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The recent advances in parallel and distributed processing and its
applications to database operations such as join have initiated cxtensive research
in this field. Investigations on hash based join algorithms comparcd to methods
such as join-index join and merge-sort have given encouraging results. However,
They involve a costly data partitioning phase prior to the join. This costly
partitioning phase can be avoided if file structures that keep data already
partitioned in the secondary storage are used. Interpolation Based Grid File
(IBGF) is such a file structure. In this thesis new join algorithms for parallel
computers for relations based on IBGF are investigated. Different algorithms
are used for uniform relations and nonuniform relations. The cfficiencies of
these algorithms based on relation and architecture, have been studied using
simulation. However the comparison of different techniques is not within the
scope of this work.
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CHAPTER 1
INTRODUCTION

In relational database queries, join (£) is an operator involving the retrieval
of more than one relation. Moreover, the join operation has a number of
applications besides query processing in relational databases. These include
computation of paths in directed graphs and recursive querics in deductive
databases. Thus its optimization is essential. Several algorithms have been
proposed for implementing join operations in relational databases. Well known
examples arc nested loops, sort merge and hash based join algorithms [DEWRS].
With the advance of multicomputer and multiprocessor architectures, join
algorithms have been reinvestigated to exploit underlying parallclism of these

computers, thus reducing the completion time of join operation.

Several join algorithm strategies have been introduced for parallel marhincs,
but almost all these strategies involve a costly operation of data space
partitioning prior to the actual join [BIT83], [DEWRS5]. Reading unpartitioned
data from the sccondary memory and then partitioning causes a significant 1/O
overhcad, making it a bottleneck for relations too big to fit into the main
memory as join opcrands. The I/O bottleneck problem of non-resident data can
not be remedied by building large and sophisticated machincs because there is
no architectural solution to mapping presumably infinite data in the secondary

memory to a limited main memory. To reduce the severity of this I/O
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bottleneck, it is necessary to organize the data itself in a way that allows
efficient partitioning of the data space on the secondary memory. This will
reduce the virtual address space to finite non-overlapping subspaces. Obviously
that kind of partitioning scheme has to be multidimensional to be able to use it
for any prospective join attribute. And it should be able to preserve order within
the dimensions to avoid processing of incompatible partition pairs and thus to
exploit the parallel processing power provided by database machines.
Interpolation Base Grid File (IBGF) satisfies the above mentioned properties

[OUKS5a).

IBGF breaks down the virtual address space into manageable subspaces.
The motivation behind this is to reduce the gap between the sccondary and the
main memory capacities and to cluster the data while assuring disjointedness of
the subspaces to achieve linear complexity. To perform a join between relations

R(A,,Ay..,A) and S(B,,B,,.,B,) having been partitioned into
subspaces R,,R,, ..,R, and §,,S, .., S, respectively, the global join is

broken down into a set of subjoins

R E S, for all i and j, 1<isu, 1<y
P " a=B

Because the partitions are disjoint, the union of subjoins is equivalent to the
global join. The partitioning and the clustering propertics of IBGE guarantces

that

R = S

i A =B, J

= Null, for all i#f (L.1)



and the subjoin reduces to

R E S forall I<isui (1.2)

! Ak=B, '
between the compatibie partitions R, and S,

The hash based schemes expend their costliest first in hashing and
subsequent sifting and distribution of data to achieve (1.1) and (1.2). Where as
in IBGF the conditions (1.1) and (1.2) are readily satisfied for all k and /
without restoring to any form of processing or reorganization. The reason for
this is the way the data file and the directories are dynamically organized

[OZKS8).

The main characteristics of IBGF are [OUK85a]:

a. Search time is constant.

b. Directories and data have identical structure and search characteristics.

c. No overflow buckets or chaining is needed.

d. Directories and data files can be stored any where because their file address
is kept in the directory.

e. No free space nceds to be kept in the directory and the data file.

f. The range of valucs the attribute domain can take is known and fixed.

A review of parallel computers and somc cxisting join algorithms is
discussed in Chapter 2. In Chapter 3 IBGF is discussed. The hardware model
used in this research is discussed in Chapter 4. Join algorithms for parallel
computers using IBGF for relations with uniformly distributed records is

discussed in Chapter 5. Join algorithms for relations with nonuniformly
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distributed records are discussed in Chapter 6. In Chapter 7 the simulation of
the algorithms of Chapters 5 and 6 is discussed. The simulation of the join
algorithms is discussed in Chapter 7. Analysis of the join algorithms discussed
in Chapters 5 and 6 is given in Chapter 8. Conclusion and advice for further

research in this area is given in Chapter 9.



CHAPTER 2
LITRETURE REVIEW

2.1. Parallel Computers

Parallel computers are classified by their memory organization, processor

organization, and the number of instruction stream [GAJ85].

A parallel computer in which at least two processors share a common
memory or a common memory address space is called a multiprocessor. A
multicomputer on the other hand is a parallel computer which has neither a
shared memory or a shared memory address. In a multicomputer, if a processor
wants to use a data stored in the memory of a remote processor, it must
explicitly bring the data into its local memory. This and all other inter-processor
communication is done by passing messages via a network among the processors

[MICS8).

How a multicomputer is organized is determined by its network
organization. Parallel computers are organized in various topologies. Some of
the common networks are tree, ring, mesh, and hypercube [FEN81]. The
organization of trce ring and mesh is self explanatory, but a hypercube needs

some elaboration.

In a hypercube of dimension n we have 2" processors labelled 0 to 2"—1.

Processors P, and P, are directly connected (neighbours) if their labels differ in
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only one bit, when written in binary. Each computer has n output buffers

labelled O to n-1 starting from the right [GAJBS).

The two common categories of instruction and data streams in parallel
computers are single instruction and multiple data (SIMD) and multiple
instruction and multiple data (MIMD). In SIMD parallel computer, all
processors execute the same instruction synchronously while in MIMD parallel
computer different processors may exccute different instructions asynchronously.

In this thesis a MIMD computer is assumed to work in SIMD mode [FEN81].

Two terms - speedup and Processor-use efficiency are commonly used to
evaluate the efficiency of a parallel computer program.

Definition : Let T, be the time required to solve a problem using the fastest
single processor program for a problem. Let T, be the time required by the

parallel computer program when k processors are in use. The speedup obtained

by the parallel computer is S, = The processor-use efficiency, E, is

=2

T~
Sk . . . .

E = R Barring any anomalous behavior, the strive is for S, = k and E = I.

In practice because of the inter-processor communication overhead, S, will

generally be less than k and E less than 1 [GAJRS].
2.2. Paraliel join algorithms

In this section three paraliel join algorithms are discussed. The first one is
based on hybrid hash (HH) [OMI88], [T/ER7] and the second one is based on
join index (JI) on both hypercube (n-cube) and ring architecture [OM88],



OO]_] [ o1 j
ob 1 o0
jD :
100 (—ITO

Figure 2.1 :  3-cube (hypercube architecture)
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[PATR7], [SANS8]. The third one is parallel nested-loop join algorithm [CHA87].
The hardware models used are described in the following subsection. For the
first two algorithms a uniform data distribution is assumed, i.e. tuples from each

relation are evenly distributed among the processors.
2.2.1. Ring & cube connected multicomputers

The boolean n-cube model used here is like the hypercube discussed above.
Every node has log,N neighbours (links), where N (power of 2) is the total
number of nodes in the system. Each neighbour has its address differing in one

bit and there are n = log,N bits in an address [OMI88]. Figure 2.1 shows a

3-cube with 8 nodes.

In contrast each node in the ring connected multicomputer has 2
neighbours. They will be specified as the left and right neighbours for each

node. Figure 2.2 shows a ring with 8 nodes.

Each node consists of a processor, main memory, and secondary storage.
Each node is assumed to have independent communication processors capable
of simultaneously receiving/transmitting packets along two separate links from
and to each neighbour. Each node is assumed to contain two registers called the
tuple count registers (TCR’s). Nodes are allowed to write into their own TCR's
TCRI and TCR2, and the two TCR’s can be read simultancously by any two of
the n neighbors of a node. Nodes exchange data via variable site packets with
an upper bound imposed on packet size. The upper bound is determined based

on the various hardware parameter values such as CPU specd, communication



Figure 2.2:

A ring of 8 processors
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speed etc. Parallel computers based on the cube connection are already in

existence, e.g. cosmic cube [SEI35], the IPSC [/NT85] and NCUBE [HA Y86].
2.2.2. Parallel HH Join Algorithm

In general, hash join algorithms partition the source relations R and S into

disjoint subsets called buckets: Ry, R,, .. R, and S S|,..S,,. Tuples of a

relation with the same join value will share the same bucket. Since the same

partition scheme is used for both relation, tuples in bucket R, will only have to
be joined with tuples in bucket S.. Hence, a join of two large relations is reduced

to separate joins of many small disjoint subsets of each relation.

The uniprocessor version of hybrid hash-join consists of two phases. In the
first phase, both source relations R and S, are partitioned one at a time into

buckets Ry, R,, ... R, and S, S,, ... S, ,. While R being partitioned, bucket R, is
actually used to build a hash table. Thus when S is partitioned, tuples belonging
to S, can be used to probe the hash table immediately. In the second phase, the
remaining n-1 corresponding buckets are processed. That is, tuples in bucket R,
are used to build a hash table and tuples in bucket S; are used to probe the hash

table.
2.2.2.1. HH join for cube connected multicomputers

Each node allocates one output buffer for each ncighbour and excess
memory is used to build a hash table for those tuples hashing into the bucket

assigned to this node.
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The algorithm proceeds as follows:

Each P,

1.

2
3.
4

10.
.

13.

14.

Forms an empty hash table.

Reads a tuple from the smaller relation.

Hashes the join attribute value.

Add the tuple to the hash table if the t.uple hashes to it, otherwise sends it
to an appropriate buffer together with its destination address.

Repeats steps 2, 3, 4 for all the tuples of the smaller relation residing in its
storage element.

Sends tuples from one of its buffers to one of its neighbours and accepts
tuples from it.

Directs each tuple received from a neighbour to one of its buffers or to its
hash table depending on the address of the tuple.

Repeats steps 6 and 7 for all the tuples, till all its buffers are empty.

Reads a tuple from the bigger relation.

Hashes its join-attribute value.

Performs join on the tuples of the smaller relation already on its hash table
and this new tuple, if this new tuple hashes to it, otherwise it sends this

tuple to one of its buffers.

. Repeats steps 9. 10 and 11 till all the tuples of the bigger relation. in its own

storage clement, are done.
Sends tuples from one of its buffers to one of its neighbours and accepts
tuples from it.

Directs each tuple received from a neighbour to one of its buffers or to join



12
with the tuples of the smaller relation which are already in the hash table.

15. Repeats steps 13 and 14 for all the tuples, till all its buffers are empty.
2.2.2.2. HH Join for a ring

The algorithm for the ring is identical to that of the hypercube except we

have to deal with one output buffer here instead of n output buffers.

The algorithm performs better in a hypercube, for tuples have to travel
shorter distances hence sending and receiving times are much fewer in a

hypercube than in a ring architecture.
2.2.2.3. HH Join drawbacks

Reading the unpartitioned and unclustered nonresident data causes on line
[/O bottleneck problem. Prior to the join, a costly partitioning step was under
taken by the algorithm. Both the I/O bottleneck problem and the partitioning
step add to the cost of the join algorithm drastically. Also assumption of

limitless capacity of buffers is not realistic [DEWS5].
2.2.3. Parallel JI Join Algorithm

Each cntry in a join index is a pair of surrogates (tuple identifiers) which
catrespond to a pair of joining tuples from two relations as shown in Table 2.1.
The join index join algorithm accesses matching tuples of two relations using the
join index In a uniprocessor system, a naive version of this algorithm proceeds

as follows: Read in the join index page by page, read in the matching tuples for



Relation R(parts) Relations S(Suplier-part)
Sur |Number Name Sur |{Sname Pnumber
1 240 Nail 1 Salah 200
2 300 Hammer 2 Ismail 300
3 250 Screw 3 Khaled 100
4 450 Wire 4 Sami 100
5 100 Tape 5 Hussain 530
6 530 Lock 6 Yahya 450
- - - 7 Jaweed 200
Join index for R Join index of S
Rsur Ssur Ssur Rsur
2 2 1 3
3 i 2 2
3 7 3 5
4 6 4 5
5 3 5 6
5 4 6 4
6 5 7 3

Table 2.1 ;: Join indices of R and S.

13
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both relations and perform the join operation.

In a multicomputer, two join indices are assumed to be maintained on every
node to facilitate the operation, each one is based on one of the two joining
relations. For example, if R and S are the two relations to be joined, the join
index based on R for a node will be a collection of surrogate pairs composed of
the local R tuples with corresponding joining S tuples. Because the
corresponding S tuple may not be storead within the same node, we assume each
S surrogate has been tagged with the node address in the join index for R. This
is useful in the parallel version of the join index algorithm, since we need this
information to deliver corresponding joining tuples to their appropriate nodes.
Each node has a buffer to store the index for a relation, a buffer to store the
join index, a buffer to optimize the page access and a buffer to store the

matching tuples.
2.2.3.1. Join Index (JI) Join Algorithm for a hypercube

In JI each entry is a pair of surrogate. A surrogate is system generated
unchangeable unique tuple identifier. There is an index which maps each
surrogate value in the JI to its tuple. The algorithm uses the JI and the index to
form the join from the actual tuples. As in HH join, a hypercube processor

organization and the same output buffer allocation scheme can be uscd.
The algorithm proceeds as follows:(Assume R and S as operand relations.)

Each P,
1. Reads JI based on S and S index.
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Reads an S tuple.
Stores the tuple, if it has to be joined locally with some R tuple otherwise
sends the tuple together with its destination address to one of its buffers.
Repeats steps 2 and 3 for all the tuples of S residing in its storage element.
Reads JI based on R and R index.
Reads an R tuple.
Joins the R tuple with some S tuple if this tuple has to be joined locally,
otherwise it sends it to an appropriate buffer.
Repeats 5, 6 and 7 till all the tuples of R residing in its storage element are
done.
Sends tuples of one of its buffers to one of its neighbours and receives tuples

form the same neighbour.

10. Performs join  between the tuples of S on its hash table and the tuples of

R addressed to it. It directs tuples addressed to other processors to an

appropriate buffer.

1. Repeats steps 9 and 10 till all its buffers are empty.

2.2.3.2. JI Join drawbacks

When ever a new tuple is inserted into a relation, this information must be
propagated to all the processor to update their join indices

All processors have to send some information about the matching surrogates
to the processor that is storing the new tuple to update its join index.

Not only the join index table but each index table in a processor must be
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updated.
4. It includes nearly all the drawbacks of HH.

2.2.4. Parallel Nested-loop

In the parallel nested-loop algorithm, the tuples of the smaller relation are
sent to all processors containing tuples of the other, larger, relation. This is
achieved by forming a ring of processors in the cube, as described in Section

2.2.4.3, and pipelining the data of the smaller relation around the ring.

The best performance is, obviously, achieved when R and S are uniformly
distributed across the nodes. The algorithm presented here ensures such a
distribution by performing tuple balancing as the first step of the algorithm.
Once R and S are balanced, the degree of parallelism is increased by having
multiple rings inside a cube, each performing the same join. To achieve this, the
data related to the smaller relation are replicated in each ring. The second step
of the join algorithm, called the merging step, packs the data of the smaller
relation into the smallest possible sub-cube thus maximizing the number of sub-
cubes, each performing the join in parallel. Data are exchanged by transmitting
packets that are packed as “full” as possible in thc merge step. For the nested-
toop algorithm, this packing minimizes the CPU idle time betwecen packet
arrivals. Finally, in the join step, tuples from the smaller rclation are pipelined

around the ring and local joins are performed in parallel at cach node.
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2.2.4.1 Tuple balancing

Consider a 2-cube connecting 4 nodes, as shown in Figure 2.3(a) The nodes

of the cube are associated with an n-bit (n=Ilog,N) addresses as shown. Let &,
and &g, denote the number of tuples of R and S at node i, respectively (0<i<3).
The tuple distribution of the two relations is as follows, &, =5, &, =3,

£ro=2 and E,=1 and Eg =3, & =8, &;,=9 and &g, =7. Tuple balancing
proceeds in j steps. (1sj<log,N) where nodes that differ in address in the 7™ bit
balance tuples of R1 while, simultaneously, node that differ in address in the
(n-j+ 1)™ bit balance tuples of S. In this example it is assumed that each fixed

sized packet can hold a maximum of 6 tuples. Figure 2.3(a) shows the
distribution of R and S before balancing. The &, and &g, values are loaded into
the tuple count registers, TCR’s, of each node. In the first stage, one of the
communication processors of node 0 reads TCRI1 of node | and determines that
it has to transfer 1 tuple of S to node 1 in order to make &,, = &, = 4.
Simultaneously the other communication processors reads TCR2 of node 2 and
determines that it should receive 3 tuples of S from node 2 to make &;, =
Es, = 6. The distribution of tuples after the first stage (/=1) is shown in
Figure 2.3(h) and the distribution after the second stage (j=2) is shown in

Figure 2.3(c).

If maximum that any node is allowed to transmit to any of its neighbours is
onc packet, then the entire balancing operation will take a total of n packet
sends. The more nodes there are in the cube, the better the distribution becomes

because of the increase in the number of neighbours to which a node can pass
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its excess tuples. If each node is permitted to transmit more than one packet to
each neighbour then there will be a corresponding increase in the total number

of packets transmitted.
2.2.4.2 Merging

After tuple balancing, each node has roughly the same number of tuples for
R and S. Since all nodes have the same number of tuples for R and S, Each
node can independently determine by either a software or a hardware
mechanism as to which of R and S is smaller. In the software approach two
aggregation operations are performed to compute the total number of tuples of
R and S. The host node then knows which relation is smaller and broadcasts

this information back into the cube.

Since tuple balancing is performed before merging, conflicts in decision can
arise only when both relations are of about the same size. In this case either one

of the two can be selected as the smaller relation.

Merging may be performed on both relations, R and S . In the case of the
smaller relation, R, There are two reasons for merging. First, to ensure that
packets carrying the tuples of R as full as possible. Second, to duplicate tuples
of R in multiple sub-cubes so that a ring can be cstablished in cvery sub-cube
to increase the parallelism of the last, costly phasc of the join operation. For the
larger relation, S, an optimum number of tuples per node can be specified based
on system parameter values in order to balance computation and
communication. Merging of S may some times be required to reach this

optimum value. Merging occurs between pairs of nodes at a time. Upon



20
completion, in the case of the smaller relation, both nodes contain the union of
the original tuples stored at each nodes. A variation of this can be employed for

the larger relation such that only one of the two nodes need contain the result.

2.2.4.3 Join

Join is performed by forming rings of processors and sending tuples of the
smaller relation around the ring. This is referred as cycling . Cycling is also
used to collect tuples following a merge. Each node has the value of k, which
indicates the point at which merging stopped in the previous phase. Rings are
formed in the cube based on the n-k most significant bits of address. Thus, there
are 2* rings of 2"* nodes each. If no merging was possible, then j=k=0 and
only a single ring containing all N nodes is formed. If j=k =n, then each node
has all the tuples of R1 and maximum parallelism is achieved in the join phase.
A ring is formed by sequencing nodes such that their addresses form a Gray

code.

If each node can send all its RI tuples in one packet, then it takes 2™*
packet send time units to send all packets around the ring and return each to its
sender. If each node is able to join a packet of R1 tuples with its local segment
of R2 in onc time unit, then the join is also performed in 2™* time units. In
Figure 2.3(d), onc step of merging was performed. Nodes 0 and | merged their
tuples resulting in each node having 6 tuples (1 packet) of R1. Similarly, nodes 2
and 3 merge tuples resulting in 5 tuples in each node. Thus, in this example,
j=k=1 and n-k=2-1=1. Therefore, in the join phase there are 2*=2 rings of

22* =2 nodes each, with each ring performing the join in parallel.
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CHAPTER 3

INTERPOLATION BASED GRID FILE (IBGF)

3.1 Data file

The physical data organization of an Interpolation Based Grid File can be
invisioned as a file of cardinality N whose elements are records each consisting
of d-dimensional tuple k = (ky,kky....k,,) of values which correspond to
attributes A4,,4,......4,, respectively, where & is an integer number greater than
0. The file is assumed to reside on a direct access device such as magnetic disk.
The storage space is divided into fixed-size blocks called buckets or pages. A
bucket is a unit of transfer between secondary and primary memory. The
retrieval time of a particular record is measured in terms of buckets access to get

that record.

Each component value of a record k = ( k,k,,......k,,) can be mapped to a
real number in the half open interval [0, I). Since the domains are considered
bounded, a conversion to this form can simply be accomplished by scaling. Let

K = (K°, ..., k%)) be the result of the mapping. The superscript of k° indicates

the level in the hierarchy of directories to which k° belong. Directory hicrarchies
will be claborated Iater in this chapter. Each record can now be viewed as a
point in the d-dimensional space U® = [0, 1)°. For example, consider the two
dimensional case where D, = (0,50000) and D, =(0,80), where D, is the domain

| _ 37500 10
.. = (37000, - ~ (S5000” B0
of attribute 4. A Record K =(37000,10) will be mapped to K* = ( 50000 ° 80
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or (0.110,0.001) in binary of U? =[0,1) x [0,1). Before discussing the
interpolation based grid file, let us first define some of the terminology used in

the next paragraphs.

Definition I: Given a set of intervals along the i™ axis of U’ defined as

follows:

I,) = [ [l | Kl = | I’; -, k+1) 1 where 0sk< 2™ — 1 and R is
2

2’ Rk

any relation. [, is called the interval partition level along axis i of relation R.

The number of intervals in I(l, ) is 2™ [OUK85a)[]

Definition 2: The search space partition level /, is defined as the summation

of interval partition levels along the d axes forming the search space, that is

lp = flk’,.. So, the number of partition in the search space is 2'*. We shall denote
i=0

by [, for a relation R based on interpolation-based grid file of search partition

level / [OUKB5al\[]

Given an interval /[, , its corresponding interval in domain D, can be

determined in a straight forward manner. For example if D,[minD,, maxD)

then [ I,( © ¢, t minD,, gg—:—l)- x q) where q, = [maxD, — minD| is the
W

9lrs
interval in D, corresponding to I,,,. Without loss of generality, we shall assume
minD,=0. The interpolation based-grid file representation is best illustrated by
tracing an example. To simplify the discussion, only the two-dimensional case is

presented. The data search space is thus viewed as the rectangle delimited by
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the cartesian product D, x D, of attributes 4, and A4,. The vector k = ( kg k)
refers to the coordinates of a record in the search space, where as k* = (K, k")

refers to its mapping U? = [0,1).

In the example, we shall first examine how the search space is partitioned
under repeated insertions. An insertion of a record to the database will be
represented by exhibiting a dot in the graph. We shall assume that the data file

bucket capacity 6, = 2 and each partition may thus contain at most 2 dots.

Initially, a single partition of the search space exists since as for now the

data space contains only 2 records. (See Figure 3.l1.a). The Figure shows the

correspondence between the data search space and its mapping to U?. Note that

the Dy X D, is [pqy X I, The search space partition level is 0.

An additional insertion causes partition delimited by I,,, x [, to split.

We shall adopt the policy of cyclicly partitioning the search space along the
various axes, thus the overflowing partition must be split along axis | as

illustrated in Figure 3.1.c.

Several remarks can be made at this point concerning thc relationship

between the coordinates and the insertion process.

1) The last insertion caused the implicit partitioning of the search space into

four possible partitioning lpoo X lzio  Troo X Trune Iroy % Irio and

IR.O.I X [R.I.l‘

2) A subspace delimited by I, X I, can simply be represented by its
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coordinates (i,j). So, in the example, the possible pairs are (0,0), (0,1), (1,0),

(1,0).

