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ABSTRACT

Name : Fathi Mohamed Abd El-Azim Mahfouz
Title : Heat Convection from an Oscillating Cylinder
Major Field : Mechanical Engineering
Date of degree: May 1998

Heat convection from a horizontal cylinder performing either rotational or rectilinear
oscillations is investigated. The investigation covers forced and combined convection from a
rotationally oscillating cylinder placed in either a quiescent fluid or a uniform stream as
well as combined convection from cylinders performing rectilinear oscillation. For each of
the cases considered the governing equations of motion and energy are solved numerically
to determine the characteristics of the flow and thermal fields. In the case of a rotationally
oscillating cylinder in a cross stream. the lock-on phenomenon has been predicted and its
effect on the flow and thermal fields has been determined. The results show that the lock-on
phenomenon occurs within a band of frequency near the natural frequency. The heat
transfer coefficient as well as lift and drag coefficients show an increase within the lock-on
frequency range. For a cylinder performing steady or oscillating rotary motions in a
quiescent fluid, the study revealed that, for the same Rayleigh number. increasing the
steady rotation of the cylinder tends to decrease the rate of heat transfer. In the case of
rotational oscillation, the results showed that, for the same Rayleigh number, the heat
transfer rate fluctuates around an average that lies in berween two limiting values. The first.
belongs to natural convection from a fixed cylinder while the second is equal to the heat
rate from a cylinder rotating steadily at a speed equal to the maximum speed of rotational
oscillation. For a cylinder performing vertical oscillation in a quiescent fluid, the study
has shown that in the absence of buoyancy effects, the oscillation causes considerable
increase in heat convection as either the amplitude or the frequency increases. However. as
the buoyancy driven flow becomes dominant, the natural heat convection is almost

unaffected by the cylinder oscillation.
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CHAPTER 1

INTRODUCTION

Heat transfer and fluid flow associated with a horizontal circular cylinder has been, for
several decades, a subject of great attention among applied mathematicians, fluid dynamists
and heat transfer analysts owing to its numerous engineering applications. These
applications include heat exchangers, cooling of electronic devices, hot wire anemometers
and lift enhancement as attributed to Magnus effects. It has been of great theoretical interest
as being a prototypical model for studying important aspects of heat convection and
hydrodynamics of unsteady flow over bluff bodies. Currently, due to various design of
mechanical and electronic devices, the need arises for studying both hydrodynamics and
heat transfer associated with cylinders that are performing either unsteady rotation or

translation.

When a circular cylinder is placed in a cross stream, a broad wake in the rear side of the
cylinder forms due to boundary-layer separation. The nature of the flow in the wake region
is highly dependent on Reynolds number and exhibits several distinct flow regimes. A
phenomenon of particular interest is the alternate shedding of vortices from either side of
the cylinder which usually occurs at Reynolds numbers above 40. Vortex shedding

introduces oscillating components to lift and drag forces as well as rate of heat transfer. The



frequency of vortex shedding is generally expressed in terms of Strouhal number, S.=f,d’V
where f, is the frequency of vortex shedding from a rigid cylinder. If the cylinder oscillates,
either in response to the oscillating lift force or due to external forces, the flow pattern in the
wake region changes which may cause changes in the lift and drag forces as well as the heat

transfer characteristics.

In the case of a cylinder performing transverse or in-line oscillations, when the oscillation
frequency is near the natural shedding frequency (for transverse oscillation) or twice the
natural shedding frequency (for in-line oscillation), vortices start shedding at the same
forcing frequency. This is called the lock-on phenomenon and is found to cause significant
changes in the flow and thermal fields. A graphical representation of this phenomenon is
presented in the Figure 1.1 (after Tanida et al. [1]), which is a plot of S/S, vs. S where S
(=fd/V) and S, (=f.d/V) are the dimensionless cylinder oscillation and vortex shedding
frequencies respectively. In the case of rotational oscillation in a cross stream, although the
lock-on phenomenon has been reported and visualized experimentally {2], the detailed

effect of this phenomenon on flow and thermal fields is not completely known.

Heat convection from a cylinder performing rotary motion in a quiescent fluid is considered
in this work, for it has some applications in thermal engineering. These applications range
from cooling of rotating machinery to drying in paper industry. Although the effect of
steady rotation on heat transfer characteristics has been investigated, the effect of unsteady

rotation has not been studied.

Heat convection from vertically oscillating cylinder in a quiescent fluid is also considered

in this study, due to its numerous physical applications. The most familiar direct application



is the heat convection from overhead transmission lines. These lines when subject to air
currents usually vibrate in response to the oscillating lift and drag forces. This vibration
affects one way or another the heat transfer rate and, consequently, the cooling of
transmission lines. In contrast to the considerable work published (see Chapter 2 for details)
on the problem of heat convection from a cylinder performing rectilinear oscillations in a
uniform stream, very little theoretical work was carried out on the problem of a cylinder
oscillating in a quiescent fluid. The main difficulty was the determination of the boundary
conditions at the moving solid boundary. One remedy which is adopted here, is the use of a

non-inertial frame of reference.

This work aims to conduct a theoretical investigation of the problem of heat convection
from a cylinder performing either rotational or rectilinear oscillations. In this regard, the
following three problems are considered:

1. Forced convection from a rotationally oscillating cylinder in a cross stream.

2. Mixed convection from a rotationally oscillating cylinder in a quiescent fluid.

3. Heat convection from a vertically oscillating cylinder in a quiescent fluid

In chapter 2, a comprehensive review of previous studies relevant to the above mentioned
problems is presented. In the subsequent chapters, the problem statement, method of
solution and a discussion of the obtained results for each of the cases considered is

presented.
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Figure 1.1 S/S, vs. S, Re=80, after Tanida et al. [1].



CHAPTER 2

LITERATURE REVIEW

Previous research on fluid flow over and heat convection from circular cylinders performing
oscillatory motions is numerous. In the following, a review of previous related theoretical
and experimental studies is presented. These studies include those dealing with circular
cylinders performing rotary motions (steady or oscillating ) and placed honzontally in
moving or quiescent Boussinesq fluids. The review also includes the work done on

cylinders that are either placed in fluctuating flows or oscillate in quiescent fluids.

2.1 Heat Convection From Cylinders Rotating in Quiescent Fluids

Heat convection from a horizontal cylinder rotating in a quiescent fluid was studied by
several investigators who found that the heat transfer rate from a rotating cylinder depends
on Reynolds number, Re (based on the surface velocity), Grashof number, Gr, and Prandtl

number, Pr.

Anderson and Saunders [3] were the first to study experimentally the heat transfer from
horizontal cylinders rotating in still air. Heat transfer by convection was measured for

different rotational speeds, cylinder temperatures and diameters. They found that up to a



critical value of Reynolds number, the Nusselt number slightly decreases with increasing
Reynolds number and the heat transfer is dominated by free convection. Above the critical
Reynolds number, they found that Nusselt number increases in proportion to Re** whereas
Grashof number has a negligible effect on the rate of heat transfer. Etemad [4] studied
experimentally the heat transfer and fluid flow around horizontal cylinders rotating in air. A
range of Reynolds numbers from 0 to 65,000 was investigated. From interferometric
observations, the laminar Couette flow was found to break down at a critical Reynolds
number ranging from 800 to 1,200. The study also showed that for values of Reynolds
number less than the critical value, the average Nusselt number decreases slightly with
increasing Reynolds number and depends mainly on Grashof number. His results showed a
good agreement with Ref. [3] in the range of Re > 6,000 where the effect of free convection
is negligible. Dropkin and Carmi [5] studied experimentally the problem of natural
convection from a rotating cylinder in air. Their results covered a range of Reynolds number
up to 43,300. The results showed that up to Re =15,000, rotation has no effect on the heat
transfer coefficient. Above this critical value, the heat transfer coefficient increases as
Reynolds number increases.. For Reynolds number larger than 15,000 they recommended
the correlation Nu = 0.073 Re"’. In the region where both rotation and natural convection

influence the heat transfer, their data were correlated by: Nu =0.095(0.5 Re +Gr)*%.

Kays and Bjorklund [6] measured heat transfer from a horizontal cylinder rotating in air
with and without crossflow. In case of zero crossflow, their results compared very well
with the investigations previously mentioned [3-5]. They also investigated the problem
theoretically by means of momentum and heat transfer analogy and found that the Nusselt

number could be related to friction coefficient , Prandtl number and Reynolds number. In



the case of air (Pr=0.72), the analogy solution agreed well with the experimental results.
Seban and Johnson [7] studied experimentally heat transfer from a horizontal cylinder
rotating in a tank of oil. Their results covered a Prandtl number range from 130 to 670 and
Reynolds number up to 15,000. The results showed an increasing dependence of free
convection on rotation as Prandtl number increases. At higher rotative speeds, where the
flow became turbulent and the free convection effects vanished, the results were correlated
by plotting Nw/Pr’**® versus Reynolds number. Some additional measurements were also
done using water. Becker [8] measured convection heat transfer from a horizontal cylinder
rotating in a tank of water. The results covered the range of Prandtl numbers from 2.2 10 6.4
and Reynolds numbers from 1,000 top 46,000. All his measurements were limited to the
region where the effects of natural convection are negligible and the heat transfer rates
depend only on Reynolds and Prandtl numbers. The results were correlated in terms of Re
and Pr as: Nu=0.133 Re®® Pr'”. This correlation compared well with the experimental data
reported by Anderson and Saunders [3]. Also, a good agreement was found between these
results and the theoretical momentum and heat transfer analogy solution of Kays and

Bjorklund [6].

Badr and Ahmed [9] investigated numerically the problem of heat convection from a
borizontal cylinder rotating in a quiescent fluid for Reynolds numbers up to 200,
Richardson number, Ri, being varied in the range 0 <Ri <1.4, while Pr is kept constant at
0.7. Their study was based on the solution of conservation equations of mass, momentum
and energy. They showed that the transient beat transfer following a sudden temperature rise
1s well defined in three stages, the first one is a conduction stage followed by a transition

(conduction/convection) phase and finally by a stage of steady convection. The details of



the steady velocity and temperature fields were obtained aad, accordingly, the varation of
vorticity and the local Nusselt number around the cylinder ssfee were plotted for different
cases. Their results were compared with the available expesmmental data and a satisfactory

agreement was found.

Farouk and Ball [10] studied both theoretically and expermestaily the induced convective
flows around a rotating isothermal cylinder stationed horzestally in air. Their numerical
solutions were carried out for free convection dominated flewsand covered a wide range of
Grashof number (up to 1.39 x 107) and the rotational parameer, Gr/Re’, was selected greater
than one. Their computations showed a slight decrease of themean Nusselt number with the
increase of Re at the same value of Gr. The experimessd studies, through Schlieren
photographs, showed a two dimensional flow regime with e mean heat transfer rates
remaining essentially constant at the same Gr. As the rotatimal speed increases above a
critical value, three dimensional disturbances in the form ef=ial waves appear, with the

mean heat transfer rates undergo a marked increase with themyease of rotational speed.

Wu-Shang et al. [11] studied numerically the enhancemest of natural convection heat
transfer in an enclosure by a rotating cylinder. The enclesse was two-dimenstional with
adiabatic upper and lower walls. The left and right walls s maintained at high and low
temperatures, respectively. They solved the governing egtions using a penalty finite
element method with a Newton-Raphson algorithm. T results revealed that the
contribution of rotation to natural convection depends om #e direction of rotation of the

cylinder. For counter-clockwise rotation, the contribution wss found to be substantial when



the value of Gr/Re’ is larger than 100, however, for the clockwise rotation, the contribution

is hardly detected even when the value of Gr/Re® is equalto 1.

2.2 Heat Convection From a Cylinder Rotating in a Cross Stream

The problem of heat convection from a cylinder rotating in a cross stream has attracted
many researchers both theoretically and experimentally. Badr and Dennis [16] solved
numerically the problem of forced convection from a rotating isothermal cylinder. The
solution covered the range of Reynolds number (based on free stream velocity ) up to 100,
and velocity ratios (ratio between tangential velocity and free stream velocity ) up to 4. The
obtained results showed that the local Nusselt number as well as the surface vorticity
distributions, were highly influenced by the rotational motion of the cylinder. At low values
of the rotational speed, the variation of local Nusselt number, Nu, deviates only slightly
from the symmetrical distribution that prevails for a fixed cylinder. As the rotational speed
increased, the variation of Nu tended to be more uniform. The same behavior occurred at
higher values of Reynolds number. It was also found that the average Nu decreases as the

rotational speed increases .

Ryohachi et al. [17] investigated experimentally mixed heat convection from a rotating
cylinder with and without cross flow by Mach-Zender interferometer with visual
observation of flow patterns. Their experiments covered the range of cross flow Reynolds
number (Re, = Vd/v) up to 3,000, rotational Reynolds number, Re; (based on cylinder
velocity) up to 3000 and Grashof number, Gr, from 4.8 x 10* to 2.6 x 10°, The study showed

that heat transfer is not influenced by natural convection as long as Rey greater than 1,000.
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The results showed that average heat transfer coefficients of a rotating cylinder are equal to
the case of static cylinder in a uniform flow when Res > 1,000 and the velocity ratio less
than one. It was also found that heat transfer from the cylinder is least at a velocity ratio of

2 and Reg below 1000. At velocity ratios greater than 2, the heat transfer rates were found to
be dominated by rotational speed and the data obtained for Nu were correlated in terms of

Reg, Re.and Gras : Nu =0.055 Re.’ (1+8 Gr/ Re/’ )0*”5 .

Chiou and Lee [18] studied the flow structure and heat transfer from a rotating cylinder
cooled with an air jet. The Nusselt numbers were obtained for jet Reynolds numbers of 100,
500 and 1000 under various rotation Reynolds numbers up to Re; = Re;. For slow rotation
speeds, the jet flow is separated into two branches after hitting the cylinder with a separation
point for every branch. The rotating cylinder accelerates one of the jet branches such that
the separation point moves downstream, while the other separation point receives no
significant influence. As a result, the overall heat transfer coefficient was enhanced. For
high rotational speeds, however, this trend were reversed due to the presence of a buffer
layer of air round the cylinder. This condition, nevertheless, resulted in more uniform heat

transfer rates.

Shehata [19] studied theoretically the problem of mixed convection from a rotating
horizontal isothermal cylinder placed in a cooling cross stream. His study covered the range
of Reynolds number from 20 to 500, Grashof number up to 10° and speed ratio up to 8.0.
The study focused on the effect of the ratio of Gr/Re” on the local and average heat transfer
coefficients for selected values of Reynolds number and speed ratio while keeping the

Prandtl number unchanged. It was found that both Grashof number and speed ratio have
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profound effect on the local and average Nusselt numbers. Increasing Grashof number for
constant speed and Reynolds number (i.e. increasing Gr/Re” ) tended to increase the
average Nusselt number, whereas increasing the speed ratio for fixed values of Gr and Re

caused a significant decrease in the average Nusselt number.

Nguyen et al. [20] studied mixed heat convection from a rotating circular cylinder
immersed in a spatially uniform, time-dependent convective environment including the
effects due to buoyancy force and a small fluctuations in the free stream velocity. The flow
equations, based on vorticity-stream function formulation, are solved along with the energy
equation by a hybrid spectral scheme that combines the Founer spectral method in the
angular direction and a spectral element method in the radial direction. They investigated
several cases in the range of Reynolds number up to 200, Grashof number up to 20,000 and
speed ratios from -0.5 to 0.5. The results show that vortex shedding is promoted by the
cylinder rotation but vanishes by the presence of buoyancy force. They found that, the
direction of rotation, whether aids the buoyancy force or opposes it , greatly affects the heat
flux along the cylinder surface. This implies that the heat transfer rate is strongly dependent
upon Reynolds number , Grashof number, Rotational speed and gravity direction. The
effect of flow pulsation is reflected in the Nusselt number history in the form of periodic

oscillations.

