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Chapter 1

Introduction

Cracks may occur due to presence of notches and slots in a rotating shaft. Cracks can also
appear as a result of the accidental mechanical damage which often occurs in the blades
of axial compressors of aircraft engines. In this case, the damage arises as a result of air
suction when the air contains fine stones and sand. Other reasons for the appearance of
cracks are erosion and corrosion as well as fatigue of the rotor material.

According to Muszynska [1], at least 28 rotor failures, which can be a.ttributeé to shaft
cracks, have occurred within a period of ten years in the North American utility industry
alone. Clearly, the timely detection of cracks would obviate expensive and dangerous
machine failures and plant shutdowns.

A crack on a machine element introduces considerable local flexibility due to the
stress concentration at the vicinity of the crack tip. Due to change in stiffness, the

presence of crack changes the dynamical characteristics of the machine element. Because



of the increasing demands for safety, reliability and efficiency, it is now believed that
monitoring of the global dynamics of a mechanical system offers a promising alternative
for damage detection. Consequently, the study of dynamics of cracked rotors, which

represent essential elements in all rotating machinery, is of great importance.

1.1 Literature Survey

Complex mechanical systems are an assemblage of simple structural components. These
simple structural elements include beams, bars, plates, frames, etc. To understand the
effect of cracks on the dynamics of complex structures it is imperative that we understand
their effect on simple structures. The simplest form of a rotor component is one that is
modeled by a uniform beam. In the literature survey that follows, the effect of a crack

on the dynamics of beams has been addressed.

1.1.1 Cracked Non-Rotating Beams

Petroski [2] presented a simple model for the effect of a crack on the response of an
elastic beam. In the model, the crack is represented by an equivalent slot accounting for
the ineffective material adjacent to a crack and a pair of concentrated couples acting on
the beam. Using Fourier series expansion for the response of the beam he determined
the vibration response of the beam to a step load. He concluded that the presence
of crack increases the overall vibration amplitude by a factor of three over that of the

uncracked beam and introduces higher frequency vibrations more noticeably into the
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total response. Christides and Barr [3] introduced a modification of Bernoulli-Euler beam
theory by incorporating symmetric cracks. The stress field around the crack is modeled by
an approximate exponential decay parameter which is estimated from the experimental
data on the natural frequency change las a function of crack depth. Shen and Pierre
{4] proposed an approximate Galerkin solution to the theory developed by Christides
and Barr (3] for the free bending motion of beams with pairs of symmetric open cracks.
The Galerkin procedure involves the expansion of the cracked beam deflection in a series
using "eigenfunctions of the corresponding uncracked beam. However, the stress-decay
parameter, which is used to model the concentration of stress around the crack, had to be
redetermined to increase the convergence speed of the Galerkin solution. Shen and Pierre
[5] extended the cracked beam theory presented in reference [4]. In this formulation, they
assumed that the damage can be viewed as a single surface crack normal to the beam
neutral axis. The assumption of single-edge crack, introduces discontinuities in the slope
of the neutral axis and in the axial displacement along the neutral axis. The equations
of motion of the beam are derived using the variational principle. The Galerkin and Ritz
methods are then applied to predict the free vibration modes of cracked beams, with
simply supported and cantilevered configurations. Papadapoulos and Dimarogonas [6]
derived the equation of motion for the transverse and torsional vibration of a clamped-
free Timoshenko beam of circular cross-section and stated its boundary condition and
crack-compatibility conditions. They investigated the coupling of bending and torsional

vibrations of the beam by solving the differential equations of motion using the assumed



modes method. Rajab and Al-Sabeeh [7] studied the vibration characteristics of a cracked
simply supported Timoshenko shaft. They assumed discontinuities in deflection and
slope of the shaft at the location of the crack. The four boundary conditions and the
four continuity equations at the crack location were substituted in the assumed solution
of the equation of motion of the non-rotating shaft. They addressed the change of the
natural frequencies as a function of crack depth and crack location.

The study of dynamics, using analytical methods is limited to simple structures.
Complicated structures can be better modelled using the finite element method. There-
fore, investigators have recently focussed their interest in this direction. Gounaris and
Dimarogonas [8] presented a finite element formulation of a cracked prismatic beam for
structural analysis. They developed the consistent stiffness matrix of the finite element
model by assuming that a discontinuity at the crack location occurs in both deflection
and slope due to bending and shear compliance, respectively. The assumption of a dis-
continuity in deflection would imply that the structure is broken. Hence the reduction
in stiffness due to the presence of crack need to be modelled by considering discontinuity
in slope only. Haisty and Springer [9] proposed a finite beam element for damage assess-
ment of complex structures. In this beam element formulation, the stiffness due to crack
is modelled by equivalent springs between two undamaged beams. The finite element is
developed by determining the force-displacement relationships for two undamaged beams
connected by a set of springs.

Ostachowicz and krawczuk [10] analyzed the vibrations of a cracked beam by dividing



the beam into triangular finite elements with two degrees of freedom per node, while
modeling the crack as a point finite element. The local flexibility due to the crack is taken
care of by the stiffness of the point finite element. They outlined a procedure to calculate
the stiffness of the point finite element and to incorporate it in the assembled stiffness
matrix of the structure. Krawczuk [11] presented a finite Timoshenko-type beam element
with a crack. The crack is modelled by including an additional flexibility matrix to the
flexibility matrix of the uncracked element. The terms of the additional flexibility matrix
due to crack are evaluated according to the laws of fracture mechanics. The Timoshenko
effect is included by adding the strain energy due to shear deformation to the strain
energy of the uncracked beam element. The stiffness matrix is obtained by inverting
the flexibility matrix of the cracked beam element. However, for small cracks, the crack
fexibilities are very small and the elements of the stiffness matrix are correspondingly
larger. This might lead to numerical solution problems [8].

Although, all the previously cited investigations were dedicated to studying the effect
of a crack on the dynamic behavior of non-rotating beams, they addressed the basic

approaches that were adopted in the investigations of cracks on rotating beams.

1.1.2 Cracked Rotating Beams

Chen and Chen [12] studied the vibrations of cracked thick rotating blades wherein the
rotating blade is modelled by a number of Timoshenko beam elements. The presence of a

crack is modelled by introducing a local flexibility matrix. They concluded that the crack



flexibilities and crack position have significant effects on the free vibration frequencies
of the rotating blade. Wauer [13] derived equations of motion for a cracked rotating
blade. He considered the cracked blade as a Bernoulli-Euler beam with a single transverse
crack. The reduced stiffness of the crack region is characterized by a local spring element
connecting two uncracked beam segments. The governing nonlinear boundary value
problem is derived and linearized for small superimposed oscillations. However, shear
was not included in the analysis and quantitative results were not presented in reference
[13]. Krawczuk [14] presented a finite element for a rotating cracked beam. He derived
the shape functions of the beam element by taking into account only the discontinuity in
slope due to bending at the cracked location. The discontinuities in deflection and shear
deformation were not considered. Using the derived shape functions, he constructed the

stiffness and mass matrices for the rotating beam element.

1.1.3 Cracked Rotating Shafts

All of the previously cited formulations, however, were dedicated to either nonrotating or
rotating beams. In recent years, investigators have given more attention to the presence
of cracks in rotating shafts due to their importance in practical situations. Davies and
Mayes [15] studied the effect of a propagating transverse crack on the dynamics of a rotor-
bearing system usmg an experimental spin rig. They concluded that except for very large
cracks, the vibrational behavior is similar to that of a slotted shaft with additional exci-

tation due to the crack opening and closing. Grabowski [16] investigated the vibrational



behavior of the flexible turbine rotor containing a transverse crack. The shaft deflections
are modeled, using the assumed modes method, by a series expansion of the first few
eigenfunctions. Strong dependence of the vibrational behavior of the cracked rotating
shaft on the crack position is demonstrated. Papadopoulos and Dimarogonas [17, 18] in-
vestigated the coupling of longitudinal and bending vibrations of a rotating shaft due to
an open transverse surface crack. The assumed modes method was employed in deriving
the model, wherein shear deformations were not considered. Wauer {19] formulated the
equations of motion for cracked rotating shafts. A rotating Timoshenko shaft with six
degrees of freedom is considered. Due to the presence of crack, the shaft is considered
as two uniform fields, one on either side of the crack. The open crack is simulated by a
local spring, with reduced stiffness and damping, that connects the two uniform fields.
The equations of motion are rewritten replacing the geometric discontinuity by a load
discontinuity at the crack location. Galerkin method is applied to solve the simplified
equations of motion.

In addition to the previously cited assumed modes method, the finite element method
has been employed in modeling rotating cracked shafts. Nelson and Nataraj [20] presented
a theoretical analysis of the dynamics of cracked rotor-bearing system using the finite el-
ement method. The rotor shaft is modelled using a finite shaft element with a transverse
crack. The additional flexibility due to the crack is not accounted for according to the
laws of fracture mechanics. Instead, the variation in stiffness of the cracked shaft with its

rotation is evaluated. The variation in stiffness is modelled by a perturbation parameter,



thus resulting in a nonlinear parametrically excited system of equations. These equa-
tions are solved by applying perturbation techniques to an assumed solution in terms of
a Fourier series. The equations of motion are then converted to the frequency domain.
Only the frequency response of unbalance excitation is presented. The solution method-
ology adopted is not suitable for predicting time response, however. The perturbation
parameter, which is also called the crack parameter that accounts for the variation of
stiffness of the cracked shaft, is not physically related to any crack property like depth,
type of crack, etc. Hamidi et al. [21] presented a finite element model for the study of
modal parameters of cracked rotors, wherein the open crack is modelled by additional
local flexibility. The stiffness matrix of the finite element model is found by inverting the
flexibility matrix, which is computed using the principles of fracture mechanics. Since the
inversion of the flexibility matrix is involved, the numerical scheme could be inefficient for
small crack sizes when the associated flexibility is small. They have investigated the effect
of a crack only on the modal characteristics of a uniformly cylindrical Euler-Bernoulli
shaft. Their study was not carried out to the stage of dynamic response calculations.

In practice, shafts have stepped geometry to allow for adequate strength as well as
tapered segments for mounting other mechanical elements. In addition, actual rotors
include disks and anisotropic bearings. A realistic dynamic analysis of rotors with such a
complex geometry, can be made feasible using the powerful finite element method. The
literature review reveals that only cylindrical cracked rotating shafts were tackled using

the finite element method. In such formulations, the reduced stiffness due to the presence



of a crack is modelled by an additional flexibility matrix, which is inverted to obtain the
stiffness matrix. For small flexibility values, however, the inversion procedure could be
numerically sensitive. Moreover, the reported formulations did not account for the shear
deformations, which are significant for rotor systems with short shafts.

The current status of the reported work in the area of dynamic analysis of cracked

rotors reveals the following observations:

1. The crack stiffness effects were obtained by inverting the flexibility matrix. How-
ever, for small cracks, the crack flexibilities are very small and the inversion of the

flexibility matrix often results in numerical difficulties.
2. The finite element used did not permit the tapered geometry of the shaft element.

3. For dynamic response analysis, the modal reduction was carried out using only

planar modal transformations.

4. Time response to a general input, ( e.g., step, impulse ) was not addressed. Most of

the work was carried out for predicting the response due to a rotating unbalance.

The purpose of the present study is to develop a consistent finite element scheme
for the efficient evaluation of the dynamic characteristics and prediction of the time-
responses of cracked rotor-bearing systems. In this regard, a finite element formulation
of the elastodynamic equations of motion is developed, and the eigenvalue problem is
then defined. For discretization, a tapered cracked shaft finite element is introduced
to account for translational inertia, rotary inertia, gyroscopic moments, torsional and

9



shear deformations. This cracked finite element formulation is based on a consistent
mass approach that accounts for shear as a deformation parameter. For the developed
finite element, the shape functions are derived taking into account the crack geometry
as well as the associated boundary and continuity conditions. Explicit expressions of
the mass, stiffness and gyroscopic matrices are formulated, and the eigenvalue solutions
are obtained for a wide range of parameter variations. The equations of motion of
the rotor-bearing system, when written in nodal coordinates are of very high order.
[t is numerically inefficient to integrate forward in time such high order of equations.
Three modal reduction schemes are discussed. The planar and complex modal reduction
schemes are implemented and reduced order equations of motion are obtained. The
resulting reduced order equations of motion are integrated forward in time to predict the
response for different types of loads. The developed scheme has been utilized to produce

useful numerical results beyond those available in the current literature.

1.2 Proposed Research

A complete dynamic model for a general rotor-bearing system with a cracked shaft is
derived for the purpose of studying the dynamic response behavior of such systems. The

following tasks will be carried out:
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1.2.1 Derivation of Equation of Motion

A general rotor-bearing system is an assemblage of flexible as well as rigid components.
Therefore, a multibody formulation capable of accommodating flexible and rigid bodies
will be adopted. The shear stiffness, torsional stiffness, rotary inertia, gyroscopic effects
and inertia coupling of flexural and torsional motions will be included in the general

multibody formulation.

1.2.2 The Finite Element Discretization

The flexible components of the rotor-bearing system such as the shaft will be modelled

using the finite element method.

The Finite Element Mesh

The cracked elastic shaft is divided into finite elements. A general cracked shaft finite
element which has two nodes, with each node having five degrees of freedom is developed.
The five degrees of freedom comprise of two deflections which are perpendicular to the
axis of the element and three rotations about the three axes. The vanishingly small axial
deflection is neglected. Thg mesh of the cracked rotor shaft can contain unequal shaft
finite element lengths. It is proposed to develop the formulation of the finite cracked
element such that it lends itself to both cylindrical and conical geometry of the element

which may have solid or hollow cross-section.
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Shape Functions

In finite element method, the elastic displacement field over an element is expressed in
terms of the nodal coordinates using shape functions. In the literature, the shape func-
tions for a cracked shaft element are not derived. It is proposed to derive the shape
functions incorporating the flexibility of the crack as a crack compliance. The deforma-
tion due to shear ( Timoshenko effect ) will also be included in the derivation of shape

functions.

Explicit Form of Matrices

The literature survey shows that researchers have modelled the cracked rotor shaft using
standard finite beam elements. The total flexibility matrix of the cracked beam element
is obtained by adding the additional flexibility due to crack to the flexibility matrix of
the uncracked beam element. The stiffness matrix of the cracked beam element is ob-
tained by inverting the total flexibility matrix. If the flexibility is small, the inversion of
the flexibility matrix creates numerical problems. Hence, a method to directly compute
the stiffness matrix of the cracked beam element is desirable. The calculation of the
element matrices involve integration of shape functions. It is desirable to avoid numer-
ical integration to minimize round off errors and to increase efficiency of the numerical
computations. It is proposed to derive the explicit form of the non-zero entries of the

element mass, stiffness and gyroscopic matrices.
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Assembled Equation of Motion

The element matrices are assembled into the system matrices which represent the rotor-
bearing system. The order of the system matrices, before applying the constraints is
equal to the total number of degrees of freedom of the system. In the finite element
method, the number of total degrees of freedom of a system is very large, thus resulting

in equation of motion with very large dimensionality.

1.2.3 Reduced-Order System

Modal transformations can be invoked to obtain a reduced-order model. In the literature,
planar modes are used to reduce the order of the system matrices. However, actual modes
of a rotor-bearing system are complex. Due to the associated numerical difficulties,
complex modal transformations were not adopted by any reported dynamic response
analysis investigation. In this proposed research work, complex modal transformations
are invoked using a set of significant complex as a basis for the reduced-order modal

space. The modal form of the equations of motion will be obtained.

1.2.4 Time-Response (Numerical Integration)

The reduced modal forms of the system matrices are used for time response analysis. The
reduced-order equations of motion are numerically integrated forward in time to obtain
the system’s time response. The response obtained from the reduced-order system is

compared to that of the full-order FEM model to validate the reduced-order system. It

13



is proposed to study the dynamic response of the cracked shaft for different types of

forcing functions.
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Chapter 2

The Crack Model

The presence of crack introduces flexibility in a solid. The amount of flexibility introduced
depends upon the crack geometry and type of crack. Due to cyclic loading and fatigue,
the crack propagates, thus resulting in a possible catastrophic fracture of the mechanical
component. The different fracture modes of a solid material and stresses induced by
them are presented in the appendix.

Using fracture mechanics concepts, the effect of crack on the solid can be represented
by a single parameter called the stress intensity factor. The stress intensity factor is found
by considering the boundary conditions and type of loading on the solid. A relationship
between the additional strain energy due to crack and its stress intensity factor can
be established. The flexibility influence coefficient of the crack is then found using the
relationship between the additional strain energy and the stress intensity factor. The

flexibility influence coefficient of the crack will be used in the derivation of shape functions
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of the cracked shaft finite element to be developed in this investigation. In this chapter,
the derivation of flexibility influence coefficient of a transverse surface crack using fracture

mechanics concepts is presented.

2.1 The Energy Release Rate

Griffith [22] realised that for an infinitesimally small amount of crack extension, the
decrease in stored elastic strain energy of a cracked body under fixed grip conditions is
identical to the decrease in potential energy under conditions of constant loading. The

energy release for an increase in crack length éa is given by
1
GBéba = §P6u (2.1)

where G is the energy release rate per unit area, B is the thickness of the plate and P is

the load. The displacement u of the plate can be written as

where C is the reciprocal of the slope of the load-deflection curve at a particular value of
crack length a, and is known as the crack compliance of the system. For constant load,

we can write

GBba = %P%C’ 2.3)
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therefore as éa — 0, the energy release rate can be written as

= ——— (2‘4)

2.2 Relationship Between K and G

The crack tip region is small compared to the body as a whole but sufficiently large with
respect to the atomic dimensions. Therefore the linear theory of elasticity can be applied
with reasonable accuracy. From Westergaard’s solution [23], referring to Figure 2-1, one

gets

@~ o)}

Considering plane strain, the displacement u.; can be written as

1
e = 2 (1 — 1) % [(a+ 6a)® — 7] (2.6)
Now substituting
r=y—a (27)
the stress and displacement can be written as
ovma K 2.8)

T= = Joxr  orr

17



Figure 2-1: Through crack in an infinite plate for the general case where the principal
stress is not perpendicular to the crack.
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and

Uz =2(1— u2) %—\/2_(1-[& - r]% (2.9)

The energy change per unit thickness can be expressed as

ba da 1
Géa = /Unundr =2(1- V2) a;a (Ga — T) : dr (2.10)
0

r
0

After evaluating the integral, the change in energy is written as

Géa = % (1-v?)6a (2.11)

putting

K =o/wa (2.12)

where K is defined as the stress intensity factor, then the expression for G can be written
as

G =

% (1-27) (2.13)

Consider a crack situated in an infinite body is subjected to a tensile stress (Mode
I opening), to a shear stress (Mode II sliding) and to an antiplane shear stress (Mode
IIT). The local crack tip stresses which could do work are o, (Mode I), the shear o4
(Mode IT) and the shear o, (Mode III), which are characterized by the stress intensity
parameters K, Kyr and Ky, respectively. Work is done only when these stresses move

in the appropriate directions. The expression of the strain energy release rate per unit

19



thickness is given by

.1

ba
G= 5%3-;/-(0’::3% + OryUzy +azzu:z) dr (2°14)
0

Evaluating the integral and assuming plane strain conditions for modes I and II, one
obtains [24]

EG=(1-A)K}+ (1 - 1A K+ (1 +v) K}y (2.15)

2.3 Local Flexibility of a Cracked Shaft

A transverse crack of depth a is considered on a shaft of radius R (Figure 2-2). The
shaft has local flexibility due to a crack in many directions, depending on the direction
of the applied forces. In this model, only bending deformation is considered. Axial forces
which give coupling with transverse motions of the cracked shaft will not be considered.
Therefore, the shaft is bent by a pure bending moment M and the additional angular
deflection of one end of the shaft relative to the other will be computed.

