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Chapter 1

INTRODUCTION

The fundamental task of science is to probe the world around us. The ability to infer
information from an object without direct contact expands man’s sensory horizon.
The most powerful method for accomplishing this goal is to direct energy, in the
form of waves, at an object and to observe the waves after they have interacted with
that object. This method constitutes an important class of inverse problems known
as inverse scattering problems. For example, a conventional photograph is produced
by directing light waves from the flash bulb to the object in question and recording
the image formed by reflected waves on the film. The results of such an experiment
can be easily understood by simply looking at the picture, while the waves (such
as X-rays, microwaves, sound waves) which penetrate the medium being studied are
less directly meaningful. A wave which penetrates deeply into a medium gives us
the opportunity to see below the surface. Inverse problems can be encountered in
diverse fields ranging from medical to engineering sciences. They occur in geophysics,
plasma diagnostics, electrodynamics, optics and many other areas. Typical inverse
problems include the interpretation of electrocardiograms, image processing and back-
projection tomography (3,30, 33].

There is, in most cases, quite a natural distinction between the direct and the
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inverse problem. For instance, predicting the future behavior of a physical svstem
from the knowledge of its present state is regarded as a direct problem. However.
determining the past state of a system from present observations. or the identifi-
cation of physical parameters from observations of probed data constitute inverse
problems. Some of the important classes of such inverse problems are the determi-
nation of the initial state (temperature or displacement) from the observed data: the
determination of physical parameters of the medium; and determination of the shape
and the nature of the scattering object in a medium from the scattered data 13.39..
These inverse problems are often improperly posed. This ill-posedness might be due
to the nonuniqueness or due to the discontinuous dependence of solutions on the
data [15.28.31]. Therefore, a solution often has to be chosen from many possible dif-
ferent solutions in solving inverse scattering problems. As an added complication. the
scattered field is nonlinearly related to the scattering object. This nonlinear relation-
ship exacerbates the difficulty of finding a closed form solution to inverse scattering
problems. However, if the scattered field is approximated as a linear function of the
object, it vastly simplifies the inverse problem.

The correct understanding and solution of many inverse problems depend on the
rigorous and exact analysis that can be obtained by faithfully solving the governing
equation. Inverse boundary value problems are a class of problems in whicl: unknown
coefficients or data of a partial differential equation represent internal paramerers
of a medium, and the known information consists of the boundary measurements of
solutions [34,71]. These problems can arise in heat conduction, crack and corrosion

identification, determination of elastic parameters etc. Several approaches and math-



ematical methods can be applied to the governing equation that can lead to analytic
reconstruction methods for these problems.

The objective of seismic inversion is to estimate earth parameters, such as velocity
and density from seismic data. In a seismic experiment, a source is set off at a point
on the surface of earth, and the upward propagating wave is then measured at an
array of receivers near the source {14,16]. The image of a subsurface. so constructed
is important, either for theoretical purposes or for the purpose of interpretation by
a geologist for the identification of likely subsurface regions for resource extraction.
These inverse problems form a class of problems in which unknown coefficients of
wave equation represent internal parameters of a medium and the known information
consists of boundary measurements. As mentioned above. an inverse problem can
be simplified if the scattered field is approximated as a linear function of the object.
There are several conditions under which the problem can be linearized. These con-
ditions. for example. are those of the Born and the Rytov approximations '19.49.66 .
For instance, in the Born approximation, the scattered field amplitude is a linear
function of the object. whereas in the Rytov approximation. the phase pertwbation
is its linear function. Furthermore, another way of obtaining a linearized relationship
between data and the object is to use high frequency waves. In this case concepts of
reflection and refraction of plane waves at the plane interface carry over to inhomo-
geneous media. If the primary concern is high frequency seismic inversion. then the
real objective is to obtain a reflector map of the earth’s interior and devise means for

estimating the changes in earth parameters across those reflectors.



1.1 A Brief Historical Background

One of the first rigorously treated inverse problem was Abel’s solution of the
tautochrone problem, published in 1826 [1]. Abel's solution to this problem iu classical
mechanics is of importance in many areas of inverse scattering. The next major
exposition of inverse scattering was instigated by investigations into the structure
of the atom by Rutherford in 1911 [64]. Inverse scattering became a subject of
paramount importance with the advent of wave mechanical formulation of Schirédinger
in 1926. The Schrodinger wave equation provided a way of relating the state of a
particle to the potential influencing it at any time [22].

It soon became apparent that the inverse solution of the Schrodinger equation pre-
sented a formidable task and appropriate approximate solutions were eageriy sought
by numerous workers in the field. Born eventually showed in 1926 that provided
the scattering interaction was sufficiently weak, a particularly simple relationship
existed between the scattered field and the scattering potential. The exact inverse
solution of Schrédinger equation was given by Gelfand and Levitan and indepen-
dently by Marchenko in the early 1950°s {36.55]. Historically the first exact inverse
scattering solution was developed for the Schrodinger equation rather than the wave
equation. Nevertheless, the wave equation can be obtained from Schrodinger equa-
tion by transformation. The importance of Gelfand-Levitan and Marchenko solution
is well established, however in practice obtaining an exact inversion is not necessarily
the end of the story, mainly due to the nature of measured data. Although R. G.

Newton generalized the Gelfand-Levitan and Marchenko integral equation to higher



dimensions [60-62], the method is computationally cumbersome and is restricted to
certain types of potentials.

The mapping of the interior of the earth from observations on surface of the earth
is also an inverse problem. Herglotz [48] constructed the velocity exactly from the
measurements of the arrival time as a function of distance from the earthquake source.
The Herglotz-Wiechert [48, 72] construction only gives a unique result when velocity
increases monotonically with depth (Gerver and Markushevitch [39,53]). Despite the
mathematical elegance of the exact nonlinear inversion schemes, they are of limited
applicability. In order to increase applicability to a wide variety of problen:s. manv
researchers used approximation techniques such as linearization and perturbation
methods. In the last three decades, many researchers around the world worked on
the seismic inverse problerms, see for example Gerver [37], Bleistein and Cohen [15-17".

Liner [53], Hanitzsch [46], among others.

1.2 Objectives

The purpose of this Thesis is three-fold. Firstly, to consider initial inverse prob-
lems for damped wave equations and applying it to the inverse problem in the heat
conduction. Secondly, to consider inverse problem of shear velocity reconstruction for
seismic problems involving Love wave propagation using the Gelfand-Levitan theory.
Thirdly, to consider the velocity inversion procedure based on the Born approxima-
tion applied to seismic inverse problems. Moreover. we will try to tie these into three

aspects of a single problem.



1.2.1 Initial Inverse Problems

The usual method of solving inverse problems of initial profile reconstruction
for heat conduction and wave problems is by applying Picard’s criterion to integral
equation of the first kind with the associated singular system. The inversion procedure
presented in this Thesis uses the damped wave equation model. Instead of initial
profile reconstruction of the wave equation, we consider initial profile reconstruction
of the damped wave equation because it more realistically models the medium of
interest. Moreover, the damped wave equation model regularizes the classical heat

conduction model.

1.2.2 Shear Velocity Inversion for Love Waves

In 1950 Marchenko, and Gelfand-Levitan independently in 1952, found an inverse
solution to the Schrédinger equation. They were also able to establish necessary con-
ditions for the potential to be uniquely determined. Because of the considerable power
and theoretical importance of the method, it became a touchstone by which all other
inversion schemes were gauged. From a mathematical stance. the Gelfand-Levitan
and Marchenko method is underpinned by the ability to construct an integrating ker-
nel possessing the desired properties. The class of reflection coefficients which allow
such integrating kernel is small and even for most simple scatterer, one is usually
forced to resort to a numerical solution. These restrictions make practical implemen-
tation of Gelfand-Levitan and Marchenko method most challenging. In this Thesis an

inversion procedure for the shear velocity of Love waves is considered. The equation
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of motion for Love waves is transformed to the Schrédinger equation and then the

potential is recovered by applying Gelfand-Levitan and Marchenko procedure.

1.2.3 Velocity Inversion Procedure

The seismic inverse problem has a difficulty, inherent in the inverse problem. of
being nonlinear. The model describing the propagation of waves inside the earth
contains the product of the unknown field times the unknown earth parameters. To
overcome this difficulty, a linearization of the problem is performed by introducing
background earth parameter values. It is expected that the map obtained through
such a process is an approximate image of the subsurface structures. Indeed. so-
phistication in the development of such a technique would naturally complicate the
problem. In this Thesis we introduce a damping term in the wave equation and its

effect on the velocity inversion as well as on the recovery of damping is investigated.

1.3 Organization of the Dissertation

In Chapter 2, the initial inverse problems of damped and undamped wave equa-
tions are presented. The procedure consists of transforming the problem into inregral
equation of the first kind. The Picard’s criterion which ensures the existence as well as
a unique solution to the initial inverse problem can be applied to integral equation of
the first kind. We considered the damped wave equation instead of the wave equation
because it more realistically models the medium of interest. The inversion proce-
dure developed for one-dimensional problems is then extended to two-dimensional

problems.



The inversion method for the shear velocity of Love waves is presented in Chapter
3. The method is based on Gelfand-Levitan and Marchenko technique. which can
be applied to the Schrédinger equation. First, a transformation technique to convert
governing equation of Love waves to the Schrodinger equation is developed. The basic
assumption we made is by introducing background parameters, which is certainly
permissible in many physical situations.

In Chapter 4, a procedure is presented for high frequency inversion of impulse
response data. The starting point is an inverse scattering integral equation based on
the Born’s approximation for modeling of the direct scattering problem. The process
is developed on the one-dimensional damped wave equation by considering constant
background and zero-offset experiment. The insight gained from the one-dimensional
problem is then extended to three dimensional problem. The aim of introducing
damping term in the wave equation is to get increasingly better approximation to
velocity variations, which in turn ensure a more accurate map of the earth’s interior.

Finally, to ensure smooth reading of the thesis. complicated derivations and the

mathematical tools needed are relegated to the appendices.



| Chapter 2

INITIAL INVERSE PROBLEMS

2.0.1 Abstract

The initial inverse problem in damped and undamped wave equations arise when
ezperimental measurements of disturbance at a particular time are used to calculate
the disturbance at some particular time in the past. Such problems can be reduced to
integral equations of the first kind and Picard’s criterion can be applied to solve the
wnverse problem with the help of the associated singular system.

Usually, in the real world, the medium of propagation offers some resistance. so
it is desirable to introduce a damping term in the wave equation. We conszﬁ.a’er the
tnverse problem of recovering the initial disturbance from the information of the nndl
data. The damped and undamped models are compared by performing some numecrical
ezperiments. An application of damped wave equation is also presented which involve
the introduction of a damping parameter in such a way that it closely approrimates
the heat conduction model. It is shown that the modified model based on thc damped

wave equation behaves much better than the classical heat conduction model.
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2.1 Introduction

Initial inverse problems are much less encountered in the literature than some
other types of inverse problems. However, one of the earliest studies on inverse prob-
lems by Fourier and Kelvin [21] were concerned with initial inverse problems. that
is, they tried to estimate the initial temperature distribution of the earth from cur-
rent temperature measurements. Recently Nakamura et al. [59] used transformation
techniques to solve the initial inverse problem in heat conduction and Al-Khalidi 5’
dealt with the problem numerically. For comprehensive review of the literature and
summary of various approaches in the field of inverse heat conduction problems. one
can consult the books by Beck et al. [9] and by Hensel [47]. The inverse heat cou-
duction problems are ill-posed [34], so the slightest error in the measurements can
give abrupt results. If the damping of the medium is not taken into account then the
initial inverse problem may also give abrupt results. We consider the regularization
of the heat conduction problem by introducing the model based upon the damped
wave equation. The application of this idea to some interesting inverse problems in
heat conduction have appeared in Zaman and Masood [74]. Masood and Zaman ;56'.
Masood, Messaoudi and Zaman [57].

In many physical applications, one encounters the situation where the usual wave
equation does not serve as a realistic model. For instance, the wave equation does
not mode] correctly the medium of propagation that offers resistance, so a damping
term which is proportional to velocity is introduced in the wave equation {65.71]. The

inverse problems in such damped waves can be of interest in some cases. For example.
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if a signal of an explosion is received from a known location then our inverse problem

may predict the magnitude of the initial explosion.

2.1.1 Organization of the Chapter

The basic definitions and mathematical tools needed for this chapter are rele-
gated to Appendix-A. In the second section the method of initial inverse problems is
described for the wave equation without introducing a damping term. In the third
section, we consider the one-dimensional wave equation with a damping term and
perform some numerical experiments for different values of the damping parameter
by constructing some particular examples. We also consider the two-dimensional
problem and perform the same analysis as for the one-dimensional problem. We also
present an interesting application of the damped wave equation to the heat conduction

model. Finally, in the last section conclusions are presented.