2.3 Flow Over Rotationally Oscillating Cylinders

The first study dealt with flow over an oscillating cylinder was due to Hori [21] who solved

the unsteady boundary layer on a circular cylinder performing rotational oscillations in a
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uniform flow. The two-dimensional, laminar-flow equations were linearized based on the
assumption that the velocity fluctuation in the boundary layer is small. The frequency of the
fluctuation is also assumed low, thus retaining terms up to the first order in frequency. The
solutions are expressed as linear combinations of a family of universal functions by
extending the Blasius’ series method to unsteady flow. A new criterion of the unsteady
boundary-layer separation is proposed by observation of streamline patterns near the point
of separation. This criterion is based on the asymptotic behavior of these streamlines at a

large distance from the solid wall.

Okajima et al. [22] studied viscous flow around a rotationally oscillating circular cylinder
both numerically and experimentally. Their numerical solution of Navier-Stokes equations
is carried out at one value of velocity amplitude (surface velocity/free stream velocity),
a=0.2, and covered a range of Reynolds number, Re=40 to 80, whereas their experimental
results covered a range of Reynolds numbers, Re=40 to 6,100. Their numerical results for
lift forces showed a good agreement with the experimental results at Re=40, 80. On the
other hand, the phenomenon of the so called synchronization (this occur when vorte>;
shedding frequency equal to imposed cylinder frequency) has been reported in their
investigation. Finally, they concluded that there may be a close relation between time

variation of flow pattern and that of the lift force on the oscillating cylinder.

Using flow visualization, Tanida [23] investigated the flow structure around a circular
cylinder performing rotary oscillations about its own axis while placed in a uniform stream.
The study covered a range of Reynolds numbers between 30 and 300 and Strouhal numbers

between 0 and 55. The study revealed that, as the frequency of oscillation increases the dead
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fluid in the wake of the cylinder reduces, and that the critical Stroubhal number at which
this dead region vanishes is approximately proportional to the reciprocal of the angular

amplitude of oscillation , but independent of Reynolds number.

The unsteady flow over a rotationally oscillating cylinder was investigated both numerically
and experimentally by Wu et al. [24]. The numerical solution was obtained by solving the
full Navier-Stokes equations which were written in the form of vorticity and stream function
equations. Shedding of vortices with and without external excitations were discussed. The
results showed that the forces acting on the cylinder strongly depend on the oscillation
frequency and amplitude. Flow visualization was conducted with laser-induced fluorescence
and colored dye techniques in a water tunnel for both fixed and oscillating cylinders. The
experiment showed that when the forced frequency is near the natural vortex shedding
frequency, the vortex shedding in the wake becomes more organized, which was found to
agree with their numerical predictions. It has been also found that both unsteady lift and
drag forces reach their maximum when the resonance flow state is reached (i.e., when the

forced frequency is equal to natural vortex shedding frequency).

Tokumaru and Dimotakis [2] studied experimentally the possibility of rotary oscillation
control of a cylinder wake. The study was based on flow visualization and measurements of
the wake profile using Laser-Doppler anemometer at moderate Reynolds number,
Re=15000, Strouhal number, S¢ in the range 0.17 <S; <33 and velocity amplitude up to
16. Their results showed that, at fixed frequency, as the amplitude of oscillation increases
the wake becomes wider. With the variation of amplitude and frequency of oscillation,

several modes of vortex shedding were observed. At a fixed velocity amplitude, o =8, and
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0<S, <0.9, the wake structure was found to be synchronized with the forced cylinder
oscillation. As the frequency increased to 1.1 and 1.5, the near wake was synchronized but
the far wake flow became unstabie and not synchronized with the cylinder oscillation. As
the frequency increased further to 2.0 and 3.3 the effect of forcing was primary observed in
the shear layer separating from the cylinder. Their results at lower Reynolds numbers,
Re=3.3 x 10°, showed that the effect of Reynolds number on the aforementioned vortex
shedding modes in the wake was not significant. They concluded that simularity of their
results with other researchers such as Roberts and Roshko [25] and Williams and Amato
[26], using various bluff bodies and forcing techniques, supported the proposition that the
mechanisms by which the dynamics in the wake can be controlled are largely generic and
have more to do with the ejection of circulation into the flow, rather than with the behavior

of the flow observed in the absence of forcing.

Tokumaru and Dimotakis [27] investigated the mean lift coefficient of a circular cylinder
executing rotary motions in a uniform flow. These motions include steady rotation
(Q.=const.) and rotary oscillation with a net rotation rate in the form  =Q.+Q; sin(2nft).
Their experiments were carried out through flow visualization and LDV in the range 0.5
<0, <10 and Q; up to 2.3 at Re=3800. It was found that forced oscillation increased the lift
coefficient in the range 0 < Q, < 2.5 and decreased it in the range 2.5 <Q, < 4.5. These
were attributed to the fact that the forced oscillation helps minimize the wake in the range

Q, < 2.5 since the flow becomes closer to potential flow but with an opposite effect in the

range 2.5 £Q,<4.5.



2.4 Heat Convection From Rotationally Oscillating Cylinders

The number of studies dealing with heat convection from a steady rotating cylinder is fairly
considerable and covering almost all aspects of heat transfer. However, the only study on
heat convection from a cylinder performing rotary oscillations was carried out by Childs
and Mayle [28] who investigated theoretically heat transfer from a rotationally oscillating
cylinder placed in a cross stream. Their work was based on solving the unsteady boundary-
layer and energy equations using the series method of Blasius [29] and Howarth [30] and
the perturbation method of Lighthill [31]. The amplitude of oscillation was assumed small
enough to neglect its square value which makes the contribution to the velocity and
temperature fields as a linear perturbation of the steady fields. Two limiting values of the
Strouhal number (S) were examined, the first when S approaches zero (quasi-steady case )
and the second when S approaches very large values. The first solution, for the steady case,
is extended to an unsteady solution for a small but finite value of S by adding a term that
includes the effect of local acceleration. As S approaches very large values, local
acceleration dominates near the wall, and interaction with the convective acceleration terms
in the mean flow may be neglected. The solution was shown to coasist of the superposition
of Stokes’s 2nd problem and that for steady flow around a circular cylinder. The study
revealed that the unsteady skin friction reached as high as 38% of the total drag and
increases with the frequency. On the other hand, the unsteady heat transfer is found to
contribute only 4% near the separation point and decreases with frequency. They concluded
that the steady expressions for heat transfer are adequate even when the cylinder is

oscillating, regardless of the frequency as long as the amplitude is small. They attributed the
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negligible effect of cylinder oscillation on the surface heat transfer to the boundary-layer

assumptions adopted in their work.

2.5 Oscillating Flow Over a Circuiar Cylinder

The problems of flow around an oscillating cylinder, or a fixed cylinder placed in an
oscillating flow field are classical problems in fluid dynamics. Extensive experiments have
been carried out to study the flow patterns around the cylinder [32-34] and the
hydrodynamic forces acting on it [35,36]. Apart from experimental approaches, numerical
methods have been used to predict the streamlines and equi-vorticity contours. Justesen [37]
solved numerically the Navier-Stokes equations using finite-differences for flow around a
circular cylinder in a planer oscillating flow at smail Keulegan-Carpenter number, KC =
UnI/D, where Up, is the maximum velocity, T is time period of oscillation and D is the
diameter, in the subcritical Reynolds number range. For very small KC (< 1), the numerical
results were found to coincide with the analytical solutions. As KC was increased, the
incipient separation and instability leading to an asymmetrical flow with vortex shedding
were predicted. The computed flow field at small KC values were compared with flow
visualization, and a good agreement was found for moderate values of Stokes number B (B =

d*/uT = 250 where T is the cycle time period ).

Badr et al. [38] integrated the unsteady Navier-Stokes equations to solve the oscillating flow
over a fixed cylinder. They studied the effect of Reynolds and Strouhal numbers on the
laminar symmetric wake evolution and the results were compared with the previous

numerical and experimental studies. The time variation of the drag coefficient was also
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presented and compared with the inviscid flow solution for the same problem. The
comparison between the viscous and inviscid flow results showed a better agreement for

higher values of Reynolds number.

Recently, Zhang Hui-Liu and Zhang Xin [39] investigated numerically the flow field around
an oscillating cylinder by solving the governing equations in primitive variables formulation
using finite-volume method with a pressure predictor-corrector scheme. Their results
covered KC < 20 and Reynolds number, Re =U,, D/v < 4,000. The results showed that at
low KC and/or low Re, the flow field was symmetric, with dominance of vorticity decaying
effects. At higher Re, the vorticity convection became stronger leading to the inception of
asymmetrical flow pattern. The forces acting on the cylinder were predicted for both
symmetric and asymmetric flows. The conventional drag and inertia coefficients were
deduced and compared with other numerical and experimental results, and a good

agreement was found.

2.6 Heat Convection From Rectilinearly Oscillating Cylinders

The problem of heat convection from a cylinder performing rectilinear oscillations has been
experimentally investigated by several researchers [40-49]. For heated cylinders performing
transverse oscillations in quiescent fluids, a number of researchers [40-43] conducted their

studies using water and others [44, 45] considered oscillations in air.

Lemlich and Roa [40] studied free convection from an electrically heated cylinder (0.049
inch diameter) to water and aqueous glycerine. The cylinder was vibrated vertically at

frequencies ranging from 17 to 37 Hz for amplitudes up to 0.086 inch. The coefficient of
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heat transfer was found to increase considerably with frequency and amplitude, reaching
ten-fold in some cases. A dimensionless correlation was devised for their results together

with those of other investigators [44, 47].

On the other hand, only few theoretical works were reported on the problem of heat
convection from rectilinearly oscillating cylinders. Momose et al. [50] investigated
numerically the influence of horizontal vibrations on heat convection from a horizontal
cylinder. They solved the governing equations using Fourier-expansion method. Their
study considered only the cases of very small amplitude, high frequency vibrations at low
Grashof number (Gr=100). The results showed an increase in heat transfer as a result of
vibration. Also, it is shown that the vortex system in the vicinity of the cylinder plays a key
role in the heat convection process. Karanth et al. [51] used a finite-difference scheme to
solve the forced convection heat transfer equations for an oscillating cylinder. They
investigated the effect of in-line and transverse oscillations on the time-dependent average
and local Nusselt numbers at a Reynolds number of 200. The study showed that the heat
transfer rate from an oscillating cylinder increases with increasing the velocity amplitude.
In the case of transverse oscillation, the location of maximum local Nusselt number was

found to oscillate between the upper and lower surfaces of the cylinder.

Chin-Hsiang et al. [52] investigated heat convection and flow characteristics over a
transversely oscillating cylinder. The range of dominated parameters considered were
0<Re<300and 0<S, <03, where S; is the dimensioniess reduced frequency of
oscillation (fd/U_). The Prandtl number considered was either 0.71 or 7.0. The study

revealed that in the lock-on regime (when vortex shedding frequency is equal to cylinder
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frequency), an appreciable increase in heat transfer caused by oscillation was observed,
however, outside this regime the heat transfer was almost unaffected by oscillations. A
correlation expressing the dependence of heat transfer on these dominant parameters in the
lock-on regime was presented. Recently, Badr [53] investigated theoretically the effect of
free-streamn fluctuations on forced convection from a straight tube of circular cross-section.
The resulting unsteady velocity and thermal fields are obtained by solving the conservation
equations. The study covered a range of Reynolds number between 50 and 500, a range of
Strouhal number from 7/4 to © and a range of velocity amplitude from 20 to 50% of the
free stream average velocity. The study revealed that the rate of heat transfer increases with

the increase of the amplitude but decreases with the increase of frequency.

2.7 Closure

From the above literature review, it is clear that the problem of heat convection from a
circular cylinder performing rotary oscillations in a quiescent fluid has not been
investigated. The only study reported on forced convection from a rotationally oscillating
cylinder in a cross stream was carried out in the limit of very small amplitude and with the
assumption of boundary-layer flow. On the other hand, heat convection from a vertically
oscillating cylinder in a quiescent fluid has not been theoretically investigated. The
motivation to initiate this study was the lack of enough information on heat convection from
a horizontal cylinder performing either vertical rectilinear oscillations in a quiescent fluid or

rotary motions with and without cross stream.



CHAPTER 3

FORCED CONVECTION FROM A ROTATIONALLY
OSCILLATING CYLINDER

In this chapter, the problem of forced heat convection from a circular cylinder performing
rotary oscillations is considered. The physical model is shown in Figure 3.1. The cylinder is
of radius ¢ and is placed horizontally in an unbounded, cross-stream with uniform
approaching velocity V. The cylinder surface is maintained at a constant temperature T, and
is rotationally oscillating about its own axis with harmonic motion of the form:
O = -0, cos(2nfr)
where, © is the angular displacement, t is the time and© , and f are the angular amplitude
and frequency of oscillation, respectively. The cylinder surface velocity is then
u, =u, sin(2xfT)

where u’_ is the amplitude of surface velocity.

3.1 The Governing Equations

The conservation equations which govemn the laminar, two-dimensional motion of
incompressible fluid are the continuity and momentum equations. The analysis of heat
convection is based on the two-dimensional unsteady energy conservation principle. In

cylindrical coordinates, the governing equations are expressed as :
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Figure 3.1 Coordinate System
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In the stream function-vorticity form, the above equations read :
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The boundary conditions are the no-slip , impermeability and isothermal conditions on the

cylinder surface together with the free stream conditions very far away from it. These

conditions can be expressed as
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The governing equations (3.5-3.7) and boundary conditions (3.8) are transformed to their

dimensionless form by introducing the following dimensionless quantities.
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Using the above quantities, equations (3.5-3.7) can now be written as
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Re = ﬂ is the Reynolds number and Pr = ”k" is the Prandtl number.
\%

The dimensionless surface velocity, Uw, can be expressed as
U, = a sin(nSt)
where o represents the dimensionless velocity amplitude (=u’ /V) and S is the

dimensionless forcing frequency.
In order to have high accuracy near the cylinder surface ( where steep velocity and
temperature gradients exist ) and at the same time cover a wide computational domain, the

modified polar coordinates ( £ ,0 ) are used where & =In r. In the modified polar coordinates,

the equations can be written as:
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and the boundary conditions are written as :
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3.2 The Method of Solution

The method of solution is based on integrating the governing equations of motion and
energy in time to obtain the velocity and temperature fields. Using the series truncation
method and following the works of Collins and Dennis [54] and Badr and Dennis [16, 55],

the dimensionless stream function y, vorticity { and temperature ¢ are approximated

using Fourier series expansions as follows :

N
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where F,, fo, Fo . Go » 1 » G, Ho,, h, , and H, are Fourier coefficients and all are functions
of & and t. Substitution of equations (3.16) in equations (3.12)-(3.14) and using simple

mathematical analysis results in the following set of differential equations:

Ei-P;o — ZEGO (3.173)
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where S, Spi , Sw2, Z, , Zn1 and Z,» are all easily identifiable functions of £ and t and are
given in appendix Al. Equations (3.17a)-(3.17c) define a set of (2N+1) ordinary differential
equations and each of equations (3.18) and (3.19) define another set of (2N+1) partial

differential equations, where N is the order of truncation in the Fourier series. All these
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(6N+3) equations have to be solved at every time step to get the details of the flow and
thermal fields. The boundary conditions for all functions in equations (3.17)-(3.19) are
obtained from equations (3.15) and can be expressed as
at &=
Fo=F, = f,= 0F/0E =0f/e8 = 0, ¢Fy/c%= -2 a sin(nSt), Ho=2, Hy=h,=0
and as E—
et Fo—0,e%cF/88E > 0,F,—>0,f,—8,,

e%eF/6E — 0, e%8f,/2E — 8, » Go ,Gn ,ga — 0, and Hy Ho by — 0 (3.20)
Integrating both sides of equation (3.17a) with respect to § from 5=0 to &= = and using the
boundary conditions in equations (3.20) gives the following integral condition:

[T ¢%G.dg = 2 asin(nSt) (3.21a)
Multiplying both sides of equations (3.17b) and (3.17c) by e™™ and integrating using the

boundary conditions (3.20), one can obtain the following integral conditions

[etrgnde =25, (3.21b)
[[er™G,dg=0 (3.21c)
_ )1 whenn=1
where 6l.n - {O whenn=1

The above integral conditions (3.21a-3.21c) are used at every time step to calculate the
values of the functions G, , gs and Gy on the cylinder surface (£ =0). These functions are
then used to compute accurately the vorticity distribution on the cylinder surface. The first
condition (3.21a) is essential to ensure the periodicity of the pressure around the cylinder

surface. Further discussion of this point is presented in the section 3-6.