3) A pair of coordinates represent the leading binary digits of the fraction part
of k0° and ko' respectively. In other words, coordinates are simply prefixes of

elements located in the subspace they determine. The length of this prefixes

is exactly the interval partition level along the corresponding axis.

4) Both partition (0,0) and (0,1) should still be represented by partition (0,0)
since this later partition contains less than two elements (the bucket size)

and therefore, its splitting is not necessary.

The followings take these remarks in consideration to device a mechanism

that will work in both uniform and nonuniform data distribution.

3.2 Storage mapping

Given a record k = (k,k,...k;) the record is mapped to

k,—minD,

K = (k kS ...k, ) where k°, = and ¢, = ImaxD, — minD| and D,

is the domain of attribute 4, Let ¢® = (c\c,......c,,) denote the coordinates of

the partition table where k is contained. Then each ¢, can be determined from

k° using the interval partition level [, : ¢ = |k°, 2™ for 0<i < d. For
instance, let us consider the case discussed at the beginning of this chapter

where k = (375000,10). This record was mapped to k® = (0.110, 0.001) in

binary. Assume the search partition level is [, = 3 as in Figure 3.2, then the



(A) STORAGE MAPPING
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Figure 3.2: Partitions after splittig twice
along axis-0 and axis-|



27
coordinates of the partition where k is stored are ¢® = (11,0) in Binary since
loo = 2 and [y, = 1. Let also ¢°, indicate the j* binary digit of ¢, starting from

the left. Then, assuming a cyclic splitting policy, the storage mapping is

completely characterized by the following theorem.

Theorem I: The number of partition in which a record k = (k,, ki, ..., k, ) may

be contained is given by [OUKR85a]:
. A i
M(k,[) — ﬁzlfz‘x’&i 1 J)Coij []
i=0 j=0

This mapping is illustrated in Figure 3.2.a where partition numbers are

indicated at the bottom left corner. Note that all the numbers are consecutive in
the range 0,1, ..., 2'®— 1 If the records in the search space are not uniformly

distributed some of the partition in the range 0,1, ..., 27— might contain no
record at all. So assigning space to such empty partitions will result in poor
space utilization. The number of empty partitions will increase exponentially
with each round of splits along a given axis. The section below discusses the

solution proposed to this problem.

3.3 Mapping partitions to buckets

As discussed above in a one-to-one mapping between 2" partitions forming
the search space (assume the search partition level is /;) and the buckets will
* result in an extremely poor utilization of storage space. This can be further
worsened by skewed data distribution. Clearly a better approach will be to

merge several of those partitions into the largest possible region of the several
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spaces so long as the number of records does not exceed the bucket size. The
objective is to minimize the number of regions thus formed and thereby the
number of buckets. The rules governing the formation of regions can be stated

as follows :

Rule I: Let p, be the initial partition number forming a region . Then the region
can be expanded by adding any partition obtainable through a split of p, that is
partition p,.+2" where logp, < j < [ as long as the number of records in the

region does not exceed the bucket size [OUKR5a].[}

Rule 2: If a partition p, is merged into the same region as p, then all partitions

obtainable through a split of p, are also merged into the same region [OUKS85al.[]

The first rule defines the initialization of the region forming process, while
the second specifies the constraints on any partition merged into the same
region. Inherent in this rule is the recursive merging procedure. This is

particularly obvious if we assume p,=0 Then all partitions in the search space

can possibly collapse into a single region; namely the whole search space.

Definition 3 : A partition p, is said to be embedded in partition p, if it is merged
into the same region p, by applying the rules specified above. Partition p, is

referred to as the embedding partition and p, is the region identifier [OUKR5a).[]

Figure 3.3 illustrates the partitioning of the search space into regions.
Observe that partition 2 and 6 are embedded in partition 0. Partition 5 is

embedded in 1. Partition 2 is obtainable from 0 through split and partition 6 is
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obtainable from partition 2 .

3.4 Directory

Figure 3.2.b represents a more natural partitioning of the search space than
Figure 3.2.a since it is obtainable by splitting overflowing partitions only.
Several partitions of Figure 3.2.a have coalesced to form a single region. For
instance, partitions 0, 2, 4, and 6 form the single region 0. The major problem
now is the fact that the region number are no longer consecutive. Specifically the
search space is composed of regions 0, 1, 3 and 7 . Therefore a directory is

necessary to hold the mapping of these regions into the physical storage.

Each item stored in the index will consist of two parts : a region number
and the address of the bucket assigned to this region. The region number may

be considered as the logical address of a bucket. Note that each partition is also
uniquely identified by its coordinates c°j, 0<j<d. The organization of the

directory is identical to that of the data space.

Let k' = (k', k'), ..., k';)) be the vector obtainable from & ( defined as
above ) as follows: k', = |, x 2’| for 0 <i < d. Clearly k' can be deduced

from k° by truncation. The directory may now be regarded as one of the storing
record k' whose componcents are directly obtainable from the coordinates of the
data file partitions. Note that the components of records k' have their values in
U = [0, 1) therefore the same methodology applied to organize the data records
are used to structure the directory. In other words, the data file and the

directory file have identical structures.
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Let us assume that the directory bucket capacity b, = 3. Figure 3.4 shows

the directory for the data file illustrated in Figure 3.2.b.The directory partition
numbers are indicated at the bottom left corner. Let the directory constructed
in Figure 3.4 be labelled as level 1 index. Suppose we want to insert a new
record which maps to partition 0 of the data file. First, the level | index must be
accessed to determine the bucket address for data file partition 0 . Because of
the methodology utilized, this bucket address will be directly found in the level
index partition 0 . Finally the new record can be inserted. The methodology
used to build the directory systematically builds a hierarchy of directories as
illustrated in Figure 3.5. For example if the partition numbers in the level 1
directory are not consecutive, a second level might be necessary. It would consist

of storing records k? = (k, k%, -.., k%,,) where each K is obtained from k', by

truncation. The length of k% is determined by the interval partition level /,, of
the first level directory. Each additional level will incur one more access.
Fortunately, the number of records must be extremely high to require a second
level. Moreover if the number of partitions in this second level directory is small

enough, then the bucket containing them can be kept in the main memory.



L BN
I
® °
P DATA FILE
3 7
LEVEL O
o
o o
. . BO =2
0 4 I
1
o
3 DIRECTORY
30 ¢
LEVEL |
0 4
o o B, =3
1
0 1 *
3 DIRECTORY
o
LEVEL 2
0 B =3
® ° 2
0

Figure 3.5: IBGF with 2 directory levels



34

CHAPTER 4
HARDWARE MODEL

Based on the reasons that will be presented in Chapters 5 and 6, the
network selected for this research was a mesh of m x n processors, wherc m and
n are powers of 2. Each processor has a local CPU, memory, 4 dedicated
communication processors, and 4 buffers one for each communication processor.
There is a dedicated link between ncighbouring processors. Each processor is
labeled as P, where 1 <ism and |1 <j<n,i &/ for the row and the column
numbers of the processor in the mesh. A processor P is called a boundary
processor if either i or j is equal to 1 or i=m or j=n otherwise it is a
nonboundary processor. Any nonboundary processor in the mesh has 4
neighbours, while boundary processors all have 3 neighbours except P ,, P,
P, and P_, with only 2 neighbours each. There are S storage media, where S is
any positive integer, connected to processors P, for 1 <i<m and P, for
1 <j<n via a crossbar (Figure 4.1). Since the number of connections, B, is
always less than the number of processors directly connected to it more than one
processor shares the same connection. The following equation shows to which
connection each of the processors are connected.

( Note: All operations are integer operations.)

Let each connection be labeled by b, for | <k < B. Let r = L;— and g = %-
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i+r-l1

Therefore P, is connected to b, where [= and P, is connected to b

i + g- . . . .
where w=21-4 l . There are B switches one for each connection, which permits
q

a single processor to use a connection a time. The switches are controlled by a
control unit. The control unit receives the request of each processor requesting
access through the connection to the storage media and if there are k processor
requesting for the same connection at the same time the control unit turn off the
switch from the k-1 processors and it will turn on for 1. The selection of one out
of the k requesting processors is done according to predefined priority scheme.

In this thesis the priority scheme used is first come first serve.
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CHAPTER 5

JOIN ALGORITHM FOR RELATIONS WITH UNIFORM
DATA DISTRIBUTION

The only parameter known about the physical structure of a given relation,
before actually accessing the data is its partition level. In particular it is not
known whether the record distribution is uniform or not. The preprocessing of
relational queries using the IBGF cannot be done on any other assumption
beside the partition level. But if an extra parameter, data partition counter, was
added to the IBGF parameters during the insertion of tuples, then this
parameter together with the partition level can be used to dctcrmine whether the

records are uniformly distributed or not.

Suppose relation R is one of the relations assumed by a query which is

going to be processed. Let [, and dc, be the partition level and the data

partition counter of relation R respectively. Given [, and dc,, if the logical
expression ch=2"‘ is true, the records in relation R are uniformly distributed.

Thus partitions 0,1,...,2'”—[ physically exist in the data search space of R. But

if the above logical expression is false, the records in R are not uniformly

distributed, so some of the O,l,...,Z"’—l partition are not physically present in
the data search space of R. Example 5.1 uses relations R1 and R2 of Figure 5.1
to demonstrate how the partition level and the data partition counter can

determine relations of uniform and nonuniform data record distribution.
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Example 5.1

Ly = 3.

l, = 3.

dcy, = 2 = 2% = 8. Records of RI are uniformly distributed.

dcy, < 2%, Records of R2 are not uniformly distributed.

* k%

In Chapter 3 it was discussed that, given any arbitrary attribute A of an
arbitrary relation R, there are 2™ intervals along the axis corresponding to A.
There is a mapping which maps each partition in R to one of the 2" intervals.
Partitions which map to the same interval form a join-class. Since there are e
intervals there are 2™/ join-classes. Like the axis intervals the join-classes are
labeled by integer numbers between 0 and 2'® — [ inclusive. Let the symbol Cp !

be a symbol for the i* join-class when attribute A of relation R is taken as the

join-attribute.

The mapping of a partition P of a relation R to a join-class when A is the

join attribute is as follows:

Let beb\b,...b,,_, be the binary representation of P,d be the number of

attributes (axes) in R, i be the axis number of attribute A and m be equal to

(L +i+1)

y — 1, then the join-class of P is: C ,, where
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q= 2)<b,.+,,.,.><2“'f) (5.1)
1= .

Since the records of R are uniformly distributed each partition will fall into a
single class and all the classes will have the same number of partitions. Since
there are 2™ join-classes, the number of partitions in each class is 2% ™. Let
the symbol C, ,** be the k" partition of C, . Example 5.2 shows the partition

number of R3 (Figure 5.2) and the join-classes when A3 and B3 are assumed as
the join attributes. The example also shows the axis partition levels of A3 and

B3.

Example 5.2
o = 2.
lags = 2.
by = boay t Iy = 4

The join-classes in R3 are:

CORB.AS = [0,8,2,10] ClRB.AJ = [4,12,6,14] CZRS.AZ = [1,9,3,11]
Crans = [5,13,7,15] Cup = [0,4,1,5] Clasm = [8,12,9,13]
Clasps = [2,6,3,7] Claups = [10,14,11,15]

* %%
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5.1 Join of relations with equal number of join-axis intervals

Let R and S be any 2 relations assumed by a join query. Assume that
records of R and S are uniformly distributed and attributes A and B are the two
join attributes in R and S respectively. The join between R and S on attributes

A and B is represented as follows:

RE, ;S = Cy,EC, for0sijs 2™ ~1 and fori=j. (5.2)

C,, and C; , are join compatible if i = j. In other words each class from R

RA

has one join-compatible class from S.
5.1.1 Join in a single processor

Let R and S be assumed by a join query to be joint on their attributes A
and B. Since A and B are of equal axis intervals, C°R‘ , will have to be joint with
C°, in P, Where P is a processor. The processing of C’, and C’; , will start by
the read of C*'; , followed by the read of C™',. These two partitions are then
processed to join. The join of these two partitions is then followed by the read of
C*% ;. C*, is then processed to join with C™'; . This join again is followed by
the read of C*';,, which is processed to join with C*',,. P will repeat this
process of rcad and join with the rest of the C°, partitions, C™,.

CO.S

Ig-1 . .
spr -+ C75, where ¢ = 25 . Since C*'p 4 has been processed with all

the partitions of C’, it is no longer needed in P. It is replaced by C**; ;. C*,

again joins with all the partitions of C’;, which by now they are all in P. C**;,
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will then replace C*%,, to be processed in the same way as C*'p, and C* .
When all the 2" '™ partitions of C°;, are processed with all the partitions of

C"S'B the join of these two classes is complete. But For the complete join of R
and S, all the classes in R and their join-compatible-classes in S must be
processed the same way as C’, , and C’g,. Algorithm 5.1 is an algorithm for a
join of two relation with uniformly distributed data records. The join is done in
a single processor. Read is a procedure which reads from a secondary storage
the partition given as its parameter. Join is another procedure of two
arguments. These two arguments are partitions. It performs the join operation
between them. Example 5.3 uses R4 and RS of Figure 5.3 to show how the join

of R4 with RS is conducted in a single processor.
Example 5.3

Let the join attributes of R4 and RS be A4 and A5 respectively.

The partition levels are:

[ = 3 lps = 3
lhaas = 2 lrsas = 2

The join-classcs are:

Coka.,« = [0,2] Clhsus = [0,2]
Clm.,« = [4,6] CIRS.AS = [4,6]
sz.,« = [1,3] CZRS,AS = [1,3]



FORi =010 2™—-1DO
BEGIN
FORk = [ to 2% '™ Do
BEGIN
read( Cp ;'
FORj = 1 to 25 DO
BEGIN
IF(k = 1) THEN
BEGIN =
read( Cy ;)
END - .o
Jjoin( C, ’A""CS'B"’)
END

END
END

Algorithm 5.1 : Join algorithm for a single processor.

45
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CSRua = [5,7] CJRS.AS = [5,7]
The compatible-classes are:
C0R4.44 & CORS.AS’ Cle.A4 & CIRS.AS’ C2R4.A4 & CZRS,AS and C3R4.A4 & C3R5.A5'

The join of R4 and RS proceeds as follows:

P, the processor, reads R4, followed by the read of RS, These two partitions are
then joint. Next RS, is read and is joined with R4;. The join of R4, and RS, is
followed by the read of R4,. R4, is then joint with RS, and RS, This ends the
join of C% 4 With C' s The processing of C'y, ,, and C'y s starts with the
reading of R4, followed by the reading of RS, After these two partitions join
RS, is read to join with R4,. Next R4, is read and is joint with both RS, and RS,
ending the join of C'p, . and C'ps i The join of C’p, ,, and C7 ,; starts with
the reading of R4, followed by the reading of RS,. After their join RS, is read to
join with R4 . The join of C?, ,, with C’p, s is complete with the reading of R4,
and its join with RS, and RS, At last the join of C’p, ,, with C’ , starts with
the reading of R4, followed by the reading of RS, The join of R4, with R5; is
followed by the reading of RS.. The reading of of the last partition R4, follows
the join of R4, with RS,. The join of R4, with both RS, and R5, marks the end

of the join of R4 with RS .

* ok ok
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5.1.2 Join in vector of processors

To shorten the time taken to process the join of R and S a vector of n

processors can be cmployed. Each processor in the vector is labeled P, for
0 <i < n-1. In processing the join of R and S the vector starts by thc partitions
of C°%, and C’g,. Each P, reads a partition from C’ ;- P, again reads partition
., from C°%,. C*,, will then be pipelined to P, P, .., P, where
1 < k(1) < n. Each P, will then perform the join of C""R_ , With the partition of
C°, that it is holding. Since each P, is having one partition of C's;, C™'p , by
now has been joint with k(1) partitions of C°S‘B. If there are still more
unprocessed partitions of C’; each P, for 1 <i <k(2), where | <k(2) < n, will
again read another partition form C"S'B. These new k(2) partitions will then be
joint with C*', , which is already in the vector. This process of read and join

will continue till all the partitions of C’, are joint with C*', ,. By now C*';,

will be through joining with all the partitions it was supposed to join. P, now

reads the second partition in C°; ,, which is C**,. C*’,, is then pipelined to

P, P, .., P, where k the highest labeled processor having at least a partition
of C%,. €™, is directly joint with all the partitions of C’g,, which by now all
of them arc in the vector. €%, is then replaced by ™', which again gocs
through the same process as C%%, , & C°*,. In this way all the 2 "™ partitions
of C°, are joint with the 2% partitions of C’5,. When the join of these two

classes is over, the join of C', , with C'¢, follows . The complete join of R and S
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is done when each C'y , is joint with each C'g, for 1 <i< 2'*._ Algorithm 5.2 is
an algorithm for a join operation done in a vector of processors. S and R in the
algorithm are two arbitrary relations to be joint on their join attributes, A of R

and B of S. Let n be the number of processors in the vector.

In Algorithm 5.2, accept is a procedure which receives an R partition from a
neighbouring processor. In case of a vector of processors accept procedure
running in P, will receive an R partition from P,,. A send procedure in P, will
send an R partition to processor P,, . Each R partition is read by processor, P,
and is pipelined to processor P, and then to processor P, till it reaches the last

processor in the vector. As for the partitions of S, in each join-class, are divided
into equal chunks among the processors of the vector and each one of the
processors reads and processes its chunk. Example 5.4 uses a vector of 2
processors of Figure 5.4 to join R4 with RS of Figure 5.3. The partition levels

and the join-classes are all discussed in Example 5.3.

Example 5.4

The join of R4 and RS (Figure 5.3) in a vector of 2 processors proceeds as

follows:

P, rcad RS, and P, rcad RS5,. P, again reads R4, which is pipclined to P P
then performs the join of R4, with RS, while P, performs the join of R4, with

RS,. Next P, read R4, and pipelines it to P. The join of R4, with both R5; and

RS, takes place in P, and P, respectively. This ends the join of C°,, ,, With
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O—

Figure 5.4:

A vector of 2 processors



* At processor P. FOR i = 0 TO n-1

2’5‘ s p
m ==

n

FORt = 0 to 2™ —1 DO
BEGIN
FORk = I 102%™ DO
BEGIN
IF (i <> I) then
BEGIN
accept( C""R' D
ELSE
read( C*, )
END
IF (i < n) then
BEGIN
send( C*, )
END
FOR j = (i-1) times m to i times m DO
BEGIN
IF(k=1)THEN
BEGIN
read( C,")
END
join( Cg ) Csp™
END
END
END

Algorithm 5.2 : Join algorithm for a vector n of processors.

50
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o
and P, to RS, P, again reads R4, and pipelines it to P,. The join of R4, with

rsas- The processing of C'ross and C' 545 Starts with the reading of P, to RS,
RS, takes place in P, and the join of R4, with RS takes place in P.. The join of
R4, with RS, in P, is followed by the read of R4, by P, This page is then
pipelined to P,. R4, then joins with R4, in P, and with RS, in P,. This ends the
processing of C'a, ,, and C', ;- and starts the processing of C’p, 4 and Cgq s
with the reading of RS, by P, and the reading of R5, by P,. P, again reads R4,
which it pipelines it to P,. The join of RS, with R4, takes place in P, while the
join of R4, with RS, takes place in P,. The last partition in C’, ., R4y, is read
by P, and it is pipelined to P,. It is then joint with R4, in P, and with R4;in P,.
The processing of the last two join compatible-classes, C’rens and Clrsus Starts
with the reading of R5, by P, and R5, by P,. Again P, reads R4, and pipelines it
to P,. The join of R5, with R4, takes place in P, while the join of R5, with R4,
takes place in P,. The last remaining partition, R4, is read next by P, and is

pipelined to P,. The join of RS, with R4, takes place in P, while the join of RS,

with R4, takes place in P,. This ends the processing of C%, ,, and C’y ,; ending
7 I R4,A4 RS,AS

the join of R4 with R5.

% % %k
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5.1.3 Join in a mesh

When a vector of n processors was used to join R and S, only the partitions
of R were pipelined. If a mesh of n by m is employed to perform the join, both
the partitions of R and S are pipelined. In the vector the reading of the R
partitions was sequential since P, was the only processor employed in reading
the partitions of R. In a mesh, processors P,, for 1 <i<m can simultaneously
read partitions from R. The join of R and S in a mesh starts by each P
reading a partition from C°R 4 and each P for 1 <j<n reading a partition
from C’, Each P, for 1 <i<m then pipelines the partition it reads from
C"R, ,» to all the processors in row i, while each P, pipelines the partition it reads
from C°S'B, to all the processors in column j of the mesh. So a C"R' 4 bartition
read by P,, and a C"S‘B partition read by P, will only meet and join in processor
P, Each P ; when it is done processing the join of the two partitions it is
holding, it reads another partition of C’;, which has never been read before.
This page is pipelined to all the processors in the same column as that of the
processor which read it. This new partition is then joint to the same C’p,

partition in cach processor it is pipelined. Each P, repeats this process till it

s I
joins the =

partitions of C’, with the partition of R already held by it.

The first set of C"R . bartitions which was read before is now replaced by
another set of C"R' , partitions. This set is also processes in the same way as the

previous sets. The later set will be processed faster because the partitions of C°s‘,,
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with which they have to join are already in the mesh. The second set will be

followed by the third one and so on till join of C°,, with C°, is complete.

When C°, and C°, are done they will be replaced by C', , and C'.. in the
R.A S.B R,A S.B

mesh. Again these two classes will be replaced by another two classes and so on
till the join of R and S is complete. Example 5.5 shows how the join of two

relations can be carried out in a mesh.

Example 5.5

In This example a mesh of 2 by 2 is used to perform the join of R4 and RS
of Figure 5.3. The partition levels and the join-classes of these two relations has
been discussed in Example 5.3. The join of R4 with RS in the mesh is as

follows:

The join process starts with the reading of, R4, by P,,, R4, by P,, and RS,
by P, P,, again reads RS, Then P,, receives R4, from P,, and RS, from P, ,.
P\, sends R4, to P,, and RS, to P,,. The join of, R4, with RS, takes place in

P\, R4, with RS, takes place in P,,, R4, with RS, takes place in P,, and R4,
with RS, takes place in P,, ending the join of C’, , with C%; . The join of

C'ross With C'yg 4o starts with the reading of, R4, by P, . R4 by P,, and RS, by
P\, Py, again rcads RS,. Then P,, receives R4, from P, and R5; from P, P,
sends R4, to P, and RS, to P, .. The join of, R4, with RS, takes place in P,
R4, with R5, takes place in P ,, R4, with RS, takes place in P,, and R4, with

RS, takes place in P,, ending the join of C'y, ,, with C', .. The join of Cross
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with C?,, , starts with the reading of, R4, by P, R4, by P, and RS, by P, ,.

P, again reads R5,. Then P,, receives R4; from P,  and RS, from P ,. P

L1

sends R4, to P, and RS, to P, . The join of, R4, with R5, takes place in P |,

R4, with RS, takes place in P,,, R4, with R5, takes place in P,, and R4, with
RS, takes place in P,, ending the join of C?, ,, with C’, .. The join of the last
two join-compatible classes namely C’M .« and C’Rs s Starts with the reading of,

R4, by P, R4, by P, and R5, by P, P, again reads R5, Then P,, receives

LI

R4, from P,, and RS, from P ,. P, sends R4, to P,, and R5; to P,,. The join
of, R4, with R5 takes place in P,,, R4, with RS, takes place in P, ,, R4, with
R5, takes place in P,, and R4, with RS, takes place in P,, ending the join of R4
and RS5.