2.2 Initial Inverse Problems in the Wave Equation

In the first subsection the procedure to recover the initial profile from the final
profile is described in detail for the one-dimensional wave equation. In the second

subsection the procedure is applied to the two-dimensional wave equation.
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2.2.1 Initial Inverse Problem in the One-dimensional Wave

Equation

First, we consider the one-dimensional wave equation

il z€(0,w], t >0, (2.1)
with homogeneous Dirichlet boundary conditions
u(0,t) = u(w.t) = 0. (2.2)
Assume the final distribution
f(z) = u(z,T). (2.3)
We want to determine the initial profile vo(z)
vo(z) = u(z,0), (2.4)
subject to
%%(z,O) = 0. (2.5)

The functions ¢,(z) = \/g sin(nz) form a complete orthonormal system in L2[0. 7]

and eigenfunctions of fg on [0, 7). Thus vo(z) € L2[0, 7] can be expanded as



‘Uo(I) = Zcﬂén(x) . TE [077"]7

where

Cn = \/%/0‘ vo(7) sin(nT)dT.

Now by separation of variables suppose solution of direct problem (2.1). (

(2.3) is of the form

u(z, 1) = Y an(t),(a), z & [0,7],

n=1

where a,(t) have to solve the initial value problem

d*an(t) )
=-n . > 0.
7 n-an(t) t>0

where

13

2.2) and
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and

dan(0) 5
e 0. (2.11)
Therefore (2.8) can be written as
x
u(z,t) = Y _ cqcos(nt)d,(z), (2.12)
n=1
Using condition (2.3) we write
f(z) =/ k(z.7)ve(7)dT. {2.13)
0
with
k(z,7) =) _ cos(nTl)o, (7)o, (z)- (2.14)
n=1

Thus the inverse problem is reduced to solving the integral equartion of the first

kind given by (2.13). The singular system for the integral operator in (2.13) is given

by

{cos(nT); &,(z). o,(z)}- (2.15)

It now follows from Picard’s theorem that our inverse problem is solvable iff



> oo 2.16)
= (cos(nT))"
where
fo= / (7)o, (7)dr. (2.17)
0

are classical Fourier coefficients of f. In this case the solution is given by

Z Jnoulz) (2.18)

cos (nT)’

Following the same procedure as above . the heat equation

du O-u .
— T — -.19
ot Or* (2:19)
together with (2.2). (2.3) and (2.4) is solvable iff
Y el <=, (2.20)

n=]
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and the solution is given by

v (z) = \/gi " f,.sin (nz). (2.21)

n=1

From (2.20) and (2.21) it is clear that the inverse problem of heat conduction is
extremely ill-posed i.e. solution exist only if Fourier coefficients decav much faster
than exp[—n?®. A small error in n-th Fourier coefficient is amplified by the factor
exp [n?]. Thus. already an error of, say, 10~¢ in the fifth Fourier coefficient of the data
leads to an error of about 103 in the initial temperature. Thus. one can consider at

most about three degrees of freedom in the data and neglect higher modes.

2.2.2 Initial Inverse Problem in the Two-dimensional Wave

Equation

We consider a two-dimensional wave problem as follows:

*u _ 0*u  Ou
ot~ bz | oyt

——~
o
(L]
[3%)

A —"g

T,y € R.

where R is the rectangle

R = {(z.y)/z € [0.a].y € [0, ]}, (2.23)
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with homogeneous Dirichlet boundary conditions

o
o
'S

S

u(0.y.t) =u(a.y.t) =0, ye€/[0.b]. (

u(z.0.t) =u(z.b.t)=0. =z <[0.q]. (2.23)
Assume the final distribution of the form
flz.y) =ulz.y. 7). (2.26)
Our aim is to determine the initial profile ro(z. y)
vo(z.y) = ulz.y.0). (2.27)
g‘t‘(x y.0) = 0. (2.28)

The functions o, ,,(z.y) \/ = sin(®=%) sin(=*) form a complete orthonormal sys-
tem in L*[R] and eigenfunctions of V* on the rectangle R. Thus v(z.y) € L*[R]

can be expanded as

o
o
©

N

1’0(I'y) Z cnmonm I. U I7y E Rt (

nm=1
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where
a b
o = / / w0(Z. 9)0, (2. y)dzdy. (2.30)
0 0

By separation of variables. we assume a solution of the form

wz.y )= D Gum () Onm(z.y) . T.YER (2.31)

nm=1

and using (2.31) in (2.22) together with (2.27) and (2.28) leads to the ordinary dif-

ferential equation

subject to
Un.m (O) = Cum- (233)

and

= tnm (0) =0, (2:34)
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where ¢, ,, is given by (2.30). The solution of the problem (2.32) is given by

n.m (t) = Crm €08 (Apmt) (2.35)

where

= (5) + (5)

Now we use condition (2.26) to write the final profile in the form

fy) = Y camcos(AamT) Opmlz-y)

nm=]
a b
= /fvo(f.n)ﬁ'(r,y-r,n)dl’dn, (2.37)
0 0
where
K(@yrn) =Y c5umnT)0nm(Z-y) Opm(m. 7). (2.38)
n,m=]

Thus the inverse problem is reduced to solving the integral equation of the first

kind (2.13). The singular system for the integral operator in (2.13) is given by

{c05 OnmT): Gum(Z.¥): Onmlz-)} (2.39)



It now follows from Picard’s theorem that our inverse problem is solvable iff

o~ aml®
ﬂ,nzzl [COS(,\n‘mT)]z < . (2.40)
where
a b
fam = /0 /0 f(7.7) 6y (7. m)d7dn. (2.41)

are classical Fourier coefficients of f. In this case the solution is given by

. = famOpm(T.Y)
vo(z.y) = ;lm- (2.42)

The solution obtained in this section for the wave equation will be analyzed and

compared with the damped wave equation in the next section.

2.3 Initial Inverse Problems in Damped Wave Equations

In the first subsection the one-dimensional damped wave equation is considered.
In the second subsection the same procedure is applied to the two-dimensional damped
wave equation. To see the effect of damping, comparison between damped and un-
damped models is considered by constructing some particular examples in both one

and two-dimensions.
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2.3.1 Initial Inverse Problem in the One-dimensional Damped

Wave Equation

We consider the damped wave equation

8*u Ou Ju
5 éat o 0 §>0.r<[0.7]. t>0 (2.43)

with homogeneous Dirichlet boundary conditions

u(0.t) = u(=.t) = 0. (2.44)

Equation (2.43) has a dissipation or damping term which is proportional to %1;-. the
constant of proportionality being §. We assume that the final disturbance f (z) is

given by

flz)=u(z.T). (2.45)

We will consider the inverse problem of finding initial disturbance vg (z) from the

information of final profile f (z) so that

vo () = u(z.0), (2.46)



The eigenfunctions of d‘i—zz given by ¢,(z) =

P

2 sin(nz) form a complete orthonormal

system in L*[0, 7). Thus vo (z) € L?[0.7] can be expanded as

vo (z) = Z a0, () ., = €[0.7]. (2.48)
n=1
where
¢, = / (7)o, (7)dr. (2.49)
0

Now suppose that solution of the direct problem given by equations (2.43). (2.44)

and (2.45) is

where a,(t) satisfies the initial value problem

d*a,(t) da.(t)
7 +46 T —na,(t), t > 0. (

o
[@]]
—

A



subject to
an(0) = 5, (2.52)
and
da,(0) o =
T - 0. (2.53)
Equations (2.51).(2.52) and (2.53) can be solved easily to vield the solution
._fz 6cn - 2 2 -
a, (t) = e"2' < ¢, cos(kpt) + ;k—ﬁsm(k,,t) .dAnT > 6 (2.54)
_!.g 5611 . 2 2 -
an (t) = e"2' { ¢, cosh(knpt) + oy sinh(kq,t) p . 4n~ < €7, (2.35)
a, (t) = ¢ (1 + 3t> e"2t,  4n?= 67 (2.56)
where
|4n? — &7
kn = (2.57)



We set
cn cosh(knt) + g—:‘: sinh(k,t). for n such that 4n? < é°
bn(t) =9 e (1+ &) for n such that 4n? = &°:
Cn COS(knt) + f,—z"- sin(k,t). for n such that 4n° > &°.
\ %,

Therefore equation (2.50) can be written as

u(z.t) = exp (—gt) > bu(t)o,lz). (2.58)

n=]

The order of damping increases until 4n° reaches é* and higher modes are all damped
to the same extent. This solurion shows that higher modes are damped in an oscilla-
tory manner and lower modes are damped monotonically.

We use condition (2.43) to write

flz) = /0 k(z. 7)o(7)dr (2.59)
with
k(z.7) = exp <—3T) Y Ba(T) 0,(7)0,(z). (2.60)
= n=]

Thus the inverse problem is reduced to solving an integral equation of the first kind.



The singular system for the integral operator in equation (2.59) is given by

{exp (—gT) B, (T): o,(1). o,,(:r)} . (2.61)

where

( o
cosh(k,T) + 5= sinh(k,T). for n such that 4n* < &

D

B, (T)= J (1+ gT) i for n such that 4n® = é°;

L cos(k,T) + isin(k,,T). for n such that 4n° > é°.

Now by Picard’s criterion. using singular svstem (2.61). the inverse problem is solvable

iff
= exp (éT) a 5 69
;——[Bn 7 fal® < 2. (2.62)
where
= ) 7)o, (7)d7. 2.63
f /0 f (7) 0n(7) (2.63)

are classical Fourier coefficients of f(z). In this case, by Picard’s theorem, the



solutions are given by

o ¢
Vo (I) = Z an¢n(x)' (264)

o
2
\.:]v

From equation (2.62). it is clear that f, should decayv faster in case of oscillatory
damping as compared to monotonic damping. In case of oscillatory damping. f,
should be such that equation (2.62) is satisfied. This can be more easily achieved by

restricting to lower modes only.

Example 1 Let us consider the initial distribution of the form

[S]
(o))
(3]

u(r.0)=1v(z) = \/gsin (mz) . (2.

where m is some fized integer. First we solve the direct problem (2.43) — (2.47). to

find the final profile f (z). The solution of the direct problem with T =1 is

2 £ 5 i » a "
flzr) = \ ;e'i (coslzm + ix:k,n) sin(mz). 4m- > é". (2.66)
/3 & & si “m ] 2
= \/;e-i (cosh bem + %—) sin (mz) . 4m- < 6.  (2.67)
2 _¢ ] 9 a
= —e" <1 + ;) sin (mz), 4m°=6". (2.68)

Our aim is to use the final profile given by (2.66) — (2.68) to recover back the initial

disturbance given by (2.65). From equation (2.63) the Fourier coefficients are given



= (2.69)
f = €7 (cosh k- 500 k’") am? < & (2.70)
fr=ei(145). wmieg (271)

We use equations (2.69).(2.70) and (2.71) in equation (2.64) to recover in each case

the initial profile (2.65).

2.3.1.1 Comparison of Damped and Undamped Models

We now use damped data given by equations (2.69). (2.70) and (2.71) in the
undamped model given by equation (2.18) to recover the initial profile by setting

T = 1. The recovered initial profile is given by

€

(X154

ésink, \ |
(coskm-é- T )om(:z:)

v (z) = ey , 4m® > 62, (2.72)




e3 (coshk,,, + 65‘;&) O ()
v (z) = p— (m-) . 4m® < 82, (2.73)
et (1+%) o, (r o _
o (T) = \/ = (COS (‘721) ) i4m- = 6°. (2.74)

In the next three figures. the exact initial profile is compared with recovered initial
profile when the damped data is used in the undamped model. The solid line is used
for exact initial profile while the dotted line for recovered initial profile. Three cases.
depending on the magnitude of damping. are considered separately.

Fig. 2.1 depicts the case 4m® > &. This depiction shows the case when the
medium under consideration has small values of damping. Figs. 2.2 and 2.3 demon-
strate that how reconstruction behave as magnitude of damping increases. Further-
more. the recovered profile also depend on the time displacement 7" due to the factor
exp (—,gT). For instance. if we take T = 2 then the exponential factor in above ex-
pressions is exp (—¢é). This will lead to further deviation of the recovered profile from
the exact initial profile. Since in the real world every medium of propagation offers
some resistance, so it is natural to consider the damped wave equation. From the
figures it is clear that the recovered initial profile is not correct if inversion formula

of the undamped wave equation is used.



Figure 2.1: Response of the undamped model to the damped data in the case,
m = 2 and ¢ = 1 with 4m*® > . The thick solid line represents
the exact initial profile while the dashed line represents the recovered
profile.
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Figure 2.2: Response of the undamped model to the damped data in the case.
m = 2 and & = 4 with 4m® = 6. The thick solid line represents
the exact initial profile while the dashed line represents the recovered
profile.



Figure 2.3: Response of the undamped model to the damped data in the case.
m = 2 and § = 5 with 4m® < é°. The thick solid line represents
the exact initial profile while the dashed line represents the recovered
profile.