3.3 The Initial Solution

In order to advance the solution of y,and ¢ in time, the initial condition at time t=0 must
be known. In this study, it is assumed that the flow and imposed rotational oscillation start
simultaneously and impulsively from rest. At the same time cylinder surface temperature is
assumed to increase to Tw. The use of potential flow solution as initial solution, as was
frequently adopted by many researchers, will definitely lead to inaccurate results following
the start of fluid motion. However, the effect of such inaccuracy on the large time results is
not known. The flow field structure at small times following the start of fluid motion is
characterized by a very thin boundary-layer region close to the cylinder surface bounded by
a potential flow elsewhere. As time increases, this boundary layer region grows and the
proper scaling for such a case is the use of boundary-layer coordinates. Let us now

introduce boundary-layer coordinates (z, t) defined as :
E =Mz, where A =242 URe
Also introduce y"and ¢ defined as :
vy =y/k, and C =)L,
The corresponding Fourier functions become
Fs =F, /A, £, =f /A, F, =F, /A, G, =G4k, g, =g ,Aand G, =G A (3-22)
The use of y~and (" is appropriate to the flow field structure at small time in which the

viscous flow region is limited to a very thin layer. In that layer, the surface vorticity

reaches very high values while the stream function  is very small.
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Using equation (3.22), the govemning equations and the boundary and integral conditions
(3.17a-3.21c) can be transformed to the new coordinate system and then solved to give a
fairly accurate solution at small times. To start the integration in the transformed
coordinates the zero time solution must be known. Closely following the methodology of

Collins and Dennis [54] and Badr and Dennis [35], the initial solution at t=0" is found to be

v*(2,6,0) = =2[z(1 —erf(z) + =*(1 - )]sin(O) (3.23)
$(z,0,0) =471 e sin(@) (3.24)
®(2,0) = —erf(z+/Pr) +1 (3.25)

3.4 The Numerical Solution

The solution of the obtained differential equations (3.18a-3.19¢) is based on numerical
integration using the Crank-Nicolson finite-difference scheme. At a typical tme t, the
functions (Fo, F,, fu) related to the stream function, the functions (Gg, G,, g,) related to the
vorticity and the functions (Hy, H,, h,) related to the temperature can be obtained provided
that all these functions are known at (t-At), where At is the time increment. All equations
(3.18a-3.19c) are of the same form and we need only to present the solution methodology

for a typical equation. We now consider equation (3.18¢) as an example,

e C 2 (& , &
e CE}" = _( C—G»" - H‘Gn) +of, o ng, To s,
¢t Rel &&- e 88
which can be rewritten as
aG,
= qn(‘:’ t) (nzl’za-", N) (3.26)

ot



2] 2 (&G, . ¢G cF,
where q, =€ {— = -n"G, |+of, —~-ng, —=+S,,
Re| &g’ o€ &g

S S S

The Crank-Nicolson finite-difference approximation of Eq. (3.26) results in
1 1
Z;[G.,(E, 1) = G,(S,t = AD] = 5[q,(E,1) + q, (5.t~ aD)] (3.27)

Using central differences for all space derivatives in (3.27) and rearranging one obtains,
B(E, )G, (&, 1) = AG, G, (E+ AL, 1) + C(E, )G, (E - A, 1)

+D (S, t—At) + E_(&,1) (3.28)
where A is the step size, A, B, C, are identifiable functions of £and t that can be
calculated at each mesh point, D, (E,t — At) is a completely known function and E_(E,t)is a
function that depends on the solution at time t. Since the problem is solved numerically. the
conditions at %o are applied at £=§, where & defines the distance away from the
cylinder surface at which Cand ¢ approximate the free stream values. Equation (3.28) when
applied at every point in the range from E=0t0 & =¢_ will result in a set of algebraic
equations that form a tri-diagonal system of equations which can be solved by TDMA (Tri-
Diagonal Matrix Algorithm) [73] for each value of n between n=1 and N. The difficulty in
solving this system of equations is that the term E,(&,t) is not completely defined, for it
depends on the solutions at time t. To overcome this problem, an iterative technique is used
in which the unknown functions E,(& ,t) are assumed initially to be the same as Eq( S ,t-At)
and then corrected according to the most recent available value until a convergence criterion

is achieved. For any function, the condition for convergence is reached when the

difference of the values obtained in two successive iterations is within a certain limit, i.e.
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The values of functions G,(0.t)at the cylinder surface is updated through an iterative

process by writing the integral condition defined in equation (3.21c) as a numerical
quadrature formula which then relates the boundary value to values of the corresponding
functions at internal points of the computational domain. In a similar manner, the functions
Go(0,t), g.(0,t) are updated through the same iterative process. This gives the extra
conditions needed to determine the boundary values for Go.G, and g, (i.e. the boundary
values for vorticity). The boundary values for equations (3.19a-3.19c) are known. and
accordingly, no integral condition is needed.

The solution for equations (3.17b, 3.17c) is obtained using a step-by-step integration

scheme. In this scheme, equations (3.17) are factorized as follows

[i—nIi+n =R_(&1) (3.29)
S as
where
R, (5.0 =e%G, (&)
let
CF
P, = —% —1F, (3.30)
Cs
and
¢F
Q, =—=F+nF, (3.31)
=
The two functions satisfy the following differential equations
cP
=+ 0P, =R, (1) (3.32)
a8
P _1Q, =R, &) (3.33)

g



From (3.30), (3.31), one can deduce that

F, = Q=P (3.34)
2n

Equation (3.32) can now be integrated in the direction of increasing & using the following

scheme

3

hi
'3
=

P (§+A5)=%P (&) + xe'“i-j a e™R, (y,t)dy (3.35)

where
r=e™ h=AF

and by using the trapezoidal rule in the interval  to £ +h and evaluating the integral in eqn.

(3.35) one gets,

1
nzh‘l

P (§+ht)=yP,(E,1) + R, (&.0[1-x—xnh]+ R, (& +ht)nh+y —1]} (3.36)

Let us introduce the variable x, such that x=&_ —& , one can rewrite eq. (3.33) as

B.Q“ +0Q, =-R,(x,1)=Zn(x.1)
cX

This equation is similar to eq. (3.32) and can be integrated the same way to get

Q. (x+h,t) = ¥Q,(x,t) + E%{Z“ (x,t){1 =y - ynh]+ Z_(x +h,t)[nh + y = 1]} (3.37)
At any given time t, by knowing the function R, (E,t) , one can obtain a solution for P, and
Q. using the step-by-step integration given by eqns.(3.36), (3.37), respectively. The needed
boundary conditions for P, and Q, are

P,0,)=0 and Q,(0,t)=2e’*§,
The numerical procedure can be summarized as follows:

1. The known solution at time (t-At ) is used as an initial solution. The tri-diagonal system

of equations resulting from equation (3.28) is solved by TDMA using the most recent
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available information of the function E, to obtain solution for functions Gg, Gn. 8n Ho, Ha
and h, , (n=1,2,..N)attime t.
2. The integral conditions (3.21) is used to obtain a better approximation for Go(0,t), Gn(0.t)
and g,(0,1).

3. Equation (3.17a) is solved using direct numerical integration to obtain Fo (S, 1) .

4. Equations (3.17b) and (3.17c) are solved using step-by-step integration to obtain
Fa(§,t)and fu (S,1).

5. Steps 1,2,3 and 4 are repeated until convergence is reached.

6. The time is increased by At and steps 1,2,3,4 and 5 are repeated.

7. The solution continues until the required time is reached.

The program flow chart is shown in Figure 3.2

The number of points in the & direction used is 120 with a grid size taken as 0.1. This sets
the outer boundary at a physical distance of approximately 20,000 times the radius of the
cylinder. Such large distance is necessary to ensure that the conditions at infinity are
appropriately incorporated in the numerical solution. However, the grid size is reduced to
0.05 for high Reynolds cases. This is due to steep variation of velocity and temperature
within the thin boundary-layer in these cases. Following the start of fluid motion, very small
time steps are used since the time variation of vorticity and temperature is quite fast. As
time increases, the time step is gradually increased. For the sake of stability, smaller time
steps are used for high Reynolds numbers and high forcing frequencies. Typical time steps

used are At=0.001 for first 10 steps followed by At=0.01 for next 10 steps and then followed

by At=0.05 for the rest of the solution. The number of terms in the series starts with only 2
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and one more term is added when the last term exceeds 10™. The maximum number of
terms increases with the increase of Reynolds number, dimensionless forcing frequency or
the amplitude of oscillation. The maximum number of terms reached in all cases considered

in this work is 40.

3.5 Local and Average Nusselt Numbers

The local and average Nusselt numbers are defined as

hd — hd
Vu:—, Nu:—- 3.36
' K k (3.36)

where, h and h are the local and average heat transfer coefficients and are defined as

. q T_ 1
h_Tw—Tm and h—znfo h d6 (.37

where q'is the heat transfer rate given by:

¢ =k . (3.38)

I.l

From the above definitions one can deduce

o9 ‘J‘C’H éh, cH. -‘ .,
el v 3.39
’ (6§ l=0 65 Z{[ C'u: ‘: J ( Jd )

JZ=0
and
— cH
Nu=|—¢ W (3.40)
05 f-o
The time-averaged Nusselt number is obtained from
e 1 | A
Nu = Nu dt (3.41)
t2 -1t

where, the time period between t; and t, is taken after reaching the quasi-steady state,

covering more than one cycle.
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Figure 3.2 The Computational Flowchart
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3.6 Pressure Distribution Over the Cylinder Surface

In order to examine the pressure distribution on the cylinder surface, let us introduce the

dimensionless pressure P defined as:
ps =2 (P, —P.)/pV?,

Applying the angular component of momentum equation on the cylinder surface, one gets

ok _ LU, 4(eg (3.42)
o8 et Relég |,

Integrating the above expression w.r.t. 8 starting from 8 == to any angle 0 on the cylinder

surface, the pressure distribution is found to be

2 7 3
P = (n-0) =0 .2
Re &g "~ ct
N si O - ,
4 Zsm nb aG, - cos nf - cos nx &g, » (3.43)
Re|sd n & " n og *
The periodicity of surface pressure P, requires that
_2_ aGo +2 éUw =
Re ¢¢ ¥ 7 &
which may be written as :
U
G5 (0,t) = —Re CBt“ (3.44)

Closely following the line of reasoning of Badr and Dennis [55] for the problem of steady
rotating cylinder in a uniform stream, it can be shown that the condition (3.44) is implicitly
satisfied by the integral condition given in (3.21a). For steady rotating cylinder the needed
condition for the periodicity of pressure as deduced by Badr [55] was G(0,t) =0. This
condition comes as byproduct of Eq. (3.44) when Uy=const. Moreover, Eq. (3.44) is taken

as a further check for numerical convergence.



3.7 The Lift and Drag Coefficients

The drag and lift coefficients are defined by

Cp=2D/pV?, Cr=2L/pV?

where D, L are the drag and lift forces exerted on a unit length of the cylinder surface.
These two forces are mainly due to pressure and viscous shear forces acting on the surface.

The ones due to pressure are

2

D, = —J':KPQ cos(9) cdo, L, = —L o S10(0) c d6

and the others due to viscous shear are

D, = [, sin(8) c 4@, L; = |, 7. cos(8) c do

where Pg and 1., are the wall pressure and wall shear stress respectively. Normalizing these

forces by pV*/2 the pressure drag/lift and viscous drag/lift coefficients are then
1 ¢ein_ . 2 pin . -
Cop==3, Py cos8ds,  Cop =—=["(5, +2U,)sind do (3.45)
1 2x . . 2 in R
Cpp = _EL P,” sind db, Cpe = -g.[o (&, +2U_ ) cosB do (3.46)

where P, C.and U. are the dimensionless wall pressure, vorticity and velocity

respectively. The drag and lift coefficients are then
Cp=Cop+Cpr, CL=Crp+Crr (3.47)

In terms of Fourier coefficients the drag and lift coefficients are found to be

5 .
C, = é{gl(o,:)—(%i‘J } (3.48)
£=0

2n oG,
C.= —Eg{GI (0,1) —( 5 )H} (3.49)




The time-averaged drag coefficient is obtained from

1
t, -1,

[fcpat (3.50)

D= .
where, the time period between t, and t2 is taken after reaching the quasi-steady state and

covering more than one cycle.

3.8 Verification of the Method of Solution

The accuracy of the mathematical model as well as computational scheme are assessed by
solving a number of problems for which theoretical or experimental results are available for
comparison. Although the method of solution has been tested extensively by Badr [55] and
proved to be highly accurate, further checks on the consistency with the previous
experimental and numerical studies are considered. The problem of initial flows over fixed
and rotating cylinders starting their motion impulsively from rest are first considered. The
present prediction for the initial flow over a fixed cylinder at Reynolds number (Re = 3000,
t = 3), in the form of streamline pattern, is shown in Figure 3.3. The pattern compares very
well with the corresponding experimental and theoretical patterns obtained by Ta Phuoc
Loc and Bouard [56]. A pair of secondary vortices generated at the cylinder surface at such
moderate Reynolds number is accurately predicted. Figure 3.4 shows a good agreement
between the velocity distribution along line (6=0) predicted by Ta Phuoc Loc [57] and the
corresponding distribution predicted by the present method. On the other hand, the present
predictions for the initial flow development over rotating cylinder are compared with that
obtained from the pioneer experimental study of Coutanceau M. and Menard [58]. The

comparison is carried out for two speed ratios (rotating speed/free stream velocity)
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a=1/2, a=1 at Re=200. The velocity components along line (8=0) compare
quantitatively well with the experimental ones as shown in Figures 3.5 and 3.6. Based on
the above comparisons one can conclude that the present predictions for the flow field are
accurate. Further comparisons for both flow and thermal fields are presented in the

following section.

3.9 Results and Discussion

3.9.1 Stationary Cylinder in a Cross Stream

Observation as well as numerical predictions have shown that the Reynolds number is a
dominant parameter governing the flow and heat transfer characteristics. In the case of flow
past a stationary cylinder, at Reynolds numbers higher than about 40, alternating vortices
are shed periodically forming the well known Karman vortex street. The vortex shedding
process causes unsteady flow behavior close to the cylinder surface and thus affects both
flow and thermal fields. In order to investigate these effects, the vortex shedding from a
stationary cylinder is examined at three Reynolds numbers (Re=80, 100, 200). In the
numerical scheme, the vortex shedding process is triggered by rotationally oscillating the
cylinder only for one complete cycle (at t=40) and fixing it afterwards. The Karman vortex
street is developed with vortices being shed alternately from the upper and lower surfaces
of the cylinder. The frequency of vortex shedding is computed from either the periodic
variation of the velocity at any point in the wake or the time variation of the induced
oscillating lift force [72]. The dimensionless frequency of vortex shedding is generally

expressed as the natural Strouhal number, S,= f,d/V, where f, is the vortex shedding
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frequency. The Fourier analysis for the lift record or the velocity record gives almost the
same value for Stroubal number as shown in Figure 3.7. The predicted values of Strouhal
number as a function of Reynolds number together with the experimental values reported by

Roshko [70] are displayed in Table 3.1 and a good agreement is observed.

Figures 3.8-3.10 show contour plots of streamlines, equi-vorticity lines and isotherms
during one complete cycle of vortex shedding at Re=100. The streamline contour plots
clearly monitor the time development of vortices and their convection in the wake. Because
of vortex shedding, the equi-vorticity and isotherms contours are no longer symmetrical. It
can be seen that the equi-vorticity contours and also isotherm contours are very close near
the cylinder surface and far apart away from it which indicate large vorticity and

temperature gradients near the surface and small gradients far away.

