical modeling of such reactor with
kinetics other than Micaelis — Menten equation. In most of the cases, enzyme
immobilization is accompanied by mass transfer limitation. Different factors have to be

taken into consideration in modeling of immobilized enzyme reactors shown in Figure

2.1:

(1) Mode of operation, whether the steady state or transient.

(2) Mass transfer limitations (exteral, internal and simultaneous transfer).

(3) Resistance of the membrane to any transport processes.

(4) The kinetics of enzyme catalyzed reaction.

(5) The axial dispersion effects.

(6) Types of reactors: Packed Bed, CSTR, Hollow Fiber Bioreactor (HFBR) or

Fluidized Bed Reactor (FBR).

(7) The stability of enzyme and effect of temperature on the enzyme activity.

(8) Heat transfer effects.
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Figure 2.1: Schematic diagram of (a) Encapsulated enzyme particle (b)
Substrate profile inside an encapsulated enzyme particle
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Quantitative knowledge of the effect of these factors on the reactor performance and
simulation is required for efficient design of immobilized enzyme reactor. Several
isothermal steady state models have been considered using one or more of these

phenomena in various combinations.

External mass transfer limitation is shown to have significant effect on the performance
of immobilized enzyme reactor (Vasic-Racki et al., 1991) using reversible enzyme
reactions (Park er al., 1984). Analytical solution was given by Carrara and Rubiolo
(1997) and tested with experimental setup, for evaluation of mass transfer coefficient and
conversion. However, Kobayashi and Moo-Young (1971) were the first to apply the
dispersion model to immobilized enzyme reactor. Dispersed plug flow reactor model
(taking into account the effect of axial dispersion on flow reactor) is shown to be superior
in predicting the performance of packed bed reactor for isomerization of glucose to
fructose described by Michaelis — Menten (Ching and Ho, 1984; Ching and Chu, 1988).
Furthermore, dynamic behavior of plug flow reactor was studied and the Kkinetics
parameters were estimated by fitting the experimental data to satisfy the dynamic
response RTD curve. Michaelis — Menten kinetics is considered in experimental

validation of PFR (Lortie and Thomas, 1986 and Lortie, 1994) and in spiral reactor
(Bakken et al., 1989).

Abu-Reesh (1997) developed a general dimensionless model for predicting the steady

state performance of immobilized dispersed plug-flow reactor performing reversible
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Michaelis — Menten kinetics. The effects of dimensionless parameters of Damkohler
number (Da), Stanton number (Sf7), Peclet number (Pe), the equilibrium constant and
input substrate concentration were studied parametrically. Abu-Reesh (1997) found that
conversion is almost complete for high Da and St number especially in plug flow reactor
which gives higher conversion compared to other reactor models. Furthermore, it is found
that substrate conversion increases with increasing substrate external diffusion (i.e.,
decreasing diffusion resistance) and residence time. Moreover, the higher the St number,
the higher the maximum conversion that can be achieved. The effect of the equilibrium
constant on reactor performance was also studied. Recently, Carrara et al. (2001) studied
the behavior of fixed bed reactor considering steady — state conditions and external mass
transfer resistance in the fluid around spherical catalyst particles. Their results showed

the importance of hydrodynamic and kinetic reaction parameters for error reduction in the

prediction of experimental behavior.

When enzyme is attached to a porous carrier matrix the internal mass-transfer limitations
have a great influence on the intrinsic kinetics. It is necessary to develop comprehensive
models that quantitatively account for the internal diffusional effects in addition to
external one. The internal diffusional limitations with external diffusional effects can be
quantified through the use of an effectiveness factor, 1, or apparent kinetic parameters
using the idealized plug flow reactor assuming Michaelis — Menten kinetics (Jung and
Bauer, 1992; Marrazo and McCoy; 1981; Shiraishi ez al.; 1996a, 1996b, 1995; Shiraishi
and Fujiwara, 1996; Miyakawa et al; 1999a, 1999b). Isothermal, steady state and

omission of the axial dispersion term were assumed in these analyses. The Biot number,
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effectiveness factor and Thiele modulus were studied numerically using Taylor expansion
and orthogonal collocation methods. Theoretical analysis was incorporated with

experimental data to correlate mass transfer coefficient (Shiraishi et al., 1996b).

Many researchers considered coupled internal and external diffusional limitation (Bodalo
et al., 1986; Bodalo et al., 1991; Baratti et al., 1994; Do et al., 1982; Clark & Bailey,
1983; Dennis et al., 1984; Clark & Bailey, 1984; Clark et al., 1985; Shyan et al., 1975).
Coupled internal and external diffusional limitation were considered in development of a
general CSTR model in which the effect of membrane diffusional resistance and Biot
number were taken into account for prediction the effectiveness factor of an encapsulated
enzyme particle (Lin, 1979). Also, analytical solution of effectiveness factor was
developed for Michelis — Menten kinetics. Bodalo et al. (1995) and Manjon et al. (1987)
considered the external and internal diffusional limitations and their model was solved
numerically for reversible Michaelis — Menten kinetics with competitive product
inhibition in a fluidized bed reactor (FBR). They found a good agreement between the
model predictions experimental data obtained from operating a FBR containing S-
galactosidase covalently immobilized in Chromosorb-W. In the last few years,
considerable progress has been made in enzyme reactor engineering. Most of the studies
published on enzyme reactor modeling have been confined to steady-state isothermal
reactor operation. Although many practical systems of interest would fall into this
category, it is useful to examine their transient behavior with thermal deactivation of

enzyme. Recently, Xiu et al. (2001) developed a model for immobilized enzyme
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catalyzed kinetic resolution of racemate in a fixed — bed reactor. They studied the effects
of mass transfer limitations, competitive substrate inhibition and deactivation of

immobilized enzyme.

Unsteady state isothermal models in which coupled internal, external and axial dispersion

is considered in this research. It is useful to examine reactor transient behavior for several

reasons:

1. For understanding the start-up and shutdown performance of a reactor
2. To study the reactor dynamics and control characteristics under various operating
conditions and disturbances
3. To estimate the time required to reach a new steady state when a definite
disturbance is introduced into a reactor system at steady state
4. To explore possibilities of multiple steady states of a given reactor scheme
5. To analyze the regulation and control of reactors by injected activators, inhibitors,
or co substrates;
Hassan and Beg (1987) studied the performance and simulation of a packed bed
biological reactor assuming that the diffusional limitations is the biofilm with Michaelis —
Menten kinetic. They studied the effects of Peclet number, product inhibition of an inert,
Biot number, Biofilm thickness and surface area on the exit concentration. Bodalo et al.
(1993) developed a mathematical model applicable to the analysis and simulation of

heterogeneous enzymatic reaction in a CSTR. The model describes the unsteady state
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behavior for CSTR and the diffusion reaction equation in the spherical catalyst particles
for reversible Michaelis — Menten kinetics. The dynamic behavior and the effect of
effectiveness factor on the exit substrate concentration were studied. The method of finite

difference was used to simulate the design equations and to estimate effectiveness factor,

conversion and average reaction rate.

Nonisothermal model including coupled internal and external diffusional effects on the
performance of packed bed reactors was considered by Lin (1991) and Hassan et al.
(1996 and 1995). Lin (1991) developed nonisothermal model taking into consideration
the effect of enzyme activity with temperature to predict the optimal feed temperature for
immobilized enzyme packed bed reactor. Hassan et al. (1995) presented a transient model
that considered axial dispersion of heat and mass, internal and external mass transport,
assumed Michaelis — Menten kinetics for a bioreactor packed bed with spherical
particles. Hassan et al. (1996) studied and analyzed the influence of the shape of enzyme

microcapsule on the performance of the reactor.
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2.2 Application of Immobilized Enzyme Reactor

2.2.1 Isomerization of Glucose to Fructose

This reaction converts glucose which is not very sweet to fructose, the most sweet of the
natural sugars. Syrups from this process compete with sucrose (cane sugar) in many food
applications. Almost all manufacturers of soft drinks use high fructose syrups because
they are less expensive than sucrose. This was devastating to world prices of cane sugar
and crippled the economies of some countries. The forms of glucose and fructose are

shown in Figure 2.2. The kinetics of this reaction follows reversible Michaelis — Menten.

The isomerization of glucose to fructose is part of the glycolysis cycle that converts
glucose to pyruvate. The way this is done is to isomerize the aldehyde (hemiacetal)
glucose to the ketone (as a hemiacetal) fructose, and make another phosphate ester. The
isomerization takes advantage of the ease of breakage of a C-H bond which involves a
carbon next to a carbonyl carbon. This is important in the next step which cleaves the
bond between carbons three and four of fructose. It is noted that this bond involves the
carbon next to the carbonyl carbon of fructose. This cleavage would not have been
possible without the isomerization of glucose to fructose, because the carbonyl group of

glucose is too far from carbons three and four to make that bond breakable.
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Figure 2.2: Molecular Formula of (a) D-glucose (b) D-fructose
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2.2.2 Lactose hydrolysis

2.2.2.1 Introduction

The main purpose of using immobilized enzymes here is to convert the disaccharide
lactose via hydrolysis into its monosaccharide components, glucose and galactose.
Lactose is a disaccharide that occurs naturally in both human and cow's milk. It is widely
used in baking and in commercial infant-milk formulas. One large problem with lactose
is that many people are lactose intolerant - meaning that their body is incapable of
digesting lactose. So it must be hydrolyzed into its monosaccharide components,
allowing digestion which is the purpose of new products today such as Lactaid ®. Like
cellobiose and maltose, lactose is a reducing sugar. It exhibits meta - rotation and is a
1,4’-B-linked glycoside (Figure 2.3). Unlike cellobiose and maltose, however, lactose
contains two different monosaccharide units. Acidic hydrolysis of lactose yields 1 equiv
of D-glucose and 1 equiv of D-galactose, the two are joined by a beta-glycoside bond
between C, of galactose and C, of glucose (Figure 2.4). In other words, 100 g of lactose
will produce 50 g each of galactose and glucose. The hydrolytic conversion of lactose to
glucose and galactose represents one way of adding value to whey and whey-derived
products. For the enzymatic lactose hydrolysis various mesophilic B-glycosidases have
been described, some of which have already made it to the market. The application of
known glycosidases is however partly hampered because of the moderate thermal

stability and narrow pH profile of enzyme activity as well as due to the significant

inhibition by galactose.

18



Figure 2.3: Lactose, a 1,4'-p-glycoside

SCH,OH

3
Galactose

Figure 2.4: Galactose chemical formula — Hworth formula
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2.2.2.2 Application of Lactose Hydrolysis

Lactose is a disaccharide that occurs naturally in both human and cows milk which
accounts for 40 % of milk solids. It is widely used in baking and commercial infant -
milk formulas. The hydrolysis of lactose, the sugar of milk to glucose and galactose has
received much attention in recent years (Santos et al., 1998, Petzelbauer et al., 1999 and
Carrara and Rubiolo, 1995). It is used for production of low lactose milk for consumers
that suffer from lactose deficiency (70 % of the world population is lactose deficient,
Carrara and Rubiolo, 1995). The hydrolysis product is sweeter and more soluble and

biodegradable than lactose and can be used in further biotechnological processes.

The amount of lactose produced annually from whey is about 3.3 million tons (Carrara
and Rubiolo, 1995). It is produced as cheese whey, which is the liquid, separated after
milk coagulation. It represents about 90 % of the milk volume. The disposal of whey is
considered a serious pollution problem facing dairy industry because of its high pollutant
content (COD of about 70.000 ppm). Acid hydrolysis of lactose is not favorable because
of color formation and fouling of ion exchange resins used in processing. A better
alternative is the use of enzymatic method. Enzymatic lactose hydrolysis is carried out by
adding S-galactosidase commonly known as lactase to milk, skim milk or whey to
hydrolyze lactose prior to pasteurization. Lactase is commercially available and used in
large scale processes. One problem associated with the use of lactase is that complete

hydrolysis is difficult to achieve because of product (galactose) inhibition and production
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of isomer of lactose, allolactose. Several microbial sources of S-galctosidase and reactor
types have been used for the purpose of economic production of low lactose milk.

Lactose hydrolysis in plug flow reactor gives higher conversion compared to continuous

stirred tank reactor although the latter has good mixing and lower construction cost.

2.2.2.3 Kinetic of Lactose Hydrolysis

Kinetics of lactose hydrolysis has been studied extensively in the literature (Santos et al.,
1998; Petzelbauer et al., 1999 and Carrara & Rubiolo, 1997). Michaelis - Menten model
with competitive product inhibition by galactose is widely used to describe the hydrolysis
(Santos et al., 1998). Different types of bioreactor (Yang and Okos, 1989; and Bakken et
al., 1984) and biocatalyst (Santos et al., 1998; Petzelbauer et al., 1999; Papayannakos et

al., 1993; and Tomaska et al., 1995) have been investigated for lactose hydrolysis.

The use of lactose — hydrolyzed whey in ice cream would help to minimize the potential
problems of sandy texture caused by the formation of lactose crystals while contributing
to the sweetness (Bury and Jelen, 2000). They studied the effect of lactose hydrolysis on
freezing point and dipping characteristics of ice cream. Lactose hydrolysis decreased the
freezing point from - 1 .63 "C (0 % hydrolysis) to - 1.74 °C in a sample hydrolyzed to 83
%. Firmness decreased from 0.35 Joules ( 0 % hydrolysis) to 0.08 Joules in the sample
hydrolyzed to 83 %. Lactose hydrolyzed samples melted at a faster rate than the control
(0 % hydrolysis). One problem limited the application of lactase derived from

mesophilic sources is the non-satisfactory long-term stability of enzyme activity (Carrara
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and Rubiolo, 1995). Santos et al. (1998) reported that some lactases are quite stable for
temperature up to 40 "C. Above this temperature the enzyme deactivation effect becomes
important (Santos et al., 1998). The use of thermostable lactases with an operational
temperature above 60 °C solves many problems related to lactose hydrolysis such as (1)

substrate solubility, (2) microbial contamination, (3) enzyme stability, (4) product

inhibition, and (5) product distribution.

The optimal flow axial velocity of packed-bed plug flow reactor employed for lactose

hydrolysis was studied (Figueroa et al., 1997). Results showed the existence and

uniqueness of an optimal constant velocity in the packed bed column.
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3

MATHEMATICAL ANALYSIS

3.1 Internal and External Mass Transfer — Reaction Model

Consider a packed bed immobilized enzyme reactor (shown in Figure 3.1) of length, L,

fluid velocity, u, where Csp and Cpy are the substrate and product inlet concentrations

respectively.

3.1.1 Assumptions

The mathematical model that describe the behavior of a packed bed immobilized enzyme

reactor has been formulated using the following assumptions:

(1) Isothermal packed bed immobilized enzyme reactor.
(2) Neglect the resistance of the membrane to any transport process (neglect
partitioning coefficients).

(3) Enzyme activity is uniform throughout the particle.
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The enzyme is immobilized evenly inside porous spherical particles, which are
uniformly packed in the reactor.

The convective velocity is uniform.

The hydrodynamics of the bed fluid is described by the dispersed plug-flow
model.

Pressure drop across the reactor and radial concentration gradient in the bulk
fluid phase are assumed to be negligible.

Assume the enzyme deactivation is absent. This may occur due to one or more
of several phenomena such as thermal shock, continuous exposure to substrate
for long period of time, formation of inactive complexes with substrate and
foreign material present in the solution.

The enzyme can catalyze a specific reaction according to reversible Michaelis —

Menten kinetics.

(10) The enzymatic reaction is monosubstrate and yields only one product.

(11) Ficks Law can model the substrate and product diffusion inside the catalytic

particle. The effective diffusivity does not change throughout the particles and

is independent of the concentration
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Figure 3.1: Packed Bed immobilized enzyme Reactor
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3.1.2 Mass Balance on the Reactor

Under these assumptions, the differential mass balance in the liquid bulk phase for the

substrate and the product can be written respectively as,

aC o*C acC
i asz =Dee azzge__u B;b -(l-e)KLa(CSb_CSIr-R) G-
aC o*C aC
ST,%:D'*& azzl’b —H azpb ‘(I-S)KLa(C,,,, _CPlnn) 3.2)

where, ¢ is the reactor voidage, Ds;, Dp. are the effective substrate and product axial

diffusivity (or axial dispersion coefficients) and K;a is the overall mass transfer

coefficient.