31
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2.3.2 Initial Inverse Problem in the Two-dimensional Damped

Wave Equation

We consider the two dimensional damped wave equation

g;';w%—v?u:o. r.yE€ R t<i0.T!. (2.

1o
=1
ot

together with the conditions (2.24) — (2.28).where R is defined by (2.23). Following
the same procedure as for the one-dimensional damped wave equation we can write

the solution of (2.75) as

u(z.y.1) = exp (—;t) Z b (1) Op m{ T Y). (2.76)
- n.m=]
where A, ., is given by (2.36) and
4
Crom COSh (K mt) + S22 sinh(knmt). 43 < &2
bn.m (t) = J Cn.m (1 + %t) \ 4,\’2”“ = 62;
Crm COS(Kkp mt) + ,f:""‘ sin(k, mt) 4)\,2”“ < &,
\ «-hn.m .
where
445 — €]
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The singular system of the problem is given by

~
=1
[04]
ol

[e.xp (—§T) Bum(T): Gum(z.y). Gnm(z.3) e

where

cosh(knmT') + 5= sinh(knmT). 402 < &
Bam(T)={ (1+%T). 40 =&
cos(knmT) + 57— sin(knmT). 123 < &

\ -n.m

Now by Picard’s criterion. by using the above singular svstems. the solution exists iff

oc a

nm1 [Brm (D))
and the solution is given by
6 = fn.m @nm(x‘y)
vo(Z.y) = exp (-T) . . (2.80)
) &, B D

Example 2 Consider

vol(z.y) = sin(wz)sin(7y). witha =b= 2. (2.81)
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Thzs ezample works in the same way as erample 1. so there is no point to write the

same type of details again.

2.3.2.1 Comparison of Damped and Undamped Models

For the two-dimensional model. we now use damped data in the undamped model

to recover the initial profile. The recovered initial profile is given by

G—%T {COS(kn.mT) -+ 2k.: — sm(kumT)} on.m(I' y) " s
: if 6 <4A;

= 289
vo (z' y) cos (An.mT) ° n.m* (-'b-)

e-§T{cosh(kn,,,T)+ £ smh(kn_mr)} 0., (z.9)

2kem

. = O ’2 ,/\2 )
vo(Z.y) Y if 6 >403
(2.83)
e~ 5T (l-é-rfT)o (z.y) . .
] = = et i - = - 28
vo(z.y) o8 D) if 6 =4x;,,. (2.84)

In the following figures. the exact initial profile is compared with recovered initial
profile when the damped data is used in the undamped model. We set a = b = 2 and

T=1.

Fig. 2.5 depicts the case 4\2,, > 6°. This depiction shows the case when the
medium under consideration has small values of damping. Figs. 2.6 - 2.7 demonstrate

that how the reconstruction behaves as the magnitude of damping increases.



The exact initial profile.

Figure 2.4



Figure 2.5: Response of the undamped model to the damped data in the case.
4r% . > &% with § = 3.
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Figure 2.6: Response of the undamped model to the damped data in the case,
4X3 . = 6. with 6 = \/B~.



Figure 2.7: Response of the undamped model to the damped data in the case.
423 . < 8. with6=09.

..
(o 4]
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2.3.3 Regularization of the Heat Conduction Model by the

Damped Wave Equation

Inverse problems in the heat conduction arise quite naturally if one is interested
in the unknown source giving rise to a measured heat flux. Such inverse problems
in the heat conduction are extremely ill-posed [34], so small errors in the data give
unacceptable results. There is an alternative approach to the heat conduction problem

2

[32,71], which consists of introducing a small damping parameter with the term 5

By controlling the size of the parameter we would like to obtain an approximate
solution to the heat conduction problem. Also in some interesting situations the
damping parameter is small due to properties of the material [41.69]. So, we write

the damped wave equation as

du ng _ &u
2 "o T A

§>0. O0<a<m, (2.85)

together with conditions (2.44 — 2.47). Following the same procedure as that for
the one-dimensional wave equation and assuming solution of the form (2.50), for

6 — 0% we get the following ordinary differential equation

Pan(t)  dan (t)
PR,

+ na, (t) =0, §>0, t>0, (2.86)
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subject to

ar (0) = co. (2.87)
and

d“;t(m =0 (2.88)

This is a singular perturbation problem. so we seek the WKBJ (Wentzel, Kramers.

Brillouin and Jeffrevs) solution to this problem ;10}. The WKBJ solution to (2.86) is

5 2 .- 2 i—,) t
a,,(t)=( z 1>c,,e_\p {—n-_;+<5"—c") exp n't—z}. (2.89)

26n° -1 2n° -1

The singular system for this problem with o, (z) = \//% sin(nz) is

{( 6n? — 1 )e‘m T +( n? )exp ﬂgT__éT_]: 0. (z).0, (I)}_ (2.90)

267’)2 —1 2(57?2 -1 B

By Picard’s theorem the solution exists iff

S — - |fal _ ——— <x, (2.91)
nol {(35=) exp[-n®T] + (zoot—;) exp [T — [}

and the solution is given by
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(2.92)

& fno, (z)
)= X ([ ep [T £ () o T~ T}

Letting é — 0~ in expressions (2.91) and (2.92). we get the solution to the heat

conduction problem

(8]
[{=]
o

g (1) = Z exp (‘ngT) 2O, (T) . (2.
=1

Example 3 Let us consider the initial temperature distribution of the form v (1) =

p—

\/% sin(mz). where m is some fized integer. then the final data for (2.92) and (2.93)

can be given by

6m2—1 r 2] ~| ((TTZQ ;- a T
= ——)exp-m T+ | ——— Jexp ' m"T — =]|. 2.94
fom (’.267712—1>e\—pL mT (f_’émi—l>e\me c‘} ( )
and

fm = exp [=m?T] . (2.95)

Now it is routine to check analytically that these final profiles correspond to the initial

profile vy (z) .



2.3.3.1 Numerical Experiments

Now we use the final data for the damped wave equation given by (2.94) in
the heat conduction solution (2.93) and compare it with the exact initial profile for
different values of the damping parameter. Also we use the final data for the heat
conduction model given by (2.93) in the damped wave solution (2.92) and compare it
with the exact initial profile. These are represented by dashed. thin and thick solid
lines respectively in Figs. 2.8-2.9. We consider the case m = 2 and 7T = 1. It is
clear from Figs. 2.8-2.9 that the damped wave equation closely approximates the
heat conduction model for é < 0.01.

Now we analyze the models by adding white Gaussian noise to the data (2.95).
In Figs. 2.10-2.21. we use the noisy data (white Gaussian noise-(2.95)) in both heat
conduction and damped wave models and see the mean behavior of 100 independent
realizations. The noisy data used in the hear conduction solurion (2.93) is represented
by a dotted line and in the damped wave solution (2.92) by a thin solid line and the
exact initial profile by a thick solid line.

We have considered the second mode. that is. m = 2 in Figs. 2.10-2.12 . Also
we have retained first three terms (N = 3) in series (2.92) and (2.93). In Fig. 2.10.
the signal to noise ratio (SNR) is equal to 30 dB ( we have chosen SNR=50 dB
to ensure that both the models appear clearly in the Figure, where SNR is defined
as, SNR=10log(variance of the signal/variance of the noise)dB) and § = 0.04. The
damped wave model behaves better than the heatr conduction model even for this low

leve!l of noise. We have increased the level of noise in Figs. 2.11-2.12 to SNR=20 dB.
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Figure 2.8:

0.5 1 1.5 2 2.5

The case m = 2. T = 1. & = 0.05. The thick solid line represents
the exact initial profile. the thin solid line represents the response
of the damped model to the classical heat data and the dashed line
represents the response of the classical heat model to the damped

data.



o
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Figure 2.9:

The case m = 2.T = 1. & = 0.01. The thick solid line represents
the exact initial profile. the thin solid line represents the response
of the damped model to the classical heat data and the dashed line
represents the response of the classical heat model to the damped
data.
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In Fig. 2.11. the approximation of exact initial profile by the damped wave model is
demonstrated with an appropriate choice of &. How to choose & is discussed in the
last paragraph of this section. The inherent instability of the heat conduction model
1s clear from Fig. 2.12 by observing the range of the vertical axis.

In Figs. 2.13-2.15. we have considered m = 4 and N’ = 4. In Fig.2.13. we
set SNR=100 dB. é = 0.022. and see the effects of this very low noise on both the
models as compared to the exact profile. We decrease SNR to 20 dB and observe
the behavior of heat conduction model in Fig. 2.15. noting that the vertical axis is
given in units of 10*. However for the damped wave model in Fig. 2.14 with SNR=20
dB and é = 0.067. some information of the initial profile may be recovered. So.
from the above analysis of figures. we conclude that the damped wave model behaves
much better than the heat conduction model in the case of noisv data. Even for
lower modes. if the magnitude of noise increases. the heat conduction model becomes
highly unstable.

The same analysis applies to higher modes, see Figs. 2.16-2.17. To see the effects
of the size of parameter T in both models. we set T = 2 in Figs. 2.18-2.21. Comparing
Figs. 2.18-2.19 with Figs. 2.11-2.12 and Figs. 2.20-2.21 with Figs. 2.14-2.15. For the
heat conduction model. the error is more than double. However for the damped wave
model, there is very little degradation.

To choose 6, we start from a higher value of & for which there is no signal appearing
on the graph. We gradually reduce the size and note the values of é for which the
signal starts to appear. We reduce the size further and note the values of ¢ for which

the signal amplifies significantly. Then we take the mean of the two values of §,
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- L : -
30 0.5 1 1.5 2 2.5 3

Figure 2.10: The case of noisy data with SNR=30dB. N = 3. m = 2.T = 1.
= 0.04. The noisy data used in the heat conduction solution is

represented by the dotted line and in the damped wave solution by

the thin solid line and the exact initial profile by the thick solid line.
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Figure 2.11: Response of the damped model in the case of noisy data with
SNR=20dB. N =3.m=2,T =1. 6 =0.075.
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of noisy data with
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Figure 2.16: Response of the damped model in the case of noisy data with
SNR=20dB. N =8.T =1, m =8, § = 0.065.
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SNR=20dB. N=8T=1.m=38.

Response of the classical heat model in the case of noisy data with
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the case of noisy data with
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Figure 2.21: Response of the classical heat model in the case of noisy data with
SNR=20dB. N =4.m =4.T = 2.



(S]]
o

which will give an appropriate choice of é. For example. in Fig. 2.14. the signal
starts to appear for 6 = 0.08 and is amplifies to a significant level for § = 0.05.
So the appropriate choice of é is approximately 0.065 and it may be refined further
by checking neighboring values of 0.065 for which the spikes are milder. \We have

observed that the same procedure of finding & works for higher modes as well as for

lower modes.

2.4 Conclusions

It has been shown here by classical techniques that damping of the medium.
indeed. play a role in the initial profile reconstruction. The reconstructed initial
profile by using damped data without taking into account the damping of the medium
in the inversion formula is compared with the exact initial profile. In this chapter we
have demonstrated with the help of numerical examples that neglecting damping of
the medium is not a suitable approximation. It is also shown that how the magnitude
of damping affects the reconstruction of the initial profile.

It is shown that a complete reformulation of the heat conduction problem as a
damped wave equation produces meaningful results. We applied the method to one-
dimensional problems but it can be applied to higher dimensions as well by applying
exactly the same procedure. The damped model with a small damping parameter
closely approximates the heat conduction equation. It is also shown that in case of
noisy data. the damped model approximates the exact initial profile better than the
heat conduction model. Further. in the case of noisv data. the information about

the initial profile cannot even be recovered for higher modes by the heat conduction
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model but -the damped model may give some useful information about the initial
profile if the value of damping parameter 6 is chosen appropriately.

We have presented a method to estimate the damping parameter §. It remains to
find an analytical formula to estimate an appropriate value of the damping param-
eter & which best regularizes the heat conduction model. At least our method mav

motivate and suggest. where to look for it.



Chapter 3

THE GELFAND-LEVITAN AND
MARCHENKO METHOD
APPLIED TO AN INVERSE

PROBLEM IN LOVE WAVES

3.0.1 Abstract

The Gelfand-Levitan and Marchenko (GLM) procedure is used for the development
of an inversion formalism for estimating parameter changes across inhomogeneities.
The shear velocity is assumed to have a small variation across the inhomageneity and
we consider the inverse problem of recovering a one-dimensional shear velocity varia-
tion. The Love waves. traveling in a layer overlying a half space. incident upon delta
function potential. are considered. The equation of motion for Love waves is trans-
formed to the Schridinger equation by assuming a small variation in shear velocity
which leads to the potential term in the governing equation of Love waves and then

the potential is recovered by applying the GLAM procedure.
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3.1 Introduction

The general problem can be simplified if the scattering object is assumed to be
an inhomogeneous region whose material parameter has only one-dimensional spatial
variations. Such inverse problems are of interest in geophyvsics and seismology and
underground acoustics due to their various applications in determination of inhomo-
geneities and exploration of minerals. see e.g. Claerbout [23]. Liner [33]. Gray i43].
Bleistein et al. [17] among others.