Figures 3.11a and b show the time variation of the average Nusselt number, Nu, drag
coefficient, C,,, and lift coefficient, C,, at Re=100 and 200 respectively. While the lift
coefficient is shown to oscillate with the same vortex shedding frequency, the drag
coefficient and Nusselt numbers oscillate at twice that frequency. The temporary overshoot
in drag and Nusselt number at Re=200 is due to the transition effect of vortex shedding
triggering mechanism. The amplitude of lift, fluctuating drag and Nusselt number increase
with increasing Reynolds number. The time averaged drag coefficient and Nusselt Number

in cases of vortex shedding reveal appreciable increase in comparison with that of steady

flow (assuming no vortex shedding). This increase in C, reaches about 130% at Re=100

and 52% at Re=200, whereas, the increase in Nu reaches about 20% at Re=100, 9% at
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Re=200. This fact leads to suppose that the symmetrical case is not a realistic description of
the flow but rather a mathematical concept especially at Reynolds numbers exceeding 40.
The values of the time-averaged drag coefficient at different Reynolds number are
compared with previous works displayed in Table 3.2 which shows a good agreement. The
present predictions for the time-averaged Nusselt number are displayed also in Table 3.2
along with the previous studies [52, 63-68]. These previous studies give quite dispersed
values for the average Nusselt number. The table shows that for any Reynolds number, the

present results lie approximately in the middle of the range of the dispersed results.

Shown in Figure 3.12 is the variation of the local Nusselt number distribution over the
cylinder surface during one complete cycle of vortex shedding at Re=100. At all times, the
maximum heat transfer rate is found near the front stagnation point 8 = 180". However, due
to vortex shedding, the local heat transfer on the rear side of the cylinder improves, showing
another local peak near 6 = 360". This local improvement in heat transfer increases the
average heat transfer rate in comparison with the no vortex shedding solution. It can be also
seen that the local Nusselt number distributions during one complete cycle are almost
unchanged over most of the cylinder surface except on the rear part where slight differences
are found as a result of periodic shedding of vortices. The local Nusselt number
distributions at the beginning, t=t,, and at the end of the cycle, =t,+T, (T=12.5 is time
period of vortex shedding at Re=100), confirms the cyclic behavior of the thermal field.
This cyclic behavior comes as a result of cyclic behavior of flow field. This fact is
confirmed further in the variation of surface vorticity distribution over a complete cycle of

vortex shedding shown in Figure 3.13.
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Table 3.1 The Predicted Strouhal number and its variation with Reynolds number
together with a comparison with Roshko [70]

Re Strouhal number, S,
Present study | Roshko [70]
80 0.156 0.155
100 0.16 0.165
200 0.18 0.18-0.2

Table 3.2 The Predicted average drag coefficient and Nusselt number at different Reynolds

numbers and comparison with previous studies for the case of fixed cylinder

CD Nu
Re Present | Ref.[69] | Ref.[52] | Present | Ref.[52] | Range of Results
study study Refs. [63-68]
80 1.56 1.4 1.33 4.80 4.8 4.594.95
100 1.55 1.38 1.32 5.31 5.25 4.769-5.52
200 1.21 1.32 1.31 6.99 7.8 6.67-7.63




Figure 2. The streamline pattern for impulsively started flow over a fixed cylinder for the case
of Re=3000 at t=3 and comparison with previous results; a) present study, b) experimental
and c) theoretical results obtained by Ta phuoc Loc and Bouard [56].
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Figure 3.8 (a-g). Streamline patterns for flow over fixed cylinder at Re=100
a) =t,, b)=t,+2, cit=t,+4 d)t=t,+6 e)t=t,+8, fNt=t,+10, and g)t =t,+T
where T=12.5 is the time period of shedding cycle
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Figure 3.9 (a-g). Vortex patterns for flow over fixed cylinder at Re=100
a) t=t,, b)t=t,+2, c)t=t,+4 d)=t,+6 e)t=t,+8, )=t,+10, and g)t =t,+T
where T=12.5 is the time period of shedding cycle
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Figure 3.10 (a-g). Isotherms patterns for flow over fixed cylinder at Re=100
a) =t,, b)t=t,+2, c)t=t+4 d)t=t,+6 e)=t,+8, ft=t,+10, and g)t =t,+T
where T=12.5 is the time period of shedding cycle
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3.9.2 Rotationally Oscillating Cylinder in a Cross Stream

We now consider the problem of fluid flow and heat transfer in the neighborhood of a
cylinder performing rotational oscillation while placed in a cross stream. Assuming
negligible buoyancy forces, the velocity and thermal fields are dominated by the Reynolds
number (based on the free stream velocity) and the amplitude and frequency of oscillation.
In order to study the effect of rotational oscillation on flow and thermal fields, a number of
cases are considered in the range of Reynolds number, Re, up to 200 , oscillation
amplitude, ©4, up to  and dimensionless oscillation frequency S, up to 3S, (i.e. up to Fr=3)

where, S,, is the natural Strouhal number. The Prandtl number is kept constant at 0.7.

The flow field in the wake of the oscillating cylinder is characterized by periodic shedding
of vortices. Based on the frequency of vortex shedding, and similar to the previous studies
[59-61] made on cylinders performing transverse oscillations in a cross stream, the present
preliminary results have shown two distinct regimes. The first, called unlock-on regime, is
characterized by periodic shedding of vortices at natural frequency irrespective of the
oscillation frequency. Such a regime occurs when the driving cylinder frequency, f, is
either smaller enough or larger enough than the natural frequency, f,. When the oscillation
frequency f approaches f,, the second regime, called lock-on regime, occurs. In such a
regime, the vortices are shed at the forced frequency, i.e the vortex shedding is
synchronized with the cylinder oscillation. This synchronized or lock-on regime is found to
occur within a band of frequency that brackets the natural frequency. This band of

frequency is termed as the range of synchronization or the lock-on frequency range.
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Since the flow field characteristics near the cylinder may differ from that far away, two new
terms are being used in the discussion. These are the near wake response and far wake
response. The first describes the unsteadiness in the immediate vicinity of the cylinder while
the second describes it far down stream (at a distance of about r=10 and 6 =0). The near
wake response is depicted from lift record [72] whereas the far wake response is computed

from the time variation of the tangential velocity component at a typical point ( =10, 6=0)

3.9.2.1 The Unlock-on Regime

Figures 3.14 and 3.15 show the time variations of drag and lift coefficients for the case of
Re=200 when the forcing frequency is below the natural frequency (Figure 3.14) or above
the natural frequency (Figure 3.15). The figures show that the amplitude of forces are not
always constants, but rather change with nearly periodic beating wave forms. These beating
wave forms were also found in the works of [1, 59] for the case of transverse oscillation and
attributed to the combined effect of natural and forced oscillations. The beating wave form
in lift forces is produced by the addition of two effects, one is due to fluctuations at natural
frequency and the other is due to fluctuations at forced frequency. Figures 3.14 and 3.15
show roughly that the frequency of Cp is the same as the natural frequency of vortex
shedding although the forcing frequencies in the two cases are quite different. The Founer
analysis of the far wake for the two cases is shown in Figures 3.16a and b. The figures

clearly show that the far wake response is dominated by natural frequency.

Shown in Figure 3.17 is the time varjation of the average Nusselt number, Nu, at different

frequencies below and above the range of synchronization. The figure shows that, Nu has

its maximum value in the initial time stages. This is due to domination of conduction mode



of heat transfer. With the increase of time, the thermal boundary-layer thickness increases
and so Nu decreases until a quasi-steady variation is reached at large time. It can be seen

that Nu fluctuates with variant amplitude and in a beating wave form. Based on the
obtained results, there is no appreciable enhancement in heat transfer for frequencies outside
the range of synchronization. This may be atuributed to the fact that the rate of vortex
shedding is the same as that for a fixed cylinder. However, some enhancement, (reaching
about 8.7%) occurs in some cases due to the disturbances generated by the cylinder motion

especially at low amplitude, high frequency oscillation.

Typical streamline, equi-vorticity and isotherm plots for an unlock-on regime are shown in
Figures 3.18-3.20 for the case of Fr=0.5, Re=200 and ©, = n / 4. These are prepared at
almost equal intervals through one complete cycle of oscillation. The streamline contour
plots shown in Figure 3.18 provide the details of the flow field structure and its time
variation during one cycle. One can see that two opposite vortices are alternately shed from
the upper and lower surfaces of the cylinder per half cycle of oscillation resulting in vortex
shedding frequency equal to the natral one. Unlike the case of a fixed cylinder in which the
shedding vortices are all equal in size, the vortices generated in the oscillating cylinder case
are of two different sizes shedding alternately from the upper and lower sides as shown in
Figure 3.18. This explains the beating wave form in the lift force record for the same case
(Figure 3.14). A higher peak occurs when the big vortex shed away and a smaller one
occurs for the small vortex. However, one can see from Figures 3.18 and 3.19 that the far
wake vortex street is similar to the familiar Karman street developed from a stationary

cylinder. Figure 3.20 shows the time variation of the isotherms for the same case. The
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figure shows that the thermal boundary layer is very thin near the forward stagnation point
(® ~180°), and extends in the wake forming an oscillating wake-shaped thermal layer. The
isotherms are, in general, similar to those in the case of a fixed cylinder under vortex
shedding(see Figure 3.10). Close inspection of isotherms plots and vortex patterns plots
(Figure 3.19) for the same case shows the considerable resemblance between the thermal
and flow fields. This resemblance illustrates the strong link between, convection and

diffusion of heat and convection and diffusion of vorticity.

Figures 3.21-3.23 show the distribution of local Nusselt number, surface vorticity and
surface pressure at equal time intervals in the aforementioned cycle of oscillation. Figure
3.21 shows the Nu distribution at different times during the same cycle. Although the
maximum and minimum Nu values are almost the same at all times, the location clearly
changes. The wake region is characterized by considerable variation of Nu as shown in the
figure. The Nu distribution varies almost periodically as the cylinder oscillation. This
periodic behavior is confirmed also in the distributions of surface vorticity and pressure

shown in Figures 3.22 and 3.23.

Another typical streamline, equi-vorticity and isotherm contour plots at a frequency above
the range of synchronization at Re=200, ®, = /8 and Fr= 2, are shown in Figures 3.24-
3.26. It can be seen that both flow and thermal fields at the time t,=40 are similar to those at
the end of two cycles of oscillation t.=51.1, where the time period t.-t.=11.1 covers one
complete cycle of vortex shedding. Again, this makes the vortex shedding frequency equal
to the natural one (with no oscillation). Two alternating non similar opposite vortices are

shed from upper and lower surfaces per twe cycles of oscillation. Not only the shape and
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size of the two vortices are different but also the duration of their growth and detachment.
Figure 3.24 shows that the vortex generated at the upper surface takes more time to develop
and detach than that generated at the lower surface. One can also see that both flow and
thermal fields in the near wake are affected by the cylinder oscillation. That is the
longitudinal spacing of vortices is smaller than that of stationary cylinder. However. the
vortices tend to form a pattern similar to that of Karman street in the far wake. The Fourier

analysis of the far wake shows that oscillations occur at the natural frequency.

The distribution of local Nusselt number, surface vorticity and surface pressure at equal
time intervals in the aforementioned cycle are shown in Figures 3.27-3.29. It can be seen
that the Nu distributions for this case are similar on most of the cylinder surface except the
rear region where remarkable deviation may be observed as a result of vortex shedding.
The figure also shows that the maximum values are almost the same whereas there is a
deviation in the minimum values. The interesting note in Figures 3.27-3.29 is that both flow
and thermal fields attain their nearly periodic behavior at the natural shedding frequency
rather than the cylinder frequency, which unlike that for the previous case at Fg=0.5 where
the nearly periodic behavior is attained at the cylinder frequency. So, it can be concluded
that in the unlock-on regimes, the vortices are shed at the natural frequency whereas, the
near wake flow and thermal fields attain their nearly periodic behavior at the lowest
frequency, either the imposed frequency or the natural frequency. However, the far wake

oscillates only at the natural shedding frequency.
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Figure 3.18 Streamlines patterns in a complete cylinder cycle
for the case of Re=200, ®, =7/4 and Fr=1/2.

a) =40, b) t=42.75, c)t=45.5, d) t=48.25, e) =31, f) t=53.75,
g)t=56.5, h)t=359.25, 1i)t=62
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Figure 3.19 Equivorticity patterns in a complete cylinder cycle
for the case of Re=200, ®, =n/4 and Fgp=1/2.

a) =40, b) t=42.75, c)t=45.5, d) 1=48.25, e) 1=51, f)1=53.75,
g) t=56.5, h)t=59.25, i)t=62
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Figure 3.20 Isotherms patterns in a complete cylinder cycle

for the case of Re=200, ©, =7/4 and Fp=172.

a) t=40, b) t=42.75, c¢) 1=45.5, d) t=48.25, e) =51, ) 1=33.73,
g) t=56.5, h)t=359.25, i)t=62
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Figure 3.24 Streamlines patterns in two complete cycles of
cylinder oscillation ( Re=200, ®,=n/ 8 and Fr=2).
a) t=40, b)1=42.75, c)t=45.5, d) t=48.25, e)t=51
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Figure 3.25 Equivorticity patterns in two complete cycles of
cylinder oscillation ( Re=200, ®,=7n/8 and Fr=2).
a) =40, b) t=42.75, c)t=45.5, d) t=48.25, e) t=51
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Figure 3.26 Isotherms patterns in two complete cycles of
cylinder oscillation ( Re=200, ©4=n/ 8 and Fr=2).
a) =40, b) t=42.75, c) t=45.5, d) t=48.25, e) t=51
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Figure 3.28 Surface vorticity distribution in two complete cycles of
cylinder oscillation (unlock-on regime).
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3.9.2.2 The Lock-on Regime

As the forcing frequency, f, approaches the natural frequency, f,, the interaction between the
natural and forced patterns becomes stronger and the frequency of vortex shedding shifts to
synchronize with the imposed oscillation frequency. The synchronization occurs over a span
of frequency that brackets the natural frequency. Figure 3.28 shows a comparison between
the lift records for non-synchronized and synchronized regimes at Re=100 and @, =7/ 4.

For the non-synchronized regimes shown in Figure 3.28a, the lift force is fluctuating in
wave forms, composed of two effects; one induced by the natural and the other induced by
the forced oscillation. In the synchronized regimes shown in Figure 3.28b, the lift force is

fluctuating with only the imposed frequency and with nearly uniform amplitude [1].

Figure 3.29 shows the lift record for a synchronized regime at Re=40, o =0.2 and S=0.1.
The numerical results presented by Okajima [22] are also given in the same figure for
comparison. Both lift records are oscillating at the same frequency of cylinder velocity. The
difference in amplitudes as well as the phase shift between the present results and that of
Okajima [22] may be attributed to the different imposed initial conditions. However, the
present average value for the lift coefficient amplitude (= 0.51) compares well with the
experimental value reported by the same authors (= 0.47). Figures 3.30 show typical
examples for records of the lift and drag forces at Re=200, ®5 = n /2 and at frequencies
within the synchronization range, along with both the cylinder velocity and time traces of
tangential velocity component in the far wake. It can be observed that the lift force
oscillates at the same forced frequency whereas the fluctuating part of drag force oscillates

at twice the cylinder frequency. Also, it can be seen that the tangential velocity component
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in the far wake oscillates at the cylinder frequency. Fourier analysis of the near wake
(Figure 3.33a) and far wake (Figure 3.33b) for the case of Re=200, ©, = n /2 and Fg=0.83

(S=0.15) shows clearly the domination of forcing frequency.

Figures 3.34 and 3.35 respectively show the effect of frequency on the lift and drag forces
respectively. The figures show that the amplitude of the lift force as well as the time-
averaged drag force increase significantly in the range of synchronization, reaching a
maximum near the middle of that range. The significant increase of both drag and lift forces
within the lock-on frequency range has been reported in the references [1, 59, 61]. Shown
in Figure 3.36 is the present results for the average amplitude of the lift coefficient for the
case of Re = 80, a =0.2 and at different frequencies along with both experimental and
numerical results reported in reference [22]. The figure shows that the present values for the
lift coefficient amplitude reach its maximum around the natural Stroubal number and
decreases further as the dimensionless frequency deviates from that number. It can be seen
that the present data roughly fit to the experimental data of reference [22] with a frequency

shift of about 0.02.