The initial condition for reactor start-up contains the immobilized enzyme particles
suspended in a solution without substrate or product. At ¢ = 0" the substrate and product

are continuously pumped into and out of the reactor at constant rate,

att=0", Csy=0

Equations (3.1) and (3.2) are subjected to the following boundary conditions requiring

continuity of fluxes at both ends of the reactor (Danckwerts, 1953) for both substrate and

product
D. e oC
tz=0" C L= - L b 33a
atz SbL=o Sb|:=o u az o ( )
D e oC.
C . =C, =S 3.3b
Sb l 2=0 Sb L._.o u az o ( )
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The substrate and product mass balance equations in immobilized enzyme particles on a

porous spherical particle support is given as:

aC, Lo, acs)
s _p LO9[,29s) _p 3.5
ot % 2 ar(’ or s (3-3)
aC, 1af, ac,,)
=D, —— +R 3.6
o "y ar(' or g G0

where, Ds,, Dp, are the effective substrate and product inter-particle diffusivity.

3.1.3 Kinetic Equation of Lactose Hydrolysis

Consider the general mechanism of reversible Michaelis — Menten kinetics. The
reversible equation is able to explain irreversible Michaelis — Menten when (K, = o and
K,—» ) and competitive inhibition by a product when (K. — o). For example, enzymatic
lactose hydrolysis has been modeled in the literature using soluble S-galactosidase
(Santos et al., 1998). Michaelis — Menten model with competitive product inhibition by

galactose is widely used to describe lactose hydrolysis. The hydrolysis rate is given by

(K > o):
C,-C,/K
R, =R, =v TP e 3.7
T KL (+Co/KR)+C G
where, R( Cs,Cp) = Reaction rate , mole /L.h
Cs = Substrate (lactose) concentration, mole/l.

27



Ce = Product (galactose) concentration, mole/l.

Kn = Apparent Michaelis — Menten constant, mole/l.
K, = Inhibition constant, mole/l.
Vmax = Apparent maximum reaction rate, mole/Lh.

The rate constants Vma., Km., K, depend on temperature according to Arrhenius

relationship (Santos et al., 1998),

Vs = E, exp(l 1.30- ﬁ) (mol/l. h)

K, = exp(28.54 -w) (mol /)
9001

K, = exp(24.58 - T) (mol /1)

where Ej is the initial f-galactosidase (lactase) concentration (g/]).

The initial and boundary conditions are taken as,

ate=0, Cs=Cp=0

atr=0, a;:rSLo = a;" Lo =0 (3.8)

atr=R, Dsp-a-acri » =K(Ce-C,,) (3.9a)
D,, :Cr" - K.(Cn-Ci_,) (3.9b)
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3.1.4 Governing Equations in Dimensionless Form

Equation (3.1) to (3.9) can be reduced to the corresponding dimensionless forms by

introducing the following dimensionless parameters:

Substrate and product concentration variables

S=CS = CS ’Sb-:&, P:E’-,—-, a:—C'—Pb— (3.10)
Cso CSbL-o' Cso Cso Cso

Dimensionless axial, radial coordinate variables and dimensionless residence time

r4 r v [
=—, =—, 7= O 3.11
¢ L d R Cso @11y

The model can be described by the following dimensionless parameters

o=Xa y=Ss0 K, =1/K,
Cso K,
2 D
¢2 - va ap = S
KD, D,,
D'=L8vmax E,=KMR,
u CSO vmax
Pe = Lu a:=-23—‘- St=(l-e)KLa£
Dg.e D,. u
BiP = KLPR Bis = KLSR
DPP DSp
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Table 3.1: Dimensionless parameters

1. Kinetic parameters

Michaelis modulus

Product inhibition modulus

2. Internal mass transfer parameters

Dimensionless residence time, Bs

Thiele modulus, ¢

Diffusivity ratio in the internal
sites of the enzyme particles

3. External mass transfer parameters

Stanton number, St

Damkohler number, Da

Modified Damkohler number, Da'

oo Kn
Cso
C

y= S0
K,

B _ﬂ( € )_LeD,,
S Bi\l-¢g u R?

_DaSt _Da' _v.,R’

o Do’
Bs OB K,D,
D

a,= 5
Dy,

St = B,Bi(l_—e) =(1 —t»:)l(,,a£
€ u

a=Da'_£(e) € Vo
0St Bi

4. Simultaneous internal and external mass transfer parameters

Substrate , Product Biot mass number

5. Axial dispersion on external fluid side

Peclet number, Axial dispersion modulus

Diffusivity ratio with respect to the axial position

l-¢ =l-eK,,,KLa
Da'=9DaSt=9£St=-L—§-v£
Bi~  u Gy
Bis=K‘sR ,Bi,=K"’R
Dy, D,,
Pe = Lu
D&



Consequently, equations (3.1) to (3.9) can be written in dimensionless form as follows,

s, 1S, &S,

Da'’ ot Pe et - Y -St(S,, = ;=|) (3.12a)
Dad’ aa}:‘: = a,lPe Z;P: - g:‘: —St(P,, - P| M) (3.12b)

with the following boundary conditions
até =0, S,,|¢=0. =1 +é§;‘?” i (3.13b)
Blewr = Blio- +a:1,,ez—?;_o. (3.13b)
atg =1, Z‘Zﬁ y = 22’1 » =0 (3.19)

Mass balance for the substrate in immobilized enzyme particles supported on porous

spherical particles is given by,

95 _p LO[0S) pyR

Da'—~= f; = ag[g ag) Da' R, (3.15a)
s _ 1 1 8(,,38) %

or, §-0¢2 52 -52'(5 af) RS (3.15b)

and similarly the product concentration in immobilized enzyme particles is given by,

oP 1 108(,,0P) &
el )R 0
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Dimensionless reversible Michaelis — Menten kinetics can be written as:

~ o~ S-K.P
R, =R, = £ 3.17
S 00+yP)+sS @17
Equations (15) and (16) are subject to the following boundary conditions:
at€ =0, s =6_P =0 (3.18)
0l len
_ os . oP .
até=1, Y N = BzS(S,, "SI;.I) T . = apr,,(B, - Plf_l) (3.19)
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3.2 Effects of External Mass Transfer Limitation

The effects of external diffusional effects on enzymatic reaction in an immobilized
enzyme reactor is studied by considering a packed bed enzyme immobilized reactor of

length, L, fluid velocity, u», with Csp and Cpp as the substrate and product inlet

concentrations respectively.

3.2.1 Assumptions

The mathematical equations that describe the behavior of a packed bed immobilized
enzyme reactor have been formulated using the same assumptions described in section
(3.1.1) of internal and external mass transfer model. Only the fourth assumption is
relaxed by assuming the enzyme is immobilized evenly inside non-porous spherical
particles instead of porous, which are uniformly packed in the reactor. The kinetic

equation of reversible Michaelis — Menten has been considered in section (3.1.2).

3.2.2 Dispersed Plug Flow Reactor Model.

Under the relaxed assumptions, the steady state differential mass balance in the liquid

bulk phase for the substrate and the product can be written respectively,

8°C,  0C,

0= Dy —u= -Kalc, -c4| ) (3.20)
8°C,, _oC
0= Dp - —u™tt al(Coy~Ci|._.) (321)

where, Ds., Dp; are effective substrate and product axial diffusivity (or axial dispersion
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coefficients), m?/ h and K, a is mass transfer coefficient in liquid, n!

Equations (3.20) and (3.21) are subject to the following boundary conditions that require

continuity of fluxes at both ends of the reactor (Danckwerts, 1953) for both substrate and

product.
atz=0", CSbLgo' =Cg|,_,- '*"D_sza%sé‘ (3.22a)
2=0"
D, oC
CPb l::o’ = CPb [::0' + ;k—_a—il (3 .22b)
2=0"
atz=1L, OCq| _ OCa) =0 (3.23)
az I:-L az I:xL

At steady state the rate of substrate consumption is equal to the rate of substrate mass

transfer:

Veax C
K.alcs-c; )= = S (3.23a)
K, (1 + —”] +C,
K ) s
C
K,a(C, -C,)= "'"2 s (3.23b)
K, (1 + —”-) +C;
K‘- !

From material balance, the inter-phase concentrations can be written as

Cs, +Cp =Cy,
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3.2.3 Governing Equations in Dimensionless Form

Equation (3.20) to (3.23) can be reduced to the corresponding dimensionless forms by

introducing the following dimensionless parameters:

Dimensionless axial coordinate, substrate and product concentration variables

z C, C C. Cc
4:—, Si= 3 ’ =_S_b, I)i= B sP = £ (3.24)
L CSO ’ CSO CSO ® CSO
The model can be described by the following dimensionless parameters
og=Kn , G g 1k, pe=L",
50 KP Sz
o, =2 s-k,ak, Da= Y (3.25)
D,, u K,K.,a
Equations (3.20) to (3.23) can be written in dimensionless form as follows,
2
=285 By g, -5,) (3.26)
Pe d§” d¢
1 d*P, dP,
= -——=-SP,-P, 3.2
areds: a¢ SB-F) 3:27)
with the following boundary conditions
1 ds
at¢ =0, Syl 0 =14 ——2 (3.28a)
§=0 Pe d§ |, -
1 OP
Bl . =PB| -+ —£ (3.28b)
=0 “U aPedd|, .
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ds,
dg

_9
e 9

atg =1, =0 (3.29)

¢=1

The dimensionless reversible Michaelis — Menten kinetics can be written as:

~ = S-K_.P
R =R, = £ 3.30
ST e(+y P)+S (3.30)
At steady state condition
S, -K_P,
S, -8,)=6D - E_i 3.31
(b :) a0(1+7P,.)+S,. ( a)
S;-K_.P.
—(P. -P)=6D i E i 3.31b

Equation (3.31) can be arranged as quadratic equation in S; as follows,
©y-1)s} +[(1-07)S, -6y +1+ Da)ls, +65,(y+1)=0
The dimensionless substrate concentration at the enzyme surface is calculated by the
following equation
1
S, =m[9(Da +y+1)+S,,(9'y—l)iA] (3.310)

where A* =(1-87)*S? ~20(®y —1){Da —y-1]s, + 02| +v)* + Da(3 + 2y)]

Equation (3.31c) can be used provided that 6 y = 1. However, when 8 y =1 (i.e. Km =K)

the following equation can be used instead

s,0+1)

=l 31
* 8(Da+1)+1 (3.31d)
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Numerical solution of the above non-linear differential equation can be obtained by using
reverse shooting method, Galerkin’s method and orthogonal collocation on a finite
element. It is clear from the above equations that the reactor performance depends on the

dimensionless parameters: Da, St, Pe, y and 8.

3.2.3.1 Plug Flow Reactor (Pe—> ©)

When Peclet number is infinity, equations (3.26) and (3.29) will be reduced to the plug

flow reactor equation:

ds
d—gb:s:(s,. -S,) (3.32a)

=0, §, =1 (3.32b)
Substituting for §; from equation (3.29) into equation (3.32), the resulting differential

equation can be solved using Runge-Kutta method or Matlab using ode45 function.

3.2.3.2 Continuous Stirred Tank Reactor (Pe— 0)

To derive the performance equation for CSTR, a similar procedure is used. Substrate

mass balance around the reactor at steady state gives:

F
(Cs0=C;)= K,alC; -Cy) (3.33a)
where, F =Liquid flow rate, 1/h
V = Reactor Volume, 1.
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Using dimensionless variables, this equation reduces to:

SK(S, -S,)=1-5, (3.33b)

where, St =K La% , for CSTR

Equations (3.29) and (3.33b) can be solved simultaneously to obtain the exit

dimensionless substrate concentration.

3.2.3.3 Mass transfer limitations (S;~ 0)

For the case of external mass transfer limitations, C;; is very small compared to Cs,. For

this case, the dimensionless substrate concentration at the reactor exit is given by:

S,, =e™*, for PFR (3.34)
1
Sb.!. = m, for CSTR (335)
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3.3 CSTR Model

3.3.1 Assumptions

The mathematical equations, which describe the behavior of, stirred — tank reactors have

been formulated following the assumptions of Bodalo et al., 1993:

(1) The reactor is assumed to be perfectly mixed and isothermal conditions are
maintained.

(2) The enzyme is immobilized evenly inside the spherical particles, which are
suspended in the stirred vessel in a uniform manner

(3) The mass transfer resistance between solution and particle external surface is
negligible

(4) The substrate and product diffusion inside the catalytic particle can be modeled by

Fick’s first law, and the effective diffusivity does not change throughout the

particle.

3.3.2 CSTR Mathematical Model

With these assumptions, the differential mass balances for the substrate and the product

are respectively,

d‘C;:,, +(1;e)d(dct,) L. _Cﬁo).,(l%s)(gl):o (3.36)
df;:,, +(l;e) d(ip) L _Cpbo)_(l_;ﬁ)(jap) -0 (3.37)

where, F = volumetric flow rate and ¥ = total reactor volume. Equations (3.36) and (3.37)
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are subjected into the following initial conditions,

At t=0, Csp = Cspo and Crs = Cppo

(3.38)

Equation (3.36) and (3.37) contain some terms, which depend on the average

concentrations in the catalyst particles and average reaction rates. In order to calculate

these values, the diffusion reaction equations within the particles must be solved. The

differential mass balance for substrate within the immobilized enzyme particles in

spherical coordinates is given by:

a Trioal or

and for the product is

ot r* or or

The initial conditions are as follows,

t=0, 0<r<R, Cs=Cp=0

t=0, r=R, Cs=Cspo, Cp=Cprso
The boundary conditions are,
120, r=0, 9 %y
or or
t20, r=R, -D,, a;.s =kL(CSb -Cx)
ac
r =R, -D,, _a-f'sz(CPb -CP)
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S

ac, -, ! a(rzac,,)_k
P

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)



3.3.3 Normalized Mathematical Model

In order to solve the reactor design equations or, in other words, to calculate the substrate
and product conversions at reactor outlet (for CSTR) or the variation of the conversions
as a function of time, equations (3.36) through (3.45) must be solved simultaneously.
Analytical solutions cannot be obtained due to nonlinearity of the kinetic expression. To

facilitate the numerical procedure, it is convenient to introduce a series of dimensionless

parameters and variables:

_ <CS> - <CP> — Vevmnx
(S )—a, (P> ——C-;; , Da'= FCSM (346)

Other dimensionless variables are defined in the previous sections. Taking into account
the dimensionless variables, the reactor design equations, diffusion reaction equations,
average concentration and conversions have been rewritten in their dimensionless forms.