A discrete model by Gerver and Kazdan {38] addressed the problem of finding
a velocity profile from the Love wave dispersion curve. Also. a discrete model by
Barcilon {8]. considered the question of unique determination of density from the
dispersion relation of Love waves. There are some authors who worked on the inverse
problem of determining phase velocity of surface waves. see for example Cara [20] and
van Heijst et al. [68]. Our aim here is to consider an analytic procedure to determine
the variation in shear velocity-

The analytic solution is obtained by transforming the equation of motion for Love
wave propagation into a one-dimensional Schrédinger equation. The basic underlving
assumption in transforming the equation of motion is that the unknown coefficient
can be written as small perturbation from a known reference value, see e.g. Cohen and
Bleistein {15,27]. A further assumption for one-dimensional case is that the coefficient
varies 1n one direction only. We study the inverse problem arising from the Love wave
propagating in a layer of uniform thickness overlying a homogeneous. isotropic half

space. The layer is assumed to undergo a change in terms of its elastic properties and
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thus gives rise to a potential term in the Schrodinger equation corresponding to the
surface wave motion. Using the formulation proposed by Gelfand-Levitan [36] and
independently by Marchenko [55]. we recover the potential function which in turn
determines the change in the surface layver. In the previously introduced methods. see
e.g. Keller et al. [51] and Kay et al. [50]. the Helmholtz equation is transformed to
the Schrodinger equation by first transforming the independent variable via Liouville
transformation followed by a transformation of the dependent field variable. Once
this has been done. the recovered potential must be used to solve the Riccati equation.
followed by the coordinate stretching process which converts the profile back to the
geometric space. Each of these operations individually provide a veritable minefield
of problems and pitfalls and application to Love wave problems does not seem to
be apparent. As opposed to this. we use a simpler and more direct transformation.

which avoids such problems.

3.1.1 Organization of the Chapter

In this chapter we present an analvtical solution to the inverse scattering problem
for Love wave propagation in an inhomogeneous medium. In the second section the
details of the problem are spelled out and the governing equations of Love waves are
transformed to the Schridinger equation. In the third section the GLM procedure
1s applied to the problem we formulated in the second section. Finally in the last

section conclusions are presented. The details of the GLM procedure are relegated to

Appendix B.
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3.2 Formulation of the Problem

We consider Love waves travelling from right to left in a layer overlving a half
space. The geometry of the problem is shown in the fig. 3.1.

The incident Love wave of the nth mode has the displacements

uy = Acos{(z+ h)o1iV (T). (3.1)

uy = Acos [o1,h]exp i—0a, 2]V (z). (3.2)

where 4 is undetermined constant and

/ W2

/..dz " /_2

Gin =\/'E;— nt Ton = \/ An—';—::;o. (33)

with 3,5. 34 as background shear velocities. The constant &, is the nth root of the

Love wave dispersion relation

2 k2 — 2
tan u',., -k*|h| = u—T——ﬁ-Ql, v= El, (3.4)
,310 f.;— — k2 Ha
10

corresponding to the layer of thickness k. The displacements. u;, 7 = 1. 2. satisfy the

following governing equations ( Aki and Richards [4], Achenbach [2])
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Figure 3.1: Geometry of the problem.
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We use equations (3.1) and (3.2) in equation (3.5) to get

2‘_,' o w2
6—0 o2 V=200 ~h<:<0 (3.6)
oz* ]
2‘,.' R _&2
?912 o3, -7 =>0 (3.7)

Suppose there is some inhomogeneity in the z-direction in the layer. So we con-
sider equation (3.6) and assume that 3, is small variation in the background shear

velocity 3,, across the inhomogeneity, i.e.

3,=8p[l+alz)], a(z)kl. (3.8)
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where in equation (3.9). we have neglected higher powers of a (z). Therefore by using

(3.9) we can write

2 2 .2 . R
F-ch = T (Fok)—k-Taw
37 3 o 1o
= ki —quz). (3.10)

We use equation (3.10) in equation (3.6) to get

-+ ik —glz); V" =0. (3.11)

So equation (3.6) is transformed to the Schrodinger equation (3.11) with potential

g (). Now we proceed to solve the inverse problem of recovering the potential by GL)M

method.

3.3 Solution of the Inverse Problem

We are concerned here only to find discontinuities in the shear velocity. i.e. . to
seek the reflectors of the unknown medium. The discontinuities of the medium can
therefore be modeled by the delta function. peaking at the point of discontinuity. So

we consider the delta function potential

q(z) = qof (z). (3.12)
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where g; is the strength of the potential. According to the inverse scattering tech-
nique, the first step is to solve the direct problem. In this case. the direct problem

satisfies the equation

o
oz

+ [k;‘: — goé (:c)] V" =0. (3.13)

It is reasonable to assume that ‘3,27‘2 behaves like a delta function at z = 0. There-
fore. the first derivative must undergo a jump discontinuity at that point. Integrating
equation (3.13) over the interval [—¢. €] and then letting ¢ — 0. we obtain the jump

as

[ 4

A g1 (0). as e — 0. (3.14)

or

-

Let a plane wave exp (—ik,z) be incident on the delta function potential from
the right. For the potential under consideration. the fundamental solutions of the

scattering equation (3.13) are

o(z. k) = exp(—ik,z) +%sin (knz). z >0,

= exp(—thk,T). z <0 (3.13)
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U (Z, kn)

exp (ikaz) — fﬂ sin (k,z) . z<0.

= exp (ik,z1). r>0. (3.16)

The reflection coefficient R (k) can calculated as follows

.y _ Cu (kr) -
R(k,) = e () (3.17)
where
148 —ky) vz ky, Wioiz. k). vir. k)
cu (k) = oz 21‘:;\‘)" vl )). iz (ky) = oz iikl' \z A"")).

(3.18)

and W (o (z.k;).w (z.k,)) denote the Wronskian. From equation (3.17) the reflection

coefficient is given by

Rh) = ——% (3.19)

[an - ZQO]

The Fourier transform of the reflection coefficient can be calculated from the integral

(Kay and Moses [50])

, —igy [ exp (tk:() .
R(C)= by, .20
()= /x P (3.20)
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The pole of the integrand is at k, = =2 If ¢ > 0. the contour can be closed in
the upper half plane and since there is no singularity lying inside the contour. by
Cauchy’s theorem the integral will be zero. If, on the other hand, ¢ < 0, then the

contour will be closed in the lower half plane and by Cauchy’s theorem we have

R(() = —%gew (QoC) H(-(). (3.21)

where H ({) is the Heaviside function. The bound state solutions occur if the poles of
the reflection coefficient lie in the upper half plane. So the potential g (z) appearing
in equation(3.13) has no bound state solutions as should be expected. To recover the
potential. all we need is the impulse response function R () given by equation (3.21).

The Gelfand-Levitan and Marchenko {50] integral equation is given by

K26 - Lexp [M] H[-(z+¢) -92/-51((:5,0)9,@ [q—"(—g-fﬂ} d6=0.

- T -

(3.23)

If z> —¢, then K (z.£) = 0 identically. In the opposite case z + £ < 0. the integral
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equation (3.23) can be satisfied by taking A (z.£) to be a constant which equals %.

This then gives

K(z.&)=2H-(z+9). (3.24)
d ...
g(z) = —225 (A (z.1)].
= qob(z). (3.25)

It may be noted that we can transform equation (3.7) to the Schrodinger equation
in a way similar to that used to transform equation (3.6). We can then apply a similar

procedure to recover the inhomogeneity in the half space.

3.4 Conclusions

It has been established that the governing equation for the Love wave can be
transformed to one-dimensional Schrédinger equation in a more direct and straight-
forward manner provided that there are small variations in the propagation speed
across the inhomogeneity. The method outlined here can be applied to problems
where the material parameter is known up to a small perturbation, and varies in
one direction only. We have used the GLM procedure to recover the shear velocity
variation in the surface laver and have mentioned that the same procedure can be

used to recover the shear velocity variation in the half space.



Chapter 4

VELOCITY INVERSION IN THE
PRESENCE OF DAMPING
BASED ON BORN'’S

INVERSION THEORY

4.0.1 Abstract

The inverse problems are important in seismic exploration and underground geol-
ogy. The frequently used earth model for such a purpose is that of a homogeneous and
1sotropic medium. This may not be an accurate description of many practical situa-
tions. We consider a model that incorporates the effects of damping in the medium
and develop an inversion procedure in this case. It is hoped that the results based upon
this model will prove to be more realistic in some situations of interest.

We erploit the high frequency character of seismic data. We consider the one-
dimensional inverse problem of determining variations in propagation speed. taking
into account damping of the medium. We also consider the tnverse problem of recover-

ing variations in damping from observations of signals which pass through the medium
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of interest. Our method is based on the linearized inversion associated with Born's in-
version theory. Thus we assume that damping and sound speed are well approzrimated
by the background plus the perturbation. The application of the method leads to a
linear integral equation involving veriations in sound speed and damping. Our aim is
to recover these variations in velocity and damping. which in turn yields a map of the
interfaces in the interior of the earth. We also consider the three-dimensional inverse
problem and follow a parallel line. as laid down for the one-dimensional problem. to

derive an integral equation and present the process of high frequency inversion.

4.1 Introduction

The objective here is to study the problem of mapping the interior of the earth
as an inverse problem and to develop methods which vield increasingly more accu-
rate results of that inverse problem. The methods we use are classical, emploving
perturbation techniques. transform mcthods and asvmptotic analysis to get informa-
tion about the interior of the earth. We assume the perturbation in wave speed and
damping have parallel form and it is this perturbation we seek to recover. One or
more signals are introduced near the surface of the earth in a region of interest and
responses from irregularities in the interior of the earth are recorded. Under the as-
sumption of constant density, an approximate solution to this inverse problem for the
velocity was demonstrated by Claerbout [23].

The objective of seismic inversion is to estimate earth parameters. such as velocity
and density from seismic data. In a seismic experiment. a source is set off at a point on

the surface of earth, and the upward propagating wave is then measured at an array
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of receivers near the source. The image of a subsurface. so constructed, is important.
either for theoretical purposes or for the purpose of interpretation by a geologist for
the identification of likely subsurface regions for resource extraction. These inverse
problems form a class of problems in which unknown coefficients of wave equation
represent internal parameters of a medium and the known information consists of
boundaryv measurements. As mentioned above. an inverse problem can be simplified
if the scattered field is approximated as a linear functional of the object. There are
several conditions under which the problem could be linearized. These conditions,
for example. are those of the Born and the Rytov approximations {19.49.358.66]. For
instance. in the Born approximation. the scattered field amplitude is assumed to be
a linear functional of the object. whereas in the Rytov approximation. the phase
perturbation is assumed to be a linear functional of the object. Furthermore. another
way of obtaining a linearized relationship between data and the object is to use high
frequency waves. In this case the concepts of reflection and refraction of plane waves
at plane interface carrv over to inhomogeneous media i.e. the rules of “geometric
optics”. If the primaryv concern is seismic inversion. then the real objective is to
obtain a reflector map of the earth’s interior and devise means for estimating the
changes in earth parameters across those reflectors.

The one-dimensional problem has been discussed in detail by Gerver [37]. He
demonstrated that velocity of propagation can be determined uniquely from the
observations at one point. An inverse problem of determining small variations in
propagation speed through the medium of interest was considered by Cohen and

Bleistein {13,25,27]. They have shown that closed form approximate solutions for the
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velocity profile can be obtained for a wide variety of wave propagation equations. In a
series of papers by Mager and Bleistein {54]. Armstrong and Bleistein [6]. Cohen and
Bleistein [26]. a theory was developed to extract information from a high frequency
band-limited Fourier transform of a piecewise constant function. It was shown in
these studies of references how to locate the discontinuities of such a function and
how to estimate the magnitude of the discontinuity. To achieve higher order accuracy
Gray [42] presented an inversion technique based on perturbation theory. There is
a rich literature on travel-time method in the continuous case (Ware and Aki {70].
Gopinath and Sondhi {40]). these authors were primarily concerned with the case of
discontinuous velocity profiles. Raz [63] provided extension to the three-dimensional
case. He showed how observations at different offsets can be used to invert a tilted
stratified earth. An approach to the fully three-dimensional problem was presented
in Clayton and Stolt {24]. The most recent results following Born approximation
applied to three-dimensional problems are due to Bleistein {14.17.18]. Liner {33].
Hanitzsch [46]. Gardner et al. [35], Berkhout et al. [11]. Black et al. [12]. Artley and
Hale [7]. Gray [43.44]. de Hoop et al. [29]. Tvgel et al. [67]. Xu {73! among others.
In this chapter we introduce a damping term in the wave equation ( Stakgold [63])
and study its effect on inversion. The damping may be caused due to impurities in the
medium, the presence of fluid saturated rocks in the medium, distributed boundary
frictions or small viscous effects. We will consider the procedure for high frequency
inversion. The starting point is an integral equation based on the Born approximation
for modelling the direct scattering problem. The major steps of the derivation of a

high frequency inversion technique are as follows:
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e Derive the forward modelling formula ( written in terms of unknown material

parameters).

e Find a way to invert the modeling formula to solve for unknown material pa-

rameters.

e If a satisfactory result is not obtained. begin the process again by <eriving a

new forward model.