* %k

5.2 Join of relations with unequal join-axis intervals

If the join axis-intervals of R are less than the join axis-intervals of S, each

join-class in R will have to be joint to 2% ™ join-classes from S. Let AC,bea
symbol representing all the 2's#7 "4 iin compatible-classes of Chr,when R and S
are joint on attributes A and B. So AC, is an aggregate-class of 2'587"4 gin.

classes of S. The number of partitions in AC';, are equal to 257" The classes

forming AC'y, are:
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C, for j = (F)g, G-1(@+1), (F1)(g+2), . ig-1) where q = 257"

Equation 5.2 can now be modified to :
RE,,S = Cy,E AC,, for 0sis 2™ -1 (5.3)

Equation 5.3 implies that one join-class from R has only one join-compatible
aggregate-class form S. The join algorithms which were introduced in the

previous section can be used to join relations with unequal number of join axis
intervals by simply replacing a group of st_ns by their corresponding AC"S.B in
the algorithms. Example 5.6 demonstrates how two relations of unequal

number of join-axis intervals can be joined.

Example 5.6

This example uses a 2 by 2 mesh in the join of relation R6 with relation R7
( Figure 5.5 ). The join attribute of R6, A6, has less partition intcrvals than the
join attribute of R7, A7. The following are the partition levels of each relation

and each join-attribute :

The join-classes are as follows:

CORG.A6 = [0,2] Clrous = [1,3]
c

C2R7.A7 = [1,3] C3Ru7 = [5,7]

= [0,2] Clm,n = [4,6]

R1.47
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axis partition levels
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The number of join-classes in each aggregate-class are gimarlras — o

The aggregate-classes are as follows:

AC 0 = Crpand Cy [0, 2, 4, 6]

A Clmm = sz.,n and Csm,,n (1,3,5,7]

The join process is as follows:

The join of R6 and R7 starts with the join of C'p  and AC’, .. The
process starts with the reading of, R6, by P,,, R6, by P, and R7,by P ,. P,
again reads R7,. P,, receives R6, from P, and R7, from P ,. P, sends R6, to
P, and R7,to P,,. Next the join of, R6, with R7, takes placc in P, R6, with
R7, takes place in P, ,, R6, with R7, takes place in P,,, R6, with R7, takes place
in P,,. Since there are still 2 more partition unprocessed partitions in AC
P, , reads one of them, R7, and P, reads the second one, R7. P, sends R7, to
P,, and P, sends R7, to P,, Since R6, and R6, are already in the mesh The
join of, R6, with R7,in P, R6, with R7¢in P ,, R6, with R7,in P,, and R6,
with R7, in P,, takes place as soon as R7, and R7, arc available in the
processor. This end the join of C% , with AC’,, ... Next the processing of

C'res 2nd AC'y, ,, starts with the reading of, R6, by P, . R6, by P,; and R7,
by P,,. P, again reads R7,. P,, receives R6, from P,, and R7, from P,,. P,
sends R6, to P, and R7, to P,,. Next the join of, R6, with R7, takes place in

P.,» R6, with R7 takes place in P, ,, R6, with R7, takes place in P,, R6, with
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R7, takes place in P,,. Since there are still two more unprocessed partitions in

AC', ;» P, reads one of them, R7; and P, reads the second one, R7,. P,
sends R7,to P,, and P, sends R7, to P,,. Since R6, and R6, are already in the
mesh The join of, R6, with R7in P ,, R6, with R7,in P, ,, R6, with R7;in P,
and R6, with R7, in P,,, takes place as soon as R7; and R7, are available in the

processor. This end the join of R6 with R7.

* %k %

5.3 Load balancing

For a better efficiency equal number of joining partitions must be assigned
to each processor in the mesh. This can be achieved by equally dividing
partitions in the same aggregate-class to the processors in the first row or the
first column of the mesh. To be able to do this each processor must be able to
know which aggregate-class is currently in use and how many partitions of each

aggregate-class it should assume and process. The number of partitions in an

aggregate-class of relation R taking A as the join-attribute is 2" 'R4_ I the
number of processors in one column of the mesh is m then each processor will

lr Tra
partitions from each join-class. A onc to one mapping between

process

Ir~Ipa

0..2" ™4 _ and partition numbers of each class will help to assign

partitions of each class to each of the m processors. The mapping is as follows:
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Let d be the number of axes in R, i be the axis number of A, k be equal to

U +i—1)

y — L, p be a partition number in R and b, _b, _,...b,b, be the binary

representation of p, where b, is the least significant bit. Then the mapping of p

written in binary is:

b b .. bb,

bIR-lbIR~2 bIR—(d-l)bIR—(d+l)blR—(d+2) bIR—(k'd~l) In~(k*d+ ) Iq-(k*d +2)

In other words the mapping of p was obtained by ignoring bits

bib, pb;vgeg o biipeq (b py for 0<j<k) from its binary representation and

evaluating the decimal equivalence for the rest of the bits. Since the number of

the bits in the mapping is /,—[, , the decimal number evaluated will be in the

range 0 ... 2" ™ —1 inclusive. Processor P, for I <i<m will be assigned to

partitions of a join-class which will map to:-

GxL ) @wnyxL+1, @ DxL42 L ixL—10f0.. g1,

m m m m
where g = 2" '™_ The load balancing is more elaborated by Example 5.7.
Example 5.7

This example uses R3 (Figure 5.2) to clarify load balancing. Each

aggregate-class has 2% "®# = 242 = 4 partitions when A3 is considered as the
join attribute. The following are the join-classes (Assume A3 as the join

attribute).

CORMS = [0’8’2’101 CIR3.A3 = [4,]2,6,[4]
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Crons = [19.3:11] Clows = [5:13,7,15]

By ignoring bits 3 and | and reading the rest of the bits from right to left will

map partitions of C’y, 4 to the following integers.

0000 ----- > 00-->0

0010 ---- > 0l > 2
1010 ---- > [1-->3

Let the number of processors in one column of the mesh used be 2. Each

4-2
processor will be assigned %—=2 partitions from each aggregate-class . The

partitions that are going to be assigned to P, from C%ry4 are those partitions

4.2 4-2
which map to the numbers in the range (1-1)><3‘E-=o and (I)X-%E-—l=l,

and those which are going to be assigned by P,, from AC°R3' 3 are those which
42 a2

map to the numbers in the range (2—l)><-2-i—=2 and 2><%———l=3. Hence

from g P,, will be assigned partitions 0 and 8 and P,, will be assigned

partitions 2 and 10.

* %k %
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Algorithm 5.3 is a join algorithm for relations R an S carried out in a mesh

of mby n. Let A and B be 2 join-attributes of R and S respectively.



FOR 0sism AND FOR 0<j<n DO
* With P,
Yo = B a/m
s = B’sain
FORt = 0 to 2™ —1 DO
BEGIN
FORK = (i-]) Xy, + 1 TOi xy, DO
BEGIN
IF(j = I) THEN
read( C*", )
ELSE
BEGIN
accept( C*p )
END
send( C™*, )
FORg = (j-I) xy; + 1 TOj xy; DO
BEGIN
IF(j = [) THEN
BEGIN
IF(h = (i-1) X y,+1) THEN
BEGIN
read( AC"”S'B)
send( AC™ ;)
END
join( C**p ., AC* )
END
ELSE
BEGIN
IF (h = (i-1) % y,+1) THEN
BEGIN
accept( AC"*S'B)
IF (j < n) send( AC™ )
END
join( C*p ., AC* )
END
END

END
END

Algorithm 5.3 : A join algorithm for nonuniform relations

in a mesh of m X n.

62
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CHAPTER 6
JOIN ALGORITHM FOR RELATIONS WITH NONUNIFORM
RECORD DISTRIBUTION

When the data partition counter of relation R, dc,, is less than 2" the
records of R are not uniformly distributed in the data search space of R. Unlike
relations with a uniform data distribution, some data partitions of R will be

embedded in others.

[n nonuniform case, just from /, and dc, it is impossible to know which
partitions are physically present in the data search space of R. Unless all the
directory records of R are accessed there is no way to know which data pages

are physically present in R.
6.1 Join-classes

The idea of a join-class which was introduced in Chapter 5 for relations
with uniform record distributions, also works in the join of rclations with
nonuniformly distributed data records. However, the join-class of a nonuniform
relation can be embedded in another join-class, a partition can be a member of
more than one join-class and the number of partitions in each join-class can
vary. Cp,embeds C'*', , C'% ..., C'", if the partitions of cach one
of them are identical. Such join-classes exist bccause a partition can be a

member of more than one join-class.

In classifying the partitions of a relation R in to join-classes, assuming A as
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the join-attribute, the knowledge of [, and the axis number of A in the schema

of R is essential. In representing the label of R, where 0 <i < 2"‘, as a binary
number the minimum number of the binary digits needed is /,. Let the number
of attributes in R be d, the axis number of A in the schema of R be k, the
binary representation of i be b, ,, b, , ..., by the axis partition level of A

when R, was last divided or created be m then the join-class of R;is C7 ,, where

q = izij

j=m-1

k(m - G+IXD) (6.1)
So in collecting the partitions of a specific join-class from the data search space
of a relation, Equation 6.1 is used. Algorithm 6.1 does the collection of
partitions of a specific join-class from the data search space of a relation. To
collect all the partitions of a join-class from the data scarch space of any
relation R, the processors in the first row or the first column of the mesh
selectively read through the directories of R gathering partition numbers
satisfying Equation 6.1. The algorithm use the symbol stk as a stack variable,
root as the address of the first directory page of a relation in an IBGF file, i as
the label of a join-class and its compatible-class currently in use. A logical
function Equal takes 2 arguments and it returns true if the partition (the first
argument corresponding to a join attribute) belongs to the join-class (the second
argument) otherwise it returns false. Algorithm 6.1 uses the stack, stk , to go
through the directories searching for partitions satisfying equation 6.1 for the

current join-class label. To join two relations R and S Algorithm 6.1 is used to

collect all the data partitions of a join-class i of R in array C, . and that of S
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which is compatible to C,, in C,;. Example 6.1 uses Equation 6.1 in

classifying the partitions of Rl into join-classes.
Example 6.1

This example uses Rl (Figure 6.1) to demonstrate the mapping of a

partition to a join-class using Equation 6.1.

The minimum number of binary digits needed to represent a partition label in

Rlisl , = 4
The partitions of R1 as written in binary are :
0000, 0010, 1010, 0110, 0001, OOLI .

. . i
The number of join-classes at most are 2% = 4.

Using Equation 6.1, the join-classes of R1 are:

Crn = [0,2,10]

CIRI.AI = [0, 6]
CzRI.AI = [1,3]
CSRI.AI = [1, 3]

Rl,, Rl, & RI, are partitions in more than onc join-class. C°%,,, has 3

partitions while the other classes have 2 each.



For join class i

BEGIN
X 1= root
push(x, stc)
k P

WHILE (not empty(stk)) DO
BEGIN
pop(x, stk)
FOR j=0 TO reclimit - I DO
BEGIN
IF ( Equal(x —()).prt, i) then
BEGIN

IF (x —()).type = data) then
BEGIN
k:=k+ 1
CHea = X.PIt;
END
ELSE
push(x = ()).pntr, stk)
D

END
END
END

Algorithm 6.1: Collccts partitions of join-class i from a nonuniform
relation R. A is the join attribute of R.
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Figure 6.1 : A nonuniform relation
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. oy 2 3 . . . 3
Since the partitions of C’,, ,, and C° ,, are identical and 2 is less than 3, C7%,

is embedded in Cp, ;.

* %k *k

6.2 Aggregate-classes

With minor modification, the idea of aggregate-classes which was introduced
in the previous chapter is also used in the join of two relations with
nonuniformly distributed data records. When joining two relations with
uniformly distributed data records each aggregate-class will have equal number
of join-classes. And this number is fixed by the knowledge of the axis numbers
of the join attributes in each relation and the partition level of each relation.
But in the join of two relations with nonuniform data record distribution, each
class of a relation not necessarily join with equal number of join-classes. And
the number of the join-classes for each aggregate-class is determined after

accessing the directory records of both the relations which are to be joined.

In partitioning join-classes to form aggregate-classes, the labels of the
intervals, on the join-axes, are used. The labcl of the highest labeled interval,
from thosc intervals covered by a particular partition, can be computed using
the following 5 parameters:

1. The number(id) of the particular partition.
2. The number of the attributes in the relation.

3. The axis number where these intervals lie.



69
4. The axis partition level now.
5. The value of the axis partition level when this particular partition was last

divided.

Let the number of attributes in R be d, the axis number of A in the schema of

R be k, the binary representation of i be b,R_l, b,R-z, ... by, the axis partition
level of A when R, was last divided or created be m then the label of the highest

labeled interval , from those intervals covered by R, is:

i lpg-m _
i 2 x bu(z"'qn))(d) + 2™ [ (6.2)

j=m-1

Partitions of a uniform relation cover equal number of axis intervals. Two
partitions of a nonuniform relation not necessarily cover the same number of
axis intervals. Partitions of a join-class, of a uniform relation, cover identical
axis intervals, while those of nonuniform relation have at least one axis-interval
in common. The common axis intervals for partitions of a join-class are used in
the mapping of the join-class to one aggregate-class during the join of
nonuniform relations. Let the label, of the highest labeled common axis

interval, covered by the partitions of C',, be HCIL',,. See Example 6.2 for

more clarification of the points discussed so far in this section.
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Example 6.2

This example uses R4 (Figure 6.2) to clarify the finding of the highest
common interval label (HCIL), from the axis interval labels covered by all the

partitions of a join-class. The axis considered here is that of A4.

Crese = [0,8,2]
The intervals covered by each partition of C°, , are :
R4, covers 0
R4, covers 0, 1

R4, covers 0, I, 2, 3

o« . ey . 0 —
Axis interval common to all the partitions of C°, ,, is 0. HCIL,, ,, = 0.

= [16, 8, 2]

1
C R4,44

. .. | R
The intervals covered by each partition of C'p, ,, are :

R4 covers |

16
R4; covers 0, 1
R4, covers 0, I, 2, 3

o " 1 : 1 —
Axis interval common to all the partitions of C', ., is I. HCIL p, ,, = L.

sz.,« = [4, 2]
The intervals covered by each partition of C?p, ,, are :
R4, covers 2, 3

R4, covers O, 1, 2, 3



B4

3 1

16

RELATION (R4)

Figure 6.2 :

A nonuniform relation

A4

1
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. 42 2 =
Axis interval common to all the partitions of C*p, ,, are 2, 3. HCIL p , = 3.

Craue = 1, 3]
The intervals covered by each partition of C', ,, are :

R4 covers 4, 5, 6, 7

I
R4, covers 4, 5

. . .y 4 —
Axis interval common to all the partitions of C*, ,, are 4, 5. HCIL®, ,, = 5.

Crone = [1, 7, 15]

The intervals covered by each partition of C°, ,, are :
R4, covers 4, 5, 6, 7

R4, covers 6, 7

R4 covers 6, 7

IS

[ " 6 —
Axis interval common to all the partitions of C°p, ,, are 6,7. HCIL®,, ,, = 7.

ok % %k

Formation of aggregate-classes out of join-classes is as follows:

In the join of R and S, to start with, there is onc aggregate-class of R, AC"R' o
and its compatible aggregate-class from S, AC"S'B. In the beginning both these
classes are empty. Then C°, , is added to 4C%, and C’g; is added to AC’s,.

Now if HCIL', , is equal to HCIL's,, AC',, and AC';, arc done. But if
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HCIL®, , less than HCIL®, g the second join-class (in the order of increasing
join-class labels) is added to the join-classes of AC°, 4 Let this join-class be
C*O . If HCIL'Y,  is equal to HCIL®g, these two classes are done other wise
more join-classes are added till the HCIL'™ ,, where k(n) is the label of the last
join-class added to AC’, ,, is equal to HCIL' . If the case were that HCIL';,
less than HCIL’, , more join-classes would have been added to AC’g, till
HCIL"™_,, where k(m) is the label of the last join-class added to HCIL’g,, is
equal to HCIL’, ,. If there are some join-classes not yet included in 4C’;, and

AC®

aggregate-classes will be built till all the join-classes of R and S are ingulfed.

AC'., or AC',, are created to ingulf all or some of them . New

R,A? S.B R.A

Unlike the labels of the join-classes the labels of aggregate-classes are always
sequential and by convention they start from 0. The number of aggregate-
classes in both the join operand relations are always equal. From now on let the

number of aggregate-classes in each of the join operand relations be represented

as o™, ,, where R and S are the join operand relations and A and B the join
attributes. Similarly let the number of partitions in AC',, for 0 si<a™’, , be

B"R' « An aggregate-class in R will always have one and only one join compatible

aggregate-class from S. Now Equation 5.3 can be modified to include the join

of nonuniform rclations as follows:

RE, ;S = AC,,Z AC, for 0sisa™?, ,~1 (6.2)

. . . . . . i !
5.3 is special case of Equation 6.2 in which C', , is 4C, , and a™®, , = 2™



At processor P, ,

BEGIN
(=0

I
> g

(/
(k

RS

<
ISR

g

Cra =[]
ACg, = [ ]
done = false

WHILE ( NOT done ) DO
BEGIN

A COR.A = 4 CR,A + CHO)R.A
Acs.a = 4 Cs,a + Cl(k)s.a
hi_com_IbI{ HCIL®, ,, C*®, .. [, )
hi_com_IbIl HCIL'W ;. C® [ )

S.B?

IF(HCIL®, ) < HCIL™ ) THEN

k=k+1
ELSEIF( HCIL, ) > HCIL™_ ) THEN

i=j+1
EBng{Q (j =a*®, ) THEN

i=i+/
ACrs = [ ]

[ ]

X

Algorithm 6.2 : Aggregate-classes builder.
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Algorithm 6.2 is aggregate-classes builder. In the algorithm « & v are integer
arrays containing join-class labels of the two join operand relations. The labels
in each array are kept sorted in increasing order. Hi-com-lbl is a subprogram
which finds the highest common axis interval label of a join-class partitions.

Example 6.3 shows step by step the formation of aggregate-classes.
Example 6.3

This example uses R2 & R3 of (Figure 6.3) in showing the formation of
aggregate-classes. In the join of R2 and R3, let A2 of R2 and A3 of R3 be the

join attributes.

The join-classes in R2 are :

]

C‘ORZ.AZ

c? = [1, 3]

R2,A2

[0, 2]

C3R2.A2 = [1,7]

The join-classes in R3 are :

i

c’
C' = [0, 6]

R3,43

CzRS,AJ - “*3]

[0, 2]

R3,43

The formation process of the aggregate-classes is :
A4 Cokz.,n = [C0R2.A2]
ACORJ.AS = [CORS.Al]
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Since (HCIL,,, = 1) < (HCILy;,; = 0) s0 C'4; .. has to be added to

ACORJ.AT
ACa = [Corsns s Clm.A;]
HCIL,,,, = | = HCIL'y, = L.

This ends the formation of AC, ,, & AC’,, ,,. But there are still some join-

classes not yet ingulfed in either AC",, ,, 0r AC';, 4o

ACIRZ,AZ = [CZRZ.AZ]

AClRus = [C2R3.A3]

Since (HCIL?, ,, = 2) < (HCIL;;,; = 3) 50 AC’, ;. has to be added to

ACIRZ.AZ’
AC = [C? c, ol
R2,42 R2,A2? R2,A2
HCIL,,, =3 = HCILY,; = 3.

This ends the formation of AC'y, ,, & AC'y, ..

Since now all the join-classes are ingulfed, the process of aggregate-class

formation ends. a*%,, = 1.

ok ok



B2 B3
2 3 2 6 3
0 1 0 |
A2
RELATION (R2) RELATION ( R3)

Figure 6.3 : Nonuniform relation

A3

I
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6.3 Join in a single processor

In the join of two relations, R and S, on attributes A of R and B of §, a
processor P starts collecting partitions of AC°,, and AC’;, form the data and
directory search space of R and S respectively. The join starts by P first reading

AC™, , and AC™';,. After the join of these two partitions P again reads ACY,
and joins it with AC>' . P next reads AC**;; and joins it with AC™' ,. P keeps
reading the rest of AC°;, partitions , AC™,, AC*, ..., AC™,, where
q = P’ and joining them with 4C™'; ,, which is already in P. Since AC™
is through joining with all the partitions of AC’ it is replaced in P by AC" ,.
AC™, , starts joining with all the partitions of AC’s,, which by now are all in
P. The same process, of reading a partition from ACOM and the joining of it
with all the partitions of AC’, continues till the join of AC’;, with AC’g, is
done. Next the processing of 4C', 4 and AC'S‘B start and it will proceed as the

processing of AC°% , and AC’g, The processing of AC',, and AC's, will be

followed by the processing of the next two compatible aggregate-classes which
are again followed by the processing of the next aggregate-classes and so on titl
the last two aggregate-classes are processed. This ends the join of R and S.
Algorithm 6.3 is a join algorithm for two nonuniform relations in a single
processor. Example 6.4 is an example of a join operation on two nonuniform

relations, in a single processor.
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Example 6.4

This is an example of a join operation on relations R2 and R3 (Figure 6.4).
A2 of R2 and A3 of R3 are the join attributes. The join is performed in a single

processor, P.

The aggregate-classes, their partitions and their sizes are:
AC, ,, = [0, 2]

AC,, , =11, 3, 7]

AC, . = [0, 2, 6]

Ac'm3 = [1, 3]

BORZ,A2 =2
Blkuz =3
BORS.A3 =3
BlRJ,AS =2

The join process is as follows:

P, first reads R2, followed by the read of R3,. After these two partitions join, P
again reads R3, and joins it with R2,. The last partition in AC, ... R3.. is read
and is joint with R2 finishing the join of R2, with all the partitions of AC
The sccond partition in 4 C"Rz‘ 4«2 is read next and it is directly joined with all the
3 partitions of AC’, ,, finishing the join of AC%,,, with AC’, ;- The join of

AC',, ,, With AC', . starts with the read of R2. followed by the read of R3,.
R2,A2 R3,A43 1 |



FORi=0toa* ,— 1 DO
BEGIN
FORk = I to B’ , DO
BEGIN
read( AC, ™)
FORj = I to B, DO
BEGIN
IF (k = 1) THEN
BEGIN -
read( ACg ")
END .
join( AC, *ACg ;")
END

END
END

Algorithm 6.3 : Join algorithm in a single processor.

80
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After the join of these two partitions P again reads the last partition of 4 C'Rs A3

R3,. The join of these partition with R2, finishes the join of R2, with all the
partitions of AC'y, ,,- R2, is read next and it joins with all the partitions of

AC'y, ; for they are all in P. P at last reads the last partition in AC',, , and

R3,43

joins it with all the partitions of AC! 33 €nding the join of R2 and R3.

* % %k

6.4 Join in a vector of processors

If a vector of n processors is employed to perform a join of relations R and

S on join attributes A of R and B of S, each P, for 0 <i < n, must know the

following 3 parameters :
1. The partition levels of R and S.
2. The partition in each aggregate-class.

