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It is well documented that the major part of the nonlinearity in concrete is attributed
to the development of microcracks and microvoids which tend to destroy the. interface
of bond between the cement matriz and aggregate and/or destroy the material grains
and thus affecting the elastic properties.

In the past two decades, the damage mechanics approach has emerged as @ viable
Jramework for the description of the observed p'henomenological behavior of concrete
such Gs material stiffness degradation, microcrack initiation and the strong direc-
tionality of damage.

It is the objective of this thesis to incorporate a continuum damage model into a
three dimensional finite element code (DAMAGS3D) to predict the ultimate capacity
and the overall response of structures made up of brittle materials. The model is
verified through the well-known Brazilian test, uniazial compression test and plain
concrete prism under strip loading. Numerical predictions are compared with the

ezperimental results and the results predicted by other models.
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Chapter 1
INTRODUCTION

1.1 BACKGROUND TO THE PROBLEM

All structures are three dimensional, but when it comes for the analysis
of these structures, the usual practice is to idealize them as two dimen-
sional structures with either plane stress or plane sfrain conditions
being assumed.For the analysis of structures which have compley‘c geo-
metries, varying material properties and/or subjected to intricate load-
ing together with non-linear behavior of material, numerical methods are
gaining popularity, and the approach to turn to. The finite element
method (FEM) is one of the numerical technique which is now firmly
accepted as a most powerful method for 'the solu.tion of a variety of
problems encountered in engineering.For linear analysis, the technique
is widely employed with confidence. Since iendency nowadays is to go
for ultimate design, therefore, ron-linear finite element analysis should
be applied keeping in mind the accessibilily of two major factors. First-
ly, considerable computing power is required, keeping in view the
increased numerical operations associated wilh non-linear problems. Sec-
ondly, the accuracy of any proposed solution technique must be prov-
en. Developments in the last decade or so have ensured that high-speed

digital computers fulfilling this need are now available, also the devel-
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opment of improved element characteristics and more cefficient non-linear
solution algorithms have ensured that non-linear finile element analysis
can be performed with confidence. With the rapid increase in PC's and
mainframe CPU and memory capacities, fully three-dimensional finite ele-
ment analysis is becoming possible, which is definitely more accurate

than the two dimensional analysis.

With the advancement of finite element technique and availability of
high speed computers, there has been.a demand for refined and sophis-
ticated models in order to trace the response of brittle materials in the
non-linear post-cracking and post-yield range, since they cannot be
treated as ductile materials due to their different behavior in tension
and compression,initiation and propagatioh of cracks elc. The behavior
of brittle materials under compressive and {ensile states of stress has
the following essential features:

1. The 'softening' of the specimen (i.e.,negative slope of the
stress-strain curve) in the post failure domain.

2. Positive dilatancy (volumetric strain ) in the later stages of the
compression test.

3. The gradual degradation of material strength characterized by
the change in the elastic properties ( mainly elastic modulus ) in
subsequent cycles of a repetitive loading program.

4, Different behavior in tension and compression.

5.  Stiffness degradation.
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None of these phenomena can be satisfactorvily interpreted within the
context of the classical theory of plasticity which was inilially intended
for ductile materials. Hence the need arises for a theory which can

interpret these phenomena.

In the past two decades, the damage mechanics approach has
emerged as viable framework for the description of distributed material
damage including material stiffness gradation, microcrack initiation,
damage-induced anisotropy. Damage mechanics has also been introduced
to describe the inelastic behayior of brittle materials such as concrete

and rock.

Keeping in mind all the above mentioned faclors, a three-dimensional
FEM coding is developed in which a continuum damage mechanics (CDM)

model based on bounding surface concept is incorporated.

1.2 SCOPE AND OBJECTIVES

The scope of this thesis is to incorporate a continuum damage model

which can predict the behavior and capture as many features as possi-

ble of brittle materials. The main objeclives of this work are :

1. Develop a generalized three-dimensional finite element program
for the analysis of any structure ( including curved bound-

aries), made of brittle materials and subjected 1o generalized

loading.
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2. Use the CDM model for briltle materials as proposed by Wimal
Suaris(1990) which is able to predict successfully {he essential
characteristics of brittle materials such as nonlinearity, stiffness
degradation, shear compaction dilatancy, different behavior in
tension and compression and the sirain softening behavior.

3. Verify the model by running il for three different fests, namely,
the Brazilian test, compression test of plain concrele cylinder,
and plain concrete prism under strip loading, and comparing its
predictions with results reported by Resende (1987), Suaris et
al. (1990) and Gonzalez et al (1991) for the same lests respec-
tively. .

4, Assessment of Suaris damage model based on comparisons of its.

predictions with those based on plasticity models.

1.3 LITERATURE REVIEW
Review of the literature indicates a limited or no work in the field of

three dimensional finite element analysis of brittle materials incorporat-

ing CDM model.

Krajcinovic and Fonseka (1981) proposed an analylical model gov-
erning the mechanical response of a perfectly brillle solid under isoth-
ermal conditions. This theory is rather similar to the plasticity theory.
This model restricts damage to a muititude of flat, plane penny-shaped
microdefects, and is also incapable of predicting fine details of propaga-

tion of particular crack and the stress field around ils tip.
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Siriwardne and Desai (1983) proposed compuiational procedures for
implementing some constitutive models and introcduced them in three-,
and two- dimensional ({inite element procedures.Variable moduli,
Drucker-Prager, critical stale and cap models are considered. The
three-dimensional finite element analysis involvecd 8- to 20-noded isopar-
ametric elements where as two-dimensional finile element involves 4- to
8-noded isoparametric elements. The above mentioned work considers

only advanced plasticity models with no considerations to CDM models.

Resende and Martin (1984) introduced a constitutlive model for the
mechanical behavior of materials such as rock and concrete. The pro-
posed model is based on the progressive fracturing theory for the shear
behavior wheréas the volumetric behavior:is formulated using hydrostat-
ic compression cap yield surfaces of plasticity fitled intoc a broadened
progressive frame work. General constitutive equations for three-
dimensional problems are presented to be implemenied in finite element
stress analysis. This model considers only compression behavior with no
statement about tensile conditions. The unloading behavior in shear
produces no permanent strains; in fact there should be some kind of

coupling between elastic and inelastic deformations.

Resende (1987} proposed a rate-independeni constitutive theory for
the behavior of concrete in the inelastic range. The inelasticity is pro-
vided by two basic damage mechanisms,namely,.shear damage and hyd-

rostatic tension damage. The proposed model was also implemented in
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two-dimensijonal finite element codes to solve a number of boundary val-
ue problems. This model require a number of malerial parameters {o be

defined and then need to be calibrated accordingly.

De Wolf and Kou (1987) used three- dimensional finite element
analysis to study the post cracking behavior of concrete treating it as
isotropic, homogeneous, linear elastic material. The discrete cracking
model was introduced since the directions and approximate locations of
the cracks were closely followed in the tests. The discrete cracking
model is good only if experimental cracking palierns are availz(b]e which;
in fact is a handicap. This work did not involve CIDM modelling of con-

crete none whatsoever.

Chow and Wang (1988) presented a finite clement formulation of an
isotropic theory of continuum mechanies for ductile fracture. The pro-

posed finite element analysis is only for ductile materials."

Khan and Yuan(1988) modelled the behavior of bimodular materials
(materials having different moduli in tension and compression) by using
three-dimensional finite element method. Iteration schemes for propor-
tionate and non-proportionate loading are proposed, and a computer
program performing elastic analysis and predicting brittle failure loads
with four different failure criteria is developed. In this work only the
elastic bimodular behavior is considered along with the classical failure
criterion (Coulomb, Drucker-Prager) to predict the C(ailure of brittle

materials,which are inadequate for predicling flailure of such materials
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under non-proportionate loading. The above work did not consider CDM

modelling of concrete.

Mazars and Cabot (1989) rveviewed different models for concrele
based on continuum damage theory. Models reviewed are unilateral dam-
age model, scalar damage model, damage model with permanent strains
and induced anisotropy, damage model for high compressive loadings.
Each model has its own limitations,but can be implemented in finite ele-

ment codes.

Chou, Lee and Erdman (1990) formulated a finite clement model
ba'sed on Lee's theory which decomposes the deformation gradient into a
product of elastic and plastic parts instead of assuming that the strain
rate is the combinatioﬁ of the elastic and plastic strain rates. This work

neither considers concrete nor CDM modelling .

Gonzalez, Kotsovos and Pavlovic (1990) presented a three-
dimensional FE model for structural concrete which fully allows for {ri-
axial effects. The model consists of generalized stiress-strain relations
for concrete which is uncracked at the macroscopic level, and this is
valid upto a specified failure envelope; beyond this envelope instant
strain-softening is assumed both in teusion and compression. Smeared
modelling of cracking is used. Again no CDM madelling is involved in
this work. The results obtained from this work are not in correlation

with the experimental results.
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Gonzalez, Kotsovos and Pavlovie (1991) proposed a three-
dimensional model, brittle in nature, permitting the validation of certain
general concepts regarding the failure of concrele in a structure.
20-noded serendipity and 27-noded Lagrangian eclements are used for
concrete modelling with smeared modelling of cracking. This model
assumes perfect bond with a view that aggregale interlock plays a neg-
ligible role in the load-carrying capacily of a member. The above work

did not consider CDM modelling of concrete.

