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Recognizing a digital image from an object dictionary is a slow and memory
consuming process. In this work the process was accelerated by using a compact
geometrical model and a multi-level representation in conjunction with a
Database.

An invariant representation of the image is used which is constant under
object’s position, orientation or size. The Recognition system is based on a
hierarchical level to accelerate the Identification process; one level divides the
image into a Coarse and Detailed model. The Coarse one generates the overall
feature Descriptors used to minimize identification of unknown image through
clustering, while the Detailed model is used to precisely store the image such
that an accurate template match is made possible.

Another level of hierarchy is achieved by grouping objects of similar
silhouettes into classes; once an unknown object is matched to a known class, it
is further matched to a specific object within that class depending on some
delineating physical dimension.
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CHAPTER 1
INTRODUCTION.

Image Recognition is experiencing fast progress in the world of Automated
Assembly in situations where parts to be handled appear in an unpredictable
sequence. For the robot to execute a correct action, the part must be identified
by ‘ non - contact ° measurements : i.e. through a camera. The task of part
identification is rendered more complicated by some factors, namely that the
part’s orientation or pos.ition or size is not exactly available, the whole process
should be done in real time and that the underlying model used by the
algorithms represents the part such as to make available positional and

geometrical parameters to the manipulator.

This thesis will attempt to show that the Recognition System can be
implemented on a hierarchical level to acccelerate the identification process.

One kind of hierarchy will be modelling the object’s shape on two levels, one
Coarse, the other Detailed; the first is used to extract the overall features of an
object and helps in limiting the search of an unknown object to a subset of the
object dictionary while thé latter stores the shape in a precise manner and is
used to ascertain absolutely that an unknown object is identificd.

The second kind of hicrarchy implemented is dividing the objects into classcs,
where all objects with the same contour belong to onc class irrespective of their
sizes.

The object dictionary will be kept in a DataBase, which will also be

implemented as a hierarchy of relations. The master files will contain the



Descriptor array of objects ( features ) and objects within classes and the
Detailed Model. The indexed files will be sorted on each feature such that
isolating all classes satisfying the features of an unknown object is achieved in a

direct access fashion.

Chapter 2 will review the Image Recognition ficld, the requirements of such a
system, the subprocesses involved, an analysis of the different methods in use
today, the suitability of these different techniques and finally the motivations for
tapering down to one particular method.

Chapter 3 presents the generai overview of this rescarch, which method of image
segmentation is used, which model ( Polar ) is used, the nceds for hierarchical
models, how a Descriptor array is uscd to accelerate the Recognition phase in
conjunction with a DataBase.

Chapter 4 explains the implementation of all the Image Acquisition modules, all
programmed at Assembly level, the process converting a grey level image to a
binary one and further to a chain link of the contour. Some utilities for saving
and loading images are also given.

Chapter 5 describes the inyariant Polar representations used for modelling
objects, how the contour of an object is scgmented to obtain the polygonal
representation, how two hicrarchies of representation are extracted and finally
how the Descriptor array is found as well as normalizing the models to make
them truely invariant. All the modules implemented were in Pascal.

Chapter 6 describes the DataBase, its interface with the other Pascal modules,
its organization to allow efficient and fast retricval for the Recognition module.

Some utilities available to the opcrator during the Learning stage is presented.



The insertion of objects to the DataBase is explained, the techniques used in the
Recognition phase, namely decision searches, clustering claés and minimum
distance test is explained in details.

Chapter 7 lists out the results of all the algorithms implcmcﬁtcd, how far the
different stages were successful in meeting the requirements, the statistics of how
long each step took in the experimental testing of the system.

Finally, in Chapter 8, a summary of the results is presented as a conclusion and

|- some improvements which can be carried out as futurc work is proposed.



CHAPTER 2
IMAGE PROCESSING AND RECOGNITION : ALITERA;I'URE REVIEW.

2.1 Introduction

Over the past decades, much of the work on image processing has dealt with the
analysis and interpretation of images but were restrained to images which
needed only storage and processing of the raw image data [ROS84]. The only
processing needed for such applications like microscopy, radiology, satellite
reconnaissance involves obtaining digitized images, cleaning up the image from
random noises, increasing contrast and enhancing the edges to delineate parts of
the image from the background and finally analysis of color, shading or
texture.Most of the algorithms developed in these areas are still useful.

With the advent of document processing and character recognition, the raw
image data had to be processed further to obtain clear-cut edges of objects of
interest in the image and representing those linked edges in séme mathematical
form for the purposes of recognition [ROS84].

More recently, automatic assembly of parts in industries have prompted the
development of the field known variously as computer vision, image recognition
or robot vision. Demands on automation have begun to change. One important
tool for flexible automation is the visual sensor which can determine the position
and orientation of workpieces [RUMS84].

A robot that can ‘see” and ‘feel’ should be easier to train in the performance of
complex tasks while at the same time should require less stringent control
mechanisms than those required by preprogrammed machines [GON83]. The

latter refer to the ‘dumb’ non-autonomous robots widely used in industrial

4



inspection and assembly whose tasks are fixed and limited; sensory trainable

systems are thus more adaptable to a much larger variety of tasks. .

In general, robot vision is the collection of technicues, Software and hardware
required for the location, recognition and manipulation of ‘objects [TIO82].
The algorithms to solve visual inspection problems can be classified as one of
two categories : pattern recognition and scene analysis [SUE86]. The latter is
usually applied to complex scenes of 3-dimensional nature and is not the subject
of this thesis. Pattern or image recognition assumes that a 2-dimensional or
3-dimensional scene or image can be represented as a set of numbers, each
number representing one feature of the object. This rcpresentation is a
structural one in that the model reflects the object’s geometrv and dimensions,
invaluable information for robot grasping [RUMS84]. Recognition or
interpretation of unknown objects is then performed by calculating its
characteristic features and assigning it to one of the known objects with similar

features [SUES86].

2.2 Robot Vision Setup & Requirements
An efficient implementation of an image recognition system requires a computer
vision with special characteristics [SUE86] namely :

1) Part handling system.

2) Image acquisition and storage system.

3) Special hardware for rapid image processing.

4) Commaunication of vision system with robot’s

actuators [GONB3].

The sectup, illustrated in Fig 2.1, shows the essential components of a robot



vision system, the details of which are now explained.

2.2.1 The Part Handling System

The part handling system of a feeding system for transportation of objects under
the visual sensor ( camera ), usually through a conveyor belt. Most machine
vision systems assume that the part is separated and unobstructed and appears
stably on the belt [SUE86] for the visual sensor to operate correctly. The other
part of the system is the classification or separation system which sorts the
inspected part according to some recognition responses; usually the part is

accepted or rejected as bad or rejected for reinspection [HEN89] .

2.2.2 The Visual Sensor

The visual sensor is usually a camera of some sort, linear or array, where the
optical image of the part is converted to electric signals (video signal)
[GONBS83]. Solid state area cameras ( CCD ) contain area arrays of regularly
spaced photosensitive elements; they are very popular because of their sensitivity

over a wide light spectrum, low power consumption, small size and reliability

[PAV77].

2.2.3 The Video Processor

The video processor converts the video signal ( analog ) to digital values (
numeric ) which represent the image in a numeric format suitable for computer
processing. This digital image is usually stored in a frame buffer and some video

processors may have more than one frame.
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2.2.4 Lighting Conditions

A lot of applications, which at first glance, require complex. vision algorithms,
become much simpler by proper lighting and viewing conditions [SUE86]. The
importance of good lighting cannot be overemphasized; backlightiné,
interception of collimated light beams and careful choice of background colors
are keys to effective use of computer vision [COR83]. Robotic vision systems
use various lighting systems, some very simple to set up , some using complex X-
rays or laser lighting; which type of light is to be used or is most effective is
highly dependent on the application.

Backlighting, ( Fig 2.2-a ) where the light source. is situated directly under the
part being viewed, produces high contrast images of solid object’s contour and is
the most widely used in industry. The contour can then be easily extracted from
the background without the use of computationally costly algorithms.
Sidelighting ( Fig 2.2-b ) is used for application where defects like cracks and
scratches are to be detected; the camera and light sources are directed
perpendicular to the object’s surface making the cracks appear dark on a bright
background [SUES6].

Structured lighting ( Fig 2.2-c ) refers to a light stripe projected from a long tube
onto the part such that the line of lights delineates the part from the
background. A linear array camera records this line and the steps are repeated
as the part moves on the belt [KLA89]. The image consists of parallel strips
corresponding to the part and is recomstructed to obtain a 2-dimensional
digitized image.

More specialized lighting such as X-rays are used for specific applications such

as when the interior holes of some solid part must be detected [HEn89].
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2.2.5 Robotic Vision Requirements
An image recognition system for use in conju.nction with robots imposes some
requirements :
a) Image sensing of object and its extraction from the background.
b) Segmentation of the binary image of the object into a model linking the
contour edges [GON83]. This structural model should be invariant with
respect to translation,
¢) Feature extraction which identifies global characteristics of outlined
object as n-dimension vector [COR83].
d) Classification / Recognition which could use a notion of minimum
distance or a heuristic method of search or some other method where an
unknown object is assigned to the closest class of known objects [SUE86].
These requirements will be explained further in the next section. In a general

application, a typical sequence of operations required from a robot endowed

with vision are :
* Locate an object on conveyor belt.
* Segment and determine object’s orientation.
* Recognize object. |
* Move manipulator and grasp object at specific point
using orientation and recognition information.

* Grasp object and check visually if successful.

All these typical operations must be done quickly so as to appear ‘natural’ and
the computation speeds must produce responses comparable to those of humans

[TIO82]. The computational requirements are not trivial. A robot must

10



already have the ability to perform complex coordinate transformations and
straight-line coordinated motions; these are Signiﬁcant computational tasks
involving lengthy matrix operations. Adding a vision system. operating in real
time significantly burdens the computation time and sometimes the only way to
solve it is by designing special purpose hardware with built-in sophisticated
functionality. The extra processing time due to vision must be no more than a
few machine cycles; most robotic applications have cycle times of 1 to 10
seconds and an additional time for vision processing of around 200 ms is
considered acceptable [KLAS89].

The four requirements : sensing, segmentation, feature extraction and

recognition are now discussed in greater details in the following sections.
2.3 Image Segmentation

2.3.1 Image Sensing

In order to process any type of optimal image by a computer, one must
quantitize it. The picture can be divided into sufficiently small regions where
each area measures the intensity of light through a photosensitive sensor
[PAV77]. A CCD array carﬁera will have a finite number of such sensors, the
numbers in horizontal and vertical directions being fixed, which measure the
light intensity hitting them as an anlaog electric charge ( Fig 2.3-a ). These
charges for each picture area (pixel) must then be converted to a digital value.

The size of the image or resolution refers to the number of horizontal and

vertical pixels and can range from 64 x64 to 512 x 512 depending on resolution

requirements of a given application [GONS83]. The higher the resolution, the
more detailed is the image and the more the processing times [KLAR89].

11
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This array of digitized pixels of an image is referred to as the gray-scale matrix.
Each individual pixel can have a range of values eg. for an 8-bit A/D
converter, a pixel value of 0 indicates a very white pixel while a 255 value
indicates a very dark region with values in between representing gradations of

grey ( Fig 2.3-b ) This gray-scale image is stored in memory in a frame buffer.

2.3.2 Global Thresholding

Handling the raw information of gray-scale images without further processing,
imposes problems in storage and computations [PAV77]. The next logical step
which is widely used in any vision system is converting the gray-scale matrix to
a binary image [COR83]. where each pixel takes only two values of 0 : white
or 1:black ( Fig 2.3-c). This step can be a simple one like global thresholding
or a complicated one like gradient thresholding depending on the quality of
lighting, the object’s color and background color and the presence of noise in the
image. Thresholding thus outlines objects in the image for further processing
[SUES6] .

Global thresholding is suitable if the object to be extracted varies markedly from
the background [PAV77] or if the lighting environment is controllable
[KLAR9] and involves the comparison of each pixel value of gray-scale image,
G(i,j) to a global threshold constant, T , and returning 2 binary value, B(i,j) of 0
or 1 [COR83,PAV77].

Bi) = 0 if GGj) < T
1 fGG) >=T
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The threshold value T can be chosen interactively by an operator or can be set
automatically from an analysis of the gray-ievel ‘histogram; reférring to the
histogram of Fig 2.4, T can be chosen as any value in the zone A-B or the
sharpest break-point zone [WATS84]. Global thresholding is quick, visits each
pixel only once but results in a binary image with the whole object, including the

inside pixels, as black.

2.3.3 Local Thresholding
Other methods of thresholding set only the pixels on or near the edge of the
object to 1 while all the background pixels as well as those in the object’s
interior are set to 0. The advantage is that less pixels are stored; however the
operators involve more arithmetic and the edge is not usually 1-pixel thin.
Edge-detection algorithms fall into 3 categories : [KLAS89].
a) First Difference / 1-dimensional
b) Sobel Operators / 2-dimensional
a) Contrast Operators
All edge operators involve comparing a central pixel, E, with its 8 neighbours A,
B, C, D, F, G, H, I ( Fig 2:5). These 9 pizxels, the 3 x3 mask, is moved over
each pixel in the image one at a time and measures the discontinuity in the
image The first difference operators are :
Edgel =|I —E|+ |E — A
Edge2 = |F — E| + |E - D|
Edge3 =|H - E| + |E — B|
Edged = |G —E| + |E — C|

14
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Edgel computes a first difference function in the ‘north west - south east’
direction. This is most sensitive to edges perpendicular to the direction or
orientation of computation and returns a magnitude of edge in only one spatial
direction. Similarly the other functions generate similar types of one dimensional
edge property [KLAS89]. More powerful approaches are based on
neighborhood pixels involving a range of sizes e.g. 3x3,4x4 masks and
combining their outputs [ROS84].

The contrast operators is of the following type :

_ A+B+C+D+F+G+H+I

Edge =E

This operator compares the absolute intensity of the next neighborhoods only
and can be computed sequentially as the image is scanned. The disadvantage is
that it characterizes only edge points but not edges; i.e. there is no explicit or
implicit connection between the edge points.

The Sobel operators, the most popular of the edge detection schemes and easily
implemented, compute two edge measurements perpendicular to each other and
generally enhances edges more than other 1-dimensional methods and takes the

form of :

Gradients in X- and Y- directions are :
G,=(G+2H+1)—-(A+2B+C)
G, =(C+2F+1)-(A+2D +G)
The basic Sobel operator masks are :

G=I|G,+G.|'"”?

16
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The center pixel value E is then replaced by G. A common variation consists of
replacing G only if it is greater than some sﬁeciﬁéd threshold [GONS3]. In
practice the squares and square root in calculating G, being too time consuming,
will be eliminated such that

G =1G,| +1G,|

2.3.4 Contour Following

Once the object has been isolated from the background by any of the previous
algorithms, all the edge pixels will be isolated; usually due to lighting conditions
and shadows, the edge will be a few pixels thick and need to be trimmed down
to a 1-pixel thin contour. The next step is linking the pixels on the contour as a
chain whereby starting from one edge pixel the relative direction or coordinates
of the next pixel on the edge is found; this is repeated for all pixels on the

contour [KLAR9].

2.3.5 Feature Extraction

Analysis of an image usually starts at low levels ( sensing of gray-scale image )
and generates from it lines and edges ( segmentation [MARS&2] and then
converting edges to a list of parameters describing corners, straight lines or
circular arcs to get the image data into a reduced and organized form
[RUMS4] , a form which represents the geometry of the object. Some global
features often used are area, perimeter, number of sides, centroid, minimum and
maximum radii, bounding box size [SUE86]. Often features relating to shape
or measures based on the silhouette are powerful characteristics of an object and

are sufficient to identify it in the recognition tasks [CORS83],

18



These shape related features form the primitive description and ideally they are

invariant under rotation, translation or scaling.

2.4 Non-Structured Image Representation (region based)

Some fields of image processing successfully employ only non-structured
representations of images in the recognition process; these representations are
most often based on an object as a whole, hence region based, rather than on
geometrical measures. Methods like gray-level histograms, pixel template
matching or run-length transitions use statistical decision techniques which rely
on scalar measurements and all structure of the image is destroyed; they have
been implemented on many high speed systems and succeed because the object’s
contour is fixed in orientation and rotation [COR83] ; their applications are not
expandable to situations where no ‘a priori’ information about the positioning
of the object is available [TOU74]. Their very simple data structures make
them efficient for some limited fields but in the field of event driven recognition,
the amount of computing time required for implementation is too massive to be

practical.

2.4.1 Color Coding

Frequently color of an object is useful in separating it from other objects of from
a background image and in robotic situations part identification is often based
on color. Color coded parts such as electronic components on a board must be
recognized or their presence verified and often in assembly, a needed part is

identified and differentiated solely on color [CORR3].
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For color coding to be effective, naturally proper lighting ( certain colored lights
will pick up only parts of same color ) and proper filters in the optical path of
the camera ( to highlight specific colored parts ) are used [KLAS89].

2.4.2 Gray-Level Histograms
Gray-level histogram is a statistical method which obtains a 1-dimensional array
containing the distribution of gray scale intensities. Fig 2.4 shows such a
histogram for a 4-bit gray scale. The image transformation is of a very simple
type but is often very useful because of enormous data reduction, typically over
95 % [KLAS89]. The matching is a simple process where each element of the
distribution array is compared and checked if it falls within a tolerance match;
prior to this some parameters such as average gray level or variance spread of
distribution are often used.
Although the gray level histogram method is rotation and translation invariant,
it is not useful for robot vision because

* the dimensionality of the array in terms of storage and processing is too

large to be effective.

* effects of changing light conditions or shadows drasticélly modifies the

histogram and renders recognition difficult.

* all geometrical or structural information about the object is destroyed; this

information is extremely helpful for the robot.

20



2.4.3 Differential Delta Coding

This method of coding is used to store gray scale images more efﬁciently; the
difference between the intensities of a pixel and the previous one is stored and
used. In ordinary uncluttered scenes, differences between successive pixels are
usually small except near border pixels; so the number of bits required to store
the difference in pixel intensities compared to storing their absolute intensities is

relatively smaller.

2.4.4 Run-Length Encoding

It is clear from object images that there exists long horizontal strips of pixels of
similar gray scale value ( Fig 2.6 ); this is particularly true if the image was
acquired from a linear array camera i conjunction with structured line-striped
lighting ( section 2.2.4 ). For these cases a separate entry for each pixel is a
waste of computer memory. For each line in the image, the line number,
transition poiht of each background to object and string length ( number of
consecutive pixels of similar value or residing in object ) are stored, resulting in a
very efficient model in terms of storage. This method is successfully used in
VS-100 of Machine Intelligence Corporation [SUE86] and in the GM Consight
System, a robotic vision and assembly system still operational today

[KLAg9 , HOL79].
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2.4.4 Freeman Chain Coding
The Freeman chain code is not a region ~base.d technique but is rather edge
based; it is considered here however because as such and without any further
processing, it also has the disadvantages of other region based methods. The
chain code basically links up all the border pixels on the contour of an object by
considering the direction of a next pixel relative to the one considered along any
of the 8 possible directions ( Fig 2.7-b ). [TOU74]. The steps from pixel to
next pixel is uni-step and all the pixels on the contour are thus linked until the
starting pixel is reached once again ( Fig 2.7-c )-
Algorithms based on Freeman chain code are useful as such especially for data
compression but are very sensitive to digitization noise or image resolution
[WIE86]. However they can be further processed if the Freeman chain is
unrolled as segments and each segment tested to see if it belongs to a straight
line or not; the result is a polygon based contour [JUVvee] '. 2.5 Structured
Image Representation (contour based)
The non structured coding of images as such present many disadvantages for a
real time robot vision system :
a) the storage requirements are large, from 8 to 65 kilobytes, especially for
high resolution images in addition to the slowness of processing
[KLA89, PAVTT].
b) all codings which store gray scale values of pixels as such are highly

dependent on lighting conditions.
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c) some are not invariant under rotation, translation or scaling : run-length
and differential encoding are examples. | -
d) they do not tolerate noises e.g. the Freeman chain contour changes
significantly with digitization errors, a common problem in any image
sensing device [WIER6].
e) the complexity of interpretation increases if objects are touching or partly
occluded leading to failure of recognition; edge based techniques are more
powerful in that only fragments of the object’s boundary can be used to
match it against a template [STO84].
f) no information about the geometry of the object is explicitly known. This
is perhaps the most serious drawback of non structured models because in a
robotic environment intefaction of the manipulator on the object necessitates
information about position, orientation dimension and grasping points; e.g.
a robot needs details such as part is located at (X ,Y_ ) , oriented at angle
0 , grasping pointis (X,  + X,,Y, + Y,).
What is needed essentially is to reduce the ‘raw’ data of region based scalars to
a graph which describes the relative positions of regions of ‘simple’ shapes which
together form a region of ‘complex’ shape [TOU74]. The boundary of a region
is a natural choice to obtain geometrical characteristics; a sequence of boundary
points are treated as data from which mathematical invariant features are to be

extracted [CORS83].
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These mathematical models are to be obtained in a rathey simple way and
should be more compact representations, yet without Icsing any of ‘the essential
information inherent in the previous representation [PAV77]. Mathematical
models ease the task of recognition considerably to a mapping of two relational
structures [CHES82]. with effective accuracy and hit ratio. Some of these

models, widely used for varying applications, are presented next

2.5.1 Mass Center Method

The mass center method transforms a binary image into a set of 1-dimensional
sequences of vector lengths which have their origin in the mass center and their
ends on the contour [WIE86].

Let(X,,Y,;) fori = 1,2, ... n denote the integer values of contour coordinates

( Fig 2.8 ) in Cartesian system. The center of mass is then expressed as

n

5%,
X = i=1
s n

Y — i=1
s n

and the sequence of vector length {S;} is S,= N (X, =X)*+(Y,—-Y)
The mass center method, besides being rotational and positional invariant, can

be used to obtain other useful descriptors such as the size of the image which is

the mean value of {S;}.
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2.5.2 Fourrier Transform

Fourrier descriptors are a method of ext'ractihg information about an object
using its boundary points in terms of tangent angles versus arc length or a
parametric representation of boundary coordinates [TOU74].

Let(X,,Y,)fori =1,2,..n be the Cartesian ordinates ( Fig 2.9 ) of
boundary points with X, being mapped to the real component and Y, to the
imaginary component of complex numbers.

Fourrier analysis often uses amplitude and phase parameters in the transforms
to distinguish boundary shapes in object mapping and recognition [SAF89].
The boundary {f} being a series of complex numbers

fi) = (X,,Y,),i=0,1,2,..n-1

The Fourrier transform of the complex sequence :
_onl . ku
Fw) = (k) exp (-j2n (=)
k=0
and the amplitude spectrum as

| F(u) | =|Real F(u) * + Imaginary F(u) ? Il/2

and the phase as

_ Imaginary F(u)
® (u) = arctan [ Real F(0)

Fourrier descriptors are invariant without requiring any further computations.
They are useful because of certain properties in the Fourrier domain : easy
movement between the Spatial and Fourrier domains; size changes generated by
multiplying by a constant, angle rotations by a simple multiplication and

translation by simple addition [SAF89].
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2.5.3 Spline Fitting ‘

The domain of input data is divided into a finite number of intervals ( such as
corner points of boundary ) and a different approximation is applied to a subset
of intervals; i.e. every 3 or 4 consecutive corner points are fitted by a polynorhfal
and the sum total of all these polynomials identify the contour [PAV77].

An example is a partition X with a sequence of 4 boundary points
X.,(i=0,1,2,3) such that X, < X; < X, < X, ; a cubic B-spline can then
be interpolated over these 4 points and they are cubic polynomials such that the

spline smoothly links the partition X [HARS3].

2.5.4 ’Fast’ Structured Methods
The structured representations mentioned previously, which will be referred to
as ‘mathematical’ models have many drawbacks which prevent their use in real
time object recognition and they are :
a) the majority of ‘mathematical algorithms like Integral Square, Least
Square or Spline Fitting originated from the field of character recognition;
unfortunately many of them require determined positions of the image or
claim to solve problems only if the data have a certain regularity [WIER6].
b) one difficulty in mathematical methods is that the iterative functions do
converge in the continuous case but tend to cycle in discrete cases of
digitized images [PAV77].
cj they are too costly, computation wise to be efficiently implemented as too
many mathematical operations are involved; this is specially true for images
of high resolution.

d) special problems for the otherwise excellent Fourrier method are that
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1) it is invariant for continuous object contours but problems arise for

discretized images on pixel arrays [ANDS6],

2) there is a lack of closure of boundary contour such that image

reconstruction is inaccurate [ANDS86 , TOU74], and .

3) it often fails in distinguishing objects if significant variations exist over

contours of similar class [STA86] .
€) one serious disadvantage to Mass Center, Fourrier or Spline Fitting
methods is in choosing which pixel points on the contour are selected for
representing the silhouette accurately enough. Choose too much points and
the method becomes costly and redundant; choose less points and the
representation will not be accurate enough to identify the silhouette
uniquely. Detecting these corner pixel points is by itself a problem : if a
contour tracking algorithm is used to detect points of inflexion on the
border, it could be argued that if the coordinates of break points are
available, why not use them in a simpler polygonal representation.
f) perhaps the most serious drawback of mathematical representations is
that they do not make available geometrical information as such without
further processing. Roboﬁc manipulation implies precise knowledge of
absolute orientation and absolute grasping point positions; this is only
possible if the absolute dimension and orientation of the object relative to a
distinctive local feature is known such as a unique corner with specific large
angular change, a unique maximum segment length or a sequence of
distinctive characteristics. This cannot be obtained readily from

mathematical methods without further feature extraction procedures
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Therefore what is required for practical applications is a ‘simplified” structural
representation which is fast enough to be -efficient in real time. The shape of
most technical workpieces can be adequately described by simpie geometricgl
forms such as corners, straight lines and circular arcs [RUMS84]. Polygonal
approximation or incremental angular change of successive boundary segments
is a powerful method because :

a) a contour following algorithm ( which is a must even for ‘mathematical’

methods ) quickly identifies corners and parameters of the polygonal model

with minimum additional processing.

b) rotation and translation do not affect the model which is invariant as

such; scaling preserves all angles and the lengths need be scaled by only one

factor.

¢) a straight line is a computationally simpler curve to fit a group of data

than any higher order curve [TSU82].

d) it offers the richest description capabilities and hence accelerates any

recognition algorithm considerably [COR83].

e) the geometry of the contour or how the object is positioned relative to the

environment is readily available to aid robotic manipulation

[COR83, TSURB2].

Two such “simple” and ‘fast” methods are now presented.
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2.5.5 Circular Scanning
Circular scanning is an edge-based technique . for rapid acquisition o
2-dimensional objects where the object is scanned in a ciljcle_ ( Fig 2.10-2)
centered at an arbitrary boundary point of the object [STO84]. A boundafy
point P on the object is sought and scanning proceeds in a circular path ( e.g.
anti clockwise ) of a certain radius R, yielding a scan which detects the 0-to-1,
background to object transition and the length of the arc crossing the object or
boundary ( Fig 2.10-b ). The resulting scan is rotation and translation invariant
provided the scan center and radius are preserved. The method is simple and
fast but has some drawbacks namely :
a) choice of center of scan, P, must always be selected and positioned on a
distinctive contour point for the scans of unknown object to be matched to a
known obiject. The choice of P obviously depends on a unique shape feature
obtained only through a contour following algorithm.
b) one circular scan cannot uniquely map an object, so a series of scans are
needed with different concentric radii. The more the scans, the more finely
detailed representation is obtained but more bytes are needed for storage; if
fewer scans are used, dis;cinguishing features on the contour located between
any two successive scans will be overlooked.
c) detecting distances along circular arcs cfossing the object is not a straight
forward linear calculation.
d) special hardware equipment is often used like a circular scanning camera

centered on P with photodiodes ( e.g. 720 ) arranged in concentric circles.
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2.5.6 Polar Representation

Polar representation is a simple yet powerful technique for representing and

recognizing objects and has been applied widely. Consider an object ( Fig

2.11-a) whose contour corners have been identified as

{Xi’Yi} =

where (X, Y,

Xl Yl ]
XZ YZ
3 Yy

< )

4

SYS

o

) refers to the Cartesian coordinates of corner i of contour. The

relative polar representation converts the polygonal contour as an ordered array

of segment lengths (p;) and change in angular direction between successive

segments (6,).

{p,6,}=

P 8
P, 9,
ps 6,
P 8,
ps 05 R

Besides the advantage of being a fast structured method'( already covered in

Section 2.5.5)

the polar representation possesses a few more namely :

a) a translation of the figure is invariant

b) rotation of the object leaves the polar representation invariant except that

the ordering of the set { p, , 0, } is circularly rotated.

c) scaling

factor.

of the figure multiplies each p, by one constant magnification
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d) whereas in mathematical methods or even circular scanning, the
algorithm which follows the contour to obtain contour points ( or distinctive
center for circular scanning ) is needed just to start the process and the bulk
of the computation is done later, in polar representation, the trackin;g
algorithm itself is the major task and obtaining the p,,0, from the
Cartesian coordinates outputted is pretty straight forward.
€) only one polar encoding or graph ( a graph drawn on Cartesian axes of
relative orientations of segments versus their linear distances as in Fig
2.11-b ) is required to uniquely identify objects; compare this with the
multiple scans required for circular scanning.
f) robotic manipulation require knowledge of grasping points relative to a
certain distinctive or easily identified shape feature usually a segment or/and
a corner and this information is readily available form the polar model.
g) the richest description features ( like longest segment, largest positive and
negative angles ) which are very important in recognition are immediately
obtained.
For all these reasons, the polar representation was chosen to be implemented for
this thesis work. Two levels of the polar model will be used for an object namely
i) coarse model - used to obtain overall description features of an object and
helps in accelerating recognition.
ii) detailed model - used for accurate and ‘perfect’ matching of unknown

object to a known one.
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2.6 Recognition |/ Classification

An effective recognition system for robots must inherently represent objects in a
data model that is invariant under translation, rotation or ideally even
independent of the camera-object distance; this is essential for unplanned
situations in the robot work space where no ‘a priori’ information about the
orientation or dimension exists.

Some recognition algorithms, the so called region based, compare the image of
unknown object to defect free images of known objects pixel by pixel or through
gray level analysis. These have been widely used in industrial inspection systems
because they are fast, simple and reliable; however they require storage of
complete error free images, are not flexible enough, require perfect alignment of
and are not particularly suited for robot vision [GON83].

Many excellent mathematical recognition techniques have been developed and
implemented with a high hit-ratio but are ill suited for real time robotic systems
due to their complexity in computations.