Shown in Figures 3.37 is the time variation of the average Nusselt number, Nu, at different

frequencies in the range of synchronization at Re=200 and ©®, = w / 2. The figure shows

that the obtained Nu fluctuates almost regularly with dominant frequency equal to twice the
imposed frequency of the cylinder. In addition, there is an appreciable enhancement in heat
transfer for high frequencies within the lock-on range. This may be explained on the basis
that higher forced frequencies cause higher rate of vortex formation and shedding which

enhances the rate of heat convection from the cylinder surface. On the other hand, at low
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frequencies lock-on regimes, the Nu is even smaller than that for a fixed cylinder for the

vortices in this case shed at a rate lower than the natural one.

The computed time-averaged Nusselt number for the cases considered are presented in
Table 3.3. The table also contains the percentage increase/decrease in Nusselt number with
respect to the one obtained for a fixed cylinder. The results show that a sensible
enhancement in heat transfer is observed at Re=200. One can also observe that this
enhancement occurs within the synchronization range of frequency. For example, at this
Reynolds number, 15% enhancement in heat transfer occurs at amplitude of ©, =mn/ 2 and
at Fr=1. The same effect can be seen in Figure 3.38 which shows the variation of the time-
averaged heat transfer with frequency at Re=200 and at two amplitudes namely, ©=m/2
and ©, = . In the both cases the percentage increase in Nusselt number takes its maximum
value (15% and 11.5% respectively ) in the synchronization range around Fr=1. Previously
reported results for the case of in-line and transverse oscillation [48, 51, 52] have shown
sensible heat transfer enhancement only in the lock-on range of frequencies at Re=200. At
high frequencies outside the lock-on regime, a slight enhancement in heat transfer is found
at low amplitudes. However, at higher amplitudes this enhancement tends to decrease as
shown in Table 3.3. Namely, 8.7 % increase in heat transfer is found at Re=200, ©4 =7/ 8

and Fr=2. This percentage decreases to 5.8, 3.15 and 2.3 as the amplitude increases t0 O, =

/4, n/2 and n respectively.

In the cases of in-line and transverse oscillations previous researchers [48, 51, 52] reported
an increase of heat transfer as the amplitude of oscillation increases. However, in the case of

low speed rotational motion, as the amplitude of rotation increases the heat transfer tends to
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decrease (see Badr [16]). This is due to the fact that a fluid layer in such case encloses the
cylinder and act as a buffer zone causing a decrease in the rate of heat convection. However,

this is not exactly the case in this study as can be seen in the following discussion.

In general, the thermal field and accordingly the rate of heat transfer is highly influenced by
the velocity field. Two effects here are of prime importance. The first is the effect of
amplitude and frequency of oscillation on the flow field near the cylinder surface. Larger
amplitudes give rise to a larger shear layer wrapping the cylinder ( or a good part of it). The
nearer the frequency from the natural frequency the more organized. intensive fluid motion
in the vicinity of the cylinder surface [48). The second effect is the process of vortex
shedding in the wake region. This process has a direct effect on heat convection since every
shedding vortex carries with it a certain amount of heat. The shedding frequency as well as

the size of the vortices are both important factors influencing the heat convection process.

According to the obtained results, the amplitude of oscillation has an additional influence to
the occurrence of the lock-on phenomenon. Larger amplitudes at frequencies near the
natural frequency creates the lock-on phenomenon. Therefore the effect of the amplitude is
twofold. The first is the creation of a larger shear layer and the second is the change of
vortex shedding frequency. The two effects may have corroborating or contradicting effects
on heat transfer depending on the frequency (whether greater than or less than the natural
frequency). Within the lock-on range, lower frequency of vortex shedding results in less
heat transfer. The effect of the rate of vortex shedding on heat transfer may be indicated in
Figures 3.37. The figure shows that when Fr > 1 the heat transfer rate increases

considerably in comparison with that of a fixed cylinder. This can be seen in the high
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frequency lock-on cases ( Fr=1.11 and 1.5), where heat transfer enhancement is found. On
the other hand, a decrease in the heat rate occurs as the rate of vortex shedding decreases as
observed in the case of low frequency lock-on regime ( Fr=0.83 ). In unlock-on regimes,
the rate of vortex shedding is constant and thus there is no significant effect on heat
convection. On the other hand, the effect of resonance (synchronization) is quite clear in
Table 3.3 and Figure 3.38 where the nearer the forcing frequency from the center of
resonance state i.e at Fgp=1, the higher the heat rate. The reason for this increase may be
attributed to the intensive fluid motion in the vicinity of the cylinder which leads to

increasing the heat convection.

The streamlines, equivorticity lines and isotherms are plotted for typical lock-on regimes
at Re=200, ®5 = =/ 2 and at two frequency ratio, namely Fp=0.83 < 1 and Fg=1.11>1 are
shown in Figures 3.39-3.41 and 3.42-3.44, respectively. In all these figures, the time period
between plots is one quarter of a complete cycle. Figures 3.39 and 3.42 clearly show the
higher rate of vortex shedding at higher frequency in the lock-on regime. The corresponding
equivorticity lines shows higher number of shedding vortices within the same time span.
Both figures show that the streamlines adjacent to the cylinder surface are wrapping a good
part of it when the angular velocity is maximum (see plots 3.39 b and d and also 3.42 b and
d). The longitudinal spacing of the wake wave length shown in streamlines contours for
both cases confirms that the wake wave length varies inversely with the frequency ratio ( i.
e. the wake contracts for Fr > | and expands for Fr < 1). This result has been reported by
Sarpkaya [72] as one of the established facts about the state of synchronization for the case
of transverse oscillation. The isotherms patterns for the same two cases are shown in

Figures 3.41 and 3.44. The shedding vortices represent lumps of heated fluid moving away
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from the cylinder. The location of such vortices are exactly the same as in equivorticity and
isotherm patterns confirming again the accuracy of the present mathematical model.
Moreover, the mechanism of heat diffusion within each vortex as it moves downstream is
clearly shown in Figures 3.41 and 3.44. For example, Figure 3.44 b shows that the fluid
contained within each of the shedding vortices gets cooler as they move away from the
cylinder (the number of isotherms indicate the temperature level). The same mechanism
applies to the diffusion of angular momentum by viscous forces and is clearly shown in
Figures 3.40 and 3.43. The number of equivorticity lines represent the strength of each
vortex. The periodicity of the flow and thermal fields is clearly shown in the streamline and
isotherm plots since the beginning of the cycle is very much the same as compared to the

end of it.

Figures 3.45-3.47 show the distribution of local Nusselt number, surface vorticity and
surface pressure within a complete cycle of oscillation for the case of Re=200, @, =m/2
and Fr=1.11. The local Nusselt number distributions show that the maximum Nu values are
almost the same. The locations of these maximum values oscillates with the same cylinder
oscillation within a range of about £15° around 6 =180°. Also, the locations of minimum
values of Nu oscillate with cylinder frequency, but their values differ. It can be also
observed that the figure is symmetric around 8 =180° which clearly shows the symmetric
heat transfer process for every half cycle. This explains the average Nusselt number Nu
oscillation at frequency equal to twice the cylinder frequency. The periodicity in the flow

field is confirmed further in surface vorticity and pressure distributions shown in Figures

3.46 and 3.47.



Table 3.3 Effect of Reynolds number , amplitude and frequency on the

time- averaged Nusselt number

Re 9, S/Se Nu Nu (s=0) %increase
T
0.50 5.3 0
0.75 5.4 1.8
100 0.125 1.00 5.4 5.3 1.8
1.50 5.29 -0.19
2.00 5.1 -3.7
0.50 5.3 0
0.75 5.16 -2
100 0.25 1.00 5.49 5.3 5.4
2.00 5.31 0.1
4.00 5.3 0
0.50 5.25 -0.1
0.75 5.25 -0.1
100 0.5 1.00 5.67 5.3 6.95
1.50 5.43 2
2.00 5.32 0.3
0.50 4.99 -5.8
0.75 5.06 4.5
100 1 1.00 4.95 5.3 6
1.50 5.1 -3.7
2.00 4.99 -5.8
0.50 7.28 4.1
0.83 7.12 1.8
200 0.125 1.00 7.18 6.99 2.7
1.50 7.34 5.0
2.00 7.6 8.7
0.50 7.35 5.1
1.00 7.01 2.0
200 0.25 1.50 7.5 6.99 7.2
2.00 7.4 5.8
0.50 7.33 4.40
1.00 8.04 15.00
200 0.5 1.11 8.03 6.99 14.9
1.50 7.66 9.50
2.00 7.21 3.15
0.50 6.97 -0.28
1 7.80 11.5
200 1 1.25 7.54 6.99 7.80
1.5 7.42 6.10
2 7.15 2.30
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Figure 3.39 Streamline patterns in a complete cylinder cycle
for the case of Re=200, @,= 7w/ 2 and Fr=0.83.

a) =1, b) =t,+1/4T, c¢) =t,+1/2T, (d) t=t,+3/4T, (e)t=t+T,
where T, is the time period of cylinder oscillation cycle
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Figure 3.40 Vortex patterns in a complete cylinder cycle

for the case of Re=200, ®,=7/2 and Fr=0.83.

a) =t,, b) =t +1/4T, c) t=t,+1/2T, (d) t=t,+3/4T, (e)t=t,+T),
where T, is the time period of cylinder oscillation cycle
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Figure 3.41 Isotherms patterns in a complete cylinder cycle

for the case of Re=200, ®,=n/2 and Fz=0.83)
a) t=t, b) =t +1/4T, ) =t.+1/2T, (d) t=t,+3/4T, (e)t=t,+T,,
where T, is the time period of cylinder oscillation cycle
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Figure 3.42 Streamlines patterns in a complete cylinder cycle
for the case of Re=200, ©,=n/2 and Fr=1.11.
a) t=t, b) =t,+1/4T, c) =t.+1/2T, (d) t=t.+3/4T; (e)}t=t,+T,,
where T, is the time period of cylinder oscillation cycle



Figure 3.43 Vortex patterns in a complete cylinder cycle

for the case of Re=200, @x,=7/2 and Fr=1.11.

a) t=t,, b) =t,+1/4T, c¢) t=t,+112T, (d) =t,+3/4T, (e)=t.+Ty,
where T}, is the time period of cylinder oscillation cycle
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Figure 3.44 Isotherms patterns in a complete cylinder cycle

for the case of Re=200, ®,=n/2and Fr=1.11.

a) t=t, b) t=,+1/4T, c¢) =t,+1/2T, (d) t=t,+3/4T, (e)=t,+T,,
where T} is the time period of cylinder oscillation cycle
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Figure 3.45 Local Nusselt number distribution in a complete cycle
at Re=200, ®a=r/ 2 and Fr=1.11.
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Figure 3.46 Surface vorticity distribution in a complete cycle
at Re=200, ®s= /2 and Fr=1.11.
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Figure 3.47 Surface pressure distribution in a complete cycle
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From the results presented so far, it is expected that a transition regime between lock-on
and unlock-on regimes should exist. This regime is characterized by an intermittent
frequency switching between the natural frequency and the forcing one. Figure 3.48 shows
the time variation of the lift coefficient as well as the corresponding Fourier analysis for a
typical case representing the transition regime. Figure 3.48a shows a change of frequency
approximately every two cycles. The larger amplitudes occurs at the forcing frequency and
the smaller amplitudes at the natural frequency. The Fourier analysis of Cp (Figure3.48b)
shows the equal existence of the two frequencies (S and S,). Vortex shedding at alternating
frequencies at the boundary in between lock on and unlock-on regimes has been observed
experimentally by Stansby [60] and numerically by Karniadakis [62]. The far wake analysis
of the same case is shown in Figure 3.49 where the vanation of tangential velocity
component Uy with time is presented (Figure 3.49a) and the corresponding Fourier analysis
(Figure 3.49b). The same two intermittent frequencies are clearly shown (S and S,) as

before.

The effect of oscillation amplitude on the lock-on frequency range has shown to be very
significant. The larger the amplitude of oscillation the wider the lock-on frequency range.
As the amplitude decreases, the lock-on frequency range becomes narrower until it reaches
zero at a threshold amplitude ©,,. In this study, the numencal experiments has shown that
for all amplitudes less than /40, the vortices shed at the natural frequency regardless of the
forcing frequency. However, the exact threshold value is not known. The conclusion that
there is a threshold value above which the lock on regime is possible is in agreement with

the findings of Koopman [70] for the case of transverse oscillation.



96

Increasing the lock-on frequency range with the amplitude means that at any fixed
frequency there is a unique threshold amplitude above which the synchronized regime is
possible. To clarify this fact, the lift record is examined at Re=200 and Fr=0.5 and for the
four amplitudes ©, =7/ 8, /4, /2 and n. The two amplitudes ©, =n/8and O =n/ 4
resulted in a non lock-on regime, with the lift coefficient fluctuating at almost the natural
frequency in a beating wave form as shown in Figure 3.50. As the amplitude elevated to
©a= /2, the regime is still a unlock-on (Fourer analysis revealed domination of natural
frequency in the far wake) with clear signs for transition to lock-on regime, which does
occur at ©, = w. The threshold amplitude at this frequency ratio lies between @, = w/ 2
and ©, = n. No attempt, however, has been made to determine exactly the value of the
amplitude at which the regime becomes completely synchronized with the cylinder

oscillation.

At higher amplitudes @5 > ©,, (where ©,, lies between n / 4 and = / 2), an interesting

phenomenon is obtained. That is, at frequencies greater than the upper boundary for the
periodic lock-on regime, the near wake synchronize with the cylinder oscillation (i.e
vortices shed at the imposed frequency) while the far wake response approaches gradually
the unlock-on regime as the imposed frequency increases. This gradual “breakup” in the far
wake synchronized structure with the increase of forcing frequency was observed in the
flow visualization made by Tokumaru [23]. To clarify this phenomenon, both the near and
far wakes are examined at Re=200 , @5 = n / 2 and for four different frequency ratios,
namely Fr=1.11, Fr=1.5, 2 and Fg=3. The lift record for these cases are shown in Figures

3.51(a-d). Plotted in the same figures is the cylinder surface velocity and the traces of
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tangential velocity component in the far wake. Figure 3.51a shows clearly that both the
near wake (represented by lift coefficient ) and far wake (represented by tangential velocity)
oscillate at the imposed frequency (represented by cylinder velocity). This indicates that at
this frequency a periodic lock-on regime is obtained. As the frequency increases to Fg=1.5
Figure 3.51b shows clearly that only the near wake is synchronized while the far wake
structure is showing a transition between lock-on and unlock-on regimes. As the frequency
increases further to Fr=2 and 3 (Figure 3.51c,d) the near wake response is still synchronized
whereas, the far wake response switches to a non lock-on regime where the natural

frequency dominates.

The flow and thermal fields for the case of Re=200, ®,=w/2 and Fr=2 at equal time steps
during a complete cycle are presented in Figures 3.52-3.54. The streamline plots for this
case (Figure 4.52) show that the near wake structure shows vortices shedding alternately at
the forcing frequency. These generated vortices, however, coalesce and evolve into a
structure with a lower frequency in the far wake as shown in the same figure. The
equivorticity pattern for the same case shows that the vortices in the far wake are separated
by a larger distance than that in the near wake. The coalescence of vortices is clearly shown
in Figures 3.53 b, ¢ and d. The isotherm plots for the same case show the unsteady thermal
wake. The shape of this thermal wake is similar to the shape of the vortex street. Moreover,
the frequency of thermal field in the near wake as well as in the far wake is equal to the

corresponding ones for the flow field.