Seraj, Kotsovos and Paviovic (1992) proposed a three-dimensional
finite element model for structural concrete, based on the brittle consti-
tutive relationships and applied it to the analysis of reinforced concrete
members. This work is an extension of {18} to high-strength concrete

mixes with special reference to T-beams.

Considering the limitations regarding the past work of researchers,
a generalized three-dimensional finite element code using CDM approach
is developed to study the non-linear behavior of concrete.The model
selected herein is as proposed by Wimal Suaris(1990), which is simple,
general and captures several features of brittle materials such as stiff-

ness degradation ,different behavior in tension and compression etc.
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1.4 ORGANIZATION OF THESIS
This thesis consists of six Chapters in which Chapler Two contains the
behavior of concrete and a review of some of the exisling CDDM constitu-

tive models for multiaxial behavior of concrete.

In Chapter Three, the finite element model is described. Standard

formulations for 20-noded serendipilty element are given.

In Chapter Four finite element program DAMAG3D for non-linear
analysis of brittle materials is describecd.. A detailed discussion of

important subroutines is presented.

Chapter Five consists of the verification and comparison of results
obtained by applying the model for Brazilian lesf, compression test of

plain concrete cylinder and plain concrete prism under strip loading.

Chapter Six presents conclusions, "suggestions and future scope of

the work.
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Chapter 11
MATERIAL MODELLING

2.1 INTRODUCTION

With the advancement of finite element itechnique and availability of high
speed computers , there has been a demand for refined and sophisticat-
e._d models in order to trace the response of concrele especially in the
non-linear post-cracking range. Although the use of finite element
method is highly promising , yet the task of modelling the material
behavior remains a great challenge. .Ever since this method was applied
to concrete structures , material modelling has become a very active
area of research. Research has been conducted to develop a versatile ,
simple , and realistic model able to capture as many features as possi-
ble. With the introduction of continuum damage mechanics it is becoming

possible capture several features of concrete if not all.

2.2 CONTINUUM DAMAGE MECHANICS

In the past two decades,the damage mechanics approach has cmerged as
a viable framework for the description of distributed material damage
including material stiffness degradation, microcrack initiation, growth
and coalescence of cracks as well as damage-induced anisotropy. Dam-

age mechanics has been applied to model creep damage ( Hult ,1974

- 10 -



23-7

11
:Kachanov 1958, 1984, 1987; Krajcinovic , 1983; Leckice and Hayhurst |
1974; Lemaitre , 1984; Murakami , 1985 ) , creep-fatigue ( Lemailre ,
1979, 1984; Lemaitre and Chaboche , 1974; Lemaiire and Plumtree ,
1979) , elasticity coupled with damage ( Cordebois and Sidorof , 1982;
Ju et al., 1989; Kachanov , 1980 , 1987; Krajcinovic and Fonseka ,
1981; Ortiz , 1985; Wu ,1985 ) and ductile plastic damage ( Cordebois
and Sidorof , 1982; Dragon , 1985a; Dragon and Chihab , 1985b;
Lemaitre and Dufailly , 1977; Lemaitre ,1984, 1985, 1986; Simo and Ju
,1986 , 1987a ,1987b ). In addition damage mechanics has been intro-
duced to describe the inelastic behavior of brittle materials such as
concrete and rock ( Francois , 1984; Kachanov , 1972, 1982; Krajcino-

vic and Selvaraj , 1983; Mazars, 1982, 1984, 1986; Mazars and Lemaitre,

1984; Mazars and Legendre, 1984; Mazars and Pijaudier-Cabot, 1986;

Mazars and Borderie, 1987; Resende and Martin, 1981; Resende, 1987,

Simo and Ju, 1987a,b;Taher,S.E.-D.F., Baluch,M.H., AL-Gadhib,A .H.,
1994 )

Continuum damage mechanics is based on the t{hermodynamics of
irreversible processes, the internal state variable theory and relevant
physical considerations ( e.g.,micromechanical damage variable theo-
ry,kinetic law of damage growth, nonlocal damage characterization and
plasticity-damage coupling mechanism, etc. ). A scalar damage variable
is suitable for characterization of isotopic damage processes. Neverthe-
less, a tensor-valued damage variable ( fourth order ) is necessary in

order to account for anisotropic damage effects.
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It is important to clarify the term "damage" cmployed in the litera-
ture.The existence of microcracks and their prepagation which causes
stiffness degradation, dilatancy and other non-linear characteristics
leading ultimately to failure is termed as "DAMAGE". There are at least

three different levels of scale of "damage" in the material mechanical

responses:

1. micro-scale level
2. meso-scale level
3. macro-scale level

Consider a volume element at macroscale level as shown in Figure 1 ,in

which,

1. S = overall section area of volume elemenlt defined by the unit
normal vector 7

2. A tofal area of microcracks -and cavities

3. S = effective resisting area of microcracks and cavities.

The effective resisting area takes into account S§,, microstress con-

centrations in the vicinity of discontinuities and intcractions between

closed defects, and therefore

SsS—SD (2.1)

Physically, damage variable D, ( associated with normal A) can be
defined as

D=£:—§, or (2.2)
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Volume Element from a Damaged Body
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S = S(1—D") (2.3)

where,
1. D = corrected area of cracks and cavities per unit surface cut

by a plane perpendicular to 2

2. D, =0, corresponds to undamaged state.

3. D =1, corresponds to rupture of malerial element into two
parts.

4. 0 <D <1, corresponds to damaged state.

2.2.1 Isotropic Damage

In general, cracks and voids are oriented and thus D" is a function of

;l. This leads to an intrinsic variable of damage which can be a second
order or a fourth order tensor depending upon the hypothesis mode.In
isotropic damage( Lemaitre,1985), cracks and voids are equally -di:qtrib-
uted in all directions.Thus Dn does not depend upon ;\l and intrinsic

damage variable is scalar D.

The strain behavior of a damaged material is represented by consti-
tutive equations of the virgin material (withouf any damage) in the

potential of which the stress is simply replaced by the effective stress,

G, where,
(8
0 = —— (2.4)
(1-D)
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Therefore,{or uniaxial loading ¢ = ,, strains may be writien as:

(v
X

* (1-D)E,

~Vo,
g = ——— ( 2.5)
» " (1-D)E,
—vo,
R 2
* (1-D)E,

2.2.2 Orthotropic Damage
For orthotropic materials, stresses in terms of strains without damage

are expressed as follows:

o
N S O 4
x E > g g
x ¥y 2z
c o g
x ¥y Z
= —-v + -V .
ey xy E E zy E ( 2.6 )
y 4
o O‘y o,

8=—— t— —— \]  commawm=

4 \'-\’Z E .oyz E E
X Z

The quantities ExvEy'Ezv"xy"'xz"’yz need to be degraded as damage

progresses.

In orthotropic damage, cracks and.voids are distributed in all direc-

A
tions.Thus Dn depend upon M and intrvinsic damage variable is not a
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scalar D, but a vector & with the componentis myp,m9,03 acling along

the principal directions of damage.

Figure 2 shows the cracks or defects in a body oriented in three

principal directions. (i=1,2,3), is the area densily of cracks in

any plane perpendicular to axis X i

If the body is subjected to uniaxial tension, the cracks in the plane
perpendicular to the loading will open up while those in the other
directions will close.Based on this assumption, if there are three princi-

pal tensile stress directions at a point in an inilially isotropic body

characterized by a single modulus E", the modulus will be degraded

only by the damage component ();, in the plane perpendicular to the

principal stress direction i.e.,

E, = E (1-a0,)
E2 = E,,(l_“‘”z) ( 2.7)
E; = E (1-a0y)

where, a is a constant parameter.Since, there are no cross-effects v
will not be degraded.Note that the degraded moduli as given by equa-

tion (2.7) reflect damage induced anisotropy in an initially isotropic

material.
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If the body is subjected to uniaxial compression, the cracks in the
plane perpendicular to the loading will close, while in the other direc-

tions they will open up.Therefore, for the case of three principal com-

pressive stress directions E

o Will be cegraded by the damage in the

planes not perpendicular to the loading,i.e.,

E, = E (1-poy)(1-poy)
E, = E (1-po,)(1-Bwy) (2.8)

E, = E (1-po;)(1-Po,)
where, B is a constant parameter. Due to the cross-effects and lortu-

ous nature of cracks v is also degraded,i.ce.,

2T (Ca) (-0

(1-0,)(1-0,)

I

Vi (2.9)

"B T () (1-0y)

Note that degraded Poisson's ratio implies an increase in the Poisson's

ratio, reflecting an effective increase in the flexibility.
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23 BEHAVIOR OF CONCRETE

Concrete consists of cementitious wmatrix and aggregate parti-
cles.Wittmann ( 1983 ) outlined a classification scheme for structural
levels by which the processes in the concrete can be observed : 1.
micro-level ; 2. meso-level ; 3. macro-level. Most of the properties of
concrete have to be measured in the second level using the concept of
unit cell but the phenomenological aspects are observed in the macro-
level. The most prominent modes of the irreversible changes of the
micro-structure are :

1. slip on the preferred crystallographic planes

2. nucleation and growth of microcracks and microvoids

Slip is promoted by shear stresses available for moving and stack-
ing dislocations (line defectz) into preferential configuration. For
material slips through the crystalline lattice , the number of bonds
between particles remains practically unchanged ( Krajcinovic, 1984 ).
The plastic deformation is a phenomenological result of the slips on all
active slip systems in the solid.Concrete lacks the crystalline lattice
necessary for the sustained slip deformation. This phenomena are stud-
ied within the context of the theory of plasticity. Response dominated
by slip in shear planes will be perceived as ductile for concrete-if par-

tially or totally confined.