A powerful and flexible recognition system begins with image analysis in a data
driven mode ( region based ) but when sufficient information is available it
switches to a model driveh rﬁode [PER86] where analysis is based on geometry
and structure [GONS83]. The shape and geometry features clearly reduce the
dimensionality required to characterize objects and will greatly reduce
identification time [KLA89]. A feature vector of an object is the global
features ( shape based ) which in totality characterizes an object or class;
recognition of an unknown object is reduce to matching its feature vector with
those of all previously known or tagged objects. Clearly it is impractical to use
exhaustive 1-to-1 search to find the best distance two vectors when vector
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dimensions are near typical value of 15 or so [WALS81]. Assigning an unknown
object to an object class in the dictionary involves the 'minimum distance’ or
‘nearest neighbour’ technique where the object is assigned to the closest class i.e.
the distance or difference in features is minimal ) [SUER6]. o
Recently there has been interest in the use of hierarchically structured
representations that incorporate both coarse and detailed information about an
object so that both gross geometry and important local features are easily
available while topological and locational information is used only when needed
[ROS84]. The coarse description is kept in active memory for quick access
whilst the massive detailed data can be kept on auxiliary storage to be paged in
when required. Recognition always starts from the coarse level to identify a
subset of the object dictionary on which to pursue the search; thus results
obtained from the coarse level search speed up and improve the accuracy of the
detailed level searches [BHAR82].
The requirements of such a hierarchical system are :
i) partitions allow recognition of object to nearest class in minimal time.
if) the first level search involves only the coarse model and reduces the lower
level search.
iif) the recognition behaves unambiguously or consistently by not assigning
an object to more than one class.
iv) the detailed features are kept only at the lowest nodes of the hierarchy
and on secondary storage; if recognition can be achieved without the
detailed level, so much the better but if not, the detailed data will be paged

in active memory only if absolutely needed.
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CHAPTER 3
OVERALL DESIGN OF THESIS WORK‘

3.1 Introduction |
The objective of this thesis is to demonstratc the efficiency .of a hierarchicél
model of image representation. For reasons stated in the previous chapter an
edge based polar representation will be used with modification to allow for a
2-level model. The recognition process will involve a feature vector based on the
coarse model, a set of decision hcuristics to acceclerate the search and a
minimum distance match at thé detailed modecl level. The main thrust of the
implementation will be on a hierarchical model and the recognition task, not on
designing a complete robot vision system; this thesis will thus be a pilot vision
system on which other features will be added and cxpanded in the future.
The implementation of this thesis work will dcpend on many factors, some of
which forced us to the use of already available hardware cquipment and some
which guided us to the use of softwarc. The main choices of software and
hardware were :

a) the choice of hardware cquipment was limited to what was available in

the Robotics Laboratofy of the Computer Engincering Department; it

includes a personal computer IBM-AT. a FG-100 video interface which

digitizes a video image to a 512 x 512 pixcl image of &-bit gray scale (

monotonc ), a SONY CCD camera, a television monitor and a line printer.

b) assembly 808G / 8088 again was the only choice for implementing the

image acquisition and thresholding for two reasons :

i) the FG-100 video processor board ( gray scale image frame ) can be
accessed and processed only through assembly and
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ii) the processing required for pixel by pixcl aﬁalysis or contour extraction
from a high resolution 512 x 512 image imposes the ‘use of the fastest
possible language. A
¢) a programming language for the rccognition task had to have thé‘
following properties :
i) it must be able to interface easily with Asscmbly 8086/88 with ease and
minimum passing of parameters.
ii) it must support graphics capabilitics because invariably the object’s
contour has to be displayed visually in a robot vision system speciaily in
the learning phase.
iii) it must be powerful in programing fcatures. It should allow modular
design and coding of software and should be reasonably fast.
iv) it must interface with some databasc which would store the object’s
models in indexed files for direct access at recognition time. If the
language has no interface with an existing database, then all the basic
storage and retrieval facilitics neceded will have to be designed from
scratch.
Turbo Pascal ver 5.0 was the only reasonable choice available and satisfied
all the above requirements.
d) designing a scparate data base for the system would involve managing
sequential and direct files, implementing efficient sorting, taking care of
storage and swapping in pages from auxiliary memory to active memory; all
this would burden the speced of the system becausce of the overhead.
Pascal Database Toolbox is a small data base package ( implying minimum
overhead ) which interfaces easily with Turbo Pascal and yet is powerful

41



enough to do the basic duties asked from a database. It efficiently locates,
inserts or deletes tuples in large data files ( cither randémly or in sorted
sequence ) and indexing is achieved through B* trecs, the fastest method
for finding and retrieving data base information; in addition it supporté

relations with a2 maximum number of 2 billion records.

3.1.1 Binary Image Acquisition

This will involve the interface to the FG-100 board and issuing it commands to
snap an image of an object which is digitized as a 512 x 512 pixel frame with
an 8-bit gray level intensity.

Let this image be G[512,512] ( Fig 2.3-b). The image consists of 512 rows
and 512 columns where the first row and first column is at the top left corner.
G(i,j) represents the gray level valué ( between O - 255 ) of the pixel at row iand
column §. The G[512,512] will be transformed to a binary image
B[ 512, 512] where B(i,j) is a pixel value of 0 or | ( Fig 2.3-c).

B(i,j) = 1 if pixel is located on object region.

B(i,j) = 0 if pixel is outside object, on background.

The mapping of G[512,5'12] - B[512,512] will be implemented as a
simple ‘interactive’ global thresholding as

B(i,) = {) iirf(g;((ii’,jj)) N

where T is a threshold gray level intensity which clearly delincates object from
background. The operator will be given the choice to interactively set this value

of T depending on lighting or object / background color contrast.
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3.1.2 Primary Representation ‘

The binary matrix B[ 512,512 ] is further processed to isolate all pixels lying
on the object’s boundary. ‘
Let C(i,j), be a contour pixel if at row i and column j of the image, there is
a 0 -1 or background — object transition. All the border pixels .C (i i),
will be kept as a chain code using Freeman’s dircctions ( Fig 2.6 )-

Let FMC[C,] bc the chain code of all thc contour pixels linked as an
unbroken chain where the contour is scanned from top to bottom and in anti
clockwise direction and

(X,,Y,): Cartesian position of top most border pixel.

C, . first successor border pixel of ( X,,Y,).

C, : the next consecutive pixel on the contour from C, .

The Freeman Contour coding

FMC(C,)={0,1,2,3,4,5,6,7} indicates the direction of orientation of
pixel C, with respect to pixel C,,. ( Fig 3.1)

Only the FMC is saved and processed later, the (X,,Y,) or start pixel
coordinates are also saved as well as the number of pixels lying on the contour.
A useful next step would be to climinate the big difference between DIRO ( east
) 2and DIR7 ( sounth cast ) which does not reflect the closeness of these two
directions, c.g. the difference of 1 between DIR1, DIR2 reflects an angle change
of 45 while a difference of 7 between DIR0, DIR7 also reflects the same angle
change; this will prove problematic in the scgmentation stage especially if

modulo arithmetic is to be used constantly for each FMC (C, ).
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It is proposed to change the FMC (C,) to a Relative Freeman Contour Coding
( RFMC) : '
RFMC(C,)={0,1,2,3,4,5,6,7,8,9,10,...}

For example a DIRO will be changed to a DIRS if the previous pixel directions
were 5, 60r 7.

if FMC(C,) = 0

RFMC(C,) = 8 {&ifFMC(Ck_,) ={5,6,7}

Now the new direction DIR7, DIRS8 yield a difference of 1 ( not 7 ) which

correctly reflects an angle change of 45 .

3.1.3 Invariant Representation ( polar )
The next step is to convert the RFMC of the object to a polar model, an
intermediate requisite is to calculate all the break points coordinates. One
method to obtain the corner points from the RFMC is to unroll-the chain and
break it into regulér group of pixels and checking if the éhain segment belongs
to a direction being considered.
e.g. The FMC for segment C, — C, ( Fig 3.2 ) might be :
44453444443444454444 .. etc
Obviously considering individual C, "s and checking thcidircction difference is
not possible because of

i) effect of digitization noise is very local.

ii)‘ comparison of FMC has to bc done n times if thc perimeter is n-pixel

long.
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To overlook the noise effects, a group of C, “s will be taken (e.g 4, 5, or 6 will

be a good grouping ) and their ~sums calculated ; e.g.

4-pixel 4445 3444 4434 4445 4444
v 17 15 15 17 16

Let S, denote the sum of a group of 4 consecutive C, ’s

T S N
and S, denote ——4"— or average dircction of S, .

The sum of any 4-pixel directions is

s, = ifgjfi = {14, 15,16, 17,18}

S—k will always take a value which reflects the direction of segment C, — C,,

the overall direction of the segment S, is given as :

S
35 < =X < 45
4

For the segment C, — C,, the FMC might look like :
2221 322221222223 23222221
where S, = {6,6,8,9,10}

and 15 < S,

%

< 2.5

This property of -S_k , which shows a marked difference as the direction of a

scgment is changed, will be used to dctect corner points; e.g. examining the

continuous FMC of the object’s contour for segments C, — C, — C,, and
specifically at corner C, , the value of S_k at scgment C, — C,, will differ

markedly from S_k of segment C, — C,.
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A corner point is detected along { D,} by examining all

S,=3f fork =0,4,8,12... 1
= . fork =0,4,8,12... —
P 4
Let S_k(ref) denote the overall direction of scgment under consideration, a

corner point is located if

IS_k — S, (ref) | 2 € or if the direction of a 4-pixel groups compared to the
considered direction reflects a large change in direction. The value of ¢ will
determine to what degree the algorithm tolcrates deviation in a straight line
segment. A large value of € will detect break points only at places where the
segments show a large deflection while a smaller £ will overlook small
defections or fluctuations due to noises and break up the scgments into many
small segments. An optimal valuc of € will be decided upon.

For this thesis two values of & namely £ and g, will be used to generate a
coarse and detailed breakdown of the contour ( Fig 3.3 ) and two polar
representations of the same object. The coarse model will be used to generate the
overall feature vector of the object because it conveniently ignores digitization
noises while the detailed model is nceded for precise object matching in the last
step of recognition. The two modecls referred to as : |

Coarsc(obj) = {C) whereC, = (X,,Y,),i=1,2,...,p

Detail(obj) = { D, } where D, = (X;,Y;),i=1,2,...,q

Obvioﬁs]y q 2p and many corners will occur simultaneously in both {C,}

and { D;} but at different indices,eg C, =D,, C,=D,,..., C,=D,,
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Obtaining the polar representation from the Cartesian coordinates of the
breakpoints { C;} or { D;} is straight forward but the use.of cosine, tangent,
slope or vector method will be cxamined and the most efficient method will be
implemented. The method naturally will calculate the angular change 6f
segments but the absolute value will not help; the direction of angle change (
clockwise or anti clockwise ) is also nceded. Basically the output of this
algorithm will be to generate a
Polar(obj) = { P, } where P, = (p;,0,),

p, = length of segment i

0. = angular change between segments p; , P, .
example for :

{ Ci} —{ P,} of Fig 3.3-a where

P,=(p»0),P,=(p;:8,), ... Pe=(ps.0),

Again for this thesis the coarse and detailed model { C;} or {D;} will result
into two polar represcntations of the same object as Pio} or { P.o}
respectively.

A graph of the polar model helps us visualize the polygonal representation of an
object and also helps in understanding how objects differ in shape and to what
dcgree they differ ( minimum distance test ): the ‘graph’ is a plot of 0, versus

p, for each segment of the object ( Fig 3.4 ). We notice that :

* the representation is invariant under translation.

50



LET O =THETA \
& L =RHO \

THETA - I

L4 16

L2

1+04

L3

L1

+01

-
LENGTH

_Fig 3.4 : Rho - Theta graph



% rotation leaves the absolute values and ordering of 0, and p; invariant (
considering { P;} as circularly linked )

e.g if corner C, is the ‘top most’ corner of the object, then

{(Pip) = {(P,,P,, Py, P,,Ps,Pq}

now if the object is rotated such that C; is the top most corner, its

{Pig} = {Ps,P, P, P,,P,,P,}

* under scaling, i.c. the same object vicwed at different camera distances or
different objects with exactly the same outline, all 0; are left invariant and

all p, of the model will be multiplied by a single factor.

example : Let { P, )} be the original polar modetl and let { P, (c)} be the

model of the same object but a different camera’s viewing distance resulting

in a linear magnification factor , m , on each scgment; then {Pi(c)} is

obtained from { P, } by multiplying each segment lcngth.by m:

%o = B

and

Pig = Pig™ M
* to overlook the effect of scaling the (P} and (P} wil be

normalized by standardizing the perimeter of the contour to a fixed value in
pixels.

* 1astly we observe how the two graphs ( Fig 3.5) of {P,o} and {P;y}

correlate.
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As already noted, C, and D,, C, and D, match to exactly the same
value of the p axis of the graph; the segment C, — C, of the coarse
graph corresponds to segments D, — D, — D, of the detailed graph and
segment C, — C, corresponds to scgments D; — D, — D, .

The coarse graph shows a long scgment, especially a ‘curved one’, as one
large segment and one large jump in the graph whilc the detailed graph
breaks it into smaller segments such that the jump is smoother and hence

more accurate.

3.1.4 Descriptor Array
The descriptor array will be an ordered sct ( array ) of global features of the
object which taken as a whole, uniquely or as closely as possible, identifies the
object. The features will be extracted from the coarse model {P;,} because
the features should be invariant under digitization errors.
From (P, } obtain Des(obj)
where Des(obj) = { Des;} fori=1,2,... S
The features which will be chosen to be Aincluded in { Des;} must:
* be relatively easy to extract from { P, } thus fecatures such as center of
mass, area of object though being powerful descriptors will not be included
heeanuse of their lengthy computations.
* be powerful in the acccleration of the rccognition algorithm

in general shape features which will act as scparators of objccts are necded.
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* The set of descriptors chosen for implementation were :
- largest segment length. ’
- largest angular change of segments.
- number of ‘large’ segments.
- number of ‘large’ positive angles.
- number of ‘large’ negative angles.
- largest positive angle change.
- largest negative angle change.
- number of segments in coarse model.

- number of segments in detailed model.

3.1.5 Database
The database will reflect the hierarchical structure of the design one level of
hierarchy is already achieved by the two polar representation ( coarse and
detailed ). The hierarchy in the database involves the concept of classes.
An object class is a set of objects which have the same geometrical ‘shape’ in
that all the angles 0, in their coarse polar model are approximately equal in
magnitude and order but differ in their p, cither because the objects differ
physically in size or they are positioned at varying camera distances.
Let the class :

CL, = {obj,.obj,. ..., obj;, }
Obviously an absolute physical dimension is required to differentiate between
the objects in a class. A convenient one is the actual perimeter of the digitized
object’s contour, a value which is already available in the FMC generation.

This aspect, i.c. the absolute differentiator of objects within a class, will not be
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implemented in details in this thesis.
The database will comprise of
* classes of objects, each class consisting of similar objects
* descriptor array for each class.
* detailed polar representation for each class.
the database db is : |
{CL;}, fori = 1,2,...#of classes
{ Des;; }, forj = 1,2,...#of descriptors in class i

{P fork = 1, 2, ... # of segments in dctailed polar model of

i@ ) o

class i

3.1.6 Supervised Learning
The supervised learning stage will allow the operator, given that the coarse and
detailed models are available, to

- view the object at the coarée & detailed level graphically

- normalize the polar modecls

- examine the feature vector ( descriptors )

- insert the object in the database within a class or as a new class

- view the database

The learning stages will be implemented as user fricndly menu driven utilities.
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3.1.7 Recognition via 'Clustering’
Given an unknown object and having thc task of identifying it amongst a
substantial set of possible object classes, a direct 1-on-1 exhaustive matching of
unknown object’s descriptors to each sct of a class is too tedious. What is
needed is to reduce the set to be matched to a subset of classes such that the
unknown object is ‘most likely’ to belong to one in the subsct.
For {CLi )} fori =1, 2,...#of classes
A sequence of decisions or heuristics H, is applied to { CL;} such that a
subset of ‘most likely’ results. e.g. Let H, represent ‘pick classes with of
segments = 8’; applying H, will output a cluster of classes CLUS, satisfying
the decision search. In general a decision H; wfll pick out a cluster of classes
CLUS, satisfying :
descriptor Des;, = search value ¥
or more generally a larger cluster satisfying :
Des, = y £ 8y
Given an unknown object Des,;, , each decision is applied to the database of
the dictionary '

H; { db, Des,;} — CLUS; : (Ci,Cl,...,CL})

H, - CLUS, : ali classes satisfying decition |

-H, = CLUS, : ali classes satisfying decision 2

H, — CLUS;: ali classes satisfying decision s

Implementing rapid decision searches will imply thc use of indexed database

files for each feature of the descriptor array.
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Let s = # of decisions applied; then the result of all the s searches results ins

clusters

. CLUS,,CLUS,,...,CLUS; _
A resulting cluster CLUS is calculated which is thc union of all CLUS; and a
frequency count FREQ, is kept for how many times CLUS; was found in the
union.A

CLUS, : { (CL,F),(CL,F),....(ClL,.F)}

Next CLUS, is sorted in an ordered list called CLUS_ with highest value of
FREQ, first.

CLUS, : { (CL,F),(C,F),....(Cl,,F.) }

such that F, 2 F, 2...2 F

The higher the frequency count for a class, the more likely it is that the

unknown object belongs to that class.

3.1.8 Identification via ’Minimum Distance’

Once the resulting class cluster and their frequency of hit are available, a precise
matching is needed to verify accurately that the unknown object does belong to
that class. If the object does not belong to the class with 'highcst hit count, the
class with next highest hit count is examincd.

The precise identification is achieved through a ‘minimum distance” or ‘closest
neighbor’ matching of the polar model ‘graphs’ ( detailed onc ) of the unknown
object and class. Thc area between the graphs is an excellent minimum distance
choice ( Fig 3.6 )

The area between two graphs can be given as :

58



Gis( (Pia)» (Pw)) = 35 16,00 0,013,

An algorithm to accelerate this “area’ matching proéess will be presented such
that the value of &, will vary adaptively according to the segrrient lengths of the
two graphs.

Two graphs which match exactly will obviously have a distance of zero because

the area between them is nil; however to say that two graphs match only if the

© distance between them is zero is unrealistic in practical applications; instead

object i and object j will be considered identical if :

dis({ Py} » {Piwy } } = diSun

The value of dis_, will depend mainly on the scale of the graphs , e.g. how 0,
is represented ( angles , degree ) and the valuc of the normalized perimeter. It

will be determined experimentally.

3.2 modules in design

The overall modules in this thesis will comprisc of :
a) Supervised learning module.
b) Database & interface module.

c) Recognition module.

3.2.1 Supervised Learning Module.

The superviscd Icarning module will consist mainly of 3 sub modules namely :
- get object’s descriptors
- normalize polar model

- update object in databasc
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Getting obiject’s descriptors involves mainly acquiring the image, converting the
gray scale image to a binary onc , transferring the image to host memory and
obtaining the FMC contour and then extracting thc two polar models of the
object or class.

Normalizing polar model will include converting the absolute model to a

normalized one such that similar objects with different scale maps to the same
model.

Updating an object to database is an interactive process where the operator,

after viewing the object’s contours graphically and examining the descriptors,
will decide to insert the object in the dictionary; the object can be the first one of
a new class or appended to an existing one. This step will not be automatic in

the pilot system.

3.2.2 Database & Interface Module.
The database module will take care of the interface of the control module and

the database. The database will be defined by three main relations and they are

1. GENREC : the descriptor arrays of classcs.
2. OBJREC : objects within classes and differentiator.
3. DETREC : detailed polar models of classes.

In addition. onc more relation CLUSREC will be used in the recognition step.
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3.2.3 Recognition Module.
The recognition module will include the steps :
- get object’s descriptors & normalize
- obtain cluster for each deccision search
- sorted join or union of all clusters
- apply minimum distance test for resulting cluster

The first two modules are the same employed in the learning module once the

~ feature array of an unknown obiject is obtained, each descriptor will be used to

extract all classes with similar or close values. This step is repeated as many
times as there are descriptors and the resulting subsct of classes only is used for
further recognition. The cluster is sorted with thc classes of highest occurrence
and the minimum distance test applicd to cach sequentially until a match is

found or the object is rejected.

3.3 System Interactive Menus & Utilities

The pilot system implemented in this thesis will be menu driven so that
interaction of the operator is user friendly. The system is not complete; only the
basic utilities will be implemented.

All the menus are driven by cursor keys : c.g. the user moves the 4 cursor keys
to highlight the option he wants and presses ‘RETURN’ to execute that

command. The utilities are presented next.
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3.3.1 Image Acquisition Utilities

The image acquisition menu will be of the following format :

Frame : from TV / Floppy
Image : Binary / Not Binary

FMC : Prescnt / Not Present

CURRENT MENU OPTIONS :
INIt  :set up new diskette
CLEar : blanks out image
SNAp :snap a new image
GRAb  : continuous acquisition
BINary : convert to binary image
NEGate : get negative of image
LOAd :load image from floppy
SAVe :save image to floppy
TV/Dsk :image from FG-100 or floppy
FSD : get FMC, save it & display edge
FDIsp . :get FMC & display edge
FSAve :get FMC & save on ﬂopp.y
FPUt  :save FMC on floppy
FGEt :load & show FMC from floppy

Quit  :return to main menu

option

= >

This menu is concerned mainly with obtaining an image and its FMC and
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saving it on a diskette in drive A. Both the binary image and its FMC can be
saved or restored ( a total of 8 of each on a non high density aiskctte )-
INIT sets up a new formatted floppy in drive A and makes i_t ready fof storage.
It creates 8 files F1.bin, F2.bin, . . ., F8.bin which can store a binary image .of
512 x 512 and the size of each file is 32 Kbytes. 8 files to store the FMC files
are also created each of size 8 Kbytes where 8 K is the maximum possible
contour of any object. Thesc 16 files, all initialized to 0's, arc created at specific
sectors and their starting sectors arc loaded in the FAT ( filc allocation table ).
CLEAR will blank out the image frame of the FG-100 board, to prepare the
unit for obtaining a new image.
SNAP takes a new image of an object is taken and the gray scale matrix is
stored in frame buffer.
GRAB allows continuous acquisition of an object in real time; it is used mainly
to allow positioning of the object, adjust lighting and contrast, change the
camera lens’ aperture and focus to ensure that object stands out clearly from the
background.
BINARY converts a snapped image to its equivalent binary matrix using a user
prompted threshold value and transferring the image from the FG-100 board to
the host memory.
NEGATE (_)htainsi the negative of the binary image where each 0 pixel is turned
to 1 and vice versa; this feature is uscful if thc object is white and the
background is black since the contour cxtraction algorithm will assume that the
image is always of a black objcct against a white backdrop.
SAVE will store the binary image from host memory to a user specified file on
floppy in drive A.
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LOAD will display a previously stored binary image from floppy and transfer it
to FG-100 frame and display it on the TV.monijtor. |

TV/DSk will allow processing ( ¢.g extracting FMC ) from Qithcr the real time
image snapped from thec FG-100 board or from a previously siored image on

floppy.
FSD, FDISP, FSAVE processes the binary image to obtain the FMC of the

contour of the object and keep thc FMC temporarily on host memory, then
either save it on floppy and / or display the contour only.
FGET will load a previously saved FMC of an object and display its contour
only on the TV monitor. Other submenus will be used in the image acquisition
step and they are concerned mainly with obtaining the threshold value and
asking thé user which file of floppy is needed; they are :
which file of diskette :

01 : Fl.bin (fmc) 05 : F5.bin (fmc)

02 : F2.bin (fmc) 06 : F6.bin (fmc)

03 : F3.bin (fmc) 07 : F7.bin (fmc)

04 : F4.bin (fmc) 08 : F8.bin (fmc)

choice =>

enter threshold value = > ( hex)

3.3.2 Graphical Utilities Menu

The graphical utilities allow the operator to view the object’s contour graphically
on the PC’s monitor ( he can alrcady view it on the TV monitor but the scale is
fixed and processing is slower ); the operator can visually check if the contour

was correctly extracted and if satisfied can decide to include it in the data base
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dictionary. The resolution of the PC’s monitor is only 200 rows X 640 columns

so that some scaling is required if the original object was ‘big’. The menu will be

- Show main image

- Show detailed image

- Move center of image

- Change scale of image

- Display the ‘rho-theta’ graphs
- Clear the PC’s monitor

- Return to caller menu

Since two polar models of an object arc kept, they can both be viewed on the
monitor; the image can be shifted in any direction by the operator through the
center option and can be enlarged or decrcased through the scale option; the

‘rho-theta’ option shows the ‘polar graph’ of the 2 models of the object.

3.3.3 Descriptor Array
The operator is allowed to view and print the polar model representations of an
object and print it; the menu is :

- Show main model

- Show dctailed model

- Show ‘rho-theta’ graphs

- Print main model

- Print detailed modcl

- Show feature error

- Return to caller menu
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Show main will display the coarse model of the object with the coordinates of all
corners, lengths of each segment and angular changes between each two
successive segments.

Show detailed does the same job as Show main except it involves the detailed

model.

Show ’‘rho-theta’ displays graphically the ‘polar graph’ of both models on the

same screen to provide the operator with some insight to thcir difference and
similarities.

Print main, detailed options allows a hard copy output of the representations on

a line printer. The graphical screens can also be printed out by the usc of the
‘print screen’ function available through DOS.

Show feature array list the feature array calculated for an object to the operator

before he decides to include the object in the dictionary; the descriptors listed

are the same as those given in Section 3.1.4

3.3.4 Supervised Learning
This is a control menu allowing the operator to access all the previous menus as
well as adding an obiject to databasc and viewing the database; the options are :
- Process new object '
- Graphical utilities
- Descriptor array
- Normalize & preview
- Updatc to databasc
- View database

- Exit from control menu

69



Process new obiject allows the operator to load the FMC of an object, convert to

RFMC and obtain the polar models and dc_scriptors.

Graphical utilities and descriptor array have alrcady been discussed in “the

previous subsections.
Normalize allows the models to be normalized to a fixed rclative perimeter i.e.
2000 pixels.
Update allows the opecrator to insert the ncw object to thc database in an
existing class or in a new class.
View permits viewing of all database rclations; a sub menu is :

- Specific class - fcature array & dctailed model

- all objects in database - to which class

- all classes in database - all subobjects

- all detailed models

- all indexed files - sorted on each descriptor

3.3.5 Automatic Recognition & Timing

Given the FMC an an unknown object, the automatic recognition step will go
through all the identification steps and come up with the matching class. The
operator can sec the resuits of each decision rule ( which class was found for
that descriptor ), the final sorted cluster of classes ( class and hit frequency ).
Further, timing statistics arc also available about how long it takes to obtain the
feature array, to normalize, to apply the decision rules, to sort the final cluster,

to make the minimum distance match , etc.
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CHAPTER 4
IMAGE ACQUISITION
4.1 FG-100 Digitizing Unit o
The series 100 video source interface was set up with the IBM-AT as shown in
the pictorial sketch of Fig 4.1 . The output of the FG-100 was not in color but
monotone ( green ).
The video interface performs 3 main functions :
a) signal conditioning : it samples the black level of the input video signal (
from camera ) and corrects it for any DC offsets resulting in good picture
quality.
b) digitization : an 8-bit flash analog to digital converter ( A/D ) samples
the analog video signal at discrete time intervals and converts each sample
to a digital value ( pixel ). The incoming signal ( from 0 to 714 milli voits )
is sampled at 10 MHz and produces an array of 512 X 512 pixels each
with a value between 0 and 255.

¢) synchronization and timing.

4.1.1 FG-100 Interface
The overall interface of the FG-100 board with the host\ IBM-AT is shown in
Fig 4.2; note that :
a) all registers of FG-100 are I/O mapped into the host computer, occupying
sixteen words within its 512 words I/O channel. The register base address is

set at 0300 ( hexadecimal ).

b) the memory and look up table ( LUT ) are memory mapped occupying
either 64 K or 512 K.
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Both the memory base address and the size of the address space are
selectable; the board base address was: set to A0C00 ( hex ) and the block
size accessible is 64 K. ( since DOS versions 3.1 and earlier only allow

addressing of 64 K blocks only at a time ).

4.1.2 Access of FG-100 Registers
The 16 registers of FG-100 are I/O mapped to the host PC. The FG-100 can
store up to 4 frames of images; the Active Video Window ( AVW ) is that frame
memory which is displayed. The registers are shown in Fig 4.3 . All the
registers are initialized to the correct settings ( Appendix A-1) to allow access of
host to the FG-100 board. A register can be set to a value by using the OUT
command as follows :

MOV DX,0300 H

MOV AX,4040 H

OUT DX,AX
The address of the register to be set is loaded in DX, the contents to be set is
loaded in AX and the OUT command set the value directly through the output
port.
The basic functions and settings of each register are brieﬂy explained next, only

the functions which need resetting will be discussed in further details.

Memory Access Control Register specifies various functions used to access

frame memory from the host PC.
Bits 4,12 : 0 ( host computer can access in dual scan mode )
Bits 6,14 : 1 ( host can write into pixel buffer area )
Register set to 4040(h)
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REGISTER BASE ADDRESS : 0300 (H)
OFFSET

0 Memory Access Control
2 Host Mask

4 Video Acquisition Mask
6 Pixel Buffer Register

8 X Pointer

A Y Pointer

C Pointer Control

E CPU Address Control
10 X Spin

12 Y Spin -

14 Pan A

16 Look Up Tables

Fig 4.3 : FG-100 Registers




Host Mask Register

Bits 0-15 : 0 ( bit plane can be modified by host write and clear operations )
Register set to 0000(h)

Video Acquisition Mask Register

Bits 5-15 : 1 ( bit plane not modified during image acquisition )
Register set to 07FF(h)

X Pointer Register is used in indirect addressing scheme to access frame memory

| and holds the horizontal address of pixel; the X Pointer Register holds an offset
used to move a window around in frame memory.

Bits 0-7 : 0 ( direct addressing used, no offset required )

Register set to 0000(h)

Y Pointer Register , as above, holds the vertical address of pixel.

Bits 0-7 : O ( direct addressing scheme )
Register set to 0000(h)

Pointer Control Register

Bit 1 : 0 ( auto increment of pointer address )
Bits 8-10 : 100 ( increment X pointer by 16)
Bits 13-15 : 100 ( increment Y' pointer by 16 )
Register set to 0044(h)
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CPU Address Control Register

Bit 0 : 1 ( host computer address mapped into frame memoryj

Bits 1-4 : 0011 ( window size of 512 by 512 accessed ) _

Bits 9,10 : 10 ( host memory address scaled by 1 to/from memory address )
Register set to 0407(h) '

X Spin Constant Register is used to set the zoom factor of 1 ( image is not

magnified )
Register set to 0010(h)

Y Spin Constant Register

Register set to 0010(h)

Pan-A Register

Bit 12 : 1 ( frame memory selected for access )
Bit 13 : 1 ( board’s memory enabled onto host computer )
Bit 15 : 0 ( one active video window )

Register set to 3000(h)

4.1.3 Program Listing Convention

Some problems are encountered when programs written in Pascal are printed
with this word processor due to the fact that a ; has a sf)ecial editing function;
so instead the usual ; of Pascal will be replaced by a : in this manuscript for ail
Pascal listings. Similarly all comment messages which should utilize { and } will

be substituted by[and].
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4.2 Frame Buffer Acquisition

Once all the registers are set such that the host can directly' access the image
frame of the FG-100, different operations can be carried out; as previously
noted, the AVW can be accessed directly from the host’s address lines. .
The next three operations make use of the Board Status / Control / Scroll B
Register; the bits which are crucial are :

ACQUIRE Bits 13,12: ACQ

00 : aclear or snap operation complete
01 : initialize a clear frame

10 : acquire a single frame

11 : grab image continuously

Once a command is initiated by setting the corresponding ACQ bits of the
register, the ACQ bits have to reset to 0 0 ; this takes some time and a delay is

required. This is achieved by a do-nothing loop :

MOV CX,0FFFFH : set delay counter
Li: XOR BX, BX : do 'nothing’

LOOP L1 . . decrement counter to 0

4.2.1 Clear, Snap, Grab Operations

CLEAR : operation clears the contents of the AVW and sets each pixel value

to 0 to preparc for the acquisition of a new image. This is done by setting the

ACQ bits to 0 1 and waiting until they go to 0 0 and checking if the image

frame has been cleared ( see Appendix A2-a ).