Reactor design equations (3.36) and (3.37) can be normalized as given in the following

equations
ds, (1-e\d(s) ( ) _
- ( - ) (s )+ (R)=0 (3.47)
dP, (l-¢ d(P) ( ) -
P, -P, .
= +( - ) "~ ( )| — (R)=0 (3.48)
with the following initial condition at z=0, Se=1, Py =Py

Equation (3.39) and (3.40) represent diffusion reaction equations:

6S 1 R
ar 64 ¢ 65( _:) G4
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oP 1 1 0 i
— 3.50

o a,04" ¢ af( a:) (330
The initial conditions are as follows,
=0, 0< ¢&<1, S=P=0 (3.51)
=0, ¢&=1, S=1,P="Py (3.52)
The boundary conditions are,
t20, £=0, §§_ o _ =0 (3.53)

o0& o
as _
20, £=1, BilS, - S 3.54
t20, & 26= 55 -91..) (3.54)
oP .
E=1, é? =ath,,(Pb -P|§_l) (3.55)

The average substrate and product concentrations, (refer to section 3.5) are,

(Cs) = jc ridr or (S) = j'sg d& (3.56)
= %Rj ridror (P)=3 ]‘P EdE (3.57)

Also, average reaction rate is given by the following equations,

(Rs)= %TRsrzdr =3 ]Esgzd; (3.58)
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3.4 Criteria for Reactor Performance

3.4.1 Average Concentrations and Average Reaction Rate

The calculations of the substrate and product profile along the radial and axial

coordinates were obtained from the solution of the diffusion reaction equations. The

average concentrations in the spherical particle can be obtained from the following

expressions
3 R i
(Cs) =27 [cordror (s)=3 [s &g
0 0

(Cp) = % ojc,, ridror (P)=3 OIP &dg

The average reaction rates are defined as:

e

)=

1
= Rydr=3 [R&d¢
[+]

(-]

3.4.2 Effectiveness Factor

3.59)

(3.60)

(3.61)

The internal diffusional limitations can be quantitatively expressed by the effectiveness

factor, n, defined as the ratio of the average reaction rate to the rate which would be

obtained if all enzyme molecules inside the particle were exposed to the same substrate

concentration as that at the surface, i.e., in the absence of diffusional effects. The bulk

reaction rate is the reaction rate at the bulk concentrations. Altematively, the

effectiveness factor may be defined as the ratio of the average reaction rate to the average
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bulk reaction rate, R,. This relation is expressed by the following equation:

1
= 3[R, £2de
o m (k)
RS (CSR’CPR) Rb(Sb’I,b) Rb

3.62)

However, the external diffusional limitations can be quantitatively expressed by the
external effectiveness factor, 7¢, defined as the ratio of the observed reaction rate (i.e.

concentration at the surface of the particles) to the rate evaluated at the bulk

concentrations. This relation is expressed by the following equation:

I
= 3|R; &£2de
7= — ) =~<RS> = ‘! _ (3.62)
RS(CSR’CPR) Rb(sb’Pb) R,
R,(C;,C.) R.(s. -
7e = CorCa) _ RS(S,,R) ne = S')(Hm*l) (3.63a)
Ry CSb’CPb) Rb(sb,Pb) Da S, (]

Equation (3.63a) is used provided that 8y # 1, otherwise the external effectiveness factor

is calculated using equation (3.31d) when 0y = 1. For this case ng is given by

—_ O+l 3.63b
e = 8Da+1)+1 (3.63b)

The external effectiveness factor is a numerical measure of the influence of external mass
transfer resistance on the observed reaction rate. If it is very low below unity, mass
transfer resistance is restricting the supply of substrate to the surface and thus limiting the
catalytic activity of the immobilized enzyme, whereas, the reaction is not limited by

external mass transfer if the effectiveness factor is unity.



3.4.3 Fractional Conversion and Yield

Conversion is a convenient variable and it is often used in place of concentration in
engineering work. It is defined as the ratio between the total moles of substrate converted

into product and the total moles of substrate fed into the reactor per unit time for a

continuous reactor.

The following apparent conversions for the substrate and product can also be defined:

x=1-—cﬂ’-=1-sb (3.64)
CSbo
for CSTR, X = (1-£)V(Rs) (3.65)
FCqyo

Yield is defined as the ratio of the substrate converted to the maximum amount that could
be converted during one residence time. Yield is used to measure the efficiency of

enzyme utilization. It can be expressed as:

Yield, y<Cso=Ca _1=S, _1-S. _1-S,, __Bi (1-8)X

SL = = = R
€L © Da° 0DaSt OB,¢° 06’St\ ¢ (3.65)
u

vle

45



4

NUMERICAL SIMULATION

4.1 Introduction

The Michaelis — Menten kinetic terms in the model equations makes it impossible to
derive analytical solutions. Employment of numerical technique is therefore inevitable.
Often, the Method of Lines (MOL), Nicholson or other finite-difference numerical
techniques are used for solving a set of PDEs. This method lumps the PDE to a coupled
system of ordinary differential equations (ODE). The number of ODE required is thought
to be generally quite large for stiff problems to guarantee stability and good accuracy.
The classical MOL technique, however, with an accuracy of Az* can be developed using
Taylor series expansions (Shirashi et al., 1996; Lee et al., 1999a and 1999b). A mixture
of central finite difference, forward finite difference and backward finite difference is
employed to lump the governing PDE systems to a set of ODE and the Danckwerts
boundary conditions are reduced to simple algebraic equations. Lee et al. (1999b) use

global orthogonal collocation for solving activated sludge, in their work in which small
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Peclet numbers (0.1-1) have been investigated where the solutions are generally stable.
For moderate to large Peclet numbers up to 50, concentration gradient of species with
respect to time may be very steep such that large number of collocation points is required.
In such case, the orthogonal collocation on finite elements (OCFE) may be employed, to
reduce the number of differential equations required that produce DAE system to be
solved. It is recognized that there exists a host of other numerical techniques in the
literature that may be employed to solve coupled differential-algebraic equations (DAE)

(Finalyson, 1980, Villadsen & Michelsen, 1978).

Boundary-value problems, however, in relatively simple geometries define an important
class of models describing chemical engineering process systems. This class of models
falling between highly simplified, lumped-models and those models generated by
complete, highly detailed analyses generating BVPs defined in complex physical
domains. In deciding what degree of modeling is necessary for a particular application, a
balance must be struck between the level of detail that is attempted to be captured in the
model under development and uncertainty in the physical and chemical mechanisms

defining the model, and so these BVP models can provide a great deal of utility in many

engineering applications.

There have been a large number of important contributions to the numerical techniques
available for solving BVPs and PDEs by different method of weighted residual. Most of

the computational techniques are based on a globally defined and spatially-localized trial
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function method. Traditionally, Fortran-based programs developed to implement these
methods, are written for a specific implementation of one element of weighted residual
solution procedure. The Fortran programs JACOBI.f£, INTRP.f, DFOPR.£f and
RADAU. £ written by Villadsen and Michelsen (1978) are set of subroutines for solving
PDEs with orthogonal collocation method. These subroutines are used to compute the
differentiation and quadrature arrays, and for interpolating solutions between collocation
points. Many of the chemical engineering studies making use of the orthogonal
collocation method of Villadsen and Michelsen (1978) relied on the collocation
discretization array. A Significant portion of recent efforts have gone into developing
Matlab-based for PDE and BVP systems. Examples include the 2D Matlab PDE toolbox,
the weighted residual method tools developed by Lin et al. (1999), recently object-
oriented programming for MWR suite developed by Adomaitis (2002) and a number of
new functions are built into Version 6 of Matlab for solving 1-dimensional BVPs using

collocation on cubic splines using bvpde.m function.

4.2 The Spectral Methods

Spectral methods involve representing the solution to a differential equation model in
terms of a truncated series of known smooth, global, orthogonal trial functions of the
independent variables. Most applications have been to time dependent mixed initial-
boundary-value problems with finite-difference or other time-stepping schemes to

provide integration in time. The choice of an appropriate spectral method is governed by

accuracy and efficiency.
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Accuracy of spectral method should be designed to give results of greater accuracy than
can be obtained by more conventional difference methods using similar spatial resolution

or degrees of freedom. The choice of appropriate spectral representation depends on the

kind of boundary conditions involved in the problem.

Efficiency of the spectral methods should be at least as efficient as difference methods
with comparable numbers of degrees of freedom. Therefore, for similar amounts of work,

the spectral methods should produce more accurate results than a finite-difference

method.

The accuracy and efficiency of a spectral method depends on making the correct choice
for the test and trial functions. The proper choice depends on the problem and on the
nature of the boundary conditions. When an appropriate choice is made, spectral methods
provide a very high rate of convergence once sufficient trial functions are included to
adequately represent the underlying problem. If an inappropriate choice is made, the

result can be poor accuracy or even convergence to a spurious solution.

The finite-difference formulation may appear to offer a more direct approach to the
numerical solution of partial differential equations than does a spectral method. It simply
replaces the derivatives with finite-difference expansions and demands that the resulting
algebraic equations be satisfied exactly at the grid points. However, difficulties can arise
in imposing boundary conditions, and low order finite-difference formulations are often

inaccurate, particularly on a coarse grid.

Spectral discretization methods do, however, have some drawbacks: they can be difficult
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to code and may be inflexible compared to finite-difference or finite element methods.
The finite-difference methods require relatively little algebraic manipulation and
relatively straightforward programming. Finite-element methods require some
preliminary algebraic manipulation and more programming effort than finite-difference
methods. However, the modularity of the finite element method lends itself to efficient
programming. In solving a new problem, relatively few changes need be made in an
existing computer package. Spectral methods require substantial preliminary algebraic
manipulation and programming if an efficient code is to be generated. Also, the solution
of a new problem typically requires a new set of trial functions, new boundary-condition

specification, and so on, in short, a complete new program.

All spectral methods computation procedures are almost the same by posing solutions in
the form of trial function expansion defined over the entire physical domain and its
boundaries. Then the residual function is formed by substituting the truncated trial
functions and then projected into the trial function expansion using weighted inner
product. The method of projection operation or weight function differentiates among
various spectral methods. Eigenfunction expansion are based on expressing the solution
in terms of trial function defined by the eigenfunctions of Sturm — Liouville problem
related to reduced BVP to be solved. The Galerkin method is based on choosing a trial
function expansion and projecting the residual onto each function by making the residual
orthogonal to the sequence of trial functions. The method is applicable to nonlinear
problem. The least squares projection is the optimal discretization technique for a given

trial function expansion and is derived from minimizing the residual function norm,
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normally is used for steady state problem. Finally, orthogonal collocation method is a

pseudospectral technique based on a specific collocation point selection procedure.

4.2.1 Numerical Algorithms

There has been a considerable amount of research devoted to developing numerical
techniques for solving boundary-value problems and PDEs involving in modeling
chemical and biochemical processes. This reflects the prevalence of BVPs in chemical
engineering modeling problems involving transport and distributions defined on finite
domains. For many of these problems, it is natural to pose solutions in the form of trial
function expansions, where each trial function is defined over the entire physical domain
and its boundaries. The residuals are formed by substituting the trial function expansions
into the modeling PDEs and boundary conditions. The different method of weighted
residual such as numerical eigenfunction expansion, Galerkin, and orthogonal collocation
discretization techniques are distinguished by the form of the projection operation used to
determine the mode amplitude coefficients that minimize the residuals. Because the trial
functions sequences can be defined by polynomials, trigonometric functions, Bessel's
functions, or any other special function, the key concept that made possible an
interchangeable set of residual computational tools was establishing a numerical
technique for accurately representing these functions while retaining the maximum
flexibility in choosing the form of the functions (Adomaitais, 2001). Essentially all the
method of weighted residual solution procedure operations reduces to matrix operations.

These operations are performed by the weighted inner product function. Other operations,
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such as the Gram-Schmidt orthogonalization of a sequence, solution of Sturm-Liouville
problems, and computing collocation arrays from general sequences of orthogonal

functions, all used naturally on the weighted inner product and other elemental

operations.

Computing an eigenfunction expansion solution require posing the solution in terms of a
trial function expansion using the Laplacian operator eigenfunctions that satisfy the
boundary conditions. Projecting the residual onto each eigenfunction minimizes the
residual formed by substituting the trial function expansion into the nonhomogeneous
differential equation model. Each of these solution steps translates into a mathematical
operation that involves solving a Sturm-Liouville problem, normalizing a set of trial

functions, projecting one function onto another with an inner product computations that

can be solved numerically.

4.2.2 Eigenfunction Expansion

Eigenfunction expansion solution procedures can be used for linear, nonhomogeneous
problems where the nonhomogeneous terms appear in the modeling equation or the
boundary conditions. By choosing trial functions as the eigenfunctions of the linear
operator decouples the modes, thus, solutions can be computed term-by-term until a
specified residual error tolerance is satisfied. This method is employed by substituting the
trial function expansion into the modeling equation to form the residual and then

projecting the residual onto each normalized eigenfunction.
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4.2.3 Galerkin's Method

Galerkin discretization procedure represents the solution in terms of an orthogonal
function expansion where each trial function satisfies the boundary conditions. The
residual is projected onto these trial functions in a process similar to the eigenfunction
expansion method. However, this discretization procedure does not necessarily produce a
modal decomposition generating a decoupled set of ordinary differential equations in
time; in fact, the mode amplitudes coefficients may be coupled in a nonlinear manner for
nonlinear problems. This method is employed by substituting the trial function expansion

into the PDE equation and projecting the residual onto each trial function using the inner

product.

4.2.4 Orthogonal Collocation Method

The orthogonal collocation method was developed originally as a stable, predictable, and
simple to implement pseudo-spectral technique. Because of its reliability, it has become a
standard method for solving boundary-value problems by polynomial trial function
expansions (Lin et al., 1999, Finalyson, 1980, Villadsen & Michelsen, 1978). The interior
formulation of this method (Villadsen and Stewart, 1967) is based on choosing a set of
trial functions from an orthogonal polynomial sequence, with the discretization points
computed as the roots of the polynomial next in the sequence. In most applications, this
approximates the Galerkin procedure, because the residual is forced to have as its primary
component the polynomial used to determine the collocation points. However, for some

linear problems where the residual can be expressed exactly in terms of the chosen set of
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trial functions, the two methods give identical resuits. The mixed collocation formulation
is commonly used for problems with nonhomogeneous and nonlinear boundary
conditions, and for BVPs defined by a set of differential equations with different
boundary conditions (Adomaitis and Lin, 1998 ; Adomaitis and Lin, 2000). As in the case
of the interior collocation formulation, the residual at N interior points is forced to vanish
making the residual defined in the domain of interest approximately orthogonal to the
first NV trial functions; additional collocation points are placed at the boundaries to satisfy
the Npc boundary condition residuals, resulting in an overall trial function truncation

number of N + Npc. The result is that the mixed collocation method is a discrete

approximation.

In the original orthogonal collocation reference (Villadsen and Stewart, 1967), the
authors had illustrated three example tables for collocation point locations, quadrature
weights, and first and second discrete derivative arrays. Collocation-based on Orthogonal
Polynomials such as Jacobi and Legendre polynomials as the truncated trial function
expansion using only even powers of x and these trial functions satisfy the boundary
condition at x = 0; the factor (/-x?) forces the trial functions to also satisfy the boundary
condition at x = 1. The polynomials are constructed as the normalized Jacobi polynomials

defined by a sequence of 2" order polynomials orthonormal with respect to weighted

inner product.



4.2.5 Orthogonal Collocation on Finite Element (OCFE )

The OCFE technique, first developed by Carey and Finlayson (1975) has been employed
successfully to simulate chromatographic column (Ma & Guiochon, 1991; Suwondo et
al., 1991) where the global orthogonal collocation, GOC, technique failed. The basic idea
of the OCFE technique as its name implies, is introduction of fixed elements or junction
points within two ends or outlet boundaries, thus forming subdomains. Collocation is
then applied to each subdomain instead of fixing the position of junction point, Gardini et
al. (1985) proposed that positions of the elements to be dependent on time such that
discretization grid of the space variable is maintained with respect to the position of the
moving front. Excellent results on the application of the orthogonal collocation on
moving finite element were reported by Kill et al. (1995), Kaczmarski (1997) and
Kaczmarski et al. (1997) but they require that the time-dependent space variable to be
known and calculated a priori, which is a major disadvantage. Furthermore, improvement
in the numerical accuracy and/or computation time of the modified OCFE applied to a
fixed-bed adsorption column reported by Kaczmarski et al. (1997) are thought to be

insignificant. Due to these problems only the fixed element OCFE technique is

considered to study the dynamics of continuous bioreactors.

However, for high Thiele modulus or Peclet number the solution has steep gradient in
radial coordinate. The solution is more advantageous to use trial functions that are
defined only over part of the region. If the domain is divided into NE elements, in each
element the orthogonal collocation method can be applied. This result of N internal

collocation points was chosen in each element. A numerically stiff catalyst problem (high
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Thiele modulus or Peclet number) has been discussed in collocation literature (Villadsen
and Michelsen, 1978, Finalyson, 1980, Lin et al, 1999) as a test case for evaluating
different collocation procedures. Attempts at computing a solution in the slab geometry
by a global collocation method were shown to fail (Villadsen and Michelsen, 1978, Rice
and Do, 1995) for discretizations performed using a moderate number of collocation
points. An orthogonal collocation on finite element (OCFE), however, was shown to

produce convergent results, measured in terms of the convergence of the effectiveness

factor.

4.2.6 High Degree-Orthogonal and Special Polynomials

High degree-orthogonal polynomial method has been shown to be effective for solving
stiff problem (Guertin et al., 1977, Sorensen et al., 1973, Adomaitis and Lin, 1998,
Chang and Adomaitis, 1999). Lin er al. (1999) implemented high-degree orthogonal
polynomial in slab geometry. This method based on exponential trial functions was used
to provide rapid convergence of the boundary flux. Implementation procedure for the
high degree orthogonal polynomial methods for example when N is large, the high-
degree functions x" can not be evaluated accurately by discretized function algorithm due
to ill-conditioned Vandermonde matrix. Chebyshev polynomial formulation, however,
can be used to generate the basis function. The shifted Chebyshev function can be used
by replacing x by x°. The sequences ¥ (x), {W (x) =cos (n cos’ (2*-1))forn=0,1,
2, ..., N}, are generated and then orthonormalized with respect to weight function w = (1

— x* ) using Gram-Shemit. These polynomials are generated in the same way that
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Villadsen and Michelsen (1978) did and recently employed by MWRtools by Lin et al.
(1999).