3. The join-axis-intervals covered by each partition.

All these 3 parameters are processed by P, P, extracts these parameters by
searching through the directory and data search space of both R and S. Then
P, pipelines the first parameter to the rest of thc processors in the vector before
starting to process the join of the first two join compatible aggregate-classes. It
pipelines the last 2 parameters just before their corresponding aggregate-classes

are processed. The join starts by the reading of the first k(1) partitions of
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AC"S'B, where 0 < k(1) < n, by processors P, for 0 <i < k(1). Each P, reads only
one partition. P, again reads AC™',,. This page is pipelined from P, to
processors P, for 1 <i < k(1). Then AC™' , is joint with all the k(1) partitions in

the vector . If there are more unprocessed partitions of ACOS'B another &(2),
where 0 < k(2) < n, partitions are read by the first k(2) processors of the vector .
Again these k(2) partitions are joint with AC""R . This process of, reading more
partitions of AC’;, and joining them to AC®,, continues till all the B,
partitions are processed with AC*', . P, replaces AC™',, by reading AC* .
This partition is then pipelined to all the processors holding at least one
partition of AC,. Since all the partitions of AC’;, are in the vector AC*,
starts joining as soon as it arrives in each processor. In such a way all the
partitions of AC"; , are joint with all the partitions of AC’; . This process again

is repeated for the next join compatible aggregate-classes in sequence, till all the
the compatible aggregate-classes are joined, ending the join of R with S. See
Algorithm 6.4 for the join of nonuniform relations in a vector of processors.
Example 6.5 shows the steps of how two relations join in a vector of 4

processors.
Example 6.5

In this example relations RS and Ré6 (Figurc 6.4) are uscd to join in a vector

of 4 processors, P, for 0 <i < 3. The join Attributes used are A5 of R5 and A6

of R6.



FOR h = 0 to n-1 DO
with P,
FORi=0toa* , — 1DO
BEGIN
FORKk = [ to B, , DO
BEGIN
BEGIN
IF(h <> 1) then
BEGIN
accept( AC" "‘R’ )
ELSE
read( AC™*y )
END
[F(h < n) then
BEGIN
send( C*, )
END
FOR j = flh-1,n) TO fin,h) DO
BEGIN
IF(k=1) THEN
BEGIN
read( ACg ;")
END _
Join( AC, ', ACg5")

Algorithm 6.4 : Join algorithm for a vector of processors.
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First P, will read the partition levels of RS and R6 and will pipeline them to

the rest of the processors in the vector. Then P, will build AC%%, ,s and AC .
It will compute B’ ,, and B’y . It will also pipeline these to the rest of the

processors. Now Each of the 4 processors of the vector will carry out the rest of

the processing as follows:

P, will read R6,, P, will read R6,, P, will read R6, and P, will read R6,,. P,
will again read a partition from AC"R5 s RS, This page will be pipelined from
P, to all the processors in the vector. RS, will then join with each of the 4
partitions of AC’ , in its corresponding processor. Since R6, joined with all
the partitions it was supposed to join P, replaces it by reading R6,. This page is
again pipelined to the other processors and it will start to join with same
partitions that R6, did join, ending the join of AC’ ;s With AC .. Next the 2
partitions of AC', , are read, R6, by P, and R6; by P,. P, again reads RS, and
pipelines it to P,. Then in P, RS, will join with R6; and in P, it will join with
R6,. P, will then read R5,. This partition will be processed in the same way as
R6,. The last partition in 4C'4 .5, RS, Will also be treated as R6, ending the
join of AC', ;s with AC'y, .. In the same way as that of AC'y . and AC', 4,
the partitions of AC?,. . and AC%, , will bc processed but this time three
processors will be involved instead of two. This is because B%, ,, = 3. Again
in the same way AC’,, ,, will be joint with AC’  ending the join of R5 with

R6.

% % %k
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6.5 Join in a mesh

If 2 mesh of m by n is used to join relations R and S on attributes A of R
and B of S, the knowledge of the following parameters by each processor in the
mesh is essential.

1. The partition levels of R and S.
2. The partition numbers in each aggregate-class.

3. The join-axis-intervals covered by each partition.

All These parameters are extracted from the data and directory search space of

both R and S by P,,. P,, then pipelines the partition levels of R and S before
the processing of the first two compatible aggregate-classes, namely AC°R' 4 and

AC"S_B, start. The partition numbers in each aggregate-class and the join-axis

intervals covered by each partition in an aggregate-class are pipelined just before

their corresponding aggregate-classes start to be processed. when P, pipelines

the values of all the above mentioned parameters, the join starts by each P,
reading a partition from AC"M and each Pu , for | £j < n, reading a partition
from AC%,. Each P,,, for 1 <i<m, then pipelines the partition it reads from
AC"M, to all the processors in row i, while each P, pipelines the partition it
rcads from AC’,, to all the processors in column j of the mesh. So a AC,,
partition rcad by P,, and a AC"S'B partition read by P, will only meet and join
in processor P, Each P, ; when it is done processing the join of the two
partitions it is holding it reads another partition of AC"M which has never been

read before. This page is pipelined to all the processors in the same column as
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that of the processor which read it. This new partition is then joint to the same

AC%, . partition in all the processor it is pipelined to. Each P, repeats this

0
process till it joins the -1-3—:—"? partitions of AC’, with the partition of R already

held by it. The first set of 4C°;, partitions which was read before, is now

replaced by another set of AC"R. , Dartitions. This set again goes through the
same process as the first set. The later set will be processed faster because the
partitions of AC"S'B are already in the mesh. The second set will be followed by
the third one and so on till join of 4C°, , with AC’, is complete. When AC, ,
and AC’g, are done they will be replaced by 4C',, and AC, in the mesh.
Again thesc two classes will be replaced by another two join compatible
aggregate-classes till all the o™, join compatible aggregate-classes are

processed, ending the join of R with S. Algorithm 6.5 is an algorithm for the
join of 2 nonuniform relations in a mesh. Example 6.6 shows how the join of

two relations can be carried out in a mesh.
Example 6.6

In this example relations RS and R6 (Figure 6.4) are to be joined in a mesh

of 2 by 2 processors. The join Attributes are A5 of RS and A6 of Ré.

First P,, will read the partition levels of R5 and R6 and will pipeline them
to the rest of the processors in the mesh. Then P, will build AC’ s and

AC 4 It will also compute B’ ,; and B°ress It will then pipeline these
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parameters to the rest of the processors. Now P,,, P, and P, know which
partitions to read from those of AC’s s and AC’ .. P, will read R6,
followed by RS, P,, will read R6, and P,, will read RS, P,, will receive R6,
from P,, and RS, from P,,. P, will send RS, to P,, and R6, to P,,. Then the
join of , RS, with R6, will take place in P ,, RS, with R6, will take place in

P RS, with R6, will take place in P, and R5, with R6, will take place in P, ,.

120
Since there are still two more partitions of AC’, . R6; and R6,, not yet joint
with RS, with RS, P, will read R6, and send it to P,, while P, will read R6,,
and send it to P,,. Then the join of , RS, with R6, will take place in P,;, R5,
with R6, will take place in P,, RS, with R6, will take place in P,; and RS,
with R6,, will take place in P,, This will end the join of AC’ 45 With A Cross
Again P, will build AC'4 s and AC' 4 4. It will also compute B'a; 45 and Blg s
It will again pipeline these parameter to the rest of the processors. Now P,

P, and P, know which partitions to read from those of AC' g 45 and AC' g 4.

P,, will read R6, followed by R5, P, will read R6; and P, will read RS

P,, will receive R6, from P, and R5, from P,,. P,, will send R5,to P,, and R6,
to P,,. Then the join of , RS, with R6, will take place in P,;, R5, with R6, will
take place in P,,. RS, with R6, will take place in P, and R5; with R6, will
take place in P,,. Since there is still one more partition of AC'y 450 RS, not

yet joint with R6, and R6,. P, will be read it and sent to P, ,. later R5,, will be
joint with R6, in P,, and with R6, in P, ,. This will end the join of AC' js 45 With

AC'M . The remaining two pairs of join compatible aggregate-classes will be
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processed in the same way as that of the first two, ending the join of R5 with

R6.

* %k

6.6 Load balancing

To gain a better efficiency each processor in the mesh must be kept as busy
as possible. If some processors in the mesh are kept idle during the processing
time, the efficiency thus the speed of processing becomes lower than when they
are kept busy. During processing, If idleness can not be totally avoided it must
be reduced to the minimum. This reduction can not be achieved unless the load
that must be carried out by each processor is balanced. In joining two

nonuniform relations R and S, a way to balance the load among the processors
is by dividing the elements of AC',,, among the m rows and that of ACy,,
among the n columns of an m by n mesh. The following two equations , 6.3 and
6.4, were used as load balancers in Example 6.6. In the join of AC%; , with
AC%, in a meh of m by n, let k= p%, MOD m and
ke = B's, MOD n. Each P, will be assigned AC" , for

q q
5= (i-l)xP-,:—"‘-, (i-l)X-B—”‘;A+1 s e e ., ix R4

() + BqR,A - kR if (kR > i) (6.3)
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and AC*, , for

i B’ B
t= G x =2, () x =4, xR land () + B, — K
if (kg > ) (6.4)

Equations 6.3 and 6.4 some times are not fair enough in balancing load among
processors. For example, in the join of AC7,, and 4CY, in a mesh of m by n let

3xm

B’ AR = and B"S'B = kxn. In the processing the first m partitions of

AC?, , with the k x n partitions of AC’, all the processors of the mesh will be

involved. While in the processing the rest -';—1- partitions of AC?, , with the k xn

partitions of AC’g, only processors P, for 1 <i< -';—1- and for 1 <j<n will be

involved. In other words half the processors of the mesh will be idle during the

processing of the -’g— partitions of AC?, , with the k x n partitions of AC . Half

the processors in the mesh will process 2 x k partitions from both the aggregate-
classes while the other half will process k partitions only. If the k, in the k xn,
is a large integer the idle processors will be kept idle for a longer time, thus
affecting the efficiency badly. To minimize the unfair load balancing of
Equation 6.3 the following improvement over Equation 6.3 was suggested. The

problem is with the k, partitions of Equation 6.3, which were assigned to the

first k, rows of the mesh. This left many processors uninvolved. But if each of

the k, partitions were assigned to 'kﬁ rows nearly all the processors will be kept
R
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busy. According to this modification in Equation 6.3, partitions of ACY, o will

be assigned to the following processors:

for m < [sp?
S Bea

P P , P )

tm, j ? ,'"“'kl‘j [.m&Z)(;"'_'j

R R

and for 1 sj<nandfor 0<g<a®™, , — L

With this modification in Equation 6.3, if the previous two aggregate-classes

X
k partitions.

. . . 3
were processed again each processor in the mesh will process
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FOR 0<ism AND FOR 0<jsn DO
* With P,
FORt = 0toa*®,, — 1 DO
BEGIN
Ye = B'r /m
Ys = Blsain
FORh = (i-]) xy, + L TOi xy, DO
BEGIN
IF(j = 1) THEN
read( AC*", )
ELSE
BEGIN
accept( AC", )
END
send( AC™, )
FOR g = (j-I) xys + 1 TOj xy, DO
BEGIN
IF(Gj = 1) THEN
BEGIN
[F(h = (i-1) x yo+1) THEN
BEGIN
read( AC* )
send( AC'"‘S‘B)
END
join( AC*™", ., AC™_)
END

ELSE
BEGIN

[F (h = (i-1) x y,+1) THEN

BEGIN
accept( AC*,)
IF (j < n) send( AC™,)

END

join( AC* ,, AC: )

END
END
END
END

Algorithm 6.5 : A join algorithm for nonuniform relations
in a mesh of m x n.
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CHAPTER 7

SIMULATION

The simulation program consists of 3 main modules. Module | simulates
Interpolation Based Grid File (IBGF). Module 2 simulates join algorithm for
relations based on Interpolation Based Grid File and of uniform data
distribution. Module 3 simulates join algorithm for relations based on

Interpolation Based Grid File and with nonuniformly distributed data tuples.

7.1 Module 1

This module does 3 main functions. It simulates the Interpolation Based
Grid File, distributes data equally among available storage clements and dumps
to a file each join-class in a relation if the data distribution of the relation is
nonuniform. [n this module each directory partition is simulated by an array of
records (tuples). Each directory tuple has 3 fields. Field 1 is a pointer field
which points to another directory partition or it is nil if it is pointing to an
implied data partition. Field 2 is a data tuple counter. It counts the number of
data tuples of the implied data partition if field 2 is nil. Field 3 is partition level
counter which counts the number of partition levels that an implied data or
directory partition pointed to by field 2 has undergone. No structurc simulates
the data partitions or data tuples at all. Instead in cach directory tuple, ficld 3
(data tuple counter) keeps the the count of the data tuples mapping to the index
of a directory tuple. The mapping of each data tuple to an index of a directory
tuple is as follows:

Each data tuple is a series of zeroes and ones, each generated randomly by a
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random number generator which produces binary numbers. To obtain more
generation of zeroes than ones or more ones than zeroes there is a probability
factor associated with the parameters of the random number generator
subprogram. The binary number thus generated is then converted to a decimal
number which is then used as an index to address a directory tuple in a
directory partition. Field 2, data tuple counter, of the addressed directory tuple
is then incremented by one. The number of data tuples that can be accomodated
in a data partition is limited. If after, the increment of the value in field 2 of a
directory tuple exceeds the limit, a new directory tuple index is computed from
the index of the one whose data tuple counter just exceeded the limit and its
partition level. Since the directory tuples which can be accomodated by a
directory partition is limited, the new index can exceed the range of indices
available in a directory partition. If the ncw index is in the range of directory
tuple indices, the value of the data tuple counter of the directory tuple whose
data tuple counter excecded the limit is subtracted by D and the data tuple
counter of the new directory tuple is assigned to D. D is a an integer value

computed as follows:

Let b, be the size of data tuples that can be accomodated by a data partition.
Let f be the probability factor that was associated with the random number
generator in producing the binary numbers used to address the overflowed
directory tuple. Then D = (1-f) x (b, +1). But if the new address is out of the
range of the directory indices a new directory partition is created. Field | of the
overflowed tuple is assigned the address of this new directory partition. The

data tuple counter of tuple 1 of the new directory partition is assigned to D and
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that of tuple 0 of the same directory partition is assigned to by— D +1. The data

tuples counter of the overflowed directory tuple is useless from now on.

If a binary number generated by the random number generator maps to a
directory tuple whose field 1 is not nil or in other words it is pointing to another
directory partition , this directory partition which is pointed to by this directory
tuple is made the current directory partition and a new set of binary numbers
are generated again to address one of the directory tuples out of the current
directory partition. This process continues till a directory tuple whose field 1 is
nil is encountered. Obviously in the beginning, the root directory is the current
directory. Whenever a data tuples counter exceeds the limit, the partition level
(field 3) of the overflowed directory tuple is incremented by one and this
incremented value is also assigned to field 3 of the directory tuple(s) generated
from the overflowed directory tuple. The new index which is computed from
the overflown directory tuple index and its partition level is computed as the

following:

Let m be the partition level of the overflown directory tuple, n be the index of

the overflown directory tuple then the new index is = n + 2"

Function 2 of this module is the data distribution of the relations to a
number of available storage elements. There are 2 different distribution
algorithms in the simulation. Distribution algorithm 1 is used with relations of
uniform data distribution while distribution algorithm 2 is used for relations
with nonuniform data distribution. In distribution algorithm 1 a partition p is

stored in storage s, where s is an integer indexing a storage element, computed
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as follows:

Let S be the number of available storage elements, L, be the partition level of

relation R, bit(i) the value of the i* binary digit when P is written in binary,

where bit(0) is the most significant bit and bit(l;— 1) is the least significant bit.

Then

a2 ip-112 |
s = $2xbie@xn + Y 2'xbit2xi+1) MOD S.
=0 i=0

In distribution algorithm 2 post order traversal is used on the Interpolation
Based Grid File tree. If there are n data tuples in a relation and if there are §

storage elements available to store these n data tuples, each storage element is

made to store nearly -g: data tuples. During a post order traversal a data tuple

counter is used to reach a value of up to % data tuples. If this number is
reached when the post order traversal is still is in the middle of a partition, then

all the tuples in this partition are added to —"57 and all this partitions and their

tuples are stored in one storage element. A table of S entries is kept to show the

range of partitions stored by each storage.

Function 3 of this module collects the partitions of cach join-class of a
relation and sequentially dumps each join-class to an external file starting from
join-class 0. The first record of the file contains the partition level of a relation
and the number of storage elements used. Since in nonuniform relations some

join-classes can be embedded in others, an integer number which is the range of
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join-classes impeded in the current join-class is written in the file just before
writing each partition of the current join-class in the sequence of join-
classes.Since a partition can be a member of more than one join-class in a
nonuniform relation, with each partition the range of join-classes it covers, the
storage address in which it resides and a flag to indicate whether this partition is
a data or a directory partition is written in the file. To signal the end of the
partitions of a join-class a series of -Is are written in the line following the last
partition of each join-class in the file. To join two nonuniform relations two such

files, file 1 and file 2, are created by this module.

Before discussing the rest of the modules let us discuss how the hardware

used in this thesis is simulated.
The operations done by the processors in the mesh are as follows:

[. Read
Receive
Send
Compute

Join

AU e

Wait

Fixing the time units that each of the above 5 operations use, excluding
operation 6 which is wait, the processors, storage elements and storage-to-
processor connections can be simulated as time unit counters. Thus the mesh of
processors are represented in the simulation by a two dimensional array of

counters. Each processor is represcnted by a single entry in the two dimensional
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array. For simplicity the processor in row i and column j in the mesh is
represented by the entry in row i and column j in the two dimensional array of
counters. The S storage elements are also represented by a one dimensional
array of time unit counters. Storage labeled i where 0<i < S is represented by the
i" entry of the one dimensional array. The C connections are also represented

by a one dimensional array of time unit counters. Storage to processor
connection labeled i where 0<i<C is represented by the i* entry of the one

dimensional array.

To minimize the time consumed by wait it is better to make some balance
between the processing time and the read time. This is done by appropriately
choosing the right page size. Since seek time is quite big compared to
transmission or computation time, to minimize the number of seek operations,
bigger pages are preferred. The choice of the size of the data pages in this

simulation was done as follows:

The size of a data tuple was fixed to 56 bytes. The seck time was fixed to 8
milliseconds. The transmission time was fixed to 16 mega bits per second. The
computation time together with the join time was fixed to 4 micro second for a
pair of tuples. So the number of tuples, ¢, in cach data page was computed as
follows: [.ct Te be time needed to transmit 1 data tuple and Tj be time needed
to join two tuples. The the time needed to join two pages, 4 X1 xf must be
nearly equal to the time needed to read two pages which is equal to
2 x (28 x ¢t +8000). Computing ¢ form the above equation resulted in ¢ to be 73.

And the size of the data page with ¢ of 73 was 4k.
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7.2 Module 2 & Module 3

Module 2 is the join algorithm for relations with uniformly distributed data
partitions while module 3 is the join algorithm for relations with nonuniformly
distributed data partitions. The procedures for the join were thoroughly
discussed in Chapters 5 and 6. In this section, only the simulation details are

discussed.

Initially all the counters are set to zeroes. External information needed by
module | are the partition level of each relation to be joined and the number of
storage elements each relation is using. No directory pages are read in module
I. A processor requesting to read a data page checks the time counter of the
storage element, the time counter of the connection that connects it with the
storage element and its own time counter. Then it synchronizes its time with the
time of the connection and the storage by assigning the value of the highest
entry , out of these 3 counters. Then the read is complete by incrementing these
3 counters by the time units needed to read and transmit a page. In sending a
page to a neighbour, the times of both the sending and the receiving processors
is synchronized by letting the time of the receiving processor more than that of
the sending by the time needed to transmit a page. Then after the transmission
the times of both the receiving and sending processors arc incremented by the
time that was nceded to transmit the page. The join of two data pages is done
when both pages reside into the same processor. So join is simulated by
incrementing the processor counter by the time needed to join 2 pages. When
joining relations with nonuniform data distribution 2 join-compatible pages

residing in the same processor simultaneously do not necessarily join. This is
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because some pages can be a member of more than one join-class. So some
pages can appear again and again with subsequent join-classes. So if such two
pages are once met for the first time and made to join, they must not be made
to join again. This is implemented by associating a flag with each data partition.
When this data partition comes for its first time in the mesh its flag is set to
false. By the end of the join of the current join-classes, its flag is set to true.
Two join compatible pages residing in the same processor are allowed to join if
at least the flag of one of them is false. In other words two join compatible
partitions with both true flags meeting in a processor will not join this time
because they have already joined once; they appeared as members of some
previously done join-classes.The programs for modules 1,2 and 3 are in

appendices [, 2 and 3 respectively.
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CHAPTER 8
SIMULATION RESULTS

In this Chapter, the term efficiency which was discussed in Chapter 2 is
used as the main performance factor for the analysis of the join algorithm for
relations with uniform data distribution and for the join algorithm for relations
with nonuniform data distribution. Section 8.1 discusses the efficiencies of the
join algorithm for relations with uniformly distributed data partitions and
Section 8.2 discusses the efficiencies obtained by the join algorithm for relations
with nonuniform data distribution. The effect of, number of processors, number
of storage elements, number of storage to processor connections (s-p-
connections), number of aggregate-classes and number of partitions per
aggregate-class, on the efficiency of the algorithms of Chapters 5 and 6 is also
discussed in both the Sections, 8.1 and 8.2. Scction 8.3 discusses the efficiency
results obtained when the join algorithm for relations with uniform data
distribution was used to join relations with nonuniformly distributed data

partitions.

Another two factore, affecting the efficicncy, inherent with any pipceline

system, are as below.

Factor 1 : When starting a process in a pipeline environment some timc is

needed for the processors at the rear of the pipeline to start processing.
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Factor 2 : Near the end of a process in a pipeline environment, the processors

at the front of the pipeline will be kept idle while those in the rear are still

active.

These two factors contribute to the reduction of the overall efficiency of a
pipelined system. In a process of a very short duration these two situations will
contribute proportionately more, thus reducing the overall efficiency. The time

of each factor increases as the number of the processors in the pipeline increases.
8.1 Uniform relations
8.1.1 Number of partitions

In the join of R and S let k = p%, and / = f%,, where Osgsa™’, —1.

Every partition in AC%, , must be processed with all the / partitions of AC7g . If
a mesh of m xn is used to do the join of R and S, the aggregate-classes formed

will be one of the following 4 types:

(Let the partitions of R be read by the processors that are in the first column of

the mesh.)
Type I: when k<m and [<n.

Relations of this type of aggregate-classes will only be processed by k </
processors, while (/m-k) x [ processors will remain idle. This type of classes will
contribute to low efficiency. The smaller the value of k x [ the lower is the

efficiency.
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Type 2: when k <m and [2n.

Relations of this type of classes will be processed by k x n processors only.
The rest will remain idle resulting in low efficiency. Lower values of k will
increase the number of idle processors thus lowering the efficiency more.
Increasing the value of / will not increase or decrease the number of idle
processors but will keep the active processors active for much longer time thus

contributing to minor efficiency improvement.
Type 3: when k2m and [<n.

Relations of this type of classes will be processed by m x [ processors only.
The rest will remain idle resulting in low efficiency. Lower values of { will
increase the number of idle processors thus lowering the efficiency more.
Increasing the value of k will not increase or decrease the number of idle
processors but will keep the active processors active for much longer time thus

contributing to minor efficiency improvement.
Type 4: when k2m and [2n.

Relations of this type of aggregate classes will be processed by all the
processors in the mesh resulting in a high efficicncv. Higher values of { or k will
keep the processors continuously busy for longer periods of time thus resulting

in even better cfficiency.
8.1.2 Number of aggregate-classes

Increasing the number of aggregate-classes while keeping the number of
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tuples in a relation unchanged will result in poor efficiencies for the following

reasons :

1. Dividing the partitions amongst many aggregate-classes means fewer number
of partitions per class, thus increasing the probability of aggregate-classes of

types 1,2 and 3.

2. When the join of an aggregate-class with its join-compatible aggregate-class is
over, both of these classes must be sent out of the mesh and be replaced by
another aggregate-class and its join compatible one. This transition period will
force many processors to stay idle due to factors 1 and 2. As the aggregate-

classes increase the transition periods also increase, lowering the efficiency.