SNAP : Operation takes a ‘freezed’ image of an object. This is initialized by

setting the ACQ bits and waiting for them to reset and then setting them to 1 0
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GRAB : is issued directly without delay for ACQ ‘bits to reset by setting the
bitsto1 1.

These operations are very fast unlike other operations which process the frame
pixel by pixel rather than in a ‘flash’ operation. An understanding of the image

frame and addressing it is necessary.

4.2.2 Buffer Frame of FG-100

The 512 rows by 512 columns of the frame is mapped to the memory space of
the host computer at address A0000(h) and each pixel is stored in 2 consecutive
bytes where the first byte keeps the digitized gray level value and the second
keeps some information about color if an extended FG-100 board is used; the
board used in this thesis was a monocolor one.

The main problem for the host in accessing the frame is the limit imposed by
DOS versions 3.1 or earlier, which allow access of only 64 Kbytes. Referring to
Fig 4.4, the frame is divided into 8 ’strips’ for explanatory reasons; the size of
one strip is 64 rows by 512 columns and occupy a memory space of
64 x 512 x 2 bytes or 65,536 bytes, conveniently the same 64 K size block
accessible by DOS.

The memory base address is A0000(h) and is set as such by the Data Segment
Register ( DS ) in Assembly while which one strip is accessed has to be set to
0000h, 0040h, . . , 01COh for stripl, strip2, . . , strip 8 respectively; this is set by
changing the Y Pointer Register of the FG-100 .
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Fig 4.4 : frame Image
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4.2.3 Pixel by Pixel Access of frame _
Many of the operations will involve visiting each pixel in the frame going from
row 1 to row 512 and for each row going from column 1 to column 512 where
row 1, column 1 correspond vto the top left most corner pixel of the image ( Fié
4.5 ). *Visiting’ each pixel ( either read or write ) involves setting the memory
base address to A0000h, selecting which of the 8 strips is currently used and
which individual pixel within that strip is being pointed to. Note that
' consecutive rows of pixels are stored in frame memory in contiguous 2-byte
locations.
All operations which need to visit the image on a pixel by pixel basis have the
same programming structure as the one given in the template of Fig 4.6.
Let BX : pointer to one of the 8 strips
& DI : pointer to individual pixel within a strip
The 2 basic operations are :
* accessing next pixel is done by incrementing DI by 2, DI cannot be greater
than 65,535 since one strip is only 64 Kbytes.
* accessing next strip is done by incrementing BX by 0040h, since only 8
strips are available, BX mﬁst be less than 0200h.
Henceforth, discussion of the operations will not show the programming for
accessing individual strip or pixel since they all follow the same template; for the
sake of brevity and ease, only the operations on each pixel will be explained

assuming that the pixel value has been obtained by the algorithm of Fig 4.6 .
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MEMORY BASE ADDRESS : AOOOOH

DISPLACEMENT TO ACCESS STRIP : BX

3 COLUMNI COLUMN2 p ' COLUMN 512
!

ROW 1 -

o |[F -

Tl /

- D! : DISPLACEMENT EACH PIXEL
TO ACCESS PIXEL . OCCUPIES 2 BYTES

F - - - ROW 64

AN INDIVIDUAL PIXEL ADDRESS IS GIVEN BY :
= MEMORY BASE ADDRESS AOOOOH
+ CONTENTS OF REGISTER BX

+ CONTENTS OF REGISTER DI

Fig 45 : Accessing Pixel within Strip
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. _ ACCESS STRIP 1
SET BX: 0 ; SET DI - © IST. PIXEL IN STRIP
LOP2 i
, FG100 ENABLES 64K
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33
Fig 46 : Pixel-by-pixel Access Template



4.2.4 Negative | Binary Operations
NEGATIVE IMAGE

This procedure reverses each pixel gray level value, i.e. a black pixel is set to
white and vice versa. Each pixel is examined once, complemented and written

back in frame memory ( Appendix A3)

“READ PIXEL TO AL~ : AS IN FIG 4.6
NOT AL
INC AL : REVERSE PIXEL VALUE

ADD AL, 0FFH
"WRITE PIXEL TO AL” :AS IN FIG 4.6 BINARY IMAGE

This compares each pixel gray level value to a threshold value ( cutoff ) and sets
the pixel to 1 if its grey level is higher than the threshold and 0 otherwise. The
algorithm ( Appendix A4) is:

“READ PIXEL TO AL” :AS IN FIG 4.6

COMPARE AL TO CUTOFF VALUE IN CL

IF AL > CL,SET PIXEL TO FFh ( WHITE )

ELSE SET PIXEL TO 00H ( BLACK)

“WRITE PIXEL BACK TO FRAME”
Note that the operator is given the choice of selecting any cutoff value ( stored
in register CL ). This is done by interactively asking the operator to enter a
cutoff value ( in hexadecimal ) which is echoed back to the monitor. The
procedure to read a hexadecimal byte ( 2 digits between 0-9,A-F)isgiven

in Appendix AS.
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4.3 Memory Areas Used ( Frame, SECTOR, FMCOUT )
BINARY IMAGE SAVED IN HOST COMPUTER

Accessing of the FG-100 frame by the host PC is very tedious and slow as it
involves changing the strip address 8 times. Furthermore eaéh f)ixel occupies 1
byte of memory in the frame. To make the contour extraction, the saving and
coding of images more efficient, it is needed to store the image as a 512 rows by
512 columns by 1 bit (0 or 1) to a memory area of size 32 Kbytes ( this area is
denoted as 'SECTOR").

‘SECTOR’ area is illustrated in Fig 4.7, we note that each 8 consecutive pixels
are stored ( packed ) into 1 byte. One row of pixels therefore occupies 512/8 or
64 bytes. The packing procedure is very similar to the binary conversion
procedure of Appendix A4 except that after comparing each gray level pixel to
cutoff and setting it to 0 or 1, the resulting binary pixel has to be ‘packed’ , 8
pixels at a time into 1 byte and once the byte is packed, it has-to be written into
SECTOR area of host PC’s memory. The packing is done by shifting each
successive pixel right into the packed byte.

'FMCOUT’ memory area is reserved to store the FMC contour of the object,
the first 2 bytes contain the number of pixels on the contour, the next 4 bytes
contain the coordinates of the start pixel ( row, column ) and the rest of the area
contains the FMC of all border pixels.

PACKING procedure given in Appendix A6 does just that. The flowchart is
given in Fig 4.8 ( the pixel access is not given; it is as the one in Fig 4.8 ). One
important step before accessing image in SECTOR for contour extraction is the
BLANKING OUT OF COLUMN 1 of the image; FG-100 digitizer sets all
pixels in column 1 to a value of FFh indicate beginning of a new row.
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PACKED BYTE AH: O
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Fig 4.8 : Algorithm to pack the gray-level image
to binary one in host memory.



“since column 1 will always be on the background of the object, it has to be set
to 00h and this is dine in procedure BLANKCOL in Appendix A7. Only the
binary bit of column 1 in SECTOR is cleared, not the byte in the FG-100

frame.

UNPACKING procedure, given in Appendix A8, does exactly the opposite of

the packing procedure; it unpacks a packed byte of 8 binary pixel values and
_ puts the values of each pixel back to 1 byte board frame at the corresponding
row and column. This is used to view images, previously saved binary images (
on floppies ) on the television monitor.
In short the Assembly language is accessing 3 main memory areas :

i) frame area of FG-100 - 512 K of gray level pixels.

ii) SECTOR area in local memory of PC - 32 K of binary pixels. This area

contains O for background and 1 for object and will be used to obtain the

FMC chain. One row takes 64 bytes. '

iii) FMCOUT local memory area which is reserved for -

a) number of points on border .

b) X, Y coordinates of start pixel - X, Y,

¢) the FMC of the object’s contour
Since the contour length in pixels of any object is limited by the 512 X512
image size, the area of FMCOUT was set to a maximum possible value of 8

Kbytes.

4.4 Diskette Saving / Loading

Referring back to the image acquisition menu proposed in section 3.4.1, the
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CLEAR, SNAP, GRAB, BINARY and NEGATE have been explained. The
next related batch of procedures to be expanded on in this sectiqn are those
concerned with utilities for loading / saving. the Bina?y image or the FMC.
The utilities for loading / saving from / to a diskette in drive A involves 2
groups :
i) saving / loading binary image
ii) saving / loading FMC of the object’s contour
The binary image is saved from the SECTOR area to a file on diskette e.g
F1.bin and loading a binary image transfers a file to SECTOR area; the FMC
operations involve swapping between FMCOUT area and files on diskette e.g
Fl.fmc
A double-sided density diskette has the following capacity :
Sector
0 : Boot Area for DOS
1-4 : File Allocation Table (FAT)
5-11 : Directory Area
12-719 : File Area
Sectors 12 - 719 ( each sector. of 512 bytes ) are available for data storage or a
total of 362,496 bytes. This allows for the storage of 8 ’biﬁary’ files and 8 fmc’
files i.e. Fl.bin, f2.bin, . . ., f8.bin and f1.fmc, f2.fmc, . . ., f8.fmc . Each .bin file
occupies 32,768 bytes and each .fmc file takes up 8192 bytes corresponding
natura‘lly to the 'SECTOR’ area and 'FMCOUT’ area used in the Assembly
program. Operations for loading from or saving to a file in Assembly require

the exact starting sector of each file. These values are given in Table 4.1.

89



FILE HEXADEC DECIMAL
F1.bin 000C: - 12
F2.bin 004C 76
F3.bin 008C 140
F4.bin 00CC 204
F5.bin 010C 268
F6.bin 014C 332
F7.bin 018C 396
F8.bin 01CC 460
Fl.fmc 020C 524
F2.fmc 021C 540
F3.fmc 022C 556
F4.fmc 023C 572
F5.fmc 024C 588
Fé.fmc 025C 604
F7.fmc 026C 620
F8.fmc 027C 636

Table 4.1 : Diskette files & addresses
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4.4.1 Initializing Diskette

The INIT procedure prepares all .bin and .fmc files on a newly formatted empty
diskette in drive A. The procedure reads tfle diékefté, checks if it is empty and
creates the files sequentially.

A typical creation of a file will be :

var
j :integer :
fbl :file:
buf :array[ t..1024 ] of boolean :
writ : word :
begin
for j:= 1 to 1024 [ buffer area contains all 0’s ]

buf [j] := false:

assign(fbl,”A:f1.fmc") : [ create a file on diskette ]

rewrite(fbl) :

reset(fb1,1024) :

forj:=1t08 [ put all O’s in file ]
blockwrite(fbl,buf,1,writ) :

close(fbl) :

This file creation procedure is repeated for all 16 files, the 8 .bin files are created
first sequentially followed by the 8 .fmc files such that they occupy contiguous

sectors specified in Table 4.1. Each file contains all 0’s.
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4.4.2 Diskette Files

All operations involving diskette allows the operator to interactively select which
file to operate on. The 16 files are listed on the menu and the user chooses a
number between 1 and 8 to select the desired file. An Assembly procedure
converts the user’s choice to the starting sector of that file.

The procedure READSTART ( Appendix A9-a )reads a .bin file number and

calculates its starting sector in hexadecimal ( Table 4.1 ) between 000C and
0ICC as:
start sector = ( filenumber-1) * 64 + 12
e.g if F3.bin is required and the operator chooses ‘3’, then
SECSTART = (3-1)*64 + 12 = 140 ( decimal )
The procedure READSTART ( Appendix A9-b )reads a .fmc file number and

calculates its starting sector as :
start sector = ( filenumber-1) * 16 + 524
e.g if F4.bin is required and the operator chooses ‘4’, then

SECSTART = (4-1)*16 + 524 = 572 ( decimal )

4.4.3 Saving | Loading Diskette files
Once the operator selects the file to work upon and the start sector calculated,
the binary image ( SECTOR ) or Freeman Contour ( FMCOUT ) is transferred
to / from the diskette. |
The saving operation is carried out by the following set of Assembly statements :
” save all registers ”
MOV AL,00H : SELECT DRIVE A
MOV CX,0040H : BLOCK SIZE OF 64
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MOV DX,SECSTART :STARTING SECTOR OF BLOCK

LEA BX,SECTOR : ADDRESS OF BLOCK TO MOVE

INT 26H : MOVE BLOCK TO DISKETTE \

POPF

” restore all registers ”

The above group of instructions moves a block of memory 'SECTOR’” whose
address is loaded in register BX to a block of sectors of diskette A ( in register
~ AL ) whose first sector is in register DX; the size of the block to be transferred (
in sectors ) is in register CX and the write operation is carried out by the DOS
Interrupt of 26H. The above procedure ( see Appendix Al0-a ) moves the
binary image from SECTOR to a specific file on diskette.
The routine given in Appendix All-a is basically the same except that the area
moved from memory is FMCOUT and the block size is only 16; the block

moved contains the Freeman code of the object.

The loading procedures are similar to the saving procedure given above with the
difference that Interrupt 25H is used which moves a number of sectors from
diskette to a block in memory.

Appendix A10-b reads the biliary image from floppy to memory area SECTOR
and Appendix All-b moves a previously saved FMC contour from floppy to
memory area FMCOUT.

4.5 Obtaining FMC

Once the binary image is obtained from the previous algorithm, ( Fig 2.7-a ), it
B is necessary to obtain the FMC of the contour ( Fig 2.7-b ). Different methods
exist to follow the contour of a binary object; all of them assume that the
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convolution mask ( Fig 4.10-a ) is initially centered on a start pixel of the
contour and the next pixel on the contour is detected and the frame centered on
that new pixel with the FMC as the directi-on ffom.ihe original frafne center to
the new frame center; this step is repeated until the start pixel is met again : to
know if the contour is totally extracted, the row and column numbers of the
start pixel as well as those for the current mask center has to be known, at least

temporarily - they are not needed once the tracking algorithm is completed.

' 4.5.]1 DUDA’s Method

DUDA’s method is the simplest of contour tracking algorithm and the
algorithm is given below :

1. start at a pixel on contour.

2. if in a “1” pixel, turn left and take a step.

3.if in a "0” pixel, turn right and take a step.

4. repeat steps 2,3 and terminate when start pixel reached.
Fig 4.9 illustra"ces the operation of the DUDA’s method. Some problems exist
[DUD73]:

i) note that the top left pixel ( which is 8-connected ) is never visited and

completely ignored. '

ii) holes in the figure might cause the algorithm to loop forever.

iii) the contour tracked depends on the start pixel

e.g. the top left pixel would have been visited if pixel(4,5) had been entered

from the bottom instead of from the side.

94



start

Fig 49 : DUDA's Method
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The problems are the result of the extreme simplicity of the method; only 3 bits
are used at each point to decide which way to turn : 2 bits to indicate the
direction the pixel was entered and 1 bit ‘_to déterﬁﬁne if the pixei is 0 or 1.
Other contour following algorithms avoid those problems but examine more

pixels surrounding the current pixel and hence need more computations.

4.5.2 Background-to-Object Transition

A more robust algorithm is based on detecting a background to object or 0-to-1

* transition. Referring to Fig 4.10-b, assuming that the mask is centered on

pixel(3,3), the task is to find the next pixel on the contour. The algorithm is :
check pixels[b,a] = [0,1] -> next pixel = a
check pixels[a,d] = [0,1] -> next pixel = d
check pixels[d,g] = [0,1] -> next pixel = g
etc
This algorithm predictably checks pixel pairs [b,a], [a,d], [d.g], [g,h], [h,i], (i,f],
[f,e] and [c,b] in this fixed anti clockwise order.
The main drawback is the slowness of the algorithm, i.e. if the 3 x 3
convolution mask is centered on pixel(5,4), it is needed to check 8 pairs of pixels
( worst case ) to determine that the next pixel is pixel(4,4). -
An algorithm which accelerates the detection of the next pixel is more effective
and the one implemented in this thesis is faster because it takes into account the

current direction of the contour to minimize the pixel pairs to be checked.
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A) 3 by 3 convolution mask

Fig 4.10 Findind next contour pixel
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4.5.3 Directional 0-to-1 Transition

The algorithm implemented takes into account the previous direction of the
contour or the FMC direction of the last 2 pixéls on the contour a;xd looks for
the next border pixel in the same direction; the argument is that in the binary
image the contour is usually digitized as numerous long straight segments with a
certain regularity along each segment - the probability of finding the next pixel
along the same direction as a current segment is much higher.

Referring to Fig 4.11 and let the 3 x 3 mask be centered on pixel(2,3) and let
the direction be 5 ( this is direction of current pixel(2,3) with respect to previous
pixel(1,4) ); the algorithm will first check pixel pairs[d,g] before any other pixel
pair because the likelihood that pixel g is the next border pixel is very high. In
this case pixel pair[d,g] = [0,1] and the next pixel g is found in only 1 pair
match versus the 3 pair matches required in the previous algorithm.

A flowchart for the routine ( DIRS5 ) to detect a next pixel along direction 5 is
given in Fig 4.12 where the 3 x 3 mask is centered on pixel e. First pixel d is
checked , if it is equal to 0, pixel g is checked for 1 and if so the next pixel is g
and the FMC is still 5; most of the time the only pixel pair to be checked will be
d and g and the small loop ( left of flowchart ) will be repeated continuously as
long as the direction 5 is maintained. Only if the next pixél in direction 5 is not
found will the other pixel pairs be checked. If the next pixel is in another
direction, i.e direction 6, then DIRS5 routine outputs and FMC value of 6 and
transfers control to another routine DIR6 where the job is continued. DIR6
routine will check pixel pair[g,h] as first candidate because pixel h lies along

direction 6.
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Fig4.11 : Directional 0-to-1 transition
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Overall 8 such routines, DIR0, DIR1, DIR2, DIR3, DIR4, DIRS ,DIR6, DIR7
exist. It might be argued that this is too long but the point here is that only the
length of the Assembly code is long but that the ﬂspeed of execﬁtion of the
overall tracking algorithm is faster since most of the time only a small loop in
each routine will be running over and over; the other steps of the routines, i.e.
checking the other pixel pairs not along the current direction have to be checked

anyway no matter what algorithm is employed.

~ The Assembly code for one such routine DIRS5 is given in Appendix Al2; the

other routines follow exactly the same pattern of the flow chart of Fig 4.12
except that each routine checks the pixels along its direction. The code in the
Appendix follows Fig 4.12; the only addition is that every pixel must be
examined to determine if it is the start pixel ( all contour followed ).
The value'of the next pixel direction or the Freeman Code is kept in register AH
and stored in memory area FMCOUT.
The two instructions

CALL GOl

CALL GETBIT
will check the pixel value along direction 1 and keeps its binary value 0 or 1 in
the “carry” flag of the status register for the quickest corhparison. More about
these 2 calls will be given later.
Before explaining the full tracking algorithm, it will be useful to clarify the
operations involved. Referring to Fig 4.7 or SECTOR area which contains the

whole binary image ( 8 pixel bits is kept in 1 byte ), let
register BX : points to 1 byte in sector which has the 8 bits (0 or 1) for 8
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consecutive pixels on 1 row; pixels at columns 1,2,.8 , pixels for columns

9,10,..16 are kept in single bytes.

register AL : points to 1 individual pixel within those 8 pixels.

Each row occupies 64 bytes e.g. row 1 starts at location 0000h of sector, row2 at

displacement 0040h of sector, row3 begins at 008Ch . . etc. The pixel at row 2,

column 5 will be kept at location 0040h of sector in the Sth bit at that byte.

The following will help the reader to better understand how the values of

. registers BX and AL change as the mask is moved from pixel to pixel in any of

the 8 directions ( up , down, left, right, north east, . . etc).

pixel(2,5)
pixel(3,5)
pixel(1,5)
pixel(2,8)
pixel(2,9)
pixel(1,7)
pixel(1,9)
pixel(3,7)
pixel(4,9)

=>

= >

= >

BX
BX

BX :
BX :

BX

BX:
BX:
BX:
BX:

: 0040h
: 0080h
0000h
0040h
: 0041h
0000h
0001h
0080h
0081h

&
&

R > P R R @

&

AL :
AL :

AL

5
:5
AL :8
AL :
AL:
AL :
AL:
AL :

5

7
1

Referring to Appendices A14 and AlS and assuming that a ‘pointer’ of register

BX and AL refers to a specific pixel in SECTOR, then

GO2 ( up ) routine moves the pointer up one row; the only operation is to

decrement BX by 0040h since each row requires 64 bytes.

. i.e. if current pixel(2,5) : BX =
- pixel(1,5) : BX = 0040h & AL =

0040h & AL

5.

= 5 and going up results in

GO6 ( down ) routine moves the pointer down one row; only BX has to be
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decremented by 0040h .
i.e. if current pixel(2,5) : BX = 0040h & AL = 5 and going down results in
pixel(3,5): BX = 0080h & AL = 5. '*
GO4 ( left ) routine is not as simple because going one pixel left might cross the
byte boundary; so first AL is decremented to point to pixel left of current one
and if byte boundary is crossed ( AL = 0 ), then the preceding byte with its last
bit ( AL = 8) contains the desired pixel.
~ie. if current pixel(2,9) : BX = 0041h & AL = 1 and going left results in
| pixel(2,8) : BX = 0040h & AL = 8.

AL is decremented to 0 , boundary crossed , AL set to 8

boundary crossed , so DX decremented to 0040h
GOO ( right ) routine must also check if the byte boundary is crossed so first AL
is incremented to point to a pixel to right of current one and if byte boundary is
crossed ( AL = 9 ), then the succeeding byte with its first bit ( AL = 1 )
contains the desired pixel.
i.e. if current pixel(2,8) : BX = 0040h & AL = 8 and going right results in
pixel(2,9) : BX = 004lh & AL = 1.

AL is incremented to 9 , boundary crossed , AL set to 1

boundary crossed , so DX incremented to 0041h
.The next four routines given in Appendix Al4 are slightly more involved
because both the row and column have to be changed as well as the byte
checked if it is crossed. Only one of them will be explained as the logic is similar.
GOl ( north-east ) follows the logic :

decrement BX by 0040h to point to row up.
increment AL to point to pixel on right.
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if AL = 9, byte crossed , set AL to 1.
if byte crossed , increment BX. _
i.e if current pixel(2,8) : BX = 0040h & AL = 8 an-dt going to
north-east pixel(1,9) : BX = 0010h & AL = 1.

The next 3 routines are used in the tracking algorithm they are listed in
Appendix Al15 and they are :

STARTPIX merely saves the pointer values ( row & column ) of the starting
" pixel into 4 bytes.

ENDPIX is important to stop the tracking algorithm; as the contour is traversed
from start pixel in an anti clockwise direction, the algorithm should terminate
when current pixel coincides with the start pixel. Basically it compares the row
and column numbers of the current pixel with the row and column of start pixel
which were saved in STARTPIX routine.

GETBIT routine is needed to check if the pointed pixel is 0 or [ and the fastest
way to check this is to put the pixel value in the CARRY flag of the status
register where it can be checked for very efficiently in Assembly. The byte of
SECTOR containing the pixel bit is merely shifted into the CARRY bit; how

many times the shift is done depends on the AL value.

The TRACKING ALGORITHM follows the flowchart given in Fig 4.13 and

the Assembly listing is given in 4 parts in Appendices A16, A17, A18 & Al9.
The first step of the algorithm initializes the starting address of the two areas
needed SECTOR and FMCOUT, then initializes the pointer to current pixel to
' first row and column of image.

The second part tries to locate the topmost black pixel ( 1st pixel lying on
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object’s contour ); this is done by checking the pixel value ( call GETBIT
routine ) to be 1 and if it is not, the succeeding pixel is checked ( the next pixel
will be on the right or if the end of a row is 1'caéhed; the next row i\s scanned ).
The end of this step results in a start pixel or will fail if the whole 512 x 512
array of pixels are all 0’s.
The 3rd step of the tracking algorithm saves the coordinates of the start pixel
which is needed to stop the tracking. Steps 3 and 4 are listed in Appendix Al17.
| ~ Step 4 finds the second pixel with respect to start pixel

this is needed to get the initial current direction of the contour segment. Since
the start pixel was obtained in a top to bottom and left to right fashion, the
second pixel can be only in the south east, south, south west or west direction.
Once the FMC of the second pixel is obtained and current direction obtained,
the control is passed to step 5 of the algorithm listed in Appendix A18. The
current direction is kept in register AH. .
Step 5 will transfer control to one of the 8 routines DIRO, DIRI, . . DIR7 (
explained earlier ) given that the pointer BX and AL refers to current pixel and
the direction of scan is in AH. If AL = 5, then control goes to DIR5 which
tracks the contour and as long as the next pixel is in direction 5 , execution stays
in DIRS5 in a small and efficient loop. Once a pixel is fouﬁd which is not along
direction 5, the new direction is loaded in AH and control passes back to the
beginning of step 5 where the contents of AH is used to direct control to any of
the 8 routines.
Note that every time the DIR routines are executed, it outputs the FMC code of
B the pixel to FMCOUT and also checks if the end of the contour is reached; if
the end is reached it loads a special number 09 in register AH.
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The last step ( Appendix A19 ) will only write the coordinates of the start pixel

and the contour perimeter at the beginning of area FMCOUT. -

4.5.4 Displaying the Contour only

The algorithm to display the contour of an image given only the FMC code of
the image, the number of pixels on the boundary and the start pixel coordinates.
The flowchart is given in Fig 4.14 and the listing in Appendix A19 & A20. This
algorithm is used either to display the contour of a digitized image interactively
" in the learning stage or can be used to view the contour of a previously stored
contour from floppy. At first, the SECTOR area which contains the binary
image of what will be displayed on the TV monitor has to be cleared to 0’s; then
the perimeter of the contour, the row and column of start pixel are loaded from
FMCOUT ; a pointer is set up to the 1st FMC of the contour and a counter to
keep track of perimeter.

Next, the FMC of the pixel is read and depending on its value, registers BX &
AL are changed such that they point to that particular pixel and its value is set
to 1 ( dark ). This part is repeated for all the pixels on the border.

Once all the border pixels have a 1 in their corresponding bits in SECTOR, the
last thing is just to unpack SECTOR to the frame memory area of the FG-100 (

discussed previously ).
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Fig 4.13 : Tracking Algorithm

yes



GET 'SECTOR', 'FMCOUT" ADDRESS

Y

GET = OF BOUNDARY POINTS FROM FMC

!
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Fig 4.14
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CHAPTER §
INVARIANT REPRESENTATION & DESCRIPTOR ARRAY

5.1 Relative Freeman Code
All the previous algorithms of Chapter 4 were carricd out in ‘Ass‘embly. The rest
of the programs were implemented in Pascal. Once the Freeman Chain Code of
the contour is obtained as FMC(C,)=0,1,2,3,4,5,6,7, it will be
converted to a relative Freeman coding as alrcady explained in Section 3.1.2 as
RFMC(C,) =0,1,2,3,4,5,6,7,8,9,10, 11, 12
The RFMC is given in Fig 3.1. The conversion is not as straight forward
because it is not always required to translate a 0 to 8, a 1 to 9 . . etc but rather
the translation is nceded only in the context of the direction of the segment
being examined. The algorithm checks each FMC(k) with its predecessor
FMC(k-1) and only if the difference indicates a marked difference, is it assumed
that the FMC has to be modified. The algorithm is given in Fig 5.1 and the
listing is in Appendix BI.
Let the FMC for a segment corner be :

LLU6TTTT /0 000 ET0°0°0°0°L . .
The RFMC outputted by the algorithm will be :

LLS6TTTT 887878 19°9'9°9°878°8°8°9
and dcfinitely not

LLUETTTT’8 00001 11°1°0°0°0°0° LY
This explains why even if the difference between successive FMC's are small the
RFMC is not necessarily equal to the FMC. i.c. the difference between 0 and 7

demands a translation but what about the change from 0 to 0 and O to 1 ?
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k=2

g

DIFF = FMC(K) - FMC(K-1)

DIFF ¢ S
YES
NO CHANGE
RFMC(K) =
RFMC(K-1)
+ DIFF
NO IF
l DIFF > O
YES
RFMC(K) =
RFMC(K-1) + DIFF + 8 REMC(K) =
RFMC(K-1) + DIFF + 8

!

INCREMENT K

NO YES

END 7
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Since the last 0 was changed, it implies the new 0’s and 1’s encountered must
also be .changed. This is why the step . .

RFMC(K) := RFMC(k-1) + diff , is used instcad of the presumed simpler
RFMC(K) := FMC(k) , because the former takes into accbunf any previous
translation in effect.

If the difference is more than 5 or that the West boundary has been crossed, a
translation is warranted. There are 2 possible ways that this boundary can be
crossed : first a chain code of ‘7°7°7°7 70 ‘0’0’0’ , 7’7°7 /1 ‘1’ , '6’6’6°6 2 "2'2" etc
or in an anti clockwise direction and second chain codes like ‘1'1°1'1 /7 “7"7'7T’,
‘99’9’9 /6 '6'6'6” , “10°10°10°10 77 *7°7°7’ etc or in a clockwise direction.

For the first case, a value of 8 is added to the previous RFMC and the
difference while for the latter 8 is decremented. Notc that again the RFMC of
previous pixel is used and not the FMC to maintain consistency in direction.
Appendix Bl also shows how the file containing the FMC of the object is read
from Pascal; the user is interactively asked the name of the file and appends the
directory where the file is found ( here in a subdircctory C:subdir ) and appends
the cxtension of .fmc as the file type. The file is then read into a buffer which is
an array of integer values or the FMC values. Note that the first byte of the file
contains the number of pixels on the contour: this value is read into variable
fmcent : the step ( 1o be explained in Section 5.2.2 ) is sct to 4 and the number

of 4-pi_xcl groups sct to 1/4 of fmcent.
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5.2 Obtaining Corner Points of Contour

This section explains the afgorithm used to get thc'.coordina’tcs of the corner
points. As discussed in Section 3.1.3 the method of gl;adient change over 4-pixel
groups is used and two levels of the Polar model is found : one which detccts the
very sharp points of inflexion and the other detects even slight deviations in

straight lines ( shown in Fig 3.3 ).