4.1.1 Organization of the Chapter

In the second section of this chapter. we consider the recovery of wave speed
and damping for one dimensional damped wave equation. The velocity inversion
without damping is summarized in the first subsection and is based upon Bleistein
et al. {18]. The velocity inversion in the presence of damping is discussed in the
second subsection. The damping parameter is recovered in the third subsection. and
an iteration procedure to improve the results is also described.

The three-dimensional problem is considered in the third section of this chapter.
We present the procedure for velocity inversion in this case. We consider the simplest
case, that is to recover the wave speed for constant background and zero-offset data.
Nevertheless, this will provide a launching pad to attack more complicated problems.

The background material and complicated calculations are summarized in Ap-

pendix C.



4.2 Inversion in the One-dimension

In this section we study the one-dimensional damped wave equation. Our aim is
to recover variations in velocity and damping, which in turn vields a map of interfaces
in the interior of the earth. The work presented in this section had been reported.

f—-—“-

see Zaman and Masood |75

4.2.1 Inversion Without Damping

Assume that the propagation of the field u (z. ) is governed by the scalar Helmholrz

equation

together with the Sommerfeld radiation condition

du 1w
— = — 0. — =, 4.2
e r(:r)u 0. asz c (4.2)

Suppose v (z) is a perturbation on some reference or background velocity. ¢ ()

1 .
o @ ite@l ek <<t (4.3)

The total field u (z.w) can be separated into the incident part v; (z.«) in the absence



of the perturbation and us (z.w) in the presence of the perturbation. a (z) . Thus. set

u(r.e)=u;(r.o) +us(r.2). (4.4)

and require that u; (r..) and ug (z.+) are solutions of the following problems:

dQ'U[ ..','2
Louy = — - —u; = —6(x). 4.5
ouy dr2 C_.,ui (z) (4.3)
-C()Ug= —::,—.{ul (l’...;') —,-'Us(l'..;.'):. (46)
2

Next. we use the Green function representation to write down the solution of equation

(4.6) as

(¥

ug () = / -ﬁ fur (. «) +us (z.w)l g (z.{.w) dx. (4.7)
Jo E(x)

The product. o () us (r.«). appearing under the integral in (4.7) is significantly

smaller than the product. a (z) u; (z.«), and this leads to the Born approximation

us (C.w) =.‘;2/ C: Z) ur(r.w)g(z.(.v)dr. (4.8)
0
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Since for the inverse problem. the total field is observed at the origin. i.e. (=0

us (0.w) = &° /Ox %%u, (z.w)g(z.0.u)dz. (4.9)

The WKBJ approximation of the Green function has the following form

g(z.0.u) = —‘i@ exp [iwo (z.0)] . o(z.y) =/
Yy

iy %

T dt

c) (4.10)

In the simplest case. when ¢ (r) is continuous. the WKBJ amplitude 4 (z) is given by
Alz) = vc(0)c(z).

Since we are concerned here entirely with high frequency solutions. we need to use
up(z.w) = F (<) g(z.0.+). where F (v) is some frequency domain (high-pass) filter.
With this modification for u; (z.~). and using (4.10) for ¢ (z.0.+) in (4.9) leads to

the integral equation

us (0.w) = — /OxF(u;) % exp [2iwo (z.0)} dz. (4.11)

Since a (z) = 0 for z < 0. this is Fourier type integral because lower limit can be
extended to —oc. However. the amplitude in this more general Fourier integral should
be calculated separately, see Appendix C. The inversion operator corresponding to

this has the form (with F (v) = 1)



a) =~ [ us (0.0) exp =2 (5.0) (4.12)

The reflectivity function 3 (y) can be obtained by differentiating (4.12) with re-

spect to "y’ and dividing bv —4. Thus multiplyving (4.12) by the factor ‘)Cz'z'y) we
obtain the result
. 2 x
3(y) = Yy (v)/ iwug (0.x) expl—-2iwo (y.0)] dw. (4.13)

4.2.2 Velocity Inversion in the Presence of Damping
In this section. the one-dimensional problem for variable velocity in the presence
of variable damping will be considered. Consider the propagation of the field governed

by the scalar Helmholtz equation

} u=—é(r—z,). (4.14)

with damping + (z) and source placed at point z,. It is assumed that the source point
is to the left of the region where v (z) and ~ (z) are unknown. The impulse response
will be observed at a point z, also to the left of the region of unknown v (z) and v (z).
The objective will be to see what can be determined about the perturbations from

the observed response.



Introduce variations in damping and sound speed to have the parallel form

7 (2) =10 (7) + €7 (2). (4.15)

(4.16)

v{x) = rgir) + er(x). Tz

WWe have used same ¢ for both ~ (z) and v (z). because if it is ¢; for 4 (r) and e for
v (r) then we set € = max (¢:.€2). These representations are substituted into (4.14)

and only linear terms in e are retained. The resulting equation is

d*u [ +iwng (7))
‘C. X = —_ - ‘0 = _5 -
ou dr? " | 1§ (z) Ju (z =2
_ r_ie&m, (z) = 2e.”r (1) _ ewg (T v (r)] . (4.17)
vo (z) v (z) v (1)

Introduce u; (. z,. ) as the response to the delta function in the unperturbed medium

and ue (1.1,.2) as evervthing else. we can write u = u; + ug with

Lous (T.z5.w) = =6 (2 — z4) . (4.18)

and

: L 2efr(z) 2iewyg (z) v ()] up (z. x40 )
Lous(z.2,.w) = |—iew~ (1) + -+ 5
ous (Z.2,.2) ey (1) vo (z) vo (7) vg ()

(4.19)
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We now construct a Green's function representation of (4.19), observed at a point

z, (geophone location). It satisfies the following equation

Log(z.29.0w) = —6(z — z,) . (4.20)

Note that this Green's function differs from u;. defined by (4.18). only by subscripts
s and g. Since we are concerned only with high frequency inversion, we will use
WRKBJ approximations for u; and ¢ to the leading order in ... These leading order

approximations are given by

ur (. z5.0) = _F(_..-:)q.—'?("_rs.:r) exp [i.uo (rs.x) — %1." (:z:s.x)] . (4.21)
/ . 1
glz.xy.0) = —i%%q—i) exp ”iu@' (zg.x) — U (:rg.:r)] , (4.22)

-

where for the case of continuous vg (z) and ~,(z) the WKBJ amplitude and phase

are given byv

A(zg.z) = /v (zg)vo(z). 0(z4.7) = /2 vod:t)’ and v (z,.7) = _/: 7?)0(2;#'



o
o

The solution of (4.19) in terms of Green's function is given by

25;‘:21' ()  2dewvq(x)v ()
us (T4.25. &) —i€n (T) + v (2] -+ —o
(7.2, ) GIT Tp ) ) (4.24)
(I (z)

Now using the WKBJ representations (4.21) and (4.22) in (4.24), and retaining

only the leading order terms in . we get

us (Zg.Z5.0) = / Fi. 4(Ig r)Alz,. r)exp {ix]o(zy.7) + 0(z,5.7)]}

exp {-—— v (Tg.T)+ U (Zs.7): }d:r‘ (4.25)

This can be treated as a Fourier transform of e (1) and inversion can be performed

in the same way as (4.11). see Appendix C. The result is

Gly)exp {3 viz,.u) — viz,.y)] }
7A(z,.y) Alz,.y)

er(y) ‘Uq (Tg, Ts.w)

exp {—iw [@ (z4.y) + 0 (zs,y)]} dw. (4.26)

The reflectivity function 3 (y) can be computed in the same way as in (4.12) and is

given by



83

—2exp {1 [¢ (z4.y) + ¥ (2. y]}
7A(z4.y) A(Ts.7)

z.uus (zg. Ts.w)

3(y)

exp {~iw [0 (z4.y) + 0 (z,.y)]} dw. (4.27

From expressions (4.26) and (4.27). it is clear that perturbation in velocity and
reflectivity function also depend on background damping -, (). Hence these results
demonstrate an improvement on previous results. These expressions reduce to (4.12)

and (4.13). if we take ~ (z) =0 and z, =z, = 0.

4.2.3 Recovery of the Damping Effect

Consider (4.24) again and retain terms of order < to get

us (Tg. Ts. ') / Flw [“" : T) e (z) epglz)v (:z:)}

T 2y () 2wyg (1)
A(zg.7) Alzs. 1)

v (z)

em{—;)l-[u‘ (z,4.7) —_t-(rs.x)j}dx. (4.28)

exp {iv [0 (z,.7) + 0 (z;.7)]}

Since ev (z) is known from (4.26), therefore set

i€ (z) v (:r)] A(zg.z) Az, 1)
2 (@)

’}; ['L (.'Eg, 1') + v (xsvx)]} d.’L',

V (g Tyo TF [010 ))' (4.29)

2ovg (1)

exp {z'.v [©(zy.2) + 0 (z,.7)]} exp {—
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and

W(zg. 2. w) = diw [us (zq. 7., w) = V (2g. 7,. )] . (4.30)

Using (4.29) and (4.30) in (4.28). we get the following integral equation

W (z4.z5.w) / F(w Alz Zo- z) Az, 7) exp {ix [0 {z,.7) + @ (z,.7)]}
5 () '
exp{—-[t (zg.7) + vz, :r)}d : (4.31)

Since €% (z) =0 for z < 0. therefore lower integral limit can be extended to —oxc.
This is Fourier integral and it can be inverted in the same way as in (4.11). see

Appendix C. The result is

_ _ wyexp {3iviz,.y) +viz.y }/ "
“ly) = A (T, y) Aiz,.y) (2525

exp {—wwio(z,.y)+ oz, y)l} de. (4.32)

Substitute the approximation obtained for €7 (y) from (4.32) in expression (4.28). and

set



oD
ot

X (zg,%5w / Fw )[m J (O:O)(:)(Is’x)e-\v{iww(rg.r)+o(xs-x)l}

exp{ 5 = [v (zg.7) + ¥ (z,. )]} dz. (1.33)

Assume constant background damping. that is. 54 () = 9,. and write

2

Tr oy Y @ Tew) +us (29,25 401 (4.34)
W -+ o

Y (zg. Zoow) =

Therefore the improved value of e (y) is given by

13 (y) ex + v (z5.y
er(y) = % W)exp {; [v(24.9) }/ (Ty Ts.w

74 (:cg.y) Az, y)
exp {—iw[o(zy.y) + 0 (5. y)}} du. (4.35)

Now from (4.33). er (y) can be computed and the above procedure from (4.29)
to (4.35) can be repeated to get the next approximations for €~ (y) and er (y). The
results of this section demonstrate the dependence of perturbation in wave speed on
perturbation in damping and vice versa. We have derived an approximate solution to
the inverse problem for the wave speed in the presence of damping. The perturbation
in damping is also recovered in an inhomogeneous medium. Finally. an iterative

procedure is presented to get increasingly better approximations.



4.3 Inversion in Higher Dimensions

In the previous section a procedure was presented for high frequency inversion
of impulse response data. Here. we consider the three-dimensional inverse problem
and follow a similar procedure to derive an integral equation and begin the process
of high frequency inversion. As in the previous section. the starting point is an
mverse scattering integral equation based on the Born approximation for modeling
of the direct scattering problem. Now. however. an added richness to the problem
arises from the extra dimensions. Because now the sources and receivers need no
longer to be coincident or in a line and changes in background propagation speed
and damping now lead to refraction and other higher dimensional phenomena. As in
the one-dimensional case. much insight will be gained from considering the constant

background and zero-offset problem.