Table 8.1 shows the effect of increasing the number of partitions or the
number of aggregate-classes on the efficiency. As the number of partitions
within each aggregate-class was doubled efficiency improved significantly. When
the number of aggregate-classes was doubled with out decreasing the number of
partitions within each aggregate-class the improvement in the efficiency was
insignificant. Doubling the number of aggregate-classes but decreasing the

number of partitions in each aggregate-class resulted in poor efficiency.
8.1.3 Number of processors

Increasing the number of processors might increase the speed of.processing

but it decreases efficiency due to the following rcasons:

1. Increased overall transition time due to the increased time of factors 1 and 2.



Number of partitions Number of Efficiency
per join-class join-classes
8 8 40.8
8 16 44.5
16 16 61.5
16 32 62.5
32 32 77.1
32 64 77.2
64 64 87.3

Table 8.1 : Effect of partition and join-class size on efficiency.

A mesh of 2 by 2 is used for table.
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2. Increased the probability of an aggregate-class to be of types 1,2 or 3.

3. Shortened the time of continuous processing of each aggregate-class. This is
because each processor has to process fewer partitions from each aggregate-

class.

Table 8.2 shows how the efficiency is affected when the number of
processors is increased and the sizes of the joining relations are kept unchanged.
Table 8.3 shows increasing both the number of processors and the sizes of the

joining relations by the same proportion results in nearly the same efficiency.
8.1.4 Number of storage elements

Increasing the number of storage elements is decreasing the number of
partitions in each element. As a result the number of simultaneous requests for
the same element will decrease. Efficiency will increase because processors
requesting access to a storage will get them sooner. Table 8.4 shows how the
increment in the number of storage elements affects the efficiency. One can see
from the table, as the number of storage devices was doubled the efficiency did
not improve significantly. This is because the whole join process is more

towards computation (CPU) bound than towards I/O bound.
8.1.5 Number of s-p-connections

Increased number of s-p-connections means less number of processors
connected to each s-p-connection. So a processor requesting a free storage
element wouldn't wait longer due to high competition for the same s-p-

connection. Table 8.5 shows how the efficiency was insignificantly affected each
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Number of processors Efficiency Speedup
64 77.3 50.5
32 81.5 26.1
16 87.5 14.0
8 90.1 7.2
4 93.4 3.7

Table 8.2 : Effect of number of processors on the
efficiency. 1024 sized relations used.
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Number Size of R Size of S Efficiency
of processors
4 256 256 87.7
16 1024 1024 87.5
64 4096 4096 87.4
256 16384 16384 87.1

Table 8.3 : Effect of ratio of relation size to processor
size on the efficiency.



Number of storage Efficiency Speedup
elements
1 49.0 314
2 68.0 43.5
4 72.5 46.4
8 77.1 49.3
16 78.3 50.1

Table 8.4 : Effect of number of storage elements on efficiency.
Relations of 1024 tuples and mesh of 64 is used.
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Number of Efficiency Speedup
s-p-connections
1 49.0 314
2 68.9 43.7
4 74.5 47.5
8 77.3 49.5

Table 8.5 : Effect of number of s-p-connections on efficiency.
16 storages & 64 processors were used.
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time the number of s-p-connections is decreased by half. This is because, as was
mentioned in subsection 8.1.4, the whole join process is more towards

computation (CPU) bound than towards [/O bound.
8.2 Nonuniform relations
8.2.1 Number of partitions

In the uniform case the number of partitions in each aggregate-class is the
same. So in the join of two uniform relations, processors which are idle during
the processing of the first join compatible aggregate-classes will remain idle and
processors which were active will remain active during the processing of the rest
of the aggregate-classes, until the join of these two relations is over. But in the
join of two nonuniform relations this is not the case. Processors active in the
processing of one aggregate-class might participate in the processing of the next
aggregate-class. And processors active in the processing of one aggregate class
might stay quite during the processing of the next one. This is because the
number of partitions in the aggregate-classes of nonuniform relations can vary
from one Aggregate-classes class to another. Join-compatible Aggregate-classes
of uniform relation are of only one type, while those of nonuniform relations

can vary in type from one join compatible aggregate-class to another. In other

words, in the join of R and S, where R and S are uniform relations, if AC’,,
and AC"&B are of type I, all the other join-compatible aggregate-classes of S and
R are also of type 1. But if R and S are nonuniform relations, if 4C% , and

AC’ , are of type |, AC'y , and AC'; ; might be of type | or 2 or 3 or 4.
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8.2.2 Number of aggregate-classes

For the same number of data tuples highly skewed relations have more join-
classes than less skewed ones. As a result many join-classes of a highly skewed
relation will have few number of partitions. In the join of two highly skewed
relations, the number of aggregate-classes formed is high. Many aggregate-
classes with few partitions will result in a poor efficiency due to the following

reasons:

- High number of transition periods due to the many aggregate-classes

involved.

2- Most of the aggregate-classes contain few partitions. This might force many
of them to be of type | or 2 or 3. And we know that having too many of these

types is bad news.

Table 8.6 shows how the efficiency is extremely low when a R of 0.1
probability factor(Pf) was joint with S of 0.9 or 0.1 Pf. The join of R (0.1 Pf)
with S ( 0.2 Pf) or (0.8 Pf) will result in a better efficiency than S (0.1 Pf) or
(0.9 Pf). This is because S of 0.8 Pf or 0.2 Pf have fewer join-classes than S of
0.1 or 0.9. Thesc fewer join-classes will form fewer aggregate-classes thus better
efficiency. As the Pf of S approaches 0.5 the number of aggregate-classes formed
decreases in number resulting in higher number of partitions per aggregate-class.
Many join-classes of R will be mapped into the same aggregate-class. The
number of aggregate-classes so formed will be less than or equal to the number
of join-classes of the relation with the Pf nearest to 0.5. So ,when R of 0.1 Pf

and S of 0.4 Pf are to be joint the number of aggregate-classes formed will



Pf

of

Pfof S

Table 8.6: Effect of probability Factors on esnwiciey.

Note: Pf stands for probability factor.

Siloa [o2 |03 |o4 |05 |06 |07 |08 |09
R

0.1 |[29.0 |40.9 [s8.6 |62.2 |65.0 |48.0 |32.4 |26.1 |18.6
0.2 | |41.4 |348 |450 |53.0 |64.4 |42.6 [349 [29.3 |26.4
0.3 | |58.7 |46.4 |40.9 |46.2 |63.1 |43.9 |37.0 |345 |36.4
0.4 | |61.8 |532 |47.6 |43.8 |62.4 |a41 |42.2 |40.2 455
0.5 ||67.9 |60.9 |59.6 |60.3 |70.2 |6L.5 |61.0 |61.5 |66.1
0.6 | |455 |42.0 |40.4 |41.1 |62.7 |40.8 |459 [50.8 |62.1
0.7 |[33.4 359 [36.9 |40.3 |63.7 |44.6 358 [40.9 |58.1
0.8 ||26.1 [295 [33.4 |41.5 [658 |51.2 |42.0 [27.8 |32.1
0.9 | [18.7 |26.4 |33.4 {473 |70.9 |62.2 |59.9 |31.6 |22.2
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be less than or equal to the number of the join-classes of S. That is why when R
of 0.1 or 0.9 Pf is joint to S of 0.5, the efficiency was high. See table 8.6. For
the same number of tuples, S of 0.3 Pf and S of 0.7 Pf, will have the same
number of join-classes. But when S of 0.7 Pf was joint with R of 0.1 Pf resulted
in a lower efficiency than when S of 0.3 Pf was joint with R of 0.1 Pf. This is
because S of 0.3 Pf and R of 0.1 Pf have more join-compatible aggregate-classes
of type 4, Than S of 0.7 Pf and R of 0.1 Pf. As the Pf of R and Pf of S
approaches 0.5, the number of aggregate-classes diminishes and the number of
join compatible aggregate-classes of type 4 increases, thus the efficiency too

increases.

In the join of 2 uniform relations, the efficiency increases if the size of the
relations is increased. In the join of nonuniform this might not be always true.
This is because increasing the size of relations by adding more partitions might
result in more join-compatible aggregate-classes of type | or 2 or 3. Table 8.7
shows how the efficiency was decreased as the size of the nonuniform relations

was increased.
8.2.3 Number of storage elements

Reducing the number of storage elements where the join operand relations
reside. result in a poor efficiency. Processors requesting pages from the same
storage will incrcase as the number of storage clements decrease. Thus
processors have to wait idle for a longer time to get a page from a storage. Each
time reducing the number of storage elements by half did not result in a

proportional efficiency reduction. This is because, as mentioned previously, the

L4
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Size of R Size of S Efficiency Speedup
25000 25000 58.7 375
32000 32000 52.3 33.5
45000 45000 70.1 44.9
64000 64000 54.7 34.6

Table 8.7 : Effect of relation size on efficiency.
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Number of storage Efficiency Speedup
elements
1 49.0 314
2 57.6 36.9
4 60.3 38.6
8 70.1 449
16 71.3 45.6

Table 8.8 : Effect of number of storage elements on efficiency.
Relations of 1024 tuples and mesh of 64 are used.
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whole join process is more towards computation bound than towards input

output. Table 8.8 demonstrates this fact.
8.2.4 Number of s-p-connections

Reducing the number of s-p-connections also reduces the efficiency. This is
because more processors will be connected to the same connection thus
increasing the competition between processors for the same connection. Because
the join process is competition bound reducing the number of such connections
did not result in a decrease of efficiency by the same proportion. Table 8.9
demonstrates how varying the number of connections affect the efficiency of the

join algorithm.
8.3 Uniform algorithm for nonuniform relations

In Chapter 5 it was discussed that the join algorithm for relations of
uniform data distribution takes as an input the partition levels of each operand
relations and the number of storage elements each of the operand relations are
residing on. Having this information a processor can compute the page number
it wants to read and it can also compute the address of the storage where this
page is residing. Because the relations involved were all of uniform data
distribution the processor knows which data partitions are physically present in
the data scarch space of a relation. But if the relations involved are of
nonuniformly distributed data partitions, having the information of their
partition level will never be useful to determine what data partitions are
physically present in the data search space of such relations. The only

information that the partition level of such relations can tell is the maximum



Number of Efficiency Speedup
s-p-connections
1 48.6 31.1
2 66.7 42.7
4 69.5 44.9
8 70.2 44.9

Table 8.9: Effect of number of s-p-connections on efficiency.

16 storages & 64 processors were used.
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range of partition number that this relation can assume. In a very skewed
relation the range is quite high. In fact as the skewedness of a relation increases,
its range of partitions increases exponentially. So relations of probability factor
of 0.9 and 0.1 have much higher ranges of partition than relations of 0.5
probability factor. Figure 8.1 shows the possible range of partitions of R, whose
probability factor is 0.5, and that of S whose probability factor is 0.9. The range
of partition numbers in R is from 0 to 7 while that of S is from 0 to 63. If S was
an operand of our current join algorithm, this algorithm will try to read all the
64 possible pages, wasting a lot of read time for partitions that do not exist. But
if R is used as an operand relation for this join algorithm, there are still some
read statements which are attempted in reading non existent pages; but, they are
fewer compared to that of the highly skewed S. Using this join algorithm for
nonuniform relation will result in a very bad efficiency because a lot of these
dummy reads will result in keeping many nonboundry processors in the mesh
idle. Table 8.10 shows the comparison between using join algorithm for relations
with uniform data distribution and using join algorithm for relation with
nonuniform data distribution, both in the join of relations of nonuniform data

distribution.



A

R (0.5 PROBABILITY FACTOR) S (0.9 PROBABILITY FACTOR)

A

ff

7 3 ?

Figure 8.1:

R is nearly uniform while S is highly
skewed. The partition numbers in R
range between 0 and 7 while that of S
range between O and 63 though, both
relations have 7 partitions each.
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Probability factor Ratio
0.3 731.4
0.4 8.7
0.5 0.9
0.6 8.3
0.7 719.3

Table 8.10 : Effect on the ratio of uniform algorithm efficiency
over nonuniform algorithm efficiency when both are
used to join nonuniform relations.
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CHAPTER 9
CONCLUSION AND FUTURE WORK

The common need of join operation in many applications makes it
important to find more efficient algorithms. In this thesis two new join
algorithms for parallel computers are presented. Both are based on IBGF. They
are join algorithms for uniform relations and for nonuniform relations. The
main factors affecting the efficiencies were the number of processors, the
number of secondary storage elements, the number of processors to storage
elements connections, the number of aggregate-classes and the number of

partitions in each aggregate-class.

Increase in the number of processors increases the speedup. However, the
efficiency which is speedup divided by number of processors, decreases. The rate
of decrease in efficiency is a subject of further analysis under say different

architectures and communication protocols.

The increase in the number of aggregate-classes has shown decrease in
efficiency. This is mainly due the relatively fixed sequential processing required
per aggregate-class. Also high number of aggregate-class mecans aggregatc-classes
of smaller sizes. Which implies lower parallelism because some processors will
remain idle. Further research is required to improve parallelism across the

aggregate-clas§es.

The increase in the number of storage elements and their connections with
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the processors, has improved the efficiency as expected. This is due to higher

parallelism in I/O.

The study needs to be enhanced further to include different architectures
and the protocols. Our choice of mesh is not based on a particular yield of this
topology. However mesh topology fits the topology of IBGF. Its performance
should be compared with other architectures before any thing more can be said

about it.

Finally, load balancing techniques imbedded into the distribution algorithms

need further study.
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APPENDIX A
Program listing for IBGF simulator

(MODULE 1)



PROGRAM IBGF ( INPUT
CONST

D P W R WS D P P G D P W P WS WD WS WS WS WE WD W W WD R WD G T W G G Gp AR D @ S S S S S S e e

, IBGFIN,OUTPUT, IBGF) ;

.BITLIMIT.) OF INTEGER;

STKLIMIT.) OF STKREC;
.) OF VECVALUE;
.) OF VECVALUE;

BITLIMIT = 3000;
RECLIMIT = 31;
DATALIMIT = 73;
STKLIMIT = 100;
AXES = 2;
VEC1SIZE = 3000;
VEC2SIZE = 10;
TYPE
VECVALUE = 0..1 ;
DIRPNTR = @DIRBUK;
DIRREC = RECORD
DONE : BOOLEAN;
SIZE : INTEGER;
NEXT : DIRPNTR;
LVL INTEGER ;
END;
DIRBUK = RECORD
STO : INTEGER;
RECLVL : INTEGER;
MAXPRT : INTEGER;
BITSIZE : INTEGER;
REC : ARRAY(.0..RECLIMIT.) OF DIRREC;
END;
BITSARRAY = ARRAY(.1l.
STKREC = RECORD
PNTR : DIRPNTR;
LVL : INTEGER;
DISK : INTEGER;
END;
STKTYPE = ARRAY(.1..
BINVECTOR1 = ARRAY(. 1 .. VEC1SIZE
BINVECTOR2 = ARRAY(. 1 .. VEC2SIZE
VAR
IBGF TEXT;
IBGFIN : TEXT;
BINARRY : BITSARRAY;
ROOT DIRPNTR;
N,SP INTEGER;
MAXLVL INTEGER ;
IX,1Y INTEGER;
TOTDISK INTEGER;
INTR INTEGER ;
RANGE INTEGER;
BITSIZE : INTEGER;
P, YFL : REAL;

PROCEDURE RANDOM (VAR IX

INTEGER;
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VAR IY : INTEGER;
VAR YFL : REAL);
CONST
MULT = 65539;
BEGIN
1Y := IX * MULT;

IF (IY < 0) THEN
IY := IY + 2147483647 + 1;

YFL := 1IY;
YFL := YFL*0.4656613*%0.00001*%0.0001
END;
(* ___________________________________________________

PROCEDURE GETBINARRY( VAR BINARRY :

P :
BITSIZE :
VAR
I : INTEGER;
Q : REAL;
BEGIN
Q :=1-P;
FOR I := 1 TO BITSIZE DO
BEGIN
RANDOM(IX, IY, YFL);
IX := 1IY;
IF ( YFL >= Q ) THEN
BINARRY(.I.) := 1
ELSE
BINARRY(.I.) := O;
END;
END;

BITSARRAY;
REAL;
INTEGER );

PROCEDURE BINTOINT(VAR PRT : INTEGER;
BITSIZE : INTEGER;
BINARRY : BITSARRAY);

VAR
N, I : INTEGER;
BEGIN
N := BITSIZE;
IF (BITSIZE > RANGE) THEN

N := RANGE;
PRT := 0;
FOR I := 1 TO N DO
PRT :=
END;

* -----—---------------------------------------—-----

FUNCTION COMPUTING THE MINIMUM NUMBER OF BITS

THAT AN INTEGER NUMBER CAN ASSUME

INTEGER;

FUNCTION SIZEOFBITS(K : INTEGER) :
VAR

128

PRT + TRUNC(EXP((I-1)*LN(2))+0.5)*BINARRY(.I.);



r

M, I : INTEGER;

BEGIN
M :=1;
WHILE (K >= 2) DO
BEGIN
M:=M+ 1;
K := R DIV 2;
END;
SIZEOFBITS := M;
END;
It L L L L L L P L L LT

FUNCTION EMBDED(K,L,M : INTEGER): INTEGER;
VAR

I : INTEGER;
BEGIN

M := L - RANGE*M;

EMBDED := K + TRUNC(EXP(M*LN(2))+0.5);

FUNCTION EMBDER(K1 : INTEGER): INTEGER;
VAR
TMP, I, LOG : INTEGER;
BEGIN
T™MP := K1;
LOG := 0;
WHILE(TMP >= 2) DO
BEGIN
TMP
LOG :
END;
T™P := 1;

TMP DIV 2;
LOG + 1;

1 TO LOG DO

:= TMP*2;
EMBDER := K1 - TMP;
END;

FOR I

(* ___________________________________________________

PROCEDURE INITIALIZE(VAR ROOT : DIRPNIR;

VAR RANGE, BITSIZE : INTEGER);

VAR
I : INTEGER;
BEGIN
NEW (ROOT) ;

ROOT@.MAXPRT := O;
ROOT@.BITSIZE := 1;
FOR I := 0 TO RECLIMIT DO
BEGIN
ROOT@.REC(.I1.).DONE := FALSE;
ROOT@.REC(.I.).SIZ2E := O;
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ROOT@.REC(.I.).NEXT := NIL;
ROOT@.REC(.I.).LVL = 0;
END;
ROOT@.REC(.0.).SIZE := 1;
I :=1;
RANGE := 0;
WHILE ( I < (RECLIMIT + 1)) DO
BEGIN
I :=1 % 2;
RANGE := RANGE + 1;
END;
BITSIZE := RANGE;
END;
(* ---------------------------------------------------
CREATOR OF A NEW DIRECTORY PARTITION
--------------------------------------------------- *)
PROCEDURE MAKENEWBUK( VAR CURPNTR : DIRPNTR;
P : REAL;
K : INTEGER;
LEVEL : INTEGER) ;
VAR
NXTPNTR : DIRPNTR;
I, M1, M2 : INTEGER;
BEGIN
NEW (NXTPNTR) ;
NXTPNTR@ . MAXPRT = 1;
NXTPNTR@.BITSIZE := LEVEL + 1;

NXTPNTR@.RECLVL CURPNTR@.RECLVL + 1;

FOR I := O TO RECLIMIT DO

BEGIN
NXTPNTR@.REC(.I.).DONE := FALSE;
NXTPNTR@.REC(.I.).SIZE := O;
NXTPNTR@.REC(.I.).NEXT := NIL;
NXTPNTR@.REC(.I.).LVL = 0;

END;

M1l := TRUNC((DATALIMIT + 1) * P);

M2 := TRUNC((DATALIMIT + 1) * (1.0 - P));

IF (M2 > Ml1) THEN
Ml := Ml + 1

ELSE IF(M1 > M2 ) THEN
M2 := M2 + 1;

NXTPNTR@.REC(.1.).SIZE := M1;
NXTPNTR@.REC(.0.).SIZE := M2;
NXTPNTR@.REC(.0.) .LVL. := LEVEL + 1;
NXTPNTR@.REC(.1.).LVL := LEVEL + 1;
CURPNTR@.REC( .K.) .NEXT := NXTPNTR;

END;

PROCEDURE DIVIDEREC( P : REAL;
VAR PNTR : DIRPNIR;
PRT1, PRT2 : INTEGER);
VAR
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M1,M2 : INTEGER;
BEGIN
(* WRITELN('PPPPP', PRT1, PRT2) ¥*)
M1 := TRUNC((DATALIMIT + 1) * P);
M2 := TRUNC((DATALIMIT + 1) * (1.0 - P));
IF (M2 > M1) THEN
Ml := M1 + 1
ELSE IF(M1 > M2 ) THEN
M2 := M2 + 1;
PNTR@.REC(.PRT2.).SIZE := Ml;
PNTR@.REC(.PRT1.).SIZE := M2;
M1 := PNTR@.REC(.PRT1.).LVL + 1

~e

PNTR@.REC(.PRT1.).LVL := Ml;
PNTR@.REC(.PRT2.).LVL := Ml;
IF (PNTR@.MAXPRT < PRT2) THEN
BEGIN
PNTR@.MAXPRT := PRT2;
PNTR@.BITSIZE := Ml;
END;
END;

(¥ ~~omemmmmccccccccccecceeccceeeee—e—ceemeeemmaemem———-
CALCULATOR OF THE POWER OF 2 OF AN INTEGER NUMBER.

..................................................... *)
FUNCTION POWEROF2(K:INTEGER) : INTEGER;

VAR
I,T : INTEGER;
BEGIN
T := 1;
FOR I :=1 TO K DO
T := T*2;
POWEROFZ := T;
END;

G e DR D DD Dt R bbbl bl

CALCULATOR OF THE NUMBER OF BITS THAT THE
RANDOMLY GENERATTED DATA TUPLE ASSUMES.