5.2.1 Gradient Change Method

The algorithm detects a break point by examining successive line segments (
comprising of 4 pixels ) and checking if the gradient of that line segment fits
within a lane of the current segment i.c. if the small scgment lies in the current
direction of the segment; if it does, the small scgment belongs to the segment
and the next small segment is compared. When a small scgment differs
markedly from the current segment gradicnt, a break point is detected : its X
and Y coordinates are recorded and a new segment started.

The conventions used are ( Section 3.1.3 ) :

S, = summation of RFMC of 4 consecutive pixels.

S
S, = —4"- = the gradient or direction of small segment.

Sien= gradient of the contour segment cxamined.

r.— the difference tolerated between small and farge segment.
In the flowchart of Fig 5.2 and the listing of Appendix B2, the following
variables are used :
j : pointer to the beginning of a 4-pixcl group

sumcomp : S, for Coarse model.
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sumcompl : S, for Detailed model.
sum : summation of FMC of 4 pixels : S,
S, is not used in the algorithm because the constant division by 4 would slow

down the algorithm; in fact the summation or the average of thc summation
work just as well.
dircnt : number of pixels on contour.

dirptr : pointer to number of 4-pixel groups looked at.

" xx : X ordinates of current pixel group.

yy : y ordinates of current pixel group.

vertx : array to save X ordinates of corners ( Coarse )

verty : array to save Y ordinates of corners ( Coarsc )

vertxl : array to save X ordinates of corners ( Detailed )

vertyl : array to save Y ordinates of corners ( Detailed )

ptrdetail : pointer linking corner of Detailed to Coarse.

ptrdetaill : pointer linking corner of Coarsc to Detailed.

The algorithm for obtaining the Coarse model is given in Fig 5.2 but the
program was implemented with the algorithm of Fig 5.3 which finds the Coarse
and Detailed models in onc combined iteration of the contour foi reasons of
efficiency. The listing of Appendix B2 corresponds to Fig 5.3 but the simplified
algorithm «f Fig 5.2 will be used for explanation for the sake of understanding.
Initialization is done by setting j = Ist pixel point of contour, sctting a pointer
to the first X and Y coordinates to be saved, setting the current X and y
coordinates of pixel under test as 0 , 0 ( assumc the Ist topmost pixel on

contour is the origin );
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A value of sumcomp ( current direction of large segment ) is needed and this
was calculated as the average of the FMC of 16 pixc!s_( explained later ).

Now successi\;e 4-pixel groups are considered and their sum computed and the
coordinates of the current pixel is updated to point to the ’beg‘inning of the
4-pixel group; Note that variables xx and yy always contain the x and y
ordinates of the Ist pixel in the 4-pixel group; xx and yy are updated as the

algorithm moves from pixel to ncxt pixel by simply examining the direction of

x the next pixel and changing xx and yy accordingly. e.g referring to Appendix B2

if the next pixel direction is 7 , xx is incremented and yy decremented , keeping
in mind that the origin of the contour is the topmost pixel. Two small arrays
xxt and yyt , each of size 4 temporarily stores the x and y ordinates of each pixel
in the 4-pixel group while xx and yy keeps only those of the 1st pixel of group.
xxt and yyt are nceded to save the exact coordinates of the corner.

Next the difference between sum and sumcomp is found. If the difference is less
than 3, it is assumed that the small 4-pixel scgment lics on the same line of the
large segment and hence the tracking algorithm goes on by setting j to point to
the next 4-pixels and the previous steps are repcated as long as the end of the
contour is not reached. .

If the difference is greater than 3, then a sharp break has been found and some
processing is required. The first thing to do is to find the cxact break point

within the 4-pixels.
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5.2.2 Exact Break Point

Let the RFMC of the contour around a corner point be : »
..44454445444544777877787778.. for a segment of direction East changing to

one of direction South East. Let the 4-pixel groups be 4445 4445 4445 4477

7877 . etc and their corresponding sums be 17, 17, 17, 22, 29. Let the tracking

algorithm be on the first segment with a general dircction of sumcomp = 17.

Now the j pointer is pointing to the group 4477 and the current sum = 22.

The difference of (22-17)=35 indicates a sharp change in dircction but the

problem is how to know if the corner occurs at pixel 1 or pixel 2 or pixel 3 or

pixel 4 of that group. This exact break is found by multiplying cach RFMC of

the pixel by 4 and comparing it to sumcomp; i.c.

4-pixel group : 4477 and sumcomp : 17

pixel 1 : 4 ,4*4 = 16, diff(16,17) : 1 = > not corner point.

pixel 2 : 4 , 4%*4 = 16, diff(16,17) : 1 = > not corner point. .

pixel 3:7 ,7*4 = 26 , diff(26,17) : 10 = > corner point.

Once the exact corner point is found, the corresponding X and Y coordinates

are stored in arrays vertx and verty ( this is where xxt and yyt comes in handy ).

The pointer to next entry in vertx and verty must also be updated and j is to

point to the Ist 4-pixel group on new large segment. In addition a new value of

sumcomp is calculated for the new large scgment of the contour ( group of 16

pixcls used ).

The aiaove steps arc repeated until the end of the contour is reached. The

combined algorithm implemented ( Coarse & Detailed ) is slightly more

" complicated although the tracking logic is the same; it will be explained in a

while.
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5.2.3 4-Pixel Groups

The program implemented in the final version uses gradients of small segment of
4 pixel groups. Why was this value chosen instcad of 3-pixel, 5- or 6-pixel
groups ? In fact the algorithm was tested for 3-, 4-, 5- and 6- bixel groups, the
results of which will be given in Chapter 7.

The optimal value was found to be 4. The grouping itself will determine the
number of iterations of the algorithm although the summations will be done a
constant number of times. If the grouping is of "step” pixels, then the number of
iterations is equal to perimeter divided by step; hence the larger the step the
smaller the number of iterations.

A step of 3 was not satisfactory because it does not overlook the digitization
noises over local pixels; Steps of 5 or 6 also was not satisfactory because every
time a break is found between the group and large segment, the accurate break
point has to be found. This is not satisfactory especially for the detailed model

where a lot of corner points are expected.

5.2.4 Sumcomp ( over 16 pixel )

Every time a new segment along the contour is detected, the average gradient of
that segment is required. An accuratc valuc for that gradicent is required because
all the small segments of 4-pixels will be compared to it to determine the next
break. A value which extends over the first 16 pixcls at the start of the scgment
was used instead of the usual 4 becausc it was noticed that at most corners in
the digitized images, local digitization noisc cxists becausc the FMC directions
are changing suddenly. This noisc is most often found at the first 4 or 5 pixels of

the new segment and if thc sumcomp was found over only those beginning
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pixels, the value of sumcomp is not accurate and does not represent the overall
direction of that segment. To cancel the effect of the stray starting pixels of a

new segment, the first 16 pixels were considered to get the value of a better

fitted sumcomp.

5.2.5 Epsilon ( gradient tolerance )

The difference between successive ‘sum’ of 4-pixel groups and ‘sumcomp’ of the
large contour segment is used to detect corncr points. Different values were
experimented with, the results of which will be listed in Chapter 7.

A difference of 3 was found to be the best for the Coarse model as it accurately
detects segments differing by 30 ° or morc . A valuc of 4 was not good because
segments differing by angles less than 45° — 50° were not detected.

Obviously for the Detailed model a choice of epsilon equal to 1 or 2 existed
since it should detect variations which are overlooked by the Coarse model. The
only choice was 2 since epsilon of 1 was so detailed that it ‘.broke the contour
into hundreds of small segments with differing angles of around 5 degrees.
Breaking the contour into hundreds of pieces imposes 3 problems :

- the storage needed to store the x and y ordinates of all the corner points is too
large to be efficient.

- a large number of segments does not necessarily represent the image more
accurately than required for the application.

- more segments in the Detailed modcls imply a longer time in the calculation to
computc the arca between the graphs of two images; this will slow down the

.recognition steps.
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5.3 Coarse & Detailed Models

5.3.1 Combined Algorithm

The combined algorithm in Fig 5.3 and in Appendix B2. The addition needed is
if the difference in sum and sumcomp is < 3 ( no corner for Coarse ), another
check is made to see if the difference might mean a vertex for the detailed
model.

If a corner for the Detailed model is found, the coordinates are loaded in the
vertxl, vertyl and its pointer updatcd but nothing is written into vertx, verty.
Sumcomp is not changed, only sumcompl is set to reflect a new ’detailed’
segment. Initially sumcompl is set to sumcomp.

If a corner for the Coarse model is found, the exact corner vertex is found and
this vertex will be both in the Coarse and Dctailed models and so a link is set to
indicate the matching on vertices from both models. So once the X and Y
ordinates are saved in vertx, verty, vertxl, vertyl and the poinfing link set, both
pointers vertptr, vertptrl are updated; the ncw valuc of sumcomp is computed
and sumcompl is set to that value.

Typically sizes of vertxl, vertyl will be slightly or greatly larger than the sizes of
vertx, verty depending on the shape of the object being straight lined object or
curved contour object. The indices in the arrays of the Coarse and Detailed
madels where the same vertices are stored arc used in the pointer links. From
the 2 ‘models of Fig 5.4 , vertex 2 of Coarse and vertex 2 of Detailed match - the
starting vertex. Vertex 6 of Coarse corresponds to vertex 8 of Detailed. The
pointers reflect this - i.e pointer for vertex 6 of Coarse = 8 and pointer for

vertex 8 of Detailed = 6.
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VERTPTR = POINTER TO COARSE MODEL
VERTPTR1 = POINTER TO DETAILED MODEL
J = FIRST PIXEL , FIND SUMCOMP
SUMCOMP1 = SUMCOMP

YES
SUM-SUMCOMP 1 _
>=37 COARSE

MODEL
FIND EXACT CORNER PCINT

MO ¢

_ SAVE X.Y ORDINATES OF
DETAIL COARSE & DETAILED

DiFF
SUM=-SUMCOMP |
=27

vy MODEL
SAVE X, Y ORDINATES . ;
FOR DETAILED MOBEL : LINKS BETWEEN COARSE
CONLY, UPDATE VERTPTRI & DETAILED ARRAYS

P '

UPDATE J, VERTPTR, VERTPTRI
FIND NZW SUMCOMP Y COMPUTE NEW SUMCOMP
SUMCOMP 1 = SUMCOMP
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5.3.2 Data Structures

Besides the arrays presented, the segment length and the anglc change (p,0)
are saved in two I-dimensional arrays LENG, THEDEG and LENGI,
THEDEG]1 . Fig 5.4-a shows the data structures which are needed in the later
stages; an actual data from an image is given. Note how the corners which
replicate in both models are linked by the indices of array PTRDETAIL and
PTRDETAILL. The 2 graphs for the same object, obtained from their polar
representations are given in Fig 5.4-b; notc that the matching corner points also
match in the graphs and that a long segment of the coarse model matches the

smaller segments of the detailed model.

5.4 Non-Square Pixel Correction
It was noticed that once an object’s polar modcl was obtained at different
orientations that the angles and lengths of the scgments vary markedly but that
they do not vary if the object is only translated. This led to some confusion
until it was realized that the pixels of thc CCD camera does not consist of
uniform square pixels but rather rectangular ones. This fact was verified in 2
steps namely :
- A straight linc was digitized along thc horizontal ‘and vertical directions
and it was noticed that the same line was longer ( in number of pixels )
along Lhe vertical direction.
-"A circle was digitized and the horizontal and vertical diameters measured

and the same factor was found.
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COARSE MODEL

| ODEL
LENGTH ANGLE | POINTER DETRIL M
|LENGTH| ANGLE | POINTER
21 189 109’ 2
31 87 68 4 3 5| 182 110 2
4| 60 123.6' 4 318/ 70 3
51 48 24 6 41373 127" 4
61 85 -18.2" 8 5 | 23.9 -10.5' 0
7 129 101" 10 6 | 349 -15.2 S
LENG THEDEG PTRDETAIL 7| 130 | -104 0
8622 | -79 6
9| 228 | -10.4 0
THET A 10| 129 103 7
A LENG! THEDEG! PTRDETAILI
COARSE —‘_—|——
DETAIL
'
RHO

Fig 5.4 : Relation between Coarse & Detail Models
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The only way to correct the problem was through software as the camera cannot
be changed. It was noticed that the same linc oricnted vertica'lly would be aroud
3/4 th of the vertical line. The initial solution was to somehow insert 1 extra row
of the image for every 3 original rows. diffcrcnt mcthods wcré tested on the line
in Fig 5.6. Only part of the line is shown. The actual values for :

a=743° L1 =16 ,L2=6 ,L =17.08 & L/LI = 1.038

5.4.1 Inserting new rows

The first method was to replicate the new so that the new pixel is equal to that
of the 3rd row and it’s replicatcd on the same column as shown in Fig 5.7-a.
The results obtained were :

a=62.1° L =19.23 & ratio L/L1 = 1.13

The second way was to replicate the pixel along the same direction as the pixel
of the 3rd row w.r.t. the 2nd row. The results were :

a=658° L =2193 & ratio L/L1 = 1.09

The third method copies the pixel from the succceding row and on the same
column. The results were :

a=577° L =12247 & ratio L/L1 = 1.18

The fourth method copies the pixel along the dircction of pixel of next row i.e
pixel of rowS w.r.t. row 4 . The resuits :

a=577° L. = 2247 & ratio L/L1 = L.I8

The results were rather poor, so these methods were dropped; they would also

increase processing time as the new row must be inserted for every 3 rows.
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CCD PIXEL PICKUP OF CAMERA

Fig 5.5 : Same line digitized horizontally and
vertically with pixel lengths of 3 and 5

N
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Length of diagonal line : 17.08 pixels

Angle theta ( diagonal with x-axis): 69.44 deg.

Fig S.6 : Test line for correction
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a) method | ( new row shaded)

...OO i

9 pixels.

17 pixels
— —

Length of diagonal line : 19.23 pixels
Angle theta ( diagonal with x-axis): 62.10 deg.

b) method 2 ( new row shaded )

9 pixels

19 pixels

Length of diagonal line : 21.93 pixels
Angle theta ( diagonal with x-axis): 63.77 deg.
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a) method 3 ( new rows shaded )

Length of diagonal line : 22.47 pixels
Angle theta ( diagonal with x-axis): 57.72 deg.

b) method 4 ( new rows shaded )

Length of diagonal line : 22.47 pixels
Angle theta ( diagonal with x-axis): 57.72 deg.
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Fig 'S.8 : Methods 3, 4 for non square pixel correction



5.4.2 Correction by Scaling

The solution which was implemented was the simplest onc and gave the best
results. It does not operate on row-by-row level but rather on the vertices only,
which cuts down a lot of processing. The mcthod was tested 6n the 2 segmenté
of Fig 5.9-a with actual values of

a=63.0°

L1 =20,L2 =14 & ratio L/L1 = 1.43

" The digitized image of the segments produced the values ( in pixels as shown in
Fig 5.9-b. There existed a choice of scaling cither all dimensions along the X- or
Y- axis; the Y-axis was chosen arbitrarily. For each secgment of the image, only
the length along the Y-axis has to be multiplied by a factor, the scaling factor;
'different values for this factor were tried experimentally and the results will be
shown in Chapter 7. The best value found for the camcra-object distance
considered was found to be around 0.67 . The results obtained are shown in Fig
5.9-c and they are the best possible results which could be obtained under the
situation.

The Pascal listing for the correction is given in Appendix B3, note that only Y
coordinates of each corner point is muitiplied directly by the scaling factor.
There is no need to need to calculate the displacement along the Y-axis for each
scgment as the Origin of the X- and Y-axcs is centered on the first corner point
of the image.

A similar scaling is done for the vertyl of the detailed model but is not listed in

the appendices.

128



a)

3 L1
2.0
| / alpha = 63 deg
/ _
/
N L2
/
'/ -alpha 1.4 12
401
b)
alpha = 46.9 deg
/
c) 12 / 24l

after correction:

L1 =322
L2 = 22.8
L1/L2 = 1.42

alpha = 60.0 deg

Fig 5.9 : Scaling along Y-axis 129




5.5 Obtaining Polar Model
Obtaining the polar model involves calculating the length and angle change for

each segment from the x- and y- coordinates of the vertices.

5.5.1 Obtaining Segment Lengths
This step is straight forward, given the segment linking the points P1 (x1,y1)

and P2 (x2,y2) , the length is obtained from the equation :

 length = v/ (x2 — x1)* + (y2 — y1)?

~ The Pascal listing is given in Appendix B3. A similar lpop is implemented for
" the detailed model ( not shown ). Note that the difference between x- and y-
ordinates of each vertex is saved as they will be used in the next step of finding

the angle change between consecutive segments.

5.5.2 Obtaining Angular Change
Obtaining the change in angles of segments proved to be a more difficult step as
it involves :

- finding the exterior angle between écgmcnts.

- finding the direction of the extcrior angle.
Referring to Fig 5.10 which shows 2 segments A-B and C-D, the problem is to
find the angle. The angle needed is @ or y but not the interior angle B .
Furthermore even if the absolutc value of angle a will not change for the 2
figures, their direction will change if scgments A-B-C or segments C-B-A is

considered; i.e. the angle formed by scgment B-C w.r.t. segment A-B is clockwise

| or + a but segment B-A w.r.t. segment C-B forms an anti clockwise or — «.
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Fig 5.10:

Correct angular change
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Several methods were tried and they are :

The COSINE method implied finding the angles supported by '

the 2 segments on the Y-axis. Referring to Fig 5.11 , where the angle + 0 isto
be found between segments A-B and B-C, the first step of obtaining thc angle
o ( formed by A-B and Y-axis ) or angle § ( by B-C and Y-axis ) proved
; problematic because the ARCCOS function returns the same value for segments
~ A-Bor D-E.

The 2nd problem is, even if a,B can be obtained unambiguously, the value of
angle ® must be obtained and not the interior angle v . Sometimes

® = (B — a) or at other times O = 360° — (B — a) depending on the which

of the 2 angles arc bigger. Furthermore ARCCOS function has to be evaluated

The TANGENT method also proved problematic for nearly the same reasons :
- segments in the 2nd and 4th quadrant support the same angles with the Y-
axis; also segments of Ist and 3rd quadrants.
- ARCTAN function must be cvaluated twice.
- ARCTAN cannot be evaluated for vertical lines.
- choosing betwcen the interior or exterior angles add one sclection step in
the procedure.

The SLOPE method which uses the equation :

0= (ml +m2)/(1-ml*m2),

where m1, m2 refers to the slope of the 2 segments also failed because it does

not recognize the direction of the scgment c.g scgment A-B is the same as

segment B-A .
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The VECTOR method ( Fig 5.12 ) below has the benefits :

al bl + a2b2

COS 0 =
lal + |b]

- ARCCOS function is evaluated only once.
- the cxterior angle is obtained directly.
- the length and vectors are already available.

The calculation of angle @ is listed in Appendix B4. Note that the function

" ARCCOS could not be implemented directly in Turbo Pascal and was

calculated using the available ARCTAN function :

ARCTAN (V1 = x*)
X

ARCCOS(x) =

Part 1 of Appendix B4 shows thc evaluation of the angle. It takes care of
vertical segments, two segments which lic on the same line and the addition of
n if required. The vector method still does not identify the direction of angle
change ( clock or anti clock wise ) but this problem is encountered in any
method. Finding the DIRECTION OF ANGLE CHANGE between successive
segments has to take care of :
- the direction of the segment i.c. for scgment A-B of Fig 5.12 going from
vertex A to B is different than going from B to A.
- the succceding scgment lies on the left or right of previous scgment: i.c.
whether vertex C lics on the left of segment A-B.
The procedurc for getting the sign of the angle between segments is listed in

Appendix B4 ( 2nd part).
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It docs the following :
a. find the slope of the first segment A:B :if A-B is vcrtiéal, the slope is set
to a very large value, if not it is calculated from the ordinates of vertices A
and B. o
b. The X-ordinate of the succecding vertex, C, is fitted to the equation of
the straight line A-B .
c. The Y-ordinate of C is compared to the fitted Y value to determine if
vertex C lies on the left or the right of line A-B extended.
d. lastly, the direction of segment A-B is considered. i.c. if vertex C lies on

the left of segment A-B, it will lie on the right of scgment B-A.

5.6 Normalizing Perimeter
One of the requirements is that the system identify an object even if its size,
orientation or camera distance is changed and must match to the same polar
models in the database. |
The polar model obtained so far consists of only the scgment lengths and
incremental angles; the lengths are given in actual pixel lengths.
The model is of :  Polar(obj) = { P, } where P, = (p;,, 0.),

p, = length of segment i . |

0. = angular change between segments p, . Py,

Two such models exist, { P, ,} and (P4} . Also, the perimeter, fmcent, is
given in actual pixel Iengths. What is needed is to map thc object to an
invariant model; the most efficient ( computation wisc ) mapping was to
normalize the actual perimeter to a fixed valuc so that no matter what size the

obiject is actually, its model always refers to onc with perimeter of 2000 pixels.
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Figs.12

The Vector Method
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Only the p, must be normalized because the 0, is invariant under
magnification. |

The procedure for normalizing is listed in Appendix BS. It simply_ﬁnds the ratio
of the normalized perimeter ( 2000 ) to the actual pcrimctcr ( fmcent ) and
multiplies each p, of {P,,} and {P;,} with that factor.

A variable ‘normdiff’ which is a fixed fraction of the normalized perimeter is

calculated to be used later.

5.7 Descriptor Array
Once the polar models are normalized, thc next step is obtaining the important
features or the Descriptor array ( explained in Chapter 3 ). The features needed
with the associated variables used in the program are listed below.
The features are only extracted from the coarsc model (P} because it
overlooks noise and represents the object or class more gencrally.
Some of the features are already available like :
actual perimeter in pixels, fmcent.
number of segments in Coarse model, countl.
number of segments in detailed model, count2.
The rest of the features are calculated in the procedure ‘findfields’ listed in
Appendix B6. The following points arc to be noted :
- cven though ‘count’ is already available from the tracking algorithm, very
sr;lall segments ( less than 30 over a 2000 perimeter ) might still exist due to
noise and they are not counted; hence the value of count is decremented if
such very small sides are encountered. This occurs very rarcly in practice.

- any segment larger than 400 pixels ( over perimeter of 2000 ) is counted as

137



a long segment.

- the maximum positive or negative angle is found ‘by a simple 'IF’ checking
in the iteration. |

- large positive angles are those that exceed +89 °.

- large negative angles were taken to be greater than -49 °. It was noticed
that if the image’s contour is traversed in an anti clockwise direction, very

few of the 0.’s were negative; thcy proved to be a good representative

feature.

The variable used were as follows :

FEATURE VARIABLE
largest segment length : largerl
number of large segments : alargeside

number of large positive angles : alargeanglep
number of large negative angles : alargeanglcn
largest positive angle change : amaxanglcp
largest negative angle change : amaxanglcn
numb of segments in coarse model : countl

numb of segments in detailed model : count2
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CHAPTER 6 .
LEARNING, DATABASE & RECOGNITION
This chapter will cover :

- the learning stage, where the models of a class as well as their features aré
saved. New classes can be added or new objects within existing classes can
be inserted.
- the database which is responsible for saving the classes, their objects, their
descriptors as well as its detailed polar segments. The files are organized in
the DB in flat or indexed files for accelerating the recognition steps. The DB
can also be viewed by the operator.
- the recognition phase where an unknown object will be matched to a
cluster of classes. The sorted union of the clusters can be viewed. The
distance test can then be applied to the unknown object and its matched

class.

An overview of the system will be useful. Fig 6.1 shows the main menu available
to the operator where he has the choice of first Initialize FG-100 Board; here
basically he sets up the digitizer to correctly operate with the host IBM-AT and
initializes the board and checks visually that the snap, grap functions operate
correctly; he can also adjust the lighting, while level . etc for optimal conditions.
The second choice is the Image Acquisition where the user basically snaps an
image,\ convert it to binary, extract the FMC contour and can save the binary
image or the FMC contour to a file on diskette; these options were presented in
Chapter 4. The third option is the Leamning & Recognition submenu; the

detailed modules are given in Fig 6.2 . The options under this are :
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Fig 6.2

. Learning & Recognition Modules
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- Obtain the FMC contour of an object, track the contour and obtain the
segments at the coarse and detailed level, -calculate the. polar models,
normalize the contour ( or p, to 2000 and finally obtain the Descriptor array
from the Coarse model; all these steps were presented in Chapter 5.

- Graphical option allows the user to visually check an object’s contour on the
monitor of the IBM-AT, view either the Coarse image or the Detailed one or
both as well as their ‘rho-theta’ graphs. This is a useful step before inserting
a new object to the database since the operator can decide which class to
include a new object. The image can also be moved across the monitor and
displayed at different scalings.

- Print utilities allow the operator to obtain a hard copy of the two models,
the coordinates of the vertices, the lengths and angular change of segments;
also the rho-theta graphs can be printed as well as all the FMC of the
contour. A useful tool made available is allowing the printing of the FMC of
the 4-pixel groups, the detecting of corner points of both models as the
contour is being dynamically tracked in the segmentation algorithm; this is
necessary as a debugging tool.

- Viewing the database permits us to look at all the files in the DB, all objects
within classes, detailed models of a class as well as the indexed files; the
indexed files are sorted on each feature of the Descriptor array.

- Recognition matches an unkown object to its nearest class applying each
decision results in different cluster which can be viewed as well as the final
sorted union of the clusters where the closest classes with the frequency of

match is listed. Finally the results of the minimum distance test is seen.
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6.1 Database

The Turbo Pascal Database Toolbox is a small code database which provides

the programmer with all the minimum tools of a DB upon which he can access

through Turbo Pascal programs; the overhead is minimum and hence thé

efficiency is very good. The basic functions of a DB are implemented and they

are <

- creation of flat or sequential files with separate attribute definition; each
attribute can be of maximum length of 256 bytes and the record length can
be upto 64 Kbytes.
- creation of index files

an indexed file sorts a flat file with one or more attributes as key. The
sorting utilizes the QuickSort algorithm, the most efficient sort available.
- insertion, deletion or updating of records of the sequential relations; the
indexed files are immediately updated.
- sequential or indexed search for records is implemented through B+ trees,
the fastest for finding and retrieving database information.
- a maximum of 15 files can be opened simultaneously.

- maximum number of records per relation is 2 million.

- TABUILD is a utility available to programmers if they desire to increase
the efficiency of the DB by resetting the page size, the maximum # of pages
in. memory; the user can experiment and check the comparisons needed per
key search, the searches satisfied in RAM memory and the disk searches
needed. This is useful for very large DB’s where the files are too large to fit

in RAM simultaneously and have to be paged in on demand.

Databases revolve around the use of files; their functions are explained w.r.t.
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Database Toolbox so that the procedures implemented in this thesis will be

clear.

6.1.1 Flat & Indexed Files
Flat or sequential files store the overall and detailed information as records
inserted sequentially. Each record is divided into attributes of character type (

fields of numeric format must be converted to strings ). An exaimple of a flat file

. is given in Table 6.1 where 5 records are kept each with 3 attributes. The

records are kept in the relation in the order of insertion.

Searching for records in such flat files is slow as the access is sequeential; i.e. to
find all records with longest side between 200 and 400 can be done only by
examining each record of the file one at a time. The process can be accelerated
by indexed files. Let the flat relation be indexed on attribute ‘longest’ , i.e. the
records are sorted according to the 3rd attribute. The resulting index file is given
in Table 6.2-a. Note that only the record number and the attribute indexed on is
duplicated and not the whole record as it will be wasteful to save whole records
especially if they consist of many fields. Table 6.2-b shows a file indexed on field
‘sides’. |

Now searching for querries is very efficient as all the records sharing similar
attributes are grouped together. Database toolbox , unlike some DB’s allow

index files with duplicate keys.
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RELATION CLASS.DBF

~{name sides |[longest
record_1 class-a 12 300
record_2 class-b 18 200
record_3 class-c 10 400
record_4 class-d 18 600
record_5 class-e 16 500
Table 6.1
RELATION LONGEST.NDX
record_# of CLASS.DBF attribute_‘longest’
record_1 2 200
record_2 1 300
record_3 3 400
record_4 5 500
record_5 4 600
Table 6.2
RELATION SIDES.NDX
record_# of CLASS.DBF attribute_‘sides’
record_1 3 10
record_2 1 12
record_3 5 16
record_4 2 18
record_>5 4 13
Table 6.3
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6.1.2 Interface & Creation of Relations

Relations are created in a separate file of extension .typ . A file is defined as a

record of attributes each of type string, i.e. for the relation CLASS.DBF of

Table 6.1, the definition will be :

classrec = record

stat : longint : used by system
name : string(20) : Ist attribute
sides : string(2) : 2nd attribute

longest : string(4) : 3rd attribute

end :
maxdatatype = classrec :

maxkeytype = string(20) :

This interface file ( DB.TYP ) is compiled by the TABUILD utility of Database

Toolbox from the following command : TABUILD DB.TYP

The next step is creating the relations and index files:

uses DOS, TACCESS :
[ $1 DB.TYP]
var

gen : datafile :

genl,gen2 : indexfile :

makefile ( gen , ‘class.dbf” , sizeof(classrec) ) :

makeindex( geni, 'sides.ndx” ,2,1):

makeindex( gen2, ‘longest.ndx’ ,4,0):

The MAKEFILE proceudre physically creates the file and names it class.dbf,
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the record length in the 3rd parameter while the first parameter is the file name
used by the system (gen) unlike the actual name (class.dbf) used by DOS.

The MAKEINDEX procedure is similar except that the 3rd parameter specifies
the length of the key and the fourth one indicates if duplicates in the key afe

allowed or not.

Opening the files for insetion, deletion or querries is done by the following :
openfile ( gen , ‘class.dbf’ , sizeof(classrec) ) :
openindex( genl, ‘sides.ndx’ ,2,1):

openindex( gen2, ‘longest.ndx’ ,4,0):

6.1.3 Insertion, Deletion & Searching
Adding a record to a normal relation or an indexed one with duplicates allowed
is straight forward; first the contents of the record are assigned or read, next the
record is added to the normal file and the inserted record number is returned in
the second parameter of the Addrec function. This record number is needed if a
related indexed file has to be updated. Note that since each attribute is stored as
a string, any numeric input must be converted to a string; this is done by the
function INTTOSTR listed in Appendix C3.
recordnum : longint :

readln(classrec.class) :

readin(side): classrec.sides := inttostr(side) :

readin(long): classrec.longest : = inttostr(long) :

Addrec( gen , recordnum , classrec ) :

Addkey( gen2, recordnum , classrec.longest ) :
Updating records for index files which do not allow duplicates is slightly more
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involved since we cannot insert a record if the new record’s key is already
present in the indexd relation; so first the index file is searched for the key, if
found the new record with dupplicate key cannot be inserted. The steps are
given below : '
recordnum : longint :
readin(classrec.class) :
readln(side): classrec.sides := inttostr(side) :
readin(long): classrec.longest := inttostr(long) :
tempcode := classrec.sides :
Findkey( genl , recordnum , tempcode );
If not OK then
begin
Addrec( gen , recordnum , classrec ) :
 Addkey( genl, recordnum , classrec.sides ) :
end :
Else
write(’ Duplicate attribute “sides” exist *) :
Searching for records is achieved by the four functions : Findkey, Searchkey,
Nextkey and Prevkey. Findkey searches the file for a string given in the third
parameter; the latter’s value is destroyed; if the search is successful, variable OK
is set to 1 and the recordnum is given :
write(’ enter class to look for : ) :
read (lookclass) :
tempclass : = lookclass :
Findkey( gen , recordnum , tempclass ) :
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If OK then
write(’ class found ", . . . ):
Else
write(’ class not found ):
Once the record is found, the neighbor records can be accesses Nextkey gives the

succeeding record while Prevkey the preceding one.