Paris [25] computed the displacement u per unit width of a cracked structure due to
the action of a force P as

w= 2 / G (r)dr (2.16)

where a is the crack depth and G (7) is the strain energy release rate. The energy release
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Figure 2-2: Geometry of a cracked section of a shaft



rate for mode I fracture, referring to Eq.(2.13) can be written as

1=V g (2.17)

For a crack with varying depth, referring to Figure 2-2 the strain energy density function

will have the form [26]

/ (1 KI (‘X) (2.18)

where E is Young’s modulus, v is Poisson’s ratio and 2b is the crack width. The flexibility

influence coefficient can be written as

_ Bu F(1—02) K2 (X)
c=35 =35 / = dX da (2.19)
0

The solution of the stress intensity factor K is not available, however. The solution for
the strip with width dX and depth @ = a + vV R? — X2 — R will be used. This solution

is reported in reference [25] as
K; = —VR? - X2\/maF; (2) (2.20)
wR4 h

where

(2.21)

F2(2)= 2ht 1ra)0993+0199(1_sm%%4

T 2h cos o7



and h is the local height:
h=2VvR2 - X2 (2.22)

Therefore, for p = M, Eq.(2.19) becomes [26]

/a /b 75 (B? - X?) naF} (1) dX da (2.23)

In dimensionless form, this can be written as

s [l (] RO e

The expression on the right side is a function of % only and can be computed by numerical
integration.

For the moment about the y-axis, the cracked shaft has another flexibility coefficient,

which is given by
328%raF? (2)
/ / g 4X da (2:25)
where
) \/ 7ra 0752+202(h)+037(1—sm-§ﬁ-)3 (2.26)
cos 7% )
In dimensionless form

e[ @r@E) @ e

23



The integral on the right is a function of % only. The integration is carried out over only
half the crack width because only positive tension stresses cause extension and opening
of the crack.

The flexibility influence coefficients ¢, and ¢, of Eqgs.(2.23) and (2.25) will be employed
in the derivation of shape functions of a cracked rotor shaft finite element to be developed

later in chapter 4.
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Chapter 3

The Multibody Elastodynamic

Model

3.1 Introduction

A rotor-bearing system is comprised of a number of mechanical components that can be
treated as rigid (e.g. disks, bearing brackets, etc.) or flexible (blades, shafts, bearings,
etc.). In this chapter, a general multibody system is considered. A multibody system,
in general, is an assemblage of elastic as well as rigid bodies. The kinetic and potential
energy expressions are obtained and the goveri:.ing differential equations of motion are
derived by means of the Lagrangian approach. The equations of motion of a rotor-bearing

system are then deduced from the general multibody system model.
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3.2 The Multibody System

One may start by deriving the equations of motion of a general elastic body. Referring to
Figure 3-1, the XY Z Cartesian coordinate system represents an inertial frame and the
X*Y*Z? axes represent a body fixed Cartesian coordinate system that is rigidly attached
to an infinitesimal volume on the i** body. Using the finite element approach, the body
is divided into a number of elements which are attached to each other. The location of
an arbitrary infinitesimal volume on the j** element of this body is defined in terms of
two séts of generalized coordinates. The first set represents reference coordinates that
locate the position of a body fixed coordinate system X*Y*Z* with respect to the inertial
XY Z frame. The second set consists of elastic coordinates that characterize the elastic
deformation of the body. Elastic coordinates represent relative translational and angular
displacements of infinitesimal volumes at the nodal points on a body with respect to the
body fixed coordinate system X?Y*Z¢.

Let X¥Y%Z% be a Cartesian coordinate system with its origin affixed to an infini-

S Al

tesimal volume at some point on the j** element of the i** body, and the XY be a
coordinate system parallel to the X¥Y*¥ Z* but with its origin coincident with the origin
of the body-fixed axes, as shown in Figure 3-1. If ¥ represents the nodal coordinates of
element ij, with respect to the X*¥Y*Z% coordinate system, then the position of point

pY with respect to the X'Y7Z7 coordinate system can be defined by u¥ as:

ul = NYe'l (3.1)
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gure 3-1: Generalized coordinates of point p¥
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where N* is the modified shape function of element ij which takes into account the

transformation from X¥Y%Z% to X Y ~Z~ axes. As shown in Figure 3-1, the global

position vector r¥ of the point p”/ can be written as

¥ =R +d7 (3.2)
where

d9 = Ty (3.3)

is the position vector of point p7 from body fixed axes in global coordinates, ¥* (¢°) is the
transformation matrix from the i** body fixed X'Y*Z* coordinate system to the global
XY Z coordinate system and [/ is the transformation matrix from the element X7z’
coordinate system to the i** body fixed coordinate system. Substituting Eq.(3.3) in

Eq.(3.2), we can write 7§/ as

rd = R* + UT9y¥ (3.4)

To evaluate kinetic energy of element ij, it is first necessary to derive an expression for

the velocity vector of an infinitesimal volume at point p”/ on the element. Differentiating
Eq.(3.4) with respect to time yields the velocity of point p,

# = B + UT9NYe¥ + UTTNYeY + TN (3.5)
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where (-) denotes differentiation with respect to time. The second term on the right side
of Eq.(3.5) is defined as

9N = BYG' (3.6)

and the third term on the right hand side of Eq.(3.5) is defined as
UTH Neld = DU (3.7)

The matrices BY (6, €¥) and D¥ (6%, e) are functions of the reference rotational co-

ordinates of body i and the elastic coordinates of element ij. Equation (3.5) is then

expressed as w
[ &

g = [I BY Dif+\1:fr*ffof]< Y (3.8)
i
\ J

where I is an identity matrix.

3.2.1 Kinetic Energy Expression

The kinetic energy of the element ij is obtained by integrating the kinetic energy of the

infinitesimal volume at point p¥/ over the volume V¥,

i 1 15 7457 247 5
™ =3 / pIrd g dVY (3.9)
vii
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The parameter u/ is the mass density of the element, and the superscript T implies
transpose of 2 matrix. Using the vector notation ¢ = [ ™", 6%, ¢” |T and substituting
Eq.(3.8) into Eq.(3.9), the kinetic energy expression becomes

T = %q"fﬁvﬁiqff (3.10)

where M%7 is the mass matrix of element 7,

I B
M7 = f pH B4" B4 B

DT 4 N g ( DT 4 NETTHT g ) Bii

(D% + ¥ NY)

BiiT (DY + WiTH N't) v (3.11)

(D9 + NTTHET) (D¥ + TTINY)

-

Orthonormality of the transformation matrices ¥ and 'Y, i.e., T = [, D9 TY =1,
is utilized to simplify the lower right submatrix of Eq.(3.11). Note that the mass matrix
M is function of the generalized coordinates, but the submatrix N*" N*/ associated
with the element elastic coordinates is constant. The individual elements of the mass

matrix given in Eq.(3.11), when simplified, gives the following matrices:
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/ v pfiBY9" BidV¥ = the mass matrix due to rigid body rotations
/ v pi DY DAV = the matrices due to torsion, rotary inertia
and inertia coupling of elastic coordinates
/ - pINYTNHdV4 = the mass matrix due to elastic translations
i
/ o p B9 DHdVH = matrix due to gyroscopic moments
i
All the above discussed matrices are constant matrices except the matrix due to
inertig, coupling of elastic coordinates, which in nonlinear and function of elastic nodal
coordinates.
The kinetic energy T* of the i** body is obtained by summing up the kinetic energies

of all elements in the body. Denoting the number of elements by n‘, T is given by
) S
= 1 = ¢ T M 3.12
T=) T 54T Mg (3.12)

where ¢ is the vector of generalized coordinates of body i given by ¢* = [ R, 6", e
]T, where €' is the vector of nodal coordinates of all the elements of body 7. The matrix

Mis

i i i
11 12 13

B My M 613

i i i
Mél 32 M33
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where

= Z/‘;ﬁ#ﬁ[dvv

=1

vii

=1

= 3 [ w07+ wriN) av
vii

j=1

= z / u BT Bii qyii
vii

=1

= 3 [ utB (D9 + wTINY) av
vii

j=1

> / u (DT 4 NT9UT) (DY + WTINY) av9
Vii

j=1

The other submatrices M3,, M};, M}, are the transpose of M},, M};, M}, respectively.

3.2.2 Strain Energy Expression

The strain energy of the finite element ¢j can be written in the form

i [ ;2 ;2 ;2 i [ 2 ;2 ;32 i
/., (B9 {e +& + e} + G {eif + 6 + e }] av?
\A
ii [ i is i (T i
f._ (B (e el + cif"el] + " e}
v

v {eged + el el +elei|avy (319)

1
2
1
2
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where £, £}/, £ are the strains in the X¥, Y/ and Z¥ directions respectively, and £,

g4

i €3 are the shear strains of the finite element ij. The other parameters represent

modulus of elasticity E¥ and the shear modulus G¥. The strains, in general, can be

written in terms of nodal coordinates as

£9 = BYel (3.15)

where B is called the curvature matrix. Equation (3.15) is valid for all the subscripts
of € shown in Eq.(3.14). Substituting Eq.(3.15) in Eq.(3.14) the strain energy expression

can be written as

Ui = %eﬁ" Kiied (3.16)

where

k% = [ [p{8 B8+ 57 By + BT BY)

+64 {BETBY, + BL B+ B BL ) avy  (3.17)

The individual terms of the stiffness matrix of Eq.(3.17) gives the following matrices:



Jiis EY {B?i’fﬁ’f," + B{,’Tﬁl‘;j + B9 B } dV¥ = the elastic stiffness matrix
due to normal strains
Jiis G {B;’: Bi + B B + B;gfé;;} dV¥ = the stiffness matrices due to
shear and torsion
All the individual matrices discussed above, that contribute to the strain energy, are
constant matrices. The total strain energy of the i** body is the sum of the strain energies

of all the individual elements, and is given by

R R
— J — — gt 3 .
U ZU‘ 54 K'q (3.18)
j=1
where _ -
0 00
00K

where K is the assembled stiffness matrix of the body i.

3.2.3 The Generalized Forces

The virtual work expression of all forces acting on element ; can be written as

WY = Q7" ¢ (3.20)



where Q¥ is the vector of generalized forces associated with generalized coordinates g¥.
The effect of all forces, except the workless constraint forces between elements, is included

in W% of Eq.(3.20). The virtual work expression for body i is given by

= Q' é&q° (3.21)

3.2.4 Equation of Motion

T
Let ¢ = [qlr, qzr, - q"{] , where n,; is the total number of bodies in the system, be
the composite vector of the multibody system generalized coordinates. The holonomic
constraints between different bodies in the system can be written in a vector function

form as

(g, £)=0 (3.22)

where O (g, t)=[6:1(q, t),...,Om (g, t)]T and all equations are assumed to be indepen-
dent. The subscript m denotes the number of constraints. The variational form of the
equation of motion for the i** body, for all virtual displacements 8¢* that are consistent

with the constraints given by Eq.(3.22), is

|5 05 ~Th+ Vg - Q7| o =0 3:23)
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where subscript g denotes differentiation with respect to a vector ¢. Making use of the

Lagrange multiplier vector F € R™, the equation of motion can be written as

d . . . .
5 (@) = (1) + (U3)" - Q@' +e5F =0 (3:24)

After carrying out the differentiation, the equation of motion can be written in the form
M'§ +C¢ + K'q = Q' —0LF (3.25)

where M* is the mass matrix, C* is the matrix associated with the gyroscopic moments
and Coriolis forces, K* is the stiffness matrix of the body ¢, and © is the Jacobian

matrix of the constraints on body z.

3.3 The Rotor-Bearing System

In this section, the generalized multibody formulation of equation (3.25) will be applied
to a rotor-bearing system. In this context, all the coefficient matrices will be explicitly
evaluated to include the contributions of all the basic rotor components, e.g. shafts,
disks, bearings, etc. For complete dynamic modeling of rotors, the following important

features need to be included:

1. Shear deflection and rotary inertia effects.

2. Gyroscopic effects which couple motions in two directions.
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3. Variable shaft geometry, e.g. tapered, stepped, solid as well as hollow shaft sections.

4. Type of bearings, e.g. rigid, isotropic, or orthotropic.

3.3.1 General Assumptions
One may start by stating all the assumptions that underlie the formulation.
1. The material of the rotor is elastic, homogeneous and isotropic.

2. The plane cross-section initially perpendicular to the neutral axis of the rotor re-

main plane, but no longer perpendicular to the neutral axis during bending.

3. The deflection of the rotor is represented by the displacements of points of its center

line.
4. The axial deformation of the rotor is small and can be neglected.
5. The shaft is flexible, while disks are treated as rigid.

6. Aerodynamic forces are neglected

3.3.2 Kinetic Energy Expression of the Shaft

Referring to Figure 3-2, the rotor-bearing system is defined by an inertial frame XY Z
and a body fixed Cartesian coordinate system X*Y*Z*. The rotor shaft is considered as

the body 7 and is divided into a number of finite elements. The rotor shaft is rotating
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about its X*-axis with a constant spin speed of 0; Therefore the transformation matrix

between the body fixed X*Y*Z* axis and the inertial frame XY Z is

() =|0 cosf —sind:

10 0

T

- gi i
0 sinf, cosf;

(3.26)

Consider a point p¥ on the i element of the rotor shaft. The ¢j:& element undergoes

two bending deformations v* and w¥ in the Y/ and Z% directions, respectively. Referring

to Figure 3-3, any cross section of the element undergoes the following three elastic

rotations: torsional deformation ¢“ about X3/, 7 about Y3’ and 7% about Z’. The

transformation matrix I''7 between the elemental coordinate system X*YZ% and the

body fixed coordinate system X'Y*Z* is calculated as

ry

-

1 -
T—¢8 1+ @By
_¢7+ﬁ ¢ — B

—

-

(3.27)

where ¢, B8 and - are elastic rotations which belong to the small deformations within the

hypothesis of the linear theory of elasticity. Therefore the following substitutions have

been made in Eq.(3.27):

cos ¢

38
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Figure 3-2: A rotor-bearing system: coordinates
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Figure 3-3: Transformation of axes
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sing = ¢, sinf=p, siny=7

Neglecting second order terms, the transformation matrix I'¥/ can be further simplified

as

1L —y -8
=y 1 —¢ (3.28)
-ﬁ ¢ 1 -

It is observed that the transformation matrix '/ is an antisymmetric matrix. As men-
tioned earlier in this section , the rotor shaft rotates about its X*— axis only with a
constant spin speed of 6; Considering the reference rotation 6. together with the elastic

degrees of freedom, the kinetic energy of the finite element 7 is

T4 = %qfi"qufi (3.29)
where
.. . YT
g = {o;, e} (3.30)

and M* | the mass matrix of element 7] is
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B4 BY B (D% + W NY)

win [ v
Y| (D + N ) (DT 4 NYTTITRT) (D 4 TN
(3.31)
Simplifying, the mass matrix can be written as
- | I el gii ~
MY = / pi| ? dis (3.32)
v 7T eld T
where
L= / B4 BY dAY
A
ei'g = [ B9 (DY + WTINY) dAY
A%
g7 el = / (D7 + NTT ) BY da”
A
and

Y = / (D7 + NI G ) (DY + UT9NY) dAT
Ati

where [/ is the length and A¥ is the cross-sectional area of the ij% element. Substituting

the above simplified mass matrix in the kinetic energy expression and writing
éfjrgij"eif + eijfgij ¢ — _9¢iiT Giei

the kinetic energy can be written in expanded form -as
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.. -2 . L. et s s s
T = _;.I*Joz + %é"rm"é" — G & gl el (333)

where
9 = / T I;jdxij (3.34)
1]
m = / pmt d (3.35)
lis
and
¢ = [ wigiazt (3.36)
8]

The matrix g¥ is the gyroscopic matrix and m¥ is called the composite mass matrix
which can be written as

m7 =mg +m¥ + mg +mY (3.37)

where m;’ is the mass matrix due to elastic flexural deflections of the shaft finite element
in the Y and Z - directions, m¥ is the mass matrix due to rotary inertia, mg is the mass
matrix due to torsion and m¥ is the inertia coupling matrix which couples the flexural
and torsional motions and is a function of nodal coordinates.

Now, recalling Eq.(3.12) the kinetic energy of the shaft can be written as

T'=Y"TY= %q*‘Tqui (3.38)

=1

: T ,
where ¢* = [Of e"r] , the vector €* contains all the nodal coordinates of the shaft, and
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the matrix M* is given by

mi, mi

M= 11 12 (3.39)
mél m§2

where

mi, = Y IV (3.40)
=1

mi, = -mi=>» g7 (3.41)

j=1
m§2 = Zmij (3.42)

3.3.3 The Stain Energy Expression of the Shaft

The finite element 5 of the rotor shaft deforms by v*/ and w¥ in the Y and Z¥ directions.

Its axial deformation is neglected. The deformations in the Y% and Z% directions cause

axial strain in the X direction only. The strains in Y% and Z% directions are zeros.

Hence, the strain energy of the shaft finite element ij can be written in the form

155

ij . = 8] 2, 2 5
v 2/, EF{(aXtJ) axv) pax:
1 v
= 7 AtT xJ 2 7\2 3]
+3 j KGY A {(aX,, ) +(axv +B7)%} dX*
1 v
+5 G"J"( 5 xv )2 dX* (3.43)
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where v¥ and w¥ are flexural deformations in Y¥ and Z¥ directions, while ¢7 , 87 and

7" represent small rotations about the X7 | Y7 and Z7 axes, respectively, of the point

p7. The other parameters represent modulus of elasticity £, the shear modulus G¥,

the second moment of the cross-sectional area I/, the polar moment of inertia J¥ and

the shear correction factor x. Now, Eq.(3.43) can be written in matrix form as

UY = e K¢

(3-44)

The matrix K% = K7 + K7 + K] is the element composite stiffness matrix, where K3

represents the elastic stiffness, K7 accounts for the shear stiffness, and Kf represents

the torsional stiffness. These can be expressed as

T
ij NG, ij ANZ, _ arii
K= / C i | ® Ny axs ~ Ny dX
Y=
0 AN ] AN ij
axy +Ngs 5% + Ngp

Here, the different shape functions are defined by the following relationships:

(3.45)

(3.46)

(3.47)

(3.48)



&7 N oid Nes i
= ﬁ e’ = e (3.49)
o Ng,

¢7 = Ny e (3.50)

The strain energy of the shaft is now given by

= 1 ..
J— ] — — b 2
U‘—ZU’ =54 K'q (3.51)
j=t
where
) 00
K = _ (3.52)
0 K

where K is the assembled stiffness matrix of the body i.