Ortiz ( 1984 ) pointed out that it is imporiant to note , however,

that both the cracking and plastic flow of concrete exhibit a variety of
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typical features that are not contained within the classical theories of
fracture mechanics and plasticity. It is well known thai when concrete
is subjected to uniaxial compression it develop cracks thal are parallel
to the axis of loading. In some cases, these cracks become so large to

be the direct cause of failure of the specimen.

Whereas plastic strain does not significantly reduce the elastic mod-
uli, micro-cracking causes both inelastic strain and a reduction of the
elastic moduli ( Bazant and Shieh,1980 ). Micro-cracking in the cleav-
age mode occurs in planes .perpendi{:ular to the direction in which the
direct tensile strain- exceeds some threshold value reflecting the cohe-
sive and/or adhesive strength of the solid locally.Since the microcrack-
ing involves progressive loss of bonds between adjacent particles (.
grains ) the elastic properties of the =solid are affected as
well . Microcracks are actually not randomly oriented but exhibit a preva-
lent orientation, thus giving rise to stress- induced anisotropy of
incremental elastic moduli ( Bazant and Shieh, 1980 ).Response charac-
terized by micro-cracking in cleavage mode is typically classified as

brittle as for a concrete specimen in unconfined uniaxial compression.

The extension of microcracks, for instance, is not only known to
play a decisive role in the inelasticity of concrete ( Ortiz, 1984 ), as it
results in t_he degradation of the elastic compliances ( 1su et al., 1963;
Gardener, 1969; Karsan and Jirsa, 1969; Mills and Zimmerman,

1970,1971; Linse, 1973; Palaniswamy and Shah, 1974; Wastiels, 1979 )
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but also interacts with the plasticity of the material ( Hueckel,
1975;1976.1977; Dafalias, 1977a,b,1978 ). Such an effect is known as

elastoplastic coupling.

The cracking of materials results from creation, propagation and
coalescence of micro-cracks.For materials characterized by ductile

behavior, Chaboche( 1987 ) considered four different levels of crack-

ing:

1. crack nucleation;

2. micro-crack initiation;
3. macro-crack initiation;
4, breaking up.

On the other hand , one must distinguish two other types of struc-
tural materials ( Bazant et al., 1991 )

1. those failing at the initiation of the macroscopic crack growth
(i.e., the structure just before failure contains only macroscopic
cracks or other flaws, as in typical types of many ceramics and
fatigue-embrittled metal structures); and

2. those failing only after large stable microscopic crack growth

( which is the case of reinforced concrete structures).

These considerations give rise to the briltle damage. Damage is gen-

erally termed brittle when it occurs by decohesion without any sensible

plastic strain at the mesoscale.
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For concrete, the heterogeneity of its microstructure associated with
great porosity of the binding material and wilth the presence of granu-
lates , is an essential factor of the phenomenoclogical aspect of the
behavior. From experimental observations and from micromechanical mod-
els which were proposed by several authors the following can be
described for concrete :
1. a state of initial degradation ( defecls of compactness , micro-
cracks in the paste created by dilatation and shrinkage );
2. a propagation of the microcracks arouncd the biggest grains
under load ;
3. a dependence of the microporous stru.cture of the cement paste

on the hydrostatic pressure.

A salient aspect of the material behavior of concrete that can be
deduced is the process of damage undergone by its elastic properties as
a consequence of microcrack growth'.It. has been shown through crack
surveys that crack textures quickly become highly anisotropic. This

endows the elasticity of concrete with a strong induced anisotropy

( Ortiz, 1984 ).



€3-7

23
24 REVIEW OF SOME EXISTING DAMAGE MODELS OF
CONCRETE

In this section before reviewing some of the exisling models a brief

description of theoretical preliminaries is discussel.

2.4.1 Theoretical Preliminaries
At constant temperature, concrete may be described by the elastic

strain tensor £° ,the damage variable D, and the scalar effective plastic

strain ©°. which may be defined as

) . .
7 = j%w”:dﬂdt ( 2.10 )
0

in which ¢’ is the rate of plastic ‘strain tenser oblained through the
partitioning of total strain rate & into elastic and plastic strains , such

that, ¢ = ¢¢ + ¢?. The symbol : indicates the tensorial product con-

tracted on two indices.

The mathematical definition of damage does not need to be precised

at this point. Each equilibrium state is distinguished by the value of a
scalar thermodynamic pofential, strain energy Function W = Py, in
which y, is the strain energy per unit mass,and p is the mass density
of the material. The quantity py is a function of ©© D , . A common

choice for l|l that satisfies the first principle of thermodynamics is the
specific energy of a quadratic form as proposed by Lemaitre and Cha-

boche (1978). Following Kachanov and Lemaitre's interpretation it is
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assumed that only the elastic properties of the matervial are affected by

damage. Therefore , py¥ can be expressed as
py(ef, D, &) = py’(c®, D) + py’ (&) ( 2.11)
in which y° is a function of damage and elastic strains , and Wy’ is a

function of the effective plastic strain. The stress iensor o, the effec-

tive stress, G and the damage energy release rate ) are defined from

the specific energy as follows :

opy®

oct

Q
il

.
1

P
__a.l’_‘l’_; ( 2.12)
o’

al
It

e

y - - 9ov
oD

The permanent strains and damage are irreversible processes Ieadiné to
the conversion of mechanical energy into heat and surface creation.
According to the Clausius Duhem inequality, the rale of energy dissi-
pated ¢ must remain positive :

p = o:6—py’—pyl20 (2.13)
In this expression the rate of energy dissipated due fo damage ¢, can

be distinguished from that due to plasticity fb,,:

('pd = G:i;c—p\ilc; (pp = O':ilc—p\ilp; ( 2.14)
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A sufficient condition to satisfy the Clausius Duhem inequality can be
©420 , and(i)pzo. Since the introduction of plasticily in the models is

very similar to classical developments ( Ladeveze 1983 ) the attention is

focused on the introduction of damage into the elastic constitutive laws,

The potential py® is adopted for the elastic energy :
where py°©= %/\(D):se:!:c

( 2.15)
.'\(D) is a fourth-order symmétric tensor, function of damage D, inter-

preted as the secant stiffness matrix. Taking the incremental form of

Eq.(2.15) and substituting into Eqgs.(2.12) and (2.14) gives

c = AD):e%; Y= —?—85—:8‘:1:' (2.16)
by = —(%-Ma(%:e‘:c")bzo (2.17)

The damage energy release rate Y is a quadratic form positive definite

since —— <0 i.e. the stiffness decreases with increasing damage. The

sufficient condition to satisfy the Clausius Duhem inequality is D=0

The damage growth satisfying the above condition will be governed by a
loading surface of equation f(c,./\,K 0) =0, in which K » is the initial

threshold of damage. Uniqueness of this function with regard to the

stress-state is insured by choosing f as a function of strains, not
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stresses (two strain tensors may be associated with the same stress

tensor ).To respect the loading condition, damage evolution equation is

defined as
I)=Oiff<oorf=0andf=o (2.18)
D=F(c)iff=0andf20 (2.19)
F(c) is a positive function of strains which is experimentally deter-

mined.

In the following sections some of the exislting models are now

reviewed.

242 Scalar Damage Model ( Mazars )

In Mazars' scalar damage model (1984), the material is supposed to
behave elastically and to remain isotropic. Based on Eq.(2.15) elastic

energy may be expressed as follows:
e _ LA (1=D).c%c0
py- = 2A0(1 D):¢%:¢

in which, Ao is the initial stiffness matrix of the material and D is the

damage. ( 2.20)
The stress 0 and the damage energy release rate Y arc then directly

calculated from Eqs. (2.12) and (2.17) in the following form :

o = A (1-D):¢; ' ( 2.21)
Y = -;—Ao:&:e:ce; ( 2.22)

The dissipation rate is obtained from Eq. (2.14):
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¢ =YD ( 2.23)
The damage scalar theoretically ranges from 0 for the virgin material to
1 which represents the failure (zero stress) under homogeneous strain
condition.The loading surface used is inspired from the St. Venant cri-

terion of maximum principal strain, and may be expressed as
Je,AK ) = e-K(D) (2.24)

where £ is the equivalent strain, defined as :

3 2
E=‘/};(<ai>+; - (2.25)
x + > Ld .
(<x> . = ..l_.l_i_ﬁ, e; are the principal slrams) (2.26)

The hardening-softening parameter K(D) takes the largesi value of the

equivalent strain € ever reached by the material at the considered point
to retain the pl'-e\;ious loaciing history, and is initially equal to K o+ The
response in tension or compression is described by the following laws
coupling two types of damage, namely, D' and Dc which correspond to

damage measured in uniaxial tension and uniaxial compression respec-

tively. The total damage D is expressed as the weighted sum of

Dt and Dc such that
D = “tDt + ach;and ( 2.27)

D = F(&)ana D_= F (7) (2.28)

1
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where, a,andq, are the weighled functions depending on the strain

state.

The stress tensor O is decomposed inlo positive and negative parts,
such that 0, and 0_ are the tensors which contain only the positive
and negative principal stress, respectively, and t,,t,. the strain tensors

defined as :

= A Lg .o = AL
et—/\ .0+,sc—/\ 10 _ (2.29)

It can be noted that in uniaxial tension a, = 1, anda,=0, D = Dr and

vice versa in compression.