4.3.1 The Scattering Problem

We introduce a three-dimensional coordinate system. (z;.z».z3). with x4 positive
in the downward direction. The propagation speed and damping is assumed to be
known in some portion of the region z; > 0 and unknown outside that portion of
the region. We consider a bandlimited impulsive point source at z, and response to
this source will be observed at one or more geophones z,. The objective is to obtain
information about the propagation speed, v (z), from observations of the wavefield.
Now instead of the one-dimensional Helmholtz equation (4.14). the signal propagation

is governed by the three-dimensional Helmholtz equation
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Lu(z.z,,w) = |V + .4,2-:21—.(‘3(:5)] u(z,z,,w) =—F (w)b(z - z4), (4.36)

where F () is some frequency domain filter. The function v (z.z,..) satisfies the

Sommerfeld radiation condition

or v

ru bounded. (a“ - l——V“W’u) —0 as r—oc, r=|z|. (4.37)

We introduce variations in damping and propagation speed to have parallel form.
that is the background plus the perturbation. and therefore these profiles have the

following representations

Y(x) =y (z) + e (Z). (4.38)
2er:
vE)=wl el o= w - (f))J L 43)

where we have retained only first order terms of . These representations are sub-
stituted into (4.36) and only linear terms in € are retained. The resulting equation

is



w? + iwyg (1)

Lou(z.z5,w) = [V2+ u(r.zs,w)=—F(w)b(z —z,) +

vg ()
() 2e. (1) | diewyg (z) v () | u(z. T, )
[—26..» v (1) = @) 20 (7) ] 72 () (4.40)

Following the footsteps of the one-dimensional problem. the wavefield can be

decomposed into a reference field u; (z.z,.+) and a scattered field us (. z,.):

u(r.r,.0) =u;(z.1,.0) ~us (z. 1,.2) . (4.41)

Now we substitute (4.41) into (4.40) and require that u; (z.z,.~) is a solution of the

unperturbed equation

Louj(z.25. )= —-Fiu)é(z—z4). (4.42)

subject to the radiation condition (4.37). It now follows that us (z. z,.w) satisfies the

following equation
(=]

(4.43)

Ve Qe . LT..
Lous (T.25.w) = | —tewr (z) + ZewTv (z) |, Ziewno (o) (I)] w (z. 2, “J).

vo(x) vo (T) v (z)

As in the one dimensional case, we write ug (z.z,.w) in terms of the Green function
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' B L 2€w217 (I) . 21:6.’#‘!'0 (l’) v (I)
us (Z4.T5.w) = /D [ iewy (z) + vg (z) N vo (T)
fur (2. 20 w) + us (2.2, )] (2. Z5.w) 3 (4.49)
v§ () . '

Here. the domain D of integration must contain the support of o (z) and ~ (z) assumed

to be some finite subdomain of z3 > 0.

4.3.1.1 The Born Approximation

As in the one-dimensional case for small perturbations (ev (z) and €3 (z)). we
would like to argue that the scattered field us (z. z,.«) is small. So that we can neglect
the products of €1 (z) and ey (z) with us (z.z,.«) as compared to the products with
us (z.z,.w) under the integral sign of the integral equation (4.44). Unfortunately.
this is not always true in three dimensions if the reflected field is observed bevond the
critical angle of reflection. In this case the reflection coefficient has unit magnitude
and the scattered field is comparable to the incident field. at least in that subdomain
of D. Thus we cannot neglect the former product as compared to the latter in three
dimensions, as it was in the one-dimensional problem. However, for near zero-offset
or backscattered observations, it is true that small ev(z) and ey (z) imply small
us (z, zs,w). Since this is the problem to be considered, we proceed to make the Born

approximation to obtain the integral equation
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2e 2 ' r)- w ]
us (T4, T5.w) = /D [—iem' (z) + "e:; EI()I) L ::)((Z))' (z)
ur(z.z,.w) g (:r.:rg..‘;)d:,l (.15)
e -

The equation (4.45) is the fundamental integral equation for acoustic inversion.

4.3.2 The Constant Background Zero-Offset Equation

The simplest problem to deal with is one in which the source and receiver are
coincident. that is r; = z,. on a flat surface r3 = 0. the background speed and
damping are constant. v (r) = v5. 74(Z) = 7o- In this case it is convenient to

introduce

C=1((.(s.0) =z, = T, (4.46)

T

o @ 13 -
/ LT 21+ 20, (4.47)
\ vy ) 2w

So, we would have following representations for the Green function and the incident

field

gl z.w)= . (4.48)
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exp [—T—
)= F(v)

yom r=|z—-(|. (4.49)

us (C,I,‘w'

Therefore we can rewrite (4.43) as

us (C.w) = F(-—J)z / 0 [_1:&:_) (z) + 2e.-1r () N 2iewy ot (‘I)J
z3>

4.3.2.1 One Experiment, One Degree of Freedom in €r (z) and €y (1)

Suppose that data is collected for one zero-offset experiment. In this case. we seek
an inversion only for ev (z) = er (z3) and €7 (z) = €7 (z3). i.e. the wavespeed and
damping vary from constant backgrounds as functions of depth only. Furthermore.
the coordinates of that single experiment might as well be taken to be (0.0,0). so

that (4.50) becomes

. 2. iEwVal
us(0,0,0.w) = F(w)zf [_iew'y (z3)+2a’” v(Zs) | Hewrer (IS)J
(47")0) z3>0 Vo Vo

21'.'.:(1-#%3' r
exp ™
d3

— z, r=./13+z}+z3 (4.51)

The dependence of the integrand on z; and z, is only through r. Therefore
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integration in these variables can be carried out. Introducing polar coordinates (p.6)

in place of (z;,z2). So. the integral equation (4.51) takes the form

e v (13)  2iewnor (T3)

—

0

[—ie.;‘} (I3) ~ -
0

/ a2, 2
pdpdzs. T=\ P T I3

While it may not be possible to evaluate the integral over p exactly. it is possible

to find an approximation to this integral that is consistent with the high frequency

assumption. To do this we require that Imw. > 0. and integrate by parts with respect

to p. The term to be integrated is exp l:

we obtain

us (0 0, 0. w‘)

dr

(2w +15)T] p )
——Q—J —. and noting that
o T

2ewr (13)

—_

{/ {—if;‘,“)‘ (1_3) = ) Qie..u",o'v (Ig)]
r3>0

% (1 ——L) r

—

g Uo
1
|

exp dzy

Vo
N - Do )
E4299, (1 T 2..) T

+ / l:—z'ew*,' (z3) +
z3>0

!
_ 2ewror (-’53)]
+

Vo
) -

2eu’v (z3)
Ug

2iw (1 +

PR

pdpdzs;

Vo

p

r.



We keep only the leading order terms in w and set F (w) =1, to get

. ) 2w -
u5(0,0,0,w) = —— / ﬁ(‘.—xs)em[ . st exp [—l‘f—:"] dzs.  (4.54)
z3>0 (l

Tln 1 [y U,

This equation represents the observed data as some multiple of the Fourier transform
of (ev (z3) exp [—1¢Za/10]) /23 and the solution is obtained by Fourier inversion. Here
the transform variable is 2./ vg. therefore the Fourier inversion formula must be with

respect to this transform variable. Consequently

’Av x 0w o —"2" Y
er (z3) = 8z3vgexp [4%0{3—] / u_s_((z)__)_ (1 + z‘l) exp [ :“'Ia] de. (4.35)
— - ‘o

Now we compare this result with the one-dimensional inversion formula (4.26). While
there are certain similarities. there are differences as well. Here the observed field is
three dimensional. so we should expect some change like the z3 factor on the right

hand side of (4.55) due to the geometrical spreading.

4.3.2.1.1 Recovery of Damping and an Iterative Procedure to Improve
Velocity and Damping Profiles We consider (4.53) and integrate by parts with
respect to p the second integral. Now we also include terms of order w°® and w and

set F (w) = 1, which yields
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w €y (z3) vo [in-‘ra] [—‘7013]
us(0.0,0,w) = —,,/ : ex ex dz; +
s (0. ) = a n>02(1+gq) il el e e 3

< er (13) , . o
8w 2 1 et (e B
710 Jz3>0 (1—.’-lQ I3 2(1—1'7?)?3

[22’.&'::3 J [ —YoT
exp exp drj
Vo i %o
= X;(w)+ ¥ (v). (4.36)
where
< ’ i 2.9 -
A () 8w .2/ ey (z3) o { iez J e_\’p" O:rf, dz,
M'L.O 350 2 (1 + 'q_'?g) I3 L I To
and -
.4/ ev (z3) T
Yilw) = 8"2/ 2 1w — Yo+ 0
715 Jz3>0 (1*'-!—,}9')1‘3 2(1—%“')1‘3

Now we can write (4.36) in the form

% —
us(0.0.0,w) - Y} (wv) = d = 2 (z;,) Y0 exp e exp YoT3 dzj.
87”"6 z3>0 2 (1 -+ %ﬂ) I3 Ug Vo

This equation represents the observed data and the recovered velocity profile from
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(4.55) as some multiple of the Fourier transform of (ey (z3) exp [—voZ3/v0]) /3. and
the solution is obtained by Fourier inversion. Here the transform variable is 2w /vg.

therefore Fourier inversion must be made with respect to this transform variable.

Consequently

€7 (z3) = 1613 exp [7013

Vo

1
—J
T
8

&
'n
S
o
E/
|
~
T
N
—

{
o™
N’
8

|
h.’)
£
H
(A
—_—

Once €~ (z3) is recovered from (4.58). we can get next approximation to et (z3) from

(4.96) as follows

Expressions (4.58) and (4.59) describe an iterative procedure to improve the velocity

and damping profiles.

4.3.3 Zero-Offset Constant Background Inversion in Three-

dimensions
We again consider integral equation (4.50) and assume that the vector ¢ ranges

over the entire upper surface. When F (w) = 1, this equation admits an exact solution
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and this solution will be derived in this subsection. So first consider (4.50) with F (w)

replaced by unity

3 1 , e v () 2iewnr (T)
us(l.w) = - —i€xn (T) + +
(4710)" Jza>0 Yo o
1 2er —%oT | 3
—exp|—|exp |——| d°z. (4.60)
r 10 g

where { =z, =z, . and r = |z — (|. Since the source and receiver are coincident. in
the last expression we have modified the notation and set ug(z,.z..«) = us (.<).
We exploit the high frequency nature of the data and keep leading order terms of .

in the last integral equation. The result is

us (Cow) = —o / 0“'(f)e>q> [MJ (4.61)
I3>

P 2 \
‘ 1‘0 T 1'0

The integral equation (4.61) is of convolution form. the function er (z) being con-
volved with the function r=?exp [(2iw — 9¢) 7/vo]. Thus, a Fourier transform will
replace the integration in z, and z, by the multiplication of two transformed func-
tions. Unfortunately. the Fourier transform of =2 exp [(2iw — 7;) 7/vo] is unknown.
On the other hand, if there were only one power of r in the denominator, that is
r~!exp [(2iw — v;) r/vo]. then the Fourier transform would be known in closed form.

Thus to get one power of r in the denominator we differentiate integral equation

(4.61) with respect to w. The result is
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/ ev (z) g, (( — z.w)dz = —im;gi [M} , (4.62)
D Ow (0%

where g; is the free-space Green function for a medium.

'—('."z..'—‘) r
exp | =

| RS |

r=i-z. (4.63)

—z.u) =
Qi —z.2) -

Now we define the spatial Fourier transform for this problem with a factor of two

in the exponent. The forward spatial transform

)

Fin= [~ [ ewi-zinsd s (o) d. (4.64)

and the inverse transform

f==% [ [ epmdfe)dn (4.65)

" —oc «

are defined with the convention p = (z,.1,). The wave vector x is defined in terms
of two wave numbers k; and k» by x = (k;.k2). Application of the spatial Fourier
transform equation (4.64) to (4.62), converts the convolution to a multiplication in

the kK domain and the result is

/ v (z) gy (K. z3.w)dxy = —z'rvgai [UL('-:L)] . (4.66)
o 2
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with the Transverse Fourier transform of g, (z.w) being given by

(4.67)

. (21w—9)T 9, 9
—Y Buw=nglr /o 12
_ ( ) x poc exp[ —lK.p+ o P -1-:1:3] £
g1 \K.Z3.&) = “p.
—ocJooc 4w/ p* + 13
One way to find g: {~.x3.+) is by directly performing the above integration. But
the most physically enlightening way of finding the expression is by considering (4.63)

as being Green's function for the Helmholtz equation

[ ]

[ 42 . 4?2 o]
’. ---lh"—.‘.—— —(—4? 0 J g; (h‘...’L‘3...J) = —¢ (1'3). (469)

Note that the factor of 4 multiplving «° is a result of having a factor of 2 in the

.ﬁ_l«l_-"‘u'\*'=_2_v_.2.-2
vs vy g A'l ' LQT 3: SO

exponent of the transform kernel. Since k* =

rewtiting the last equation by using the following definition for the vertical wave

number kj

2 2 .
2 w” o, Yo% 2
k3=?— 5 T ) — K", (470)
0
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allows us to write

2

[ .2 + (21;3)2:' g1 (k. 23.w) = =6 (x3) . (4.71)

It is now clear that g; (x.z3.4) is just the Green function for the one-dimensional

wave equation. Therefore we may write the result

- exp (2ik; |z}
G (5. 20.0) = -=2E Tl 4.72)