PROCEDURE GETRANG( MAXLVL, LVL, INTR : INTEGER;
VAR K : INTEGER);

VAR

KK : INTEGER;
BEGIN

IF ((MAXLVL MOD 2 ) = 1) THEN

K := (MAXLVL + AXES - 1 - LVL) DIV AXES
ELSE
= (MAXLVL - LVL) DIV AXES;

PROCEDURE INTTOBIN(INTNUM : INTEGER
RANGE : INTEGER'
VAR BINVECTOR : BINVECTOR2);
VAR
I : INTEGER;




BEGIN
FOR I := 1 TO RANGE DO
BEGIN
IF ( (INTNUM MOD 2 ) =
BINVECTOR(.I.) :=1
ELSE
BINVECTOR(.I.) := 0
' INTNUM := INTNUM DIV 2
END;

FUNCTION COMPARE(JCBITS : BINVECTOR1;
PRT : INTEGER;
LVL : INTEGER;
PNTR : DIRPNTR) : BOOLEAN;
VAR
PRTBINVEC : BINVECTOR2Z;
TOTPRTSIZE : INTEGER;
MBR : BOOLEAN;
I,K, M : INTEGER;
BEGIN
TOTPRTSIZE := (LVL-1l) * RANGE;
M := PNTR@.REC(.PRT.).LVL - TOTPRTSIZE;
INTTOBIN(PRT, M, PRTBINVEC);
K := (TOTPRTSIZE + AXES - 1) DIV AXES;
MBR := TRUE;
IF ( (NOT ODD(LVL)) AND (ODD(RANGE))) THEN
I =1
ELSE
I :=0;
WHILE (MBR AND (I < M) ) DO
BEGIN

I :=1+1;

IF ( (I + TOTPRTSIZE) MOD AXES

BEGIN

K :=K + 1;

IF (PRTBINVEC(.I.)<>JCBITS(.K.)) THEN
MBR := FALSE;

END;
END;
COMFARE

END;

1) THEN

&8
ks

PROCEDURE POP( VAR STK : STKTYPE;
VAR SP INTEGER;
VAR LVL INTEGER;
VAR PNTR : DIRPNIR) ;

BEGIN

IF (SP > O ) THEN

BEGIN
PNTR := STK(.SP.).PNTR;
LVL := STK(.SP.).LVL;
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SP :=SP - 1;
END
ELSE

WRITELN(IBGF, 'STACK IS EMPTY');
END;

PROCEDURE CHECK(JCBINVEC : BINVECTOR1l; JCVECSIZE :

VAR FINISHED : BOOLEAN) ;
VAR
I : INTEGER;
BEGIN
I := JCVECSIZE;
FINISHED := TRUE;
WHILE ( FINISHED AND ( I > 0)) DO
IF(JCBINVEC(.I.) = 1) THEN
FINISHED := FALSE
ELSE
I :=1-1;

PROCEDURE MAKEJC(VAR JCBINVEC:BINVECTORI;
K, JCVECSIZE: INTEGER) ;
VAR :
I : INTEGER;
DONE : BOOLEAN;
BEGIN
DONE := FALSE;
I := JCVECSIZE - K;
WHILE ( (NOT DONE) AND ( I > 0)) DO
IF (JCBINVEC(.I.) = 0) THEN
BEGIN
JCBINVEC(.I.) :=1;
DONE := TRUE;
END
ELSE
BEGIN
JCBINVEC(.I.)
I :=1-1;

L}
(o]
~

PROCEDURE PUSH( VAR STK : STKTYPE;
VAR SP : INTEGER;

LVL : INTEGER;
PNTR : DIRPNTR);
BEGIN
IF (SP < STKLIMIT ) THEN
BEGIN

SP := SP + 1;
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STK(.SP.).PNTR := PNIR;
STK(.SP.).LVL := LVL;
END
ELSE

WRITELN(IBGF, 'STACK STK HAS OVERFLOWN');
END;

PROCEDURE GETSTORAGE;

VAR
SUMPRTS : INTEGER;
PRTS : INTEGER;
M : INTEGER;
I : INTEGER;
STK : STKTYPE;
PNTR : DIRPNTR;
TMPPNTR : DIRPNTR;
STOR : INTEGER;
LVL : INTEGER;
SP : INTEGER;
EPS : INTEGER;

MXBTSIZE: INTEGER;
STRLVL : INTEGER;

BEGIN
STOR := O
PNTR := R
0

STRLVL :
PRTS :
SUMPRTS
LVL := 0;
SP := 0;
MAXLVL := O;
EPS := DATALIMIT DIV 3;
M := N DIV (TOTDISK -~ STOR);
PUSH(STK,SP, LVL+1,PNTR);
WHILE(SP > 0) DO
BEGIN
POP(STK,SP,LVL,PNTR) ;
IF (MAXLVL < LVL) THEN
BEGIN
MXBTSIZE := PNTR@.BITSIZE;
TMEFENTR := PNTR;
MAXLVL := LVL;
END
ELSE IF (MAXLVL = LVL) THEN
IF (PNTR@.BITSIZE > MXBTSIZE ) THEN
MXBTSIZE := PNTR@.BITSIZE;
IF(PRTS >= (M-EPS)) THEN

.
’

6OT;
0

’
=0;

BEGIN
STOR := STOR + 1;
STOR := STOR MOD TOTDISK;

STRLVL := 1;
PNTR@.STO := STOR;
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SUMPRTS := SUMPRTS + PRTS;
PRTS := 0;
M := (N - SUMPRTS) DIV (TOTDISK - STOR);
FOR I := O TO RECLIMIT DO
BEGIN
IF ((PNTR@.REC(.I.).NEXT = NIL) AND (PNTR@.REC(.I.).SIZE > 0)) THE
BEGIN
, PRTS := PRTS + PNTR@.REC(.I.).SIZE;
1 END

: ELSE IF( PNTR@.REC(.I.).NEXT <> NIL ) THEN
PUSH(STK,SP,LVL+1,PNTR@.REC(.I.).NEXT);
END;
END
ELSE
BEGIN
STRLVL := STRLVL + 1;
‘ PNTR@.STO := STOR;
: FOR I := 0 TO RECLIMIT DO
BEGIN
IF ((PNTR@.REC(.I.).NEXT = NIL) AND (PNTR@.REC(.I.).SIZE > 0)) THEN
BEGIN
PRTS := PRTS + PNTR@R.REC(.I.).SIZE;
END
ELSE IF( PNTR@.REC(.I.).NEXT <> NIL ) THEN
PUSH(STK,SP,LVL+1,PNTR@.REC(.I.) .NEXT);
END;
END;
END;
MAXLVL := MXBTSIZE;

PROCEDURE GETALLJOINCLASSES;
TYPE
DREC = RECORD
PRT : INTEGER;
DLVL : INTEGER;

STR : INTEGER;
RNG : INTEGER;
END;

VAR
NN,III : INTEGER;
JCBINVEC : BINVECTORI1;
JCVECSIZE : INTEGER;
JCCLASS : INTEGER;
TOTAXISINTR : INTEGER;
DIRTAB : ARRAY(. 1 .. 500 .) OF DREC;
DATTAB : ARRAY(. 1 .. 1500 .) OF DREC;
M1, M2 : INTEGER;
DISK : INTEGER;
STK : STKTYPE;
PNTR : DIRPNTR;
sp,L, I, LVL, STR,K,M : INTEGER;
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FINISHED, MBR : BOOLEAN;

BEGIN
III := O;
INTR := 6;

JCVECSIZE := ( MAXLVL + AXES - 1) DIV AXES;
TOTAXISINTR := POWEROF2(JCVECSIZE) ;
WRITELN(IBGF,TOTAXISINTR:9,TOTDISK:4,N:9,P:7:2,RECLIMIT:4,MAXLVL:7
FOR I:= (JCVECSIZE+1) DOWNTO 1 DO
JCBINVEC(.I.) := O;
FINISHED := FALSE;
WHILE ( NOT FINISHED ) DO
BEGIN
PNTR :
SP:= 0
LVL := 0
0

WHILE(SP <> 0) DO
BEGIN
POP (STK,SP,LVL,PNTR) ;
DISK := PNTR@.STO;
FOR I := 0 TO RECLIMIT DO
IF (PNTR@.REC(.I.).SIZE <> 0) THEN
BEGIN
MBR := COMPARE(JCBINVEC, I, LVL,PNTR):;
IF (MBR) THEN
BEGIN
IF (PNTR@.REC(.I.).LVL > M) THEN
M := PNTR@.REC(.I.).LVL;
GETRANG( MAXLVL, PNTR@.REC(.I.).LVL, INTR,K);
IF(PNTR@.REC(.I.).NEXT <> NIL) THEN
BEGIN
IF( NOT PNTR@.REC(.I.).DONE ) THEN
BEGIN
PNTR@.REC(.I.).DONE := TRUE;
Ml := M1 + 1;
DIRTAB(.M1.).PRT := I;
DIRTAB(.M1.).DLVL := LVL;

DIRTAB(.M1.).STR := DISK;
NN := POWEROF2(K) + III;
DIRTAB(.M1.).RNG := NN;
END;
PUSH(STK,SP,LVL+1,PNTR@.REC(.I.) .NEXT);
END
ELSE
IF( NOT PNTR@.REC(.I.).DONE ) THEN
BEGIN

PNTR@.REC(.I.).DONE := TRUE;
M2 := M2 + 1;
DATTAB(.M2.).PRT := I;
DATTAB(.M2.) .DLVL := LVL;
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DATTAB(.M2.).STR := DISK;
NN := POWEROF2(K) + III;
DATTAB(.M2.).RNG := NN;
END;
END;
END;
END;

GETRANG (MAXLVL, M,INTR, K):;
NN := POWEROF2(K)+III;

WRITELN(IBGF,III:12,' ' ,NN:12);
III := NN;

FOR I := 1 TO M1 DO

BEGIN

WITH DIRTAB(.I.) DO
WRITELN(IBGF,PRT:12, DLVL:4, STR:9, RNG:12, 1:4);
END;
FOR I := 1 TO M2 DO
BEGIN
WITH DATTAB(.I.) DO
WRITELN(IBGF,PRT:12, DLVL:4, STR:9, RNG:12, 0:4);
END;
WRITELN(IBGF,-1:9,-1:9,~1:9,-1:9,-1:9);
MAKEJC(JCBINVEC, K, JCVECSIZE);
CHECK(JCBINVEC, JCVECSIZE, FINISHED);
END;
END;

PROCEDURE INSERT;

VAR
PNTR : DIRPNTR;
LEVEL, M, I : INTEGER;
BGPRT, BTSIZE : INTEGER;
PRT1, PRT2 : INTEGER;
DONE : BOOLEAN;
Q : REAL;
BEGIN
MAXLVL := 1;
Q := 1-P;
SP := 0;

PNTR := ROOT;
PNTR@.RECLVL := 1;
FOR I := 2 TO N DO
BEGIN
. PNTR := ROOT;

DONE := FALSE;

WHILE ( NOT DONE ) DO

BEGIN
BTSIZE := PNTR@.BITSIZE;
BGPRT := PNTR@.MAXPRT;

GETBINARRY(BINARRY, P, BTSIZE);
BINTOINT(PRT1, BTSIZE, BINARRY);
WHILE (NOT DONE) DO



BEGIN
IF ( PRT1 > BGPRT) THEN
PRT1 := EMBDER(PRT1)
ELSE IF(PNTR@.REC(.PRT1.).SIZE = O ) THEN
PRT1 := EMBDER(PRT1)
ELSE
DONE := TRUE;
END;
DONE := FALSE;
IF (PNTR@.REC( .PRT1.).NEXT = NIL) THEN
BEGIN
M := PNTR@.REC(.PRT1.).SIZE + 1;
PNTR@.REC(.PRT1.).SIZE := M;
IF ( M > DATALIMIT) THEN
BEGIN
LEVEL := PNTR@.REC(.PRT1.).LVL;
PRT2 := EMBDED(PRT1l, LEVEL,PNTR@.RECLVL - 1);
IF ( PRT2 > RECLIMIT ) THEN
MAKENEWBUK (PNTR, P, PRT1,LEVEL)

ELSE
DIVIDEREC(P, PNTR, PRT1, PRT2);

END;
DONE := TRUE;

END

ELSE
PNTR := PNTR@.REC(.PRT1l.).NEXT;

END;
END;

BEGIN
RESET(IBGFIN, "NIBG22 DATA");
REWRITE(IBGF, "IBGF OUT2");
INITIALIZE(ROOT,RANGE, BITSIZE);
READLN(IBGFIN,N, P, TOTDISK, IX);
INSERT;
GETSTORAGE ;
GETALLJOINCLASSES;
TRAVERS ;

END.
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APPENDIX B

Program listing for Join Algorithm for uniform
relations based on IBGF

(MODULE 2)



Cc SIMULATOR OF A JOIN OPERATION FOR UNIFORM RELATIONS
Cc BASED ON IBGE.

Cc$ STAT=99999999999,0=2000000,TI=0, STAC=999999
INTEGER DISKS, VPRS, HPRS
INTEGER BUS(36), QTYBUS, OLDBUS
INTEGER RPGS, RVPGS, RHPGS
INTEGER SPGS, SVPGS, SHPGS
INTEGER AXES, RATIO
INTEGER FR(64), FS(64), RSHR, SSHR
REAL TMPRS(16,16), TMBUS(36), RDTIME, MPTIME
REAL TMSTR(0:63)
LOGICAL FLAG

'"UNI INP', STATUS = 'OLD')
c OPEN(7, FILE = 'IBGF OUT1',6 STATUS = 'OLD')
c OPEN(8, FILE = 'IBGF OUT2', STATUS = 'OLD')
OPEN(9, FILE = 'UNI OUT', STATUS = 'UNKNOWN')
READ(4,*) VPRS, HPRS, QTYBUS, DISKS, RPGS, SPGS, TMNON, PROB
c READ(4,*) VPRS, HPRS, QTYBUS, DISKS, RPGS, SPGS
IF ( SPGS .LT. RPGS) CALL SWAPI(SPGS, RPGS)
OLDBUS = QTYBUS

OPEN(4, FILE

T =73

TC = 28*T

TR = 28*T + 8000
TJ = 4*T*T

II = 16

JJ = 16

IF (QTYBUS .GT. VPRS) QTYBUS = VPRS
CALL COMP(RPGS, RVPGS, RHPGS)

CALL COMP(SPGS, SVPGS, SHPGS)

CALL DVD(FR, RVPGS, VPRS, RSHR)

CALL DVD(FS, SVPGS, HPRS, SSHR)

CALL ASNBUS(BUS, QTYBUS, HPRS, VPRS)

CALL INITID(TMBUS, 1, QTYBUS, 1.0)

CALL INIT1D(TMSTR, O, DISKS, 1.0)

CALL INIT2D(TMPRS, II, JJ, VPRS, HPRS, 0.0)

IRV = RVPGS/DISKS

IRH = RHPGS/DISKS

ISV = SVPGS/DISKS

ISH = SHPGS/DISKS

RATIO = SHPGS/RHPGS

NJ =0

IRAT = O

IS =0

IR =0

IHR =0

IS =0

11 IF( IHR .LT. RHPGS) THEN

IRAT = O
IS =0
IR = 0

CALL RDSR(TMPRS,II,JJ,FR,RSHR, IR, IHR,FS,SSHR,TMSTR,
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*+ DISKS,IS,IHS,TMBUS,QTYBUS,BUS,VPRS, HPRS,TR,
* IRV, IRH,ISV,ISH)
CALL GETFHR(TMPRS,II,JJ,IR,IHR,RSHR,VPRS,HPRS,FR,TC)
CALL GETS(TMPRS,II,JJ,IS,IHS,RSHR,VERS, HPRS,FS,TC)
CALL GETSHR(TMPRS,II,JJ,IR,IHR,RSHR,VPRS, HPRS,FR,TC)
CALL JOIN(TMPRS,II,JJ,IR,IHR,IS,IHS,RSHR,SSHR,VPRS, HERS,
* FR, FS,NJ,TJ)
22 IS = IS + 1
IF ( IS .LT. SSHR) THEN
CALL RDS(FS,SSHR,IS, IHS,BUS,TMBUS,QTYBUS,
* TMSTR, DISKS, TMPRS,II,JJ, VPRS, HPRS, TR,ISV, ISH)
CALL GETS(TMPRS,II,JJ,IS,IHS,SSHR,VPRS,HPRS,FS,TC)
CALL JOIN(TMPRS,II,JJ,IR,IHR,IS,IHS,RSHR,SSHR,VPRS, HPRS,
* FR, FS,NJ,TJ)
GOTO 22
ELSE
IRAT = IRAT + 1
IHS = IHS + 1
FLAG = .FALSE.
IF (IRAT .LT. RATIO) THEN
IS = -1
FLAG = .TRUE.
ENDIF
IF(FLAG) GOTO 22
ENDIF
33 IR = IR + 1
IF( IR .LT. RSHR) THEN
CALL RDR(FR,RSHR, IR, IHR,BUS, TMBUS ,QTYBUS,
* TMSTR, DISKS, TMPRS,II,JJ, VPRS, HPRS,TR, IRV, IRH)
CALL GETR(TMPRS,II,JJ,IR,IHR,RSHR,VPRS,HPRS, FR,TC)
DO 44 I = 1, RATIO
KK = IHS - (RATIO - I)
DO 44 J = 0, SSHR-1
CALL JOIN(TMPRS,II,JJ,IR,IHR,J, KK, RSHR,SSHR,VPRS, HERS,
* FR, FS,NJ,TJ)

44 CONTINUE

GOTO 33

ELSE
IHR = IHR + 1
GOTO 11

ENDIF

ELSE
UPT (SPGS + RPGS)*TR + NJ*TJ

T™ MPTIME(TMPRS, II,JJ, VPRS, HPRS)

S = UPT/TM

EFF = UPT/(TM * VPRS * HPRS)*100.

WRITE(9,2) VPRS, HPRS, QTYBUS, DISKS, PROB,
+ TM/TMNON, UPT/TM, UPT/(TM * VPRS * HPRS)*100

ENDIF
2 FORMAT(' ',14,14,14,14,F5.2,F12.2,2X,F6.2,2X,F6.2)
CcC 2 FORMAT(' ',16,16,16,16,16,16,F8.2,2X,F8.2)
END

c ASSIGNER OF S-P-CONNECTIONS TO A PROCESSOR
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SUBROUTINE ASNBUS(BUS, QTYBUS, VPRS, HPRS)
INTEGER QTYBUS , VPRS, HPRS
INTEGER BUS(VPRS + HPRS)
Kl = VPRS/QTYBUS
K2 = HPRS/QTYBUS
M=1
DO 10 I = 1, VPERS

BUS(I) =

IF (MOD(I, K1) .EQ. 0) M
CONTINUE
M=1
DO 20 J = 1, HPRS

BUS(J + VPRS) = M

IF (MOD(J, K2) .EQ. O) M
CONTINUE
END

]

=2
+
[

"

2
+
=4

SUBROUTINE DVD(F,CNT,DIM1,SHR)

INTEGER DIM1
INTEGER F(DIM1),CNT, SHR

SHR = CNT/DIM1
M =0
DO 10 I = 1, CNT, SHR

M=M+1
F(M) =1

CONTINUE
END

SUBROUTINE JOIN(TMPRS,II,JJ,IR,IHR,IS,IHS,SHRR,SHRS,VPRS, HPRS
FR, FS,NJ,TJ)
INTEGER VPRS, HPRS
INTEGER FR(VPRS), FS(HPRS)
REAL TMPRS(II,JJ)
INTEGER SHRR, SHRS
DO 10 I = 1, VPRS
DO 10 J = 1, HPRS
M = FR(I)+IR
N = FES(J)+IS
TMPRS(I,J) = TMPRS(I,J) + TJ
NJ = NJ + 1
CONTINUE
FORMAT(' ',2X,F7.0,2%,'P(',11,',',11,")',5X,'R",14,A,'S",14)

SUBROUTINE GETS(TMPRS,I1I,JJ, IS, IHS,SHRS,VPRS,6HPRS, FS,TC)
INTEGER VPRS, HPRS,SHRS

REAL TMPRS(II,JJ)
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INTEGER FS(HPRS)
DO 10 I = 2, VPRS
DO 10 J = 1, HPRS
IF(TMPRS(I-1,J) .LT. TMPRS(I,J)-TC) THEN
TMPRS(I-1,J) = TMPRS(I,J) - TC
ELSE
TMPRS(I,J) = TMPRS(I-1,J) + TC
ENDIF
M = FS(J) + IS
TMPRS(I-1,J) = TMPRS(I,J)
TMPRS(I,J) = TMPRS(I,J) + TC
10 CONTINUE
2 FORMAT(' ',2X, F7.0, 2X, 'p(',11,',',11,')', 5X,A,I4,1X,A)

SUBROUTINE GETR(TMPRS,II,JJ,IR, IHR,SHRR,VPRS, HPRS, FR,TC)
INTEGER VPRS, HPRS, SHRR
INTEGER FR(VPRS)
REAL TMPRS(II,JJ)
DO 10 I = 1, VPERS
DO 10 J = 2, HPRS
IF(TMPRS(I,J-1) .LT. TMPRS(I,J)-TC) THEN
TMPRS(I,J-1) = TMPRS(I,J) - TC
ELSE
TMPRS(I,J) = TMPRS(I,J-1) + TC
ENDIF
M = FR(I) + IR
TMPRS(I,J-1) = TMPRS(I,J)
TMPRS(I,J) = TMPRS(I,J) + TC
10 CONTINUE
2 FORMAT(' ',2X, F7.0, 2X, 'p(',I1,',',11,')', 5X,A,I4,A)
END

ACCEPTOR OF AN R PARTITION FROM A NEIGHBOURING PROCESSOR.
ONLY PROCESSORS WITH THEIR ROW NUMBER > OR = TO THEIR
COLUMN NUMBER ARE INVOLVED.
SUBROUTINE GETFHR(TMPRS,II,JJ,IR, IHR,SHRR,VPRS, HPRS,FR,TC)
INTEGER VPRS, HPRS, SHRR
INTEGER FR(VPRS)
REAL TMPRS(II,JJ)
DO 10 I = 1, VPRS
DO 10 J = 2, I
IF(TMPRS(I,J-1) .LT. TMPRS(I,J)-TC) THEN
TMPRS(I,J-1) = TMPRS(I,J) - TC
ELSE
TMPRS(I,J) = TMPRS(I,J-1) + TC
ENDIF
M = FR(I) + IR
TMPRS(I,J-1) = TMPRS(I,J)
TMPRS(I,J) = TMPRS(I,J) + TC
10 CONTINUE
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2 FORMAT(' ',2X, F7.0, 2X, 'p(',11,',',11,"')"', 5X,A,I4,A)

ACCEPTOR OF AN R PARTITION FROM A NEIGHBOURING PROCESSOR.
ONLY PROCESSORS WITH THEIR ROW NUMBER < THEIR COLUMN NUMBER

ARE INVOLVED.