24.3 Unilateral Damage Model ( Ladevezé¢ ; Mazars )

In the unilateral model Ladeveze(1983) and Mazars(1985}), instead of
using average set in Eq.(2.21) which defines the kinematics of damage
, proposed that, it may be useful to distinguish damage due to tension

from that due to compression. Since damage cannot diminish (Clausius
Duhem inequality) two independent scalars, damage Dtand Dc, are
used.Depending on the sign of stress, the apparent damage will be

either Dt for positive stresses or Dc for negative stresses. If the loads

are complex, damage may be a combination of D, and D(,, The stress

tensor is decomposed into positive and negative parts. The material is

assumed to remain elastic and consequently the complementary potential

function Q° may be expressed as:
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Q¢ = Q%,) + Q%0 _)

T{ Faopy o)l M}

1 .
-2—{5( D)[(l \)(U :0_)- "(" )]} ( 2.30)

where fFoc = Oxr and annd v, are the initial modulus of elasticity and

Poisson's ratio respectively. Tension and compression are distinguished
by the sign of stress. The corresponding constiluiive laws may be

[ 4
obtained from ¢ =

as follows:

o
e 1
gf = ———[(14+v )0, -v <tro, >1I| +
———[(1+v )o_ —v,<tro_> 1] - ( 2.31)

( D)

where [ is the identity tensor. In the Clausius Duhem inequality two

damage energy release rates related to each damage scalar appear:

q= YtD‘ + Ych; ( 2.32)

e ¢
Y__ag Y=—-§9— ( 2.33)
! oD, ¢ oD _

A sufficient condition to satisfy Eq.(2.7) is that the two rates of dam-
age Dtand Dc remain positive. The damage Joading surface is expressed

in term of the energy release rate as :
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feAK)

fc(a,/\,Ko)

Il

Y,—K'(D') ( 2.34)

Y;Kc(D() ( 2.35)

K,and KC are the hardening-softening parameters similar to K(D) in

Eq.(2.18). The evolution of laws of each damage scalars are the fol-

lowing functions of the energy release rates,
Dt = Ft(Yt) and Dc = FC(YC). For this model the damage produced by

tension has no effect on the response in compression and vice versa.
The two damage parameters grow independently, each one describing
the corresponding secant stiffness of the material subjected to uniaxial

loading of positive or negative sign.

2.44 Damage Model with Permanent Strains and Induced Anisotropy
(Collumbet)

Collumbet(1985), proposed the following thermodynamic poten-
tial,from which a formulation including the effect of induced anisotropy

can be derived :
1
py = -i-[AD:ae]:(ce + o) (2.36 )

Permanent strains £ appear in this potential and A p is the stiffness
matrix of an orthotropic material. Its dependence on damage is defined

as Apl:c = A7 L:[Lp:0] in which A, is the initial stiffness matrix of

the material, the damage variable called LI) Is a fourth-order symmetric



23-7

31
tensor. Since the material is orthotropic, there are in general nine dam-
age variables. Collumbet restricted the identification {o the axisymmetric
case where four variables are needed Eq.(2.37). The damage loading
surface is identical to the one used previously in the one scalar damage

model Eq.(2.24)

b I 1y 1 o
L g = 112 ll 123 0'2 ( 2.37)
lZ3 123 13 73

The constitutive laws are derived from the potential Eq.(2.36) :
e=Aplio + ¢ . (2.38)

This model may not be applied to stress states where the hydrostatic

pressure is high.

24.5 Constitutive Model for Concrete in Cyclic Compression (Chen)

In this work by Chen (1984), an overall assessment of the damage is

based on the evaluation of the plastic volumetric strain £/ and the plas-

tic octahedral shear strain 'yg The coupling of these two effects is

achieved through a shear compaction-dilatancy faclor. The damage accu-

mulation is proposed to be evaluated by the use of a damage parame-
ter,K, which is related to yg The realistic modelling of Jdamage accumu-

lation under complex stress paths is achieved by defining K in an

incremental form as
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dyl
K = ( 2.39)
F(I,,0)
andK={ . ( 2.40 )
loading history

The failure criterion used in this model is represented by a failure sur-
face defined in stress space. This failure surface, called a bounding
surface, as shown in Figure 3 , encloses all possible slress points

and shrinks in size as damage accumulates.The bounding surface is a

function of stress invariants and damage parameter.in this model the

bounding surface,F; is proposed to be a function of 6; ( or stress

invariants ) and Kmax = the maximum value of K ever experienced by

the material :

F(o,.j.,Kmax) =0 ( 2.41)
1/6
1.85(v/ J,+0.378.J,)(12 + 11cos30) /8
Flo..K__ )=
y~ max I,+0.3
B SO
max+39
( 2.42)
where,
11 = the first stress invariant s
"2 = second deviatoric stress invariant.
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Figure 3:
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() = angle between projection of the position vector of principal stress

and that of any semiaxis on deviatoric plane ( angle of similarity ).

The present formulation adopts that the distance between the siress
point and the bounding surface is measured along the S, direction. By
this definition, the octahedral stress-strain behavior can be character-
ized. Since the bounding surface on the deviatoric plane is l1 depen-
dent , a normalized measure D is introduced for this purpose:

.D - 2.43
. R , ( )

in which r is the distance from the projection of curren! stress point on

the deviatoric plane to the hydrostatic axis; and R is the distance of
the bounding surface from the hydroaxis along the S,-,- direction. Thus,

when D = 1,the material is assumed to have failed.

Strain increment dz‘” is decomposed into its deviatoric and volumetric

components :

de,,
de,.j = deij+a.. ; (k=1,2,3) (2.44)

y 3
The deviatoric strain increment can be further decomposed into elastic

and plastic components, de; and deZ

de.. = de..+de. ( 2.45 )
i g
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The elastic deviatorie strain increment 5::-',- can be relaled o the stress

increment following Hooke's Law

de = 2-dS ( 2.46 )

i ij
in which I = the generalized elastic shear modulus; and dSy = the

deviatoric stress increment.The plastic strain increment (Iez is assumed

to be independent of any volumetric change, and the projection of deZ

on the deviatoric plane is assumed directly along the projection of the

position vector of the stress point.In other words, d(’Z is proportional

to S,:’- *This proportionality yields

( 2.47)
T .
ij [/
and assuming incremental linearity one can write’
Yo
& = — ( 2.48 )

in which the generalized plastic shear modulus 7" , depends on the his-

tory of the stress and strain.

The portion of dekk caused by dl , dckk,o is calculated as



23.7

36

dr,

kk,0 SK'

de ( 2.49)

in which tangent bulk modulus X. is assumed to be a function of I; The
remaining portion of d‘;kk , dckk, 4» is directly associated with the plastic
octahedral shear strain increment, dy{,’ , by the linear relationship

dskk’d = de{)’ ( 2.50 )

in which shear compaction-éilatancy factor p is also a function of the

stress and strain , and
ey, = epg o + dogy g (251

Combining Eqs.(2.38-2.45) and by expressing

ato doltm
dto = mdﬂ'k”’ = Skm_3-[_0_-’(k”"=1’2’3) (2.52)

the following relationship between dc,-,- and dﬁ,-j is oblained:

. S..
de.. = g 4 1 v+ 6..-[5— S

do +
if T i3 km  km
H  sH. L%

1 1
5. - do,,; (k,m=1,2,3) 2.53
,J( ok 3He) Lk ( ( )
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2.4.6 Damage Model for Cyclic Loading of Concrete (Suaris)
Suaris (1990), in his model, derived the damage growih, using a con-
cept formally similar to the bounding surface hypothesis used in plastic-
ity.In this method, a limit fracture surface ( which defines the onset of
damage), a loading surface and a bhounding surface are defined. Dam-
age growth would occur only when the loading surface is outside of the
limit fracture surface. The bounding surface is obtained by applying a
mapping rule to the loading surface.The damage growth rate is defined
as a function of the distance between a point on the loading surface

and the corresponding image point on the bounding surface.

The elastic complementary free-energy function (A)- is a function of

the stress tenéor Ojjs temperature t, and current damage state. If the
damage can be represented by three components , ®;, along the princi-
pal tensile stress directions,then the function, A , can be expressed as

A= A(cij,t,m'.) ( 2.54)
The constitutive relations and the generalized thermodynamic force con-
jugates (RJ) of the damage components, derived subject to thermody-
namic restrictions, are given by

aA ]
&5 = p-af‘i}-(cij,t,mi) ‘ ( 2.55)

_ oA
J 'a(o,.
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The entropy production rate (the Clausius Duhem inequality) can be

written as
Py = —cy.oy + pA>0 ( 2.57)
oA .
Expanding and substituting L R Uy and assuming that the process

ij
is isothermal, Eq.(2.57) can be reduced to the form

= Rj(bj>o (2.58 )

The loading function (/) is defined in terms of the thermodynamic-
force conjugate as

1

R
S= (RR) —T=0 ( 2.59)

where R ¢ is a constant with a value of 0.63 and b is the mapping

parameter , which varies from infinity fo 1 with the growth of the load-

ing function,

A bounding surface F is defined as

1
= (-I-(-,ﬁi)2 -R =0 ( 2.60 )

where Ri = an image point on F = 0 associated with a given point

R,-on f = 0, defined tlirough a noninvertible confinuous mapping rule as
= bR'. (2.61)

Bounding, loading and limit fracture surfaces are shown in Figure 4
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Figure 4:

BOUNDING SURFALE

LOADING SURFALE

LIMIT FRACTURE SURFACE

Illustration of Bounding, Loading and Limit Fracture
Surfaces




237

10
The damage-growth rate is determined from the loading function by

using an associated flow rule as

( 2.62)

where L = a Joading index selected so that T..(2.58) is salisfied.The

loading index L is defined by

cl|l of

=-il- —I—?—Rj ( 2.63)
on;

where

c=1 iff=0and /A R.>o0
oR. | /

c=90 otherwise (2.64)

The damage modulus H is expressed as a function of the distance

between the loading and the bounding surface, given by

H = .__2§._. ( 2.65)
<3. —d8>
m

where D =2.65 is a constant; and < > are Macaulay brackets that set

the quantity within to zero if the value is negalive.