The real and imaginary parts of k; are given by

{ /

1 (o2 <2 2 a2 T 2

il ! , <~ ) = 02
Re(ks)= || = -=5—-r*+ (—,.— Oq—xﬁ) + -
2\ vy 4 \ vy dvg L5

\

1. - "yo.a"
Im (k) = 5T Re (k)

On substitution of (4.72) in (4.66). we obtain

/ €v (z) exp [2tks |z3]] dz3 = —471:31;3;\— [Mj’ i (4.73)
o " :

«w | w's

The integral equation (4.73) is nearly a forward Fourier transform in z3. To make
this similarity exact. first we observe that z3; = |z;| on the domain of integration.
Furthermore, the lower limit of integration can be extended to —oc. since by assump-

tion ev(z) = 0 for z3 < 0 and hence €7 (z) is also zero for z; < 0. We may thus
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write (4.73) as

oc N 1 o]
/ €T () exp [2ik3z3] dr3 = —d7ksrg [

'l-;~ (K w') -
ol } (4.74)
Application of the inverse transform to the equation (4.74) leads to
1 /= > . X fo X
:/ {/ € (1) exp |2ik3x3) d:zg}e_\'p {—2ik3z3| dks
oc el -~ Y
s (K. .
= —/ 41:;;1'3%-1%—' exp [—2ik3x3] dks. (4.73)
This yields the following equation
e [u <) . X
€7 (1) = -4v3/ 1\-3;— U S| op im2ikgry] dis. (4.76)
- < - J

=-— lc;;a— |'u_¢(_f:_.~_)] exp [2i (K.p — kyz3)] k.
T PP - | < J

(4.77)
In the right hand side of (4.77) the { dependence is not explicit, and to make this

dependence explicit we write ¢ (k. w) in its spatial Fourier representation (that is to
apply (4.64)). Thus we have

4
e (r) = ——20

= = / " ki / ¢3¢ 2 {MJ

b |
exp [2¢ (k. (p — () — kaz3)] .

o

(4.78)
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Since the data are recorded in the time domain. the inversion formula should be
written as a function of time. Rewriting us (¢.«) in its temporal Fourier representa-

tion

-1 -
ev(r) = no d' Agdsk exp {27 (k. (p — {) — kaz3),
1
— us (C.t) [1 + ——-J t exp [twot] dt (4.79)
&g Jo \Jot

This is an exact solution to the integral equation (4.61). More precisely. (4.61} is an
equation in the space-frequency domain. meaning that (4.78) is a solution of (4.61)

and the last expression is the result of reexpressing the observed data in space-time.

4.3.3.0.2 Recovery of the Damping and an Iterative Procedure to Im-
prove Velocity and Damping Profiles We consider the expression (4.60). and

writing it in the form

' 2ev 21 [—=~
us (C.w) _ 1 2/ ﬁ(—f)-(.g—i—i*,o)exp l:-z..)r'! exp .or] Py
w (47vo)” Jzz>0 Vo~ vo ;L v ]
1 ,,/ €y E:r) exp [21.”} exp [—*,OrJ Fa
(47vo)” Jzz>0 TT Vg U
= Xa2((w)+Y2(Cw), (4.80)
where
- 1 % %t} [=var]
Xa(Cw) = 5 / —GIL;I) (w + ivq) exp { “T | exp [ '°7J d*z.
(dmvg)” Jzz>0 voT* Vo | Yo
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and

: } o .
Yo((w)=- ! / & () exp [ﬂ] exp [ A'OT] d*z.
z3>0

(47vg)° . T2 Vo

Since er () can be recovered from (4.79). therefore X» (¢.«) can be treated as known

function. Expression (4.80) can be written in the form

- ] €~ (T) l'(?.i.u—')o)r 3 =(uS(C--‘-’)_ . ) )
(47.'v(,)2_/:3>0 2 &P ]df = - X (Cw) ). (481)

The integral equation (4.81) is of convolution form. the function e+ (z) being convolved
with the function r=exp [(2iw — ;) 7/vo}.- As in the case of (4.61) to get Fourier

transform in the closed form. we differentiate (4.81) with respect to w. The result is

[ e@ac-zwmde=2mis ("5 ) _x, (c.u)) R
z3>0

o

where g, (( — z.x) 1s given by (4.63). Now we apply exactly the same procedure as

applied to (4.62) to vield

ev(z) = —Si’f,g /x k3d3k/x d%% [M - X2 (C.w)

-— M
“ —oc w

exp (27 (k. (p — () — kaz3)]. (4.83)
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Since, the data are recorded in the time domain. therefore writing us (({.w) and
X2 (€. w) in their causal temporal Fourier representation further modifies the inversion

formula (4.83) to be

3 oC oc
ev(z) = 8 dzg’/ d3kcks exp 121 (k. (p = () = kyz3)]

-2
" —oc —oc

/x [US (Ct) (i + ! > - .)x-g (g’.yo)] texp ['l:;dot] dt. (484)
0

<Jg ;.u'gt

Now the velocity and damping profiles can be improved by an iterative procedure.
We substitute the damping profile from (4.84) in (4.80) and repeat all the steps of
this subsection to get next approximation to the velocity profile. This velocity profile

can then be used to get next approximation to the damping profile.

4.4 Conclusions

We have derived approximate solutions to the inverse problem of finding the
velocity and damping from the observed wavefield. The approximations made are
often used in modeling the inverse problem in seismic exploration. It is established in
this work that the damping of the medium plays a role in getting a more accurate map
of the subsurface. An iterative procedure to improve velocity and damping profiles is
also presented.

We have presented a procedure to determine wavespeed and damping profiles of a
medium with one dimension of parameter variability when the source and receiver are

located at the same place for both one-dimensional and three-dimensional problems.
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We also have assumed constant-background wavespeed and damping. Nevertheless.
the inversion procedure presented in this chapter may provide a launching pad to

attack more general problems:

e The derivation of inversion formulas for a variery of source-receiver geometries.

e The derivation of inversion formulas for two-dimensional parameter variability.

e The derivation of inversion formulas for variable-background and a variety of

source-recelver geometries.
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Appendix A

Appendix for Chapter 2

A.1 Some Preliminaries

This Appendix contains the background material needed to study the contents of

this Thesis. in particular. Chapter 2.

Definition 4 (Norm) A4 norm is a mapping ||.|, : X — R on a vector space X and

which has the following properties:

izl = 0.

|z}l =0« z =0,

ezl = laf I},

Iz ~yll < izl + llyll -
forallz.y € X and any scalar o.
The space X together with the norm defined above is called a normed space.

Definition 5 (Inner product) Let X be a vector spacc over a field F. A mapping

(...) : X x X — F 1s called an inner product if it satisfies the follounng properties:

1. (u,v) = (v,u) where (v.u) is the complez conjugate of (u.v).
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2. (au+ Br.w)=a(u,w)+ 3 {(v.w).
3. (u.u) > 0. equality holds iff u = 0.

A vector space together with the inner product defined above is called an inner

product space. An inner product on .\ defines a norm on X given by

flull = v/ (u.u). (A1)

Hence inner product spaces are normed spaces. A Hilbert space is a complete
inner product space. An important Hilbert space is L*ia.b;. which consists of all
measurable and square integrable function on [a.b] in Lebesgue sense. A sequence
of elements {f,} in H is said to be orthonormal if (f,.fm) = 1 for »n = m and

{fn. fm) = 0 otherwise.

Definition 6 (Linear operator) An operator T : X — Y . where X and Y are

vector spaces over the same field F. is said to be a linear operator if it satisfies

Tlau+3v)=aT (u)+ 38T (v). foraluveX and a,83€ F. (A.2)

In particular, if Y = F then T is said to be a linear functional. If X and Y are
normed spaces, then T is said to be a bounded operator if there exist M > 0,
such that ||[Tz|| < M ||z|| for all z € X. A linear operator T : H — H on a Hilbert
space H is said to be compact if it maps every bounded subset S of H into relatively

compact subset 7' (S) of H, that is, T (S) is compact in H.
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Definition 7 (Fredholm integral equations) The integral equation of first kind

can be written as
b
g(z)= A/ K (z.t) f(¢)dt. (A.3)
and the integral equation of second kind can be written as
b
g(z)=f(z)- /\/ K (z.t) f (¢)dt. (A4)

where f (z) is unknoun. g(z) and KR (z.t) are given and A is a parameter. K (z.t)

is called kernel of the integral equations.

A.2 Singular Value Decomposition

Let X" and Y be Hilbert spaces and A" : \' — Y be a compact linear operator.
Let K*:Y — X beadjoint of A" ie. forallz € X and y €Y. (A'z.y) = (z. Ay).
If K is densely defined and K = A™, then R is said to be self adjoint. The
nonnegative square roots of the eigenvalues of the nonnegative self adjoint compact

operator K"K : X — X are called singular values of K.

Definition 8 (Singular system) A singular system (0,;vn.u,) of the operator K
is defined as follows:

Let the non-zero eigenvalues {02 }nen of the selfadjoint operator K*K (and also
of KK*) be written down in decreasing order with multiplicity. o, > 0. Then there

erists a complete orthonormal sequence {v, }nen of eigenvectors of K™K (which spans



109

R(K*) = R(K*K)). and the {u,}nen are defined via the vectors

Ry,
Uy = e .
| Kt |

(A.5)

The {u,}nzx are complete orthonormal system of eigenvectors of K K" and span

R(R) = RIKNR™). Also. the following formulae hold:

K, = opu,. (A.6)
R u, = o v, (A.T)
KNr = g‘l(rn {Z.Un)n. z< X (A.8)
Ry= ,,Z; On (Y. Un)Tn. yEeY. (A.9)

where these infinite series converge in the Hilbert space norm of X and Y.

Theorem 9 (Picard) Let (6,;vn. u,) be a singular system for the compact linear

operator K : X — Y. Then the equation of first kind Kz =y is solvable iff

yeNK ) =K(X)and Y. Ky (A.10)
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In this case the solution is given by

x=i <y'u")vn. (A.11)

o
n=] n

The condition (4.10) for the existence of solution is called Picard criterion. It
savs that solution of Kz =y exists only if the Fourier coefficients (y.u,) decay fast

enough relative to the singular values o, {43].



Appendix B

Appendix for Chapter 3

This Appendix contains the background material needed to study the contents of this

Thesis. in particular, Chaprter 3.

B.1 Direct Scattering

Consider the Schrodinger's equation

d“u

- —(A—gqiz))u=0. (B.1)
dr-

The properties of this equation are easy to discuss. although explicit solutions are
nearly impossible to obtain. Since g(z) is assumed to be absolutely integrable,
f_xx ig(z)]dr < >. we use variation of parameters to find integral equations for
fundamental solutions of this equation. For example. solution of u + Au = f can be

written as

x

* - 1 —tk(z— 2
= / S () dy — 5 [ eI (g)ay. A=K (B.2)
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where z and z; are arbitrary constants. We take f (z) = ¢ (z)u (z) and obtain

" 1 oc .
oz k)= — / sink (z - y)q (v) 0 (3. k) dy. (B.3)
v(r.k)=e"* + %/ sink (r —y)q(y)v (y. k) dy. (B.4)

as two solutions of the Schrodinger’'s equation. Notice that o(z.k) behaves like
exp (ikz) as £ — o and v (z. k) behaves like exp (—ikr) as r — —¢.

These statements do not prove the existence of o (z. k) and v (z. k). The existence
of these solutions can be proved by using contraction mapping theorem. The choice
of exp (ikz) and exp (—ikz) as the asyvmptotic behavior of @ (z.k) and v (z.k) are
motivated by both mathematical and physical reasoning. For & in the upper half of
the complex plane (which it is since A = k* and we take & to be the principal square
root of \), exp (¢kz) is square integrable for large positive r and exp (—ikz) is square
integrable for large negative z. If we examine carefully the wave equation and its
solutions, we see that the solution with spatial dependence exp (ikz) correspond to
rightward moving waves, and those with spatial dependence exp (—ikz) correspond
to leftward moving waves. Given this nomenclature, we see that the two solutions
of Schriodinger’s equation ¢ (z.k) and ¥ (z, k) are right moving as z — oc and left
moving as £ — —oc, respectively. Also, it is easy to see that ¢ (z. —k) and ¢ (z, —k)
are solutions of Schrédinger’s equation as well.

We know that any second order differential equation can have at most two linearly
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independent solutions, and that any solution can be represented as a linear combina-
tion of a linearly independent pair. Therefore we can express solutions o (z. k) and

v (z,k) as

viz.k)=cpy (kie(z. k) =cpthio{z.—k). (B.5)

o(z.k)=cay (K)v(z.—k)+c(k)uiz. k). (B.6)

In expression (B.3). ¢;» (k) is the amplitude of an incoming wave from r — <. ¢y; (k)

is the amplitude of wave reflected back to r — >c. We denote

T=—2 R, = Gulk) (B.7)

e (k) Cra (k)

as the Transmission and Reflection Coefficients for waves incident from the

right. Similarly

"w(/.‘
Ti=—. R =7 (B.S)

are the transmission and reflection coefficients, respectively. for waves incident from

the left.