Collocation procedure, however, can be used as a high-degree method by employing
exponential trial functions (Guertin et al., 1977; Lin et al., 1999). This method was used
to provide rapid convergence of the boundary flux. The trial functions used in their work,

to generate high-degree orthogonal collocation given for stiff-catalyst problem, is given

in equation (4.1).

(l—;)j-l e _i_(l'*’x)j-l )

v, (%)= >

for j=12,..N 4.1)

The collocation points were chosen based on the orthogonality condition of this trial

function sequences and Q(x) function where the later is defined as,

(%)= w(x)+§'w,(x) b, @2)

by solving the orthogonality condition(Q(x),y,(x))=0 fork=12,..,N-1, then the
amplitude b,

b _(fw,.(x) $v,6)

ist j=t

(0. 5w, )

@4.3)

;=

where collocation points were computed as the roots of Q(x).

To perform orthogonal collocation for stiff catalyst problem N = 10, collocation points

can be chosen as the root of the exponential trial functions as follows,
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x={0,0.9697, 0.9799, 0.9852, 0.9896, 0.9932, 0.9960, 0.9981, 0.9999, 1.0000 }

A multiple-grid collocation method was used to generate truncated trial function
expansion solution to boundary-value problem (BVP) with polynomial nonlinearities.
Adomaitis and Lin (1998) formulated a true discrete to Galerkin projection applicable to
study the convergence behavior of a nonlinear second order reaction — diffusion as a
function of Thiele modelus. This problem gives multiple steady states at high Thiele
modulus. They showed that a second solution, physically meaningless, could be obtained
at saddle-node bifurcation. The residual computations using Galerkin technique was
developed (Adomaitis and Lin, 1998) to examine each solution convergence. They found,

using perturbation analysis, that if sum of all quadrature second differentiation matrix,

ﬁv: B,, >0, for any value of i, no solution can exist for large Thiele modulus and fixed N.
i=l

On the other hand, solution will exist if the sum of the row elements of B are all negative
numbers. Thus solution will exist large Thiele modulus for one-point collocation
solution. Thus, solving this problem by increasing the number of fine discretization
points allows analysis of high-degree nonlinearities. Also a high-degree polynomial

discretization can be employed (Lin et al., 1999).
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4.3 Galerkin Numerical Solution

Application of the eigenfunction expansion technique is limited to certain linear
distributed parameters system. Its applicability is increased by choosing to express the
solution in terms of trial function other than the eigenfunction of the linearized system.
The Galerkin technique can be seen as an extension of the eigenfunction expansion
method to nonlinear systems. The Galerkin method is based on choosing a trial function
expansion and projecting the residual onto each function, making the residual orthogonal
to the sequence of trial functions. In this work, the Galerkin method is used to spatially
discretize the partial differential equations governing the immobilized enzyme reactor
design equations to a set a ordinary differential equation. The resulting ODEs set is

integrated by differential algebraic equations integrator.

4.3.1 Expansion of Solution

The bulk phase substrate, product concentrations are expressed in terms of the trial

function expansions ¢,

5, r)=1+§a,(r)¢,,(c) @.4)
a(c,t)=ao+gb,(r)¢z,(c) @.5)

The substrate and product concentration inside enzyme particles are expressed in terms of

the trial function expansions 7 (£ ) and y ({), this is because of nonhomogeneous

boundary condition. Where, the substrate and product concentration can be expressed as
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sum of homogeneous and nonhomogeneous term due to boundary condition, § = Sym +

Sac.

SE.C. r)=§;gcy(r)n,,(a)w,(c)+ ge, £ y,(0) 4.6)
PG, 7)= gg’,gu(r)m,(&)w,@ﬁ gh, £ y,(0) @.7)

In these truncated trial function expansions, a, b, ¢, e, g and & are the mode amplitude

coefficients and ¢, (£), 42(&), 71:(£), n:(&) and w (&) are the trial functions. The means

by which the trial functions are represented and computed is described in the following

section.

4.3.2 Quadrature Projection Methods

The discretization point positions are based on the modified Gaussian quadrature method
(Gauss-Lobatto method). The two end points are preassigned and interior positions are
the roots of the (M-2)" Jacobi polynomial Jy.(/, & +1)(x) where a is the geometry factor.
This choice of fine-scale discretization points also guarantees that the quadrature weights
w result in exact integral evaluations when the degree of function is less than ¢ = 2M-3.

On the fine grid, differentiation also reduces to a matrix operation.

The numerical discretization techniques described for constructing the fine-grid
quadrature weights, differentiation arrays, and collocation point locations build on the
computational techniques of Villadsen and Michelsen (1978) are employed by Lin et al.

(1999). The effect of such finely discretized function representations is that numerical
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computations on this grid can be treated as (and under some circumstances are) exact,
within the limits set by the number of discretization points. It is possible to use
nonpolynomial trial functions in the various residual methods solution procedures,
including collocation based on nonpolynomial trial functions. It also provides a means of
estimating, or, for some problems computing exactly, discretization truncation errors and
makes possible the development of exact discrete analogs to the Galerkin technique and
other methods. We also note that some of the most computationally-intensive steps, such
as Newton-Raphson iterations and the time integration of the discretized equations,

depend primarily of the mode truncation number and not the number of fine-scale

discretization points.

Well-known quadrature weight formulas exist for computing w and further modifications

to improve the accuracy for high-degree interpolating polynomials have been discussed

in the literature (Lin et al., 1999). The Gauss-Lobatto quadrature guarantees that the

quadrature weights,

[r@ eae=w's @.8)
used to compute result in numerically exact integral evaluations if f'is a polynomial with

degree less than g = 2n - 3. Therefore, in the inner product definition,

[0.©)0,€)E" dE=(0,.0,) 49)
In general, spectral discretization methods approximate solutions to a boundary — value
problem are represented by the truncated trial function expansion. The one-dimensional

basis function components can be represented as vectors of the function values at a set of
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quadrature points. The quadrature points are defined as the combination of the unit

interval endpoints and the roots of a shifted orthogonal Jacobi polynomial J** #*/(x), a
polynomial sequence orthogonal with respect to inner product weight x* (1-x)° where
Jo™ " P*l=], where, @ = 0,1, or 2, corresponds to the slab, cylindrical, or spherical

geometries, respectively. Numerical computation of the quadrature points can be carried

out using several approaches (Adomaitis, 2002, Lin et al., 1999).

The first step is to define the discretized physical domain and the differentiation and
quadrature operators according to the specific domain geometry. The fine-scale
discretization point locations are chosen as the fixed end points as 0 and 1, and the
interior points as the roots of the Jacobi polynomial. Thus, the fine-grid discretization
point density increase towards each end of the interval. Discretizing the coordinate
system on each (£ and &) direction to obtain distribution of the discretization points on &
and ¢ directions, weight matrix wr and wz and linear differential operator to store the
discrete first order differentiation and Laplacian operator arrays ( d¢, d¢, d%¢ and d?¢
). Choosing the trial function y1<’) expansion is not confirmed by a boundary conditions
to satisfy. Because this function makes the substrate and product concentration inside

enzyme particle not fixed, the trial solution is assumed as polynomial,

v(6)=¢’ (4.10)
where,j=1,2,3,.... M

This trial function can be used after orthogonalization by making this trial function

orthonormal with respect to weight function in z — direction.
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4.3.3 Trial Functions

Because of analytical nature of Galerkin method, the most time-consuming step in the
implementation of Galerkin solution procedure is the actual computation of the trial
functions. The trial functions satisfy the following ordinary differential equations that fits

the Sturm — Liouville standard form for 0 <& <1,

& (e:)da(g POZ ) "(5) +righ =19 @.11)

The solution is subjected to the following boundary conditions,

a%(:—) +b6(0)+ a, gg?-&-b,cb(l) =0 4.12)
c%g) +dé(l)+c, %(0)4- d.$(0)=0 4.13)

The trial function corresponding to equations (4.4) through (4.7) can be written as the

following ODEs with homogeneous boundary conditions to impose solution to modeling

equations (3.12) to (3.19)

M =T 60)=Pet @) and £0)=0 “.14)
b, =20, 40)=0Pet,(0) and 4()=0 @15
A, = dg,,nl(o) 0 and nj(1)=-Bin,{1) (4.16)
hiny = 20, 1,00)=0 and ()=, Bin, () @17)

Numerical solution to solve Sturm — Liouville systems equations (4.14) through (4.17)
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yield all eigenfunctions expansion ¢; (&), ¢:(<), 7: (&), n2(&) w(<$) and eigenvalues A.

4.3.4 Discretization of the PDEs

The unknown mode amplitude coefficients a, b, ¢, e, g and h can be written in time-
discretized form by extending the number of dimensions of each array by one in each
array's final dimension. To discretize the PDE system, by substituting the trial function
expansion solution into the PDE equations, then project the resulting functions onto each
trial function using weighted inner product to obtain a residual matrix. Substitute bulk
substrate concentration trial function equation (4.4) into modeling equation (3.12), the

semi-discrete form of equation (3.12) becomes

,8S, 1 'S, as,
) @9

where, the left hand side of the above equation can be written as,

95 o\ pal 2 14+% _da;
(0 %20} =D <at(l+§a,(r)¢,(c)),¢l>- - 4.19)
Thus equation (4.18) can be written in differential form as,

da, [1 &S, a5

= =<Pe R - sds, —Slg,x),¢:> (4.20)

In similar analysis the bulk product concentration equation (3.12b) can be written in the

following form,

a, [ 1 #B op,
= 9 _ - . 4.
dr (a:Pe o S 4 S‘(Pb Pl&gl)’¢"> @2D



To obtain substrate and product concentration inside enzyme particle, the trial function
expansion equation (4.4) to (4.7) into the modeling equations and boundary conditions

equations (3.12) through (4.19). Equation (4.21) can be written after projecting the trial

function onto the residual in the following form,

oS 1 10 ~
<;,w> <e¢, ; ag[ 55—)- s,n.w> 4.22)

where the left-hand side equation can be simplified as,

(28200 @v, 0+ 008 v,0)mv)= 2

j=l izl

(2[4 08 v,6)nw)

j=l
(4.23)

Equation (4.22) and product concentration can be written as,

s (2Se08 v @) (it (e ) ReAy) 29

dg,, [d(& 2 /1 10
d_‘tl+<5t{§hj(t) E \u,(C)),le\v>—<aPe e g—g(é £J+R,.(S P), "1~‘V> (4.25)

Boundary condition, at £ =1, equation (3.19)

<?ES{ ’§2w> = (BiS(Sb - Sl§=l ), gz\[j> (4.26)

&=t

<a_P{ , §2W> = (apBiP(ﬂ, - Pl==l),§zw> 4.27)
g=1

Weighted inner product of right-hand side of equations (4.20), (4.21), (4.24) and (4.25)

are calculated numerically. The mode amplitude coefficients can be obtained by solving
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the Differential Algebraic Equations (DAE) resulted from Galerkin descritization ODEs

equations (4.20), (4.21), (4.24), (4.25) and algebraic equations (4.26) and (4.27).



4.4 OCFE Numerical Simulation

The system of coupled partial differential equations with their boundary conditions given
by equations (3.12) through (3.19) has been solved by the method of orthogonal
collocation. This can be solved by choosing appropriate collocation polynomial based on
the symmetry and boundary conditions. Semi-Legendre polynomials with N collocation
points have been chosen for the interior nodes in the radial direction of the spherical
particles because of symmetrical boundary condition at the center. M collocation points
were taken in the axial direction for the external fluid by Semi-Legendre polynomial. The
solution can be represented by truncated trial function expression, bulk phase and

microenvironment phase concentrations of substrate and product can be represented with

the following trial function,

s,,cc,r)=§b,(r)(1-u4°)n,(4°)=§b,(r)w,(c) (4.28)

where, vand o are positive integers, and 77 and i are test and trial functions respectively.

The vector of trial functions is defined as

v@=0-v¢)n) ne) - - n.E) (4.29)

with amplitude coefficient b(t), by using only even power of dependent variable, the trial
function y satisfy the boundary condition at ¢’ = 0, the factor (1 - £ ) forces the trial
functions to also satisfy the second boundary copdition at {'= 1. The polynomials n are
constructed as the normalized Jacobi polynomials (with v=1 and o = 2) defined with

respect to weighted inner product with weight function w = (1 — ¢2). Semi-Legendre
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polynomial (with v = 0, o= 1) are constructed with w = 1, and they are a function of §

only.

4.4.1 Steady State Solution

With NE number of elements in the radial coordinate of spherical enzyme particle and N

number of collocation points in each element. By choosing x in the radial coordinate as

shown in Figure 4.1

m=12, .., NE

I=23, ... , N+1 i=(m-1) (N+1) +1

K=12, ..., N+2 k=(m-1) (N+1)+K, j=1,2, ..., M+2
hp = x,,, —x

Xi=Xm + X1 hm
Collocation matrix D can be defined,

BI.K 2AI.K

Drove = PR FTRy

(4.30)

where, A4, B are the first and second derivative matrices of Semi-Legendre polynomial

with N collocation points (x;)
W quadrature weight matrix of Semi-Legendre polynomial

Equations (3.12) through (3.19) can be written in terms of these polynomials at the radial
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and axial collocation points. The orthogonal collocation equations on each element can

be written as,

dSi.j N+2

PDE.1 - 4.31
dT 0 ¢2 ; I-1, K x.] ( )
S; . —K:P,
where, R, , = ——L =
" o(+y P )+ S,
dPi.i 1 N+2
PDE.2 i 2.0 yep2 D, P, ; +R,; (4.32)
The average reaction rate is given by,
n NE NE N+2
(R)=3[E*Rde =33 [hx, Ridx =333 4. Ry, (4.33)

where, q,,',,, = thp(xm +hm xl;:)2

forp=12 ..,N+2 and m=12, ..., NE

The bulk reaction rate is defined with respect to bulk concentrations as

R S0; ~Keh, 4.39)
o 3@"'71’6 )+Sb.i '
The effectiveness factor, 7, is defined as
R.
n= (R,) @4.35)

Rb.f

The boundary conditions for substrate and product can be written as
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1 N+2
B.C.1: at£=0,m=1,

= 4kSe; =0, (4.36)
1 K=l
1 N+2
B.C2:atE=1,m=NE, — Y Ay.;xSc; = Bis(S,,; ~Sneewoner,;) (4.37a)
NE K=1
1 N+2
o Ay kb= B’s(Pb Pueneyn /) (4.37b)
NE K=l

The continuity of flux across element boundaries between element m-/ and m

Since, a5 = 5 form=23, ..., NE
m=1 | xmx, | mix=rx,
D, y.a D
Then, &(Z Ay, KSk—(N+l)_,) A (Z A xS (4.38a)
hm—l K=l hm Kl
D . D N+2
s (Z Ay Ka-<~+.),) —2 (ZA. Ka,) (4.38b)
m-1 K=l m K=l

If it is assumed that diffusivities are uniform throughout the particles this gives the flux

continuity at the elements boundaries as follows

for m=23,.....,.NE

K=i

1 N+2 N+2
7 (Z Ay kP k—(N+l),j) = (z Al P ,J (4.39b)
m-1 \ K=l

K=l

1 N+2 1 N+2
h (z Ays2 xS e-wa, j) = -h—(z A xSy, ,-) (4.39a)
m-1 \ K=l "

For the external bulk phase differential mass balance,
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M+2 M+2

Zsz,kak ZAZ, £She = S‘(Slu

€ k=i k=1

M+2 M+2

with the appropriate boundary condition (continuity of the flux)

at&=0"

at{=0"

atg=1,

atd=1,

M+2
S -1+P—ZAzlkak

k=]

l M+2
P, =Py +——— ZAZI.I:PI:.k

k=l

M+2

Z Azy 2485, =0

kel

M+2

Z Az i Pyi =0

k=l

NE(N+I)+l.j)

a, Pe ;szk b.k EAZI,‘B,,, S(I)l:.j-PNE(Nﬂ)-o-l,j)

(4.40)

(4.41)

(4.42a)

(4.42b)

(4.43a)

(4.43b)

where, Az, Bz are the first and second derivative matrices of Semi-Legendre polynomial

with M collocation points (x;). Matrices A and B are the first and second derivative

matrices of Semi-Legendre polynomial with N collocation points (x;). W is weight matrix

of Semi-Legendre polynomial in slab geometry. These matrices generated using the same

procedure developed by Villadsen and Michelsen (1978), Finlayson (1980) and Lin et al.