The normalized distance & between the loading and bounding surfac-

es is given by
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1 1
(ﬁiﬁi)z _(R.'Ri)z 1
& = - = 1—7)- ( 2.66 )
(RR)*

and is shown in Figure 5.

The stress tensor is decomposed into its positive and negative eigenva-

lues given by

+ -

o =[c] + [o] : . ( 2.67)
The complementary free-energy function is then intiroduced in terms of
the positive and negative eigenvalues as

pA = %(U+C'0+ +67Cyo7) ( 2.68 )

where C, and C” are the compliance matrices for. tensile and compres-

sive stresses.

The decomposition of the elastic potential into tensile and compres-
sive portions enables the modelling of the different crack mechanisms in
tension and compression.The compliance matrices for tension and com-

pression are derived using the concept of orthotropic damage as dis-

cussed in sec.2.2.2.The compliance matrix for lensile siresses C, is

defined as

1 -V —\
1 -\
_ 1 1—-ao ———
C, 5 ( Y 1) (1-00,) 1 ( 2.69)
0 —_y -y (1""“(!)3)
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LOADING SURFACE

LIMIT FRACTURE
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Figure 5: Definition of Normalized Distance in Deviatoric Plane
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where Eo = the modulus of elasticity; and v = the Poisson's ratio of the

uncracked concrete, and y,0y,m3 = the componenis of damage in the

three principal tensile stress directions respectively.

The compliance matrix C 1 for compression is defined as

B 1 v v
(1-Boy)(1-Bug)  (1-w)(1-0,)  (1-0;)(1-05)
1| - v 1 N v
C" = _E— (1 "‘(01)(1 —(1)2) (1 - B(v)])(] - B('):;) (1 — (.)2)(1 —(03)
o v _ v 1
| (me)(-0g)  (1-0)(1-0g) (1-Poy)1-Poy) |

( 2.70 )

where O)i(l. =1,2,3) are the accumulated damage values in planes perpen-

dicular to axes x,(i=1 ,2,3) respectively. «andfl are the constant

parameters of the model, which are selected by calibrating the model to

results obtained by for uniaxial tensile and compressive tests.

This model can be viewed as a generalization of the effective stress
concept previously used for concrete. The proposed compliance relations
are however valid only when the axes of principal stress and strain
coincide and do not rotate.A larger 6 x 6 compliance matrix ( with all
nonzero elements) should be introduced to relale six independent com-
ponents of stress to the six oriented strain components, if the model is

to exhibit these features i.e., the axes of principal stress and strain

do not coincide and do rotate.
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2.4.6.1 Physical interpretation of Re

The damage process gives rise to initiation of a macrocrack for a criti-

1

2
cal value of (R,-R,-) , which is a characteristic for each material.

1

This characteristic value , (R,R i)Z =R corresponds to a crilical

cl
value of damage variable D = Dcr’ which can be determined experimen-

tally from uniaxial tension case for.rupture .conditions.

Lemaitre {46}, has expressed R ¢ in-terms of rupture stress, Op, and

critical damage variable, D

or for the isotropic damage as follows:

2
o
R = R

= — ( 2.71)
° 2Ea-D )

Similar expression for R ¢ can de derived from the Suaris damage model

for uniaxial tension case, which is as follows:
The thermodynamic force conjugates R x May be obtained by expressing

Eq.(2.56) as follows:

oC, o

1.+ Yy + -
= - , —=0. + O, ¥ . .
Be= 3t dw, d 0 e, i ) (2.72)

For uniaxial tension case, there will be onl‘\} one component of R r Le.,
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Rl' At failure, Rl = Rc and 0, = f" Substituting in Eq.(2.72)
yields the following expression :
22
ft a
Rc = — (2.73 )
2E (1-a)
o

Expressing f;’ in terms of uniaxial compressive strength, _/;,, yields the
following relationship
A2
(0.1f)" a

= —_— (2.74)
‘ on(1—mm)2

The above expression shows that,there exists a relationship between R c

and uniaxial compressive strength, /;,’, which should be determined
experimentally for different sirengths of concrete.The relationship
R e = Rc( fc') should be in the form of an expression thalt can be used

to determine the critical strain energy release rate for different

strengths of concrete.

2.4.7 Damage Model for Concrete using Bounding Surface Concept
(Voyiadjis and Taher)

Voyiadjis and Taher (1993) in their model, also use the concept of
bounding surface as the failure criterion.The damage bounding surface
,F, which is the innermost locus of stress points, is proposed to be a

function of the states O {or stress invariants) and the damage parame-
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ter , D:

F(c,.j,D) =0 ( 2.75 )
The mathematical function chosen for the damage bounding surface is as
follows:

F(o,.j,D) = an+-xx/.—Iz+bll—-g(D) =0 ( 2.76 )

where a b, and A are constants as given by Ottosen (1977) in his work

on elasto-plastic constitutive modelling of concrete.it may be noted that

form of F does not explicitly involve strain energy release rates R ; s

in the Suaris model {69}. g(D) = a functlion of damage accumulation .
According to the nonuniform hardening rule (Han and Chen 1985) each
loading surface can be characterized by a shape factor , K , and

expressed in the form:
foy. D) = ady+\KVT,+ Kbl ~K'g(D) =0 .~ (2.77)

where the damage parameter, D , takes the values 0<0<0.7. The ini-

tial fracture surface is expressed in the form :

o+D

f(5;,D) = al,\KJVT, + K'bl, - K'——=" =0 (2.18)

where D" = the accumulated damage (D) at Lhe beginning of any

cycle.
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Instead of averaging D'and Dc as proposed by Mazars(1986), a dif-
ferent loading surface is defined for each varviable.A damage due to
tension D, will grow independentily (rom the compression damage DC.

From the loading surface in (2.77) ,the compressive and tensile loading

damage surfaces may be expressed as:

2 =
f, = al, +1 KT, + Kbl ~K’g (D)=0 (279 )
fc = aJ26+ch\/72—c+K2bllc—Kzgc(l-)')=o ( 2.80)

where Dt and’Dc = the damage due to tension and compression respec-

tively. (Dh,th,D&)and(ch,ch,D3c) = principal values of damage
tensor in tension and compression, respectively. The stress tensor is

decomposed into positive(tension) ot and negalive(compression) ()_'_
parts , such that:

+

6=0" +0 andlro = tro’

+ tro~ (2.81)
where G, and 6~ are built with the positive and negative eigenvalues

which appear only in the positive and negative principal stresses

respectively.

The damage growth rate may be expressed as

(D.) .= 1% Y

Y1 h 60'.]. do,

6.l =1.c _ (2.82)
n

Differentiating (2.70 and 2.71) with respect to Ojj»
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d
_l -_—
90, AS; + By ( 2.83 )
where
A= a+2K— (2.84)
! ! 2\/72

B, = 2w [1+ III]JTI;I+ aabK]1+ Ill]lll— aw K1+ lll]g(f)) +bK’

( 2.85)
Substituting equations (2.83) to (2.85) into (2.81), the damage growth

rate can be written as :

. 142 : 2. . . :
Diil - Z-[Alsijsmhomn+ Blsijgri"’+AlBl(8ifg mn” mn +S.'I'G""’)]
{

(2.86)

where S,, = the deviatoric stress and 5,.} = the Kronecker delta. The

damage modulus h is derived using the concept of the bounding sur-

face, in which it may be given as :
h = h(s,D) (2.87)

where 8 = the distance between the stress point on the loading surface

and the corresponding point on the bounding surface measured along

the deviatoric stress direction.

The constitutive relationships are the same as that given by Suaris

(1990).
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In the models reviewed herein, only two models i.e.,(Suaris (1990)
and Voyiadjis and Taher (1993)),consider the three dimensionality.It is
interesting to note that, almost all models claim that they can be incor-
porated in the finile element method, but the models are presented in a
stress controlled form i.e., the constitutive relationships are given for
strains in terms of stresses,which is not conducive for application in a
stiffness based finite element method, since, in this approach strains
are used to calculate stresses. Therefore, in order o use any of these
models, the constitutive relationships need {o be f{irst inverted and

\ expressed explicitly for implementation in finite element codes.”

2.5 WHY SUARIS DAMAGE MODEL
Of the existing models, the model proposed by Wimal Suaris (1990) is

selectad to be incorporated in a [inite element code for following reasons

1. Generality of the model, as it takes into account three dimen-
sions.

2. Simplicity

3. Fewer parameters to calibrate the model

4, It captures certain essential features of briltle maierials includ-

ing stiffness degradation and stress induced anisolvopy.
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2.5.1 Inversion of Constitutive Relations

Inversion of constitutive relationships involves the inversion of C matri-
ces which leads to lengthy expressions for D matrices. The task
becomes even more complicated when constifutive relalionships are

expressed in incremental form.