~ FINDKEY function will search the index for a key that exactly matches the
search key but the function SEarchkey allows DB search using only a partial
key. SEARCHKEY takes the same parameters as Findkey but looks for any
record with a key greater than or equal to the key being sought. An example : a
querry to locate all classes in the DB with longest’ side between 350 and 550 (
although no classes exist with exact value of 350. The following procedure
locates the first record with its ‘longest’ field greater or equal to 350 and
continuously reads the succeeding records as long as they satisfy the querry that
the ‘longest’ is less or equal to 550.
Searchkey( gen2 , recordnumber , inttostr(350) );
If OK then
begin
Getrec( gen , recordnumber , classrec ) :
repeat
write(” class found : ’, classrec.longest ) :
Nextkey( gen2 , recordnum , searchcode ) :
Getrec( gen , recordum , classrec ) :

until classrec.longest <= 500 :
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end :
Else

write(” all records less than 350 ') :

Deletion of records is pretty simple. Once the desired record is located Witi’l
Findkey, Searchkey . etc , the record is deleted but first that record in all
indexed files must be deleted before the master file record is deleted, i.e. to
delete the record for class_a , assuming an index file for the ‘name’ attribute
exists as gen3 .

Findkey( gen3 , recordnum , ‘class_a’ ) :

If OK then begin

Deletekey( gen3 , recordnum , temp ) :

Deleterec( gen , recordnum ) :

end :

6.1.4 DB Relations Implemented
Four master files are created, some of them were briefly explained in Chapter 3
and they are :
- GENOBJ.DBF is the main master file which contains the classes and their
descriptors. This file is opened and used with the néme GEN . Fig 6.3-a

shows the attributes as :

* class : name of class
* sides : number of sides in Coarse model
* maxside : longest segment of contour
* largeside  : number of sides > 250
* maxanglep : largest positive angular change
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* maxanglen : largest negative angle
* largeanglep : # of angles > +80 degrees-

* largeanglen : # of angles < -5 degrees

* sidesdet : # of sides in Detailed model
* numobjects : number of objects in this class
* subclass : # of reference signatures for class

The function of each attribute is self explanatory execpt for ‘subclass” which
denotes if the class has more than one detailed representation stored; this is
needed for objects with not one single large starting segment but maybe 2 or
3 equally large segments. The graph of the object varies markedly
depending from which of these large sides the model starts. More will be

explained later.

- DETOBIJ.DBF (used as DET ) keeps the Detailed modei(s) of a class; one

class may have 1, 2 or 3 signatures. Fig 6.3-b shows the attributes as :

* class : name of class

* sideord : which segment of the contour
* length : length of gach segment

* angle : angular change of segment

Note that if for example class_a has 5 segments, they will be entered in
DET file in sequence; which segment will become segment number 1 will
depend on the longest side of the contour : this is motivated by the
recognition algorithm which has to find the distance between the graphs of 2

objects ( Section 3.1.8 ) and to do so, the graphs must coincide at some

common segment.
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- OBJECT.DBF (used as OBJ ) is given in Fig 6.3-c, the attributes being :

* class : name of class

* objname : name of object in class

* perimeter  : actual physical perimeter of object
* distance . actual object-camera distance

One class may have several objects and the only way to differentiate them is
some actual physical parameter; one is the actual perimeter ( not the
normalized one ) of the object , another is the distance from the object to
the camera lens. The first was available and used but no attempts was made

to recognize an object within a class if the class was recognized.

- CLUST.DBF ( or CLS ), given inn Fig 6.3-d was used in the recognition
algorithm when finding the classes with highest number of descriptors
matching to those of unknown object. The attributes are :

* class : name of class

* count : frequency class matched

The interface file DB.TYP is listed in Appendix C2, its use was explained in
Section 6.1.2. Once the interface to DB is run from TABUILD, the files can be
created as listed in Appendix C3. The two functions INTTOSTR which
converts all numeric values to strings ( needed for relation fields ) and

STRTQINT which is the converse are also given in the same Appendix.

In addition to the sequential files, 11 index files are created to allow direct and
efficient retrieve the data stored in the .dbf files; GEN1, GEN2, . . GENBS are
index files which have as key each attribute of the GENOBJ.DBF (or each

152



( GEN ) : GENOBJ.DBF

/CLASS

(DET ) : DETOBJ.DBF

SIDES

MAXSIDE

LARGESIDE

MAXANGLEP

MAXANGLEN

(CLS ) : CLUST.DBF

LARGEANGLEP

LARGEANGLEN

SIDESDET

NUMOBJECTS

SUBCLASS

( 0OBJ ) : OBJECT.DBF

CLASS | OBUNAME | PERIMETER | DISTANCE

FIG 6.3 : Data Base File Organization
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feaure of the descriptor ) while DET1 is indexed on the 2 attributes class and
sideord of DETOBJ.DBF . The index file OBJ1 have as kéys attributes class
and object of OBJECT.DBF . CLSI is indexed on the combined attributes class
and count of CLUST.DBF . o '

The files are opened by the statements given in Appendix C4, the format of

which were explained. Similar statements close the file at the end of the session.

6.2 Learning Stages
The learning menu provides many menu options allowing the operator to
segment an image contour, view or print it, preview the descriptor array before

adding it to the DB in an old or new class; he may further view the DB.

6.2.1 Reference Signatures

It is clear how the descriptors of an object class are found and used but how
exactly is the detailed polar model kept and in what sequence of segments.
Referring to Fig 6.4, the object given can be aquired at different positions or
orientations ( a, b ) and their detailed polar models, although exactly the same
in value of p, and 6, , will vary in the sequence; i.e. the Det . for (a) will
have p, as L1 while that of (b) will have p, as L3. Naturally their rho-theta

graphs will differ and if a match of distance between their two graphs is
calculated, it would fail in recognizing the match even though both graphs refer
to the.same object. Two ways implemented in literature are :
- repeat the rho-theta graph for the perimeter ( signature ) end to end such
that an extended signature which covers the perimeter two times is kept (

Fig 6.5-a) .
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- the signature is not extended but when two signatures need be matched,
one signature is kept fixed and the other is repeated shifted and matched (
Fig 6.6-b ); this method is obviously slow especially for objects of many
segments. i.e. if unknown object is Fig 6.4-b while the object known to the
DB is Fig 6.4-a, let Fig 6.5-b represent the signature stored in DB while Fig
6.5-bl is the unkown signature, the first match fails. The signature bl is
shifted to get b2 which is mapped to b and again the match fails; this

shifting or circular rotating of the signature continues until b4 matches b

successfully.
None of the methods were implemented because they are costly instead the
signature of an unknown object was shifted prior to its insertion to the DB. The
shifted signature is obtained such that the first segment is always the longest; we
call this the Reference signature SIGNAT, . Given an unprocessed signature
e.g. Fig 6.5-bl, it will not be stored as such but shifted such that the
SIGNAT, . satisfies the rule p, > p,,j =2,3,..n The reference signature

for Fig6.4 -a and -b will always be the same, as seen in Fig 6.5-b and -b4. The

distance test is very much simplified.

One problem with reference signatures is the confusion résulting from having 2
or 3 nearly equally longest segments. If the object is regular like a square or
regular pentagon, there is no problem since the signature is symmetrical in their
p; > ()i but what if the object is not regular like that of Fig 6.6-a ? The
reference signature requires first finding the longest segment but for this object,
there exists 2 longest sides namely L1 and L6 such that 2 reference signatures

must exist in the DB to take care of the object appearing in any position.
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Therefore the DB will save both SIGNAT, and SIGNAT, .

Procedure sortmaxes from Appendix C5 finds-out the longest segments of the
contour of an object. Note that the contumit segmentation algorithm has made
available the polar models in arrays leng, lengl, angle, anglel and the lini(s
between the two models in ptrdetail, ptrdetaill and the size of each model in
vertptr ( countl) and vertptrl (count2 ).

The first loop in sortmaxes locates the longest segment of the contour and saves
it in variable largerl. A pointer largeposl keeps the value of which segment of
original signature is longest; this is needed for shifting.

The second loop goes back and checks each segment to see if it is equal or
nearly equal to largerl. If a new segment of length differing by a value ( 30 in
this case ), it is considered as a 2nd largest segment and variable larger2 keeps
the length, largepos2 points to the segment correspondind to 2nd largest segment

and a flag largestat2 is set to 1 to indicate that 2 reference signatures exist.

The loop also checks for a possible third longest side, larger3 , keeps a pointer

largepos3 and set a flag largestat3 to 1 to indicate 3 reference signatures exist.

Once the longest side(s) areAlocated, the signature has to be circularly rotated
such that p, corresponds to the longest segment; this is done in procedure
dataint listed in Appendix C6 which does 2 functions : one to reorder the
p, , 6, to obtain the reference signature and two convert all the values to
integer ( 'round’ function in Pascal ).

Basically the procedure transfers all the p, , 0, from and after the longest

segment to the first elements of new arrays called lengthl, anglel ; then the
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p, » 0, from segment 1 upto the segment preceding the longest one ( of old

signature ) are transferred in sequence to the last part of arrays lengthl, anglel.
Procedure dataint will be called once, twice or thrice depending on how many

reference signatures exist.

6.2.2 Learning Stage Utilities

Referring to Appendix Cl1 ( main menu of Learning & Recognition ), the
operator once he segments an image, normalizes it, obtains the reference
signature is free to insert the new object to the DB but before he does this, he

can view the normalized object ( graphically ), print the models and signatures,

view the DB classes.

The preview utility allows the display of the descriptor array for the object, its
detailed model etc. The procedure is given in Appendix C7 and just prints out to
the CRT all these values and waits for the user to view them and then returns

to the control menu.

The graphics utility is a useful visual tool, the functions of which were given in
Fig 6.1 . Procedure graphutil of Appendix C8 shows the submenus; they can be
controlled in the graphics mdde so the operator can choose any command from
within the graphics mode without switching to text mode; the menu is key
driven and simple to use. The graphics mode is switched to by the ‘detect’ and
‘setgraphmode’ functions to CGA mode and some default values for the center,
the scaling factor are set and the object drawn by calling procedure contdraw
from Appendix C9. Contdraw links up the vertices of the objects by straight

lines ( the X- and Y- coordinates are known ) starting with the ist vertex as
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center ( offset by variables XCEN, YCEN ); the object’s coordinates are scaled
up or down ( by variables XSC, YSC). _.

Both the Coarse and Detailed models can. be .viev;féd separately or overlapped
and even the refernce signature can be displayed from procedure rhotheta of
Appendix C10. Once the axes are drawn, the first segment of the signature is
drawn horizontally; the second segment is also drawn as a horizontal but is
shifted up or down by a displacement proportional to the angular change
between 2nd and 1st segment; these steps are repeated for all steps.

The whole CGA screen can also be dumped to the printer by the Print Screen
key through DOS.

On exiting from the graphic utilities, the text mode is restored.

The printshow utility prints both models, their graphs, the FMC and more
importantly the Segmentation algorithm as it goes through the contour 4-pixel
group at a time. The ‘write(lst, . . . )’ function which instead of writing to the
monitor, dumps the characters to the connected printer. Appendix Cl1 shows

the loop which prints out the Coarse model parameters.

Viewing the DB utility allows the interactive examination of the current DB by
calling procedure displaydb ( Appendix C1 ) which in turfl displays the view DB
submenu of Fig 6.2 . Retrieving the records from the .dbf files ( to view genobj,
detobj or object relations ) is done by a simple lbop whose index runs from 1 to
number of records for the file and using ‘Getrec ..’ procedure, and then

displaying the record.
Viewing the index files is as simple and is listed as procedure printfields in
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Appendix C11 ( not the whole procedure is given, only for 3 index files ); the
procedure’s parameter of 1 to 8 specifies which index file is viewed. The first
step is to set the pointer to the Ist record of the indek file by the cail ’ Clearkey
( file name) ’ and then to step through each record in that file by * Nextkey (
filename , record number , record area ) ’ followed by a * Getrec ( file name ,
record number , record area ) ’. The record number increases from 1 to the last
record ( known as genreccount ). Once the record is read, it is written out, string

attributes being converted to numeric first.

Viewing all the information for a certain class is shown in Appendix C13; the
1st step is to show the master record for the class which the user asks for. A ’
findkey ’ to GEN1 with the required class locates the record number needed for
the class, and if found, the record is read with * getrec “ and all the attributes for
that class are shown.

All the objects within that class is displayed next, the related index file OBJ1 is
searched for the class and when found accesses for as many times as there are
obijects in that class; number of objects is obtained from ‘numobjects’ attribute
of master record just read.

The detailed polar model is displayed next by searching the DET1 index file
with the search key as the class + 1 ( Ist side ); a loop stepping through all the
succeeding records reads the records and displays them ( how many times
depends on the number of segments in the detailed model - from ‘sidesdet ’

attribute of master record ).

Timimg utility is useful in testing the system and generating response times of
various steps; more will be given in Chapter 7. If it is required to find how long
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a process takes, the Turbo Pascal function  gettime ( hh, mm, ss, hh ) * will save
the hour, minute, second, 1/100 th second into variables' hh, mm, ss, hh
respectively. To time a process, gettime is -calle.d tWice ( as shown in Appendix
Cl14 ) and the difference in those 2 calls is calculated. A simple substraction of
the variables will not do the job because care must be taken when 1/100 th
seconds cross from 99 to 0 or when second cross from 59 to 0; the procedure

timediff ( Appendix C14-b) takes care of it.

6.2.3 Inserting Objects to DB

Once an object is segmented and its descriptor array obtained and previewed, it
can be added to the DB in the “update’ option of Appendix Cl. The procedure
addclassobj of Appendix C15 is called and it essentially follows the simplified
flowchart given in Fig 3.7 ( Supervised Learning module ). Note at this point,
all the attributes needed to add to the DB files, namely the Descriptor array, the

detailed model are already available and that a SIGNAT, is already aranged.

Adding the object ( Appendix C14 ) first prompts for the class name to insert
the object to. A search is made in the GEN1.NDX file to quickly locate the

presence of the class by ‘Serachkey’ command.

If the class already exists, adding a new object involves only the updating of
‘numobijects” attribute of the GEN file and appending a new record for the OBJ
file. It is not required to add a new record for the class in the GEN file, nor add
a recofd to the DET file since all objects within a class share the same features.
The user is prompted to ensure his wish to ensure the object and then procedure

addobjtoclass of Appendix C16 is called. The name of the new object is needed,
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the perimeter is already known and a new record is added to OBJ file. The
OBIJ!1 file indexed on OBJ is also updated by using the combined key of class
name and object name. Finally, the ’numofobjeéts’ attribute is incremented by 1

and the record rewritten back to GEN file ( by ‘Putrec” ).

If the class to insert is a new one, procedure addclasstodb directs the flow to
other procedure to create a record for the class with the descriptor, insert the
detailed model and insert the first object for the class.

The first call is to inputgenrec in Appendix C17 which simply inserts the record
of GEN file with the Descriptor array, the name of the class, sets ‘numobjects’
attribute to 1 as this is the 1st object of this class and finally ‘subclass’ attribute
is 0 to indicate the presence of only 1 reference signature used up to that point.
The addkeytogen procedure ( Appendix C18 ) is called next to actually insert the
created record to GEN file of the DB as well as updating all the related index
files.

Next, the object name and perimeter is added to OBJ and index OBJ1 is also
updated, essentially the same steps in procedure addobjtoclass.

The last update is inserting the detailed model or SIGNAT, inside the DET
file; this is done by procedﬁre inputdetrec of Appendix C19. Note that this
procedure accepts an argument of 0, 1 or 2 ( corresponding to SIGNAT, ,
SIGNAT, , SIGNAT, .) If the detailed model refers to SIGNAT, , then
the name of the class is used as such, but if SIGNAT, , or SIGNAT, is
inserted, the classname is affixed with a ‘1’ or 2 '2’. The p, and 0, of SIGNAT
is then inserted in the file DET, record by record. Each record corresponds to
one segment and the key attribute is the classname and segment number. The
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DET]1 index relation is also updated.

The addclasstodb described above, called from App'e'ndix Cl. After the insertion
of a new object in a new class, it is also required to insert SIGNAT, , or
SIGNAT, if they exist; they exist if variables largestat2 and largestat3 are 1 (

set in procedure sortmaxes ). So if SIGNAT, exists, the operator is prompted
automatically.
The next important step is to reorder the signature to obtain SIGNAT, by
calling dataint.

Then procedure addsubclass is called and the new signature added to DB.

6.2.4 Last Record

The operator goes through the Learning stage and adds all the objects within
classes and the system is now ready to accept the image of any newly acquired
object and recognize it as belonging to any of the classes in the DB.

One problem remained : it was noticed that while searching the DB relations,
specially the master file GEN that sometimes the record pointer loops past the
end of the last recod. This is specially true when searching for attribute values.
The problem was resolved by'inserting a last record at the very end of the file
GEN or GENOBJ.DBF such that all its attributes have a value much greater
than those for any class. Appendix C20 lists procedure lastrec which creates a
record with all ‘numeric’ attributes of 2000 ( an arbitrary maximum number ).
Once all the GEN files and all related index relations are opened, the last record

is added by "Addrec’ and all index files also updated through "Addkey’.
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6.3 Recognition Stages

The recognition is broken in two major stages, namely find all. classes satisfying
an unknown object’s descriptors resulting in several classes each being possibly
the candidate matching class with different probabilities; the next stage is
applying the minimum distance test between each of the candidate classes’s
signature(s) to that of the unknown object, the order of the test depending on

the probability of the candidate classes. When the recognition stages are run, it

. is implied that the unknown object has been segmented and its descriptor array

is available. The recognition stage follows the chart given in the Recognition

module of Fig 3.7 .

6.3.1 Cluster Classes

The first stage is obtaining all classes which have similar descriptors to that of
the unknown object; since the descriptor array consists of many features, many
classes will be found, each satisfying some features. The trick is to find the
classes which have the highest number of features common; therefore each time
a candidate class is found which matches in a certain feature, a frequency count
is incremented for that class. At the end of the search of all features of the
descriptor array, the class with the highest frequency count is the class the
unknown object belongs to with the highest probability. The class with 2nd
highest frequency count is the next most probable belonging class if the object
does not belong to the first class.

The design of the Clustering algorithm proposed in Chapter 3 asks for finding
one cluster of classes for each feature and then finding the union of these

separate clusters. The algorithm implemented however simplifies the clustering
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process so that the ‘cluster union’ step is not necessary.

Procedure testsearch from Appendix C21 first determines the bounds of search
for each feature of the Descriptor array; i.e. if the unknown object’s maximum
positive angle = 130°, it is not practical to find only the classes which satisfy
the feature of exactly 130°. A more practical approach will be to find all
classes of DB with their maximum positive angle between 125° & 135°. That

is why when the procedure searchclasses is called, an upper and lower bounds

are specified as arguments.

The call * searchclasses ( n , upper , lower ) ’ will find all the classes such that
feature m of their Descriptor array lies between the upper and lower bounds ( +
value of feature n of unknown object ).

Searchclasses is called as many times as their are features in the Descriptor
array, in this case 7. Naturally the tolerances for upper and lower bound will
vary on the meaning of the feature; i.e. the number of segmenfs cannot have a

wide range of search while angles can cover a tolerance range of + degrees.

Procedure searchelasses will find all the classes satisfying feature n within upper
and lower bounds and for each class update its frequency of occurrence. The
procedure ( Appendix C22 ) first converts upper and lower to strings as the
attributes of GEN are such. Then the index files are searched to find the first
class satisfying lower bound; this is found through ’‘Searchkey’ command with
serach key equal to lower bound. Note that if feature = number of sides, index

file GEN2 will be used or if feature = maximum positive angle, index GENS is

- accessed. Also to be noted that the classes in each class are already sorted on

their feature value; therefore once the Ist class satisfying lower bound is found,
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all the candidate classes which will satisfy the range lower - upper are located
immediately after in contiguous records. Index files provide the most efficient
manner of accessing all the candidate classes. ’.

Once the first class is read ( by ‘Getrec’ ), obtaining the other ‘classes is possible
by simply reading each succeeding record of the index file ( loop ’locsl” in
Appendix C22 ) and accepting each class with feature below the upper bound. If
the class’s feature exceeds the range of upper, all the candidate classes have

been found and the loop terminates.

Each time a candidate class is found, its total frequency of occurrence must be
updated. This is done by calling insertclust listed in Appendix C23. Before the
recognition starts, the two 1-dimensional arrays clscls ( cluster class ) and clscnt
( class frequency count ) are all set to 0 s and the variable numcls (number of
candidate classes ) is also 0 - no candidate classes found yet.

Each time a candidate class is found in procedure searchclasses routine
insertclust is called : either the class found already exists among the candidate
classes of array clscls in which case, the only thing to do is to increment the
frequency count for that class; this is exactly what Appendix C23 shows.
However if the class found is not already a candidate class in clscls it must first
be inserted in the array, its corresponding frequency count in array cliscnt set
and the variable clsent incremented to show the increase of total candidate

classes.

One important improvement implemented in the insertclust procedure is the
association of a weight to the frequency count; i.e. some features of the
Descriptor are more powerful than others, for example negative angles much
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greatly define the shape of an object than the normalized maximum segment
length; so if a candidate class satisfies the former feature, its freqpency count
should be increased by a higher value thari if if saﬁsfied the latter feature. So
each ’ Inserclust ( candidate class , weight ) * when called for different features

will vary the value of this weight.

Once all the classes satisfying the Descriptor search with their frequency count
is obtained, they are sorted such that the most probable class ( class with
A highest hit ) is first in the list; the procedure sortclust given in Appendix C24
uses the Bubble Sort technique to arrange the arrays clscls and clscnt in

descending order of clscnt ( Fig 6.7 ) .

The operator can look at the resulting sorted cluster by calling procedure

showclust of Appendix C25.

6.3.2 Minimum Distance Test

The last step in the recognition is to match the class with highest ‘match’
probability through a minimum distance test as shown in Fig 3.7 ( Recognition
Module ); the distance test is finding the area between the ’‘graphs’ of the
unknown object and the identiﬁed class. If the test fails, the next class in the list
is taken and tested until one class is found such that the area between its graph
and that of the unknown object is below a minimum theshhold. The procedure

testsearch2class in Appendix C26 will first transfer the normalized p, , 6, of

the unknown object ( from arrays length2, angle2 ) to two 1-dimensional arrays
~ la and ta which will be used by the procedure areadiff. Variable maxa is set to

count2, or the number of detailed segments for the unknown object.
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Candidate class Frequency of occurence

class f S
class b 4
class s 8
class e 3
class p 2

Fig 6.7 : Class clustering & their frequency
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Next the p, , 6, of the class to identify with is retrieved from the DB and
transferred to temporary arrays Ib and tb which "are also passed to areadiff.

Variable maxb is set to the number of detailed segments for that class, or from

the attribute genr.sidesdet .

The DB is accessed by first checking if the class exists and getting its record
number in the master file ( genrecnum ) and then accessing the Detailed model
for one subclass of that class ( note that one class can have 1, 2 or 3 reference
signatures ). The function ‘Searchkey’ is used to access the first segment of the
Detailed model, stored in DET1 index file. Once this first record is read, all the
following segments of the Detailed model are read sequentially since they are
sorted by segment number and since the number of segments is known. Each
time a segment ( its length and angle ) is retrieved in the record, it is transferred

to arrays lb and tb.

The last step is calling procedure areadiff listed in Appendix C27, which takes as
input arguments : la , ta and maxa for one Detailed Model and Ib , tb and
maxb for the second Detailed Model and calculates the area between their two

graphs and returns that value in variable ar .

The algorithm followed by procedure areadiff will be explained by referring to
Fig 6.8 which shows 2 graphs to be matched in (a) and (b). The following points
are to‘be noted :
- the p and 0 for each individual segment is absolute, i.e. the length of a
segment is only its own length and not its length relative to the origin of the

graph. The same applies to the angles.
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- the st segments of the 2 graphs do not necessarily match in their 0.
- the number of segments for the 2 graphs are not always equal. -
- lastly, as noted in Section 3.1.8, the area between the 2 graphs will not be

found iteratively over a fixed length &, as given equation

dis( { P } s {Pig }) = per'ieter 10, (p) — 6,(P) | 3,

rtho=0
Rather the area between corresponding segments will be calculated over the

whole segment length; this will obviously accelerate the process.

The first thing done by areadiff is to align the first segments of the two graphs,
ta(1) and tb(1) ; this can be done by equating one to the other or setting both to
0 . Graph A and B are now aligned in Fig 6.3-c; the next step is to calculate the
ta(i) and tb(i) for the 2nd and onwards segments so they are relative to the
graph’s origin.

Variables i and j are used to point to which 2 segments of grdph A and B are
current. They are initialized to 1. Referring to Fig 6.3-c, the area between
segment 1 of A and segment 1 of B is to be found, not by discrete intervals 3,
but over a long interval; this. interval is the minimum of la(l) and 1b(1). This
minimum of 2 corresponding segments is found by procedure min given in
Appendix C28. It takes two segment lengths x and y as input and calculates the
difference between the lengths of X and y and returns this difference in v.
Further, it returns a 1 or 2 in variable k to indicate if length X or y is the
smaller.

Procedure areadiff calculates the area between the 2 segments by muitiplying

this minimum length by the difference in their angles. This partial area is
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summed to variable ar .

Next i and j must be updated to move on to the next segments. If both segments
were equal (y = 0), then both i and j are incremented. If k = 1, segment i is
smaller than segment j, so only i is incremented. If k = 2, the reverse is done.i
These steps are repeated over all the segments of A and B until the whole
perimeter is traversed.

This difference in area between the graph of an unknown object and that of a
class from the DB is returned to the control module, and if it is within a
minimum ‘matching’ distance, the unknown object has been recognized and is

accepted as belonging to that class.
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SO F"

' CHAPTER 7
RESULTS & ANALYSIS
All the algorithms presented in the previous chapters were tested for their
behaviour. Some of the paramcters used in the algorithms like the scaling factor
to correct non square pixels were obtained by ckpcrimentations. The results of
some of the tests can be shown in this paper while others like the display of the
contour on the TV monitor, the grapical utilitics, the printing utilities cannot.

The following sections give some bricf results and timimg statistics.

7.1 Tmage Acquisition & Diskette Utilities
The image acquisition utilities performed without problems. The GRAB,

SNAP, CLEAR opcrations worked instantancously.

7.1.1 Binary Image
Converting the grey level image G(512,512) to the binary iinage B(512,512)
worked smoothly; the speed of the process is determined by :
- the speed of access of the FG-100 frame, access had to be done through 8
consecutive ‘read’ of the board.
- the clock speed of the INTEL 80286 processor on board the IBM-AT,
equal to 6 MHz.
- the resolution of the image, 512 rows by 512 columns.
All of these factors were fixed and if changed, could tremendously increase the
speed of the process, namcly, the image digitized and stored on the FG-100
board could be accessed as onc block in onc ‘read’ if the PC could run a
different OS which docs not restrict access of memory to a maximum block of
64 Kbytes; second, if an INTEL 80386 or cven 80486 werc used with speeds of
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over 20 MHz, the efficiency will increasc greatly and lastly if instead of using a
512 by 512 image, a resolution of 256 by 256 could be used, it would accelerate
the process without losing any details of the image. o

The threshold value is operator sclectable and it was found that in normal roofn

lighting, a hexadecimal value of around 40h to 50h proved idcal.

7.1.2 Obtaining FMC of Contour

The algorithm implemented to extract the border pixels of the image was

successful in all tested objects. The following should be noted :
- the Directional 0-to-1 transition algorithm implemented fares much better
than Duda’s mecthod ( Section 4.5.1 ) in that it never misses part of the
image nor is the contour unpredictable.
- the implemented algorithm is better than the usual O-to-1 transition
technique; although no detailed comparisons were made, it is estimated that
it is at least 50 % faster for typical straight scgmented objects. The reason is
that it does not predictably check for thc neighboring pixel in a fixed
manner ( Section 4.5.2 ) but rather uses thc current segment direction to
find the most probable candidate neighbor; for straight line segments it will
successfully find it at the first trial. .
- the algorithm simultaneously rcturns a linked chain of the contour and
converts the image to a 1-pixel thin border. In some other rescarch, 2 or 3
steps are necded namely the segmentation process, the edge thinning process
and the segment linking step.
- the coordinates of the start pixel is obtained directly, the perimeter in

pixels is also calculated without any extra cost.
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- the interior pixels within the object are not included in the contour;' this is
good so that the algorithm does not stray into the interibr pixels and loop
forever.

The results of the algorithm cannot be shown here since the isolated contour is

displayed on the TV monitor.

7.1.3 Diskette Utilities

The utilities for initializing a diskette in drive A , the saving and loading of
both the binary image of the FMC contour, sclecting specific files on diskette to
operate on all perform very well. Images or contours saved can be redisplayed
on the TV monitor without a hitch.

A possible improvement would be to allow the saved files to reside on hard disk
rather than on a floppy as the scek and access time of hard disks are more
favorable; the problem would be to find the exact sector numbprs of these files.
Unlike a floppy, the sector numbers of files on hard disk will vary depending on
in which directory they reside, if they have been crascs, the size of the files, the
overwriting of new files . etc and taking care of all this from the Assembly level

is tedious.

7.2 Segmentation Algorithm
The contour tracking algorithm which breaks up the border to corner points and
obtain the 2 hierarchics of Polar modcls is not simple; it worked fine for all
straight lined objects but some problems were encountered for complex objects
with very many curves; the contour is broken up into too many scgments.
The advantages of the algorithm are :

- it makes use of the FMC dircctly.
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- it saves the coordinates of all corner points.

- it calculates the p, , 6, directly.

- it finds 2 hierarchies of Polar models within one loop.
- it gives a representation which is invariant under translation, rotation. Siée
of the object is also invariant when the model is normalized as well as the
object to camera distance.
- it corrects the problem of non square pixels through software.

The time taken is given further and was very good but it can be further

improved if executed on a faster machine.

7.2.1 Coarse & Detailed Model
The two models were generated with accuracy and their correspondence was

exact. The pointer linking both modecls also were accurate. Fig 5.4 shows the 2

models and their correlation.