(1999). Steady state solution of equations (4.31) to (4.43) can be obtained by solving this

nonlinear system using Newton — Raphson’s method.
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4.4.2 Unsteady State Solution

Unsteady state solution converts the partial differential equations to ordinary differential
equations. The first order differential equations (4.44), (4.45) and (4.46) with (4.49) and
(4.50) resulted in collocation form. Using global orthogonal collocation, this system can
be solved by choosing appropriate collocation polynomial based on the symmetry and
boundary conditions. Jacobi polynomials with N collocation points have been chosen for
the interior nodes in the radial direction of the spherical particles because of symmetrical
boundary condition at the center. M collocation points were taken in the axial direction
for the external fluid by Semi-Legendre polynomial. Using stiff integration algorithm

with sparse Jacobian utilizing odel15 .m from MATLAB package.

ds,,
PDE.1 -7:- 0¢ [;Busk, +B. N+ISN+IJ] i, f (444)
PDE.2 * b3 B, B.,..P R 4.45
DE- d‘l' aP6¢2 L; lk + ILN+I1Y N+ + (5 ( * )

wherei=2,3,...,.Nandj=2,3,...., M+1

where, the average rate of reaction can be written as follows,

Si;—KeR,;
( ) [;W R, ; “'Wmeu] and R; ; 0(1_'_7 _,—)+S,-’,- (4.46)

where, 4, B are the first and second derivative matrices of Jacobi polynomial with N

collocation points (x;) and W is the quadrature weight matrix of Jacobi polynomial. The

symmetrical boundary conditions for substrate and product at the center is satisfied by
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Jacobi polynomial, and the remaining boundary condition can be written as:

N
B.C2S§ atc=1, Z AyaiSe; + AvanaSva,; = Bis (Sb,j = SN+I.j)
e

N
B.C2P atg=1, Z Avasbe; + AvanaPun; = aPBiP(Pb.j "PN+1.j)

k=l

wherei=2,3,.....Nandj=2,3,...., M+1

For the external fluid,
,dS,; 1 3
Da # = E[sz_,s,,’, + ; BZ,-,/‘ Sb.k + BZI.M+2S5-M*2]

M
- [Azj.lsb.l + Z Az; .S, , + Azj.M+2Sb.M+2] - St(sb.j ~ Sy )

k=1

’ de.j 1 S
Da -7:-— = 2 Pe sz,l[,b.l +klezj,k1)b,k + sz,Mi-ll:,b.Md»Z

M
- |:Azj,ll)b.l + z Azj.ka.k + Azjmnpb.unjl - St(Pb.j - PN+l.j)
k=1

with the following boundary conditions,

B.C.33S at £=0%,

l M
A =1+E[tAzn.be.l +ZAzl.ka.k +AZI.M+ZSI;.M+2]

k=l

B.C3P at £=0",

1 M
Pb.l =P, + [Azt.pr.l +Z Azl.ka.k + Azl.M+sz.M+z]
a. Pe "

M
B.C4S atg=1, 4z,,,S,, +ZAZM+2.ka.k + Az ae2Sp 102 =0

k=1
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(4.47)

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

(4.53)



M
B.C4P atg=1, Az, F,+ ZAzMn.ka.k +Azy o mea o =0 4.54)

k=1
where, Az, Bz are the first and second derivative matrices of Semi-Legendre polynomial

with M collocation points (x;)

The solution of boundary condition node variables for interparticle and bulk

concentration for both substrate (Sp, a+2, Sb.1, Sn+17)and product (P, m+2, Py, Py+1)) as

follows,
a.—a a,—a
S 2= g 28 P y = —E__2F 4.55
o bzs -bl e bzp _bl ( )
Sy =a5 +58,; 4., B,y =a,, +bF,,., (4.56)
N N
BiS, ; -ZANH.kSk.j apBipF, ; -ZANH.&I)#.]
Syu; = Lo P, .= A=l 4.57
et Ayna +Big i Ay,ya tapBip ( )
where,
M+l M+l
Z Az 2k Sha z Azyn Pk
a, =—4=2 a,, =—4=2 (4.58)
o Az, .o, ' Azy s,
Az s rsen Az Az
b, = ——2H22 Ag=1-—2 A, =1-—"4 (4.59)
Az, e a, Pe
1 M+l 1 M+l
1+ F; z Azl_,‘Sb',( Pbo + '—': Azl’ka.l:
Gy = = yp = — (4.60)
s P
Az Az
b, = 22 - LM+2 4.61
% PeAg * a.PeA, (461)
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4.5 Numerical Solution of External Mass Transfer Model

For external diffusional limitation, the system of coupled ordinary differential equations
with their boundary conditions given by equations (4.26) through (4.31) has been solved
by the method of orthogonal collocation. This can be solved by choosing appropriate
collocation polynomial based on the symmetry and boundary conditions. Semi-Legendre
polynomials with M collocation points have been chosen for the interior nodes in the
axial direction of the reactor, by choosing x in the radial coordinate as shown in Figure

4.1. For the external fluid for steady state solution, from equation (4.40) and (4.41)
forj=1,2,....., M+2

1 M+2 M+2

0=>-3 Bz.\S, = S 4z,,8,, - SUS,, - Suc) (4.62)
€ k=l k=l
l M+2 M+2
0=——=3 Bz, P, = 3 Az, P, ~SB, = Pu) (4.63)
1248 o sy k=l

with the appropriate boundary condition

1 M+2

at&=0" Sy, =1+—Y 4z,,S,, (4.64a)
Pe k=l ’
_ 0+ _ 1 M+2
at&=0" P, =P, +—— Az, P, (4.64b)
F4 k=1
M+2
ats=1I, > Az, S, =0 (4.65a)
k=1
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atl=1, > Az, P =0 (4.65b)

where, Az, Bz are the first and second derivative matrices of Semi-Legendre polynomial
with M collocation points (x;). Equations (3.31) can be written for all points in z-

direction, when steady state prevails. Equation (3.31) written in discretized form as,

_ - Sim.j —KEPim,j
(Sb.j Sim,j) - 0 Da 0 (l + 7 Pint'j )+ Sim.j (4.663)
- - - S int.j K Egm. j
(P.; ~P.;)=6Da 80+7 P )+ Sun, (4.66b)

where 4z, Bz are the first derivative and second derivative matrices of Semi-Legendre
polynomial in slab geometry. These matrices can be generated using the same procedure
developed by Villadsen and Michelsen (1978), Finlayson (1980), Lin et al. (1999).
Steady state solution of equations (4.62) to (4.66) can be obtained by solving this

nonlinear system using Newton — Raphson’s method.
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S

RESULTS AND DISCUSSIONS

The objectives of this thesis are to investigate the characteristics and behavior of packed
bed immobilized enzyme reactors. These objectives can be achieved explicitly by
studying the effects of kinetics parameters, internal and extermal mass transfer

parameters, effects of reactor hydrodynamics and the effects of simultaneous diffusional

effects.

In addition, preliminary studies were conducted to investigate the unsteady-state behavior
of immobilized enzyme reactor. Reactor conversion, yield and internal effectiveness
factor are calculated as a function of dimensionless parameters Thiele modulus, @ St, Pe,
6, and y. Peclet number, Pe, which measures the degree of dispersion is assumed to be 2.0
for DPFR model, since at higher Pe numbers the reactor performance tends to approach
the PFR model. In order to evaluate the performance of packed bed immobilized enzyme
reactors performance of packed bed immobilized enzyme reactors, numerical values of

the process parameters were obtained from the literature (Carrara et al., 2002; Xiu et al.,
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2001; Abu-Reesh, 1997; Carrara and Rubiolo, 1997 and 1995; Hassan et al., 1995;
Lortie, 1994; Bodalo et al., 1993; Hassan and Beg, 1987; Park et al., 1984). Since a wide
range of such values have been reported, the range of dimensionless Michaelis modulus,
6, and Stanton number, St used in this simulation study of conversion, yield and internal
effectiveness factor, was varied from 0.1 to 10. Similarly the range of product inhibition
modulus, v, used in this analysis varies from y= 0, corresponding to Michaelis — Menten
kinetics, to ¥ = 10. The developed model of immobilized enzyme reactor has been
analyzed by taking into account the effect of kinetic parameters (6, 7 K¢); external mass
transfer limitations ( S¢, Da ) and / or internal mass transfer limitation ( ¢, o ) and axial
dispersion on external fluid side characterized by Pe and @: which represent reactor

hydrodynamic. In addition, Biot number represents simultaneous interaction between

internal and external mass transfer.

The differential mass balance equations have been written and normalized for both
substrate and product in both external bulk phase and microenvironment phase (inside
IME particles). The normalized PDEs are then solved using orthogonal collocation on
finite elements (OCFE) and Galerkin’s method. The number of collocation points and
number of finite elements were chosen to give satisfactory convergence. Numerical
simulation was performed to analyze the effect of transport and kinetic parameters on the
reactor performance. The model equations were solved using the orthogonal collocation
method. 12 internal collocation points were chosen for the reactor bed axial direction and
5 collocation points were used inside enzyme particle. It is found that with these points a

good accuracy can be obtained compared to those results with 15 collocation points.
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5.1 Effects of kinetic parameters with intraparticle diffusion

The effect of kinetic parameters have been studied in terms of Michaelis, product
inhibition modulus for irreversible Michaelis — Menten with competitive product

inhibition kinetic rate equation for enzymatic reaction, i.e. Kg = 0.

5.1.1 Effect of Michaelis Modulus, 0

Michaelis modulus, 6, is a dimensionless Michaelis — Menten constant. It is defined as
the ratio of Michaelis — Menten constant, Kn, to the inlet substrate concentration, Cso.
Michaelis — Menten kinetic with competitive product inhibition represented by equation
(3.17), is of variable reaction order between zero and first order kinetics. Zero order
kinetic can be obtained when the Michaelis modulus, 0, approaches zero, while when the
Michaelis modulus approaches very high values (i.e. 8 — «), the kinetic rate equation
can be represented by first order. Instead of discussing the reactor behavior under special
kinetic such as first and zero order, 0 is used to exaggerate this interval to be more
practically 8 > 0 ( Carrara et al., 2002; Xiu et al., 2001; Bodalo et al., 1993; Hassan and
Beg, 1987). The value of 6 depends on the reaction nature. Furthermore, it varies not only
due to the reaction Michaelis constant, Kn, but also with the inlet substrate concentration.

Thus, it can be used to investigate the kinetic parameter, Km, by varying the inlet

substrate concentration.

Figure S.1 illustrates the effects of product inhibition modulus on the substrate

conversion for varying Thiele and Michaelis modulus with Pe = 2.0, Bi = 0.1 and St =

81



1.0. The square of the Thiele modulus, 2, has the physical interpretation of a first order
reaction rate to the intraparticle diffusion rate (Blanch and Clark, 1997; Bailey and Ollis,
1986). The ¢ is a measure of whether the process is reaction rate controlled at low ¢ or
diffusion rate controlled (high ¢). Mixed — regime, however, happens when the two
controlling processes are dominating. It is evident from Figure 5.1 that when the process
is reaction rate controlled, the substrate conversion increases rapidly upon increasing the
Thiele modulus. However, when the process is diffusion rate controlled, the substrate

conversion increases slowly with increasing Thiele modulus until it reaches

asymptotically higher conversion.

Figure 5.2 illustrates the effects of Michaelis modulus on the substrate conversion as a
function of Thiele modulus. It shows that when the process is reaction rate controlled,
higher conversion can be predicted for higher Michaelis modulus. Therefore, the first —
order reaction indicates higher conversion than Michaelis — Menten and zero — order. It is
clear from this figure that zero order kinetics gives the lowest conversion. Another point
to note from Figure 5.2 is that all different 8 curves collapse into one curve when the

process is diffusion rate controlled. This takes place when the process is independent of

kinetic parameters.

On the other hand, Figures 5.3 and 5.4 show the effects of Michaelis modulus on the

internal effectiveness factor as a function of Thiele modulus with St =1, Bi = 0.1 and Pe
= 2.0 for y = 0, 1, 10. When the process is reaction rate controlled, the internal

effectiveness factor, 1, approaches unity where the reaction rate approaches the intrinsic
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one. However, the effectiveness factor decreases rapidly when the value of Thiele
modulus increases. The smaller the effectiveness factor, the more serious the intraparticle
limitations when the process is diffusion rate controlled. The effect of Michaelis
modulus, 6, on the internal effectiveness factor is illustrated in Figure 5.4. It shows that
the intraparticle diffusion limitation is more significant for high Michaelis modulus and it
is the highest for first order reaction. As 0 increases the reaction rate decreases compared
to intraparticle diffusion implying lower effectiveness factor. Therefore, the higher the

Michaelis modulus, 0, is a lower effectiveness factor, n, can be expected.
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Figure 5.1:  Effects of product inhibition modulus, v, on substrate conversion for
varying Thiele and Michaelis modulus with Pe=2.0,Bi=0.1 and St=1.0
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Figure 52: Effects of Michaelis modulus on substrate conversion as a function of Thiele
modulus fory=0, 1, 10; Pe=2.0, Bi=0.1 and St=1.0
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Michaelis and Thiele modulus for y =0, 1, 10; Pe = 2.0, Bi = 0.1 and St = 1.0
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5.1.2 Effect of product inhibition modulus, y

Product inhibition modulus, v, is defined as the ratio of inlet substrate concentration, Csp,
to the product inhibition constant. It is a direct way to measure the importance of product
inhibition on the enzyme reaction kinetic. This parameter can be varied from y = 0, which
represent the Michaelis — Menten kinetics to y > 0 which represents the competitive
product inhibition effects on Michaelis — Menten kinetics. In this analysis, the y value is

varied from O and 10 (i.e. 0 <y <10).

Figure 5.5 illustrates the relationship between the product inhibition modulus on reactor
conversion at different Thiele modulus for = 0.1, 1, 10 at Pe = 2.0, Bi = 0.1 and St =
1.0. It shows that the substrate conversion increases with decreasing the product
inhibition Y when the process is kinetically controlled. Yet, substrate conversion is
independent of product inhibition when the process is mass transfer controlled. It is clear
from Figure 5.5 that the conversion is higher at higher Michaelis modulus (8 = 10)
compared to the conversion for © = 1.0 and 6 = 0.1. The difference in conversion between
y =0 (i.e. Michaelis — Menten kinetics) and higher y values is directly proportional to the
Michaelis modulus. It is shown that for lower value of 8, the conversion is less sensitive
to product inhibition y, and the conversion is independent of y when the Michaelis

modulus, ® — 0, where zero — order reaction prevails.

Figure 5.6 illustrates the effects of product inhibition on internal effectiveness factor as a

function of Thiele modulus for 8 =0.1, 1, 10 at Pe = 2.0, Bi = 0.1 and St = 1.0. It shows
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that there exist a crossover point at which all y curves intersect at certain ¢, where ¢ xo is
found at around 1.5, 0.75 and 0.5 at 8,, = 0.1, 1 and 10 respectively. Thus, ¢ - crossover
point, ¢xo, is a function of Michaelis modulus where it increases with decreasing
Michaelis modulus at crossover point, 0y,. It is evident that the effectiveness factor is
independent of product inhibition, v, at ¢ - crossover point. Below ¢ x , i.e. when the
process is reaction rate controlled; the increase in product inhibition reduces the
effectiveness factor because it reduces the reaction rate. However, the increase in product
inhibition modulus, ¥y, increases the effectiveness factor when the process is diffusion rate
controlied at which ¢ > do. At this regime, the intraparticle diffusion is less severe when
the process is associated with competitive product inhibition, where Michaelis — Menten
kinetic showed higher intraparticle diffusion limitations compared to Michaelis — Menten
with y = 10. Product inhibition effects (when ¢ > ¢xo) have reduced the effect of 8 by
reducing the bulk reaction rate, Ry, and thereby increasing the internal effectiveness
factor. A possible explanation for such behavior is that for higher v, K, is lower and
slows the product reaction rate (i.e. lower product has been formed). Since the mass —
transfer limitations is less severe for the case of higher y, lower product is transferred to

the bulk phase compared to that reaction without product inhibition at which high product

is transferred under mass transfer controlling process.