Based on the obtained results in the range considered of parameters, one can sketch the

frequency selection diagram in the frequency-amplitude plane, as shown in Figure 3.55. The
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diagram gives only a qualitative summary of the response states in the wake. However, an

exact quantitative diagram is prohibitively expensive, requiring a huge amount of

computations. The features of the main regions in the diagram can be summarized as

follows :

1.

(A8

For amplitudes ©, < ©@,; the unlock-on regime 1is prevailing with vortices shedding at
natural frequency regardless of the forcing frequencies.

For amplitudes between ©,; and @a», one can distinguish four limiting frequencies,
namely, fy; , fo2, fo3, and fus (see Figure 3.55). These frequencies mark the transition
between different wake-flow regimes. The upper and lower boundaries of the lock-on
region are given by fp3, and fy2 respectively. On the other hand, the figure indicates two
receptivity regions identified by f, to fy; and fp3 to fs. The range of frequencies between
fv2 and fp3 is a periodic lock-on region labeled L in the figure. At the outskirts of this
region exist two regions (K and M) characterized by a transition regimes. In these
regimes, the vortex shedding frequency switches back and forth between two limits; the
first is the natural frequency and the second is the forcing frequency. Forcing
frequencies less than f;,; or greater than fi,, result in unlock-on regimes, regions (G and
N).

At amplitudes greater than @4 and forcing frequencies greater than upper boundaries of
the lock-on region, the near wake is locked-on to the forcing frequency whereas, the far

wake either has a transition regime, region (H) or a non-lock-on regimes, region (R) .
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Figure 3.48 The time variation of lift coefficient and corresponding
Fourier analysis : a) lift coefficient b) Fourier analysis.
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O\~

Figure 3.52 Streamlines patterns in a complete cylinder cycle
for the case of Re=200, ®, =n/2 and Fr=2.

a) 5o, b) =L.+1/4T, ¢) =t,+1/2T, (d) =t.+3/4T, (eN=t+T,,
where T, =5.55 is the time period of cylinder oscillation cycle
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Figure 3.53 Vortex patterns in a complete cylinder cycle

for the case of Re=200, ®, =n/2 and Fr=2.

a) t=t,, b) t=t,+1/4T, c) =t,+1/2T, (d) t=t:+3/4T, (e}t=to+Tp,
where T, =5.55 is the time period of cylinder oscillation cycle
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Figure 3.54 Isotherms patterns in a complete cylinder cycle
for the case of Re=200, ©®, =n/2 and Fr=2)

a) =t,, b) =t +1/4T, c) =t+1/2T, (d) =to+3/4T, (e)t=to+T),
where T, =5.55 is the time period of cylinder oscillation cycle
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Figure 3.55 Laminar wake response state selection diagram



CHAPTER 4

HEAT CONVECTION FROM A CYLINDER PERFORMING
STEADY OR OSCILLATORY ROTARY MOTIONIN A
QUIESCENT FLUID

The problem considered in this chapter is the heat convection from a horizontal cylinder
performing steady or rotary motion in a quiescent fluid. The physical system to be
considered is shown in Figure 4.1 consisting of an isothermal horizontal circular cylinder of
infinite length and radius c placed in a quiescent fluid at temperature T.. The cylinder
rotates either steadily with constant angular speed or performs angular harmonic
oscillations. The cylinder surface velocity may be written as

. sk for steadv rotation
UL ={ ¥ - (4.1)

os sin(2xnft")  for rotationl oscillaton
where U is steady surface velocity (= o,c), U, is the amplitude of oscillating surface
velocity (= o_,c), fis the oscillation frequency and t’ is the time. The effect of temperature

variation on the fluid properties are considered negligible except for the body force term in
the momentum equation. The flow is assumed two dimensional and radiation and viscous

dissipation effects are neglected. The fluid motion is mainly due to cylinder rotation as well

as buoyancy forces.
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Figure 4.1 Coordinate System
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4.1 The Governing Equations

The governing equations for the present problem are the same as that mentioned in chapter
3 with the addition of buoyancy effects to the momentum equations. In stream function-
vorticity form the governing equations can read the following :

F,_LEE

% 4 u:£,+£"—£=vVZQ'+l(-C—F-°—+—,— ) 4.2)
ét er' ' a0 p ' r rdo
§=-Viy’ (4.3)

u—+ u;—"—=—V'T (4.4)

F,and F; represent the radial and angular components of the buoyancy force and are

defined as
F, = pgP(T - T, )cos(8)

Fy = —pgf(T - T, )sin(8)
Using the modified polar coordinates (E,0) where & =Inr and 6 is angular coordinate, the

equations of motion and energy can be written in terms of the dimensionless vorticity,

stream function and temperature as :

o295 _ 5:C1_52C Gwat vt
G |ae a0 | @@ ot ot oo
+Lesge ?—?sin9+?—cose.’ (4.5)
8 0% G0 ]
w, Oy Sy
eg = —+ 4.6

1] é? 2 fy 60 Oy b
_[ L ] Cy 69 oy &9 @7
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where Pr is prandtl number ( =v/a ) and Gr is the Grashof number [=8gB(T, - T. ) /viy.
The variables t, w, {and ¢ are the dimensionless time, stream function, vorticity and
temperature and are defined as

t=t'c’/v, y=y'/v, {=-Cc¢/vand ¢=(T-T)AT,-T,)
The dimenstionless radial and transverse velocity components u;, ug are defined as

u =u'c/v=eéy /a0, u, =ulic/v=—ey /g
where primes denote dimensional velocities. The dimensionless surface velocity is defined

as.

Reg, for steady rotation

, _1
U, =U,(c)/v "E {Reos sin(xSt) for rotational oscillation

where Reg (=2cUy/v) and Reos (=2cU,y/V) are the Reynolds numbers for the two cases based
on steady and maximum amplitude surface velocities respectively, and S = 2fc* / v is the
dimensionless oscillation frequency.

The boundary conditions for y, {and ¢ are based on the no-slip, impermeability and
isothermal conditions on the cylinder surface and the ambient conditions far away from it.
These conditions can be expressed as

at&=0, y=0, éy/é0 =0,

for steady rotation

26 E= st =
20y/05 {Reos sin(nSt)  forrotational oscillation and ¢ =1 (4.82)

The ambient static conditions far away from the cylinder surface are given by

-5 oyl0E— 0, eoy/d0 —0, -0 and ¢ — 0, (4.8b)



4.2 The Method of Solution

The method of solution is similar to that used in chapter 3. The three sets of differential

equations (similar to those deduced in chapter 3 Eqns. 3.17-3.19) can be written as

L [E) (o G,
‘f;:l Fﬂ - nz Fn = ez’ Gn (n = le ’ N) (4.9)
(‘5 fn fn gn
(G ( G, 0 ) s,
635.; Gn = f g Gn -nz C}n + Sn‘ (n= 1,’N) (410)
ct c&” J
gn / Lgn gn Snl
R o H, [0 R,
e* = |H, |=—-|H, |- =—|H |[+R,| @=1.N) 4.11)
at Pr ¢ Pr
h“ ) hn hn ) Rn2

where So, Spi1, Sa2» Ro , Ry and Ry are all easily identifiable functions of & and t and are
found in appendix A2. The boundary conditions for all functions present in equations (4.9)-

(4.11) are obtained from equations (4.8) and can be expressed as

at &=
¢k, of,
F0=Fn=fn=hn=Hn=09Ho=2’ ‘N:: =0
g
cF, _ {_Rest - for steady rotatior.x _ (4.12a)
d¢ | —Regg sin(nSt)  for rotational oscillation
andas & x
F,, E,f,,G, G,, g,, Hy, H,, h, =0
: CF : Cf,
and e —=e"—==0 12
3 2t (4.12b)
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Integrating both sides of equation (4.9) with respect to § from =0 to 5= x and using the

boundary conditions in equation (4.12) gives the following integral conditions:

st Re for steady rotation
25 _ t -
J: e”G,dS = { Rt:f)S sin(nSt)  for rotational oscillation (4.132)
[ %G dz=0 (4.13b)
j: e¥g dz =0 (4.13c)

The above integral conditions are used for calculating the values of the functions G, , g, and
G, on the cylinder surface (i.e. {z=0 ) not only to get a better accuracy but also to satisfy the
periodicity of the pressure around the cylinder surface.

In order to advance the solution of y, { and ¢ in time, the initial condition at time t=0 must
be known. In this problem, the cylinder is assumed to be impulsively rotated and
instantaneously heated. The initial conditions which simulate the physical situation for v

and £ where no fluid motion is present can be written as:

at £=0,
¢F, _(-Re steady rotation
F,=F =f =0, ae _{ 0 g rotational oscillation
F,=F =f,=G,=G,=g,=0 0<&<x> (n=12, ,N) (4.14)

The time-dependent solution starts when the cylinder surface is suddenly heated to a
uniform temperature T,. The instantaneous temperature rise at time t=0 results in ¢=1 on
the cylinder surface and ¢=0 everywhere in the rest of the domain. The initial conditions
are obtained as

H,=2, H,=h_=0 at £=0
H, H, h, >0 0<E< (4.15)
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4.3 Local and Average Nusselt Numbers

The local and average Nusselt numbers are defined as
Nu=2ch/k, Nu=2ch:k

where h, h are the local and average heat transfer coefficients defined as
b=q/(T,-T,) , q=-k(cT/cr")..

and ,
E=—[hde
T 2m
where q is the rate of heat transfer per unit area. From the above definitions one can

deduce the relation between Nu ,m and the functions Hy ,H, , h, which can be written

as:
Nu = -2 (@] = | eH, + 2 i (ah“ sin n6+@—“-cosn9\1 (4.16)
“leg £-0 _t cg w05 c& J-':=0 .
and
mz_("flo) (4.17)
N Cé £=0

the time-averaged Nusselt number can obtained as follows

Nu dt (4.18)

where t; and t; are the time at the beginning and at the end of last two cycles of oscillation
respectively. Although the differential equations (4.8-4.10) and the boundary and integral
conditions 4.11 and 4.12 are different from those deduced in chapter 3, the numerical

procedure is almost the same and therefore will not be discussed again.



4.4 Results and Discussion

In order to ascertain the validity of the mathematical model as well as the numerical
technique, the problem of natural convection from a fixed cylinder is first studied and the
obtained results are compared with the numerical and experimental results available in the

literature. Figure 4.2 shows a comparison between the present computations for the time

variation of Nu with the numerical results of Wang et al. [12] at Ra=10. The time scale in
the present calculations is modified to match the time scale considered in their work. It can
be seen that the agreement is good specially when approaching steady state at large time.
Figure 3a shows a comparison at low Rayleigh number (Ra=0.37) between present
computations for local Nusselt number and the experimental and numerical results obtained
by Fujii et al. [13]. In the same figure, the bench mark solution obtained by Saitoh et al. [14]
is also plotted. The figure shows an excellent agreement with both references. Figure 3b
shows another comparison at relatively high Rayleigh number (Ra=1000) between the
present results and both numerical results of Saitoh et al. [14] and the results obtained by
Kuehn and Goldstein [15]. The agreement is fairly good, however, there is a difference not
exceeding 5% with referencef15] at angle 6 =180° (front stagnation point ). This difference
may be attributed to the questionable assumptions of inflow-outflow outer boundary

conditions adopted in [15].
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Figure 4.2 Comparison between present work and Numerical work of [12]
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4.4.1 Steady Rotating Cylinder

The effect of steady rotation on heat convection is studied for Ra up to 10° and Res, up to

400. Figure 4.4 shows the time variation of Nu at Re,=100 and for different values of Ra.
Immediately after the cylinder temperature is increased, the heat transfer coefficient is
initially high due to high temperature gradient near the surface. In this early time stages, the
conductive mode of heat transfer dominates with isotherm contours are almost concentric
circles. Furthermore, following the sudden rotation and due to the no-slip condition the
fluid layer adjacent to the cylinder wraps it and rotates with almost the same angular
velocity. The heat transfer through that layer is only due to conduction. A quick decrease in
heat transfer rate occurs during this early stage until it reaches a minimum at a certain
critical time. Beyond this critical time, the buoyancy force start developing, causing the
fluid to set in motion and hence transition to the convective mode. The transition from
conduction to convection for this case is in the form of overshoot. At later times, the
buoyancy force effect dominates and the heat transfer rate gradually approaches its final
steady value. The time needed to reach steady state at a certain value of Re, depends on Ra.
The higher the Ra, the faster and stronger the effect of convection and hence the smaller the
time needed to reach steady state.

Figures 4.5a and 4.5b show the effect of Ra on Nu at constant Reg together with a
comparison with the experimental results obtained by Etemad [4]. Using logarithmic
coordinates for both Ra and Nu results in a straight line variation for Nu as shown in the

figures. The figures also show small differences at low Rayleigh numbers, however, these

differences increase with increasing Rayleigh number until reaching a maximum of about
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Figure 4.4 Effect of Rayleigh number Ra on the time variation of the
average Nusselt number for steady rotating cylinder at Re,=100 .
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8% at Re;, =199 and Ra = 10%. This comparison provides a further check for the present

computational scheme and confirms consistency with the findings of Etemad [4].

Figure 4.6 shows the time variation of Nu at Ra=500 and different values of Rotation. At
early time stages, and due to domination of conduction mode, the effect of Re, on heat
transfer is insignificant. As time goes, the effect of convection starts with observable effect
of Re, on the heat rate. At later times, the steady state heat rate is reached. The time needed
to reach this steady state value increases as Re, increases. In a previous study, Badr and
Ahmed [8] found that for Ra/PrRe’ less than 0.3, the steady state condition was not reached
in the range of time considered in their work. However, the time scale used in the present
study allows to advance the solution enough in time to reach steady state for all Ra/PrRe’

considered. The value of steady Nusselt number, as shown in Figure 4.6 decreases as Reg

increases namely, increasing Re; from 100 to 400 decreases the Nu from 2.05 to 1.07 (i.e
about 49%) in the case of Ra=500 . This trend is consistent with the experimental results of
Etemad [4].

The details of the steady flow and thermal fields are presented in Figures 4.7-4.10 (for the
cases of Ra=10" and Re,=0, 20, 100 and 200 respectively ) in the form of streamlines and
constant temperature contours. The streamlines of the symmetrical case of Rey=0 (Figure
4.7a) show two large counter-rotating vortices in the downstream side of the cylinder while
the constant temperature contours (Figure 4.7b) show a mushroom-type isotherm pattern.

The local Nusselt number distribution for this case is shown in Figure 4.11 where Nu is

maximum at 0 =180° (the front stagnation point ) and is minimum at 6 = 0. At a small

speed of rotation (Res=20), the streamlines are slightly shifted counter-clockwise and the
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same occurs for the isotherms (Figures 4.8a and 4.8b) resulting in a non-symmetrical local
Nusselt number distribution as shown in Figure 4.11. Increasing the rotational speed further
to Re,=100 makes both velocity and thermal fields more dominated by cylinder rotation as

shown in Figure 4.9a and 4.9b. The points of maximum and minimum local Nusselt

number shift to 8 = 320° and 135" respectively. Figure 4.9a shows also a small rotating fluid
layer adjacent to the cylinder surface. Such a layer acts as a buffer isolating the cylinder
from the main stream and causing a decrease in the overall heat transfer rate. One of the
interesting features of the velocity field in this case is the higher velocity on the right side of
the cylinder and the lower velocity on the left side. This is mainly because the shear layer
driven by the cylinder assists the buoyancy driven flow on the right side and resists it on the
left side. This leads to higher heat transfer rates on the right side (6 =180° — 360°) as
shown in Figure 4.11. Further increase of the rotational speed to Rey=200 creates a thick
rotating layer (buffer layer) around the cylinder (Figure 4.10a) and causing the rate of heat
transfer to drop sharply as shown in Figure 4.11. The local Nusselt number distribution
becomes more dominated by the cylinder rotation with less effect of the natural convection.