7.2.2 Effect of Orientation

The algorithm fares very well for the samc object, no matter how it is translated
or rotated in space. Many objects were tested from simple triangles to the more
complex one given in Fig 7.1 . The actual angles and lengths of the segments
are also given. ( all the angles are given in degrees ). The object was tested for
at least 10 different positions ( translation, roiation ) but only 3 swiil bc shown
for brevity. Tablces 7.1, 7.2, 7.3 shows the Coarse Model representations after
the algorithm is run. The position of the part is shown at the top of each table.
The lengths and angular chage are shown as well as the errors or deviation (

absolute ) from the actual valuecs of the object. Only the deviations for the angle
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ANGLE | IN DEGREES
A +90
B +90
C -75
D +120
E -45
F +90
G -45
H +120
1 -75
J +90

Fig 7.1 : tested object
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were shown because the lengths were very accurate and showed litte deviation in
their ratio with the actual segment lengths. . |

The results are very good. A maximum error of only § degrees occurred; this is
favorable especially if the fact that the digitizing pixels not being square {s
considered. It is proposed that if a better suited CCD camecra was used, the
results would be even better.

Therefore it was verified that the Polar representation successfully modelled the

object in an invariant way.

7.2.3 Non Square Pixel Correction

The fact that the pixcls of the CCD camera are not square brings out the
serious problem of obtaining different angles and lengths of the same object
when positicned diffcrently. This effect is random and cannot be predicted and
had to be corrected through software or elsc the whole recognition stages would
fail. It was shown in Section 5.4.2 how the corrcction was achieved; the scale
factor was obtained after many trials some of which only can be listed, in Table
7.4 . Comparing the angles with the actual ones ( Fig 7.1 ), a scale of 0.6700
was found to be the best possible choice. It did not completcly correct the effect

but it minimized it.

7.2.4 Object - Camiera Iistance

It was noticed that if the object is positioned tvo far from the cumera, it would
appear so small that its distinctive shape features arc overlooked and if
positioned too close, the shape is distorted duc to a problem common to all
photographic lenses termed aberration. Trials were run to find a range of
optimal distances; this assumption is valid considering that most image
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recognition systems fix the object to camera distance.

Besides varying the focusind distance, the shape of the object ftsc]f was changed;
the object of Fig 7.1 was replicated in 3 sizes : large, medium and small. Tables
7.5, 7.6 and 7.7 shows some of the results of the 3 objects at different focuses.
The actual corresponding distances were:

distance 1 : 46 cm . distance2 : 40 cm.

distance 3 : 35 cm . distance4 : 32 cm.
distance 5 : 27 cm . distance6 : 23 cm.
distance 7 : 17 cm . distance8 : 14 cm.

The results confirm that very small objccts at far distances give the worst
results; the best results are for large objects at almost any distance or for
medium objects at medium distances. In general a distance range of 25 cm to
40 cm was suitable. Naturally these valucs will change for diffcrent lenses, i.e. if
very small components are to be recognized, a different kind of lens like a close-

up or macro lens will yield better results.

7.2.5 Gradient Tolerance ( Epsilon )

The value of ¢ -used to detect the corner points of the Coarse and Detailed
Models were chosen as 3 and 2 ( Scction 5.2.5 ): the value was reached after
diffcrent trials. Some of the results are shown in Fig 7.2; the resulting models
arc shown as graphs for better grasping. A valuc greater than 3 is not suitable
as it is not accurate cnough while a value of 1 results in too many redundant

segments.
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7.3 Learning Stage Results
The Learning and Recognition algorithms werc tested for théir performance; the
objects tested for are illustrated in Fig 7.3 . Twenty objects were selected; the
number was considered enough in comparison to other rescarches done in
literature where the test was carricd out on as few as 4 objects or in Juvin’s case
on 10 objects.
The Descriptor arrays for all the 20 objects are listed in Table 7.8 ; it can be
noticed that a wide varicty of objects with varying number of segments, angles
and complexity. The objects are not of industrial type in nature since the system
is just a pilot one.
The classes, when entered in the DB, were named as Classa, Classb, etc. but for
this paper A, B, etc. will be used.
The Learning stage provides :

- segmenting the contour of an object in a quick manner.

- normalizing to get totally invariant representation.

- previewing Descriptor of object before its insertion.

- graphical view of both models and thcir graphs.

- viewing the current DB.

- adding object to cxisting class.

- adding object to a new class

- adding upto 3 reference signatures in DB.
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Fig 7.3 : Obijects tested on.
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7.3.1 Time to Obtain Polar Models

The Learning stage first rcads the FMC of the contouf and - obtains the
normalized models and their reference signatures. The time taken by each step
is listed in Table 7.9 ; it shows the length of each process as actually carried out
on each of the 20 objects.

The first column, Segment , lists the time taken by the segmentation algorithm;
it totals the time to obtain thc 2 Polar models ( p, , 0, ) and the time for non
square pixel correction. The time listed is in 1/100 th of a sccond. An average -
time of 63/100 th second was a good result which can be easily tripled by a
faster machine.

The second column, Longest Sides , rcfers to the time taken to obtain the
longest side of the contour; at times 2 or 3 ncarly longest sides are found and
the time listed includes the finding of all 3. The average time was a negligible
0.5/100 th second.

The third column, Reference Signature , tabulates thc moment taken to reorder
the Polar models, starting from the longest secgment, to obtain the reference
signature which is needed for the last step of Recognition. Again the average
time was indeed small, at 0.8] 100 th second.

The last column, Normalize , indicates the total time to normalize the models to

a constant perimeter of 2000. The average time is around 0.8/100 th of a second.

7.3.2 Time to Update to DB
Once the normalized reference signatures of a ncw object is obtained, getting its
Descriptor array and inserting it in the DB is done. The timing statistics for the

involved steps are listed in Table 7.10 .
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it should be noted that all the times related to the DataBase operations are
influenced heavily by the size of thc RAM of the PC. The Dﬁ obviously cannot
keep all the master and index files in Dircct Access Memory if the latter is
limited. The IBM-AT , on which these timimg statistics werc obtained, had thé
following limitations :

* the clock speed of INTEL 80286 is 6 MHz .

* the RAM available was 512 Kbytes.
The clock speed of 6 MHz irrespectively slows down all thc operations be it the
program execution or DB search even if the latter is residing in RAM.
The 512 Kbyte RAM available slows down thc T.earning and Recognition in a
different way. The RAM will be occupied by the DOS, the compiled programs
executing and the remaining space will be filled by the DB files; not all of them
can be loaded so only a limited pages are read from the mass storage ( hard disk
). If a search or update to a DB file is executiﬁg and the related data is in
RAM, so much the better since the access time is a mere 150 nanoseconds; the
problem arises if the record nceded is not in the RAM but on the hard disk
which has a relatively longer access time of at lecast 12 milliseconds. The PAGE
containing the record is located, paged in while another page of the RAM not
being used is paged out Back to the hard disk. All this contribute to a larger
delay.
The timiﬁg statistics in the following tables show that at times, the same
opertions take a 1/100 th sccond while at other times they take 10/100 th
seccond; this is not random but duc to the fact that somctimes the record is
already in RAM and at other times has to be paged in.
An obvious solution is to use an INTEL 80386 or higher which are available
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commonly with at least 2 Mbyte of RAM. The efficiency of the Recognition will
greatly improve as the DB operations will only take placé from the Direct
Access Memory and the clock speed of 20 MHz or morc accelerates the
execution of the program itself. |

The first column, Descriptor , shows the time to extract the features of the
Descriptor array of each class; the average time is 1.7/100 th second.

Column 2, Assign to GENREC , counts the time taken to update all the features
of an object to the record GENREC, which will be inscrted in the master file of
the DB. The average time was less than 1/100 th of a sccond.

Column 3, Add Record , times how long it takes to really inscrt the GENREC
record in the master filc and the time taken to update the 8 related index files.
The average time is 6.8/100 th second;

The fourth column, Add object , times how long it takes to add an object to a
class and update the related index file and it averages 2.5/100 th second; note
that most of the times in that column are in fact less than 1/100 th second but
for some cases they are 6/100 or 22/100; the reason is paging in of DB records.
The last column, Add Detailed , rcfers to the inscrtion of the reference signature
( up tp 3) of the Dctailed model; this takes morc time than the others because a
lot of records have to be inserted and indexed. Specially here, a faster PC with
more RAAY will greatly help. Note the fluctuation of the times between 117100

to 61/100 th sccond.

7.4 Recognition
The Recognition algorithm consists of finding all thc neighboring classes and

applying the minimun distance test. The advantages of the Recognition are :
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- the representation stored in the DB is invariant under rotation, translation
or scaling. _

- first hierarchy model kept, the Coarse or the overall features of the class
used in accelearating the matching process by clustering éll élasses with
feature near those of the unknown object.

- second hierarchy is the dctailed model, kept for exact match between
unknown object and class.

- a DataBase is used to accclerate all scarches and make the storage of the
models more efficient. Indexed files are uscd.

- the first level of search obtains the cluster of classes and their frequency of
match. Indexed files efficiently allows dircct identification of classes
matching a feature.

- a combined algorithm is used which locates“all classes satisfying a feature
and obtains their union.

- a weight is assigned to each feature depending on how important a shape
identifier it is.

- for each feature searched for, an upper and lower bound of error is
considered to make the recognition more robust.

- the weights assigned to cach featurc and the bounds of search can be
easily modificd by the programmer to tailor the systcm to an application
with particular dictionary of objects.

- if the programmer wishes to usc different sct of Descriptor array, i.e. some
other features not included which might be morc important in shape
demarkation, all he has to do is calculatc them in the procedure Getfields
and use them instead; thc variable names of the attributes are not
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important, they are just dummy names and can rcpresent any new feature.
- a minimum distance test can be applicd with any reference signature.
- the minimum distance test does not calculate the difference in area with a

fixed iteration but calculates the arca differcnce over whole secgment lengths.

7.4.1 Recognition Algorithm

The Recognition algorithm was tested for all the objects of Fig 7.1; the testing
was carried for all possible combinations of matches.

The weights assigned for cach featurc of the ncighborhood scarch were found
out by trial and error ( Appendix C22 ); some featurcs were judged more
important than others on a rule of thumb basis.

Procedure Testsearch was tested by taking onc object of cach class and finding
the cluster satisfied for each featurc; the resulting cluster after the seasrch for
each feature was examined and checked if the required classes were located; the
results were very good as shown in Table 7.11 . ‘

The first column lists the time taken to get the resulting cluster of classes
satisfying all the decisions and obtaining their frequency of occurence; the
average was 0/36 th second.

The second column times the sorting of the total cluster such that the candidate

class with highest frequency is first; the time was about 0/00 th sccond.

The last column shows the resulting sorted cluster after the testsearch procedure
is executed; the results proved excellent since
- for 19 of the 20 cascs, the class with highest probability of match was
actually the correct class of the unknown object.
- the difference in frequency count of the first and second class of the sorted
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cluster is always at least 2, i.e. for 19 cases the algorithm never returned two
classes with equal probability of being the _c}ass looked for, hence no
ambiguity in the recognition.

- only 1 of the 20 cases tested resulted in a class with highcsf frcquenéy not
actually belonging to the class of thc unknown object, i.c. ClassH ; even
then the required class was indecd found but not on the first but third hit

and its frequency was only 2 lower than the first hit class.

7.4.2 Minimum Distance Test

Once the sorted cluster of all candidate classes arc found, onc of them is the
identificd class, usually the first onc. To be 100 per cent certain that it is
actually the corrcct class, the minimum distance test is applied to find the
correlation ( difference ) in arcas of the graphs of unknown object and class.
Testing was carried out by finding this difference in arca for each unknown
object to each of the 61 reference signaturcs in thc DB. Part of these results are
shown in Table 7.12 and they arc very encouraging. The first column shows the
area difference between an object of ClassA to reference signatures for ClassA,

1ClassA, ClassB . etc . ( note 1 class may have more than 1 signature ).

A total of 252 comparisons were carricd out with the conclusion that if an object
and its correct class were correlated by their giaphs, the distance is always <
20,000 , 50 % of thesc resulted in a distance of < 10,000.

However if an unknown object was matched to a different class than its own,
the distance is always > 40,000.

Therefore the minimum distancc test is simple to formulate
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;
i
!

If dis ( {Pyirownt > (Pappasst ) S 20,000 — unknown object belongs DBclass .

The timings for the minimum distance tcst were al‘so measured and given in
Table 7.13 . |

Column 1 shows the time required to obtain the Dectailed model representation
from the DB; this step which takes an average of 0/13 th second, can be

decreases as pointed out by incrcasing the RAM size.

. Column 2 lists the time to find the distance between 2 graphs and it averages to

nearly 0/0 th second.
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A

. position 1

...........

Orientation 1

Length Angle Decviation
j 147.2 91.2 1.2
f 388 86.5 3.5
39.6 -72.4 2.6
58.1 117.7 2.3
54.4 -43.0 2.0
58.4 88.2 1.8
54.0 -41.9 3.1
39.7 117.9 2.1
39.3 -70.0 5.0
147.2 85.8 4.2

Table 7.1 : Varying the orientation of part only
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Oricntation 2

position 2

Len gﬂl Angle Dcviation
146.1 87.2 2.8
147.4 90.4 0.4
379 87.0 3.0
39.7 -71.4 3.6
59.1 115.4 0.4
52.6 -41.3 3.7
59.6 86.9 31
53.1 -42.3 2.7
41.1 119.6 0.4
40.1 716 3.4

Table 7.2 : Varying the orientation of part only
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Orientation 3

position 3

Length

Angle

Deviation

56.0

88.1

1.9

56.0

-44.3

0.7

42.1

118.2

1.8

38.5

-71.4

3.6

146.8

88.0

2.0

146.3

90.7°

0.7

38.7

86.2

3.8

40.2

-70.2

4.8

56.0

117.8

2.2

56.7

-43.1

1.9

Table 7.3 : Varying the orientation of part only
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ALL ANGLES IN DEGREES

Actual 90 90 72 120 |45 90 42 120 |78 90
S$=0.6400 89 91 73 116 (43 R2 37 1S |71 89
S$=0.6500 89 89 71 116 |43 82 37 115 |69 37 |
S =0.6600 91 88 70 115 |43 84 40 116 |69 36
S$=0.6700 92 88 70 115 |42 85 40 115 |68 86
S=0.6800 92 87 63 114 |42 85 40 115 |68 85
S =0.6900 93 36 68 113 141 87 43 116 |67 85
S$=0.6470 90 90 72 116 |44 32 38 116 |70 38
S=0.6480 90 90 72 115 |43 84 40 116 |70 88
S=0.6490 90 90 72 115 |43 34 40 116 |69 36
S=0.6475 90 |90 72 116 |44 *5 40 | 116 |70 38

Table 7.4 : Varying the Scale Factor
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OPBIJECT SIZE : LARGE
camera-object distance : d2, d3, d4

distance2 distance3

distance4
Leng |Angle |Dev |Leng |Angle |Dev |Leng |Angle | Dev
116.6 {895 |1.5 [126.3 [89.5 |1.5 |141.0 |89.5 |1.5
29.1 |189.6 |14 (327 8RR 1.2 |353 (874 |26
332  |-77.1 2.1 |354 |-733 (1.7 |39.2 [-73.5 [1.5
48.0 [119.3 10.7 [52.0 1173 2.7 [560 |119.4 {0.6
43.3 |-40.8 |4.2 [44.6 |-42.7 |23 (54.1 [|-426 |24
434 868 (3.2 |50.3 852 (48 |544 |86.6 |34
47.1 |[-41.3 3.7 |[480 |-41.0 |40 |560 |-42.7 (2.3
32.7 |116.2 3.8 |354 |120.6 (0.6 (409 '|117.7 |23
30.2  |-70.7 |43 342 |-729 (2.1 [36.7 [-72.8 |2.2
117.2 838.6 |1.4 |128.5 (887 (1.3 |1434 {91.0 |1.0

Table 7.5 : Varying object size and camera distance.
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OPBIECT SIZE : MEDIUM
camera-objcct distance : d4, d5, d6
distance4 distanceS distance6

Leng |Angle |Dev |Leng |Anglec [Dev |Leng |Angle |Dev

111.1 {884 (1.6 |121.2 |8.0 |20 |132.5 |84 |1.6

30.7 [86.7 |33 {335 (8.3 1.7 |36.8 |87.2 |23

332 [-71.5 3.5 [39.7 |-73.0 |20 {403 |-70.5 |45

510 1186 |14 |56.0 |1206 {0.6 |60.0 |[117.9 |2.1

36.1 (-394 |56 {409 |-454 |04 |42.7 |-436 |14

358 850 |50 |[41.7 8.7 ({13 147.1 (856 |44

48.0 1|-43.4 1.6 |[54.0 {-419 |3.1 |56.0 {-40.9 |4.1

354 (118.7 |13 |37.7 116.8 |3.2 (428 |115.5 |45

300 |[-73.2 |1.8 (325 |-694 |56 {327 {-69.5 |5.5

110.8 [90.0 (0.0 [122.2 |R7.3 |22 |134.0 |89.8 1.2

Table 7.6 : Varying object size and camera distance.
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OPBIJECT SIZE : SMALL
camera-objcct distance : d5, d6, d7
distance5 distancec6 distance7

Leng |Angle {Dev |Leng |[Angle | Dev |Leng |Angle | Dev

989 {899 |l.1 115.5 |89.9 |0.1 129.2 190.0 10.0

23.5 |[84.6 |54 |283 {908 (0.8 |309 832 (1.8

239 [-69.7 |53 |280 |-70.3 (4.7 |31.6 |-71.1 3.9

36.1 117.0 {3.0 |36.0 113.4 16.6 [44.1 1149 |5.1

39.0 |[-41.1 |39 |49.6 {-39.7 |53 (530 |-408 [4.2

45.0 [84.6 |54 |487 (R24 7.6 |57.8 (830 |70

320 |(-404 |4.6 |370 |-386 {64 [420 (-37.1 [79

252 |115.9 (4.1 |28.1 111.0 190 31,7 (1144 {5.6

249 [-69.0 |6.0 |26.8 |{-62.4 125 |314 |-68.2 (6.8

99 |88.2 |1.8 |I119 |83.5 {65 [128.2 |86.6 |34

Table 7.7 : Varying object size and camera distance.
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Class #of |max |[big max |max [#of |[#of |#Hof |num |sub
sid |sid |sid {pos |neg |[lrg. |ncg |[sid |obj |cls
ang |ang |ang |ang |dtl
A 10 390 (2 120 {-74 |6 4 i |1 1
B 8 461 |2 131 |-89 |4 2 8 | 0
C 13 307 |! 95 -89 |6 4 16 1 1
D 9 370 {2 95 |91 |5 2 12 1 1
E 7 300 |1 93 |92 |4 1 8 1 2
F 10 |424 (2 91 &7 |5 3 12 1 0
G 13 264 {0 102 |-94 |7 4 18 | 1
H 8 425 |t 107 |-86 |5 2 9 1 0
I 16 196 |0 128 |-91 |8 6 18 1 2
J 10 356 |1 98 [-82 {4 3 14 1 0
K 13 1293 |0 117 |-90 |7 5 14 1 0
L 6 447 |2 91 -87 |5 1 8 1 I
M 8 475 |2 114 |-14 |6 2 11 1 0
N 9 383 |1 110 |-88 {4 2 12 1 0
6] 10 345 |2 122 -89 |5 3 12 1 |
P 9 369 |2 105 |-72 3 13 | 1
B Q 12 357 |1 132 |-87 |7 4 14 | 0
S 3 677 |3 137 |0 3 0 4 1 1
T 4 591 |4 91 0 4 0 4 1 1
U 5 464 |3 136 |-8 |4 1 6 1 1

Table 7.8 : Objects tested
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Class |Segment |Longest |Reference |Normalize
A 0/71 0/0 0/0 : 0/0
B 0/60 0/0 0/0 0/0
C 0/93 0/0 0/0 0/5
D 0/72 0/0 0/5 0/0
E 0/55 0/0 0/0 0/0
F 0/77 0/0 0/0 0/0
G 0/99 0/6 0/0 0/5
H 0/60 0/5 0/0 0/0
I 1/04 0/0 0/6 0/0
J 0/82 0/0 0/0 0/0
K 0/94 0/0 0/0 0/6
L 0/50 0/0 0/5 0/0
M 0/71 0/0 0/0 0/0
N 0/77 0/0 0/0 0/6
o 0/71 0/0 0/0 0/0
P 0/83 0/0 0/0 0/5
Q 0/32 0/0 0/0 0/0
S 0/83 0/0 0/0 0/0
T 0/33 0/0 0/0 0/6
U 0/44 0/0 0/0 0/5

Table 7.9 : Statistics for Obtaining Polar Models
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Class |Get Assign |Add |Add Add.

Descrip Genrec [Class |Object | Detailed
A 0/0 0/0 0/5 0/0 0/27
B 0/0 0/0 0/5 0/0 0/11
C 0/6 0/0 0/5 0/0 0/33
D 0/6 0/0 0/5 0/0 0/28
E 0/0 0/0 0/6 0/6 0/11
F 0/6 0/0 0/6 0/0 0/22
G 0/6 0/0 0/ 0/0 0/38
H 0/0 0/0 0/15 | 0/0 0/11
I 0/0 0/0 0/11 | 0/0 0/61
J 0/0 0/0 0/5 0/6 0/33
K 0/0 0/0 0/11 | 0/6 0/27
L 0/0 0/0 0/6 0/5 0/22 -
M 0/0 0/0 0/6 0/0 0/22
N 0/0 0/0 0/5 0/0 0/33
O 0/6 0/0 0/5 0/0 0/28
P 0/0 0/0 0/11 | 0/22 0/44
Q 0/5 0/0 0/6 0/0 0/60
S 0/0 0/0 o/11 | 0/0 0/11
T 0/0 0/0 0/5 0/6 0/11
U 0/0 0/0 0/6 0/0 0/16

Table 7.10 : DataBase Operations
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Object Time_to_get Sorting Resulting merged
from class all cluster cluster _|cluster
A 0/27 0/0 (A9),(0,6),..
B 0/49 0/0 (B,11),(M,9),..
C 0/33 0/0 (C,I11),(GR),..
D 0/55 0/0 (D,11),(N,8),..
E 0/33 0/0 (E,10),(L,7),..
F 0/55 0/6 (F,11),(J,10),(0,8),..
G 0/33 0/0 (G,11),(C,10),(K,06),..
H 0/44 0/0 (N,11),(M,10),(H,9),..
I 0/16 0/0 (1,11),(0,2),..
J 0/39 0/0 J,11),(0,3),..
K 0/22 0/0 (K,11),(G,6),..
L 0/38 0/0 (L,11)(E,9),..
b 0/38 0/0 (M,11),(E.8),..
N 0/44 0/0 (N,11),(H,9),..
0] 0/39 0/0 (0,10),(1,9).(F,N,..
P 0/38 - 10/6 (P,11),(J,8),..
Q 0/33 0/0 (Q,l I 1.(C.,8),..
S 0/28 0/0 (S.1 l),(T77),..
T 0/27 0/0 (T,113.(5,5),..
U 0/37 0/0 (U,11),(L,3)...

Table 7.11 : Results of Clustering Algorithm




Reference |Object of |Object_of {Object_of |Object_of
Signaturc | ClassA ClassB ClassC | ClassD
ClassA 5613
1ClassA 72469
ClassB 77343 11064
ClassC 58685 98852 9782
1ClassC 74696 125274 84479
1ClassD 80691 104720 90747 14225
ClassD 65917 123572 70576 109546
ClassE 49753 83380 66884 50920
1ClassE 51877 105622 50430 85054
2ClassE 59741 100422 46436 105664
2ClassF 54356 101308 74173 81427

Table 7.12 : Minimum Distance Test
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Object_from_class Get_D_ Detailed_Rep. -|Get_area
A o1 0/0
B 0/16 0/0
C 0/17 0/0
D 0/22 0/0
E 0/16 0/0
F 0/11 0/0
G 0/16 0/0
H 0/22 0/0
I 0/16 0/5
J 0,22 0/0
K 0/5 0/0
L 0/16 0/0
M 0/0 0/0
N 0/11 0/0
S 0/5 0/0
T 0/5 0/0
U 0/6 0/0
Table 7.13 : DataBase Operations
%
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' CHAPTER 8

CONCLUSION AND FUTURE WORK

The problem of recognizing an object’s digital image from a dictionary of

prestored images is slow. In this work, it was shown how a multi - level

" hierarchy accelerates the search. The Freeman Chain Code of an objcct’s

contour was extracted and translated to a normalized Polar model which is
invariant under translation, rotation or scaling. Two Polar models were
extracted, namely the Coarse model from which the Descriptors needed to
minimize the search were obtained, and the Detailed model which stores the
precise silhouette of the objeét used in an exact minimum - distance match. The
two models were stored in a Database; In the Learning stage, the user is
provided with numerous facilities to view the image, its silhouette, its segmented
contour(s), its Descriptors, its Polar graph and is allowed saving or loading
utilities. The Recognition Stage which also interfaces with the Database is an
interactive system allowing the operator to match an unknown object to a class
of objects. A summary of the average time to complete crucial operations is
listed in Table 8.1 . The total average Recognition time is around 120

hundredth of a second or 1.2 second.
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As future work, it would be recommended that the system’s performance be
improved. The Recognition time can be easily decreased by : |
- using a PC with faster CPU clock ( instead of 6 MHz)
- using lower resolution images, i.e. 256 by 256 pixels.
- using a PC with more RAM, instead of 512 Kb, this allows the whole
Database to be memory resident ( instead of being paged in from secondary
storage ); all the DB operations will be fastened tremendously.
- parallelizing or pipelining some of the operations, many of which are
particularly suited and are usually implemented in parallel in the industry :
* Image Thresholding and Contour Extraction can be easily modified to
operate in a pipeline fashion.
* Extracting the Detailed and Coarse Models can be done in parallel
without any extra-communication cost.
* Recognition stage is particularly suited for parallelism where the
Clustering and Area - match can be carried out on separate classes in

parallel.
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Time to Sec | 100th_sec
Generate overall and detailed : : :
Polar Models from FMC 0 68
Find the longest side(s) for
Reference Signature 0 0.5
Reorder Polar Model to obtain
Reference Signature 0 0.8
Normalize Polar Models 0 0.9
Get Descriptor Array 0 1.7
Assign Descriptors to DB 0 0
Update GEN file & all Indexes 0 6.8
Add obiject to Class/Create new Class 0 2.5
Add Detailed Polar Model to DB 0 27.5
Find Cluster of Classes 0 36
Sort Cluster on Frequency 0 0
Calculate Distance between two
Detailed Polar Models 0 0
Obtain Detailed Model
DB (DET Relation ) 0 12.7
Average Total Recognition Time 1 20

Table 8.1 : Timing Statistics Summary
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éET_REG

SET_REG

mov
mov
out
mov
mov
out
mov
mov
out
mov
mov
out
mowv
mowv
out
mov
mov
out
mov
mov
out
mov
mov
out
mov
mov
out
mov
mov
out
mov
mov
out
ret

dx,0300h
ax,4040h
dx,ax
dx,0302h
ax,0000h
dx,ax
dx,0304h
ax,07ffh
dx,ax
dx,0308h
ax,0000nh
dx,ax
dx,030ah
ax ,0000h
dx,ax
dx,030ch
ax,0044h
dx,ax
dx,030eh
ax,0407h
dx,ax
dx,0310h
ax,0010h
dx,ax
dx,0312h
ax ,0000h
dx,ax
dx,0316h
ax,3000h
dx,ax
dx,031ch
ax,0008h
dx,ax

endp

:memory cont;ol
:hésf'mask

:video mask

:X pointer

:y pointer

:pointer control
:cpu address control
:X spin constant

:y spin constant
:lut contrel

:zoom control

Appendix Al : Setting up fg-100 registers.
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O e T R

D e tatatate et Rl Dbt ettt babaded kel CLEAR image display----=-=-====--
CLEAR PROC far
mov dx,0300h
mov ax,5050h :
out dx,ax
mov dx,0306h
mov ax,0000h -2
out dx,ax
mov dx,0300h
mov ax,1010h :
out dx,ax
mov dx,031lah
mov ax,0d4940h :
out dx,ax
lopl:
mov cx,0f£fffh
watt: xXor bx,bx
loop watt
mov dx,031lah :
in ax,dx :
and ah,0£f0h
cmp ah,OcOh

jne lopl

ret
CLEAR endp
e — e ————— e - ——— SNAP new image-~=====r-v—c====-
SNAP PROC far

mov dx,031ah

mov ax,0£940h :status/control SNAP

out dx,ax
mov cx,0ffffh
delay: add ax,bx
loop delay
mov dx,031lah
mov ax,0e940h :status/control SNAP
out dx,ax
ret

GRAB PROC far
mov dx,031lzh
mov ax,0£940h :status/control SNAP
out dx,ax
ret
GRAB . endp

Appendix A2 : a-Clear , b-Snap , c-Grab operations
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nlop2:

np2:

NEGAT

PROC far

call SET REG
xor bx,bx

mov ax,bx
mov dx,030ah
out dx,ax
Xor di,di
push ds
mov dx,0a000h
mov ds,dx
mov al, {di}
pop ds

not al

inc al

add al,0ffh

push
mov
mov
mov
mov

pop
inc
inc
cmp
jnz
add

cmp
jb

ds
dx,0a000h
ds,dx
dl,al
{di},dl

ds

di
di

di,0000h
nlop2
bx,0040h

bx,02c0h
nlop3

call reSET_REG.
call res_cut

ret

endp

~: set frame ypointer

di - offset within strip

o se e

ead pixel value TO al

: get 0 or 1 in packed ah
: go TO next next byte of
: frame strip

cend of frame strip?
:IF no REPEAT packing

IF yes go TO next frame
strip only IF remaining
frame strip left

Appendix A3 : Converting the image TO its NEGATive
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bin

lop3:

lop2:

pl:

P2:

bin

PROC far

call set_cut
call SET_REG
xXor bx,bx
call READ_HEX
mov cl,dl

mov ax,bx
mov dx,030ah
out dx,ax
Xor di,di
push ds

mov dx,0a000h
mov ds,dx
mov al,{di}
pop ds

cmp al,cl
jb pl

push ds

mov dx,0a000h
mov ds,dx
mov dl,0ffh
mov fdi},dl
pop ds

jmp p2

push ds

mov dx,0a000h
mov ds,dx
mov dl,00h
mov fdi}.,dl
pop ds

inc di
inc di

cmp di,0000h
jnz lop2
add bx,0040h

cmp bx,02c0h
jb lop3
call reSET REG
call res_cut
ret

endp

: convert TO binary display

set frame ypointer

di - offset within strip

:read pixel value TO al

TO O IF white

:read pixel value TO al

: go TO next next byte of
: frame strip

:end of frame strip?