It is concluded that the Thiele modulus at crossover point, ¢o, can be used to characterize

the limit below which the process is kinetically controlled and above which the process is

diffusion rate controlled.

87



Conversion, X

[ 3%

‘Thiele Modulus, §

Figure 5.5: Effects of product inhibition on reactor conversion as a function of Thiele
modulus for 8 =0.1, 1, 10; Pe=2.0,Bi=0.1 and St=1.0
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Figure 5.6: Effects of product inhibition on internal effectiveness factor as a function of
Thiele modulus for 6 = 0.1, 1, 10; Pe=2.0, Bi=0.1 and St =1.0



5.2 Effect of Transport Parameters

In this section the combined effect of Stanton number with intraparticle diffusion and the

effect of Stanton number with kinetic parameters will be studied.

5.2.1 Effects of Stanton number and Thiele modulus

Stanton number, Sz, is a measure of how the external mass transfer resistance compares to
the residence time. Figure 5.7 shows the effects of product inhibition on the substrate
conversion as a function of Stanton number and Thiele modulus for 8 =1,y = 1.0, Pe =
2.0 and Bi = 0.1. It shows that the trend of substrate conversion versus Thiele modulus is
the same for the entire range of Stanton number. The trend is a function of Stanton
number, where the relation between the conversions versus ¢ increases substrate
conversion with increases in Stanton number. It is noticed that there exist a relationship
relating external mass transfer and intraparticle diffusion limitations. At very low Stanton
number (i.e. St = 0.1), the ¢ < 3.0 represents the process at which the reaction rate is
dominated compared to ¢ < 1.0 for St = 10. Higher substrate conversion is achieved with
increasing Stanton number because increases in Stanton number will increase external

mass transfer which implies lower bulk substrate concentration and thereby it will reduce

external mass transfer resistance.

Figure 5.7 also shows the effects of Thiele modulus on the substrate conversion as a

function of St. As can be seen, the substrate conversion increases with increasing St when
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the process is reaction rate controlled (low ¢). However, the same relationship is weak

when the process is diffusion rate controlled as clearly shown in Figure 5.8.

Although the substrate conversion increases as the St increases at 6 = 1 and y = 1.0, the
effectiveness factor is independent of St at this condition for the entire range of Thiele
modulus. This behavior is clear as shown in Figure 5.9. This behavior is further explored

and discussed with different kinetic and transport parameters in sections 5.2 and 5.3.
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Figure 5.7: Effects of product inhibition on reactor conversion for varying Stanton
number and Thiele modulus with 8 =1,y=1; Pe=2.0 and Bi=0.1
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Figure 5.8: Effects of Thiele modulus on reactor conversion as a function of Stanton
number with0=1,y=1; Pe=2.0 and Bi=0.1
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Figure 5.9: Dependence of effectiveness factor on Thiele modulus with 0.1 <57 < 10
for0=1,y=1; Pe=2.0 and Bi =0.1
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5.2.2 Effect of St and 0

The dependence of substrate conversion on Stanton number was studied for different
Michaelis modulus for three cases of intraparticle diffusion ¢ = 0.1, 1 and 10. The result

is shown in Figure 5.10. In this figure, the substrate conversion increases with increasing
St for the three cases. It is evident that as Stanton number increases substrate conversion
increases regardless of © when the process is mass transfer controlled as shown in Figure
5.10 at ¢ = 10. However, substrate conversion increases strongly with increasing 6 and St
when the process is kinetically controlled, whereas, this relation becomes weak in the
mixed regime. Therefore, it can be concluded that the effect of 0 is significant when the
process is controlled by kinetic limitations (i.e. when the intraparticle diffusion and
external mass transfer resistances are negligible). However, at high ¢ and high Sz, when
the mass transfer limitations are dominating factors in determining the substrate

conversion, the substrate conversion is independent of 6.

Figure 5.11 shows the effects of ¢ on the internal effectiveness factor as a function of 0
for$ =0.1,1, 10 at y = 1.0, Pe = 2.0 and Bi = 0.1. It is clear that when the process is
reaction rate controlled at ¢ = 0.1, the effectiveness factor is independent of St for 6 < 1.
However, the effectiveness factor increases slightly as St increases and more dominant
increase in effectiveness factor is found when 0 is high (i.e. @ = 10). Effect of Stanton
number on the effectiveness factor shows a crossover point at 8 = 1 and y = 1 at which
effectiveness factor is independent of St. Above this point, when 8 > 1, increase in

Stanton number favors 1} while a decrease in effectiveness factor is found when 6 < 1.
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Again, as pointed out from Figure 5.11, increase in St is confined to certain value of St
above which no further change in effectiveness factor has been found (e.g. St=20 at ¢ =
1.0 and St = 10 at ¢ = 10). Also, Figure 5.12 illustrates the effect of © on effectiveness
factor at different St for ¢ = 0.1, 1, 10 at y = 1, Pe =2 and Bi = 0.1. The effectiveness
factor is found to be independent of St not only when the process is reaction rate
controlled but also when the process is mass transfer controlled at very high St. However,
between these extreme cases it is found that the effectiveness factor is varying with St

either increasing when 6 > 1, or decreasing when 6 < 1.
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Figure 5.10: Effects of Michaelis modulus on reactor conversion as a function of Stanton
number for ¢ = 0.1, 1, 10, y=1; Pe=2.0 and Bi= 0.1
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Figure 5.11: Effects of Stanton number on internal effectiveness factor as a function of
Michaelis modulus for $=0.1, 1,10, y=1; Pe=2.0 and Bi=0.1
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5.2.3 Effects of St and y

A similar study was carried out to study the effect of St for different product inhibition
modulus, v, and the simulation results are expressed in Figures 5.13, 5.14 and 5.15.
Figure 5.13 shows the effects of product inhibition modulus on the substrate conversion
as a function of Stanton number for $ =0.1, 1, 10 at 8 = 1.0, Pe =2.0 and Bi = 0.1. It
shows that the substrate conversion increases with increasing St. The effect of y on
substrate conversion is shown to decrease the conversion. Product inhibition modulus, ¥,
is shown to reduce the conversion and appreciable effect of vy is found at high St at ¢ of
0.1 to 1.0. Figure 5.13 also shows that when the process is reaction rate controlled with
low S, the substrate conversion is very low regardless of y. When the process is mass
transfer controlled (i.e. ¢ = 10) the substrate conversion is only a function of Sz. Higher

external mass transfer (i.e. high St) implies lower bulk substrate concentration, Sy, and

consequently higher substrate conversion.

Figure 5.14 shows the effects of product inhibition modulus, v, on the effectiveness factor
as a function of St for $ = 0.1, 1, 10 at 6 = 1, Pe = 2.0 and Bi = 0.1. It shows that for ¢ =
0.1 the internal effectiveness factor, 1, approaches unity and is a function of y only for
very low Stanton number. However, effectiveness factor increases as St increases when y
> 1. Figure 5.14 also shows that at ¢ = 1, the product inhibition forms crossover point at
certain St at which effectiveness factor is independent of v, and 7 is independent of St at y

= 1.0, 8 = 1.0. This crossover condition is found at Sty, = 0.55, 05, = 1.0, ¢xo, = 1.0. The
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effect of St is more sensitive to the product inhibition when y > 1. The n increases with
increasing St when y < 1. Yet, the effectiveness decreases with increasing St wheny > 1
as shown in Figure 5.15. Again from Figure 5.14, it can be noted that the crossover point
Sty is a function of ¢, at 8 = 1.0, where it exists at very high values St,, for lower ¢ =

0.1. For example, St,, =0.55 for ¢ = 1.0 and very low St,, for ¢ = 10.

The effects of both kinetic parameters 6 and y were studied in Figure 5.16 with the
external mass transfer on the internal effectiveness factor for St=0.1,1,2.0and 10 at ¢ =
2.0 and Bi = 0.1. Two distinct regions are shown to have different behavior, first region
when © vy < 1, and the second when 0 y > 1. As can be seen when 6 y > 1, the
effectiveness factor increases with St increasing. On the other hand, the effectiveness
factor increases with decreasing St when 6 y < 1. These two regions intersect when 0 y =
1 at which the effectiveness factor is independent of St. This can be proved analytically
for external mass transfer when 6 y = 1, the reaction rate is independent of product

concentration as given in equation (3.31d). Increases in St decreases both substrate and
product bulk concentrations. This implies that R, decreases with increasing St. Thus the

effectiveness factor will consequently increases with increasing St in this region.
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Figure 5.13: Effects of product inhibition modulus on reactor conversion as a function of
Stanton number for ¢ =0.1, 1, 10, 6 =1; Pe=2.0 and Bi = 0.1
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Figure 5.14: Effects of product inhibition modulus on internal effectiveness factor as
a function of Stanton number for $=0.1,1,10, 0=1; Pe=2.0 and Bi=0.1
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5.3 Effects of Biot number, Bi

Biot number is defined as the ratio of intraparticle diffusion resistance to external mass
transfer resistance. The effects of Biot number on the substrate conversion will be studied
with intraparticle limitations in section 5.3.1. Moreover, effects of Bi and external mass
transfer limitations with kinetic parameters 0 and y will be discussed in section 5.3.2 and

5.3.3, respectively.

5.3.1 Effects of Biot number and Thiele modulus

Figures 5.17 demonstrates quantitatively the effects of Biot number on the substrate
conversion as a function of Thiele modulus with 8 = 1, y = 1, Pe = 2.0 and St = 1.0. At
low Thiele modulus, the effect of increasing Biot number on the substrate conversion is
shown to reduce the substrate conversion. This takes places when the process is reaction
rate controlled. At extremely high Thiele modulus, however, all curves of different Bi

asymptotically approach constant value where the system becomes diffusion rate

controlled.

Figure 5.18 shows the effects of Thiele modulus on the substrate conversion as a function
of Biot number with 6 = 1.0, y = 1.0, Pe = 2.0 and St = 1.0. It shows that the substrate
conversion increases as a result of decreasing Bi when the process is kinetically
controlled. This relation becomes independent of Bi when the process is mass transfer

controlled. However, a weak relation is shown when both intraparticle diffusion and

kinetic processes are dominating (i.e. in the mixed regime).

101



Lower Biot number indicates the presence of strong external mass transfer resistance and
hence both internal and external mass transfer resistances are important for the
determination of substrate conversion. As the Biot number increases the external mass
transfer resistance decreases in its importance. This occurs because the microenvironment
substrate conversion approaches the bulk phase concentration and thereby the external
mass transfer disappears. The effects of Bi are dominant in the reaction-controlled
regime. However, the conversion is independent of Biot number when the process is

diffusion rate controlled as quantitatively shown in Figure 5.18.

Figure 5.19 shows the effects of Biot number on the internal effectiveness factor as a
function of Thiele modulus with 6 =y = 1, Pe = 2.0 and St = 1.0. The trend of
effectiveness factor versus Thiele modulus is shown to be a function of Biot number. The
effectiveness factor approaches unity and it is independent of Bi when the process is
kinetically controlled. Conversely, the effectiveness factor increases with increasing Biot

number in the reaction controlled regime as quantitatively shown in Figure 5.20.
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5.3.2 Effects of Biot, Michaelis modulus and St

Figure 5.21 shows quantitatively the effects of Michaelis modulus, § and Stanton
number on the substrate conversion as a function of Biot number with y=1.0, ¢=2.0 and
Pe =2.0. It shows that the conversion decreases upon increasing Biot number at a given
St. A further decrease in Biot number results in the substrate conversion becoming
independent of Michaelis modulus and the substrate conversion asymptotically
approaches constant value. Also, it depends on St because the diffusional resistance is
dominating factors in determing the substrate conversion. Effects of external mass
transfer on the substrate conversion at different Stanton number for different Michaelis
modulus is shown in Figure 5.22. When the external mass transfer is very low (i.e. St =
0.1), the substrate conversion is very low compared to higher Sz. In addition, the effect of

Michaelis modulus is negligible for lower Biot number.

The effects of mass transfer limitations were measured quantitatively by internal
effectiveness factor. These effects are shown in Figure 5.23, which illustrates the effects
of Biot number and St on the effectiveness factor for three different Michaelis modulus 6
=0.1, 1, 10 and y = 1.0. Although, the substrate conversion increases with decreasing
Biot number, it is found in Figure 5.23 that the effectiveness factor increases upon
increasing Bi up to certain value above which no further change is detected in
effectiveness factor. In this regime, the reaction rate approaches the intrinsic value where

the process is kinetically controlled. It is noticed that the increase in St in the reaction rate
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regime will be approached at lower Bi. Therefore, at very high Bi, the effectiveness factor

is a function of Michaelis modulus as shown in Figure 5.24.

The following results can be drawn from Figures 5.23, 5.24 and 5.25:

o At very low S, the effectiveness factor is characterized by Michaelis modulus and

Bi, which is independent of St.

e An increase in St reduces the effectiveness factor when 8 y < 1 and increases the
effectiveness factor when 0 y > 1. However, the effectiveness factor is independent
of Stwhen®y =1.

e As can be seen from Figure 5.23 for a given Bi, increase St from 6 = 0.1 and 1.0,
causes the effectiveness factor to asymptotically approach a constant value at
certain St. Above this value of St, the effectiveness factor is only a function of Bi
regardless of St and 6. Similarly for the case where © = 10 and 1.0 the two curves
approaches each other at a tangent point (i.e. cusp point). This cusp point forms
earlier for the case of 8 = 10 compared to 6 =0.1.

It can be concluded that the effectiveness factor is only a function of © when the process

is kinetically controlled at very high Bi and extremely low St In this regime, upon

increasing St, the effectiveness factor becomes independent of St and can be a function of
Bi and 6. However, at extremely high St, the effectiveness factor becomes independent of
both St and O and is characterized by Bi when the process is mass transfer controlled.

Between these two limiting cases, the effectiveness factor is a function of 8, Bi and St

while other parameters remains constant.
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Figure 5.21: Effects of Michaelis modulus on reactor conversion for varying Biot number
and Stanton number withy=1, § =2.0 and Pe=2.0

Figure 5.22: Effects of St number on reactor conversion as a function of Biot number
with0=0.1,1,10,y=1,¢=2.0 and Pe=2.0
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Figure 5.23: Effects of 6 on internal effectiveness factor for varying Biot number and
Stanton number with 6=0.1,1,10,y=1,¢=2.0 and Pe=2.0
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Figure 5.25: Effects of Stanton number on internal effectiveness factor as a function of
Biot number for 6=0.1,1,10,y=1, ¢=2.0 and Pe=2.0
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5.3.3 Effects of Biot number, St and product inhibition

A similar study was carried out to study the effects of Biot number for different product
inhibition modulus, y. The simulation results are shown in Figures 5.26 and 5.27 for

substrate conversion. Figures 5.28, 5.29, 5.30 and 5.31 illustrate the effects of Biot

number on the effectiveness factor.

Figures 5.26 shows the effects of y on the substrate conversion for varying Biot number
and Stanton number with ¢ = 2.0, 8 = 1.0, Pe = 2.0. As discussed earlier in section 5.3.2,
it can be concluded that the substrate conversion increases with decreasing Biot number.
The effect of product inhibition reduces the substrate conversion, and more significant

effects occurs when both kinetic and mass transfer limitations are dominating factor i.e.

Bi lies in the mixed regime as clearly shown in Figure 5.27.