Figure 4.12 shows the distribution of vorticity on the cylinder surface at Ra=1000 and at
different Re. The figure shows that with increasing speed of rotation the overshoot in
absolute wall vorticity increases. Moreover, due to the effect of rotation, the point of
maximum vorticity (positive) and the point of maximum vorticity (negative) are no longer
at positions 0 =90 and 270, as for fixed cylinder, but rather move in the direction of rotation

to be at angles greater than 90 and 270 respectively.
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a)

b)

Figure 4.7 Steady streamline patterns and the corresponding
isotherms at Ra=1000 and Re,=0
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Figure 4.8 Steady streamline patterns and the corresponding
isotherms at Ra=1000 and Re;=20
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Figure 4.9 Steady streamline patterns and the corresponding
isotherms at Ra=1000 and Re,=100
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a)

b)

Figure 4.10 Steady streamline patterns and the corresponding
isotherms at Ra=1000 and Re,=200
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Figure 4.12 Surface vorticity distribution for steady rotating
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4.4.2 Rotationally Oscillating Cylinder

The effect of rotational oscillations on heat convection is investigated for Rayleigh

numbers, Ra, up to 1000, Reynolds numbers, Re, up to 400 and dimensionless frequencies,

S, up to 0.8. At small times following the sudden temperature nise, the vaniation of Nu with
time is very much the same as in the case of fixed or steady rotating cylinders. This is quite
expected since the thermal field is dominated by conduction at small times. Figure 4.13
shows this phenomenon for the three cases of fixed cylinder (Rey=0), a rotating cylinder
(Res=100) and an oscillating cylinder (Re,s=500, S=0.4) where Ra=500 for all cases. As the
time increases, the buoyancy-driven flow develops causing transition to the convective

mode. Once this is reached, the effect of cylinder oscillation becomes more pronounced

resulting in a periodic variation of Nu . It can be seen that the frequency of Nu is twice that
of the cylinder motion which can be attributed to the similar heat convection process every

half cycle of the cylinder oscillation.

Table 4.1 displays the results of the average Nusselt number for all the cases considered
knowing that Nu represents the average Nusselt number over the cylinder surface and Nu
represents the time-average of Nu over a complete cycle of oscillation. The table shows

that for the same Ra and Re,, Nu is found to be in between two limiting cases. The first
case corresponds to steady natural convection from a fixed cylinder while the second
corresponds to steady heat convection from a cylinder steadily rotating at a velocity equal to

the maximum velocity of oscillation. The table also shows that the effect of oscillation

frequency on Nu at the same Ra and Re,s is small (not exceeding 4% ) for the frequencies
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considered. However, the higher the frequency the smaller the amplitude of Nu as shown in

Figure 4.14. The figure also shows that the frequency of oscillation does not have profound

effects on Nu.

The effect of oscillation Reynolds number, Re,; on the average rate of heat convection can

be seen in Table 4.2. For the same frequency, increasing Re, tends to decrease Nu. Higher

Re,s in this case indicates larger amplitude of oscillation. This trend is consistent in the

entire range of Ra. Figure 4.15 shows the time variation of Nu for the cases of Ra=500,
S=0.4 and Re,=20, 100, 200 together with a comparison with the case of a fixed cylinder.

It is clear from the figure that the smaller the Reynolds number the smaller the amplitude of

Nu and the closer the mean of Nu to the value due to natural convection from a fixed

cylinder at the same Ra. On the other hand, the higher the values of Reo the larger the

amplitude of Nu and the smaller the time-averaged value of Nu.

Figure 4.16 Shows the development of flow and thermal fields during one complete cycle of
oscillation, namely the third cycle, at Ra=500, Re,s=100 and S=0.4. At zero instantaneous
velocity of the cylinder at positions A (beginning of cycle), C (middle of cycle) and E (end
of cycle), the streamline plots show that the stagnation points are no longer at vertical
positions, but rather shifted due to the effect of fluid rotation in the vicinity of the cylinder.
The isotherms plots at these positions also show that the thermal plume breakaway points
(the downstream stagnation point) are shifted from 6 = 0°. The streamlines and isotherms
at position A are similar to those at position E which reflects the approximate periodic

behavior of flow and thermal fields especially in the neighborhood of the cylinder. On the
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other side, at positions B (quarter of cycle) and D (three quarters of cycle) where the
cylinder assumes its maximum velocity, the thickness of the fluid layer rotating with the

cylinder at these positions is significant.

Figure 4.17 shows the development of local Nusselt number distribution in the
aforementioned cycle of cylinder oscillation. The distributions at the beginning of the cycle,
positions A, and at the end of the cycle, position E, are very close which confirms the
approximate periodic behavior of flow and thermal fields in the neighborhood of the
cylinder. At positions B and D, the Nu distribution becomes more uniform with a reduction
in the average Nusselt number in comparison with those at positions A, C and E. This
reduction, is attributed to the thick fluid layer rotating with the cylinder at these high
velocity periods. The figure also shows that the thermal plume breakaway angle,

corresponding to minimum Nusselt number, for positions B and D is located at about
120°, 240° respectively, which means that the positions of thermal breakaway angle in the

first half of the cycle is about a mirror image of that in the second half of the cycle. These

similar distributions of the thermal field and local Nusselt number every half cycle explain

why Nu is being oscillating at twice the frequency of the cylinder oscillation.
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Figure 4.13 Time variation of average Nusselt number at Ra=500
for the cases of a) Oscillating cylinder at Re,s=100 and S=0.4,
b) Fixed cylinder and c) Steady rotating cylinder at Re,=100



Table 4.1 Effect of frequency S on heat convection from an oscillating cylinder

Fixed Cyl. | Steady Rotation Oscillating Cylinder

Ra Nur Reg Nu. Regs S —E_u-

0.1 1.66

100 2.01 100 1.174 | 100 0.2 1.72

04 1.65

0.1 1.39

100 2.01 200 0925 | 200 0.2 1.32
0.8 1.35

0.1 2.6

500 2.65 100 2.05 100 0.4 2.61
0.8 2.61

0.2 2.05

500 2.65 200 1.25 200 04 2.08
0.8 2.00

0.2 249

1000 3.09 200 1.54 200 04 2.57
0.8 2.58

Table 4.2 Effect of Re,s on the heat convection from oscillating cylinder

Ra S Regs Nu

20 2.01

100 0.4 100 1.65

200 1.32

20 2.7

500 0.4 100 2.61
200 2.07

1000 0.4 100 3.08
200 2.57

Nu: is the average Nu due to natural convection from a fixed cylinder
Nug, is the average Nu due to heat convection from a steady rotating cylinder
Nu is the time-averaged Nu due to heat convection from an oscillating cylinder
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Figure 4.15 Effect of Reynolds number of oscillation on the
time variation of Nusselt number at Ra=500, S=0.4
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Figure 4.16e Position E

Figure 4.16 Streamline plots and corresponding isotherms plots in
one complete oscillation cycle at Ra=500, Re,s=100 and S=0.4
A)startofcycle, B)1/4T, C)1/2T, D)3/4T, E)endofcycle
where T is the time period of one cycle of oscillation
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Figure 4.17 Local Nusselt number distribution in one complete
cycle of oscillation at Ra=500, Re,s=100 and S=0.4
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CHAPTER 5

HEAT CONVECTION FROM A VERTICALLY OSCILLATING
CYLINDER IN A QUIESCENT FLUID

In this chapter, the problem of heat convection from a vertically oscillating cylinder in a
quiescent fluid is considered. The physical system is shown in Figure 5.1, consisting of an
isothermal horizontal circular cylinder of infinite length and radius ¢ placed in a quiescent
fluid at temperature T, . Attime t=0, the cylinder is simultaneously heated to a temperature
Tw and subject to vertical oscillatory motion of the form:

Y=Ancos(2nf 1), (3.1)
where Anand f are the amplitude and frequency of oscillation. The effect of temperature
variation on fluid properties are considered negligible except for the body force term in the
momentum equation. The induced flow due to cylinder motion and buoyancy forces is

assumed two dimensional and radiation and viscous dissipation effects are neglected.

5.1 The Governing Equations

The finite-differences schemes, which are normally Eulerian in their frame of reference,
require the discretization of the entire flow domain into a computational mesh. This

discrete Eulerian grid system does not readily accommodate the continuous motion of the

141
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Figure 5.1 Coordinate system and cylinder positions during one cycle of oscillation
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solid boundary. In order to simplify the analysis, the computational grid is assumed to move
with the cylinder in a frame of reference with the origin being at the center of the cylinder.
To solve the equations for fluid motion in this accelerating reference grid system, the
momentum equations must be transformed from their inherent inertial reference to a non-
inertial reference frame. For a fluid particle the equation of motion may be written in a
vector form :

dv

"TFI? (5.2)

where V is velocity vector and F is the total force vector acting on the particle, where

dv . : I : : .
——is the absolute acceleration. For a particle in the moving coordinates system Eg. (5.2)

becomes

5 d(V: + Ve)

=F 5.3
m (3.3)

where Vs is the velocity vector of the non-inertial coordinate system relative to an inertial
reference and V- is the Eulerian velocity vector in the non-inertial coordinate system. The

velocity V. is function in space and time while Vs is only function of time and so Eq. (5.3)

becomes as

dvr dVﬁ'
p——+p

=F 5.4
dt dt -4

where dd_tﬁ 1s simply the acceleration of the cylinder with respect to the inertial coordinate

system. The result of attaching the computational grid system to the oscillating cylinder is

the addition of a simple acceleration term which is constant over the computational field at
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each incremental time step of the finite difference solution. Using cylindrical coordinates,
the final form of the governing equations in the non-inertial frame of reference can be
written as:

Continuity equation:

Lt ——8=0 (5.49)

Radial momentum equation:

b - -2
cu; du, ug éu; ug ép 2 u, 2 &7y, ou; < <
— +u; L2 L= yV u:"TZ'T_z)'*'Fr' —= (5.5)
ot &' e r pér r r'" oo ,
Angular momentum equation:
du;, éuy u,du, uLu’ 1 ép ) u, 2 é&’u aug, .
Ut — = ——+ (Vy -3+ ) + F-— (3.6)
ot a’ ' co r pr’' éo r r'" a6 .

Energy equation:

—+u—+-2 __—_=— VT (5.7)
ot

where, r’ and 6are the radial and angular displacements in the non-inertial frame.
u, and ug are radial and angular velocities. u. and ug, are radial and angular velocities of
non-inertial frame relative to the inertial frame. F, and F, are the radial and angular

component of body force defined as

-

F. =pgf(T - T, )cos(6), Fy =—pgB(T - T, )sin(B) (5.8)
Now, let us introduce the stream function ' and vorticity £’ defined as

, oy’ , oy’ .
U ==, u\=-—-—— 5.9
T r'98 ¢ or’ (>-9)
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[ ‘ ; u; 1 s 1"
— (Mo +______c'u 5.10
S (51" ' 69) ( )

Using equation (5.9) along with continuity and momentumn equations (5.4-5.7) we get

vorticity transport equation.

O & B g 1 Ko 1F (5.11)
. e’ ' rce

-~ T ~_ 7

fogs e’ ' o E
Using equation (5.9) in (5.10) we get

g'=-Viy’ (5.12)
—;—+u,77+u9"—=—V'T (5.13)

The above equations are the same as those known for inertial frame of references. The

[ 4

boundary conditions at the cylinder surface for y’,C'and ¢ are taken the same as before

(the no-slip, impermeability and isothermal conditions). However, the condition far away
are now the relative oscillatory motion with respect to the new moving frame. These

conditions can be expressed as

a\l[' 4
'=—=0,
¥' ="

2)

=0 , and T=Tw at r=c (5.14a)

14

Q)

% =r'Usin(2rft) cos(0), % = Usin(2rft)sin(8), ' — 0
and T=T, as > (5.14b)
The governing equations (5.11-5.13) and boundary conditions (5.14) are transformed to
their dimensionless form by introducing the following dimensionless quantities.

ue,tztg,wzi d-

’ ue ==
u c cU \

cle

r
r=:, u. =

c=—c%, and ¢=(T-T,)AT, -T.,)
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where U is the amplitude of the cylinder velocity and § is the frequency parameter.

Using the above quantities, equations (5.11-5.13) can now be written as
- A A 7 . o
PR R & (5.15)

—tU ot — =7
ct ctr r ¢® Re

- A - n ,
Dy, DB, 22 oy (5.17)
ct ré@ RePr

_He,

A 5 2
k4 , Ug = ——C:i, Re = ZEH, is Reynolds number and Pr= S 1s the Prandtl
cr v

where u_ = —/—
R .2

number. The cylinder surface dimensionless velocity can be then expressed as :

U= - sin (nt/KC)
where KC (=U/fd) is the Keulegan-Carpenter number which represents an apparent
frequency on the dimensionless time scale t. In terms of Re and B, the KC can be expressed

as KC=Re/B . On the other hand, the amplitude to diameter ratio can be expressed in terms

of KC as A,/d =KC/2=n.

Similar to the formulation given in chapter 3, the polar coordinates ( £ ,8 ) are introduced,

where & =In r. In these coordinates the equations can be written as:

200 _2[8%C | dyég dy & N
" Re(ag2 592) 20 ¢t ¢t o8 (>-18)
B =S¥ OV (5.19)
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- o) 2 2 - - 3 5
200 _ 2 |0 09| wd v (5.20)
ot RePr{gs* 00° ] 80 05 og o
the boundary conditions are then written as:
v=X_0, MY_0, and =1 at £=0 (5.21a)

0 e

?a_‘g_ _» "% cosBsin(nt/ KC), 53’&- — e sin@sin(mt/KC) , - 0
C

and ¢ >0 as o= (5.21b)

5.2 The Method of Solution

The method of solution is similar to that used in chapter 3. The three sets of differential

equations obtained (similar to Eqgs. 3.17-3.19) can be written as :

azf 2 aE S
2 —nf, =e>g, n=1,, 5.22
= ( N) (3.22)
et ZBn = €8 n°g.)/Re* + S, (@=1,,N) (5.23)

ot oo
2 € H) 2 ¢ (H,) n* (0 R, }
e — = — -— + n=1,, 5.24

ot (Hn} Pe 8%’ (Hn] Pe (Hn] (Rn] ( N (3-24)

where S, , R, and R, are all easily identifiable functions of & and t and are shown in
appendix A3. The boundary conditions for all the functions presented in equations (5.13)
are obtained from equations (5.8) and can be expressed as

f,=H, =0, H, =2, %%—:O when &=0

whereas, as &>« f,g ,H,,H ,h >0
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and e af—c —§_, sin(nt/ KC) (5.25)

cs
Integrating both sides of equation (5.9) with respect to & from =0 to &= < and using the

boundary conditions in equation (5.25) gives the following integral conditions:
j’: e@™3g dg =25, sin(mt/KC) (5.26)

The above integral conditions are used for calculating the values of the function g, on the
cylinder surface not only to get better accuracy but also to satisfy the periodicity of the

pressure around the surface.

In order to advance the solution of y, C and ¢ in time, the initial condition at time t=0 must
be known. In this problem, the cylinder is assumed to start its motion from the upper end at
the same time instantaneously heated to temperature T.. Using the boundary-layer
coordinates and treating the initial conditions in the same way used in chapter 3. The initial

solution (at t = 0) can be written as:

v'(z,6,0)=0, C'(z,6,0)=0

and  $(z,0) = ~erf(z+/Pr)+1 (5.27)
Although the differential equations (5.22-5.24) and the boundary and integral conditions

5.25 and 5.26 are different from those deduced in chapter 3, the numerical procedure is

almost the same and therefore will not be discussed again.

5.3 Local and average Nusselt numbers

The local and average Nusselt numbers are defined as

Nu=2ch/k, Nu=2ch/k (5.28)
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where h, h are the local and overall heat transfer coefficients defined as
h=q/(T, -T,),
q =-k(eT/er)),...

and ,

i=—I[% 2
B=5—[has (5.29)

where q is the rate of heat transfer per unit area. From the above definitions one can

deduce the relation between the Nu , Nu and the functions Hy ,H, , h, which can be written

as:
~ = N
Nu=-2 [—0%] = —[Cﬂ&+ 2 Z (GP: sin n@ + a}i“ cos ne):i (5.30)
8‘3 £=0 Cg n=| 05 aL: £=0
and
— cH
Nu=—( =°j (3.31)
\ 3¢ /.,

the time averaged Nusselt number can obtained as follows

=_ 1

Nu =

“Nu dt (5.32)
t, — t‘ tl

where the time period between t; and t, covers the last two cycles of oscillation.