There are some important consistency relationships between the coefficients c;; (k).



114

The definitions of ¢;; (k) hold if and only if

¢ (K) car (K) + coy (K) c2 (k) = 0.
ci (k) caa (k) +cro (k) e (=K) = L.
ciy (k) con (k) = e (k) cio (=k) = L

cn (—k)cra (k) = coo (k) cra (k) = 0. (B.9)

We can calculate the Wronskian

Wio(z.k).v(z.k)) = cp(R)W (olz.k).otz.—k})) = =2ikca (k).
Wie(z.k).v(z.<k)) = cao(kK)W (vi(z. k). v(T.—k)) = 2ikep (k).

W(o(z.—k).v(z.k)) = 2ikey (k). (B.10)

A zero of ¢;a (k) with Imk > 0. if it exists. has an important physical interpre-
tation. If c;a (ko) = 0. then W (o(z.ko) . v (z. ko)) = 0 so that v (z.ky) = ac(z. k)
for some nonzero constant a. Since o (z. ky) ~ exp (thgz) as T — o< and v (z. k) ~
exp (—ikor) as T — —oc, we see that v (z. ko) is a square integrable solution of the
Schrodinger’s equation. Square integrable solutions. if they exist. are called Bound
States and are analogous to eigenfunctions of the Sturm-Liouville problems. The
term “bound state” refers to the fact that these wave functions are “bound” to the
scattering center by the potential. It can be shown easily that the roots of ¢;» (k) = 0

in the upper half plane occur only on the imaginary axis and are alwavs simple.



B.2 Inverse Scattering

We define the function K (z.y) by

oC
o(z.k) = e** +/ K (z.y)e*¥dy.

(B.11)

Although we know that o (z. k) is well defined. it is not immediately clear that A (z. y)

exists. To check its existence we substitute o(z. k) into the Schrédinger’'s equation

and find after integration by parts that.

dz? ~° bz° 3y°
+ lim [M — kK (:r.y)i kY
y—oc ay g
- ]
L dz

We require the kernel A" (z.y) to satisfy

3*K (z.y) 5 O°K (z.y)
oz oy?

m 22 lim A (z.y) =0.

y—oc Oy y—x

—qgir)K (z.y)=0.

d*o )0+ ko = / [0-1\ (z.y) 8°K Y _ o K(I'y)J e gy

(B.12)

(B.13)

(B.14)

(B.15)
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It was proved by Gelfand and Levitan {36] that the function A (z.y) exists and is
unique.

From equation (B.3). it follows that

L T (kv (z.k) e‘kydk=—1—/Rtl:')o(z'.l.')e'k"dk-é-i /ot_.r. —kY ek,
Rl D iy
<7 Jc -~ Jc == .Jc
(B.16)
where C is the contour in the upper half & plane starting at & = —oc + i0~ and

ending at & = o>c +10” and it passes above all zeroes of c:» (A41. It is easy to show the

following asvmptotic relationship

SBT3 1 . _
‘ I, }c”“zl—O - 1. as k — x. (B.17)
Clg(k} k

where the notation O (1). called “Big O”. means a term which is bounded by A i1
tkx

for some positive constant A{ and all sufficiently large & . Therefore. since v (z. k) €

is analvtic in the upper half plane

tkx

1 : ; 1 [ uviz.kie A _
0 / Tikyviz. kb e™dlk = — TR ikwTig
2= Jr 20 Jo caolk)

. 1 1
= ¢lz~y)+ 5= O<—_
- it C

) e*v==idk.  (B.18)
Using Jordan's lemma for y > z we see that

1
— /T(/':)t'tz.k)c”‘ydl: =0. (B.19)
JO

-



Now we use expressions (B.11) and (B.19) in (B.16) to get

0 = /R(k “("y)dk%——/ /R(L ) K (z.s) e**Vdkds
/ /K z.s) e * "V dkds, (B.20)

provided y > z. We define

qi_/ R (k) e™*dk. (B.21)
and finally obtain the equation
0=R(:z:+y)—1-,)i_ R(s+y)K(z.s)ds+ K (z,y). provided y > z.
(B.22)

This equation is called Gelfand-Levitan and Marchenko (GLM) equation. The GLM
equation is important because. if we can solve it for K (z.y). then ¢(z) can easily
be computed from (B.14). In other words. given the reflection coefficient R (k). we
can reconstruct the potential g (z) whenever we can solve the GLM equation for

K (z,y). A good account of the material presented in this Appendix can be found in

Lamb [52].



Appendix C

Appendix for Chapter 4

C.1 The Reflection Seismic Experiment

The essential features of an exploration seismic experiment are:
e Using controlled sources of seismic enerey.
e [iumination of a subsurface target area witl. the downward propagating waves.

e Refiection. refraction. and diffraction of the seismic waves by subsurface het-

erogeneities.

o Detection of the back-scattered seismic cnerev on seisinomerers spread out on
the Earth's surface.
On land. seismometers are called seophones. Generaliv thev work by Imeasuring
the motion of a magnet relative 1o a coil attacued 1o the housing and implanred
1 the Earth. The motion of the magnet relative 1o the coil produces a voltage
which is proportional to the velocity of the displacement on the earth’s surface.
Seismic sources include. for example. dyvnamite. weight drops. and vibrators.
Explosives like dymamite require some sort of hole to be drilled to contain the
blast and the holes arc then often filled with: hewvv mud in order to direct
the energy of the blast downward. Weight drops involve a crane. from which
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the weight is dropped from a considerable height. Small dynamite blasts and
hvdraulic vibrators are popular sources for very high-resolution near-surface

studies.

C.1.1 Source-Receiver Configurations

Seismic survevs are limited to ensembles of experiments with a nonzero offset
between sources and their respective receivers. Each of the experiments composing the
ensemble usually consists of an arrangement involving one source and several receivers.
all in a line. called a shot profile. Data may be grouped into several possible categories
based on the particular source-receiver configuration that was used to acquire the

individual shot profiles.

1. Zero-Offset Data: consist of seismograms recorded when source and receiver
are placed next to each other on the surface of the earth: so close in fact thev
are effectively at the same location. With this arrangement we can record the

seismic echoes from the same point whence they originated.

o

Common Source (Shot) Profiles: It consist of seismograms recorded at
positions of increasing range from a given source. The geometry of such an

experiment is shown in Fig. C.1l.a.

3. Common Offset Profiles: It consist of seismograms recorded at positions
along the surface of the earth with the distance between the source and receiver

held constant. Its scheme is shown in Fig. C.1.b.
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The world-widely used arrangement in practice is the “common midpoint™ ge-
ometry, which can be used to approximate zero-offset profiles after proper processing

steps.

C.2 Bandlimited Data and its Causes

Consider the set of points = where f(z) = 0: the support of f is the closure
of this set. A function whose Fourier transform has a bounded support is said to
be bandlimited and in this case the support is called band of the function. For
instance. consider the function defined by f(z) = sin(#r)/7z. it is bandlimited
because it is the inverse Fourier transform of the characteristic function of the interval
[-7.=]. In this case we call = the bandwidth of the function f. A basic property of
a bandlimited function is the possibility of representing such a function. without any
loss of information. by means of its samples taken at equidistant points.

Bandlimiting of observed data has a variety of causes. \We list a few major causes

below:

e The frequency of the seismic source is related to the finite nonzero action time
and physical geometry of the source mechanism. Equally important is the cou-

pling between the source and the propagating medium.

e The presence of small heterogeneities, randomly distributed in the interior of the
earth, scatter the high frequency energy in an incoherent fashion. preventing am
image of gross structure being constructed with waves of too high a frequency-

Thus higher-frequency signals do not always guarantee better resolution.
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Figure C.1: Geometry of the source receiver array.
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e The geophone is not rigidly attached to the earth. bandlimiting associated with

natural resonances of the soil-geophone system exists.

e The seismic detectors and recorders contain built-in filter to limit ambient noise

level.

Although the causes of bandlimiting are clearly complicated. it is satisfactory to
treat these processes as the action of a single filter. F' (). which may be assumed to
have necessary properties (such as a symmetric real part and antisymmetric imaginary

part to produce a real valued output).

C.2.1 Reflectivity Function

The reflectivity function of a surface is defined to be the normal reflection strength
multiplied by the singular function. The reflectivity function locates the boundarv
of the scattering object and characterizes the change in medium properties through
the normal reflection coefficient. If the discontinuities are our primary interest then

bandlimited delta functions are easier to identify than bandlimited step functions.

C.3 WKBJ Approximation and Amplitude Calculation of

the Inverse Fourier Integral

C.3.1 WKBJ Approximation

WKBJ theory is a powerful tool for obtaining a global approximation to the

solution of a linear differential equation whose highest derivative is multiplied by a
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small parameter . This theory is suitable for linear differential equations of any
order, for initial value and boundary value problems. and for eigenvalue problems.
Dissipative and dispersive phenomena are both characterized by exponential be-
havior. where the exponent is real in the former case and imaginary in the latter case.
Thus for a differential equation that exhibits either or both kinds of such behavior,

it is natural to seek an approximate solution of the form

:r)~e\’p[ S_‘F‘S (1‘}. &—0. (C.1)

n=0

This expression is the starting formula from which all WKBJ approximations are
derived. The WKBJ theory is singular perturbation theorv because it is used to
solve a differential equation whose highest order derivative is multiplied by a small
parameter. When the small parameter vanishes. the order of differential equation

changes abruptly.

Example 10 Consider the boundary value problem
€Uz +alx)u., +b(z)u=0. v(0)=4, u(l)=B, (C.2)

where we assume that a(z) > 0 for 0 <z <1 and e — 07. We begin by substituting

(C.1) in (C.2) and neglecting terms which vanish as 6 — 0. The result is

<d50> N 6d50d51 ) 6d250 ‘ ldSO ‘ dSl
&

dr (‘dl‘ dr gdmﬁ —-'zdl_a‘r d$a+b+...=0. (C3)
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The largest term in this ezpression is the first term and the second largest is fourth
term. By dominant balance these two terms must be of equal magnitude and this can
be achieved if 6 is proportional to € and for simplicity we choose é = €. So in (C.3)

let us compare coefficients of ™! and €°. The resulting equations

dSo\*  dSo
(dl‘) -s-dxa-O. (C4)
and
‘)dSo d51 . d'So dSla —b=0. (CE-))

“dr dr = dr?  dr

are easy to solve. The two independent solutions of (C.4) and (C.3) are

u; (z) ~ crexp [—/: %dt]. e— 0. (C.6)
o al
us () ~ < exp /det—l/za(t)dt]. e—0". (C.7)
a(z) o alt) € Jo i

where c¢; and cp are constants which can be determined from the boundary conditions

gwen in (C.2). The general solution is given by

u(z) ~ Bexp [/:g%dt:l +Z—E—% [.4—Bexp </;%§—%dt)]

Th(t), 1 [°
exp[/o mdt—z/o. a(t)dtJ.
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C.3.2 Amplitude Calculation of the Inverse Fourier Integral

The inversion operator for (4.11) has the form

a(y) = /x b(y.w)us (0.x) exp [2iwo (y. 0)] du. (C.8)

oc
where b (y.+) is to be determined. To see the form of b (y. ). substitute (4.11) in the
above expression to get

a(y) = —/ d-‘rw/ F(o)b(y.w)exp|2ivo(z.y) dv
0 dc(z) —oe

/x a{z) f(z.y)dz. (C.9)
0

Equation (C.9) will be at least approximartely satisfied if we set
, : 1 [~ . :
flzy)=éplz—y)=— / F (w)expliw(z —y)] dw. (C.10;

where ép (z — y) is bandlimited delta function. If 6 (y.~) is independent of . that

is, b (y.«) = b(y). then

flz.y) = —W%PMI@)]
. wA* (y)b(y) N
- @ -y). (C.11)

The second line in the above expression follows from the first because ;{23__—, is the
derivative of the argument of the delta function and the support of the delta function

is z = y. These are asymptotic equalities depending upon sufficiently high frequencies.
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The choice of b (y) to make (C.9) true is now apparent

b(y) = —:22(’(’;). (C.12)

This leads 10 inversion formula given by (4.12).
The inversion amplitude for (4.25) can easily be deduced by comparing it with

(4.11). We have to make the following replacements

e replace —4°(r) 74c°(r) by

Alzg. 1) Alz,. 2)exp {1 v (zy.2) + vz, 1)} /208 ().
e replace the argument 20(z.0) by {o(z,.7) + 0 (z,.1)].

With these changes in place the amplitude b (y) is given by

_ 2 (ye 13{% :rg y) + v (zs.9)}}
7A(Zg.y) A(Ts.y) '

b(y) (C.13)

Similarly inversion amplitude for (4.31) can be found by making appropriate changes.
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