3.3.4 The Disk

Let the number of disks present in the rotor-bearing system be n®. The disk is assumed
to be rigid and is solely characterized by its contribution to the system’s kinetic energy.
Following the same procedure of section 3.2.1, the kinetic energy for a disk can be written

as

TY = %I‘ﬁéi + %é"jrmdje‘ﬁ - 9zédjrgdjedj (3.53)
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The kinetic energy of all the disks can be written as

™= "T%= %q“’ M4 (3.54)

Jj=t

T
where ¢¢ = {H‘f , e ] , the vector e? contains the nodal coordinates of all the nodes at

which the disks are located on the shaft. The matrix M? is similar to the matrix M® of

Eq.(3.39).

3.3.5 The Bearings

Let the number of bearings present in the rotor-bearing system be n’. The bearings are
modelled as flexible with damping. The deflection of the rotor inside the ports of the
bearings results in generalized forces acting on the shaft. The virtual work expression of

all the forces acting on the shaft element 7 is
WY = Q4" geti (3.55)
The generalized force vector Q%" is given by

T

ij = —Cbigll — Kbt (3.56)
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where C* is the damping matrix and K% is the stiffness matrix of the j** bearing. The

virtual work expression for all the bearings can be written as

nd

SWP =" sW" = Q" 6¢ (3.57)
i=l1
where
Q" =3 (-CHied — Kiei) (3.58)

j=1
3.3.6 Equation of Motion of the Rotor-Bearing System

The equation of motion of the rotor-bearing system can be derived using Lagrange’s

equation of the unconstrained system ( with embedded constraints ) as

d (0L oL
dt (aq) T 8q (3.59)
where
L=T-U = Lagrangian function

T
q= [q{r, q‘ﬂ , q"r] = generalized coordinates

Q = vector of generalized forces
Here, the vector g represents only the independent nodal degrees of freedom, where other

constrained nodal displacements according to the boundary conditions were embedded.
The term T is the total kinetic energy of the rotor-bearing system which is the sum of
kinetic energies of the shaft and disks. The term U is the total strain energy of the

system with the shaft being the only contributor. Substituting L in the above equation,
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the equation of motion are obtained as

milgz = QI (3'60)

where m}, is as defined in Eq.(3.40), Q; is the external torque acting in the direction of
g: and

i

mié +0.g¢ + ket =Qy (3.61)

where

g' =mjp —mjy (3-62)

m‘, g* and k* are the system mass, gyroscopic and stiffness matrices, respectively, and
Q2 = FT o+ Q"TT is the vector of generalized forces. The vector F* contains all the

: i T
external forces acting on the shaft. It is noted that Q = {QT, @I} .
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Chapter 4

Finite Element Formulation of

Cracked Shaft

This chapter represents the derivation of a new tapered cracked shaft finite element.
When the rotor-bearing system is modelled using the finite element method, its configu-
ration can be defined by a properly generated mesh of finite shaft elements. The disk and
bearing properties are added at respective nodes. Combination of unequal shaft elements
are permitted by the model developed in this study. In this chapter, the cross-sectional
properties of the tapered shaft finite element will be expressed in non-dimensional forms.
The shape functions of the tapered shaft finite element will be derived. Finally, the closed

form expressions of the cracked tapered shaft finite element matrices will be presented.
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4.1 Tapered Cracked Shaft Element

In this formulation, linearly tapered shaft elements are considered. A linearly tapered
shaft element of circular cross-section has its radius varying linearly with length, so that
its area and moment of inertia are second and fourth order functions of axial position,
respectively. The element consists of two nodes and each node has five degrees of freedom;
two transverse displacements (v¥,w¥), two bending rotations (57, v7) and a torsional
rotation (¢ij ). A crack is present at an arbitrary location between the two nodes of
the ta;pered shaft finite element. The presence of crack introduces local Aexibility in the
element. The local flexibility of the element is modelled using a parameter called the

crack compliance.

4.1.1 Cross-Sectional Properties

A typical axial cross-section of a linearly tapered finite shaft element is shown in Figure
4-1. It is assumed that the cross-sectional properties in a given element are continuous
functions of the axial position, and the element cross-section has two planes of symmetry
X — Z4 and X —Y¥. In this formulation, the general case of a hollow tapered shaft
element will be considered. In this regard, the notations of reference [27, 28] will be

adopted in describing the cross-sectional geometrical parameters.
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Figure 4-1: The shaft finite element with crack
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Hollow Tapered Shaft Element N

The cross-section at each end of the element is associated with an inner radius r and an
outer radius R. Defining a non-dimensional position coordinate £7 equal to the ratio f—,';,

the inner and outer radii may be expressed as

T = 1 (1 - fij) + rj.fij (4’13')

R = Ri(1-¢7)+R;¢ (4.1b)

where the subscripts k and j refer to the left end (z* = 0) and right end (z% = [¥) of
the element, respectively.
Representing the ratios of inner and outer radii on each end as p and ¢, which are

equal to 1’—_”; and %, respectively, one can write equations (4.1a) and (4.1b) in the form

ro= (L4 (o= 1)€Y (4.22)

R = R(1+(a-1)¢) (4.2b)

Using equations (4.2a) and (4.2b) in the cross-sectional area expression results in the

following second order polynomial expressions:

AT = (R2—r%) =4 [1 o€ ¢ agg"f’] (4.3)
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where the following expressions are introduced:

A= (R2=1)

o < 2RE(@— 1) —R(p—1)]
b (R —r2)

L _[Re-1-r2(-1
*= ®E—D)

(4.4)

(4.5)

(4.6)

Similarly for cross-sectional moments of inertia, the use of equations (4.2a) and (4.2b)

results in a fourth order polynomial expression

_ TR -

Vil
4

where the coefficients are given by

_m(Re—rd)

I 1

_4Rt—1) = rt(p-1)]

=1 [1+51§ij+52€ij2 +53§ij3 +54fij4]

: (B =)

5, S[RE(@—17 —ri(p—1)"]
’ (R —})

5. = LB (@—1)° —ri(p—1)°]
? (B —rf)

5. - [Bi(e—1)"—r{(p—1)f]
=

(Bt —74)

(4.7)

(4.8)
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(4.10)

(4.11)

(4.12)



Solid Tapered Shaft Element

If the shaft is solid the inner radius r does not exist. Hence the cross-sectional properties

are evaluated by ignoring r in the Eqs.(4.1-4.12).

4.1.2 Derivation of Shape Functions

As discussed earlier, the presence of crack introduces additional local flexibility in the
cracked finite element. There are two approaches to model the stiffness of the cracked
shaft ;ﬁnite element. In the first approach, the stiffness matrix of the cracked shaft finite
element is computed by inverting the total flexibility matrix of the finite element. The
total flexibility matrix is the sum of the flexibility of uncracked shaft finite element and
the additional flexibility due to crack. When the additional flexibility of the crack is
small, i.e., when the crack is of small size, the inversion of the flexibility matrix often
results in numerical difficulties. Avoiding the inversion of matrices in a numerical scheme
is desirable. Hence, the second approach which incorporates the additional flexibility of
the crack in the shape functions of the cracked shaft with the help of the crack compli-
ance parameter is a better way of modeling. This approach is a consistent approach of
computing the stiffness matrix of the cracked shaft finite element directly using the shape
functions which include the crack compliance parameter. There is no need to invert any
matrix in this approach. The detailed procedure of deriving the shape functions of the
cracked tapered shaft finite element is presented below.

Let the finite element of length I/ has a crack at a distance [ from its left end, where
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0 <If < I9. It is assumed that the crack introduces a discontinuity at (¥in slope due to
bending. Consequently, two different displacement fields are assumed; one on each side
of the crack. Therefore, referring to Figure 4-1, the deflection of segment 1 and segment
2 of the finite element in the Y - direction will be approximated by the following two

different third order polynomial shape functions

W = ai+apz¥ +agz? + agz” (4.132)
vy = as+aex? + a7 + agz? (4.13b)

where vij represents the displacement field over segment 1, and v.‘-;j represents the dis-
placement field over segment 2. The total deformation vij is the sum of deformations

due to bending v} and shear v;’. Hence one can write

vy = vﬂ + v;" (4.14)

Differentiating Eq.(4.14) with respect to 2/, we get the following relationship:

df _ d, | dvg
dzi =~ dz¥ = dz¥
= B7 +67 (4.15)
where
dv’? ”
d_z_lg =g (4.16)



is the slope of the deflection curve and

ij
d‘”1,
dzt

=67 (4.17)

is the shear strain. It is assumed that the transverse shear strain 6% | which is consistent

with the cubic polynomial of v{ is independent of z%. Referring to Figure 4-2, taking

equilibrium of an infinitesimal shaft segment yields

oMY

ozt

~VF =0 (4.18)

where MY is the bending moment and Vf"j is the shear force. The bending moment and

the curvature relationship can be written as

SRR /.
M;J = —E’JP]Z:B—{J? (4.19)

The shear force is related to the transverse shear strain 67 by

VF = kG A6 (4.20)

Using Eq.(4.15) along with Eq. (4.13a), the slope of the deflection curve 7 can be written

as

BY = ap + 24377 + 3agz?” —~ 67 (4.21)
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Figure 4-2: Free body diagram of an infinitesimal shaft finite element
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Now, differentiating Eq.(4.21) with respect to z%7, we can write
—L = 2a; + 6ayz”
Substituting Eq.(4.22) in Eq.(4.19), we get

M = —ET% (243 + 6aez")

Diﬁ'eréntiating Eq.(4.23), with respect to z7, we can write

(4.22)

(4.23)

(4.24)

Substituting Eq.(4.24) and Eq.(4.20) in Eq.(4.18) and simplifying, we get a relationship

for the constant shear strain

9;_‘7‘ = —6604
where

__ B

9= kGY AY

(4.25)

(4.26)

Substituting Eq.(4.25) in Eq.(4.21), the slope of the deflection curve can be written as

BY = ap + 20377 + (3:1:""2 + Gg) ay

(4.27)

Following the procedure described above, the slope of deflection curve for segment 2 of
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the finite element can be written similarly as
i _ ij ii® | 65
s = ag + 2a,z" + (3:1: + Gg) as (4.28)

For a shaft finite element which is deformed in the Y%/ - direction due to bending,
four boundary conditions can be specified. They are displacements (v}’ (0), »¥ (1)) and
slopes of deflection curves (87 (0), 87 (I¥)) at the two ends of the finite element. As
shown in Figure 4-3, any shaft finite element can deform in four different ways. Hence,

four sets of boundary conditions can be specified. They are as follows:

Referring to Figure 4-3a

Boundary Conditions ( set I )

W0 =1 (4.292)

vl (0) = 0 (4.29b)

vy (%) = 0 (4.29¢)

W () = 0 (4.29d)
Referring to Figure 4-3b

Boundary Conditions ( set IT )
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Figure 4-3: Deformation of the shaft finite element
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WO = 0 (4.30a)
W (0) = 0 (4.30b)
v (%) =1 (4.30c)
i () = 0 (4.30d)
Referring to Figure 4-3c
Boundary Conditions ( set III )
vi(0) = 0 (4.31a)
W (0) = 1 (4.31b)
v (I7) = 0 (4.31c)
W (¥) = 0 (4.31d)
Referring to Figure 4-3d
Boundary Conditions ( set IV )
w7 (0) = 0 (4.32a)
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W7 0 = 0 (4.32b)

v (F) = 0 (4.32¢)
Wi (9) = 1 (4.32d)

At the location of the crack in the finite element it is assumed that (a) the deflection
is continuous, (b) there is discontinuity in slope, (c) the bending moment is continuous,
and (d) the shear force is continuous. Taking into account that the effect of the crack
is expressed in terms of crack compliance coefficients which are directly related to the
change in stiffness due to the presence of crack. Several investigators [6, 7, 18, 21]
have adopted the idea of accounting for the change in stiffness due to the presence of
crack by assuming discontinuity in the slope at the crack location. However, they have
preserved the continuity of moments and shear forces at the crack location since there
are no actual impulses taking place due to the presence of crack. Impulsive moments
and forces are known to appear due to sudden disturbances [29, 30]. This approach may
seem incongruous with mathematical logic where discontinuity in slope would introduce
Dirac delta function in the derivatives of the slope and correspondingly in the moments
and shear forces.

In the following derivations, the same assumptions introduced by Papadapoulos and

Dimarogonas [6] and adopted by other investigators (7, 18, 21] will be invoked.

Continuity Conditions
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o (&) = o (&) (4.332)

W () = of (1) +cpd (1) (4.33b)
ol (1) = Wi () (4.33¢)
o (1F) = oF" (1Y) (4.33d)

where (") denotes differentiation with respect to z%, ¢, is the crack compliance due to
bending in the Y - direction. Using a set of boundary conditions along with the conti-
nuity conditions, the eight unknowns in equations (4.13a) and (4.13b) can be determined.

Now Substituting Eqgs.(4.13, 4.27—4.28) in the first set of boundary conditions repre-

sented by Egs.(4.29a-4.29b), we can write

a = 1 (4.342)

4 +6§ag = 0 (4.34b)

as + agl? + a7 +agl’ = 0 (4.34c)
as + 2a7l + (31*’1'2 + 6g) ag = 0 (4.34d)

Substituting Eqgs.(4.13, 4.27-4.28) in the crack continuity conditions, represented by

Eq.(4.33), and simplifying we get

ay = ag (4.35a)



a3 = ar (4-35b)
as = ay+2asc, +6aqlicy (4.35c)
as = 1—2a3lic, —6a,l¥c, (4.35d)

Solving Eqs.(4.34) and Egs.(4.35) simultaneously, we find the eight unknowns of Eqs.(4.13).

Therefore the shape functions for the first set of boundary conditions can be written as

v = NJ = I +1 35 [1 — 367 4267 + &Y (1- 5‘1')] (4.36a)
v = Nj, = 1 +1<1>ij [1 - 367+ 27 + 2 (1- Eij)] (4.36b)
gi = N;*]u — ngﬁ [_Eij + Et'i’] (4.36c)
7 = Nj, = 1+ gv‘) I [_fij + gjz] (4.36d)
where

The parameter % is known as the shear deformation parameter ( the ratio between
bending stiffness and shear stiffness ), E¥ is the modulus of elasticity, [* is the second
moment of the cross-sectional area, A% is the cross-sectional area of the shaft finite
element, G¥ is the shear modulus, I is the element length, and « is the shear correction

factor depending on the shape of the cross-section. The shear correction factor « for a
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solid circular cross-section is given by

6(1+v)
=7 4.37
r= (4.37)
and for hollow circular cross-section
22
6(1+v)(1+m?) (4.38)

T Trer) l+m?) + (204 120)m2

where v is the Poisson’s ratio and m is the ratio of inner radius to the outer radius.
Using the second set of boundary conditions represented by Egs.(4.30) along with
the crack continuity conditions represented by Eqs.(4.33) and following the procedure

described above, the shape functions can be derived as

of = Ni=r: +1 = [35"1" _ogi 4 <I>‘f§"f] (4.392)
o = N =-: +1 = [35*’1'2 — 269 4 @ifg"f] (4.39b)
8 = Ni, = e [ €] (4:3%)
7 = ML= graw -] (4394)

Using the third set of boundary conditions represented by Egs.(4.31) along with the crack

continuity conditions represented by Eqs.(4.33) and following the procedure described
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earlier, the shape functions can be derived as

; . 1 . 3 1 2 2 . a3
L S ) J— — | g7 [F9° 59" 4 gy
o Mo = 1735 [lé‘ {m 2(cy+l‘l)} 3 &
s [t e
7 — — 4.40
* { 2 2(c,+ 1Y) (4.402)

o i o1 al? i ci:’_{ s , 1 }P‘J”f‘}
2T TR 2 ) T ) 2 T i, v )

ij ij 52 g2
Gei® | gii ) _ Gt & l) rigi — & Ul g 40m
T e {2(c,,+z=’f) * ((cy+lff) 2) P A vy | 4

. 1 g
9= Nj =1 [1 21‘75"{ 5 4 - }+3§”2

1+ & 29 2(ey +19)
L@ {1 _ (—PJ_S—:J)}] (4.40c)
P o= N, = 1+1<pij [(cyl:zif) -lﬁgj{li (ey *l'l")} -3
343
( :4.11‘1) {1- }] (4.40d)

Using the fourth set of boundary conditions represented by Eqs.(4.32) along with the
crack continuity conditions represented by Egs.(4.33) and following the procedure de-

scribed above, the shape functions can be derived as

ij ii 1 1 3 52 o042 s ;a3
¥ = NY = — = o T 1Y
] i .o
59 124 __ 1t (4.412)
2(cy +1%) 2

i : 1 -yl el { 1 3 } 572 pif?
o= J £t — — —\1

2 Now=1739 [2(c,,+w)+(cy+zfz)s 2 + @) 2@ 3

; ij2 pij2
13 'J' 15 —cvl d Cy —_ l) lij ij + —ﬁ—? 4.41b
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.. . o . .. gt
B = Ni = [21*15*1{ L3 }+35‘12+<1>v—l‘?—] (4.41¢)

1+ & 2(cy + 1) Tz (cy +1%)
g 1 ¢ i i 1 3 i
17 - — 14 - !
2 Ng,, 1+ & [(cy + i) +2ng {2 (cy +19) 207 } e
&9 _ _ 4.41d
" {(cy+l*1) o) N

The shape functions N7, and N;;’;i, i = 1.4, are valid for the left side, and the shape
functions Ng,- and N;’z .» ¢ = 1..4, are valid for the right side of the cracked finite element.