Strain tensor is decomposed into its positive and negative eigenva-

lues as :

4 -
e =[e] +[¢] ( 2.88)
The strain-energy function is introduced in terms of posilive and neg-

ative eigenvalues as
1.+ + - -\ -
p¥ = S D" +e7Dpe”) : (2.89)
The [D] ‘for tensile and compressive strains are delermined as

-1 -1
C and [C respectively. Detailed expressions for D matrices
1 I

can be seen in Appendix C.
Constitutive relationship is expressed as

t,o. ( 2.90)

Expanding (2.90), 0 may be expressed as:

I, n_
.. =AL),£.. + . .
o; =Dy + Dye; ( 2.91)

Incremental form of ¢ can be written as
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onlg+ n, | N
do,.j = (Dijdcii + D.-jd"ij) + (dl)ijc!.,. ' dl){.,. e ( 2.92)

25.2 Equations for the Evolution of Damage
The equations used in the model cannot be implemented readily in the

finite element code,therefore, they need to he expressed explicitly. In

incremental form R x may be expressed as

1 ad. ad. (7d.’

+ Yy g + + y_+ - y -
= - , ——=fog. -+ . ———C, )T, d()'.+
de 2 (0' ow dUJ do', om Y 7 do, J
k . k k
|
o e )
do. . + o, —| —= |ldon +
z amk J ! a(o, dmk °F
1
o’—a ¥ o 7) ( 2.94)
i do,| Ao, Pj -

The damage growth rate is determined from the loading function as

¢=L_af_ ( 2.95)
eR,

-~

g
In Eq.(2.95), [;%—:l may be expressec as,

i

of 1 _% ‘R,
x| TRR | R (2:98)
{ ]

and the loading index, L , is expressed as,
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1
L - —-————1—(R1dR1 + R,dR, + R.dR,) ( 2.97)
2
H(RR)

The limit fracture surface which defines the initiation of damage is
defined as

J, = 0.08 + 0.0015%
where,

o = ((o'.o:a),.n : : ( 2.98 )
and, ®;, = the component of accumulated damage ((n,-) at the beginning

of any cycle.
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Chapter 1
FINITE ELEMENT MODEL

3.1  INTRODUCTION

A computer code 'DAMAG3D' has been developed for three dimensional
structures made up of brittle materials using the iwenty noded isopar-
ametric hexahedral element.Three degrees of freedom are specified at
each nodal point, corresponding to three displacecments at that
node.Stresses, strains and change in the characteristics of material are
monitor'ed at Gauss integration points in each element. Any Gauss point
may remain elastic or undergoes damage or fail. Normal integration

scheme is employed using normal 3 x 3 x 3 integration rule.

In this chapter the governing equilibrium equations are derived by
using minimization of the total potential energy, and the finite element

discretization is presented for 20- noded isoparametric hexahedral ele-

ment.

3.2 FINITE ELEMENT FORMULATION

The govern?ng equilibrium equations are derived by minimizing the total

potential energy of the system.
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3.2.1 Total Potential Energy of the System

If the structural system is subjected to a set of body forces {7)} and
boundary tractions {i} over the volume and =surface of the domain

Q and I" , respectively, then the total potential energy can be written

as
T = %jn{a}T{a}dn—jg{ia}T{b}dsz—jr{i:}T{i}dr (3.1)

where {;l} is the global displacement vector.

The displacement function { ;l} and the strain field {£} may be

expressed in terms of the interpolation function N and its derivative B

such that :
{u} = [N] {d) (3.2)
(&) = [B] {d} o ' (3.3)

where [N] and [B] are row vectors, and

{a)

is the global displacement vector.

Equation 3.1 can now be expressed as

n = 2i(@)"[B) @yde- f{d@) "IN Blde - §{@) V) {T}drc 3.4 )
Further, u;;on using

o} = [D] () | (3.5)
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( [D] being elastic or damaged) into ( 3.4 ) and minimizing total poten-

tial energy with respect to nodal displacements,

dn
d{d)

one obtains

{B]"IDYBY@}da - [N {b}de- [N {i}dr = o (3.7)

Equation 3.7 can now be recast into the following form

(Kidy = {} - (3.8)

where :

(K] - {[B]' (D] [Blde (39

is the global stiffness matrix {ZI} is the global displacement vector

=0 : (3.6)

and

{]}. = j[N]T {b} da + j[N]T{i} dr ( 3.10)

is the global load vector

3.2.2 Element Stiffness Matrix

In order to determine the global stiffness matrix and the global load
vector of the system , the contribution from each eclement needs to be

determined. Expression 3.4 for the {otal potential energy can be writ-

ten as the sum of the contributions from each element n¢ such that

n e :
n= Y= " (3.11)
e=1
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Minimization of the total potential energy with respect to global dis-

placements implies minimization of potential energy of every element with

respect to its own displacement vector { ?I"} therefore equation (3.6)
can be written for individual elements as:
dr’
—— == )
d{d}

and consequently the element stiffness matrix may be wrilten as:

( 3.12)

K] = (B (D] [B] dot (3.13)

with elément load vector
{f} = j[Nc]T {bc} do’ + j[N"]T{?} dr¢ ( 3.14)

where [M ] and [Bc ] are the element shape function matrix and element

strain matrix respeciively, described in the next section of this chap-

ter.The [Dc] is the element constitutive matrix.

It remains here to say that both [K" ] and { f } should be expressed

with respect to the global frame and consequently all the matrices and

vectors used in evaluation of [Kc ] and {f } need also to be with
respect to the giobal frame. If one, however, decides to use different
system then the appropriate transformation is necessary. For example,
it is more convenient to use natural coordinate system to perform the
integration and therefore one need to apply proper transformation from

one system to another as will be described in the next sections.
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3.2.3 Finite Element Discretization

3.23.1 Element Geometry

In the isoparametric formulation the coordinates of a point within the

element (.\‘,y,z) are obtained by applying the element shape functions

to the nodal coordinates. For defining the elemen! geometry a natural
coordinate system (i,n,@) is used, as shown in Figure 6.

Thus at any point (T;,T],C) within an element the x, y and 7 coordinates

may be obtained from the expressions

xen0) = 3 NEnox,
J(E,L) = .ilhf(é,n,?;)y:, (3.15)
W) = ¥ MmOz,

i=1

The shape functions must satisfy the conditions

Y NEn =1 (3.16)

and
. _ f1iti=j
N:(E..n,(:) {0 it ik} (3.17)
where (i,j = 1,....... 20)
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20- Noded Isoparametric Element

Figure 6:

1-€3



3.2.3.2 Displacement Field

The displacement field {ll} = [l!.l',“’] al any poinl in the structure in

direction x, y and z respectively, is defined by the three degrees of

freedom at each nodal point corresponding to its three displacements at

the node.
u
(] k
_ n vy
=3 NJ " (3.18)
W k=1 W

The contribution to the global displacements from a given node k is

u N 0 ¢ n
_ 1
v | = 8 Iszk LA | ( 3.19)
W
Wi
or
u =N, 3, : ( 3.20)

For the complete element , the displacement field is

..l!.e = ,ilﬂk(é,n.é)ik (3.21)
=

where n is the number of nodes in the element.

13-7
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3.2.4 20- Node Hexahedral Elcment

The shape functions for the 20-node rectangular hexahedral shown in

Figure 7 . are given by Hinton and Owen {19} as follows:

for corner nodes

N:(Q»H»C) = %(1'*'&,‘&)(1"—‘1,“)(14(;()(:;& + 'l,-ﬂ')(ﬁ,-i" 2)’ i=1,2,3,4,56,7,8

at mid side nodes

Ni(&n.0) = %(1—?22)(1+n,-n)(1+2;,x:), i=9,11,17,19
- NiEn0 = %(l—nz)(H&,Jé)(Hﬁ,.c), i=10,12,18,20 (3.22)

N:(Q,n,l;) = %(I—QZ)(H&,&.)(l-fnin). i=13,11,15,16

it shouid be noted that :

1. The shape functions contain a complete polynomial of order two
plus the terms £2n,t%,n%,n%,¢%, 120 nt £%ng n22t, Pn.

2. The shape functions satisfy the conditions listed above.

3. The element is C(0) continuous.
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Figure 7:

Arrangement of Nodes in 20-Noded llexahedral
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3.2.4.1 Strain Displacement Relationship

Using small deformation theory , the six sirains are expressed as:

C
ox
»
€, ] ay
8}7 -911’—
€ 0z
= z =
{e} Yy w, v (3.23)
¥xz ay ox
| Vyz | on + w
6z 0x
v ow
— e —
| 62 dy |

Substituting equation (3.18) in equation (3.23) 'gives the strain-

displacement relationship for an element e as follows:
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- N
n ——L 0
k=1 0x
n aNk
0 omrac—
k=1 0
e
€y 0 0
£
&=y 1=
Yy n (?Nk n 6Nk
sz Z oy i ox
_sz__‘ k=1 0) =1 0X
oN
I
] __k 0
k=1 0Z
oN
n
0 § i
B k=1 0%

0

n

k=1

n

k=1

N
¢ Nl(

07

"k

l’k

'
L k

Contribution from a node to the element strain matrix B[ is

63

(3.24)
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AR
0x
N,
o — o
ay
N,
0 0o —
BJ %
] = 3.25 )
BE=1an an, ‘
Lt L 9
ay. ox
oN oN.
——— 0 ———
0z ox
oN. aN,
0 N | ]
i 0z oy |

eN; AN aN;
s and —, in
ok aon g

the strain matrix may be obtained by using the chain rule of partial

The Cartesian shape function derivatives

differentiation :
aN: _ GN: ax+aN: ay+aN:iz_

dg ox & gy 05 9z &

aN: aN:ax+aN:ay+ai—a— ( 3.26)
M- sx M gp In pr Om '
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' r
aN? _ aN: ox N aN? ay N ‘7/\; oz