:IF no REPEAT packing

IF yes go TO next frame
: strip only IF remaining
frame strip left

Appendix A4 : Converting a gray level image TO binary
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READ_HEX

READ_HEX

PROC near
push bx
push ax
call ONE_HEX
mov dl,al
mov cl,04h
shl dl,cl
call ONE_HEX
add dl,al
mov ah,02h
int 21h
pop ax
pop bx
ret
endp

T TR PP used by READ_HEX---~--
| ONE_HEX

vl:

v2:

ONE_HEX

PROC near
push dx
mov ah,08h
int 21h
cmp al,30h
jb vyl

cmp al,46h
ja yl

cmp al,3Sh
ja y2

mov ah,02h
mov dl,al
int 21h
sub al,30h
pop dx

ret

cmp al,4lh
jb y1

mov ah,02h
mov dl,al
int 21h
sub al,37h
pop dx

ret

endp

:reads one hex digit

Appendix AS : Reading a2 hexamdecimal digit from keyboard
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pack

loop3:

loop2:

loopl:

ppl

pp2

- pack

PROC
lea
Xor

mov
mov
shr
mov
out

Xor

mov
Xor
mov

push
mov
mov
mov

pop ds

cmp
clc
jmp
stc
rcl
inc
inc
inc
cmp

mov
inc

cmp
jnz

cmp
jb

near
si,sector
bx,bx

ax,bx
cl,06h
ax,cl
dx,030ah
dx,ax

di,di

ch,00h
ah,ah
cl,01lh

ds
dx,0a000h
ds,dx

al, {di}

al,cutoff
ppl

short pp2

ah,cl
di
di

ch

ch,08h
loopl

{si+bx},ah
bx

di,0000h
loop2

bx,8000h
loop3

call blankcol

ret

endp

pack frame image TO binary image in sector

: bx - offset within sector

:divide by 64 TO get ypointer

_ :for frame strip

: set frame ypointer

di - offset within strip

counter - pack 8 pixels
ah - keep packed pixels
shift count is 1

Y I TR T I T I T Y )

:éead pixel value TO al

;cut—off value ?
: TO 0 IF white

: TO 1 IF black

: get O or 1 in packed ah
go TO next next byte of
frame strip -

count 8 times ?

;IF less than 8
: go back TO pack more

:stoie packed ah in storet+offset

:next location in sector
:end of frame strip?

:IF no REPEAT pecking
: IF yes go TO next frame
: strip only IF remaining
: frame strip left

Appendix A6 : Converting a gray image TO binary and transfer
TO ’sector’ area: each 8 pixels TO 1 byte.
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@ o D SE U D Cm S P G S G = N D WD W G W A W WS WD Ve S S W

éBLANKCOL

Y3

blankl :

PBLANKCOL

push
push
push
push
push
push
push
push
push

lea
Xor
mov
mov
inc
mov
add
cmp
jb

pop
pPop
pop
pop
pop
pop
pop
pop
pop
ret

PROC far
ax
bx
o) 4
dx
bp
si
di
ds
es

si,sector

bx,bx

dl,00h
{si+bx},dl
bx
{si+bx},dl
bx,003fh
bx,8000h
blankl

es
ds
di

si

bp
dx
cxX
bx
ax

endp

blank out column 1 and 2 of sector
from far - e.g. pascal program

. blank out columnn 1 since £glOO
sets them TO 1 FOR some reason

Appendix A7 : Blank out column 1 of frame memory
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e i  paciate

UNPACK

r3:

ra:

rl:

sl:

s2:

UNPACK

PROC
lea
Xor
mov
mov
shr
mov
out

Xor

mov
Xor
mov

shl
jb

inc
inc
inc
cmp
jl

inc
cmp
jnz
cmp
jb

ret

near : UNPACK binary image in sector TO frame
si,sector

bx,bx : bx - offset within sector
ax,bx

cl,06h :divide by 64 TO get ypointer
ax,cl :for frame strip

dx,030ah : set frame ypointer

dx,ax

di,di : di - offset within strip
al, {si+bx}

ch,ch : ah - keep packed pixels
cl,01h :shift count is 1

al,cl

sl
push ds

mov dx,0a000h
mov ds ,dx
mov d1,0££fh
mov f{dit 4l
pop ds

jmp short s2

push ds

mov dx,0a000h
mov ds,dx
mov d1l,00h
mov {di},dl
pop ds

di
di
ch

ch,08h
rl

bx
di,0000h
r2

bx,8000h
r3

endp

:read pixel value TO al

. To 1 IF black

:read pixel value TO al

get 0 or 1 in packed ah
go TO next next byte of
frame strip

count 8 times ?

:IF less than 8
: go back TO pack more

end of frame strip?

:IF no REPEAT packing

IF yes go TO next frame
: strip only IF remaining
. frame strip left

Appendix A8 : Unpacks ‘sector’ area TO frame memory
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fmmmm— i — e —— e - ————— reads binary file start and get address
READSTART PROC far

push dx

push cx

call READ_HEX

mev file,dl

dec dl

xor dh,dh
mov c¢l,06h
shl dx,cl

xor Dbx,bx

mov bx,000ch

add dx,bx

mov secstart,dx

pop cX

pop dx

ret
READSTART endp
et ntuinde b reads fmc - file start and get address
readfmc PROC far

push dx

push cx

push bx

call READ_HEX

mov file,dl
dec dl
xor dh,dh
mov <¢l,04h
shl dx,cl
xor bx,bx
mov bx,020ch
add dx,bx
mov secstart,dx

pop bx

pop cX

pop dx

ret

readfmc endp

Appendix A9 : Read file number and find starting sector
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e m———— et e ———————————— load binary image from sector TO diskette
: input : secstart should define file address TO write TO
SEC2DISK PROC far
push ax
push bx
push cx
push dx
push bp
push si
push di
push ds
push es
mov al,O0h :drive a
mov ¢cx,0040h :count of 64 sectors
mov dx,secstart :start read from secstart
lea bx,sector :1load from sector table
int 26h :write TO diskette
popf
:" pop all registers which were pushed"

pop. es

pPop ax
ret
SEC2DISK endp
e —————————— load binary file from diskette TO sector
: input : secstart should define file address TO read from
DISK2SEC PROC far
push ax
push bx
push cx
push dx
push bp
push si
push di
push ds
push es
mov al,0Ch :drive a
mov cx,0040h s:count of 64 sectors
mov dx,secstart :start read from secstart
lea bx,sector :1load from sector table
int 25h :read TO diskette
popf
" pop all registers which were pushed"”
pop es
pop ax
ret
DISK2SEC endp

Appendix A10 : Saving [ loading binary image
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: input : secstart should d
FMC2DISK PROC far
push ax
push bx
push cx
push dx
push bp
push si
push di
push ds
push es
mov
mov
mov
lea
int
popf

al,O00h
cx,0010h
dx,secstar
bx, fmcout
26h

" po
pop es
pop ax
ret
FMC2DISK

save fmc image from fmcsec TO diskette
efine file address TO write TO

:drive a
:count of 16 sectors
t :start read from secstart

:load from sector table
swrite TO diskette

p all registers which were pushed"

load fmc file from diskette TO fmcsec

: input : secstart should define file address TO read from

DISK2FMC PROC far
push ax
push bx
push cx
push dx
push bp
push si
push di
push ds
push es
mov
mov
mov
lea
int
popf

al,00h
cx,0010h

bx,fmcout
25h

dx,secstart

:drive a

:count of 16 sectors
:start read from secstart
:1load from sector table
:read TO diskette

" pop all ragisters which were pushed"

pop es
pop ax
ret

DISK2FMC endp

Appendix A1l : Saving

| loading of fmcout ( contour )
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----------------------- direction 4- keep outputing fmc=1] wunless

dirSrep:
inc ¢cx
push si
push bx

mov si,di

mov bx,cx

mov {si+bx},ah

pop bx

pop si
call endpix :IF current=start quit process (ah=00)
jb dirS5end :

call go4d
call getbit
jnb dir512
call go8
call getbit
jb dir5111
call go6
mov ah,04h
jmp dir5end
dir5111: mov ah,O03h
jmp dir5end
dir512 : call gob
call getbit
jnb dir5121
mov ah,O5h
jmp dirSrep
dir5121: call goO
call getbit
jnb dir5122
mov ah,06h
jmp dirS5end
dir5122: call goO
call getbit
jnb dir5123
mov ah,07h
jmp dirS5end
dir5123: call go2
call getbit
jnb dir5124
mov ah,00h
jmp dirS5end
dirb5124: call go2
mov ah,01h
dir5END: ret
dir5 endp

Appendix A12 : DIRS routine
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R D go up routine -

go2 PROC near
sub bx,0040h
ret
go2 endp
femmm e —————— go down routine -
gob PROC near
add bx,0040h
ret
go6 endp
e ——— e ———————————— go left routine -
go4 PROC near
dec al
cmp al,00h
ja go4r
mov al,08h
dec bx
god4r: ret
goé endp
e m——————— - go right routine -
goO PROC near
inc al
cmp al,08h
jbe goOr
mov al,0lh
inc bx
goOr: ret
go0 endp

Appendix A13 : Accessing individual pixels in ‘sector’
in horizontal and vertical directions
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et e - ——————————— go north-east routine -
gol PROC near
sub bx,0040h
inc al
cmp al,08h
jbe golr
mov al,Olh
inc bx
golr: ret
gol endp
fmre e ————————————— go south-east routine -
go7 PROC near
add bx,0040h
inc al
cmp al,08h
jbe go7r
mov al,O0lh
inc bx
go7r: ret
go’7 endp
e - ———————— go north-west routine -
go3 PROC near
sub bx,0040h
dec al
cmp al,00h
ja go3r
mov al,08h
dec bx
go3r: ret
go3 endp
S —————— e e e go south-~west routine -
go5 PROC near
add bx,0040h
dec al
cmp al,O00h
ja go5r
mov al,08h
dec bx
goS5r: ret
go5 endp

Appendix A14 : Accessing individual pixels in
the 4 diagonal directions.
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e —————,———————— save row & bit# of starting pixel on contout
startpix PROC near

:mov row,bx

mov dx,bx

mov bit,al

ret
startpix endp
e m e ——————————— check IF current pixel is equal TO start
: carry = O "IF not equal
: = 1 IF equal
endpix PROC near

:cmp rovw,bx

cmp dx,bx

jne endpl

cmp bit,al

jne endpl

mov ah,00h

stc

jmp endp2
endpl: clc
endp2: : testing

ret
endpix endp
feme e —————————— get bit corresponding TO current pixel in carry
getbit PROC near

push ax

push bx

push c¢x

push si

mov cl,al

mov ah, {si+bx}

shl ah,cl

pop si

pop cx

pPop bx

pop ax

ret

getbit endp

Appendix A15 : Startpix, Endpix & Getbit routines



scl:

----------------------- convert contour of screen image TO fmc & save

PROC far

push ax

push bx

push cx

push dx

push si

push di

push ds

:get first black bit of image
lea si,sector : si: start address of sector
lea di,fmcout : di: start address of fmcout
xor bx,bx : pointer within sector ( row )
mov cx,00004h : pointer TO output area in fmcout
mov al,0Ch : bit # '
call getbit
jnb scl
:print out some error message - wrong file loaded
jmp scrfmcend

call getbit :get first black pixel
jb sc2 :found
call goO :not found , move TO next pixel
cmp bx,7fffh :stop IF past end-of-image file
jb scl

:print some message 'image file is blank ..sorry
jmp scrfmcend :return

Appendix A16 : Locating start pixel
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sc2:

sc3:

scé:

sch:

sc6:

call startpix

call gob
call getbit
jnb sc3

mov ah,05h
jmp scrloop
call go0
call getbit
jnb sc4

mov ah,06h
jmp scrloop
call goO
call getbit
jnb sc5

P - - -

mov ah,07h
jmp scrloop
call go2
call getbit
jnb sc6

ﬁov ah,00h
jmp scrloop

:save co-ordinates of start pixel
:and locate next pixel
:test
push bx
push dx -
mov dl,bh
call write_hex
mov dl,bl
call write_hex
call READ_HEX
call line
pop dx
pop bx

----output fmc=5 TO area fmcout

------ output fmc=6

------- output fmc=7

------- output fmc=0

:isoalted pixel , ign~ore and move TO n=xt one

jmp scl

Appendix A17 : Obtaining 2nd pixel w.r.t. Ist pixel
& getting initial direction
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scrloop :

cmp ah,0%h : end of contour
je scrfinish
cmp ah,0Ch
jne scr2
call diroO
jmp scrloop
scrl: cmp ah,0lh
jne scr3
call dirl
jmp scrloop
scr3: cmp ah,02h
jne scr4
call dir2
jmp scrloop
scré: cmp ah,03h
jne scrb
call dir3

jmp scrloop
scr5: cmp ah,04h
jne scr6
call dir4
jmp scrloop
scrb6: cmp ah,05h
jne scr7
call dir5
jmp scrloop
scr7: cmp ah,06h
jne scr8
call dir6
jmp scrloop
scr8: cmp ah,07h
jne scr9
call dir?7
jmp- scrloop
scr9: jmp scrfinish

scrfinish:

Appendix A18 : Contour tracking algorithm.
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scrfinish:

sub cx,0004h
push si

pPop si

scrfmcEND:

scrfmc

pop
pop
pop
pop
pop
pop
pop

mov
Xor
mov

-
.

inc
inc
mov
inc
inc
mov
mov

ds
di
si
dx
(o} 4
bx
ax

ret

endp

si,di
bx,bx
{sitbx},cx

bx
bx
{sitbx},dx

bx

bx

dl,bit
{sitbx},dl

:length of fmc points saved

:save row of start pixel

:save bit # of start pixel

Appendix A19 : Saving perimeter, coordinates of 1st pixel.
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1
i

contour
push

push
lea

mov
contl: mov
inc

cmp

jb

lea
lea
mov

cont2:
push
push
mov

pop si

PROC far

ax

es

si,sector

xor bx,bx

dl,0ffh
{si+bx},dl

bx
bx,

8000h

contl

lea
Xor
mov
add
inc
inc
mov

inc

inc

mov
si,
di,
bx,

si,fmcout
bx ,bx

cx, {si+bx]}
cx,0004h

bx
bx
dx, {si+bx]}

bx
bx
al, {sitbx}

sector
fmcout
dx

si
bx

si,di

mov bx,cx

mov ah, {si+bx}
pop bx

1)

show contour of object using fmc

: push all the registers

blank. out sector”

:get # of fmc points

:get row of start pixel

:get bit # of start pixel

Appendix A20 - Displaying the contour on tv
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cmp ah,01h
jne scc2
call gob5
jmp sccloop
scc2: cmp ah,02h
jne scc3
call gob
jmp sccloop
scc3: cmp ah,03h
jne scc4
call go7
jmp sccloop
sccéd: cmp ah,04h
jne scc5
call go8
jmp sccloop
scc5: cmp ah,05h
jne sccb
call gol
jmp sccloop
scch: cmp ah,06h
jne scc?
call go2
jmp sccloop
sccT: cmp ah,07h
jne scc8
call go3
jmp sccloop
scc8: cmp ah,08h
jne scc9

call go4
jmp sccloop
scc9: jmp countend
sccloop : : set pixel in sector TO '1'
push cx

mov cl,al

mov ah, {si+bx}
rcl ah,cl

clc

rcr ah,cl

mov {si+bx},ah

pop cX
dec cx
cmp cx,0004h
ja cont2
call UNPACK
countEND: pop es : pop all registers
pop ax
ret
contour endp

Appendix A20 ( continued )

23



{mm—mmm—— e e e e e get file TO extract contour---}
filnam := : chl:=' ': contstatus := O:
gotoxy(5,3):write('diskette file drive a : proceed {y/n} : '):
textcolor(S) gotoxy(65 3):readln(chl): gotoxy(65,3):write(ch1):

IF chl <> 'y' THEN exit:textcolor(3):

gotoxy(5,5):write('enter file name + 1 blank : '):textcolor(5):
gotoxy (33, 5) readln(fllnam) gotoxy(33 5): wrlte(fllnam)
filnam := 'c:\limafmc\'+copy(£filnan, l,pos(' ,filnam)-1 )+'.fmc' :

assign(fbl,filnam): reset(fbl,4): blockread(fbl,bufinf,l,writ):
close(fbl):
assign(fbl,filnam): reset(£fbl,1000): blockread(fbl,fmc,1,writ):
close(fbl):

step 2= 4
fmcent := bufinf{l}: { # of pixels on contour }
dircnt := fmcent div step :
--------------------------------------- relative fmC==c-m—mmemreene——=}
fmen{6} := fmc{6} :
k:= 7 :
REPEAT
diff := fmc{k} - fmcik-1l} :
IF ( diff < 5 ) and ( diff > -5 ) THEN [boundary not crossed]
fmen{k} := fmen{k-1} + diff
ELSE
BEGIN
IF ( diff >= 5 ) THEN {boundary change + ]
fmen{k} := fmcenf{k-1} + diff - 8
ELSE {boundary change - i
fmcn{k} := fmcni{k-1} + diff + 8 =~
END:
inc(k) :

until k > (fmccnt+5 )

Appendix Bi : Read fmc file and convert TO rfmc



e e e et DL DL LD Dl b sum of 4-pixel groups & breakpoints }

posln := 3 : ptrdetail{2} := 2 : ptrdetaill {2} := 2 :
vertx{2} := 0 : verty{2} := 0 : vertptr := :

vertxl{2} := 0 : vertyl{2}] := 0O : ertptrl := 3

j ::= 6 : dirptr := 1 : XX =0 :-yy:= 0 :

sumcomp := fmcn{j+1}+fmcn{j+2}}fmcn{j+3}+fmcn{3+4} +

fmen{ j+5}+fmen{ j+6} +fmen{ j+7} +fmen{ j+83 +
fmen{ j+9}+fmenf{ j+10}+fmenf j+11}+fmenf j+12} +
fmcn{J+13}+fmcn{J+14}+fmcn{J+15}+fmcn{3+16}

sumcomp := round{ sumcomp / 4 ):
sumcompl := sumcomp :
REPEAT
sum := 0: =xxt{0} := xx : yyt{0} := yy :
FOR k:= 0 TO step-1 do
BEGIN
sum := sum + fmenf jtk} -

{ update xx , yy coordinates ]}
CASE fmcn{ j+k] of

0,1,7,8,9,-1 : inc(xx) :
2,6,10,14,-2 : XX := XX
3,4,5,11,12,13,-3,-4,-5 : dec(xx) :

END:

CASE fmcn{ j+k} of
0,4,-4,8,12 : YY = ¥vY
1,2,3,-5,-6,9,10,11 : inc(yy) -
5,6,7,-1,-2,-3,13,14 : dec(yy) :

END:

xxt{k+1l} := xx : yyt{k+l} := yy :

END:
{ overlook sharp break in corner }

IF abs(sum-sumcomp) >= 3 THEN
BEGIN

foundbreak := O :
FOR k:= 0 TO (step-1) do

BEGIN
IF ( abs( (fmcnf{j+k}*4) - sumcomp ) > 4 )
and ( foundbreak = 0 ) THEN BEGIN
j =3 +k :
vertxf{vertptr}] := xxt{k} :
verty{vertptr} := yyt{k} :
vertxl{vertptrl}] := xxt{k}
vertyl {vertptrl} := yyti{k}
xx := xxt{kl : yy := yyt{k} :
foundbreak := :
END:
END:

Appendix B2 : Find corner points FOR 2 levels
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IF foundbreak = 0 THEN BEGIN

j =3+ 2 :
vertx{vertptr} := xxt{2} :
vertyf{vertptr} := yyt{2} :
vertxl{vertptrl} := xxt{2} :

§ vertyl{vertptrl}l := yyt{2} :
xx := xxt{2} : yy := yyti{2} :

END: o
.§ ptrdetail{vertptr} := vertptrl :

| ptrdetaill {vertptrl} := vertptr :

i sumcomp :=fmcnf{ j+0}+fmcnf{ j+1}+fmen{j+2}+fmenf j+3} +
fmen{ j+4}+fmen{ j+5}+fmen{ j+6}+fmenf j+7} +
fmcn{ j+8}+£fmcn{ j+9} +fmen{ j+10} +fmcnf j+11}+
fmen{ j+12}+fracn{j+13}+fmen{ j+14}+£fmcnf j+15} -

sumcomp := round{sumcomp / 4.0)
sumcompl := sumcomp :

inc(vertptr) : inc(vertptrl) :

end { IF diff >= 3 }

; ELSE

i IF abs(sum-sumcompl) >= 2 THEN

) BEGIN

( j1 == 3 + 2 :

? vertxl{vertptrl} := xxt{2} :
vertyl{vertptrl} := yyt{2} :
ptrdetaill{vertptrl} := 0 :
inc(vertptrl):

sumcompl :ﬁfmcn{j1+0}+fmcn{j1+1}+fmcn{j1+2}+fmcn{j1+3} +
fmen{ jl+4}+fmenf{ ji+5}+fmenf{ jl+6}+fmen{ j1+7}+
fmen{ j1+8}+fmen{ jl+9}+fmen{ jl+10}+fmen{ j1+113+
fmen{ ji+12}+fmen{ jl+13}+£fmen{ jl+14}+fmenf j1+15}:

sumcompl := round(sumcompl / 4.0)
| END: {diff >= 1 }
IF abs(sum-sumcomp) < 3 THEN inc(j,4) :

inc(dirptr):
until ( (j-3) >= fmcent )

; » Appendix B2 (continued )
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--------------------------------------------------- show vertices---}
yscale := 0.67 :
FOR k:=3 TO (vertptr-1l) do

BEGIN

verty{k} := verty{k}*yscale

END:
vertx{l} := vertx{vertptr-1l} : verty{l} := verty{vertptr-1} :
vertx{vertptr} := 0 : verty{vertptr} := 0 : - .

FOR k:=2 TO (vertptr-1l) do

BEGIN { length of segment }
delx{k} := vertx{k+l} - vertxi{k} :
dely{k} := verty{k+l} - wvertyi{k} :
leng{k} := ( sqrt( sqgr(delx{k}) + sgr(delyf{k}) ) ):

END:

delx{l}:=delx{vertptr~1l}:dely{l}:=delyf{vertptr-1}:
leng{l}:=leng{vertptr-1}:
delx{vertptr}:=delx{l}:delyf{vertptr}:=dely{l}:
leng{vertptr}:=leng{l}:

Appendix B3 : Correction FOR non square pixels



F__.,
t
{
i

posln := 7 :

| for k:= 2 TO (vertptr-1) do
BEGIN

IF x > 1.00000 THEN
therad := 0.00000
ELSE
IF x < -1.00000 THEN
therad := 3.141592654
ELSE
IF x = 0.0 THEN
therad := 1.570796327
ELSE
IF x > 0.0 THEN

| ' ELSE

i therad := pi +
thedeg{k} := (therad*180/pi) :

T e e EEEEEEEEE

i IF delx{k-1} = 0 THEN

| mm := 9999

' ELSE

mm := dely{k-1}/delx{k-1}

cc := verty{k} - (mm*vertxik})
! fn := mm*vertx{k+l} + cc :
IF vertyfk+l} > £fn THEN

sign := +1
ELSE
sign := -1 :

IF ( vertx{k}] < vertx{k-1} )
sign := sign * -1 :
thedeg{k}] := sign*thedeg{k} :

END:

( delx{k-1}*delx{k}+dely{k- 1}*dely{k})/(leng{k-l}*leng{k}) .
. : Sutateiateiatededebebnt ~-get arccos xX----}

therad := arctan( sgrt(l.0-sqr(x)) / x )

arctan( sgrt(l.0-sgr(x)) / x ) :

get direction of angle--}

or ( ( delx{k 1} = 0 ) and ( verty{k- 1} > verty{k} ) ) THEN

Appendix B4 : Find lengths & angles of segments
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{emmmmm e m e m e normalize perimeter TO 2000---}
PROCEDURE NORMPERIM:

var sm : integer :

BEGIN :
{*************************************} GETTIME(hh,m7,s7,h7) .
normscale := 2000.0 / fmccnt :  { normalize lengths 2000/perimeter
normdiff := 20 * normscale : '

FOR sm := 2 TO vertptr - 1 do

leng{sm} := leng{sm}*normscale :
FOR sm := 2 TO vertptrl - 1 do

lengl{sm} := lengl{sm}*normscale :

[RAEFAFREIITI* AT XA I X KR X Fkkk* %k kkxkk**%%] GETTIME(hh,m8,s8,h8) :
END:

Appendix B5 : Mormalize perimeter

e e determine fields of database-==-=====-- }
PROCEDURE FINDFIELDS:
var £ : byte :
BEGIN
{*************************************} GETTIME(hh,m3,53,h3) .
alargeside := : asides := countl :
amaxanglep := 0: amaxanglen := 0: alargeanglep :=0: alargeanglen :=(
FOR £ := 1 TO countl do BEGIN
IF lengthl{f} < 30 THEN { neglect very small lengths }
dec(asides):
IF lengthl{f} > 294 THEN { count all sides > 150 }
inc(alargeside):
IF anglel{f} > amaxanglep THEN { £find maximum positive angle}
amaxanglep := anglel{f}:
IF anglel{f} < amaxanglen THEN { find maximum NEGATive angle]
amaxanglen := anglel{f}:
IF anglel{f} > 80 THEN { count angles more +80 deg }
inc(alargeanglep):
IF anglel{f} < =5 THEN { count angles less -50 deg }

inc(alargeanglen):
{************************************ﬁ} GETTIME(hh,m4,s4,h4)
END:
END:

Appendix B6 : Ontaining Descriptor array
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BEGIN
clrscr:textcolor(5): textbackground(O0):
gotoxy(30,10): write(' opening database files ...'):
openGENfiles:openobjfiles:opendetfiles: .
GENRECcount := filelen(GEN) - 1 :

menuhl{l}:= 'a:file': menuhl{2}:= 'normal':
menuhl{3}:= 'graph ': menuhl{4}:= 'print ':
menuhl{5}:= 'prevue': menuhl{6}:= "update':
menuhl{7}:= 'recogn': menuhl{8}:= 'match ':
menuhl{9}:= 'dbase ':

REPEAT

textbackground (0) : textcolor(3):clrscr:
horbar(9,1,1,80,1,menuhl, selbarhorl):
GENRECcount := filelen(GEN) - 1 : GENdetcount:=filelen(det) - 1 :
GENobjcount := filelen(obj) - 1 : '
CASE selbarhorl of

1 : BEGIN FINDCONT : { obtain contour }
countl:=vertptr-2: count2:=vertptrl-2:
normdiff := 30 : SORTMAXES:

lgposl := largeposl: 1lgpos2 := largeptrl:
DATAINT(lgposl, lgpos2,
corxl,coryl,pointl,anglel, lengthl,
corx2,cory2,point2,angle2, length2):
END: §{ CASE 1 }

2 : BEGIN NORMPERIM:
SORTMAXES :
lgposl := largeposl: 1lgpos2 := largeptrl:
DATAINT (lgposl, lgpos2,
corxl,coryl ,pointl,anglel, lengthl,
corx2,cory2,point2,angle2,length2):

FINDFIELDS:
END: { CASE 2 }
3 : GRAPHUTIL1
4 : PRINTSHOW:
5 : BEGIN PREVIEWFIELDS: END:
6 : BEGIN { add main class TO db }
gotoxy(1l,5):write(' is data normalized ? {y/n} : 'y

gotoxy(32,5):readln(opt): IF opt = "'n' THEN goto ml :
window(1,2,80,25):clrscr:ADDCLASSTODB:
window(1,2,80,25):clrscr: add subclass 1 IF user desires }
IF largestat2 = 1 THEN BEGIN
gotoxy(1,5):write('add subclass,for 2nd largest side {y/n}:'):
gotoxy(57,5):readln(opt): IF opt = 'n' THEN goto ml
lgposl := largepos2: 1lgpos2 := largeptr2:
DATAINT(1lgposl, lgpos2,corxl,coryl,pointl,
anglel,lengthl,corx2,cory2,point2,angle2, length2):
addsubclass(1l):
END:

Appendix C1 : Main Learning & Rrecognition Module
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window(1l,2,80,25):clrscr: { add subclass 2 IF user desires]
IF largestat3 =1 THEN BEGIN
gotoxy(1l,5):write('add subclass, for 3rd largest side {y/n}:
gotoxy(57,5) :readln(opt): IF opt = 'n' THEN goto ml :
lgposl := largepos3: 1lgpos2 := largeptr3:
DATAINT(lgposl, lgpos2,carxl,coryl,pointl,
anglel,lengthl,corx2,cory2,point2,angle2, length2):
addsubclass(2):
END:

END: §{ sel = 6 }

7 : BEGIN gotoxy(1,3):write(' normalizing model ... '):
NORMPERIM: SORTMAXES :
lgposl := largeposl: 1lgpos2 := largeptrl:

DATAINT(lgposl, lgpos2,
corxl,coryl,pointl,anglel, lengthl,
corx2,cory2,point2,angle2, length2):

FINDFIELDS:
TESTSEARCH:
END:
8 :BEGIN gotoxy(1l,3):write(' normalizing model ... '):

NORMPERIM: SORTMAXES:

lgposl := largeposl: 1lgpos2 := largeptrl:
DATAINT(1lgposl,lgpos2,corxl,coryl,pointl,anglel, lengthl,
corx2,cory2,point2,angle2, length2):
FINDFIELDS:
TESTSEARCH2class :

END:
9 : BEGIN DISPLAYDB : END:
END: { CASE }

window(1l,2,80,25) :textbackground(0):clrscr:textcolor(3):
ml: until selbarhorl = 0 :

gotoxy(20,10):write(' closing all database files ...'):
closeGENfiles:closeobjfiles:closedetfiles:

textcolor(3):textbackground(0) :window(1,1,80,25):clrscr:

Appendix C1 ( continued )
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type

codestr=string{10}:
string2=string{2}:

{ FOR GENobj.DBF
GENREC = record
GENstat :

class
sides
maxside
largeside
maxanglep
maxanglen
largeanglep
largeanglen
sidesdet
numob jects
subclass
END:
{ FOR detobj.DBF
DETREC = record
detstat
class
sideord
length
angle
END:

{ FOR clust.DBF

: info about main features of object

longint : { used by system FOR deleting
codestr: { name of object user defined
string2: §{ number of sides

string2: §{ longest side

string2: { number of sides > 400

string2: {f largest positive angle

string2: { largest NEGATive angle

string2: { number of angle > 80

string2: §{ number of angle < =50

string2: { number of sides FOR detailed object
string2: §{ number of objects in the class
string2: { same class , longest sides shifted

: detailed rho-theta info of object sides

longint :

codestr: { class name together with
string2: { side number starting from longest
string2: { length of side

string2: { relative angle TO previous side

: heuristic search keeps count of near matches

CLUSTREC = record

cluststat

class

count
END:

{ FOR object.DBF
OBJREC = record
objstat :
class :
objname :
perimeter :
distance :

END:

longint :
codestr: §{ class name
string2: { how many times object was found

: heuristic search keeps count of near matches

longint :

codestr: { class name together with
codestr: §{ object name are indexed
string2: { absolute perimeter

string2: { dist between object and camere

maxdatatype=GENREC:
maxkeytype=string{20}:

Appendix C2
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{$i db.typ}
var

tempstrl2 :
CLUSTRECnum

BEGIN

inttostr :
END:

BEGIN

strtoint := swap( ord(s{l})

END:

uses dos,crt,taccess:

GEN , det , cls ,obj : datafile :
clsl , detl , objl , .
GEN1,GEN2,GEN3,GEN4,GENS5,GEN6 ,GEN7 ,GEN8 : indexfi
GENr : GENREC: detr : DETREC: clsr : CLUSTREC: ob

string{l2} :
, GENRECnum : longint :

n := n + $8000:

function inttostr ( n : integer ) :

string2 :

= chr(hi(n)) + chr(lo(n)) :

function strtoint ( s : string2 ) :

PROCEDURE createGENfiles:

i BEGIN
makefile (
makeindex(
makeindex(
makeindex(
makeindex(
makeindex(
makeindex(
makeindex(
makeindex(

END:

GEN

GEN1
GEN2
GEN3
GEN4
GENS
GEN6
GEN7
GENS8

, 'GENobj . DBF"

, 'classnam.NDX'
, 'sides.NDX'

, 'maxsid.NDX'

, 'largesid.NDX'
, '"maxangp.NDX'

, 'maxangn .NDX'
, 'largangp.NDX'
,'largangn.NDX"

PROCEDURE createdetfiles:

BEGIN
makefile (
makeindex(

END:

det
detl

, 'detobj.DBF'
, 'classide.NDX"

PROCEDURE createclustfiles:

BEGIN
makefile (

cls

, 'clust.DBF'

: makeindex( clsl ,'clusnam.NDX'

END:

PROCEDURE createobjfiles:

BEGIN
makefile (

obj

,'object.DBF'

makeindex( objl ,'classobi.NDX'

END:

Appendix C3
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sizeof (GENx
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, sizeof(detr)
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) + ord(s{2}) + $8000 :
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PROCEDURE openGENfiles: BEGIN
openfile ( GEN 'GENobJ DBF'
openindex( GEN1 'classnam.NDX'
openindex( GEN2 ,'sides.NDX'
openindex( GEN3 ,'maxsid.NDX'
openindex( GEN4 ,'largesid.NDX'.
openindex( GEN5 ,'maxangp.NDX' ~
openindex( GEN6 ,'maxangn.NDX'
openindex( GEN7 ,'largangp.NDX'
openindex( GEN8 ,'largangn.NDX'

END:

PROCEDURE opendetfiles: BEGIN
openfile ( det 'detobJ DBE' , sizeof(detr) ):
openindex( detl 'classide.NDX' , 12 , 0):

END:
PROCEDURE openclustf11es- BEGIN
openfile ( cls 'clust.DBF' , sizeof(clsr) ):
openindex( clsl , 'clusnam.NDX' , 12 , 0 ):
END:

PROCEDURE openobjf11e3° BEGIN
openfile ( obj '‘object.DBF' , sizeof(objr) ):
openindex( objl ,'classobj.NDX' , 20 , 0 ):

END:

sizeof (GENr
10

[ T T A )
T Y T T
N S’ S S S S o
.