5.4 Results and Discussion

In order to investigate the effect of cylinder oscillation on heat convection, a series of
simulations was run for a range of Grashof number, Gr, up to 10°, Keulegan-Carpenter

number, KC, up to 10 and frequency parameter, 3, up to 40. To check further the reliability
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of the present Navier-Stokes code, a run was made at KC = 4 and § = 250 where, at these
values both experimental and theoretical results of Justesen [36] are available for
comparison. This comparison is shown in Figure 5.2, where the present prediction of flow
field development in a half cycle of oscillation, is compared with both numerical and flow
visualization made by the same author. The present results show a good agreement

especially with the flow visualization.

Table 5.1 displays the effect of oscillation parameters KC and B on the time-averaged
Nusselt number N=u, when the buoyancy effect is negligible. The table shows clearly that at

any fixed value of the frequency parameter B, Nu increases as KC increases. This increase,

however, becomes more significant as f increases. Namely, as KC increases from 2 to 10 at

B=10, 269% increase in Nuis found. This percentage increases to 410%, 471% and 547%

at the values of =20, 25 and 40 respectively.

Figure 5.3 Shows the development of both flow and thermal fields in a complete cycle of
oscillation at Gr=0, KC=4 and B =25. These streamline and isotherm patterns are plotted at
five positions. The positions A, B, C, D and E shown in Figure 5.1 indicate the position of
the cylinder in Figures 5.3a, b, c, d and e respectively. The figures show that both the flow
and thermal fields resume their initial distributions as the cylinder undergoes a complete
cycle of oscillation. When the cylinder begins to move from one end of the oscillation,
(positions A, C and E shown in Figures 5.3a, c, and e,) the flow field is dominated by two
counter-rotating vortices which were formed during the previous course of motion while

another two counter-rotating vortices away from the cylinder are induced. However, at
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positions B and D these vortices disappear with only very small ones originating in the
separated flow region in the rear side of the cylinder. In general, the isotherms shown in the
figure have lobe-shaped contours with almost equal extent on both lower and upper sides
of the cylinder. In spite of the fact that the thermal field upstream differs from that
downstream near the cylinder surface at the middle of the stroke (positions B and D), the far
fields in both directions (¢ =0.1) are almost symmetric. Figures 5.4 and 5.5 show the local
Nusselt number and surface vorticity distributions during one complete cycle for the same
case. The figures show that Nu and ,, distributions are exactly the same at positions A and
E reflecting the periodicity of both flow and thermal fields. Also, it can be seen that the
minimum value of Nu is aimost the same for all positions. The maximum values of Nu at
positions B and D are exactly the same and occur at 8 = 180" and 6 =0°. The two curves are
mirror images from each other. Further, Figure 5.5 shows that the maximum vorticity on

the surface during the cycle occurs at maximum velocities positions B and D.

Shown in Figure 5.6 is the development of both flow and thermal fields in a complete cycle
of oscillation at the same value of B (B = 25) but at a higher value of KC (KC=10). These
distributions are plotted at the same aforementioned positions. At this value of KC the
amplitude-diameter ratio becomes higher than that at KC=4, causing significant changes in
the flow and thermal fields. The figure also shows that the flow field possesses extensive
vortex motion during the entire cycle. This is unlike the case of KC=4 where vortex motion
is pronounced only in the decelerated parts of the cycle, namely near the top and bottom
ends of cylinder motion. The isotherms for the same case are no longer lobe-shaped

contours but rather change to form two large mushroom-shaped heated areas located near



the upper end and lower end of the stroke. These two heated areas are connected together by
a vertical thin thermal layer web. Figures 5.7 and 5.8 respectively show the local Nusselt
number and surface vorticity distributions during the same cycle. The figures show that the
flow and thermal fields are nearly periodic since the distributions at the beginning and end
of the cycle are almost the same. It is of interest to point out that at this KC value, regions of
high surface vorticity are approximately the same at all time during a complete cycle . This
appears clearly in Figure 5.8 where the values of maximum surface vorticity at all cylinder
positions are almost the same but occur at different angular locations. The same applied to

the local Nusselt number distribution as can be seen in Figure 5.7.

Figure 5.9a, b and ¢ show the time variation of Nu during a complete cycle when Gr=0,
KC=10 and at different values of B. The figures show that Nu is fluctuating at a frequency
equal to twice that of the cylinder oscillation. Also, it can be seen that as B increases
Nu increases. The amplitude of Nuas well as the relative position of maximum Nu within
the cycle however, do not change much as § increases. On the other hand, Figures 5.10a, b
and ¢ show the variation of Nu with time for the case of Gr=0 and B =25 and for three
values of KC, namely, KC=2, 4 and 10 during a complete cycle. It can be observed that Nu
is fluctuating at a frequency equal to twice that of the cylinder oscillation as in the previous
case. Also, as KC increases not only the time-averaged Nusselt number Nu increases but

also the amplitude of Nuincreases. It is noteworthy that the relative position of Nu
maximum within a cycle differs as KC varies. In the case of KC=2 (Figure 5.10a) the heat

transfer enhancement mostly happen near positions A, C and E where the cylinder is at both
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ends of the stroke. At KC=4 (Figure 5.10b) the maximum value of Nu occurs near the

middle of the decelerated parts of the cycle ( i.e. between B and C and between D and E),

whereas at KC=10, Figure 5.10c, theNumaximum shifts near the maximum velocity

positions B and D.

It seems that the heat transfer process depends on two factors, the first and the more
effective, is the strength of vortex motion in the vicinity of the cylinder and the second is
the velocity of the cylinder. The first factor is responsible for convection of heat enhanced
by vortical motion near the surface. Such vortical motion drives also a low temperature fluid
close to the surface. The second factor is responsible for generating high velocity gradient
near of the cylinder which leads to enhancing heat transfer. Accordingly, high heat rate is
expected at the positions characterized by domination of vortex motion as well as high

cylinder velocity. At low values of KC (KC=2) the cylinder velocity is small and weak

vortices only form at the end positions of the motion leading to the higher values of Nu
near the positions A, C and E. At KC=4, the vortex motion dominates only in the

decelerated parts of motion (see Figure 5.3) but due to the relative increase in the cylinder

velocity, Nu peaks in the middle of the decelerated parts. As the KC increases further to

KC=10 the extensive vortex motion dominates at all positions and the maximum value of

Nu can be only decided by cylinder velocity, which does occur near the maximum velocity

positions B and D.

Table 5.2 shows the effect of oscillation parameters, KC and B, on Nu considering the

effect of buoyancy forces. The table also shows the percentage increase in Nuin



comparison with that of a fixed cylinder at the same Gr. The effect of oscillation is only
significant at high values of KC and low values of Gr . This effect, however, dwindles as

KC decreases. The table also shows that when KC is small (KC=2), the increase of 3 tends

to decrease N=uslightly until it becomes even smaller than that for a fixed cylinder. On the
other hand, a quick comparison between Tables 5.1 and 5.2 shows that the buoyancy effect

plays a minor role in enhancing heat convection at high values of KC and 3. Namely, at

KC=10 and B=40, Nu = 9.31 when Gr=0 (Table 5.1), whereas at Gr=10>, 10* and 10° Nu=

931, 9.03 and 9.34 respectively.

To show the effect of Grashof number on the flow and thermal fields, Figure 5.11 is plotted
at equal intervals in one complete cycle for the case KC=10, B =25 and Gr =10°. The figure
shows that the flow field at such high Gr is mainly driven by buoyancy forces. The upward
buoyancy driven flow interacts with the forced flow driven by the cylinder motion resulting
in extensive vortex formation in the neighborhood of the cylinder. The thickness of the
thermal boundary layer and its geometrical shape varies significantly during one complete
cycle. This is mainly because in part of the motion the buoyancy driven flow assists the
shear flow driven by the cylinder motion while in the other part both motions oppose each
other. The figure also shows that the thermal field is characterized in general by a very thin
thermal layer in the lower side of the cylinder and a thicker one on the upper side. Figure
5.12 and Figure 5.13 respectively show the local Nusselt number and surface vorticity
distributions in the same cycle. The figures show that Nu and G distributions are nearly
periodic, showing the periodicity of flow and thermal fields in the neighborhood of the

cylinder.
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Figure 5.14 shows the time variation of the average Nusselt number, Nu, for the case of

KC=4 and f =25 at different Grashof numbers. It can be observed that the frequency of

Nu is shifted from twice the cylinder oscillation frequency, when Gr=0 to the cylinder

frequency when Gr = 10°. In the case of Gr=0 thermal field is similar every half cycle as

shown in Figure 5.3. This leads to have two equal peaks for Nu, one during the downward
motion and the other during the upward motion. As Gr increases, the buoyancy driven flow
not only causes dissimilar thermal field every half cycle of oscillation but also increases
Nu at all positions. Accordingly, as Gr increases the two peaks of Nu are getting higher but
their rate of increase differs. The one getting higher rate is obtained during the course of
downward cylinder motion whereas the other with a relative lower rate is obtained during

the course of upward motion.



Table 5.1 Effect of B and KC on the time-averaged Nusselt number for the case of Gr=0.

~
@]

p Nu
2 1.01
10 4 131
10 3.73
2 1.25
20 4 1.68
10 6.37
2 1.33
25 4 2.2
10 7.25
2 1.44
40 4 3.37
10 9.31

Table 5.2 Effect of KC and B on the time-averaged Nusselt number
considering buoyancy effects.

KC Gr B ﬁ Nu, | % increase

10 3.31 19

10° 20 6.34 2.78 128

40 9.31 235
10 4.79 8

10° 20 5.71 4.4 30

10 40 9.03 105
10 8.12 11

10° 20 8.32 7.29 14

40 9.34 28

10 2.79 0.4

10° 20 2.93 2.78 53

40 2.94 5.4

4 10 4.5 2.2
107 20 451 4.4 2.5

40 4.98 13.1

10 2.79 0.4

10° 20 2.76 2.78 0.7
40 2.73 -1

2 10 451 2.5
10° 20 4.50 4.4 23

40 436 -0.9

Nu, is the Nusselt number for the case of fixed cylinder at the same Gr



Figure 5.2 Flow development in half cycle of oscillation and comparison with reference [37]
A) Numerical [37] B) Experimental [37] C) Present study

$=45° (T/8), $=90° (T/4), $=135° (3T/8) and ¢=180° (T/2)

where T is the time period of one complete cycle
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Figure 5.7 Local Nusselt number distribution in a complete
cycle of oscillation at Gr=0, KC=10 and B = 25.
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CHAPTER 6

CONCLUSIONS

In this study, the problems of heat convection from a cylinder performing either rotational
or rectilinear oscillations are considered. In the following, the main conclusions drawn for

each of the cases considered are presented.

1) Forced convection from rotationally oscillating cylinder in a cross stream

The unsteady flow and heat convection characteristics for a heated cylinder performing
rotational oscillation about its own axis and placed in a uniform stream is investigated. The
governing equations of motion and energy are solved numerically to determine the flow
field characteristics and the heat transfer coefficients for various Reynolds numbers,
amplitude of oscillation and the frequency ratio. The lock-on phenomenon has been
predicted and its effect on the flow and thermal fields has been determined. The results
show that the lock-on phenomenon occurs within a band of frequency near the natural
frequency. This band, however, becomes wider as the amplitude of oscillation increases.
The heat transfer coefficient as well as lift and drag coefficients show an increase within the
lock-on frequency range. This increase however, becomes more significant in the middle of

lock-on range near the natural frequency.
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2) Mixed convection from a cylinder performing steady or oscillating rotary motions in
a quiescent fluid

The problem of laminar, two dimensional heat convection from a circular cylinder
performing steady or oscillating rotary motions is investigated. The cylinder is placed with
its axis horizontal in a quiescent fluid of infinite extent. Because of viscous dissipation, the
flow process is confined to the region adjacent to the cylinder and is mainly driven by shear
and buoyancy forces. For a steady rotating cylinder, the study covers Rayleigh numbers, Ra,
up to 1000 and Reynolds numbers, Rey; , (based on surface velocity) up to 400. The study
revealed that , for the same Ra, the rate of heat transfer tend to decrease with increasing the
speed of rotation in the range of Re,, considered. In the case of rotational oscillation, the
heat transfer process is governed by Ra , Re,s (Reynolds number based on maximum surface
velocity; and the dimensionless frequency of oscillation, S¢. The study covers Ra up to
1000, Reos up to 400 and St up to 0.8. The results revealed that, for the same Ra, the heat
transfer rate fluctuates around an average that lies in between two limiting values. The first,
is the steady heat rate due to natural convection from a fixed cylinder and the second is the
steady heat rate from a cylinder rotating steadily at a speed equal to the maximum speed of
rotational oscillation. The smaller the value of Re,s the nearer the time-averaged Nusselt
number to that of fixed cylinder at the same Ra and the higher Re,s the lower the average
Nusselt number. The effect of frequency is only limited to changing the amplitude of the

fluctuating Nusselt number.
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3- Heat convection from a cylinder performing rectilinear oscillation in a quiescent
fluid

The problem of heat convection from a vertically oscillating cylinder in a quiescent fluid is
investigated in the range of Grashof number, Gr, up to 10°, Keulegan-Carpenter number,
KC, up to 10 and frequency parameter, 3, up to 40. The study has shown that in the absence
of buoyancy effects (Gr=0), as KC increases the flow field becomes characterized by
extensive vortex motion at all cylinder positions. The results has shown also a significant
increase in heat convection as either KC or Bincreases. However, as Gr increases, the
effect of oscillation parameters on heat convection has shown to be insignificant in

comparison with the natural convection from a fixed cylinder at the same Gr.



Appendix Al

The functions So, S,; and S;» used in Equanons (3.18a-c) are defined as:
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The functions Zg, Z,; and Z,> used in Equations (3.19a-c) are defined as:
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The function E,(&, t) used in Equation (3.28) is defined as:
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Appendix A2

The functions S, Sp; and Sy used in equations 4.10 and 4.11 are defined as:
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Appendix A3

The functions S,; used in equations are defined as:
Gr 6H, ¢éH,, ¢H,
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Q
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Where, @ K=m+n, J=|m— d Ou = {0 when n # 1

and sgn(m-n) means the sign of the term (m-n).

The functions Ry, Ry and Ry» used in equation are defined as:
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Nomenclature

Am amplitude of vertical oscillation

c cylinder radius

d cylinder diameter

f forcing frequency

fa ., Fn Fourier coefficients

fo natural frequency

Fr frequency ratio (= f/f , or =S/S,)

g gravitational acceleration

g..G, Fourier coefficients

Gr Grashof number (gB(T, — T, }(d)* / v*
h, h local and average heat transfer coefficients
h, ,Hy Fourier coefficients

k thermal conductivity

KC Kuelegan-Karpenter number

Nu, Nu local and average Nusselt numbers
Nu time averged Nusselt number

P, P’ pressure and dimensionless pressure
Pr Prandtl number (v/a)

Pe peclet number (RePr)

r dimensionless radial coordinate (r'/c)
Ra Rayleigh number (Gr Pr)

Re Reynolds number

Reg Reynolds number (20_c* /v)

Reos oscillation Reynolds number (2w,.c*/v)
S dimensionless forcing frequency

So natural Stroubal number
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dimensionless time

t’ time

T temperature

U maximum velocity of vertical oscillation
u’,ug radial and tangential components of velocity
u, dimensionless radial velocity

Ug dimensionless tangential velocity

\" free stream velocity

Greek symbols

o velocity amplitude

B frequency parameter

[0} dimensionless temperature (T —-T_)/AT, -T,)
g dimensionless logarithmic coordinates ( In r)
u dynamic viscosity.

\Y kinematics viscosity

,, steady angular speed

os oscillatory angular speed

p density

T time

0 angular coordinates

' stream function

g vorticity
Subscripts

S, W, cylinder surface

© at infinite distance from the surface
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