The shape functions to appraximate the deformation w¥ of the shaft finite element
in the Z% - direction can also be assumed as third order polynomials, similar to those of
Egs.(4.13). The boundary conditions and the crack continuity conditions can be specified
by replacing vy’ by wi" , v by wy, 87 by 7Y, B3 by 73 and cy by c;, in the relevant
equations, where c, is the crack compliance due to bending in the Z¥ - direction. The
eight unknowns of the assumed third order polynomial shape functions can be obtained
and shape functions established. Using the obtained shape functions, the translational
deformation of an arbitrary point on the left side of the cracked finite element can be

represented as

G(e9 ¢ N3 0 0 NiJ 0 Ni 0 0 Ni 0 .
'1)1(6‘ ) — 11 n2 v13 vig {e" (t)}
wy (£9,¢) 0 NI -NJ, 0 0 0 NY —-Ni 0 0

Nii Eij 3 L N
= i ( ) {e" (t)} = [N‘vi ({‘J)] {e" (t)} (4.42)
NL(E) |
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The rotation of a typical cross-section of the element is represented by

1;.1' (E‘J , t) 0 — N;J' N;j 0 0 0 N JVEJJB N;J;‘ 0 0o
- = o | feen
wen | (Moo 0 mpom o o wg o
Ngs (€9) | . .. T
= 77 {0} = [V (69)] {7 0} (4.43)
Ng, (€7)

The torsional displacement of a typical cross-section of the element is then approximated

by

{o7 (.1)} = [0 000N/ 0000 z\ﬁ;;{z]{e""(t)}
EAGIRCIO): (4.44)

Similar relationships can be written for the deflection of segment 2 of the cracked beam

element as
o | [ o o mom o o mo]
wy (€9,1) 0 N3 -N3 0 0 0 NI —-Ni 0 0
= '.n.n( _,) {e7(®} = [N] (€9)] {7 )} (4.45)
N3, (€7)
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5 (£9,) 0 —N,;J;1 N;; 0 0 0 —N,;; N;;; 0 0

= e
WE) ) [ NL o o ML oNg o o N o
N-i:i ij o -
O iy - RAGIRCIO) (4.46)
NE, (€)
{¢7 (€7,6)} = [0 000N 0000 N;;]{eij(t)}
= M) o) (447

It is noteworthy to mention that the shape functions of Eqs.(4.36, 4.39-4.41) derived
in this investigation are presented here for the first time. These shape functions form the

basis for deriving the explicit forms of the tapered cracked shaft elemental matrices.

4.2 Element Matrices

4.2.1 Inertia Matrices

The kinetic energy expression of a rotating tapered shaft element of length [’/ which is

derived in chapter 3 may be rewritten as
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T4 = -Ive + ;e” mied — §,6" et (4.48)

The matrix m¥ is the composite mass matrix given by

i

m? =mJ +mZ +mJ — 2m¥ (4.49)

This is known as the consistent mass matrix because it is formulated from the same shape
functions N7, N;;j and N that are used to formulate the stiffness matrix. The matrix
mg accounts for the coupling between torsional and transverse vibrations and is time

dependent. The components of the mass matrix are given by

l"

/ N 1 A N +/ N i A5 N s (4.50)
l"
lij 3]
mi = / NI NG do'i + | NT I3 N3 do (4.51)
l"
[ ]
/ NFTIE NI da + / NI 4 N dz (4.52)

1
where m{’ is the translational mass matrix, m¥ is the rotary inertia mass matrix, mj{
is the torsional mass matrix, I} is the diametral mass moment of inertia and I3 is the
polar mass moment of inertia. The explicit expressions for the element translational

mass matrix my’, the rotary inertia mass matrix m¥” and the elemental torsional mass
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matrix mg are obtained by carrying out the integration of Eqs.(4.50), (4.51) and (4.52),
respectively. The nonzero entries of m{’, m¥ and m;j are presented in Tables 4.1, 4.2 and
4.3, respectively.

The gyroscopic matrix g is given by
99 =57 -7 (4.53)
where, for constant rotating speed, §*7 can be calculated by
o £

9= [ NELTE N+ [ N N (450
0

[id
The explicit expressions for the elemental gyroscopic matrix ¢ are obtained by inte-
grating Eq.(4.54), and then substituting into Eq.(4.53). The nonzero entries of g7 are

presented in Table 4.4.

4.2.2 Stiffness Matrices

The strain energy expression of a rotating tapered shaft element of length /¥, in matrix

form is given by

Uy =% 4" i gt " (4.55)

The matrix K% is the composite stiffness matrix given by
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K9 =KJ7+KI+K7 (4.56)

where

(il 1ii

KV = [ BB 0t + [ BT Bo1BY (457)
] l;j
I 1)

1 Pis T yij 455 DiF g i HijT ij Al DiF 7.

K9 = [ BTGBy as" + [ B ¥ 4985 0o (438)
0 lij
iy s

K = / B GITIBY ot + / BY GHI9BY da (4.59)
1] ['ii

As defined earlier, K7 is the elastic stiffness matrix, K¥ is the shear stiffness matrix and

K;j is the torsional stiffness matrix. where

17 dN;Jx 4.60
B¢1 = —dziJ ( < )
dN3
i __ By
Bi=—2 (4.61)
.. dN¥
Bj=—2 N} (4.62)
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Equations (4.60-4.62) are applicable to the left side of the cracked beam element. Similar
expressions can be written for the right side of the cracked beam element.

Carrying out the integration of Eq.(4.57), the elastic stiffness matrix K¥ is obtained
with nonzero entries as presented in Table 4.5. The explicit expression for the element
shear stiffness matrix K/ is obtained by carrying out the integration of Eq.(4.58). the
shear stiffness matrix K7 is obtained with nonzero entries as presented in Table 4.6.
Similarly, the torsional stiffness matrix K:,j is established by evaluating the integral of
Eq.(4.59). The nonzero entries of torsional stiffness matrix K:,j are presented in Table
4.7.

The elemental matrices presented below are derived for a crack located at the midpoint
of the finite element, i.e. {¥ = %’- This should not impose any limitations on the use
of these matrices, since the developed formulation, allows for a variable length finite
element. In addition, the dynamic analyst can always select a finite element mesh that
matches the problem at hand. It is noted that the superscript ij denoting the ij** finite

element is dropped in the following expressions for the sake of brevity.
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TABLE: 4.1a
Any nonzero entry of the translational mass matrix for the left side of the rotating

cracked shaft element can be expressed in the following form:

. _wAL (R B B R A P R P A
iix“(1+<p)2[2+8+24+64+160+384+896+2048+4608

where %, j = 1, ....,10 and the constants P, i =0, 1, ...,8 are defined as

P = G

P = Ci+a;:Gy

P, = Cy+a;C +axCy
P; = C3+401C+axCy
Py = Ci+01C3 4+ anCs
Ps = Cs+a1Ci+ asCs
Ps = Cs+a1Cs5+asCy
P; = a,C5+ axCs

Pg = 0206

The constants C;, i =0, 1, ...,6 for different entries M. are as follows:

i1
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For M3, Mz,

Co = (1+®)?,

Cr = —26(1+®),
Co =2 —6(1+9),
Cs =4+ 109,
Cs=9—49,

Cs = —12,

Co=1.

FOI' N[]t-4l’ - 2;1

Ci=1(1+3)(1+3),

Co=—P(1+8) (§+5%) - @l (1+5),

= (1 +®) + &l (i+ 2(1;‘:0) ~3I(1+2),

Co=—l+38 (§+2:22) +2(1+ %),

Cs = —31— 2 (§ + t%y),

Ce =2l
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Co =0,
=®(1+9),
=3(1 + &) - ¥2,

Cz=-2-—89,

Cy=49 -9,

Cs =12

Co=—4

For Mjy , M3

Co =0,

Ci=-l1(1+9)%,

Co =1 (1+9) (2(1;3) - %) + 8

2
Ca=1(1+®) -2 (12 _3) a2
3 2Acy+) A 2

)

Ca = —281 — 302 (22, —

3
2
Cs = —31+ 28 (58 - 3,

Ce =
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Cr=0(1+2)%,

Co=—28(1+%) (§+ L),

HertD
. 14{ 3 1+%
Co=1' (3 +728) +22 (1+9),
— _93(3 , 1+
2l ( 2(%4))
Cs =12

Co=1(1+2),

Cs =-<p12( +2er)) +30(1+ %),

Co=01—-38 (3 + %) -2 (1+ %),

Cs = 31 + 212 (g+ﬁ)

Cs = —2l.
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For Mjg , Mg,

Co =0,

C: =0,

Co=-2L(1+%),

Cs=0(1+3) (2(c,,+t) %) -5 (2' + %%))
Co=0-18 ( 2(230) (2(131) - %) ’

Cs=—13( + 1+<I>)+13(1+<§ _531_),

ey +) Acy+0)
Co=12.
For M’gsl, M;‘h
Co =0,
C1 =0,
C,y = 92,
C3; =69,
Cs=9-49
Cs =—12
Ce =4
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For Mégl, M';;l

Co =0,
Cl = 0,
C2 = —%2'1

Cs = o1 (5(—% -3)-

et~ )
2L /3

Cs = 31— 212 i—g),

2Acy+)
Ce = —2l.
For Mg, , Mg,
CO - 01
Cl = 01
272
Cr =22,
=B (12 __ 3
Gy = —008 (22 2),
Co= —0F +14 (L8 — 3).
= 93 3
Cs =2 (2(% & 5)
Cs = 2.
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TABLE: 4.1b
Any nonzero entry of the translation mass matrix for the right side of the rotating

cracked shaft element can be expressed in the form

_ [lA1L [& 3P1 + 7P2 + 15P3 o 31P4
T (1+9) 8 24 64 ' 160
L83P | 127R,  255P; 511Ps}

384~ 896 = 2048 = 4608

where 7,7 = 1, ....,10 and the constants F;, ¢ = 0, 1, ...., 8 are as defined for the left side
of the cracked shaft element in Table 3.1a. The constants C;, 1 =0, 1, ....,6 for different

entries an are as follows:

For M},,, M3,, the constants C; are equal to those of M},

ForM{dle:Mé;g

_ g l1+9)?
CO—'%%%__‘_T)L!

_— 1B(1+P)
cl_z(1+<1>){q>(l— )+cj+, — )

Co=-L(1+2) (— * 2(¢v+l)) 2L {«p ( cy+t) + cvl‘H - 3?(2(,'14%2,

_ I(1+®)
Co=1(1+)+ 80 (§+225) ~ 3 {8 (3~ 2) + 5k } ~ 242,

Co=~01+32 (5 +225) +u{e (1 - &) + 4},

Cs = -3 - 22 (§ + £%5),

Ce =2l.
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For Mis,, M3,, the constants C; are equal to those of Mg, .

For Mj,,, —M%;,
Go=t ) {® (- ) + )+ 0,
1= 0+ (st ) -1 {0 (1) + ) +
Co=1(1+8) -0 (et ~ 3) -3 {@ (2, - ) + 2} - 5%
Cy = —Bl — 312 (2(1;3) - %) +2 {<I> = - _) + %H}
Cs = —31+ 202 (s %)
Ce =2l
For M3,,, M,

52212(14»@)2

)

G= %%i {q) (% - °v+l) + Cvl-l-l}
G=F {q) (" - fvﬁ) tan }2 e (3 + 2(220)’
C= 3%2"—'(_?’_)@ 2 {Q (— - °v+l) Cv‘H} ( + 2(2:1))
Cumt (3 sin) 426 o (4= 25) )
Cs =12
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For M3,,, —Mjs,

Co = 0,
_ ol(1+8)8
G = 2(cy+l) ?

Co=12 {0 (1-2)+ 4} +5un,

Cs = -2 (21 + 2(::0) +3l {‘D (% cy+t) cy+l} - cv(i(::l‘)b)’

c4=<1>z—312( +2—(155{,—,) —2I{<I>(%— )+c,+z
Cs =3l +20° (%'*‘2(231))’
Cs = —2L.

For Mzg,, Mj;,

2
CO = —M—,

4(cy+)
5l0+e) [ 5 —1 _ala+®) [ 5 ) L }
= T4 +l 2 c,,+t 2(cy+0) Y ol [

5’——;—‘3(“’@)2 + 2 {‘I’ ( c,,+z) cv+l} {q) ey+l ‘) + éf‘

2(ey +)

Cs=1{® (% -3n)+ c,+z} (z(c.w 2!)
(4 +8) {2 (1) + o)

Cy=12 {<I> (% - ,) + ,_.,—5,7} g (% + 2(220) (2(1;:‘) - %)
+2{o (2 -1)

Cs = -3 ( + -‘,(‘CVL,,)

Cs =1

For Mgs,, M3,, the constants C; are equal to those of Mg, .
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Co=0,
Cr= e
UCEDRE oS
Co =i (st — &) + 3 {® (3 - 1) + s} + e
C4=<I>l+3l2(-2?1—c;%5 -27) 21{@(_&___)4__&7
Cs =31 -2 (325 - 3),
Cs=—
For Mg, ,

2
Co =it
G = - {0 (w—-)%
G {o(3m-1) +n} - 5 (5 - 1)
G =20 {0 (35— 1) + i} (it — %) - 55
Co=tt(gity - 3) +2r{o (- ) + ),

+ 3
| Cs =28 (2(c,,+z) 51’):

Ce =2




TABLE: 4.2a
Any nonzero entry of the rotational mass matrix for the left side of the rotating

cracked shaft element can be expressed in the form

pl; [Po b B B P B K P; Ps]

w1 @) |2 T8 24 64 160 * 384 1896 T 2043 T 4608

where ¢, j =1, ....,10 and the constants P;, i =0, 1, ....,8 are defined as

B = G

P, = Ci+6Cy

P, = C+6,C)+62C0

Ps = C3+6C,+6:C1 +8C

Py = Cy+6,C;5+ 8,03 + 85C) + 64C
P; = 6C4+8:C3 + 63C5 + 64C,

Ps = 63C4+83C3 + 6,C

P, = 63C4+68,C3

B = 6,C4

The constants C;, ¢ =0, 1, ....,4 for different entries M7 are as follows:

1
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FO!.‘ Mrll’ - 161’ M;z

LI

T
M;?,_ ? M661 b M;'h

Co =0,
C1 =0,
Cim3,
Cs =—-12,
Cy=%.

.
For M{,,, —Mz,, Mz, —Mg,

Co =0,

Cr=—-6(1+9),

Cy = ( (W)) +6(1+®),

Cy=—18 61 (3 + 8),

(cy+1)

Cs=3.

r r T
For M1917 Mgg T i¥gg, M781

1

Cl=0,

Co= -6l (&g - 1),

Cy = —18+61 ({5 - 1),

04 = 18.
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For M, , M,

8

Co=1(1+®)?,

= —22(1+8) (3 + &8),

Co=6l(1+ @)+ (7 + (:;“;))2,
Cs = —612 (% + 2—(1-5‘;—,))

Ci=

For M3g

Co=0,

Ci=21+9) (&% -1),

02=3z(1+<1>)—z3(

C; = —18l,

C4=

1+6
(cy+D)

-1).

1+8
+ (cy+l))

For Mgg , Mg,

1

Co=0,
C =0,

Cr = (L
Ca =612 (2%
Cy=09l.

_;)2
l b}

-1)
L]

87




TABLE: 4.2b

Any nonzero entry of the rotational mass matrix for the right side of the rotating

cracked shaft element can be expressed in the form

273 T3 "1 T 1o
6355 . 127P; . 255P; N 5115
" 384 896 2048 ' 4608

_ [LIi [Po 3P1 + 7P2 + ].5P3 31P4
2 (1+®)?

where 7,5 = 1, ....,10 and the constants P;, i = 0,1, ....,8 are as defined for the left side
of the cracked shaft element. The constants C;, ¢ = 0,1, ....,4 for different entries M,

are as follows:

For M{lz) —M {62! M{Qg! —M£727 A/[gﬁz’ '::72

the constants C; are equal to those of M7;,.

For Mj,,, —MZ;,, M;,,, —Mg,
Co = 0,
6l(1+®
C, =,
2(1+d
Cy=18+ l—é_‘_—ll,

— _aa _ SI(1+®)
Cs =36~ 0

Cys=18.
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For Mj,,, M3g,, —Mg,, Mz,

Co =0,
— 1+®)
Cl = _i‘fyci_{._l’
_ 1+ _ 3
Cs = —18 + 6l ((w) - 7),
04 = 18.
For Mg;,, My,
_ Ba+s)?
(ey+)*?
—23(1+¢) ( PRSEE | )
cytl (cytl) )?
62(1+¢9) |, 13
Co=5r + ( + (cw+l))
3
Cs = -6 (3 + 7%),
Cys=9l
For M3g,, Mg,
_ Pa+s)
Co =75
C, = Bi+®) (& _ g) g£(1 (1+-t> ¥ )
1 gt \gq+ cy+l
_ 3R0+s l(1+®)
C2_‘é,7—l—l—l3 (%-l-}:'i’?) (%—7) +%%v—+-,—,
C; =18,
Cy=9l
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Fe
or Mgg,, Mgg,

Co = 2l1+4)?

GO
C, = 2, 2(1+8) (148
cy+l gl %) s

Cr=1 (18 -3 F 4 Ssllits)
e 7) 4 Seul(1+8)
g !

Cy =602 (125 - 3),

C4 = gl.
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TABLE: 4.3a
Any nonzero entry of the torsional mass matrix for the left side of the rotating cracked

shaft element can be expressed in the form

h P P P P P + P;
2 8 24 64 160 384 896

Mg, =2pl; [——-+—+—+—+ +

where 7,j = 1,...., 10 and the constants P, i = 0, 1, ....,6 are defined as

B = G

P = Ci1+60C

P, = Cy+6,C,+8:C)
P = §,;Co+ 62C) + 63Cy
Py = 0,C5+ 63C1 +64Cy
Py = 63C; +6,C

Ps = 6402

The constants C;, i = 0, 1,2 for different entries MY, are as follows:

i1
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For M%,

Co=1,
Cy =2,
Co=1,

For Mg’ 1045 Mf;,_s1

CO = 0,
Cr =1,
Co=-1,

Co =0,
Cy =0,
Cz=1,
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TABLE: 4.3b

Any nonzero entry of the torsional mass matrix for the right side of the rotating

cracked shaft element can be expressed in the form

¢ _ P 3P 7P, 15P; 31P; 63PF;s 127F;
Mgz"z‘d’[z T3t T 52 T 60 T asa T aoe

where 7,7 = 1, ...., 10 and the constants P; and C; are as defined for the left side of the

cracked shaft element in Table 3.3b for all the entries M.
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TABLE: 4.4a
The nonzero entries of the gyroscopic matrix for the left and right side of the rotating

cracked shaft element can be written as

For —Gya,, Gir,, —Gir,

the constants P; and C; are equal to those of M7, .

FOl' —0131 , G"471

the constants P; and C; are equal to those of M[,"

For —'Cr'],gl N G581

the constants P; and C; are equal to those of M7 .

For —G431

the constants F; and C; are equal to those of Mg .




TABLE: 4.5a
Any nonzero entry of the elastic stiffness matrix for the left side of the rotating cracked

shaft element can be expressed in the form

e

K = ———+
1+ 8)

o+ —+

EL (R A P PR R B _ A
2 8 24 64 160 384 896

where ¢,j =1, ....,10 and the constants P;, i =0, 1, ....,6 are defined as

B = G
P1 = Cl + 5100
P, = Co+6,C) +6:C

Py = 6,;Cy+ 8:C) +63Co

0
il

62Co + 83C; + 64Co

P5 = 6302‘!‘6401

fay
!