SUBROUTINE GETSHR(TMPRS,II,JJ,IR,IHR,SHRR,VPRS, HPRS, FR,TC)
INTEGER VPRS, HPRS, SHRR
INTEGER FR(VPRS)
REAL TMPRS(II,JJ)
po 10 I = 1, VPRS
DO 10 J = I+1, HPRS
IF(TMPRS(I,J-1) .LT. TMPRS(I,J)-TC) THEN
TMPRS(I,J-1) = TMPRS(I,J) - TC
ELSE
TMPRS(I,J) = TMPRS(I,J-1) + TC
ENDIF
M = FR(I) + IR
TMPRS (I,J-1) = TMPRS(I,J)
TMPRS(I,J) = TMPRS(I,J) + TC
10  CONTINUE

2 FORMAT(' ',2X, F7.0, 2%, 'p(',I1,',',11,')', 5X,A,14,A)
END
o PRSP E RS LT it
c READER OF AN S AND AN R PARTITION FROM AN IBGF FILE
e T e e T L T Dl Lo bl it

SUBROUTINE RDSR(TMPRS,II,JJ,FR,SHRR,IR,IHR,FS,SHRS,TMSTR,
* DISKS,IS,IHS,TMBUS,QTYBUS,BUS,VPRS,HPRS,TR,
* TRV, IRH,ISV,ISH)

INTEGER DISKS, QTYBUS,VPRS, HPRS

INTEGER FS(64), SHRS, FR(64), SHRR, BUS(VPRS+HPRS)

INTEGER FNDX(128), SNDX(128), TOTLOC, GETSTR

REAL TMBUS (QTYBUS), TMSTR(O:DISKS-1) ,TMPRS(II,JJ)

REAL LOC(128)

M=1

LOC(M) = TMPRS(1,1)

FNDX(M)

SNDX (M)

DO 10 I
M=M
LOC(M) = TMPRS(I,1)
FNDX(M) = I
SNDX (M)

10 CONTINUE
DO 20 I =
=M +
LOC(M) = TMPRS(1,I)
ENDX(M) 1
SNDX(M) = I
20 CONTINUE

TOTLOC = M

CALL SORT(LOC, EFNDX, SNDX, TOTLOC)

DO 30 I = 1, TOTLOC

+ 010N
N
<
d
o]

n

1

, HPRS

=N
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IF (SNDX(I) .EQ. 1 ) THEN
KI = ENDX(I)

KBI = BUS(KI)
KD1 = FR(KI) + IR
KD2 = GETSTR(KD1l, IHR, IRV, IRH, DISKS)

CALL SYNC(TMBUS(KBI), TMSTR(KD2), LOC(I), TR)
TMPRS (FNDX(I), SNDX(I)) = LOC(I)

ENDIF

IF (FNDX(I) .EQ. 1 ) THEN
KI = SNDX(I)

KBI = BUS(KI+ VPRS)
KDl = FS(KI) + IS
KD2 = GETSTR(KD1, IHS, ISV, ISH, DISKS)

CALL SYNC(TMBUS(KBI), TMSTR(KD2), LOC(I), TR)
TMERS (ENDX(I), SNDX(I)) = LOC(I)

ENDIF
30 CONTINUE
2 FORMAT(' ', 2X,F7.0,2X,'P(',I1,',', I1,")' 5%, 'R, I6)
3 FORMAT(' ',2X,F7.0,2X,'P(',I11,',',11,')',5X,'s',16)
END
c _____________________________________________________________
c READER OF AN R PARTITION FROM AN IBGF FILE
o mr e e e r e e o o o o o o ot e e e e e = = -
SUBROUTINE RDR(FR,SHRR, IR, IHR,BUS, TMBUS, QTYBUS,
* TMSTR, DISKS, TMPRS,II,JJ, VPRS, HPRS,TR, IRV, IRH)
INTEGER HPRS, VPRS, QTYBUS, DISKS
INTEGER FR(64), SHRR, BUS(HPRS+ VPRS)
INTEGER FNDX(128), SNDX(128), TOTLOC, GETSTR
REAL TMBUS (QTYBUS) , TMSTR(O:DISKS-1),LOC(128),TMPRS(II,JJ)
M =0
DO 10 I = 1, VPRS
M=M+1
LOC(M) = TMPRS(I,1)
FNDX(M) = I
SNDX(M) = 1
10 CONTINUE
TOTLOC = M

CALL SORT( LOC, FNDX, SNDX, TOTLOC)

DO 20 I = 1, TOTLOC
KI = FNDX(I)
KBI = BUS(KI)
M = FR(KI) + IR
KD2 :: GETSTR(M, IHR, IRV, IRH, DISKS)
CALL SYNC(TMBUS(KBI),TMSTR(KD2), LOC(I),TR)
TMPRS (FNDX(I), SNDX(I)) = LOC(I)

20 CONTINUE

2 FORMAT(' ',b2X,F7.0,2X,'P(',I1,',',11,")"',5X%,'R",14)
END
Commmcnncnan= o e e e e e B
Cc READER OF AN S PARTITION FROM AN IBGF FILE
Cmm e e e e e e e e e e e e e e e

SUBROUTINE RDS(FS,SHRS, IS, IHS,BUS,TMBUS,QTYBUS,
* STMSTR, SDISKS, TMPRS,II,JJ, VPRS, HPRS, TR, ISV, ISH)
INTEGER HPRS, VPRS, QTYBUS, SDISKS
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INTEGER FS(64), SHRS, IS
INTEGER BUS (HPRS+VPRS)

INTEGER ENDX(128), SNDX(128), TOTLOC, GETSTR

REAL LOC(128), TMPRS(II,JJ), TMBUS(QTYBUS),STMSTR(O:SDISKS~1)

M =0

DO 10 J = 1, HPRS
M=M+1
LOC(M) = TMPRS(1,J)
ENDX(M) = 1
SNDX(M) = J

10 CONTINUE
TOTLOC = M

CALL SORT( LOC, ENDX, SNDX, TOTLOC)
DO 20 I = 1, TOTLOC
KI = SNDX(I)
KBI = BUS(KI+ VPRS)
M = FS(KI) + IS
KD2 = GETSTR(M, IHS, ISV, ISH, SDISKS)
CALL SYNC(TMBUS(KBI),STMSTR(KD2), LOC(I), TR)
TMPRS (ENDX(I), SNDX(I)) = LOC(I)
20 CONTINUE
2 FORMAT(' ',2X,F7.0,2X,'p(',I1,',',11,")',5%,'s"',12)

SYNCHRONIZER BETWEEN S-P-CONNECTOR TIME, STORAGE MEDIA
TIME AND PROCESSOR TIME.
SUBROUTINE SYNC(A, B, C, TR)
REAL A, B, C
IF ( A .LT. B) THEN
A =B
ELSE
B =A
ENDIF
IF ( C .LT. B) THEN
C =B
ELSE
B
A
ENDIF
A=A+ TR

c
c

SUBROUTINE SORT(LOC, FNDX, SNDX, TOTLOC)
INTEGER TOTLOC
INTEGER FNDX(TOTLOC), SNDX(TOTLOC)
REAL LOC(TOTLOC)
LOGICAL DONE
DONE = .FALSE.
10 CONTINUE
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IF (.NOT. DONE ) THEN
DONE = .TRUE.
DO 20 I = 1, TOTLOC-1
IF ( LOC(I) .GT. LOC(I+1)) THEN
CALL SWAPR(LOC(I), LOC(I+1))
CALL SWAPI(ENDX(I), ENDX(I+1))
CALL SWAPI(SNDX(I), SNDX(I+1))
DONE = .FALSE.
ENDIF
CONTINUE
GOTO 10
ENDIF

SUBROUTINE INIT1D(ARRY, DIM1, DIM2, VAL)
INTEGER DIM1, DIM2
REAL ARRY(DIM1:DIM2)
DO 10 I = DIM1, DIM2
ARRY(I) = VAL

SUBROUTINE INIT2D(TMPRS,II,JJ,VPRS,HPRS,VAL)
REAL TMPRS(II,JJ), VAL
INTEGER VPRS, HPRS
DO 10 I = 1, VPRS
DO 10 J = 1, HPRS
TMPRS(I,J) = VAL

REAL FUNCTION MPTIME(TMPRS, II,JJ, VPRS, HPRS)
INTEGER HPRS, VPRS
REAL TMPRS(II,JJ)
CURMAX = TMPRS(1,1)
DO 10 I = 1, VERS
DO 10 J = 1, HPRS
IF (CURMAX .LT. TMPRS(I,J)) CURMAX = TMPRS(I,J)
CONTINUE
MPTIME = CURMAX
END

CALCULATOR OF THE NUMBER OF JOIN-CLASSES AND NUMBER
OF PARTITIONS IN EACH JOIN-CLASS

SUBROUTINE COMP(TOTPG , VPG, HPG)
INTEGER TOTPG, VPG, HPG

VPG = TOTPG/2
HPG = TOTPG - VPG
VPG = 2**VPG
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INTEGER FUNCTION GETSTR(VPRT, HPRT, IV, IH, IDISK)
INTEGER VPRT, HPRT

Kl= VPRT/ IV

K2= HPRT/ IH

GETSTR = MOD(K1+K2, IDISK)

END
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APPENDIX C

Program listing for Join Algorithm for non-uniform

relations based on IBGF

(MODULE 3)



Gl m e e e e e e e e e e e e e e e e
c SIMULATOR OF A JOIN OPERATION FOR NON-UNIFORM RELATIONS
c BASED ON IBGF

Gl e e e e e e e e e o o e

C$ STAT=99999999999,0=2000000, TI=0,STAC=999999

LOGICAL
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

TST(500, 2000)

DIR1(6000,4), DIR2(6000,4)
DIR1C, DIR2C

CDAT1(6000,4) ,CDAT2(6000,4) ,PDAT1(6000,4) ,PDAT2(6000,
CDATL1C, CDAT2C, PDATIC, PDAT2C
VS(64,64), OLDBUS, BUS(128)

VPRS, HPRS, AXES, INTNUM, RPRT, SPRT
FR(64), CR(64), CCR, CAP, RR(64)

FS(64), CS(64), CCS, SVD,NJ,RLVL,SLVL
RDISKS,SDISKS, QTYBUS, STRNUM, EMBDER,RPGS,SPGS

REAL TMPRS(64,64) ,TMBUS(128), RTMSTR(0:63), STMSTR(0:63)
REAL JNTIME, RDTIME, UPTIME, RATIO ’
REAL MPTIME, MP

LOGICAL MMM,RSTAT(6000), SSTAT(6000)
OPEN( UNIT = 7, FILE = 'IBGF OUT1', STATUS = 'OLD')
OPEN( UNIT = 8, FILE = 'IBGF OUT2', STATUS = 'OLD')
OPEN( UNIT = 9, FILE = 'NONUNI OUT', STATUS = 'UNKNOWN')
OPEN( UNIT = 4, FILE = 'UNI INP', STATUS = 'UNKNOWN')

C SEEK=8 MSEC, TRANSMIT=16 MEGA BITS, COMPUT=4 MICRO SEC, REC = 56
T = 73
TD = 32
TC = 28%T
VPRS = 8
HPRS = 8
QTYBUS = 8
OLDBUS = QTYBUS

IF (QTYBUS .GT. VPRS) QTYBUS = VPRS
TR = 28*T + 8000

TJ = 4*T*T

TCD = 6*TD

TRD = 6*TD + 8000
II = 64

JJ = 64

CAP = 99999999
RDTIME = O

AXES = 2

CALL INITR(RLVL,RDISKS,RPGS,RPROB,RPRT)
CALL INITS(RPRT, SLVL, RATIO,SDISKS,SPGS,SPROB,SPRT)
CALL INIT(TMBUS, 1,QTYBUS, 1.0)

CALL INIT(RTMSTR, O, RDISKS-1, 1.0)

CALL INIT(STMSTR, O, SDISKS-1, 1.0)

CALL INIT2(TMPRS,II,JJ,VPRS,HPRS,0.0)

CALL INTTAB(PDAT1, PDAT1C, -1)

CALL INTTAB(PDAT2, PDAT2C, -1)

CALL ASNBUS(BUS, QTYBUS, VPRS, HPRS)

NJ =0
IIR = 0
I1Is =0
RLMT =
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IF (IIR .LT. RLVL) THEN

CALL INTCNT( CCR, CCS, SVD,DIR1C,DIR2C,CDAT1C,CDAT2C)
LMTR = IIR
LMTS = IIS
CALL BDTABR(DIR1,DIR1C,CDAT1,CDAT1C,IIR,7,RDISKS,RLMT, . TRUE
SLMT = IIR*RATIO
CALL BDTABS(DIR2,DIR2C,CDATZ2,CDAT2C,IIS,8,SDISKS, SLMT)
RLMT = IIS / RATIO
IF ( IIR .LT. RLMT) THEN
CALL BDTABR(DIR1,DIR1C,CDAT1,CDAT1C,IIR,7,RDISKS,RLMT, .FALS
ENDIF
CALL UPDATA(CDAT1, CDAT1C, PDAT1, PDATIC, LMTR,RSTAT,RDISKS
CALL UPDATA(CDAT2, CDAT2C, PDAT2, PDAT2C, LMTS,SSTAT,SDISKS
IF (CDATIC .EQ. O .OR. CDAT2C .EQ. O)THEN
GOTO 10
ENDIF
CALL SORTAB(CDAT1, CDAT1C,RSTAT)
CALL SORTAB(CDAT2, CDAT2C,SSTAT)
CALL GETMMM( CDATIC, M1, M2, M3,VPRS,MMM)
RDTIME = RDTIME + TRD*(DIR1C + DIR2C) + TR*(CDAT1C + CDAT2C
CALL RDDIR(DIR1,DIR1C,TMPRS,II,JJ,
TMBUS, QTYBUS, BUS,RTMSTR, RDISKS,VPRS,HPRS,TRD,TCD)
CALL RDDIR(DIR2,DIR2C,TMPRS,II,JJ,
TMBUS, QTYBUS, BUS,STMSTR, SDISKS,VPRS,HPRS,TRD,TCD)
CALL DVDR(FR,CR,RR,CDATIC,VPRS,M1,M2,M3, MMM)
CALL DVD(FS,CS,CDAT2C, HPRS)
CALL RDSR(TMPRS,II,JJ,FR,CR,CCR,FS,CS,CCS,RTMSTR,RDISKS,
CDAT1,CDAT2, STMSTR , TMBUS , QTYBUS , SDISKS,BUS, VPRS ,HPRS, TR)
CALL GETRFH(TMPRS, II, JJ, CCS, CCR, CS, CR, VPRS, HPRS,
FR, CDAT1,TC)
CALL GETS(TMPRS,II,JJ,CCS,CCR,CS,CR,VPRS,HPRS,SVD,CAP,
FS, CDAT2,TC)
CALL GETSHR(TMPRS, II, JJ, CCS, CCR, CS, CR, VPRS, HPRS,
FR, CDAT1,TC)
CALL JOIN(TMPRS, II,JJ,CCR, CCS,CR, CS, VPRS, HPRS,
CDAT1, CDAT2,FR, FS,NJ,SSTAT,RSTAT,TJ)
IF (CCS .LT. CS(1l)) THEN
CALL RDS(CDAT2, FS,CS,CCS,BUS,TMBUS,QTYBUS,
STMSTR, SDISKS, TMPRS,II,JJ, VPRS, HPRS,SVD, CAP,TR)
CALL GETS (TMPRS,II,JJ,CCS,CCR,CS,CR,VPRS,HPRS,SVD,CAP,
FS, CDAT2,TC)
GOTO 20
ELSEIF(CCR .LT. CR(1)-1 .OR. MMM .AND. CCR .LT. CR(1l)) THEN
ccs = 0
CALL RDR(CDAT1, FR,CR,CCR,BUS,TMBUS,QTYBUS,
RTMSTR, RDISKS, TMPRS,II,JJ, VPRS, HPRS,TR)
CALL GETR(TMPRS, II, JJ, CCS, CCR, CS, CR, VPRS, HPRS,
FR, CDAT1,TC)
CALL RDS(CDAT2, FS,CS,CCS,BUS,TMBUS,QTYBUS,
STMSTR, SDISKS, TMPRS,II,JJ, VPRS, HPRS,SVD, CAP,TR)
CALL GETS(TMPRS,II,JJ,CCS,CCR,CS,CR,VPRS,HPRS,SVD,CAP,
FS, CDAT2,TC)
GOTO 20
ELSEIF(.NOT. MMM .AND. CCR .LT. CR(1)) THEN
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CALL SPRDR(CDAT1,TMBUS,RTMSTR, TMPRS ,BUS,RR,M2,M3,HPRS,
* VPRS, QTYBUS, RDISKS,II,JJ,TR)

CALL SHFTRD(TMPRS,M2,M3,1I,JJ,TC)

CALL GETR(TMPRS, II, JJ, CCS, CCR, CS, CR, VPRS, HPRS,
* FR, CDAT1,TC)

CALL GETVS(CS, M2,M3, HPRS, CAP, VS, II,JJ,VERS)

CALL SPJOIN(TMPRS,II,JJ HPRS,M2,M3,VS,NJ,

* RR,FS,CDAT1C,CDAT2C, VPRS ,CDAT1,CDAT2,SSTAT,RSTAT, TJ)
SVD = 0
ces = 0
DO 30 I =1, M3
30 ccs = ccs + Vs(I,1)
40 IF (CCS .LT. CS(1)) THEN
CALL RDS(CDAT2, FS,CS,CCS,BUS,TMBUS,QTYBUS,
* STMSTR, SDISKS, TMPRS,II,JJ, VPRS, HPRS,SVD, CAP, TR)
CALL CETS(TMPRS,II,JJ,CCS,CCR,CS,CR,VPRS,HPRS,SVD,CAP,
* FS, CDAT2, TC)
CALL JOIN2(TMPRS, II,JJ,CCS,CS, VPRS, HERS,
* CDAT1, CDAT2,FS,RR,M2,M3,NJ,SSTAT,RSTAT, TJ)
GOTO 40
ENDIF
ENDIF
ccs = 0
CCR = 0
SVD = 0
GOTO 10
ENDIF

MP = MPTIME(TMPRS, II,JJ, VPRS, HPRS)
WRITE(4,4) VPRS, HPRS, QTYBUS,RDISKS+SDISKS,SPRT,RPRT,6MP,
+ RPROB, SPROB

4 FORMAT(' ',I3, I3, 13, I3, I4,I4, F15.2,F6.1, F5.1)
UP = RDTIME + NJ*TJ
IUp = UP

SPEED = UP/MP

EFF = UP/(MP*(VPRS*HPRS))*100

WRITE(9,2) VPRS, HPRS, OLDBUS, RDISKS,SDISKS,RPGS,RPROB,
* SPGS,SPROB, SPEED,EFF

2 FORMAT(' ', 14,14,14,14,14,2(2X,618,2X,F3.1), F9.2, F9.2)
3 FORMAT(' ', F11.2, 18)
END

REAL FUNCTION MPTIME(TMPRS, II,JJ, VPRS, HPRS)

INTEGER HPRS, VPRS

REAL TMPRS(II,JJ)

CURMAX = TMPRS(1,1)

DO 10 I = 1, VPRS

DO 10 J = 1, HPRS

IF (CURMAX .LT. TMPRS(I,J)) CURMAX = TMPRS(I,J)

10 CONTINUE

MPTIME = CURMAX

END



INITIALIZER OF COUNTERS

SUBROUTINE INTCNT( CCR, CCS, SVD,DIR1C,DIR2C,CDAT1C,CDAT2C)
INTEGER CCR, CCS, SVD,DIR1C,DIR2C,CDATI1C,CDAT2C

CCR
CCs
SVD
DIR1C
DIR2C
CDAT1C
CDAT2C

{1 I | I T |
oNoRoNoNoNoNe

SYNCHRONIZER BETWEEN S-P-CONNECTOR TIME, STORAGE MEDIA
TIME AND PROCESSOR TIME.
SUBROUTINE SYNC(A, B, C, D)
REAL A,B,C,D
IF ( A .LT. B) THEN
A =B
ELSE
B
ENDIF
IF (
o
ELSE
B
A
ENDIF

A

LT. B) THEN

@]

SUBROUTINE SORT(LOC, FNDX, SNDX, TOTLOC)
INTEGER TOTLOC
REAL LOC(TOTLOC)
INTEGER FNDX(TOTLOC), SNDX(TOTLOC)
LOGICAL DONE
DONE = .FALSE.
10 CONTINUE
IF (.NOT. DONE ) THEN
DONE = .TRUE.
DO 20 I = 1, TOTLOC-1
IF ( LOC(I) .GT. LOC(I+1)) THEN
CALL SWAPR(LOC(I), LOC(I+1))
CALL SWAPI(ENDX(I), ENDX(I+1l))
CALL SWAPI(SNDX(I), SNDX(I+1))
DONE = .FALSE.
ENDIF
20 CONTINUE
GOTO 10
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READER OF THE NUMBER OF PARTITIONS IN RELATION R,
ITS SKEWEDNESS, THE LEVELS OF ITS DIRECTORY PARTITIONS
AND THE NUMBER OF DISKS IT IS RESIDING ON.

SUBROUTINE INITR(RLVL,RDISKS,RPGS,RPROB,RPRT)
INTEGER RLVL,RDISKS ,RPGS, RPRT

READ(7,*) RLVL, RDISKS, RPGS,RPROB,RPRT, RPRT
END

READER OF THE NUMBER OF PARTITIONS IN RELATION S,
ITS SKEWEDNESS, THE LEVELS OF ITS DIRECTORY PARTITIONS
AND THE NUMBER OF DISKS IT IS RESIDING ON.

D e D WD S G e WP N R Gm G ER GR R WD S S D R G G G G G D D G G R S W G G P W WS W W P WP fut WD G WE WS R WP W Gm W W W W W

SUBROUTINE INITS(RPRT, SLVL, RATIO,SDISKS,SPGS,SPROB,SPRT)
INTEGER RPRT, SLVL, SDISKS,SPGS,SPRT

READ(8,*) SLVL, SDISKS,SPGS,SPROB,SPRT, SPRT

TMP1 = (SPRT + 1)/ 2

TMP2 = (RPRT + 1)/ 2

TMP = TMP1 - TMP2

RATIO = 2.0%*TMP

END

SUBROUTINE UPDATA(CDATA, CDATAC, PDATA, PDATAC, LMT,STAT,DISK

INTEGER CDATA(6000,4), CDATAC, DISKS
INTEGER LMT
INTEGER PDATA(6000,4), PDATAC
LOGICAL STAT(6000)
M = CDATAC
DO 44 I =1, M
STAT(I) = .FALSE.
DO 10 I = 1, PDATAC
IF (PDATA(I,4) .GT. LMT) THEN
M=M+1
STAT(M) = .TRUE.
DO 20 J =1, 4
CDATA(M,J) = PDATA(I,J)
CONTINUE
ENDIF
CONTINUE
DO 30 I
DO 30 J
PDATA(I,
CONTINUE
PDATAC = M
CDATAC = M
END

(L <

1,
1,
J) CDATA(I,J)
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INTEGER FUNCTION EMBDER(PRT)
INTEGER PRT, TMP, K
TMP = PRT
K=0
10 IF ( TMP .GE. 2) THEN
K=K+ 1
TMP = TMP/2
GOTO 10
ENDIF
TMP = 2%*K
EMBDER = PRT - TMP

SUBROUTINE BDTABS (DIR,DIRC,DATA,DATAC,IIS,KK,SDISKS,SLMT)
INTEGER DIR(6000,4), DIRC, DATA(6000,4), DATAC, IIS
INTEGER D(5), SDISKS, RNG
LOGICAL DUP
I =0
K=0
IF (IIS .LT. SLMT .AND. IIS .LT. 2000000000) THEN
READ(KK,*) IIS, RNG
5 READ(KK, *) (D(J) ,J=1,5)
IF (D(1) .NE. =-1) THEN
IF (D(5) .GT. O) THEN
I =I+1
DO 30J =1, 4
DIR(I,J) = D(J)
30 CONTINUE
ELSE
K=K+ 1
DO 20 J =
DATA(K,J
20 CONTINUE
ENDIF
GOTO 5
ENDIF
IIS = RNG
GOTO 10
ENDIF
DIRC = I
DATAC
END

10

1, 4
) = D(@J)

"
~

SUBROUTINE BDTABR(DIR,DIRC,DATA,DATAC,IIR,KK,RDISKS,RLMT, INTIA
INTEGER DIR(6000,4), DIRC, DATA(6000,4), DATAC, IIR
INTEGER D(5), RDISKS, RNG
LOGICAL INTIAL
I = DIRC

K = DATAC
10 IF( (IIR .LT. RLMT .OR. INTIAL) .AND. IIR .LT. 2000000000) TH
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INTIAL = .FALSE.
READ(KK,*) ITII, RNG
5 READ(KK, *) (D(J),J=1,5)
IF (D(1) .NE. -1) THEN
IF (D(5) .GT. 0O) THEN
IF(D(3) .LT. 0) PRINT*, IIS, RNG
I =1+1
Do 30J =1, 4
DIR(I,J) = D(J)
30 CONTINUE
ELSE
K=K+1
DO 20 J =
DATA(K,J
20 CONTINUE
ENDIF
GOTO 5
ENDIF
IIR = RNG
GOTO 10
ENDIF
DIRC =1
DATAC = K

1, 4
) = D(J)

SUBROUTINE INTTAB(TABLE, TABSIZ, VAL)
INTEGER TABSIZ, TABLE(6000,4), VAL
TABSIZ = 0O
DO 10 I =1, TABSIZ
DO 10 J =1, 4
TABLE(I,J) = VAL
10 CONTINUE
END

SUBROUTINE INIT2(TMPRS,II,JJ,VPRS,6HPRS, VAL)
REAL TMPRS(II,JJ), VAL
INTEGER VPRS, HPRS
DO 10 I =1, VPRS
DO 10 J = 1, HPRS
10 TMPRS(I,J) = VAL

SUBROUTINE INIT(ARRY, DIM1, DIM2, VAL)
INTEGER DIM1, DIM2
REAL ARRY(DIM1:DIM2), VAL
DO 10 I = DIM1, DIM2
10 ARRY(I) = VAL
END