& axr W ap T 4z
In matrix form:
- e [N |
N _ -l &
L ox oy 9z I o
ok ERE |
oV, | | ex v 2 || 2N s
5_‘1. on On gn ay .
ox 0y 0%
o, | | = a | oM
| % ] | 0z
. .1 [~ N
| o N,
Ok ox
oN:
.ﬁ = [ — (3.28)
on ay
aN'f aN:
| a6 7 _

where [Jc ] is the Jacobian matrix given by

[ox oy 92
oF ot ot
_|ox ay oz
71 - an on an
| ox Wy %%
E3a

( 3.29)
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aN;  aN; olN;

The cartesian derivatives ) and , are now calculated
-

ox oy 0T

as:

oN; _aN:

ox ot

o’ e —

i |- [J:] 1 aNf ( 3.30 )

ay on

oN; oN,

\ B az i L ac -

The discretized elemental volume is given in the isoparametric formula-

tion as
dV = dx.dy.dz = aetJ didndt (3.31)

A typical submatrix of [Kc ] linking nodes i and j may be expressed as

[K°)) = 1B°)" [D°] §B"] do* = [ffiB’)'ID1 [B) aet/dedndt
( 3.32)

or,

& ST IDYNBNW W W et
[K”,.J.] = i§1j= 1kgl[B 1'(D°] [B’_i] WWW det]

(3.33)
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325 CONSISTENT NODAL FORCES DUE TO DISTRIBUTED
SURFACE LOADING

Consistent nodal forces due to distributed surface loading are calculated

following Brebbia and Connors {3}. Consider the { = -1 face shown in
Figure 8.

The consistent nodal forces over the face are defined in {erms of two-

dimensional interpolation functions,
-3
N.(&n) = N(E,n, +1), (3.34)
as well as the pressure intensities acting over the face.

e
Let { , be a vector,containing the pressure intensities for the

C = +1 face.
3 -
N'. = N,.(E_,,n) ( 3.35)
-~ %t
t = o(x,p)t ( 3.36 )

where, (p(x ,y) is the variation of loading over the surface.
The consistent nodal force matrix can now be expressed as

f - [Inig(Nf)T(p(x,J’)dS]t* (3.37)

The differential surface area @S can be expressed in terms of

d: and dn. By definition,
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Surface Loaded with Distributed Loading
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or o or
.—;X—

dS = dtdy = X

= Gddn ( 3.38)
L= +1

Expanding the vector cross product in eq.(3.38) leads to

1
2
G-+ )

where,

_rx_pa
817 o T n % iy

_(xa_xoz o0 )
827V T g |

ox oy ox dy :
= —_— 3.41
I N e (3409

All these terms are the part of the Jacobian.

Substituting eq.(3.38) in eq.(3.37), the consistent nodal force vec-

tor can be expressed as

e [ T g
f = Infg(N,-) olx(€,n,0.p(E 0], ., G didn ( 3.42)



Chapter 1V
FINITE ELEMENT IMPLEMENTATION

41 INTRODUCTION

This chapter presents a detailed discussion regarding the implementation
of the material model and the finite element model discussed in Chapters
2 and 3 respectively. Program 'DAMAG3D' is‘wrilten in FORTRAN code
in a modular form consisting of various subroutines called from the mas-
ter and from within themselves. This program is written along the same
format as outlined by.Prof. Owen and Hinton at the University College
of Swansea in their books on finite element modelling {19,20}. In the
following sections , the description of the functions of the various sub-

routines are presented.

42 PROGRAM DAMAG3D PARAMETERS
(a) Type of element
- 20-node isoparametric parallelopoid

(b) Solution Algorithm

Initial stiffness method

Tangential stiffness calculation at each iteration

Tangential stiffness calculation at first

iteration of first increment

Tangential stiffness calculation at second iteration

..70_

23-7
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of each increment
(c) Integration scheme
- Normal integration
(d) Load cases
- Gravity Loading ( Body Forces )
- Concentrated Loading
- Uniformly Distributed Loading
{e)Output of Converged / Unconverged results at different
interval of increments
- Displacements Only
- Displacements and reactions
- Displacements ,reactions, stresses , strains and damage
(f) Boundary conditions can be precisely defined using thrée
degrees of freedom per node
{g) Convergence criteria
- Residual force norm
(h) Maximum number of iterations and tolerance for
convergence
(i) Material model

- Continuum damage model as proposed by Suaris (1990)

71
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4.3 FLOW OF OPERATIONS

Figure 9 illustrates the flow of operations for {he nonlinear incremental-

iterative procedure schematically.

44 METHODOLOGY

The main features of the nonlinear incremental-ilerative solution are

presented as follows :

Before entering the increment loop all the arrays of stresses,
strains, displacements, reactions, damage, are initialized to zero in

subroutine INITAL.

At the beginning of the /* load increment , the displacements

-1 -
{d}r and the stresses {0)"~1 are known, as well as the unbalanced

nodal forces {\[r}'_l resulting from the previous load increment. At the
beginning of the next increment, the incremental nodal forces are equal

to the unbalanced nodal forces and may be written as
r r—1 r
v = (v} + {df} (4.1)
where {d/}r is the r* load increment.
The iterative process is performed with the following steps for a
generic iteration, i:

1. - The stiffness matrix [K] is updated or unchanged depending on

the solution algorithm adopted. This algorithm is directed from

the subroutine NONAL.
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START

DIMEN
¥
| CHECK 1
INPUT GAUSSQ
< CHECK 2
|1
LOAD 3D SFR3
Y JACOB
INITAL 3
A Y
INCLOD
o
NONAL
] <€| MOD3D
STIF3D | DMATRX
< SFR3
< JACOB 3
o3 BMAT 3D
DBE

FRONT

Y MOD 3D

NO

DMATRX

€T SFR3

€+ JACOB 3

BMAT 3D

RESIDU LINEAR

4 EIGEN

DAMAG (IDCMAT

<1 DMATRX

1 TRANSF

Figure 9:

Flow of Operations

Check
For Conv.
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The incremental displacements {/.\d}’ are covaluated using the

equilibrium equations
{ad} = -[K] oy (4.2)
where {\|l}'_1 are the nodal forces resulting from the previous
iteration. The total displacement vector {d}' is then updated,
(dy = (&Y 1+ {ad) (4.3)

The incremental strains {ds}' and the total strains {c}i are eval-

uated
{dc}i = [B] {Ad}i (4.4)

(e} = [B] {d}i ' (4.5)

where [B] is the strain matrix at a Gauss point

The incremental stress {llo}' and the total stress {G}i are calcu-

lated ,
{ds} = [D] {d} (4.6)
o = (o)1 + {ds)' (4.7)

where [D] is the updated constitutive matrix at each iteration.

The stresses are corrected according to the material constitutive

equations.
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45 DESCRIPTION OF SUBROUTINES
A detailed discussion now follows of the funciion of major subroutines

contained in computer program DAMAG3D.

45.1 Dynamic Dimensioning

For any given problem the maximum dimensions are first calculated by
program DIMEN and required storage is specified in the top of the pro-
gram.The maximum dimensions are passed to all subroulines as argu-
ments. This approach has the advantage that the maximum dimensions
can be updated in a very simple and straightforward manner. This
helps in saving a considerable amount of core space and results in the .

optimum use of core storage with minimal chance of errors related to

dimensions.

45.2 Input and Qutput Module

The subroutine DATA first reads the various parameters defining -vari-
ous options, element connectivity, nodal coordinates, boundaryl condi-
tions, material properties and applied loading conditions. It also reads
Gauss point locations and their weights through subroutine GAUSSQ.
After reading all the data it calls two diagnoslic subroutines CHECKI1
and CHECK2 for verification of the data already read for any possible
errors before going for expensive runs.If the error is diagnosed then

the rest of_ the data is echoed by subroutine. ECHO and the program

terminates.
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Subroutine LOAD3D reads first the control parameters to identify
the types of loading applied. Then it calculates the consistent nodal

forces due to each type of the given loading.

Subroutine OUTPUT displays the output selectively depending upon
the options given as control parameters in subroutine INCLOD. In
INCLOD ,the load factors, values of tolerance for convergence and max-
imum number of iterations required for convergence for each increment

are provided.

45.3 Stiffness and Solution Module

In subroutine; STIF3D ,fhe [P] matrix is calculated for each Gauss point
depending upon the state of material as elastic or damaged, using sub-
routines MOD3D and DMATRX :t'espectively.Shape functions and their
derivatives are calculated using subroutine SFR3.These are used in cal-
cula.ting the Jacobian matrix and the Cartesian derivatives of the shape
functions in subroutine JACOB3. In subroutine BMAT3D, |B| is calculat-

ed. Using |B] and [D] matrices the element stiffness matrix [K7] is evalu-

ated by performing numerical integration .