5204

The constants C;, i,j =0, 1, 2 for different entries K, are as follows:

- 95



For K%, , — K% >
1159 K161 3 KZZ[ 3 -Kze'(], H 6e61 ’ '?71

_ 36
CQ—T

— _4x36
Cl—-x[ ’
C'2= 4x36
For Kf‘h’ - 551’ 5717 - 25'1
C =18+ 61(1+-¥)

cy+l ?

C,=-6 (12+%?l s

Co=T2.

For K¢,
19y K281’ - 691’ gl

-+l
C 21(1'{—@)
Co=T2.
For K3,

—l3( +c,+z) ’

G =-122(1+9) (3 +18),

C, = 361.
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e (. d
For K%, , K3,

—_13(3 148\ (144 _ 3
Co= l(l+c,+z) cy+ z)r

Cy = =36,

Ca = 36l.

For Kg;, , Kgs,
31+ _ 3\2
Co=1 (‘c,—+i - 7) ,

Cy = 1212 (-35 - %),

Ca = 36l.

TABLE: 4.5b
Any nonzero entry of the elastic stiffness matrix for the right side of the rotating

cracked shaft element can be expressed in the form

2T 1+ o)

EL; R + 3P, + 7P, + 15P; + 31F; + 63Ps + 127F;5
2 8 24 64 160 384 896

where the constants P; and C; are as defined for the left side of the cracked shaft element

for all the entries K.
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TABLE: 4.6a
Any nonzero entry of the shear stiffness matrix for the left side of the rotating cracked

shaft element can be expressed in the form

s KGA1 _Ifg i 1_32 _’é P4 P5 Ps]
S ey [2 T3 2 6t 160 " 384 596

where 7,7 =1, ...., 10 and the constants P;, i =0,1, ....,6 are defined as

B = G

P = Ci+aCy

P, = Cy+0,C1 +a2Cy
Py = 0,C+ apCy +Cs
Py = aC3+aCo+Cy
P = a,Ci+ axCs

Ps = 0204
The constants C;, ¢,j =0, 1, ...4, for different entries K2, are as follows:

N
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S S 3 54 S S
For Klll’ _K161’ K221) - 271’ 6611 771

Co= 1,
C, =0,
C2 =0,
C3 =0,
Ce=0

S S 5% S S$* ]
FOI' K141, Klgl’ —Kzsl, K37‘, —K461’ —ngl

Co=%,
C,=0
Co=0
Cs; =0,
Cy =0,

For Kg,, K5, —Kg,

Co=¥,
C.=0,
Cy =0,
C; =0,
Cy=0
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TABLE: 4.6b
Any nonzero entry of the shear stiffness matrix for the right side of the rotating

cracked shaft element can be expressed in the form

S

K =
2 (1+9)?

EI; i) + 3P, + P, + 15P; + 315 + 63F; + 127 F5
2 8 24 64 160 384 896

where the constants P; and C; are as defined for the left side of the cracked shaft element

for all the entries K;,.
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TABLE: 4.7

The nonzero entries of the torsional stiffness matrix for the left and right side of the

rotating cracked shaft element are

¢ _ _26L1_ 5 & 4 &
Ko =Ko =" 3+ 4+ 2+ 5+ 5]

= = K® — Ko
‘Kgml = -Kﬁ).sl = Km,m, = Kss;

6 b e
~KS10, = —Kfos, = K10, = K&,

Remark 1 For the entries with (*) sign, the crack compliance c, appearing in the con-

stants C; should be replaced by c,.
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Chapter 5

Modal Reduction

In this chapter, the strategy for solving the assembled equations of motion of the rotor-
bearing system derived in chapter 3 is outlined. First the homogeneous form of the
equations of motion is used to define the eigenvalue problem. The natural frequencies of
the system are obtained from the eigenvalues. Different schemes to solve the eigenvalue
problem are discussed. Second, the equations of motion of the rotor-bearing system have
to be arranged in the state space form and integrated forward in time to study the time
response of the system. The equations of motion of the system when written in nodal
coordinates are of very high order spanning a wide-spread frequency spectrum. It is not
only time consuming to integrate such a large number of equations but also numerically
inefficient. Furthermore, the presence of high frequencies could result in a numerically
stiff problem. Hence, a reduction of the order of the equations of motion is desirable

while retaining the important dynamic characteristics of the actual system. It is well
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known that the dynamics of a rotor-bearing system is dominated by the lower part of
its frequency spectrum. Therefore, the lower set of frequencies can be retained in the
reduced form of the equations of motion, thus resulting in a numerically more efficient

system without sacrificing the accuracy of the obtained solution.

5.1 Eigenvalue Problem

The equations of motion of the rotor-bearing system derived in chapter 4 is
M +0,g°¢ + Kiel = Qs (5.1)

where mj,, ¢*, k* are the assembled mass, gyroscopic and stiffness matrices respectively
and €' is the assembled vector of nodal coordinates. These constituent matrices are highly
banded in nature. The matrices mi, and k* are symmetric, whereas g¢* is skew symmetric.
The vector Q; contains all the forces, external as well as generalized, acting on the shaft.
Neglecting the external forces and rearranging the generalized forces acting on the shaft
due to the bearings to the left side of Eq.(5.1), the free vibrational equation of motion of

the rotor-bearing system can be written as

mé +gé+ke=0 (5.2)
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where g is the sum of the gyroscopic matrix and bearing damping matrix and k is the sum
of stiffness matrices of shaft and bearings. The mass matrix mZ, and the nodal coordinate
vegtor e’ are now denoted as m and e respectively. The matrix g is skew symmetric only
if the bearings are undamped, otherwise it is a general real matrix. The matrix k is
symmetric only when the bearings are rigid or when they have stiffness coefficients in the
principal directions, otherwise it is a general real matrix.

‘The homogeneous equations of motion Eq.(5.2) can be solved in two different coordi-
nate systems: (a) the rotating reference system X'Y'Z and (b) the inertial coordinate

system XY Z.

5.1.1 Equations in the Rotating Reference Frame

"The homogeneous system of equations given by Eq.(5.2) is transformed into the rotating
frame X'Y'Z'. The X'Y'Z frame is rotating about the X’ axis with a speed of w, as
shown in Figure 5-1. In this method, only bending frequencies can be found as the trans-
formation to the rotating frame looses track of the torsional motion. The transformation
from XY Z to X'Y'Z' is given by

e=Tp (5.3)

where e and p are the vectors of nodal coordinates in XY Z and X'Y'Z coordinate
systems, respectively, and T is the transformation matrix which is function of the rota-

tional speed w and time t. The nodal coordinate vectors e and p of the unconstrained
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Figure 5-1: Rotation of X'Y'Z axes relative to XY Z axes
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rotor-bearing system are of the form

€= {vhwla .511 Y1 oeeeeee 1 Un, Wy, :311.’ 7n}T (5’4)

and

r I 4 4 14 ’ r ’ r T
p = {v],’ wl!ﬁl! 7]_7 ------- xvn_r wn: ﬂn? 77:} (5'5)

respectively, where n is the number of nodes present in the system. The above vectors
in equations (5.4) and (5.5) are written by neglecting the torsional degree of freedom 6.

The transformation matrix T is then of the form

s 0
s
T = (5.6)
0 Sn
where _ -
coswt —sinwt 0 0
sinwt coswt O 0
s= (56.7)
0 0 coswt -—sinwt
0 0 sinwt coswt

The first two time derivatives of Eq.(5.3) can be written as

¢ = wip+7Tp (5.8)
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where

]
i

]

0 Sp

The submatrix § in Eq.(5.10) is defined as

]

Elr

—sinwt

coswt

0

0

—coswt 0

—sinwt 0

0 —sinwt

0 coswt

0

0

— coswt

—sinwt

(5.9)

(5.10)

(5.11)

Substituting Eq.(5.3) and Eqgs.(5.8-5.10) in Eq.(5.2) and premultiplying by Y7, one can

write

where

mp + (win+g)p+ (wj—w*m+k)p=0

)

= TTmT

= TTqT
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Now assuming that the bearings are undamped, then for constant spin speed i.e. éi =,
the matrix g can be expressed as

9=Qg° (5.15)

Further, we know that neglecting the torsional and coupling effects, the mass matrix m
is

m =My +m, (5.16)

where m; and m, are the mass matrices due to flexural deflections and rotary inertia

respectively. Substituting equations (5.15) and (5.16) in Eq.(5.12), one can write

mp +w [2m+ Ag] p+ [w? (MG — (m: +m,)) + k] p=0 (5.17)

where )\ = % is the whirl ratio. After some algebraic manipulations of Egs.(5.6), (5.10)
and (4.51) one can establish the following relationship between the gyroscopic matrix g*

and the rotary inertia matrix m,:

g =2TTm, T = 2%, (5.18)

Substituting Eq.(5.18) in Eq.(5.17), one can write

mp +w [2 + Ag*] p+ [P (2Am, —m) + K] p=0 (5.19)
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The natural whirl speeds and the mode shapes with respect to the rotating frame XY’ 2’
can be obtained from Eq.(5.19). These modes are constant relative to X'Y'Z frame.

Assuming p = p, =constant as a solution, the associated eigenvalue problem becomes

kp, = w? (m —2Am,.) p, (5.20)

The solution of Eq.(5.20) gives eigenvalues w together with the associated eigenvectors
Po- The eigenvalues represent the natural whirl speeds and the eigenvectors represent the
mode shapes relative to X Y Z’ frame at the specified whirl ratio A. The total number
of eigenvalues obtained are equal to the dimension of the matrices in Eq.(5.20). The
eigenvalues are real and have positive values.

The above procedure may be simply viewed as solving the eigenvalue problem of a
rotor-bearing system by restructuring its mass matrix so as to accommodate the gy-
roscopic effects. By such restructuring of the mass matrix, the eigenvalue problem is

transformed into the classical eigenvalue problem denoted by

(k-w?*m)p=0 (5.21)

The limitations of this method of eigensolution are evident. The bearings used have to
be undamped and isotropic. The eigenvalue problem cannot be solved for any given spin
speed (2, thus inhibiting its wide application. It can only be solved for a specified whirl

ratio A.
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5.1.2 Equations in the Inertial Reference Frame

The homogeneous equations of motion Eq.(5.2) can be represented in the following state

space form
0 -m é m 0 é
+ =0 (5.22)
m g é 0 % e
Or, simply as
E¢+Fq=0 (5.23)
in which
T
q= [ eT, ef ] (5.24)

The matrices E and F' are highly banded. If the bearings are undamped then the matrix
E is skew symmetric. The matrix F is symmetric when the bearings are isotropic with
cross coupling terms equal to zero. If the bearings are damped or orthotropic or both,
then nothing can be said about the symmetry or skew-symmetry of the matrices. Thus,
the type of bearings used in the rotor-bearing system play an important role in selecting a
numerical strategy to solve the equation of motion. The eigenvalues of the rotor-bearing

system can be extracted from Eq.(5.23) by assuming a solution of the form

g= g | (5.25)
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Substituting Eq.(5.25) in Eq.(5.23) we can write

(BE + F)ge*t =0 (5.26)

Equation (5.26) yields both forward and backward whirl speeds from the same eigenvec-

tor. The eigenvalues are found in complex form as

@=w,+iw (5.27)

where the imaginary part w is the whirl speed. The real part of Eq.(5.27) is used to

express the logarithmic decrement

—2Tw,
w

A= (5.28)

The logarithmic decrement is a measure of the rate of decay of free oscillations and is
defined as the natural logarithm of the ratio of any two successive amplitudes. It is a
convenient way of determining the amount of damping present in a system. There is
no restriction on the type of bearings when this method is used to solve the system’s

eigenvalue problem.
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5.2 Modal Reduction Schemes

The finite element method is often used to model complex rotor-bearing systems, which
involves writing the equations of motion in terms of nodal coordinates. The use of nodal
coordinates, however, results in a large dimensionality, thus inhibiting the efficiency of the
finite element solution. Moreover, the use of nodal coordinates results in a dynamic model
of widely spread eigen-spectrum that includes many insignificant modes. Consequently,
a numerically stiff system is often created which causes the numerical integration scheme
to sea..rch inefficiently for a solution or may even fail to find one.

In order to alleviate this problem, reduced order models using modal coordinates
were introduced. Likins [31] introduced modal reduction using complex modes in his
early formulation of the elastic appendage equations. Gunter et al.[32] utilized modal
transformations to obtain a reduced order modal form of the equations of motion. Al-
though they recognized that the actual vibration modes of a rotor system are complex,
they have used planar modes in their evaluation of the unbalance response of the rotor.
They have also referred to the numerical difficulties associated with using complex modes.
Nevertheless, they recommended that complex modes (damped modes) be considered in
the final analysis. Laurenson [33] addressed the issue of complex mode shapes in rotating
flexible structures. It was suggested, however, that planar modes be used in modal reduc-
tion of complex geometric configurations by employing the technique presented in [34] for
converting the complex eigenvalue problem to one defined by real matrices. Stephenson

and Rouch [35] invoked modal reduction using planar modes, wherein the mass matrix
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was modified to include the gyroscopic effects. Modal transformations using planar modes
were also utilized in evaluating the unbalance response [36, 37, stability [38], and the gy-
roscopic effect in rotor systems [39]. In this regard, one can also refer to the general area
of flexible multibody applications [40-43] where planar modes were employed to obtain
reduced order models inspite of the existence of damping and gyroscopic forces. Kane
and Torby [44] referred to the different methods for reducing the size of the finite element
model while preserving the lower (significant) frequencies. It was stated that the static
reduction usually results in poor accuracy at higher modes, therefore, cannot be applied
to general rotor systems because it is derived for systems having symmetric mass and
stiffness matrices. Therefore, they introduced a modal transformation based on complex
modes that resulted in reduced mass and stiffness matrices, and demonstrated how the
reduced model preserved the same modal characteristics of the original finite element
model. Their work, however, was not carried out to the dynamic response analysis stage.

Having examined the previously cited investigations, one recognizes a strong view in
support of using complex modes in modal transformations of systems with gyroscopic
matrices, though acknowledging the associated numerical complexities. To avoid such
numerical difficulties, another view suggested the use of planar modes obtained after
modifying the mass matrix to include the gyroscopic effects. Nevertheless, other inves-
tigators, especially those concerned with dynamic response analysis, have consistently
employed planar modal transformations. It is noteworthy to mention, to the best of

the author’s knowledge, that no dynamic response analysis study that invoked complex
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modal transformations was reported in the available literature.

In the following sections, first the planar modal reduction scheme which is widely
used in the dynamic analysis of the flexible system is presented. This scheme utilizes
planar modes obtained by solving the self-adjoint eigenvalue problem. Second, the com-
plex modal reduction scheme is applied to rotor-bearing systems. The complex modal
reduction scheme invokes the complex modes of the non-self-adjoint eigenvalue problem.
Lastly, the modal reduction scheme presented by Kane and Torby [44] which is called

the extended modal reduction is discussed.

5.2.1 Planar Modal Reduction

In order to obtain the real eigenvalues and the associated planar modes, one must ignore
the matrix g in Eq.(5.2). To this end, the associated homogenous adjoint equation can
be written as

mé + ke = 0 (5.29)

Upon solving the self-adjoint eigenvalue problem associated with Eq.(5.29), which is of
the form presented in Eq.(5.21), one obtains a set of real eigenvalues and eigenvectors.
Let H denote the modal matrix that comprises a selected subset of the resulting real

eigenvectors (planar modes). Now, a modal transformation can be defined as

e= Hv (5.30)
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where v is the vector of modal coordinates. If only a truncated set of significant modes

are retained, the corresponding truncated form of Eq.(5.1) can be written as

HTmHy + H gHv + H kHv = HTF (5.31)

Or simply as

Mo+ G+ K,v=H'F (5.32)

where M,, G,, and K, are the reduced modal mass, gyroscopic, and stiffness matri-
ces, respectively. Equation (5.32) represent the reduced order model using planar mode

truncation.

5.2.2 Complex Modal Transformation

The elastodynamic model of Eq.(5.1) can be represented in the state-space form as

0 -m é m 0 é 0
m g é 0 % e F
Or simply as
E¢+Fq=f (5.34)

where E, F and q are as defined in section 5.1.2. One can write the following two
homogeneous adjoint equations:
Ej+Fq=0 (5.35)
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and

ET{ +FTq =0 (5.36)

Assuming a solution in the form of Eq.(5.25) and substituting in Eq.(5.35), one can write

@:E+F)R: =0 (5.37)

where @; is the i** eigenvalue associated with the right hand eigenvector R;. Similarly

substituting Eq.(5.25) in Eq.(5.36), we can write

(@ET+FT)L; =0 (5-38)

where @; is the it* eigenvalue associated with the left hand eigenvector L;. For non-
symmetric E and F, R; does not equal L; and for symmetric F and F, R; equals L;. Let
R and L denote the complex modal matrices of the differential operators of equations

(5.35) and (5.36), respectively, [45]. Introducing the transformation

q=Ru (5.39)

where u is the vector of modal coordinates. If only a subset of significant modes are to

be retained, the truncated modal form of the equations of motion can be written as

LTERu+ LTFRu=L"f (5.40)
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Or, simply as

Ea+Fu=L"f (5.41)

where R and L contain only those complex eigenvectors that represent a subset of selected
modes. Now Eq.(5.41) represents truncated model using complex modal transformation.
In general, a subset of eigenvectors which spans the frequency spectrum of the forcing

function are retained as significant modes.

5.2.3 Extended Modal Reduction

In the extended modal reduction scheme, the degrees of freedom of the rotor-bearing
system are divided into two parts. One part contains only those degrees of freedom
which are very important for the motion of the rotor-bearing system. Such degrees of
freedom are chosen as retained degrees of freedom a. The other part which contains the
non-essential degrees of freedom is chosen as omitted degrees of freedom o. The reduced
size mode shapes will represent only the motion of the retained degrees of freedom.
In determining which modes to keep, it is usually desirable to retain the lowest system
frequencies. The choice of retained degrees of freedom affects the resulting reduced system
matrices and the degrees of freedom represented in the eigenvectors, but the eigenvalues
and the mode shapes are not affected.