Figure 5.28 shows the effects of y on the internal effectiveness factor for varying Biot
number and St with 8 = 1.0, ¢ = 2.0 and Pe = 2.0. The trend can be characterized by three
distinct regimes. First, the process is kinetically controlled when the mass transfer
resistances are negligible at very high Biot number and low S:. In this regime, the
effectiveness factor is independent of both Bi and St but is a function of y where the
product inhibition reduces the effectiveness factor. Second, the kinetic and mass transfer
are controlling the process when the effectiveness factor varies with St and it depends on
¥ and Bi. In this regime, the effectiveness factor increases with increasing St when 0 y >
1, with decreasing St at © y > 1 and it is independent of St when 6 y = 1. Third, the

Stanton number is extremely high, when the effectiveness factor asymptotically reaches a
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constant value regardless of St but depends on . It is shown that the product inhibition
favor the effectiveness factor in this regime. Therefore, the effectiveness factor is
independent of St, Bi when the mass transfer is dominating factor in determining the
effectiveness factor. This behavior is similar to the effect of product inhibition on the
effectiveness factor discussed earlier. It can be concluded that the effect of product
inhibition reduces the effectiveness factor when the process is reaction rate controlled but
it favors the effectiveness factor when the process is mass transfer controlled. Although
the internal effectiveness factor is a function of v in these two regimes, the effectiveness

factor is independent of both St and Bi as shown in Figure 5.28.

In the mixed regime, however, the effectiveness factor increases with increasing Biot
number and the trend is proportional when 8y > 1. Whereas when 8y <1, the trend is
inversely proportional. Due to these two opposite trends shown in the effect of y and St
on 1, it is found that effectiveness factor is independent of y at certain values of St and Bi
at crossover point. It is evident from Figure 5.28 that the crossover points trajectory can
be represented by dimensionless parameters at crossover point Bxo = Stxo / Bixo = 1.5, at 0

= 1.0 and ¢ = 2.0 that satisfied all crossover points trajectory.

Further to investigate the effects of 6 and ¢ on the crossover points trajectory, a similar
study was conducted for different combinations of 8 and ¢ and the simulation results

were plotted in Figure 5.29, 5.30 and 5.31. The results are summarized in Table 5.1

Furthermore, Figure 5.31b illustrates the effects of product inhibition on the internal

effectiveness factor as a function of Sz and ¢ with 6 = 1.0, Bi = 0.1 and Pe = 2.0. As can
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be seen, the effects of product inhibition form a crossover points trajectory in St-¢ at

given Bi = 0.1. Therefore, the B at crossover points can be given by equation 5.1 at 6 =

1.0,

The following equation can be correlated from Table 5.1 which can be used to

approximate the Bs at crossover point that relates to 6 and ¢,

B =72 (5.2)

Thus, the crossover points found in Figure 5.2 can also be approximated by equation

(5.2) at Bxo = 10.

0, =— (5.3)

Thus the mixed regime can be characterized by Py, at which the effectiveness factor 5 >
Bxo, Whereas, when B < By, the effectiveness factor decreases as St increases. Therefore,
when s < o, the reaction kinetic factors are more significant where the effect of product
inhibition has reduced the effectiveness factor by reducing reaction rate. However, when
Bs < Bxo» the mass transfer limitations are dominant and the product inhibition favors the

internal effectiveness factor since it reduces rate of mass transfer.

113



Table 5.1: Calculated f,, from different simulation results

Source 0 ¢ xo Bxo
Figure 5.28 1.0 2.0 1.5
Figure 5.29a 1.0 0.5 20
Figure 5.29b 1.0 4.0 04
Figure 5.30a 0.1 2.0 6.0
Figure 5.30b 0.5 20 2.1
Figure 5.31a 50 20 0.95
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Figure 5.26: Effects of product inhibition on reactor conversion for varying Biot and
Stanton number with y=0,1,10,0=1, $=2.0 and Pe=2.0

Figure 527: Effects of St number on reactor conversion as a function of Biot number
withy=0,1,10,0=1,$=2.0 and Pe=2.0
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Figure 5.28: Effects of product inhibition on internal effectiveness factor for varying Biot
and Stanton number with 0 =1, $ =2.0 and Pe=2.0
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(b)

Figure 5.29: Effects of product inhibition on internal effectiveness factor for varying Biot
and Stanton number with 8 =1, Pe=2.0 for (a) $=0.5(b) $=4.0
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5.0

Figure 5.30: Effects of product inhibition on internal effectiveness factor as a function
of Biot number and Stanton number with 8 =1, Pe=2.0, ¢ =2.0 for (8)0=0.1(b)0
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(a)

L]

(b)

Effects of product inhibition on internal effectiveness factor with Pe = 2.0;

5.0, Bi=0.1

(a) varying Bi and St at § =2.0, 8 = 0.5; (b) varying St and $ at 0 =

Figure 531:
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5.4 Effect of Reactor Hydrodynamics

The effects of reactor hydrodynamics have been studied on the reactor performance in
terms of substrate conversion and intemmal effectiveness factor. The reactor
hydrodynamics is characterized by Peclet number to represent axial dispersion effects.
Peclet number, Pe, is the ratio of backmixing time to residence time. It measures the
effect of degree of mixing, for extremely low Pe (i.e. Pe = 0.001) represent CSTR, for
high Pe (i.e. Pe = 10°) represent PFR and dispersed plug flow reactor model (DFPR)
characterized by finite Pe. The effects of axial dispersion were studied with intraparticle
and external mass transfer in section 5.4.1. Moreover, the effects of Michaelis modulus

and product inhibition on the axial dispersion was studied in section 5.4.2 and 5.4.3

respectively.

5.4.1 Effects of Pe, ¢ and St

Figures 5.32 and 5.33 show the effects of Pe on the substrate conversion for varying St
and Thiele modulus with y = 1.0, 6 = 1.0 and Bi = 0.1. It shows that at given St the
substrate conversion is independent of Pe when the process is kinetically controlled at

low Thiele modulus and low St. However, when the process is diffusion rate controlled at

high ¢ and high S, the substrate conversion increases with increasing Pe.

Therefore, the substrate conversion increases as a result of increasing Pe when Bs > Byxo.
However, the substrate conversion is independent of Pe as shown clearly in Figure 5.32

when s < Bxo. At high St (i.e. at high B;), the Thiele modulus at cross-over point, ¢xo,
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occurs at low value of ¢, whereas at low St, the cross-over ¢, occurs at high ¢.

Figures 5.34 and 5.35 show the effects of Peclet number on the substrate conversion as a
function of St with various values of ¢. It shows that the substrate conversion is

independent of Peclet number when the process is kinetically controlled at extremely low

St.
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Figure 532: Effects of Peclet number on reactor conversion for varying Thiele modulus
and Stanton number withy =1,0=1 and Bi=0.1

Figure 5.33: Effects of Stanton number on reactor conversion as a function of Thiele
modulus for Pe=0.001,5,10% y =1,0=1 and Bi=0.1
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Figure 5.34: Effects of Thicle modulus on reactor conversion as a function of Stanton
number for Pe=0.001,5,10% y =1,0=1 and Bi=0.1
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Figure 5.35: Effects of Peclet number on reactor conversion as a function of Stanton

number with 6 =1,y =1,¢=2 and Bi=0.1
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5.4.2 Effects of Pe, 0, y and St

Figures 5.36 shows the effects of Pe and 8 on the effectiveness factor as a function of St
with various values of Michaelis modulus for Pe = 0.001, 5.0, 10*, v=1.0,¢ =2.0 and Bi
= 0.1. At extremely low St and when Bs < Pxo, the internal effectiveness factor
asymptotically approaches constant value regardless of St and is independent of Pe. At
this regime, when the process is kinetically controlled, the effectiveness factor is only a
function of 6. However, it also shows that when B < By, the internal effectiveness factor
is independent of Pe and St at 6 y = 1. In spite of that, internal effectiveness factor
increases with decreasing 6 and decreasing St when 0y <1. Whereas, the effectiveness
factor increases with increasing both St and Pe when 0y <1. Therefore, PFR showed the

highest effectiveness factor 6 y <l1.

On the other hand, at very high St when the process is mass transfer controlled it is shown
that the effectiveness factor approaching asymptotically the curve of n of 0 = 1.0. As St
increases further, no change in effectiveness factor was detected. Therefore, the internal
effectiveness is independent of Pe, St and 0. This is shown in Figure 5.37, where the
effectiveness factor is constant regardless of 0 at St = 10.0. The effects of Pe as a function
of St for different product inhibition, y, was studied and the simulation result is shown in
Figure 5.38. A similar conclusion can be drawn from this figure on the effects of Pe on

the effectiveness factor with various values of St and 0 y. The crossover point was found
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at St,, = 0.15. Above it, the product inhibition favor the effectiveness factor where it
increases as a result of increasing St and Pe when 0 y > 1. The effectiveness factor,
however, shows a decreasing function with St and Pe when 0 y < 1. Furthermore, when 35
< Bxo, the product inhibition reduces the effectiveness factor and it is independent of Pe at
this regime. No further change in effectiveness factor is shown with decreasing St much

below the St (i.e. Bs << Bxo). Thus, the internal effectiveness factor is independent of

both St and Pe in this regime.

At the given parameters, the conversion for Pe = 5.0 (DPFR) is always lower than PFR
(Pe = 10*) and higher than for CSTR (Pe = 0.001). The difference in conversion between
the three reactor models is higher in the case of high Stanton number as clearly shown in
Figure 5.38. Also, the axial dispersion has no effects on reactor conversion at small
degree of conversion and for lower Michaelis modulus,@ (i.e. approaches zero order
kinetics). Practically, CSTR is favored for lower values of desired conversion and for
lower @ or zero order kinetics. PFR is however, is more favored over CSTR as conversion
increases particularly at high 6. On the other hand, PFR gives higher effectiveness factor
for y> 1, which means less resistance to mass transfer. However, for y< 1, CSTR shows

better performance over PFR and is suitable for Michaelis Menten kinetics, i.e. y=0.
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Figure 5.36: [Effects of Michaelis modulus on internal effectiveness factor as a function
of Stanton number for Pe =0.001,5,10% y =1, ¢=2and Bi=0.1
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Figure 5.37: Effects of St number on internal effectiveness factor as a function of
Michaelis modulus for Pe =0.001, 5,10 0=1,$=2 and Bi=0.1
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Figure 5.38: Effects of product inhibition on internal effectiveness factor as a function of
St for Pe=0.001,5,10% y =1,¢=2 and Bi=0.1
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5.5 Unsteady State Behavior

5.5.1 Unsteady State Effects of Michealis Modulus, 0

The dependence of the substrate conversion on the dimensionless time, 1, was studied for
initial condition at T = 0, Sy; = 0. Figure 5.39 presents time course of substrate conversion
for different Michaelis modulus aty = 1.0, ¢ =2.0, Bi = 0.1 and St = 1.0. As evident from
Figure 5.39, the whole time course of the substrate conversion can be illustratively
divided into three parts: (i) the transient period, (ii) the pseudo — steady state period and
(iii) the final steady state period. At the transient period, initially the substrate conversion
is independent of 6 because at extremely low t the process is controlled by the substrate
mass transfer to the enzyme supported particle. In the transient period, as a result of
increasing t the substrate conversion increases and then it reaches a maximum value

below which the substrate conversion slightly decreases to ultimately reach final steady
. ., OS, . .
state. The maximum values at which ?=0, is the region of a pseudo steady state. In
the transient period, the bulk substrate rate change is positive where the substrate
.. e s, . ..
conversion increases with time, however, ;w negative in the pseudo steady state

period. The substrate conversion decreases from the maximum value to reach finally the
steady state conversion. In the transient period, the substrate conversion inside enzyme
supported on a porous spherical particle decreases with time because the final radial
profile of substrate concentration has not yet been reached and definitely the bulk

substrate concentration, S,, has not reached final steady state. Once the substrate
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concentration inside enzyme particle has reached steady state, the maximum
concentration will reach a maximum value at which pseudo-steady state characterize the

process.

The effects of increase in Michaelis modulus on the transient substrate conversion were
shown to reduce the final steady state time. Also, it is evident from Figure 5.39 that for
the smallest O the response is faster where the pseudo-steady state period becomes shorter
compared to the kinetic with higher 6. On the other hand, the effectiveness factor versus
dimensionless time for different Michaelis modulus is shown in Figure 5.40. As can be
seen, the effectiveness factor increases with decreasing 6 for the entire dimensionless
time. The trend may be divided into three periods as illustrated in conversion. Initially in
the transient period, the effectiveness factor increases with time courses reaching a
maximum effectiveness factor. As a result of product inhibition, the effectiveness
increases when the process is mass transfer controlled i.e. when Bs > By, and the
effectiveness decreases otherwise. As can be seen from Figure 5.40, the effectiveness
factor at pseudo — steady state is greater than the final steady state effectiveness factor
when B < By, (i.e. when 8 <0, = 0.53). However, when the s > By, (i.€. 0 > 05, =0.53),

the effectiveness factor at pseudo — steady state is lower than that of the final steady state

effectiveness factor.
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Figure 5.39: Effects of Michaelis modulus on unsteady state reactor conversion with y=1,
¢=2.0,Bi=0.1,5t=1.0
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Figure 5.40: Effects of Michaelis modulus on unsteady state effectiveness factor withy=1,
$=2.0,Bi=0.1,5t=1.0
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5.5.2 Unsteady State Effects of Product Inhibition, y

A similar study was carried out for different product inhibition y and the simulation
results are expressed in Figure 5.41 and 5.42. Figure 5.41 shows the unsteady state
substrate conversions at different product inhibition modulus, y, at 6 = 1.0, ¢ = 2.0, Bi =
0.1 and St = 1.0. It is found that the effect of y is more significant after the pseudo steady

state is reached. Also, it can be noted that the product inhibition reduces the substrate

conversion and increases the time to reach the final steady state.

Figure 5.42 shows the effects of vy on the unsteady state effectiveness factor with® =1, ¢
=2.0, Bi = 0.1 and St = 1.0. Initially in the transient period; the product inhibition reduces
the effectiveness factor as a result of kinetic effects. At extremely very low rt, the
effectiveness factor is independent of y since the process is mass transfer controlled.
Again, it is important to notice that there exists a crossover point in unsteady state at
which effectiveness factor is independent of product inhibition modulus. In pseudo —
steady state, the effectiveness factor increases upon increasing y. Furthermore, it is found
that when Bs > By, the final steady state effectiveness factor increases above the pseudo —

steady state effectiveness factor, however, the final effectiveness factor decreases below

pseudo — steady state otherwise.
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Figure 5.41: Effects of product inhibition modulus on unsteady state conversion with 6 =
1,4=20,Bi=0.1,5t=1.0
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Figure 5.42: Effects of product inhibition modulus on unsteady state effectiveness factor
with0=1,4=2.0,8i=0.1,5¢t=1.0
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5.5.3 Unsteady State Effect of St and 0

Figure 5.43 shows the effects of St on the unsteady state substrate conversion at 6 = 0.1,
1, 10 with y=1.0, ¢ = 2.0 and Bi = 0.1. The transient substrate conversion increases with
the Stanton number. For extremely low ¢, the substrate conversion is small compared to
those curves of St = 1 and 10. The trend is a function of Michaelis modulus where the
substrate conversion varies with 0 over the entire time courses in transient, pseudo —
steady state and final steady state conditions. From Figure 5.43, the time required to
reach final steady state depends not only on the external mass transfer but also on the
kinetic and intraparticle diffusion. The effectiveness factor is shown in Figures 5.44, 5.45

and 5.46 for Michaelis modulus 6 = 0.1, 1, and 10 respectively.

Figure 5.44 shows the effects of St on unsteady effectiveness factor at 6 = 0.1, y= 1.0, ¢
= 2.0 and Bi = 0.1. It shows that the effectiveness factor decreases as St increases for the
entire range of dimensionless time, t. This agree with the effect of St on steady state
effectiveness factor when 0 y < 1. In the transient period it is shown that the effectiveness
factor is extremely low as a result of mass transfer limitations in the initial time course.
As the time progresses, the substrate penetrates the enzyme particle in which enzymatic
reaction takes place implying an increase in effectiveness factor. The trend of
effectiveness factor exhibits a maximum value at pseudo-steady state above which the

mass transfer limitations and the effects of product inhibition have reduced the

effectiveness factor below the pseudo-steady state maximum value.