SUBROUTINE INITI(ARRY, DIM1, DIM2, VAL)
INTEGER DIM1, DIM2

INTEGER ARRY(DIM1:DIM2), VAL

DO 10 I = DIMl, DIM2

10 ARRY(I) = VAL
END
Coccccmmccccnccccnece- e e e e e e e
c ASSIGNER OF S-P-CONNECTOR TO A PROCESSOR
Cemmmcmm e cc ;e ; ;e s e —cr e mm e m e e e e e e —— e ————————————————

SUBROUTINE ASNBUS(BUS, QTYBUS, VPRS, HPRS)
INTEGER QTYBUS , VPRS, HPRS

INTEGER BUS(VPRS + HPRS)

K1 = VPRS/QTYBUS

K2 = HPRS/QTYBUS

M=1
DO 10 I = 1, VPRS
BUS(I) = M

]
=
+
[

IF (MOD(I, K1) .EQ. O) M
10 CONTINUE
M=1
DO 20 J = 1, HPRS
BUS(J + VPRS) = M
IF (MOD(J, K2) .EQ. O) M =M + 1
20 CONTINUE

END
Clm e e e e~ e e o e e e e
C READER OF AN S AND AN R PARTITION
Cmmmm e mc ;e ————————————————————— = - - = = e

SUBROUTINE RDSR(TMPRS,II,JJ,FR,CR,CCR,FS,CS,CCS,RTMSTR,RDISKS
* CDAT1, CDAT2,STMSTR, TMBUS,QTYBUS,SDISKS,BUS,VPRS, HPRS,TR)
INTEGER FR(64), CR(64), CCR, CAP
INTEGER FS(64), CS(64), CCS, SVD
INTEGER RDISKS,SDISKS, QTYBUS,VPRS, HPRS
INTEGER BUS(VPRS+HPRS), CDAT1(6000,4), CDAT2(6000,4)
INTEGER FNDX(128), SNDX(128), TOTLOC
REAL  TMBUS(QTYBUS), STMSTR(O:SDISKS-1),TMPRS(II,JJ)
REAL RTMSTR(O:RDISKS-1), LOC(128)
M =0
CCR = CCR + 1
ccs = ccs + 1
IF (CCR .LE. CR(1) .OR. CCS .LE. CS(1)) THEN
M=M+1
LOC(M) = TMPRS(1,1)
FNDX(M) = 1
SNDX(M) =
ENDIF
DO 10 I = 2, VPRS
IF (CCR .LE. CR(I)) THEN
M=M+1
LOC(M) = TMPRS(I,1)
FNDX(M) = I

o
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SNDX(M) = 1
ENDIF
10 CONTINUE
DO 20 I = 2, HERS
IF (CCS .LE. CS(I)) THEN
M=M+1
LOC(M) = TMPRS(1,I)
FNDX(M) = 1
SNDX(M) = I
ENDIF
20 CONTINUE
TOTLOC = M

IF (M .GT. O0) CALL SORT(LOC, ENDX, SNDX, TOTLOC)
DO 30 I = 1, TOTLOC
IF (SNDX(I) .EQ. 1 ) THEN

KI = FNDX(I)

KBI = BUS(KI)
KD1 = CDAT1(FR(KI) + CCR - 1, 3)
KD2 = CDAT1(FR(KI) + CCR - 1, 1)
KD3 = CDAT1(FR(KI) + CCR - 1, 2)

PRINT*, KD2, KD3, KDl
CALL SYNC(TMBUS(KBI), RTMSTR(KD1), LOC(I),TR)
WRITE(9,2) LOC(I)-TR,FNDX(I), SNDX(I),KD2

2 FORMAT(' ',2X,F7.0,2X,'P(',I1,',',I1,')',5%,'R',14)
TMPRS (FNDX(I), SNDX(I)) = LOC(I)
ENDIF

IF (FNDX(I) .EQ. 1 ) THEN
KI = SNDX(I)

KBI = BUS(KI+ VPRS)

KD1 = CDAT2(FS(KI) + CCS - 1, 3)
KD2 = CDAT2(FS(KI) + CCS - 1, 1)
KD3 = CDAT2(FS(KI) + CCS - 1, 2)

CALL SYNC(TMBUS(KBI), STMSTR(KD1l), LOC(I),TR)
WRITE(9,3) LOC(I)-TR,FNDX(I), SNDX(I),KD2

3 FORMAT(' ',b2X,F7.0,2X,'P(',I1,',',I1,')',5%,'s",14)
TMPRS (FNDX(I), SNDX(I)) = LOC(I)
ENDIF
30 CONTINUE
END

SUBROUTINE DVD(F,C,CNT,DIM1)
INTEGER DIM1
INTEGER F(DIM1),C(DIM1), CNT
INTEGER M, K, L
K = CNT/DIM1
L = MOD(CNT, DIM1)
CALL INITI(F,1,DIM1,0)
CALL INITI(C,1,DIM1,0)
N=0
DO 10 I = 1, DIM1
F(I) = N+1
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SUBROUTINE RDS(PDAT2, FS,CS,CCS,BUS,TMBUS,QTYBUS,
* STMSTR, SDISKS, TMPRS,II,JJ, VPRS, HPRS,SVD, CAP, TR)
INTEGER HPRS, VPRS, QTYBUS, SDISKS,SVD, CAP
INTEGER PDAT2(6000,4),FS(64), CS(64), CCS
INTEGER BUS (HPRS+VPRS)
REAL TMBUS(QTYBUS), STMSTR(O0:SDISKS-1), LOC(128),TMPRS(II,JJ)
INTEGER FNDX(128), SNDX(128), TOTLOC
CCS = CCS + 1
IF (CCS .GT. SVD) THEN
M =0
DO 10 J = 1, HPRS
IF (CCS .LE. CS(J)) THEN
M=M+1
LOC(M) = TMPRS(1,J)
FNDX(M) = 1
SNDX(M) = J
ENDIF
10 CONTINUE
TOTLOC = M
IF (TOTLOC .GT. O) THEN
CALL SORT( LOC, FNDX, SNDX, TOTLOC)
ENDIF
DO 20 I = 1, TOTLOC
KI = SNDX(I)

KBI = BUS(KI+ VPRS)

KD1 = PDAT2(FS(KI) + ccs - 1, 3)
KD2 = PDAT2(FS(KI) + CCS - 1, 1)
KD3 = PDAT2(FS(KI) + cCS - 1, 2)

CALL SYNC(TMBUS(KBI),STMSTR(KD1), LOC(I),TR)
WRITE(9,3) LOC(I)-TR,ENDX(I), SNDX(I),KD2

3 FORMAT(' ',2X,F7.0,2X,'p(',I11,',',11,")',5X%,'s',14)
TMPRS (FNDX(I), SNDX(I)) = LOC(I)
20 CONTINUE
ENDIF
END

SUBROUTINE RDR(PDAT1, FR,CR,CCR,BUS,TMBUS,QTYBUS,
* RTMSTR, RDISKS, TMPRS,II,JJ, VPRS, HPRS,TR)

INTEGER HPRS, VPRS, QTYBUS, RDISKS

INTEGER PDAT1(6000,4),FR(64), CR(64), CCR

REAL TMPRS(II,JJ), TMBUS(QTYBUS),RTMSTR(O:RDISKS-1)
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INTEGER BUS (HPRS+ VPRS)
REAL LOC(128)
INTEGER FNDX(128), SNDX(128), TOTLOC
CCR = CCR + 1
M =0
DO 10 I = 1, VPRS
IF (CCR .LE. CR(I)) THEN
M=M+1
LOC(M) = TMPRS(I,1)
FNDX(M) = I
SNDX(M) = 1
ENDIF
CONTINUE
TOTLOC = M
IF (TOTLOC .GT. 0O) THEN
CALL SORT( LOC, ENDX, SNDX, TOTLOC)

ENDIF
DO 20 I = 1, TOTLOC
KI = ENDX(I)
KBI = BUS(KI)
KD1 = PDAT1(FR(KI) + CCR - 1, 3)
KD2 = PDAT1(FR(KI) + CCR - 1, 1)
KD3 = PDAT1(FR(KI) + CCR - 1, 2)

CALL SYNC(TMBUS(KBI),RTMSTR(KD1l), LOC(I),TR)
WRITE(9,2) LOC(I)-TR,FNDX(I), SNDX(I),KD2
FORMAT(' ',2X,F7.0,2X,'P(',I1,',',I1,")',5X,'R",I4)
TMPRS (ENDX(I), SNDX(I)) = LOC(I)

CONTINUE

ACCEPTOR OF AN R PARTITION FROM A NEIGHBOR. THIS ROUTINE
INVOLVES PROCESSORS WITH THEIR ROW NUMBER NOT LESS THAN
THEIR COLUMN NUMBER ONLY.

SUBROUTINE GETRFH(TMPRS, II, JJ, CCS, CCR, CS, CR, VPRS, HFRS,
* FR, PDAT1,TC)
INTEGER VPRS, HPRS
INTEGER CCS, CCR, CS(64), CR(64%)
REAL TMPRS(II,JJ)
INTEGER FR(VPRS), PDAT1(6000,4)
DO 10 I = 1, VPRS
po 10 J = 2, 1
IF(CCS .LE. CS(J) .AND. CCR .LE. CR(I)) THEN
IF(TMPRS(I,J-1) .LT. TMPRS(I,J)-TC) THEN
TMPRS(I,J-1) = TMPRS(I,J) - TC
ELSE
TMPRS(I,J) = TMPRS(I,J-1) + TC
ENDIF
KD = PDAT1(FR(I) + CCR - 1, 1)
WRITE(9,2) TMPRS(I,J-1), I, J-1, 'R', RD,' ===>'
TMPRS(I,J-1) = TMPRS(I,J)
WRITE(9,2) TMPRS(I,J), I, J, 'R', KD
TMPRS(I,J) = TMPRS(I,J) + TC
ENDIF
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10  CONTINUE
2 FORMAT(' ',62X, F7.0, 2X, 'P(',I1,',',I1,')', 5X,A,I4,A)
END

SUBROUTINE GETR(TMPRS, II, JJ, CCS, CCR, CS, CR, VPRS, HPRS,
* FR, PDAT1,TC)
INTEGER VPRS, HPRS
INTEGER CCS, CCR, CS(64), CR(64)
REAL TMPRS(II,JJ)
INTEGER FR(VPRS), PDAT1(6000,4)
DO 10 I = 1, VPRS
DO 10 J = 2, HPRS
IF(CCS .LE. CS(J) .AND. CCR .LE. CR(I)) THEN
IF(TMPRS(I,J-1) .LT. TMPRS(I,J)-TC) THEN
TMPRS(I,J-1) = TMPRS(I,J) - TC
ELSE
TMPRS(I,J) = TMPRS(I,J-1) + TC
ENDIF
KD = PDAT1(FR(I) + CCR - 1, 1)
c WRITE(9,2) TMPRS(I,J-1), I, J-1, 'R', KD,' ===>'
TMPRS(I,J-1) = TMPRS(I,J)
c WRITE(9,2) TMPRS(I,J), I, J, 'R', RD
TMPRS (I,J) = TMPRS(I,J) + TC
ENDIF
10  CONTINUE
2 FORMAT(' ',2X, F7.0, 2X, 'P(',I1,',',11,')', SX,A,6I4,A)

o
c ACCEPTOR OF AN R PARTITION FROM A NEIGHBOR. THIS ROUTINE
c INVOLVES PROCESSORS WITH THEIR ROW NUMBER LESS THAN
c THEIR COLUMN NUMBER ONLY.
Comr o cr o o o o o o o ot o o o s 0 0 0 e e e s = = - = G SR . = . - - - - - - -
SUBROUTINE GETSHR(TMPRS, II, JJ, CCS, CCR, CS, CR, VPRS, HPRS,
* FR, PDAT1,TC)
INTEGER VPRS, HPRS
INTEGER CCS, CCR, CS(64), CR(64)
REAL TMPRS(II,JJ)
INTEGER FR(VPRS), PDAT1(6000,4)
DO 10 I = 1, VERS
DO 10 J = I+l, HPRS
IF(CCS .LE. CS(J) .AND. CCR .LE. CR(I)) THEN
IF(TMPRS(I,J-1) .LT. TMPRS(I,J)-TC) THEN
TMPRS(I,J-1) = TMPRS(I,J) - TC
ELSE
TMPRS(I,J) = TMPRS(I,J-1) + TC
ENDIF
KD = PDAT1(FR(I) + CCR - 1, 1)
c WRITE(9,2) TMPRS(I,J-1), I, J-1, 'R', KD,' ===>'
TMPRS(I,J~1) = .TMPRS(I,J)
c WRITE(9,2) TMPRS(I,J), I, J, 'R', KD
TMPRS(I,J) = TMPRS(I,J) + TC
ENDIF
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10 CONTINUE
2 FORMAT(' ',2X, F7.0, 2X, 'P(',6I1,',',I1,')', 5X,A,I4,A)

SUBROUTINE GETS(TMPRS,II,JJ,CCS,CCR,CS,CR, VPRS HPRS SVD,CAP,
* FS, PDAT2, TC)
INTEGER VPRS, HPRS, SVD, CAP
INTEGER CCS, CCR, CS(64), CR(64)
REAL TMPRS(II,JJ)
INTEGER FS(HPRS), PDAT2(6000,4)
IF (SVD .LT. CCS) THEN
IF(SVD .LT. CAP) SVD = SVD + 1
DO 10 I = 2, VPRS
DO 10 J = 1, HPRS
IF(CCS .LE. CS(J) .AND. CCR .LE. CR(I)) THEN
IF(TMPRS(I-1,J) .LT. TMPRS(I,J)-TC) THEN
TMPRS (I-1,J) = TMPRS(I,J) - TC

ELSE
TMPRS(I,J) = TMPRS(I-1,J) + TC
ENDIF
KD = PDAT2(FS(J) + CCS - 1, 1)
c WRITE(9,2) TMPRS(I-1,J), I-1, J, 'S', KD,' ===>'
TMPRS (I-1,J) = TMPRS(I,J)
c WRITE(9,2) TMPRS(I,J), I, J, 'S', KD
TMPRS(I,J) = TMPRS(I,J) + TC
ENDIF
10 CONTINUE
ENDIF
2 FORMAT(' ',2X, F7.0, 2X, 'pP(',11,',',I1,')', 5X,A,I4,A)
END
(oo m o o m o o e m s o e s o e e e o ot e e e e e e e e e e e e
c JOIN OPERATION SIMULATOR
(o om o o o m o o o e s o o o e e e e e e e o e e o o e e
SUBROUTINE JOIN(TMPRS, II,JJ,CCR, CCS,CR, CS, VPRS, HPRS,
* PDAT1, PDAT2,FR, FS,NJ,SSTAT,RSTAT, TJ)
INTEGER VPRS, HPRS
INTEGER PDATI (6000,4), PDAT2(6000,4),FR(VPRS), FS(HPRS)
REAL TMPRS(II,JJ)
INTEGER CCR, CCS,CR(VPRS), CS(HPRS)
LOGICAL SSTAT(6000), RSTAT(6000)
DO 10 I = 1, VERS
DO 10 J = 1, HPRS
IF(CCR .LE. CR(I) .AND. CCS .LE. CS(J)) THEN
M = FR(I)+CCR-1
N = FS(J)+CCS-1
KP1 = PDAT1( M,1)
KP2 = PDAT2( N,1)
IF( .NOT. (RSTAT(M) .AND. SSTAT(N))) THEN
c WRITE(9,2) TMPRS(I,J), I, J, KP1,'|><|',KP2
TMPRS(I,J) = TMPRS(I,J) + TJ
NJ = NJ +1

ENDIF
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ENDIF
CONTINUE

FORMAT(' ',62X,F7.0,2X,'P(',11,',',11,"')"',5%,'R",14,A,'S',1I4)

CALCULATOR OF THE NUMBER OF ROWS THAT EACH R PARTITION
HAS TO BE READ TO.

SUBROUTINE GETVS(CS, M2,M3, HPRS, CAP, VS, II,JJ,VPRS)
INTEGER HPRS, CAP, VPRS
INTEGER CS(HPRS), VS(II,JJ)
DO 5 I =1, VPRS
DO 5 J = 1, HPRS
VS(I,J) = O
DO 10 J = 1, HPRS
K1 = CS(J)/M3
K2 = MOD(CS(J)., M3)
DO 10 I = 1, M3
VS(I,J) = K1
IF (K1 .GE. CAP) THEN
VS(I,J) = CAP
ELSE
IF(I .LE. K2) VS(I,J) = VS(I,J) + 1
ENDIF
CONTINUE
DO 20 J = 2, M2
Kl = (J-1)*M3

DO 20 I = 1, M3
DO 20 K = 1, HPRS
VS(K1 + I, K) = VS(I,K)
CONTINUE
END

SENDER/ ACCEPTOR OF R PARTITIONS TO PROCESSORS
IN THE SAME COLUMN

SUBROUTINE SHETRD(TMPRS,M2,M3,II,JJ,TC)
REAL TMPRS(II,JJ)
DO 10 I = 1, M2
K = (I-1)*M3
DO 10 J = 2, M3
IF (TMPRS (K+J-1,1) .LT. TMPRS(K+J,1) - TC) THEN
TMPRS (K+J-1,1) = TMPRS(K+J,1) - TC
ELSE
TMPRS (K+J,1) = TMPRS(K+J-1,1) + TC
ENDIF
TMPRS (K+J,1) = TMPRS(K+J,1) + TC
TMPRS (K+J-1,1) = TMPRS(K+J-1,1) + TC
CONTINUE

SUBROUTINE SPRDR(PDAT1,TMBUS,RTMSTR,TMPRS,BUS,RR, M2,M3,HPRS,
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* VPRS, QTYBUS, RDISKS,II,JJ, TR)
INTEGER HPRS, VPRS, QTYBUS, RDISKS
INTEGER PDAT1(6000,4) ,RR(VPRS)
INTEGER BUS(HPRS+ VPRS)
REAL LOC(128), TMBUS(QTYBUS),RTMSTR(O:RDISKS-1),TMPRS(II,JJ)
INTEGER FNDX(128), SNDX(128), TOTLOC
M =
DO 10 I =1, M2*M3,M3

LOC(M) = TMPRS(I,1)
=1
10 SNDX(M) = 1
TOTLOC = M
CALL SORT(LOC,ENDX, SNDX, TOTLOC)
DO 20 I = 1, TOTLOC
KI = FNDX(I)

KD1 = PDAT1(RR(KI),3)
KD2 = PDAT1(RR(KI), 1)
KBI = BUS(KI)

CALL SYNC(TMBUS(KBI),RTMSTR(KD1), LOC(I),TR)
WRITE(9,2) LOC(I)-TR,ENDX(I), SNDX(I),KD2
TMPRS (FNDX(I), 1) = LOC(I)

20 CONTINUE

2 FORMAT(' ',2X,F7.0,2X,'pP(',I1,',',11,")',5%,'R',14)

ALGORITHM TO CALCULATE THE RATIO OF THE NUMBER OF
PARTITIONS IN AN AGGREGATE-CLASS TO THE NUMBER OF ROWS
IN A MESH.
SUBROUTINE GETMMM( PDATAC, M1, M2, M3,VPRS,MMM)
INTEGER M1,M2,M3, PDATAC, VPRS
LOGICAL MMM
M1 = PDATAC/VPRS
M2 = MOD(PDATAC, VPRS)
IF (M2 .NE. 0) THEN

M3 = VPRS/ M2

ELSE
M3 =0
ENDIF
MMM = M1 .EQ. O .OR. M2 .EQ. O .OR. M3 .EQ. O
END

SUBROUTINE DVDR(F,C,R,CNT,DIM,M1,M2,M3,MMM)
INTEGER DIM,CNT
INTEGER F(DIM), C(DIM), R(DIM)
LOGICAL MMM
CALL INITI(C,1,DIM,M1)
IF(MMM) THEN

N =0

DO 10 I = 1, DIM

F(I) =N+ 1
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N =N+ M
IF ( I .LE. M2) THEN
N=N=+1
C(I) = C(I) + 1
ENDIF
R(I) = N
10 CONTINUE
ELSE
DO 20 I = 1, M3 * M2
20 C(I) = ¢(I) + 1
M5 = M1 * M3 + 1
M4 =
K =1

DO 30 I = 1, DIM
F(I) = M& + 1
M4 = M& + M1
IF (C(I) .GT. M1) THEN
R(I) = M5 * K
IF ( MOD(I, m3) .EQ. 0 ) THEN

M4 = M4 +
K=K +1
ENDIF
ELSE
R(I)
ENDIF
30 CONTINUE
ENDIF
END
o m o e e e e e e e e e ot o o o o o o o o s e e s = o - - = - = = — -
C READER OF DIRECTORY PARTITIONS
(o e e o e e o o v e o o o e o o o e o e e - = e = = = = - = =
SUBROUTINE RDDIR(DIR1,DIR1C,TMPRS,II,JJ,
* TMBUS, QTYBUS, BUS, TMSTR, QTYSTR VPRS HPRS, TR, TC)
INTEGER QTYBUS, VPRS HPRS, QTYSTR
INTEGER DIR1(6000,4), DIRlC
INTEGER BUS(VPRS + HPRS)
REAL TMPRS(II,JJ), TMBUS(QTYBUS)
REAL TMSTR(0:QTYSTR-~1)
DO 30 I = 1, DIRI1C
KD1 = DIRI1(I,3)
KMl = DIRI(I,1)
KM2 = DIRI1(I,2)
CALL SYNC(TMBUS(1), TMSTR(KD1l), TMFRS(1,1),TR)
c WRITE(S,2) TMPRS(1,1)-TR,1,1,KM1

CALL GETDIR(VPRS, HPRS, TMPRS, II, JJ, KM1,TC)
30 CONTINUE

2 FORMAT(' ', 2X,F7.0,2X,'P(',11,',',11,')',5%X,'D",14)
END
Crememcccc e e e ccc e ccccccccccrcccccce e e r e m e — e ——————— ——————
c ACCEPTOR AND SENDER OF DIRECTORY PARTITIONS
Crmmemmccc e e cccmccmcccccrcccccee e e e e m e — e e —————————

SUBROUTINE GETDIR(VPRS, HPRS, TMPRS, II, JJ, KM1,TC)
INTEGER VPRS, HPRS, KMl
REAL TMPRS(II,JJ)
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DO 10 I = 2, VERS
IF(TMPRS(I-1,1) .LT. TMPRS(I,1) - TC) THEN
TMPRS(I~1,1) = TMPRS(I,1) - TC

ELSE
TMPRS(I,1) = TMPRS(I-1,1) + TC

ENDIF

WRITE(9,2) TMPRS(I-1,1), I-1, 1, 'D', KM1, '===>'

TMPRS(I-1,1) = TMPRS(I.1)
WRITE(9,2) TMPRS(I,1), I, 1, 'D', KMl
TMPRS(I,1) = TMPRS(I,1) + TC
10 CONTINUE
DO 20 J = 2, HPRS
IF(TMPRS(1,J~1) .LT. TMPRS(1,J) - TC ) THEN
TMPRS(1,J-1) = TMPRS(1,J) - TC

ELSE
TMPRS(1,J) = TMPRS(1,J-1) + TC

ENDIF

WRITE(9,2) TMPRS(1,J-1), 1, J-1, 'D', KM1l, '===>'

TMPRS (1,J-1) = TMPRS(1,J)
WRITE(9,2) TMPRS(1,J), 1, J, 'D', KM1
TMPRS(1,J) = TMPRS(1,J) + TC
20 CONTINUE
2 FORMAT(' ',2X, F7.0, 2X, 'p(',11,',',I1,')', 5X,A,I4,A)
END