Having chosen the degrees of freedom and modes to be retained, the [E] and [F]
matrices and the right and left hand mode shapes R and L may be partitioned into the

retained degrees of freedom, a, and the omitted degrees of freedom, 0. The unwanted
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modes are also removed. The partitioned matrices and the eigenvectors are given as

follows,
-
Ew Eg
E,= (5.42)
Foo Fao
F,= (5.43)
Foo Foo
Ria
Ry = , t = 1 to the number of retained modes (5.44)
Rio ]
- .
Lie
Lyp= , © =1 to the number of retained modes (5.45)
Lio

Any number of degrees of freedom may be retained, but the number of modes retained
should be equal to or less than the number of degrees of freedom (< a). The vector ¢
can also be expressed in terms of the truncated and partitioned right hand vector matrix

and the associated normal coordinates y. Namely,

g= = y (5.46)

From Eq.(5.46),

da = Ray (5.47)
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Premultiplying by RI gives,

R1g. = RIRay (5.48)

The generalized inverse may now be used to solve for y

y = (RTR,) ™' R%q, (5.49)

Equation (5.49) substituted into Eq.(5.46) gives,

% = Drqa
where,
Dp =R, (RTR.) ™" RT (5.50)
Similarly, for the left hand modes,
da L, )
g= = {v} (5.51)
% L,

where 3 is the normal coordinate vector for the transposed system. In a similar manner,
it can be shown that

9 = Dirq, (5'52)
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where,

Dp=L,(LTL) ' LT

Now define

B A
I
Tr=
Dg
I
T; =
Dy j
Then,
R, =TrR,
and similarly,

The reduced matrices Eg and Fj are then defined by

Ep=TTE,Tx

Fr=TIF,Tr

(5.53)

(5.54)

(5.55)

(5.56)

(5.57)

(5.58)

(5.59)

The equations of motion formed using these reduced matrices can be integrated for-

ward in time. The procedure to determine the reduced matrices is numerically sensitive

as the evaluation of the generalized inversion of matrices is involved in Eq.(5.50) and

Eq.(5.53). Furthermore, the above procedure may yield complex reduced matrices which
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often complicate the numerical integration of the equations of motion. Due to these
numerical difficulties which are associated with the extended modal reduction scheme,
the direct complex modal reduction scheme presented in section 5.2.2 appears to be the

most appropriate in the sense of both efficiency and accuracy requirements.
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Chapter 6

Results and Discussions

The eigenvalue solution and the modal reduction schemes discussed in the previous chap-
ter will be applied to obtain the natural frequencies and time response for different rotor
bearing systems. The results will be compared to some available results in literature,

wherever possible.

6.1 The Computer Scheme

A Computer program is developed for the free and forced vibration analysis of a cracked
multibody rotor-bearing system. The developed computer program carries out the fol-

lowing tasks:

e Evaluation of the system matrices
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e Solution of the eigenvalue problem in the rotating reference frame as well as in the

inertial frame to evaluate the modal characteristics.

e Implementation of the modal reduction schemes to generate the reduced order

matrices

e Numerical solution of the reduced order equations of motion to evaluate the time

response in terms of the modal coordinates

e Recovering the nodal coordinate vector using the modal coordinate vector and

updates the forcing vector which is a function of the nodal coordinates.

A flow chart of the developed computer scheme is presented in Figure 6-1. The

important tasks carried out by the program are further explained in details.

6.1.1 Input Data

The input to the computer scheme developed in this investigation is given in a sepérate
subroutine. Since the rotor-bearing system is being treated as a multibody system, the
number of bodies in the system have to be defined. The details pertaining to each body
which are required by the computer scheme are discussed below.

Type of body: The type of each body i.e. whether it is rigid or flexible is to be
defined. A rigid body is characterized by its mass and the reference positions of its

centre of mass. A flexible body is then discretized into 2 number of finite elements and



4 Evaluate

Write Modal Forcing
Characteristics Vector
Nodal Modal
Coordinate ‘
System
Flag = [ Flag = 2
y y
i Modal
Reduction
IfFlag=2
Recover Nodal >
Coordinates

Figure 6-1: The control flow diagram of the developed computational scheme
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properties of each finite element are defined. If the flexible body under consideration is
the rotor shaft, its spin speed is to be specified.

Element Properties: There are two types of properties namely; geometrical and
material that need to be specified for each finite element of the flexible body. The
geometrical properties include length, outer radii at each end of the element, flag to
indicate whether the element is solid or hollow. If the element is hollow, the inner radii
at each end of the element as well as the position of each element along the inertial
axes must be defined. The taperness of the finite element is defined by specifying two
different radii at the two ends of the element. The developed computational scheme can
accommodate tapered hollow shaft parts, as well. The material properties include the
mass density, Young’s modulus, Poisson’s ratio and shear coefficient.

Crack: A crack may be present in any finite element of the rotor shaft. There is a
flag associated with each finite element of the rotor shaft to indicate the presence of a
crack. If a crack is present, its flexibility compliance need to be specified.

Bearings: The total number of the bearings and their locations are required by the
computational scheme. The bearings could be 'anisotropic, flexible and damped. The
flexibility of the bearings, are expressed in terms of stiffness coefficients. The properties
of each bearing which may include different values of stiffness and damping coefficients
in different directions need to be specified.

Disks: Disks are assumed to be rigid. The total number of disks and their respec-

tive positions are to be specified. The properties of the disk which are needed for the
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computational scheme are the mass of the disk and its mass moment of inertia about the
centroidal axes.

Type of Analysis: One need to specify the type of analysis required. (a) For modal
analysis, one must specify whether planar or complex modal characteristics are required,
as well as specifying the number of eigenvalues and the corresponding eigenvectors to be

printed. (b) For dynamic response analysis, one must specify whether the equations of

motion are generated in terms of nodal or modal coordinates. If nodal coordinates are
chosen, the user must indicate whether a planar or complex modal reduction scheme is
to be invoked, as well as the number of significant modes to be retained in the dynamic
model. In either case of the dynamic simulations, however, the total simulation time

must be specified.

6.1.2 System Matrices

The cracked rotor-bearing system consists of rigid as well as flexible components. The
flexible rotor shaft is cracked at some location along its axis. When the flexible rotor
shaft is divided into finite elements, only one finite element will contain the crack and all
the other elements are uncracked. The element mass, stiffness and gyroscopic matrices
of each element for which the nonzero entries are presented in Tables 4.1 to 4.7 are
evaluated. The boundary conditions are applied and the matrix entries are stored in a
master a.rr#y after assigning pointers for every entry. The element matrices for all the

elements are evaluated and stored in master array. The pointers created are used to
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assemble the system matrices. The control flow chart for creating the system matrices is

shown in Figure 6-2.

6.1.3 Eigenvalue Solution

The system matrices are used to establish the eigenvalue problem. The eigenvalue prob-
lem can be solved in either the rotating reference frame or in the Inertial frame. When
using rotating reference frame, the matrices involved are symmetric (Eq.(5.20)), whereas
when ‘the inertial frame is used the matrices are, in general, not symmetric (Eq.(5.26)).
The eigenvalue problem is solved using EISPACK subroutines. The control flow diagram

for this purpose is shown in Figure 6-3.

6.1.4 Modal Reduction Schemes

Two modal reduction schemes, namely planar and complex are implemented. The modal
transformation matrices are constructed using a subset of eigenvectors. The subset of
eigenvectors are selected such that the reduced modal matrices span the lower or sig-
nificant part of the frequency spectrum of the system. The complex reduction scheme
is numerically difficult to implement. The entries in the modal transformation matrix
are complex. when the complex modal transformation matrices are multiplied with real
full order matrices, the resulting reduced matrices of Eq.(5.41) are, in general, be com-
plex. This implies that the reduced modal equations have complex coefficients. It needs

considerable programming effort to take care of the resulting complex modal equations.
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Figure 6-2: Control flow diagram for evaluating the system matrices
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Figure 6-3: Control flow diagram for the eigenproblem solution
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Numerical integration of the complex modal equations is also time consuming.

The difficulty of complex modal transformations is avoided when f:he planar modal re-
duction is utilized. In planar modal reduction, the planar modes obtained from Eq.(5.29)
are used to reduce the order of equations of motion. The resulting reduced order equa-
tion of motion i.e. Eq.(5.32) has real coefficients. The control low diagram showing the

implementation of the modal reduction scheme is shown in Figure 6-4.

6.1.5 Numerical Integration

The reduced order modal equations are integrated forward in time to predict the time
response. The Runge-Kutta-Fehlberg fourth and fifth order numerical solution scheme
for a system of first order differential equations is used for numerically integrating the
modal equations.

The equations of motion are arranged such that the inertia coupling term is kept on
the right side along with the forcing terms. In this way, the coefficient matrices of the
equations of motion are constant whereas the forcing vector becomes a. function of nodal
coordinates. Therefore, the forcing vector needs to be updated at every time step.

At the end of each numerical integration step, the modal coordinate vector is com-
puted. The nodal coordinates can be recovered using the modal transformation. The
computed nodal coordinate vector is associated with the system matri;c. Therefore, the
unconstrained elemental nodal coordinate vector is obtained from the system’s nodal vec-

tor, and then used in computing the inertia coupling matrix. The inertia coupling matrix
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Figure 6-4: Control flow diagram for the implementation of the modal reduction scheme
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for the whole system is assembled from the element matrices. Accordingly, the forcing
vector for the whole system is updated at every time step. The assembly procedure has to
be implemented at every time step which makes the numerical integration of the inertia
coupled equations time consuming. The control flow diagram for the evaluation of the
forcing vector is shown in Figure 6-5. In Figure 6-6 the procedure to evaluate the nodal

coordinate vector from the modal vector is presented.

6.2 Modal Characteristics

This section is divided into two subsections. In the first subsection, the natural frequen-
cies obtained using the developed finite element model will be compared to the results
available in the literature. In the second subsection, the natural frequencies obtained
using the planar and complex modal reduction schemes will be compared to the natural

frequencies obtained using the full order finite element model.

6.2.1 Natural Frequencies

To validate the present. finite element model, some numerical comparisons with analytical
results published in the literature are presented.

Example 1

As a first example, the cantilever shaft considered in reference [14] with the following data:

radius R = 0.1m, length L = 1m, Young’s modulus of Elasticity E = 2.1 x 10!1N/m2,
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mass density u = 7860 kg/m? and Poisson ratio v = 0.3 is simulated. The change in the
first bending natural frequency is studied for different slenderness ratios 7, position of

the crack p and crack depth A. The above parameters are defined as follows:

slenderness ration = % (6.1a)

L
position of the crack p = fl (6.1b)
crack depth A = % (6.1c)

where R is the radius, L is the length, D is the diameter, L; is the distance of the crack
from one end of the shaft and a is the depth of the crack. The change in the bending

natural frequency is measured by the frequency ratio f,,, which is defined as

fr = — (6.2)

where w;. and w; are the i** frequency of the cracked and uncracked shaft, respectively.
The change of the natural frequency due to the presence of a crack for different n and
crack depths A is given in Table 6.1. The results are compared to those published
in reference [14]. One must note that the results available in the literature are reported
only in graphical form. For comparisons, numerical values are depicted from such graphs.

Nevertheless, Table 6.1 shows a very good agreement.



Table 6.1: Frequency Ratio fgr of Cylindrical Cantilever Shaft (p = 0.2)

A [7=01]7=0.06|7n=002]
0.210.96 0.98 0.99
0.94* 0.97™ 0.98*
0.3]0.90 0.94 0.98
0.88* 0.93* 0.97
0.4 |0.78 0.85 0.95
0.79* 0.83* 0.92*
0.5 | 0.64 0.75 0.90
0.63* 0.72* 0.86*

* Reference [14]
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Example 2

A simply supported shaft of material properties similar to that of example 1 is considered.
Here, the change in the natural frequency is measured by an index called the natural

frequency index f, which is defined as

(6.3)

where w;. and w; are as defined earlier. The behavior of the natural frequency index is
studied for different crack depths A and crack positions p. The results are presented in
Table 6.2 which show a good agreement with those depicted values from graphs published

in reference [7].

Example 3

In the previous examples, non-rotating beams were considered. As a third example, the
simply supported shaft of example 2 is rotated at a speed of = 1000 rad/sec. The
resulting eigenvalue problem is solved using Eq.(3.24). The frequency index f, for the
first frequency is plotted against crack depth A, for different crack positions in Figure
6-7. The natural frequency of the rotor decreases as the position of the crack moves away
from the bearings, i.e. towards the middle of the rotor. It is also observed that as the
crack depth increases the difference in f, for either forward or backward whirl speed also

increases.
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Table 6.2: Frequency Index f, of Cylindrical
Simply Supported shaft (n = 1)

A [p=03|p=05
0.1]0.01 0.01
0.01* 0.015*
0.2]0.04 0.06
0.04* 0.06~
03] 0.12 0.14
0.12* 0.14*
0.4 0.23 0.283
0.24* 0.28*
0.5} 0.40 0.45
0.42* 0.45*
* Reference (7]



0s

Frequency Index S

Figure 6-7: Frequency Index f, of Cylindrical Simply Supported Shaft Rotating at 2 =
1000 rad/ sec (n =0.1)
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Example 4

The available literature falls short of presenting adequate results for the case of cracked
rotating tapered shafts. The efficient numerical scheme developed in this thesis has been
utilized to produce the first ten natural whirl speeds of a short conical solid shaft. The
dimensions of the tapered shaft are R;/L = 0.125 and L = 1m. The obtained natural
frequencies are presented for the first time in Table 6.3 and 6.4 at different values of whirl
ratio A. In Table 6.3, the frequency parameter f of a tapered Timoshenko shaft overhang
of tapér ratio equal to 0.5 and rigid journal bearings at the widest end is presented. The

frequency parameter f is defined as

f= (“Ab’;“;“’z)% 64)

where u is the mass density, A is the cross-sectional area, L is the length, w is the natural
frequency, F is the modulus of elasticity and I is the moment of inertia of the shaft. In
Table 6.4, the frequency parameter of a tapered Timoshenko simply-supported shaft of
taper ratio equal to 0.5 and supported by rigid bearings at both ends is presented.

In Figure 6-8, the effect of taper ratio on the frequency of the cracked rotor is pre-
sented. In this case of shaft overhang, the crack is present at a distance p = 0.3 from the
rigid journal bearing. The results show that the frequency parameter f decreases as the
crack depth increases. It is also observed that the rate of decrease grows as the taper

ratio decreases (i.e. as taperness increases). In Figure 6-9, the effect of taper ratio on the
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frequency of a cracked simply supported rotor is studied. In this case, as the taper ratio
increases, the frequency parameter also increases. There is a greater change in frequency
at higher taper ratios as crack depth increases. The behavior of the rotor overhang is
shown to be in contrast with that of simply supported rotor. In Figure 6-10, the effect
of crack position on the frequency of a rotor overhang is studied. The crack has a greater
effect on the frequency of the rotor as its position gets closer to the bearing. The farther
away the crack position is from the bearing, the lesser the effect it has on the overhanging
rotor.” In Table 6.5, the frequency parameter f of a tapered simply supported rotor is

tabulated for different crack positions.

Example 5

To demonstrate the capability of the developed finite element formulation, a complex
rotor-bearing system as shown in Figure 6-11 is simulated. The rotor-bearing system
has stepped cylindrical geometry with hollow elements, in addition to the presence of
elastic bearings and disks. The data of the rotor-bearing system is given in Table 6.6.
The first three natural frequencies of the rotor-bearing system are tabulated in Table 6.7
for different whirl ratios and crack depths. The natural frequency of the rotor-bearing

system decreases as the depth of the crack increases, as expected.
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Table 6.5: Frequency parameter f of tapered Timoshenko shaft
(Rigid Bearing at both ends; Taper ratio = 0.5)

Al A

p
01 | 03 | 05

0.1 6.6661 | 6.6345 | 6.5941
0.0 [ 0.3 ] 6.6083 | 6.1149 | 5.6617
0.5 | 6.2547 | 4.4472 | 3.5996

0.1 | 6.8222 | 6.7897 | 6.7478
1.0 {0.3] 6.7687 | 6.2721 | 5.8017
0.5 | 6.4353 | 4.6005 | 3.7021

0.1 ] 6.5193 | 6.4885 | 6.4496
-1.0 | 0.3 | 6.4577 | 5.9679 | 5.5308
0.5 | 6.0849 | 4.3071 | 3.5049
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Table 6.6: Multi-stepped rotor configuration data

Element | Node | Bearing/ [ Outer | Inne
Node no. | Location Disk radius | radius
(cm) (cm) | (cm)
1 -17.90 0.51
2 -16.63 1.02
3 -12.82 0.76
4 -10.28 2.03
5 -9.01 Disk no. 1 2.03
6 -7.74 3.30
7 -7.23 3.30 1.52
8 -6.47 2.54 1.78
9 -5.20 2.54
10 -4.44 1.27
11 -1.39 Bearingno. 1| 1.27
12 1.15 1.52
13 4.96 1.52
14 8.77 1.27
15 1080 | Bearingno. 2| 1.27
16 12.58 3.81
17 13.60 2.03
18 16.64 2.03 1.52
19 | 1791
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Table 6.7: Natural frequencies (rpm) of uniform stepped shaft with bearings and disks

Whirl ratio A

Mode | A
0 1 -1

0.0 | 16269 | 17432 | 15260
1 0.1 16250 | 17413 | 15241
0.3 | 15978 | 17148 | 14969
0.5 14788 | 15973 | 13788

0.0 | 47706 | 49303 | 45907
2 0.1 ] 47648 | 49229 | 45837
0.3 | 46840 | 48623 | 44854
0.5 {43530 | 45934 | 41105

0.0 | 76220 | 100241 | 62630
3 0.1 | 76087 | 100061 | 62579
0.3 | 74362 | 97356 | 61916
0.5 | 69239 | 86258 | 60117
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6.2.2 Reduction Schemes

The natural frequencies presented in Tables 6.1-6.5 and 6.7 are found using the actual full
order matrices obtained from the finite element formulation. In this section, the natural
frequencies obtained by implementing the modal reduction schemes will be compared to

the actual natural frequencies obtained from the full-order finite element formulation.

Example 1

The modal reduction schemes, planar and complex, are applied to a tapered rotating shaft
with a crack at p = 0.3. The shaft is rotating at a spin speed of {2 = 3000 rad/sec. The
tapered rotating shaft is divided into 11 equal finite elements. Hence, the total number
of degrees of freedom of the shaft is 60. The shaft is simply supported at both ends. The
simply supported boundary conditions require the deflections and moments a't both ends
to be specified as zeros. After applying the boundary conditions, the coefficient matrices
of the equations of motion become of order (56 x 56) . A subset of eigenvalues spanning
the lower part of the frequency spectrum of the actual finite element model is presented in
Table 6.8. The planar or real eigenvalues are computed by using the Eq.(5.29), where the
matrices are of order (56 x 56) resulting in 56 real eigenvalues. The complex eigenvalues
are computed using Eq.(5.37), where the matrices are of order (112 x 112) resulting in
112 complex conjugate eigenvalues. The complex parts (-)f the eigenvalues give the natural
frequencies of the shaft.