NN
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PROCEDURE SORTMAXES: BEGIN

largerl := leng{2} : largeposl := 2 : largeptrl := ptrdetail{2}:

FOR sm :=3 TO vertptr - 1 do BEGIN { find longest side }
IF leng{sm} > largerl THEN BEGIN

largerl := lengf{sm} :
largeptrl := ptrdetailf{sm} :
largeposl := sm :
END: END:
largestat2 := 0 : largestat3 := 0 : {find 2nd 3rd largest sides }

FOR sm :=2 TO vertptr - 1 do BEGIN
largediff := largerl - leng{sm}:

IF ( sm <> largeposl ) and ( largediff <= normdiff ) THEN BEGIN

iIF largestat2 = O THEN BEGIN larger2 := leng{smj :
largeptr2 := ptrdetail{sm}:

largepos2 := sm

largestat2 := 1 : end
ELSE IF largestat3 = O THEN BEGIN larger3 := leng{sm}

largeptr3 := ptrdetail{smi:

largepos3 := sm :

largestat3 := 1 : end :

END: end
END:
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e ettt tatatel convert all data TO integer--------- }
{ reorder sides starting from longest }
PROCEDURE DATAINT(lgposl, lgpos2:integer:var corxl,coryl,pointl,anglel
lengthl, corx2,cory2,point2,angle2,length2:vert):
var ml,indl:byte: .
BEGIN . i
IF lgposl < vertptr THEN BEGIN
FOR ml := lgposl TO vertptr - 1 do BEGIN
indl := ml-lgposi+l: ‘

corxl{indl} := round( vertxi{ml} ) :
coryl{indl} := round( vertyf{ml} ) :
pointl{indl} := ptrdetaili{ml} -
anglel{indl} := round(thedeg{ml}):
lengthl{indl} := round(lengi{ml}):
END:
END:
IF lgposl > 2 THEN BEGIN
FOR ml := 2 TO 1lgposl - 1 do BEGIN
indl:=vertptr-lgposl+ml-1:
corxl{indl} := round( vertx{ml} ) :
coryl{indl} := round( vertyf{ml} ) :
pointl{indl} := ptrdetailf{ml} :
anglel{indl} := round(thedeg{ml}):
lengthl{indl} := round(leng{ml}):
END:
END:

{FrFFRRkkkkhhhhkkkkkkkkkkkkkdkkkxxk*x%*} GETTIME(hh,m5,s5,h5)
IF lgposl < vertptr THEN BEGIN

FOR ml := lgpos2 TO vertptrl - 1 do BEGIN
indl := ml-lgpos2+l: '

corx2§{indl} := round( vertxlif{ml} ) :

cory2§{indl} := round( vertyli{ml} ) :

point2{indl} := ptrdetaill{ml} :

angle2{indl} := round(thedegli{ml}):

length2{indl} := round(lengliml}):
END:

END:

IF lgpos2 > 2 THEN BEGIN

FOR ml1 := 2 TO 1lgpos2 - 1 do BEGIN
indl:=vertptrl-lgpos2+ml-1:
corx2§{indl} round( vertxl{ml} )

cory2§{indl} = round( vertyl{ml} )

peint2{indl} := ptrdetaill{ml} :

angle2{indl} := round(thedegli{ml}):

length2{indl} := round(lengl{ml}):
END:

END:
{REExEII KIS A X Tk kkkkdkkkkk*khkkkkk*k%*%*] GETTIME(hh,m6,s6,h6) :
END:
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PROCEDURE PREVIEWFIELDS:

BEGIN

textcolor(3):
gotoxy(2,3):write('class name
gotoxy(2,5):write( 'number of sides
gotoxy(2,7):write('longest side
gotoxy(2,9):write('# of sides > 300
gotoxy(2,11):write('maxim pos. angle
gotoxy(2,13):write('maxim neg. angle
gotoxy(2,15):write('# of angles > 90

gotoxy(2,17):write('# of NEGATive angles
gotoxy(2,19):write('detailed - # sides

gotoxy(2,21):write('actual perimeter
textcolor(2):
gotoxy(27,3) :write( 'noname'):
gotoxy(27,5):write(asides:6):

display fields which will be updated TO dbase--}

I YY)

-~ - e -

- ew w e o A S’ e’

S’ e’ St e’ e’ N’ 48 40 00 88
(TR Y Y

gotoxy(27,7):write(round(largerl):6):

gotoxy(27,9):write(alargeside:6):
gotoxy(27,11):write(amaxanglep:6):
gotoxy(27,13):write(amaxanglen:6):
gotoxy(27,15):write(alargeanglep:6):
gotoxy(27,17):write(alargeanglen:6):
gotoxy(27,19):write(count2:6):
gotoxy(27,21):write(fmccnt:6):

textcolor(l): FOR ml := 3 TO 24 do BEGIN

gotoxy(38,ml) :write('£'):END:

textcolor(5):gotoxy(41,3):

write(' ~detailed- side length angle'):
textcolor(3): FOR ml := 1 TO count2 do BEGIN -
gotoxy(50,m1+3) :write(ml:9,length2{ml}:9,angle2{ml}:9):END:

textcolor(4) :gotoxy(50,25):write('press enter

END:
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PRO
var

------------------------------------------ graphics wutilities
CEDURE GRAPHUTIL1:

gd,gm : integer : outsl,outs2,outs3,outs4 : string{3} :
xcen,ycen : shortint : =xsc,ysc : real : menusel : byte :

BEGIN

gd := detect : initgraph(gd,gm,"):*
IF graphresult <> grok THEN halt(1) :

setgraphmode(0) :

{ delete FOR cga mode }
CLEARview(0,0,639,199) : setbkcolor(4) :
men{l}:="object ?':

men{2}:="main image':

men{3}:="detailed':

men{4}:="center':

men{5}:="scale':

men{6}:="CLEAR"':

men{7}:="rho theta':

xsc := 1.5 : ysc := 0.7 : xcen := : ycen := 0 :
REPEAT

CLEARview(500,0,639,199):
str(xsc:3:1,outsl):str(ysc:3:1,outs2):
str({xcen,outs3):str(ycen,outssd):
outtextxy(500,100, 'scale : '+outsl+' '+outs2):

outtextxy (500,110, 'center: '+outs3+' '+outss):

select(men,7,menusel):
CASE menusel of
BEGIN end :

W =

BEGIN flashmsg(0,0, 'enter new center'):
read(xcen,ycen) :CLEARview(0,0,135,30):
end :

S : BEGIN flashmsg (0,0, 'enter new scale'):
read(xsc,ysc) :CLEARview(0,0,135,30):
end :

6 : BEGIN blank : end :

BEGIN CONTDRAW(corxl,coryl,countl, xcen,ycen,xsc,ysc):
BEGIN CONTDRAW(corx2,cory2,count2, xcen,ycen, xsc,ysc): end

end

7 : BEGIN RHOTHETA(anglel ,angle2, lengthl, length2, countl,count2):

END:
else:
END:
until menusel = 0 :
setviewport(0,0,639,199,clipon):
CLEARdevice : closegraph : restorecrtmode :

window(1l,1,80,25):textbackground(0):textcolor(3):clrscr:
END:
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et L L e e L L L LT e draw polygon=-=--=—===---- }
PROCEDURE CONTDRAW(xx,yy:vert:n,xcen,ycen:integer:xsc,ysc:real):
BEGIN
moveto( round(xsc*xx{l}+xcen+250) ,
round(ysc*abs(yy{l})+ycen) ):
FOR Kkl := 2 TO n do BEGIN .
lineto( round(xsc*xx{kkl}+xcen+250) ,
round(ysc*abs(yy{kkl})+ycen) ):
END:
lineto( round(xsc*xx{l}+xcen+250) ,
round(ysc*abs(yy{l})+ycen) ):
END:

Appendix C9

e L e L e L L e P plot graph=====~cw--x}
PROCEDURE RHOTHETA (anglel,angle2, lengthl, length2:vert:
countl,count2:integer):
BEGIN
line(40,1,40,198): xx:=40:yy:=75:moveto(round(xx) ,round(yy)):
FOR rt := 1 TO countl do BEGIN

yy := yy - anglelirt}/6 :  lineto{round(xx),round(yy)) :
XX := xx + lengthl{rt}/3 :  lineto(round(xx),round(yy)) -:
END:

XX := 40 : yy := 150 : moveto(round(xx),round(yy)):
FOR rt := 1 TO count2 do BEGIN

Yy := yy - angle2f{rt}/6 : lineto(round(xx),round(yy)) :
XX := xx + length2irt}/3 : lineto(round(xx),round(yy)) :
END:

END:

Appendix C10

PROCEDURE DISPOBJINCLASS:

BEGIN
tempclassobjl := GENr.class : posln := 8: textcolor(5):
gotoxy(2,6):write(' class object perimeter'):
gotoxy(2,7):write('-=-cmccmmmm e e '):

SEARCHKEY(objl,OBJRECnum,tempclassobjl): textcolor(3):

IF ok THEN BEGIN

tempval := OBJRECnum + strtoint(GENr.numobjects) - 1 :

FOR tempind := OBJRECnum TO tempval do BEGIN

. GETREC(obj,tempind,objr): gotoxy(l,posln):
write(objr.class:10,0bjr.objname:10,strtoint{objr.perimeter):9):
inc(posln): end : { FOR loop }

END:

END:
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END: posln := 4:

chl:=' ':textcolor(3):

gotoxy(5,5):write('Is printer is connected {y/n} : '):
textcolor(S):gotoxy(65,5):readln(chl):

IF chl <> 'y' THEN goto 201 :

writeln(lst, 'sides: ',countl,’ perimeter: ', fmcent):
writeln(lst,' side # x-ord y-ord length angle pointer' ):
writeln(lst, '-=ecmmmauaa-o e e '):

FOR rt :=1 TO countl do BEGIN
writeln(lst,rt:S,corxl{rt}:9,cory1{rt}:9,length1{rt}:9,
anglel{rt}:9,pointl{rt}:8):

END:

Appendix C12

------------------------------ print out the dbase fields indexed---}
PROCEDURE PRINTFIELDS(fn:integer:msg:stringSO):

textcolor(3):
CASE fn of

1 :CLEARKEY(GEN1): 2 :CLEARKEY (GEN2):

:= 1 TO GENRECcount do BEGIN

CASE fn of
1:NEXTKEY(GENI,GENRECnum,tempclass):
2:NEXTKEY(GENZ,GENRECnum,tempstrZ):

END: gotoxy(14,posln):
IF ok THEN BEGIN
GETREC(GEN,GENRECnum,GENr) :

CASE fn of
l:write(k:7,GENRECnum:8," : ',GENr.class:10):
2:write(k:7,GENRECnum:8, "' : ',GENr.class:10," ',

strtoint (GENr.sides) ):

end
END: inc(posln):
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------------------------------------------- all info FOR a class----}

gotoxy(5,3):write( 'enter search class name : ")
gotoxy(40,3):readln(searchclass):

tempclass := searchclass :

FINDKEY (GEN1,GENRECnum, tempclass):

IF ok THEN BEGIN {. class already exists }

gotoxy(l,1):write('class # of sides .. heading '):
GETREC(GEN,GENRECnum,GENr):textcolor(3):
gotoxy(1,4):write(GENr.class):gotoxy(8,4):
write(strtoint(GENr.sides):6,strtoint(GENr.maxside):8,
strtoint(GENr.largeside):5,strtoint(GENr.maxanglep):8,
strtoint(GENr.maxanglen):9,strtoint(GENr.largeanglep):7,
strtoint(GENr.largeanglen):7,strtoint(GENr.sidesdet):8,
strtoint(GENr.numobjects):5,strtoint(GENr.subclass):5 ):
tempclassobj := searchclass : posln := 8: textcolor(5):
gotoxy(1l,7):write('object name perimeter '):
SEARCHKEY(objl,OBJRECnum,tempclassobj): textcolor(3):
IF ok THEN BEGIN

tempval := OBJRECnum + strtoint (GENr.numobjects) - 1 :

FOR tempind := OBJRECnum TO tempval do BEGIN
GETREC(obj,tempind,objr): gotoxy(l,poslin):
write(objr.objname:lo,strtoint(objr.perimeter):11):
inc(posln): end : { FOR loop }

END:
tempclasside := searchclass + inttostr(l) :posln := 7:
gotoxy(45,6):write(' side order length angle'):

SEARCHKEY(detl,DETRECnum,tempclasside): textcolor(3):
IF ok THEN BEGIN
tempval := DETRECnum + strtoint(GENr.sidesdet) - 1 :
FOR tempind := DETRECnum TO tempval do BEGIN
GETREC(det, tempind,detr): gotoxy(48,posln):
write(strtoint(detr.sideord):6,strtoint(detr.length):12,
strtoint(detr.angle):8):
inc(posln): end : { FOR loop }
IF posln > 23 THEN write('press enter TO continue'):
readln:clrscr:posln:=7:
END:
gotoxy(55,24):textcolor(4):write(' enter TO go on ..'):readln:
end { class already exists }

ELSE BEGIN textcolor(4): { class not found }
gotoxy(5,8):write(’ search class name not found '):readln:
end :
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GETTIME (hh,m5,s5,h5) : GETTIME(hh,m6,s6,h6) :
PROCEDURE timediff
(var mmm,sss,hhh:integer:mxz,sx2,hx2,mx1,sxl,hxl:word:msg:strBO):
BEGIN
mmm := mx2 - mx1l :
sss := sx2 - sx1l :
IF sss = O THEN
hhh := hx2 - hxl
ELSE BEGIN

sss := 0 :
hhh := (100 - hxl) + hx2 : end :
writeln(msg:30,' : ',omm:5,' m ',sss:5,' s ',hhh:7,’' hun'):

END:

Appendix C15

PROCEDURE ADDCLASSTODB: BEGIN

gotoxy(5,3):write( 'enter new or existing class name : ')
readln(userclsname): tempclass := userclsname

FINDKEY (GEN1,GENRECnum, tempclass):

IF ok THEN BEGIN { class already exists }

GETREC (GEN, GENRECnum,GENr) :
gotoxy(5,4):write('class already exists "Y:

write(' objects in class : ' ,strtoint(GENr.numobjects):3):
DISPOBJINCLASS:

gotoxy(40,6): write('new object perimeter : ', fmccnt:6):
gotoxy(40,10):write('add object TO class ? fy/n} ")

gotoxy(71,10) :readln(opt):

IF opt <> 'y' THEN exit _ :

ELSE BEGIN ADDOBJTOCLASS end : { add new object TO class }
end { class already exists }

ELSE BEGIN { new class TO be added with first object }
gotoxy(5,8):write(' this is the first object in this class ")
gotoxy(5,10) :write(' create new class and add object ? fy/n}: ')
gotoxy(55,10) :readln(opt):

IF opt <> 'y' THEN exit

ELSE BEGIN ) { first object }
INPUTGENREC : ADDKEYtoGEN :
write(' 1lst object name 2 : '): readln(objr.objname):
obijr.class := userclsname : objr.perimeter:=inttostr(fmccnt):
objr.cbjstat := 0 : objr.distance := inttestr(0):
tempclassobj:= objr.class+objr.objname :
ADDREC(obj,OBJRECnum,objr): ADDKEY (objl,OBJRECnum, tempclass:«

. inputDETREC(0): { insert the detailed sides in detobj.DBF }
END: { opt not y }

end : { new class 1lst obj }

END:
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PROCEDURE ADDOBJTOCLASS:

BEGIN
gotoxy(40,10) :write('enter new object name : 'Y
gotoxy(65,10):readln(objr.objname): { get object name }
objr.class := GENr.class : objr.perimeter := inttostr(fmccnt):
objr.objstat := 0 : objr.distance := inttostr(0):
tempclassobj := objr.class + objr.objname :
ADDREC (obj,OBJRECnum, objr):
ADDKEY (objl,0BJRECnum, tempclassobj ):
GENr.numobjects := inttostr ( strtoint (GENr.numobjects) + 1 ):
putrec (GEN, GENRECnum, GENr) : { update record TO add object }
END:

Appendix C17

PROCEDURE INPUTGENREC:

BEGIN
GENr .GENstat == 0
GENr.class := userclsname :
GENr.sides := inttostr(countl) :
GENr.maxside := inttostr(round(largerl)) :
GENr.largeside := inttostr(alargeside) :
GENr .maxanglep := inttostr(amaxanglep) :
GENr .maxanglen := inttostr(amaxanglen) :
GENr.largeanglep := inttostr(alargeanglep) :
GENr.largeanglen := inttostr(alargeanglen) :
GENr.sidesdet := inttostr(count2?) :
GENr .numob jects := inttostr(1l) :
GENr.subclass := inttostr(0) :

END:

Appendix C18

PROCEDURE ADDKEYtoGEN:

BEGIN
ADDREC (GEN, GENRECnum, GENr) :
ADDKEY (GEN1 ,GENRECnum,GENr.class )
ADDKEY (GEN2,GENRECnum, GENr . sides )
ADDKEY (GEN3,GENRECnum, GENr .maxside )
ADDKEY(GEN4,GENRECnum,GENr.largeside ):
ADDKEY(GENS,GENRECnum,GENr.maxanglep ):
ADDKEY (GEN6 , GENRECnum, GENr .maxanglen )
ADDKEY(GEN7,GENRECnum,GENr.largeanglep )
ADDKEY (GEN8 ,GENRECnum,GENr . largeanglen )

END:
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PROCEDURE inputDETREC(n:byte):

BEGIN
detr.detstat := 0
CASE n of
0 : detr.class = userclsname:
1 : detr.class := '1'" + userclsname :
2 : detr.class = '2'" + userclsname :
END:
FOR il := 1 TO count2 do BEGIN
detr.sideord := inttostr(il):
detr.length := inttostr(length2{il}):
detr.angle := inttostr(angle2{il}):
tempclasside := detr.class + inttostr(il):
ADDREC(det ,DETRECnum,detr):
ADDKEY (detl ,DETRECnum,tempclasside ):
END:
END:
Appendix C20
BEGIN last record }
openfile ( GEN , "CENobj.DBF' , sizeof(GENr) ):
openindex( GEN1 ,'classnam.NDX' , 10 , 0):
openindex( GEN2 ,'sides.NDX' , 2 , 1 ):
openindex( GEN3 ,'maxsid.NDX' , 2 , 1)
GENr .GENstat := 0 =
GENr.class := 'lastrec' :
GENr.sides := inttostr(2000) :
GENr .maxside := inttostr(2000) :
GENr. largeside := inttostr(2000) :
GENr .maxanglep := inttostr(2000) :
GENr .maxanglen := inttostr(2000) :
GENr.largeanglep := inttostr(2000) :
CENr.largeanglen := inttostr(2000) :
GENr .sidesdet := inttostr(2000) :
GENr.numob jects := inttostr(2000) :
GENr.subclass := inttostr(2000) :

ADDREC (GEN,GENRECnum,GENr) :

ADDKEY (GEN1 ,GENRECnum,GENr.class
ADDKEY (GEN2 ,GENRECnum,GENr . sides
ADDKEY (GEN3 ,GENRECnum, GENr .maxside

closefile(GEN):
closeindex(GEN1) :closeindex(GEN2) :closeindex(GEN3) :closeindex (GEN4]

closeindex(GENS5) :closeindex(GEN6) : closeindex (GEN7) : closeindex (GENS]
end. .
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PROCEDURE TESTSEARCH:
var begs,ends : integer : subcls : byte :

BEGIN

numcls := 0 :

window(1,2,80,25):clrscr:
b2 := countl :
b3 := round(largerl) .
b4 := alargeside :
b5 := amaxanglep :
b6 := amaxanglen :
b7 := alargeanglep :
b8 := alargeanglen :

window(1,2,80,25):clrscr:
[hRF kT RIF IR I XTI X I kR dk Rk kkhkkkkkk*k%}  GETTIME(hh,m27,s27,h27):
SEARCHCLASSES (2,b2 b2+1 )
SEARCHCLASSES(3,b3-55 ,b3+55 )
SEARCHCLASSES (4,b4 ,bd )
SEARCHCLASSES(5,b5-6 ,b5+6 )
SEARCHCLASSES(6,b6+6 ,b6-6 )

)

)

*

SEARCHCLASSES(7,b7-1 ,b7+1
SEARCHCLASSES (8,b8 ,b8

{****************************

* %

#%%*%} GETTIME(hh,m28,s28,h28):

; FOR indl := 1 TO numcls do BEGIN
i tempclass := clscls{indl}:
| FINDKEY (GEN1,GENRECnum,tempclass):
; GETREC(GEN, GENRECnum,GENr) :
§ subcls := strtoint(GENr.subclass):

i if( (largestat3=1) and (subcls<>2) ) THEN
? clsent{indl} := O '
ELSE BEGIN
if((largestat2=1)and(subcls<>1)) THEN
clscnt{indl} := 0
ELSE BEGIN
if((largestata= O)and(subcls<>0)) THEN
clscnt{indl} := O:
END:
END:
END:
SORTCLUST:
; SHOWCLUST:
END:
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PROCEDURE SEARCHCLASSES(fn,begsid,endsid:integer):

BEGIN
tempstrintl := inttostr(begsid): tempstrint2 := inttostr{endsid):
CASE fn of
2: SEARCHKEY (GEN2 ,GENRECnum, tempstrintl):
3: SEARCHKEY(GEN3,GENRECnum,tempstrintl):
4: SEARCHKEY (GEN4 , GENRECnum, tempstrintl):
S5: SEARCHKEY (GEN5 , GENRECnum, tempstrintl):
6: SEARCHKEY (GEN6 ,GENRECnum, tempstrintl):
7: SEARCHKEY (GEN7 ,GENRECnum, tempstrintl):
8: SEARCHKEY (GEN8 ,GENRECnum, tempstrintl):
END:
IF ok THEN BEGIN
locsl:
GETREC(GEN, GENRECnum, GENr) :
CASE fn of
2: tempstr2 := GENr.sides :
3: tempstr2 := GENr.maxside :
4: tempstr2 := GENr.largeside :
5: tempstr2 := GENr.maxanglep :
6: tempstr2 := GENr.maxanglen :
7: ‘tempstr2 := GENr.largeanglep :
8: tempstr2 := GENr.largeanglen
END:
IF ( tempstr2 <= tempstrint2 ) THEN BEGIN
CASE fn of
2: INSERTCLUST(GENr.class , 2 ):
3: INSERTCLUST(GENr.class , 1 ):
4: INSERTCLUST(GENr.class , 1 ):
5: INSERTCLUST(GENr.class , .2 ):
6: INSERTCLUST(GENr.class , 3 ):
7: INSERTCLUST(GENr.class , 2 ):
8: INSERTCLUST(GENr.class , 3 ):
END:
CASE fn of
2: NEXTKEY(GEN2,GENRECnum, tempstrintl):
3: NEXTKEY(GEN3,GENRECnum, tempstrintl):
4: NEXTKEY(GEN4,GENRECnum,tempstrintl):
5: NEXTKEY(GENS,GENRECnum, teémpstrintl):
6: NEXTKEY(GEN6,GENRECnum, tempstrintl):
7: NEXTKEY(GEN7,GENRECnum, tempstrintl):
8: NEXTKEY(GEN8,GENRECnum, tempstrintl):
END:
gotoc locsl:
. END: { IF <= tempstrint2 }
END:
END:
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PROCEDURE INSERTCLUST(newcls:codestr:incwt:shortint):
label insl :
BEGIN
FOR posln := 1 TO numcls do BEGIN
IF ( clscls{posln} = newcls ) THEN BEGIN

. inc( clscnt{posln} , incwt) : goto 1ns1 : end :
END: . : )

inc(numcls):
clscls{numcls} := newcls :
clscent{numcls} := incwt
insl :
END:

Appendix C24

PROCEDURE SORTCLUST:
var tempcls : codestr: tempcnt,flag,i,j : byte :
BEGIN

flag := 1 : 1 =1 :
while ( flag = 1 ) do
BEGIN
flag = 0 :
FOR j:= 1 TO (numcls-i) do BEGIN
IF ( clscnt{j} < clscnt{J+1} ) THEN BEGIN
tempcls := clscls{i} :
clscls{j} 2= clscls{3+1} :
clscls{j+1} := tempcls :
tempent := clsent{j} :
clscntf{ j} := clscntf{j+1} :
clscntf{j+1} := tempcnt '
flag := :

END: { IF }
END: { FOR }
inc(i):
END: { while }
END:

Appendix C25

PROCEDURE SHOWCLUST:
BEGIN
textcolor(4):gotoxy(45,3):write(' class cluster fregquency '):
textcolor(3):k := 4:
FOR posln := 1 TO numcls do BEGIN
gotoxy(40,k) :writeln( clscls{posln} :15, ',clscnti{posln}:5 ):
inc(k) : end :
END:
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PROCEDURE TESTSEARCH2class:
var begs,ends : integer : xXX,yy : real :
BEGIN
window(1,2,80,25): clrscr-
gotoxy(5,3):write('enter class TO match TO : ")
gotoxy(35,3) :readln(searchclass):
tempclass := searchclass :
FINDKEY (GEN1,GENRECnum, tempclass)
IF ok THEN BEGIN

maxa := count2 :

FOR indl := 1 TO count2 do BEGIN
lafindl} := length2{indl} :
ta{indl} := angle2{indl} : end :

GETREC(GEN, GENRECnum, GENr) :
maxb := strtoint(GENr.sidesdet) :
gotoxy(5,6):write('enter sub class TO match TO : "):
gotoxy(35,6) :readln(searchclass):
maxb := strtoint(GENr.sidesdet)
tempclasside := searchclass + inttostr(l) :
SEARCHKEY (detl,DETRECnum, tempclasside): textcolor(3):
IF ok THEN BEGIN
tempval := DETRECnum + strtoint(GENr.sidesdet) - 1 :
indl :=1 :
FOR tempind := DETRECnum TO tempval do BEGIN
GETREC(det,tempind,detr):
1b{indl} := strtoint(detr.length):
tb{indl} := strtoint(detr.angle):
inc(indl): end : { FOR loop }
window(1,2,80,25): clrscr :

textcolor(5): gotoxy(l,2):write(' length " angle '):

posln := 3 :textcolor(3):
FOR indl := 1 TO maxa do BEGIN
gotoxy(3,posln):write(lafindl}:8,’ ',taf{indl}) :inc(posln):
END:
textcolor(5): gotoxy(4l,2):write(' length angle '):
posln := 3 :textcolor(3):
FOR indl := 1 TO maxb do BEGIN
gotoxy(43,posln):write(lb{indl}:8,' ', tb{indl}):inc(posln):
END:
gotoxy(l,posin):
IF ( abs(lafl} -1b{l}) <= 50 ) THEN la{l} := 1b{l} :
AREADIFF (maxa,maxb,la,ta,lb,tb,ar):
gotoxy(1,24) :write(' '):
gotoxy(l,24):write(' diff of graph area : ',ar:15): readln:
END: §{ ok of SEARCHKEY(detl.. }
end { ok FOR finkey(GEN1l.. }
ELSE
writeln( ' class not found '): { ELSE ok FOR finkey(GENl.. }
END:
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PROCEDURE AREADIFF(maxa,maxb:integer:1a,ta,lb,tb:vert:var ar:longint )

var i, j,k :integer: t,X,y : integer :
BEGIN
tafl} := 0 : tb{l} := 0 :
FOR i:= 2 TO maxa do taf{i} := ta{i} + tafi-1} :
FOR i:= 2 TO maxb do tb{i} := tb{i} +-tb{i-1}=:
ar:=0: i:=1: j:=1: =x:=laf{i} '+ y:= 1lb{j}:
REPEAT
MIN(x,v.k):
t:= abs( taf{i} - tb{j} ):
ar := ar + t¥*x:
IF {(y=0.0) THEN BEGIN
oo i:=i+l
je=3j+1:
X:= lafi}: y:= 1b{j}:
end
ELSE
IF (k=1) THEN
BEGIN
i:=i+1:
x:=1laf{i}:
end
ELSE
BEGIN
J:=j+1:
X:=y:
y:= 1b{j}
END:
until (i > maxa) or (j > maxb)
END:

Appendix C28

PROCEDURE MIN(var x,y: integer: var k : integer):
var temp : integer:

BEGIN
IF (x<y) THEN
BEGIN
Yy : =y - X:
k :=1: -
end
ELSE
BEGIN
temp := x:
X = y:
Yy := temp - y:
k := 2 :
END:
END:
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