Although a similar trend was found when 0 y = 1, the final steady state is found to be
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independent of St as illustrated in Figure 5.45. However, when 0 y = 10 >1, Figure 5.46
shows the same trend, but the final steady state is higher than the pseudo-steady state
effectiveness factor. This increase in effectiveness factor is due to the effect of product
inhibition. As can be seen from Figures 5.44, 5.45 and 5.46, the time required to reach
final steady state increases with Michaelis modulus and St. The trend in Figure 5.45
reaches the final steady state faster for the case of St = 0.1 compared to that one

corresponding to St = 10 in which the final steady state was reached at around t = 1000.
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Figure 5.43: Effects of Stanton number on unsteady state conversion with 6 =0.1, 1, 10,y
=1.0,¢=2.0, Bi=0.1
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Figure 5.44: Effects of Stanton number on unsteady state effectiveness factor at 8 =0.1,7
=1.0,4=2.0, Bi=0.1
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Figure 5.45: Effects of Stanton number on unsteady state effectiveness factor at 0 = 1.0, y
=1.0,$=2.0, Bi=0.1
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Figure 5.46: Effects of Stanton number on unsteady state effectiveness factor at 6 = 10.0, y
=1.0,$=2.0,Bi=0.1
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5.5.4 Unsteady State Effect of St and y

Effects of St with product inhibition on unsteady state conversion were studied as shown
in Figure 5.47. The trend clearly shows the effect of product inhibition for three different
external mass transfer Sz = 0.1, 1 and 10. Initially the conversion increases with time in
the transient period where the trend shows that the substrate conversion is independent of
¥. Once the pseudo-steady state is reached, the effect of product inhibition reduces the
substrate conversion. The higher the product inhibition the larger the difference in
conversion as shown for y = 10. It is found that the time to reach final steady state is
longer for higher St and higher y. Also, it can be seen from Figure 5.47 that the substrate
conversion for Michaelis modulus kinetic (i.e. ¥ = 0) does not include a pseudo-steady

state and the final steady state is reached immediately after the transient period.

Figures 5.48 illustrates the effects of product inhibition, y, on unsteady state effectiveness
factor as a function of St. Figures 5.49, 5.45 and 5.50 show the effects of St on unsteady
state effectiveness factor at Yy = 0, 1 and 10 respectively. It is shown that the transient
period has similar trend regardless of product inhibition. In this period, the effectiveness
factor increases with St as a result of kinetic effects. As a result of the effects of mass
transfer limitations including axial dispersion, the effectiveness factor drops below the
maximum effectiveness factor when the process is extremely reaction rate controlled.
Pseudo-steady state exhibits an inflection point at which the effectiveness factor trend
changes due to the effect of product inhibition. Figure 5.48 shows that the effectiveness

factor for St > 4.0 reduces after reaching pseudo-steady state period for the case of 0 y <
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1.0. The effectiveness factor also decreases in the initial interval of pseudo-steady state

period and as time course increases. The effectiveness factor increases later in this period

as a result of product inhibition.
Therefore, the effect of Sz, 6 and y can be summarized as the following:

e The unsteady state substrate conversion trend is divided into three time periods, (i)
transient, (ii) pseudo-steady state and (iii) final steady state period. In the transient
period, the substrate conversion increases with time. It is found that the substrate
conversion increases with 0 and St regardless of y.

e The pseudo-steady state starts when the substrate conversion reaches the maximum
conversion at which the substrate concentration profile reach steady state inside
enzyme particles. As time progress the substrate conversion decreases slightly below
the maximum as a result of product inhibition, 8 and y. Also, it can be seen that the
product inhibition reduces the substrate conversion and its effects started in this
period. Finally the conversion reaches final steady state value, increases with 6 and St

and decreases with increasing .

e The effectiveness factor trend in the transient period can be characterized by three
processes in sequence. The process is initially substrate mass transfer controlled,
enzymatic reaction and substrate and product mass transfer from microenvironment to
bulk phase before pseudo-steady state is reached. Therefore in the transient period,
the effectiveness factor trend depends on the Michaelis modulus only. As can be seen

from Figures 5.44, 5.45, 5.46, 5.49 and 5.50, the effectiveness factor increases with t©
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and it reaches a maximum where the substrate mass transfer from microenvironment
to bulk phase is dominant which reduces the effectiveness factor. The entire transient

period is concave downward which gives an indication to favor the effectiveness

factor.

The effectiveness factor shows an inflection point when the pseudo-steady state is
reached. At this point, the effectiveness factor changes its slope due to the effects of
product inhibition. The product inhibition favors the effectiveness factor and y effects
start when pseudo-steady state (PSS) is reached. The nj trend is shown to have similar
behavior and it depends on O and y beside the global parameters such as St. In PSS
period, initially the effectiveness factor decreases with time as a results of product
mass transfer limitations from enzyme particle to bulk phase. Then, the n reaches a
minimum value above which n starts to increase due to the effects of product
inhibition.

Finally, the effectiveness factor increases with St as time progress in PSS period when

0 v > 1 and n decreases with increasing St when 8 y<1.
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Figure 547:  Effects of Stanton number on unsteady substrate conversion aty= 0.1,
1,10,0=1.0,4=2.0, Bi=0.1

Figure 5.48: Unsteady state effectiveness factor as a function of Stanton number for
different product inhibitiony=0,1,10,0=1, ¢=2.0,B8i=0.1
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Figure 5.49: Effects of Stanton number on unsteady state effectiveness factor at y=0,0=
1.0, 4=2.0,Bi=0.1
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Figure 5.50: Effects of Stanton number on unsteady state effectiveness factor at y=10,0=
1.0,4=2.0,Bi=0.1

141



§.5.5 Unsteady State Effect of Biot number

Figure 5.51 shows the effects of Bi on unsteady state conversion at® = 1.0,y =1.0, ¢ =
2.0 and St = 1.0. It is shown when the process lies in the transient period, the substrate
conversion increases with time courses as a result of kinetic effect. The effect of
increasing Bi reduces the substrate conversion. The trend shows a maximum substrate
conversion when the pseudo-steady state was reached. In PSS period the conversion

decreases to reach finally the steady state conversion. From Figure 5.51 the following

conclusions can be drawn:

e The PSS period is shorter when the external mass transfer is negligible (i.e. Bi = 10).
Furthermore, the PSS is propagating as the Biot number decreases when both internal
and external limitations have significant effects on determination of conversion. This
delay in time is due to effects of mass transfer limitations. Similarly, the PSS reaches
earlier for the case of higher Bi (Bi = 10) compared to Bi =0.1.

e At extremely high and low Bi, the difference between substrate conversion at PSS to
the conversion at final SS is small (i.e. the PSS period disappear). In mixed regime,
however, appreciable difference in substrate conversion was found to be due to the
effect of product inhibition.

On the other hand, the effect of Bi on unsteady state effectiveness factor was studied in

Figure 5.52. It is shown that the effectiveness factor increases with Bi over the entire

range of dimensionless time.
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Figure 5.51: Effects of Biot number on unsteady state reactor conversionat 8 =1,

y=10, =20, St=10
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Figure 5.52: Effects of Biot number on unsteady state effectiveness factor at0=1,

vy=10,4¢=2.0, St=1.0
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5.5.6 Unsteady State Effect of Thiele Modulus

Figure 5.53 presents the effects of Thiele modulus on the unsteady state conversion at 6 =
1, y = 1.0, Bi = 0.1 and St = 1.0. It can be seen that the substrate conversion increases
rapidly as a result of increasing Thiele modulus in the transient period. However in the
pseudo-steady state period, the substrate conversion reaches a maximum conversion.
Also, increasing t decreases the conversion slightly to reach final steady state. When the
intraparticle diffusion and reaction rate processes have significant contribution in the
mixed regime, the substrate conversion will have an appreciable reduction. However, the
conversion reaches final steady state faster without the PSS period when the process is
either mass transfer or reaction rate controlled regime. Such as for ¢ = 10 and ¢ = 0.1

show faster response compared to ¢ which lies in mixed regime.

Figure 5.54 presents the effects of Thiele modulus on unsteady state effectiveness factor
at0=1,y=1.0, Bi=0.1 and St = 1.0. The effectiveness factor increases with time in the
transient and PSS periods. Also, the time to reach final steady state is longer for the
mixed regime in which kinetic and mass transfer processes are dominating. However, the
effectiveness factor reaches final steady state faster when the process is either kinetic or

mass transfer controlled.
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Figure 5.53: Effects of Thiele modulus on unsteady state conversion at0=1, y= 1.0,
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Figure 5.54: Effects of Thiele modulus on unsteady state effectiveness factor at0=1, y=
1.0, Bi=0.1,5t=1.0
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5.5.7 Unsteady State Effect of Pe

Figure 5.55 shows the effects of Pe on the unsteady state conversionat® =1.0,y=1.0, ¢
= 2.0 and St = 1.0. The effect of axial dispersion reduces the final substrate conversion.
Also, a similar effects was observed for the entire range of t. In the transient period, the
conversion increases with time and becomes flatter as the Pe decreases. Once the PSS
period has been reached, a maximum conversion was observed below which the
conversion slightly decreases with time to reach ultimately the final SS. It can be noted
that the PSS conversion is much higher than the final SS conversion for higher Pe (i.e. Pe
= 100). Therefore, the effect of Pe is to increase the PSS conversion at which a

concentration profile has just reached the steady state inside enzyme particle.

Moreover the effects of Pe on unsteady state conversion for St = 0.1, 1 and 10 are shown
in Figure 5.57. The effect of Pe is similar to the effect of St on the effectiveness factor.
Figure 5.56 shows that the increase in Pe favors the effectiveness factor in the transient
period, but i decreases in the initial interval of PSS period. As the time progresses above
the minimum 7, the i} shows increasing function with Pe when 0 y > 1, while it shows a
decreasing function with Pe when 0 y <1. However, in Figure 5.56 the final steady state
effectiveness factor is independent of Pe when 0 y = 1. Figures 5.58 and 5.59 show the
effects of St on n at Pe = 0.01 and Pe = 100 respectively. It is shown that i shows
increasing function with St in the transient period compared to decreasing function in

PSS period. The effect of increasing Pe further increases the n when PSS period is
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reached. Although the final steady state effectiveness factor is one for both cases, it is

found that higher St and Pe show higher effectiveness factor in the PSS period.
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Figure 5.55: Effects of Peclet number on unsteady state conversion at0=1, y= 1.0,
Bi=0.1,4=2.0,5t=1.0
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Figure 5.56: Effects of Peciet number on unsteady state effectiveness factor at0=1, y
=1.0,Bi=0.1,46=2.0,85:=1.0
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Figure 5.57: Effects of Peclet number on unsteady substrate conversion for S¢= 0.1,
1,10; y=1,0=1.0,$=2.0,Bi=0.1
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Figure 5.58: Effects of Stanton number on unsteady state effectiveness factor at 6 = 1.0,y
=1.0, $=2.0, Bi=0.1, Pe=0.01
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Figure 5.59: Effects of Stanton number on unsteady state effectiveness factor at 0 = 1.0,y
=1.0,¢=2.0,Bi=0.1, Pe=100
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6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

A mathematical model for a packed bed immobilized enzyme reactor has been developed
considering Michaelis — Menten kinetics with competitive product inhibition. The effects
of intraparticle diffusion, external mass transfer, axial dispersion and kinetic parameters
have been taken into consideration in the model. The relevant equations were solved by
the method of orthogonal collocation on finite elements (OCFE) and Galerkin’s method.
The performance of packed bed immobilized enzyme reactor has been investigated
parametrically for various operational parameters. The effects of 0, vy, ¢, S, Bi and Pe

have been identified quantitatively on the substrate conversion and internal effectiveness

factor.

The following results were drawn from simulation results:
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. Intraparticle diffusion resistance, external mass transfer resistances and axial
dispersion were shown to reduce internal effectiveness factor.

Product inhibition was shown to reduce substrate conversion, and to decrease
effectiveness factor when Bs > By, , however, it increases effectiveness factor
when B < By. The effectiveness factor is found to be independent of product
inhibition at cross — over point at which f, is defined, where f, is a function of
St, Bi, © and ¢.

Effect of Stanton number was shown to reduce the internal effectiveness factor
when 6 v < 1 (i.e. Kn <Kj), but it favors the effectiveness factor when 8 y > 1.
Due to these opposite trends, the effectiveness factor has been found to be
independent of St at® y =1.

Similarly, the effectiveness factor shows increasing function with Pe when 0y <
1 otherwise it shows a decreasing function. This takes place when Bs > Byo.
However, the effectiveness factor is independent of Pe when 8 y =1 and Bs < Bxo.
On other hand, the substrate conversion increases with Pe when Bs > PBx,, yet, it is
independent of Pe otherwise.

. The intraparticle diffusion resistances, external mass transfer and axial dispersion
were shown to reduce time passage to reach final steady state when the process is
in the mixed kinetic regime by exhibiting an intermediate pseudo-steady state
period (PSS) between transient and final steady state periods. The PSS period

diminishes when the process is either kinetic or mass transfer controlled regime.
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6.2 Recommendations

The following recommendations are suggested for future studies and continuation to this

work,

1)

()

3)

4)

It is recommended to explore further the unsteady state behavior with different
initial conditions and with different reactor models.

Study the effects of enzyme deactivation with practical case study to determine
optimal temperature.

The kinetics of enzymatic reaction should to be generalized to include substrate
inhibited reaction. Also to explore the existence of multiple steady state and to
study unsteady state for such conditions.

Setup experimental procedure on continuous or batch immobilized enzyme
reactor used to validate the simulation results and to match the predicted
transient and / or steady state conversion for various operating conditions. Also,
this experimental setup can be used to obtain uncertain parameters (i.e.,
parameters that are difficult to measure or to estimate such as kinetic and
transport parameters) by minimizing the difference between observed and

simulated conversion.

153



NOMENCLATURE

A, B
Az, Bz

Ce

(Cp)
Ces
Crio. Cpo

Css
Csso, Cso

Dsy, Dpy

Ds:,Dp:

External surface of support per unit volume of reactor

The first and second derivative matrices of Semi-Legendre polynomial in
radial coordinate of immobilized enzyme particle.

The first and second derivative matrices of Semi-Legendre polynomial in
axial coordinate of the reactor.

Product concentration in an immobilized enzyme support particle
Average product concentration in an immobilized enzyme support particle
Product concentration in the bulk liquid (reactor phase)

Product concentration at reactor inlet

Substrate concentration in an immobilized enzyme support particle

Average substrate concentration in an immobilized enzyme support
particle

Substrate concentration in the bulk liquid
Substrate concentration at reactor inlet

Effective substrate and product diffusivity in an immobilized enzyme
support particle

Effective substrate and product axial dispersion coefficient
Initial S-galactosidase (lactase) concentration (g/])
Reaction equilibrium constant

Mass transfer coefficient
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Vmax

X5 X2

Volumetric mass transfer coefficient

Mass transfer coefficient in substrate and product side respectively.
Intrinsic Michaelis — Menten constant
Product inhibition constant

Length of the reactor

Number of internal collocation points in radial coordinate within an
element

Number of internal collocation points in axial coordinate

Number of elements in the radial coordinate of an immobilized enzyme
particle

Radial coordinate of distance in an immobilized enzyme support particle
Dimensionless reaction rate at the surface of the spherical particles
Local product production rate per unit of catalytic particle volume
Average product production rate

Local substrate consumption rate per unit of catalytic particle volume
Average substrate consumption rate

Time inside reactor

Superfacial fluid phase velocity inside the reactor

Maximum reaction rate per unit of catalytic particle volume

Collocation points in radial and axial coordinates respectively

Reactor radial and axial coordinate

Quadrature weight matrix of semi-Legendre polynomial
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Dimensionless variables

Bi
Da

(S)

Sb
Sho
St

Biot number
Damkohler number
Inverse of the equilibrium constant

Dimensionless product concentration in an immobilized enzyme support
particle

Dimensionless average product concentration in an immobilized enzyme
support particle

Dimensionless product concentration in the bulk liquid
Dimensionless product concentration at the reactor inlet
Peclet number

Dimensionless reaction rate in an immobilized enzyme support particle

Dimensionless substrate concentration in an immobilized enzyme support
particle

Dimensionless average substrate concentration in an immobilized enzyme
support particle

Dimensionless substrate concentration in bulk liquid
Dimensionless substrate concentration at reactor inlet
Stanton number

Fractional substrate conversion

Reactor yield
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Creek Symbols

a;, ap

Bs

~

NGV NN

Effective diffusivity ratio of substrate and product in axial and
interparticle respectively

Dimensionless residence modulus

Reactor voidage

Thiele modulus

Dimensionless Michaelis — Menten constant
Dimensionless inhibition modulus

Internal effectiveness factor

External effectiveness factor
Dimensionless time

Dimensionless radial coordinate
Dimensionless axial coordinate

Defined by equation (3.31c¢)
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