The first natural frequency in both columns of Table 6.8 is zero. The zero natural
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frequency corresponds to the rigid body mode of the tapered shaft. In Table 6.9, the
eigenvalues of the reduced system are presented. The lowest six eigenvalues excluding
the rigid body mode are retained in the reduced system for comparison with the eigen-
values obtained using full order system. The eigenvalues representing the planar modal
reduction scheme which are presented in the second column of Table 6.9 are computed
using Eq.(5.32). In this case, the eigenvectors corresponding to the lowest six eigenvalues
which are presented in the second to seventh rows of the second column of Table 6.8
are used to form the planar modal transformation matrix of Eq.(5.30). The eigenvalues
representing complex modal reduction which are presented in the third column of Table
6.9 are computed using Eq.(5.41). Here, the complex eigenvectors corresponding to the
lowest six complex conjugate eigenvalues which are presented in the second to seventh
rows of the third column of Table 6.8 are used to form the complex modal transforma-
tion matrices of Eq.(5.40). The constituent matrices of Eq.(5.32) which are used in the
computation of eigenvalues of the reduced system ( using planar modes ) are given in
Table 6.10. On the other hand, the matrices of Eq.(5.35) used to compute the complex
frequencies of the reduced system ( using complex modes ) are given in Tables 6.11 and

6.12.

6.3 Time Response

In this section the time response of the rotor-bearing system will be evaluated. To

validate the numerical integration procedure and the modal reduction scheme used in
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Table 6.8: The lowest thirty eigenvalues of actual finite element model

TNo|

Planar
x 10°

Complex
x 10°

0.0

040z

0.0164154947

0+0.0163213471:

0.0215594259

0+0.0216746157%

0.0608982377

0+0.0607611444:

0.0822192867

0+0.08239568767

0.1169403329

0+0.116940332%:

0.1576532413

0+0.15683509972

0.1641846489

0+0.1649875968:

0.2120893874

0+0.2120893874:

0.2499529147

0+0.2490694259:

25| ©f oof | ovf anf x| wof vl

0.2598963655

04:0.2607166561z

—
N

0.2936281149

0+0.293628114%:

—
w

0.3274772047

040.3270869371:

—
o

0.3659711790

0+0.36628600961

p—t
(3]

0.4279436565

040.4279436565¢

—
(=]

0.4662195901

0-£0.46545916561

-t
-3

0.4818788691

0+0.4824776762:

—t
oo

0.5448149492

0+0.5228359033:

—
©

0.5564023518

02£0.5676328998:

(]
o

0.5676328997

0+0.578516533 11

N
—

0.6023423874

0+0.6016633521:

N
[\

0.6075662745

040.60947483142

N
W

0.6496314061

0+0.6496314059:

N
-~

0.6612497069

0+0.6572952699:

[~
o

0.7327582632

0+0.7158384281:

[ &)
(=]

0.7344195405

0+0.7418661493¢

[
~3

0.7419460442

0+0.7563515149:

&

0.8133527288

0-+0.8133527289:

29

0.8466765034

0-£0.8390969999:

0.8682133909

0+0.85150846861
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Table 6.9: Eigenvalues of the reduced modal matrices

No

Planar Reduction
x10%

Complex Reduction
x10%

0 +0.1632382848:

0 £0.16321347062

0+ 0.2167715785t

0 £0.2167461569:

0 £ 0.60776765362

0+0.6076114441:

0 £ 0.8239568757%

0 £ 0.8238009352:

0 +1.1694033291:

0 +1.1694033291:

O OV W] WO DO}

0 +1.5765439220:

0 £ 1.56835099672




Table 6.10: Reduced matrices obtained after applying planar modal reduction scheme

0
2.4629346
0
—1.1748973
0
0

" 1.7107 |
1.6224
| 4767
M, =diag | 5136
0.0342
| 02751 |
" 4.609899176 |
7541046601
.| 1767813304 ]
K, =diag | 3471854369 | < 1V
4674722414
| 68.36783589 |
24629346 0 11748973 O 0
0 —0.4051377 0 0 —0.0604384
0.4051377 0 _1.74761154 0 0
0 1.74761154 0 0 0.19086445
0 0 0 0 0
0.0604384 0 0.19086445 0 0
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Matrix E, obtained after applying the complex modal reduction scheme

.
.

Table 6.11

%1073

0
—0.3551

[ —0.3551

0

0
—0.265¢

0

0

0.2651

0

0

0056 O

0
—0.056
0

0 0 0
0 0.041 0

0.041

0
0
0

0
0

0

0

0,117 4+ 0.0161

0
-0,118

0

0

0
-0.017

-0.0174
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this investigation, the time response will be predicted and compared to the time response
evaluated using ANSYS. This comparison is presented in the first subsection. In the
second subsection, the time response of a uniform non-rotating cracked shaft is presented.
In the third subsection, the time response of the tapered non-rotating cracked shaft is
studied. The fourth subsection is devoted to the study of the time response of cracked
rotating tapered shaft. The last subsection is devoted to demonstrate the capability of
the developed computer scheme in simulating large-scale rotor-bearing systems which are
often found in real life.

In this investigation, the time response is expressed as a nondimensional generalized
displacement parameter ¢ plotted against time. The time response can be evaluated
either by applying external force or by specifying initial conditions. When the time
r&sﬁonse is due to external forces, it is normalized with respect to the static deflection.
When it is evaluated by specifying initial conditions, the static deflection cannot be used
for normalizing, instead the maximum value of deflection in the time response of the
uncracked shaft is used. For the transverse deflections, the nondimensional generalized

displacement parémeter ¢ is defined as

>l e

Sv (6.5)

where v is the deflection and A is the maximum static deflection of the shaft in the direc-

tion of the force. For the torsional deflection the nondimensional generalized displacement
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parameter is defined as

__ %
q¢_2A/d (6°6)

where ¢ is the torsional deformation and d is the diameter of the shaft at the point of
measurement. The impulse response is evaluated for some initial velocity input while
the forcing vector is zero. In this investigation the impulse response is normalized with

respect to the maximum value of deflection in the unit impulse response of the uncracked

shaft.

6.3.1 Comparison with ANSYS

Example 1

A uniform steel shaft rotating at a spin speed of Q2 = 400 rad/s and supported at the two
ends by rigid ball bearings (simply supported) is considered. The shaft is of diameter
d = 10.16 cm and length | = 127 cm. The density and elastic modulus of the shaft
material are & = 7833 kg/m? and E = 2.068 x 10'! N/m?, respectively. This particular
example is selected to validate the results of the dynamic analysis code developed during
this study by comparing them to the results from the commercially available finite element
software ANSYS. The rotating shaft is divided into six equal finite elements and is excited
by a unit step force in Y-direction at the midpoint of the shaft. The response of the system
is computed using both the programs. Figure 6-12 gives a comparison of the deflection in

Y-direction of the midpoint of the rotating shaft, when the response is computed using
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(a) the currently developed code with full dimension state space matrices

(b) the currently developed code with (4x4) reduced dimension state space matrices

and

(c) ANSYS software with full dimension matrices

The response of the shaft using the dynamic analysis code developed during this study
is in a good agreement with the response computed using ANSYS software. Hence, the
validation of the developed dynamic analysis code using the complex modal reduction

technique can be established.

6.3.2 Non-Rotating Uniform Shaft
Example 1

To study the effect of a crack on the time response of the rotor-bearing system, a cracked
short cylindrical solid shaft is simulated. The dimensions of the uniform cylindrical non-
rotating shaft are R/L = 0.1 and L = 0.1 m. A crack of depth A = 0.5 is present at
location p = 0.3 from the left end of the shaft. The left end of the shaft is supported
on a rigid journal bearing such that the end conditions is similar to that of a clamped
end. The material properties of the shaft are exactly the same as mentioned in example
1 of section 6.3.1. The uniform shaft is divided into 11 equal finite elements. Each finite
element has two nodes at its ends with five degrees of freedom for each node. Hence,

the total number of degrees of freedom is 60. When the equations of motion are written
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in state space form, the order of equations of motion doubles to 120. Applying modal
reduction schemes ( complex and planar ), only the first three lowest natural frequencies
are retained. Therefore, the 120 order state space system is reduced to a sixth order
system. The shaft is excited by a unit step force at node 5. The time response of the
cracked shaft using full order equations of motion, reduced order equations of motion
as well as the uncracked shaft response are plotted in Figures 6-13 and 6-14. The time
response predicted by either reduced order scheme is comparable to the time response
predicted using the full order equations of motion. An increase in the time period of the
cracked shaft is observed. The increase in the time period, or in other words, the decrease
in the natural frequency of the cracked shaft is due to the additional flexibility of the
crack. Figure 6-15, gives a comparison of the time responses of cracked and uncracked
shafts when evaluated at the free end. As expected, the amplitudes of vibration of the
cracked shaft are larger than the amplitudes of vibration of the uncracked shaft. Figure
6-16 gives a comparison of the time response of the cracked shaft measured at different
locations on the shaft due to unit step force at node 5. As expected, the amplitude of
vibration of the cantilever shaft increases as the location of measurement moves away
from the clamped end. The amplitude of vibration is comparatively larger for the part
of the cantilever which lies between the crack and the free end.

In Figure 6-17, the time response of node 5 due to unit impulse applied at node
-5 is plot;ted. It is observed that the amplitudes of vibration of the cracked shaft are

comparable to that of the uncracked shaft. In Figure 6-18, the time response of the free
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Deflection Parameter at Free End
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Figure 6-15: Comparison of time response of cracked and uncracked non-rotating can-

tilever shaft at the free end
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Deflection Parameter at Different Locations
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Figure 6-16: Time response of the cracked non-rotating cantilever shaft at different lo-
cations along its length



end i.e. node 12 due to unit impulse applied at node 5 is plotted. It is observed that
the amplitudes of vibration of the cracked shaft are almost equal to the amplitudes of
vibration of the uncracked shaft. Figures 6-17 and 6-18 simply imply that the effect of
crack on the impulse response of a cracked uniform cantilever shaft is more pronounced

near the location of crack.

Example 2

A uniform cylindrical shaft with a crack at p = 0.3 is supported by rigid ball bearings at
both ends. This is equivalent to simply supported end conditions. The cracked simply
supported shaft is excited by a unit step force at node 5. In Figures 6-19 and 6-20, the
time responses at node 5 of the cracked and uncracked shafts are plotted. The time
response of the cracked shaft predicted using full-order equations of motion is compared
to the time response predicted using reduced order equations of motion. The amplitude of
vibration of the cracked simply supported shaft is about four times that of the uncracked
shaft. Figure 6-21 gives a comparison of the time responses at different locations on the
simply supported cracked shaft. As expected, the amplitude of vibration is highest at
the point of application of force and decreases as one moves away from the location of
the applied force.

The simply supported uniform cylindrical shaft considered in example 2 of this section
is excited by a unit impulsive force at node 5. The time responses of node 5 for the cracked

shaft as well as uncracked shaft are drawn in Figure 6-22. The amplitudes of vibration of
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Deflection at Different Locations
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Figure 6-21: Step response of the cracked simply supported shaft at different locations
along its length due to unit step force at node 5
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the cracked shaft are greater than the amplitudes of vibration of uncracked shaft. Figure
6-23 gives a comparison of the time responses of different locations on the cracked shaft
due to a unit impulse. It can be observed that the amplitude of vibration at the point of
application of unit impulse is greater although it is not at the middle of the shaft ( the

shaft midpoint is node 6 ).

6.3.3 Non-Rotating Tapered Shaft
Example 1

In the previous examples, the effect of a crack on the time response of uniform cylindrical
shafts is studied. Now, a cracked tapered short solid shaft is simulated. The dimension
of the tapered shaft are R;/L = 0.125 and L = 1m. The taper ratio is 0.5. A crack of
depth’A = 0.5 is present at location p = 0.3 from the widest end. Both the ends of the
cracked tapered shaft are supported on rigid journal bearings. The shaft is divided into
11 equal elements and is excited at the fifth node by a unit step force in Y-direction.
The deflections of the cracked as well as uncracked shaft at the fifth node are shown in
Figures 6-24 and 6-25. The amplitudes of vibration of the cracked shaft are about three
times that of the amplitudes of vibration of the uncracked shaft.

‘The time response of the cracked shaft is also simulated using the complex and planar
modal reduction schemes. Similarly, the shaft is divided into 11 equal finite elements.
Each finite element has two nodes with five degrees of freedom for each node. Hence, the

total number of degrees of freedom is 60. When the equations of motion are transformed
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Deflection Parameter at Different Locations
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into the state space form, the order of the equations is doubled to 120. By invoking
either the complex or planar modal reduction, only the first three lowest frequencies are
selected and retained. Therefore, the reduced state space modal equations are of order
(6 x 6). Figures 6-24 and 6-25 show that the time responses predicted using complex
as well as planar modal reductions agree well with that of the full order equations of
motion. This comparison validates the modal reduction schemes. Figures 6-26 and
6-27 show the response of the cracked tapered shaft at different locations on the shaft
when ‘excited by a unit step force at the fifth node. Figure 6-26 gives a comparison of
the time responses at node 2 of uncracked shaft to that of the cracked shaft modelled
by full order equations of motion as well as reduced order equation of motion. Figure
6-27 gives a similar comparison for the time responses at node 6. It is noted that node
2 is to the left of the crack and node 6 is to the right of the crack. In both the figures
the amplitude of vibration of the cracked shaft is about three times the amplitude of
vibration of uncracked shaft.

The cracked tapered shaft considered in the present example is excited by an impulse
at the fifth node in the Y-direction. Figures 6-28 and 6-29 compare the impulse responses
at node 5 of the uncracked shaft to that of the cracked shaft. The time responses predicted
using the reduced order sphem& are also plotted in the same figure. Again, the time
responses predicted using the reduced order schemes are in close agreement with that
of the full order model. It is observed that the amplitudes of vibration of the cracked

shaft are about two times that of the amplitudes of vibration of uncracked shaft. In
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Deflection Parameter at Node # 5
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Figure 6-25: Step response of non-rotating tapered simply supported shaft using planar
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Figure 6-26: Step response of the non-rotating tapered shaft near the widest end
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Figure 6-30, the impulse responses at different locations on the cracked tapered shaft are
plotted. It is observed that amplitude is smallest at node 2 which is adjacent to the rigid

journal bearing and largest at node 5 which is the point of excitation.

Example 2

Consider a non-rotating cantilever tapered shaft as another example. The material prop-
erties of the shaft are similar to that of the previous example. The widest end of the
shaft is supported by rigid journal bearing. The shaft is excited by a unit step force at
the fifth node. The time responses of the shaft at the fifth node are shown in Figures
6-31 and 6-32. The time responses of the cracked shaft predicted using full order and
reduced order equations of motion are compared to that of the uncracked shaft. The
accuracy of the modal reduction schemes. complex as well as planar is then validated by
comparing the time response predicted using the full order and reduced order models.
In Figure 6-33, the time responses of the free end of the cracked as well as uncracked
cantilever are plotted. The amplitudes of vibration at the free end are comparatively
larger than the amplitudes of vibration at node 5. In Figure 6-34, the. time responses
at different locations of the cracked non-rotating cantilever are plotted to compare the
corresponding amplitudes of vibration.

In Figures 6-35 and 6-36, the impulse responses of the free end and node 5. respec-
tively, of the cracked non-rotating cantilever is compared to that of uncracked cantilever

shaft. The cantilever shaft is excited by an impulse at node 5. It is observed that ampli-
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Figure 6-28: Impulse response of non-rotating simply supported shaft using complex
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Deflection Parameter at Node # 5
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Deflection Parameter at Different Locations
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Figure 6-30: Deflection of cracked non-rotating simply supported shaft at different loca-
tions along its length due to unit impulse at node 5
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Figure 6-33: Comparison of step response of the cracked and uncracked non-rotating
tapered cantilever shaft at the free end
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tudes of vibration of the impulse responses are comparable for the cracked and uncracked

non-rotating tapered cantilever shafts.

6.3.4 Rotating Tapered Shaft
Example 1

In the previous examples, the effect of a crack on the time response of non rotating shafts
was studied. Consider a cracked tapered shaft rotating at a spin speed of @ = 3000
rad/sec with a crack of depth A = 0.5 at p = 0.3 and taper ratio equal to 0.5, which is
supported at the widest end by a rigid journal bearing, is excited by a step force near the
crack. Again the tapered shaft is of length L = 1m and slenderness ration R;/L = 0.125.
The shaft is divided into 11 equal finite elements. The excitation is at node 5. The time
responses of the rotating tapered shaft in the two planes of vibration obtained using the
full order models are plotted in Figure 6-37. In this example, the unit step force is acting
in the direction of vibration along which the crack is present. It is clearly shown in the
figure that the deflection in the plane in which the crack is present is greater than that
in the other plane. Although the excitation is only in one plane we record a deflection in
the other plane because the two flexural motions are coupled by the gyroscopic moments.
The response computed using the complex reduction scheme is also shown in the figure.
In Figure 6-38 the time responses at node 5 of an uncracked tapered rotating shaft excited
by unit step at node 5 is plotted. It is observed that the vibration of the shaft in the

two planes is exhibiting out of phase beating phenomenon. Comparing Figures 6-37 and
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6-38 one can infer that the amplitudes of vibration of the cracked shaft have increased
in the plane of crack.

In Figure 6-39, the deflection of the rotating shaft at the free end is shown. In this
figure, the response computed using planar reduction scheme is compared to the one
computed using full order matrices. In Figure 6-40, the response of the cracked rotating
shaft at node 5, when excited by a unit impulse at node 5 is shown. The response
computed using full order matrices is compared to the response computed using the

planar reduction model. The compared responses are in good agreement.

Example 2

A simply supported rotating tapered cracked shaft is considered. Other details of the
shaft are similar to those of example 1. The response of the simply supported rotating
shaft to unit step force is shown in Figure 6-41. The amplitudes of vibration in the
plane in which the crack is present are much higher when compared to the amplitudes of
vibration in the other plane of vibration. This is due to the inertial coupling matrix which
couples the flexural and torsional vibrations of the shaft. In Figure 6-42 the torsional
deflection of the simply supported shaft due to a unit step force in the flexural direction is
shown. The torsional deflection is solely due to coupling with the flexural motion because
no torsional load is applied to the shaft. In addition, the response due to a unit step
force computed using planar reduction model is in good agreement with that computed

using full order matrices.
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Deflection Parameter at Node # 5
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Deflection Parameter at Node # 5
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In Figure 6—43 the step response of a tapered rotating uncracked shaft is plotted.
The tapered shaft is simply supported at both ends and is rotating at a spin speed of
Q= 3000. rad/ sec. The comparison of Figures 6-41 and 6-43 show the difference in the
behavior of the rotating shaft due to the presence of crack. The time responses of the
uncracked rotating shaft have out-of-phase vibrations exhibiting the beating behavior.
The step response of the cracked rotating shaft does not exhibit the above characteristics.
The deflection in the plane of crack is much higher when compared to the deflection in
the other plane.

The response at node 5 dué to unit impulse is shown in Figure 6-44. Once again, the
amplitude of vibration in the plane of crack is higher than the amplitude of vibration in
the other plane. Moreover, the comparison of impulse responses computed using planar .

reduction and using full order matrices is excellent.

Example 3

The rotating cantilever shaft of example 1 is excited by cyclic forces. In Figure 6-45, the
response at node 5 of the cantilever shaft due to a force of the form sin (1000£) applied
at node 5 is shown. It is observed that the behavior of the shaft when excited by a cyclic
force is completely different compared to the behavior when excited by step or impulse
forces. The amplitudes of vibration exhibit in-phase beating unlike the behavior of the
uncracked shaft shown in Figure 6-43.

In Figure 6-46, the response at node 5 of the cantilever shaft due to a force sin (3000 t)
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Figure 6-42: Torsional response of a cracked rotating tapered simply supported shaft due
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Deflection parameter at Node # 5

—__ Perpendicular to Force

—____Direction of Force

. . . Planar Reduction

1

1 ] | | |
0 0.002 0.004 0.006 0.008 0.01

Time (sec)

0.012 0.014 0.016 0.018 0.02

Figure 6-44: Impulse response of cracked rotating tapered simply supported shaft using
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applied at node 5 is shown. In this case, the frequency of the applied force is selected
far from the lowest natural frequency of the shaft, hence the phenomenon of beating will
not take place, however, this is a case of unbalance response because the frequency of
applied force is equal to the spin speed of the rotor shaft. It is also observed that the
amplitude of vibration in the plane of crack is higher than the amplitude of vibration in
the other plane.

In Figure 6-47, the shaft is excited by a force sin(965¢) at node 5. The lowest
frequency of vibration of the shaft in the plane of crack is 965 rad/ sec . Hence resonance
occurs. It is observed from the figure that the amplitude of vibration in the other plane
also increases, though the forcing frequency is not near the frequency of vibration of
the other plane. In Figure 6-48, the excitation force is sin (1425¢t) at node 5, where
1425 rad/ sec is the frequency of vibration of the shaft in the plane in which crack is not
present. From the figure it is clear that the resonance occurs in the plane in which crack

is not present, eventhough the force is acting in the plane of the crack.

Example 4

The simply supported rotating cracked tapered shaft considered in example 2 of the
present section is excited by cyclic loads. The response of the simply supported shaft
due to a force of sin (3000¢) is shown in Figure 6-49. The response of the shaft due
to a force of sin (2167 t) + cos (1632¢t) applied at node 5 is shown in Figure 6-50. The

frequencies of excitation are equal to the two lowest natural frequencies of the simply
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supported shaft. It is seen that resonance occurs in both the planes of vibration. In
all the cases in which the shaft is excited by cyclic forces, the response evaluated using
modal reduction schemes is found to be in excellent agreement when compared to the

full order finite element model.

6.3.5 Rotating Multi-Stepped Shaft
Example 1

The cé)mplex multi-stepped rotor-bearing system shown in Figure 6-11 is now simulated
to study the time response of an actual large-scale rotor system. The rotor-bearing
- system is rotating at a spin speed of Q = 2000 rad/ sec. The shaft is supported by two
bearings which are flexible and damped. The stiffness coefficients of the bearings are
Ky = K, = 3.503 x 107 N/m and K. = K., = —8.756 x 105 N/m. The damping
coefficients are Cy, = C,, =1.752 x 10° N.s/m and C,. = C.,, = 0. The mass properties
of the disk are mass 1.401 kg, polar moment of inertia 0.002 kg/m3, and diametral inertia
0.00136 kg — m?. The shaft is excited by a step force applied at the disk. The multi-
stepped shaft is divided into 18 elements of which some are hollow. The total number
of degrees of freedom of the shaft are 95, therefore the state space full order model is of
order (190 x 190). The full order model is reduced to an order of (20 x 20) by retaining
the first ten complex conjugate modes of the full order model. The time responses at
the disk evaluated using the full order model and the reduced order model are plotted

in Figure 6-51. It is observed that the comparison of the time responses of the full and
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Figure 6-49: Time response of cracked rotating tapered simply supported shaft due to a
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Deflection Parameter at Node # 5
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Figure 6-50: Time response of cracked rotating tapered simply supported shaft due to a
force sin(2167 t) + cos(1632 t)
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reduced order models is excellent.

Let a crack of depth A = 0.5 be present at element 4 to the left of the disk. The
time response of the cracked shaft due to step force at the disk is plotted in Figure 6-52.
By comparing the time responses of uncracked ( Figure 6-51 ) and cracked ( Figure 6-52
) shafts one can infer that the amplitudes of vibration are comparable, although the
behavior of the cracked shaft exhibits longer settling time. This could be attributed to
the fact that the crack, in some situations, was found to have a destabilizing effect on
the rotor response.

Now, the uncracked multi-stepped shaft is excited at the middle of the two bearings,
i.e. at node 13. The deflection of the shaft at node 13 evaluated using full and reduced
order models is plotted in Figure 6-53. In Figure 6-54, the deflection of node 1 ( tip of
overhang ) due to step force at node 13 is plotted. In Figure 6-55, the deflection of node
1 is plotted for expanded simulation time. Figures 6-53-6-55, show that the comparison
of responses evaluated using full and reduced order models is excellent.

Let a crack of depth A = 0.5, be present near mode 13 and the shaft be excited by a
unit step force at node 13. The deflection at node 13 of the cracked shaft due to step force
is plotted in Figure 6-56. Comparison of Figures 6-53 and 6-56 show that the amplitudes
of vibration in the direction of force have increased appreciably for the cracked shaft.
The deflection at node 1 of the cracked shaft due to excitation at node 13 is plotted in
Figure 6-57. Comparison of Figures 6-54 and 6-57 show that the amplitudes of vibration

of the cracked shaft have increased. Hence, one can infer that when the crack is present
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Figure 6-51: Time response of uncracked multi-stepped shaft due to unit force at the
disk
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Deflection Parameter at Disk
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in the span between the bearings, it has appreciable effect over the time response, where
as, if it is present in the shaft overhang, the amplitudes of vibration of the cracked and

uncracked shafts are comparable.
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Deflection Parameter at Node # 13
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Figure 6-53: Step response of the multi-stepped uncracked rotor-bearing system using
planar modal reduction
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Deflection Parameter at Node # 1
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Figure 6-54: Step response of uncracked multi-stepped system an node 1 due to excitation
at node 13
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Deflection Parameter at Node # 13

___Perpendicular to Force ____Direction of Force

5 A |} 1 L) 1 {
|
I
4 & h i
H“l‘l“\l Lot
| llhl, \'\[‘,\'\I\rv\l\"\/\.'\fv.//"\\'v«.,f*“"»-..f-—- vvvvvvvvvv
v
3yl A |
|\
|
Il- —
2]
I
I
]
1F _
|
' " ——
0 _
-1 1 1 I { 1
0 0.005 0.01 0.015 0.02 0.025 0.03
Time (sec)

Figure 6-56: Step response of cracked multi-stepped system due to excitation at node 13
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Deflection Parameter at Node # 1
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Figure 6-57: Step response of cracked multi-stepped shaft at node 1 due to excitation at
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Chapter 7

Conclusions and Recommendations

7.1 Conclusions

The shape functions for the rotating tapered cracked shaft finite element with shear
deformation are derived. Expressions for the element mass, stiffness and gyroscopic ma-
trices are formulated. The explicit form of the element matrices offers a computational
advantage by eliminating the loss of computer time and round-off errors associated with
extensive matrix operations which are necessary for their numerical evaluation. It is note-
worthy to observe that these matrices are easily reducible to those of the Euler-Bernoulli
pheory by equating the shear deformation and the local crack flexibility parameters to
zero. The developed finite element is integrated into a computational scheme for calculat-
ing natural frequencies and transient dynamic behavior of cracked rotor-bearing systems.

The computational scheme accounts for any hollow portion in the shaft, as well as the
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presence of disks and bearings.

As anticipated, the s(;L;dy sho-\;;s= that the frequency of the ro.t;or decreases with the
increase in the crack depth. The effect of the position of the crack on the natural
frequencies of the rotor is also studied. For simply supported rotor, the frequencies
decrease as the position of the crack moves away from the end bearing to the middle of
the rotor. In this case, the largest decrease in frequency occurs when the crack is at the
middle of the rotor. The effect of the crack position on the natural frequencies of the
overhanging rotor is in contrast to that of a simply supported rotor, i.e. the frequency
decreases as the crack moves closer to the support bearing.

The transient dynamic behavior of the cracked rotor-bearing system is studied for
different types of end conditions and excitations. It has been observed that among
the different types of excitations studied in this thesis, the step fo-rce produces larger
deflections of the cracked shaft. The effect of the impulsive force is more pronounced
on the time response of the cracked shaft if the impulse is applied near the crack. The
application of cyclic forces exhibit the interesting phenomenon of beating if the frequency
of applied force is near the first natural frequency of the shaft. If the frequency of the
applied cyclic force is equal to the first natural frequency, resonance occurs as expected.

It is observed that the difference in amplitudes of vibrations of cracked and uncracked
shafts is large for the case of a simply supported shaft. However, the time responses of
cracked and uncracked cantilever shafts are comparable. This observation is applicable

to uniform, tapered, non-rotating and rotating shafts. The amplitude of vibration of
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rotating and non-rotating shafts is almost equal. For the non-rotating shaft the two
planes of vibrations are r;ot coupiég, while for the rotating shaft, the vibrations in the
two planes of vibrations are coupled by the gyroscopic moments. If the rotating shaft is
excited in one plane, it deflects in the other plane as well.

The modal reduction techniques, both complex and planar reduction schemes, are
used to reduce the order of the equations of motion. The time responses predicted using
the reduction schemes are in excellent agreement with those predicted using actual full-
order finite element model.

In conclusion, the contributions of the investigation presented in this thesis are man-

ifested by the following:

(a) Development of a new tapered finite shaft element with a crack.

(b) Explicit expressions of the elemental mass, stiffness, gyroscopic matrices are de-

rived.

(c) The complex modal reduction scheme is numerically implemented for the first time,
to the best knowledge of the investigator, to obtain a reduced order model of the

equations of motion for dynamic response analysis of rotor-bearing systems.

(d) Equations of motion of a general rotor-bearing system that includes disks and

bearings are computer generated

(e) A numerical scheme to integrate the equations of motion in either its full-order
form or reduced-order form (using either planar or complex modal reductions) is
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established. . Time responses of any general rotor system can be easily obtained due

to any general forcing function.

7.2 Recommendations for Future Research
The following recommendations are made for future research:

e In this investigation the equations of motion of the general multibody system are
derived for all the three _reference rotations of the body axis. While deducing the
equations of motion of the the rotor-bearing system, dnly the reference rotation
about the axis of the shaft is considered. One can include the reference rotation
about other axes. The inclusion of the rotation about other perpendicular axes
is like simulating a rotor shaft of an aircraft or a ship engine .during any turning

manuevours.

o The rate of change of body reference rotation i.e. the spin speed of the shaft is
assumed to be constant. This assumption yields a constant gyroscopic matrix.
During startup and shutdown, the spin speed of the shaft is not constant. If a
variable spin speed is considered, it yields a time dependent gyroscopic matrix. The
effect of time dependent gyroscopic matrix on the st#bi]ity and dynamic analysis

of the rotor-bearing system can be studied.

e It is well known that the bearing properties are function of spin speed of the shaft. If

a variable spin speed is assumed, better models of the bearings, which accommodate
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the variation of its properties with speed, will have to be considered.

g

The disks are assumed as rigid in the present investigations. A multibody formu-

lation of the rotor-bearing system can be developed considering flexible disks.

It is assumed that the crack remains open. This assumption is valid for most of the
shafts found in real life. But if the shaft lS heavy and the static deflection of the
shaft is large compared with the vibration amplitudes, the crack opens and closes
periodically with the shaft rotation. The periodic opening and closing of the crack
makes its stiffness a ﬁmcﬁon of time. Moreover, a switching function will have to
. be defined to signal the opening and closing of the crack. The crack opening could
be gradual with shaft rotation. Therefore, instead of having an on-off switching

function a continuous function of time can be considered.

An analytical solution to the equations of motion of a uniform rotating Timoshenko

shaft can be investigated.

Another extension to this work is to investigate the development of an alternative
approach for modeling the crack flexibility by assuming discontinuity in the slope
together with the resulting Dirac delta functions in the moments and shear forces at
the crack location. In such a case, however, the physiéal integrity of the structure

should be preserved.



Appendix A
Fr_acture Mechanics

A.1 Fracture Modes

A crack in a solid can be stressed in three different modes as shown in Figure A-1 [24].
Normal stresses give rise to the “opening mode” denoted as Mode I. The inplane shear
results in Mode II or “sliding mode” of fracture. The “tearing mode” or Mode III is

caused by out of plane shear.

A.2 Stress Analysis of Cracks

If we define a polar coordinate axis with the origin at the crack tip (Figure A-2), it can

be shown that the stress field in any linear elastic cracked body is given by [23]

Oij = ':%fij (0) + other termé (A.l)
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( In-Plane Shear)
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(Opening )

Mode I
( Out-of-Plane Shear )

Figure A-1: The different modes of fracture of a solid
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CRACK >

Figure A-2: Definition of the coordinate axis ahead of a crack tip. The Z direction is
normal to the page
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where o;; is the stress tensor, r and 6 are as defined in Figure A-2, k is a constant, and

fij is a dimensionless ﬁmctlon of 0

A.2.1 The Stress Intensity Factor

It is convenient at this point to replace k by the stress intensity factor K, where K =
kv2m. The stress intensity factor is usually given a subscript to denote the mode of
fracture; i.e., K;, Kir, or K. Detailed expressions for the singular stress fields for
Modes I and II are given in Table A.1. Displacement relationships for Modes I and II
are listed in Table A.2. Table A.3 hsts the nonzero stress and displacement components

for Mode I11.[24]

A.2.2 Relationship Between K and Global Behavior

In order for the stress intensity factor K to be useful, one must be able to determine K
from remote loads and the geometry. Closed-form solutions for an infinite plate subjected

to a remote tensile stress (Figure A-3) is given by [24]
K; =o+v/ma (A-2)

Thus the amplitude of the crack tip singularity for this conﬁgurati;)n is proportional to
the remote stress and the square root of crack size.

A related solution is that of a semi-infinite plate witlr an edge crack (Figure A-4).
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Table A.1: Stress fields ahead of a crack tip for Mode I and Mode IT
in a linear elastic, isotropic material

Mode I Mode II

Om | Zomoos(3) [L—sin (5 sin ()] | ~HLsin (§) 2+ cos (§) cos (¥)]

ow | 7acos(3) (L +sin(g)sin ()] |  JEsin(3)cos (§) cos (%)
Toy 7o cos(3)sin(F)oos(F) | Jcos(§) [1—sin (5)sin (F)]
Oz 0 (Plane Stress) 0 (Plane Stress)
v (0zz + 0yy) (Plane Strain) v (0zz + 0yy) (Plane Strain)
Tzrzy, Tyz _ 0 0 .

Table A.2: Crack tip displacement fields for Mode I and Mode II
(linear elastic, isotropic material).

Mode I Mode I1

vz | 3dv/3 008 (3) (e —1+sin® (§)] | §4/Fsin (§) [s+ 1+ cos? (§)]

gy | So/Foin (§) [+ 1 o0t (§)] | -8/ cos (8) [ — 1~ sin? (9)]

oc=3—4u(pia.nestrain) -
k= (3 —v) /(1 +v) (plane stress)
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Figure A-3: A through-thickness crack in an infinitely wide plate subjected to a remote
tensile stress -
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Table A.3: Non-zero stress and displacement components in Mode I
(linear elastic, isotropic-Tnaterial) :

us | S /Fsin (3)

The stress intensity factor for the edge crack is given by [24]
Kr=1.120/wa (A.3)
which is similar to Eq.(A.2).

A.2.3 Effect of Finite Size

Figure A-5 schematically illustrates the effect of finite width on the crack tip stress dis-
tribution, which is represented by lines of force; the local stress is proportional to the
spacing between lines of force. Since a tensile str&ss cannot be transmitted through a
crack, the lines of force are diverte-d around the crack, r&mlﬁng ina local stress concen-
tration. In the infinite plate, the line of force at a distance W from the crack center line
has force components in the z and y directions. If the plate width is restricted to 2W,

the = force must be zero on the free edge; this boundary condition causes the lines of

-~ 230



Figure A-4: Edge crack in a semi-infinite plate subjected to a remote tensile stress



N

force to be compressed, which results in a higher stress intensification at the crack tip.

The Mode I stress intensity factor for this situation is given b)-r [24]

2W ra\]%
K[ = oy Ta [—1; tan (-2—W')] (A.4)
More accurate solutions for a through crack in a finite plate have been obtained from
finite element analysis. Solutions of this type are usually fit to polynomial expressions.

One such solution [25] is given by

K; = ov/7a [sec (;—v‘t’,)] : [1 —0.025 (%)2 +0.06 (-%)4] (A.5)

Equation (A.4) agrees with the finite element solution to within 7% for ; < 0.6. The
secant correction is much closer to the finite element solution; the error is less than 2%

for w < 0.9.



—
%]

Figure A-5: Stress concentration effects due to a through crack in finite and infinite width
plates.
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NOMENCLATURE

Cross-sectional area of element ij
Curvature matrix

Young’s modulus

Nodal coordinates of element 7j

Shear modulus

Second moment of the cross-sectional area
Stress intensity factor

Composite stiffness matrix of element j
Element stiffness matrix due to flexure
Element stiffriess matrix due to shear
Element stiffness matrix due to torsion
Stiffness matrix of the body ¢
Lagrangian

Length of element ij

Location of the crack

-Composite mass matrix of element 7;

Mass matrix of the body 4

Shape functions of element j

Generalized forces acting on element j
Generalized coordinate vector of element zj
Generalized coordinate vector of body 2
Generalized coordinate vector of the system
Outer radius of shaft finite element

Inner radius of shaft finite element

Kinetic energy of element ij

Kinetic energy of body 7

Strain energy of element ij

Strain energy of body ¢

Volume of element ij

Deflection in Y/ direction

Virtual work done on element ij

Deflection in Z¥ direction

Coordinate axes of element 7j

Coordinate axes of body 7

Inertial axes
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¢'l

Transformation matrix from XY ~Z° to X'Y*Z?
Shear deformation parameter

Transformation matrix from X*Y*Z to XY Z
Holonomic constraints

Spin speed

Strain -

Mass density of element ij

Torsional rotation about X3

Elastic rotation about Y5’

Elastic rotation about Z7

Rigid body rotation about X*

Shear coefficient

Poisson’s ratio

Natural frequency

Whirl ratio
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