In FRONT , equations of equilibrium are then assembled and vari-
ables are eliminated at the same time using the fronial technique intro-
duced by Irons{26}.In this technique, as soon as the coefficients of an
equation are completely assembled from the contributions of all relevant
elements ,the corresponding. variable can be- climinaled. A detailed

description of this technique is cutlined in {20}.
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46 SUBROUTINE RESIDU
This subroutine is the mosl important component of .the nonlinear
iterative-incremental computational algorithm. During the application of
an increment of load to the structure, a particular Gauss point of an
element may undergo damage whilst olhers may remain elastic.At the
end of every iteration ,stresses, strains and damage at each Gauss
point are stored in different arrays. At the subsequent iteration ,all
the previous information is passed to the subroutine STIF3D to update
the stiffness matrix as the material degrades. Eventually in this sub-
routine equivalent nodal forces are evaluated corresponding to the cor-
rected stress field. The difference of applied nodal loads and these
equivalent nodal loads gives the residual forces which are reduced in
successive iterations to a tolerab]e' value to meet the desired degree of
convergence which is achieved 'in subroutine CONVER. The corrected
stress field is calculated by using the updated [D] for that particular
Gauss point. Since at the start of every increment the values of previ-
ous damage components are known, another iteration loop is used within
the initial iteration loop to get the correct stresses according to the

present damage values as illustrated in Figure 10.
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Chapter V
RESULTS

In order to verify the finite element model incorporating continuum dam-
age mechanics model for prediction of response of Dbrittie materials ,
results in terms of ultimate load and stress-sirain curves are compared
évith the data as reported in the literature. Three fest examples were
chosen i.e. uniaxial compressi;m test of plain concrele cylinder, plain
concrete prism under strip loading and the Brazilian tesl. TLoad deflec-

tion curves and contours of damage are also ploited. Also numerical

study of model parameters « and } is conducted in order to calibrate

the model.

51 PARAMETRIC STUDY

In the continuum damage mechanics model as proposed by Suaris {69},
the two parameters aandf are chosen so as to calibrate the model,
using results of the uniaxial tensile and compressive lests respectively.
Suaris {69} has suggested the use of a =4 and f} = 0.1. In the

numerical parametric study following effects were considered :

1. Effect of B on uniaxial tensile test results.
2. Effect of 0 on uniaxial compressive test results.
- 79 - '
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5.1.1  Effect of Beta on Uniaxial Tensile Test Resulls
It was found by using different values of [} that it has no effect on

the ultimate load as predicted in the simulated uniaxial tensile test as

can be seen in Figure 11.The value of « was taken as 4.

5.1.2 Effect of Alpha on Uniaxial Compressive Test Results

It was found by varying the values of o that it has nominal effect on
the ultimate load as predicted in the simulaled uniaxial compression
test.The value of [} was taken as 0.1.Effect of ¢ on uniaxial compres-

sive test results is shown in Figure 12.

The study of variation of these factors reveals that the use of
u=4andB=(").08 will yield the same resulls as Suaris is reporting.
Therefore, it is recommended that following values should be used,i.e.,

a =4and

p=0.08
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52 GEOMETRY AND MATERIAL PROPERTIES

5.2.1 Uniaxial Compression Test

For uniaxial compression test the standard cylinder is used i.e. 3 in.
dia. x 6 in. height ( 75 mm x 150 mm ). The geometry and finite ele-
ment discretization of the cylinder is shown in Figure 13 .Using the

triaxial symmetry, one-eighth of the cylinder discretized into eight ele-

ments,is used for analysis.

5.2.2  Plane Concrete Prism Under Strip Loading

For plain concr‘ete prism under strip loading the prism tested by Nayogi
{58} is chosen. The dimensions of the prism were 8 in. x 8 in. x 16
in.( 200 mm x 200 mm x 400 mm ). The geometry and finite element
discretization of the prism is shown in Figure 14 .Using the triaxial

symmetry,one-eighth of the prism discretized into four elements,is used

for analysis.

5.2.3 Brazilian Test

For Brazilian test, cylinder with 6 in. dia. x 12 in. height ( 150 mm x
300 mm ) is used. The geometry and finite element discretization of the
cylinder is shown in Figure 15 .Using the triaxial symmetry,one-eighth
of the cylinder discretized into nine elements,is used for analy-
sis.Applied load is distributed uniformly over the width of the element.

Material prc;perties used in the numerical analysis are shown in Table 1.
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Figure 13:
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12in
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Figure 15:

Finite Element Mesh of Cylinder for Brazilian Test
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Table |: Specimen Geometry and Materinl Properties
Specimen Size Material Properties
Unjiaxial Comp. Young's
in. Strength (pnsi) Modulus (psi)
(mm) (Mpa) (Mpa)
Cylinder 3 x 6 5,600(38.461) 4.7¥1E6(32,4606)
(75 x 150)
Prisml 8 x 8 x 16 3,900(26.89) 3.56%1E6(26,546)
(200x200x400)
Cylinder 6 x 12 6,650(32.06) q.7%x1E6(32,606)
(150 x 300 )
Prism2 8 x 8 x 16 5,600(38.61) 4.7¥1E6(32,406)
(200x200x400)

Initial stiffness matrix was used.Maximum number of iterations
allowed for convergence was 20 with a convergence tolerance of che

percent force residual norm.

5.3 RESULTS

The predicted results and the results available in the literature are
compared in Table 2. and shown in Figs. 16 to 26. Results shows that
uniaxial compression test is one dimensional problem since the major
component of stress is the stress which is in the direction of. the load-
ing.In Brazilian Test,the stress component in the direction of the
length is not zero and it varies with the depth.At the points near the
centre it is-s negligible, but directly under the load it is almost twenty

five percent of the vertical stress and there is no significant change
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over the length. Therefore,it is not a simple two dimensional problem
and a triaxial state of stress exists directly under the load.Similarly,
the case of PC prism under strip loading reflects the fhree dimensional-

ity of the problem.

5.3.1 Failure Loads

Table 2 shows that in most of the cases there is reasonably good agree-
ment between the predicted failure loads and those available in the lit-
erature for the various cases considered. TFor the case ol prisml under
strip loading the result is away from the available result. This differ-

ence is due to the limitations of the model used herein. Tn the equation
of the bounding surface the critical strain energy release rate, R o

fixed as 0.63 is good only for concretes which have strengths equal or

close to the strength Suaris has used. This is verified by running the
case of PC prism under strip loading with fc’= 5600 psi.The predicled

failure load compares well with the experiment.
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Table 2: Comparison of Failure Loads

Specimen Failure Loads (lbs / KN )
Experiment Alternative | FEM(damage)

model

Cvlinder 39,5864(176) 39,584(176) | 37,605(167)

(Suaris) (Suaris)

Prisml 80,756(359) 88,150(392) | 1264,800(555)

(Strip loading) (Nivogi) (Gonzalez)

Cvlinder - 40,800(181) | 53,010(235)
(Resende)

Prism2 358,6400(1594) - 369,1864(1610)

(Fully loaded)

Prisme2 115,954(516) |126,574(563) 125,440(557)

(Strip loading) (Nivogi) (Gonzalez)

5.3.2 Stress-Strain Curves

Stress-strain curves were available for uniaxial compression test{69}.
Stress-strain curves are presented in Figs. 16 to 19. The predicted
stress-strain curves shows no strain softening part while the available
curve do show the strain softening part, this may be due to the fact

that the present analysis had been carried out by simulating stress

controlled conditions.

-~

Since,the damage model by Suaris does not takes into account the
plastic strains,in order to include the effect of plastic strains,it has

been suggested by him to modify the strains due to damage by a factor

Y, whose value ranges from 1.0 to 1.5,i.e., & = yr;d. Using his sug-
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gestions,modified stress-strain curve is plotted for uniaxial compression
test as shown in Fig. 17. In Fig. 17 the modified siress-strain curve
for the uniaxial compression test is compared with the available experi-

mental stress-strain curve in Fig. 17.
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5.3.3 Contours of Damage Distribution

Contours of damage distribution over the faces wore plotted for PC
prism under strip loading ,Brazilian lesl and PC prism under patch load
as shown in Figs. 20 to 26. For uniaxial compression {est they are
uniform over the cross-section and throughout the depth,therefore
instead of plotting them,the percentage of maximum damage at different

load levels is plotted in Fig. 20 and presentied in Table 3.

Table 3: % of Maximum Damage at Different Stages

% of Applied Load % of Maximum Uniform Damage
20 9.0
40 0.0
60 5.0
80 28.0
100 94.0

For PC prism these contours are plotted at. ﬁm failure; loads for two
different cases i.e., prism under strip loading and prism under patch
loading. Distribution of damage varies as the loading varies. For
prism under strip loading, it is maximum at {he cenire of the loaded
strip and decreases as it reaches the end of the loaded strip.For prism

under patch loading, it is maximum at the centre and decreases as it

reaches the end of the load. .

For the Brazilian test, Resende(1987) has drawn such contours.When

compared with those contours,it was found that the effected zone by
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damage is the same,but the maximum damage for his case is not directly
under the load, whereas, it is under the applied load for our case.The
distribution of damage is found to be uniform throughout the length

except at the edges,where it is extended a bit more.

In Fig.25 damage surface for Brazilian test is presented which rep-
resents the percentage of damage over the cross-section.It is clear from
the figure that the maximum damage is directly under the load and it
decreases as we go down.Fig.26 represents the damage surface for the
same test ovel.- the leﬂgth i.e., in the third direction.The damage is
again maximum under the load and at the edges,elsewhere it is almost

uniform througout the length and decreases with the depth.
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Chapter VI
CONCLUSIONS

6.1 CONCLUSIONS

The main conclusions drawn from the following work are as follows:

1. Within the framework of continuum damage mechanics theory,
several features of brittle materials can be captured effectively,

which cannot be captured within the framework of plasticity or

fracture mechanics.

2. Continuum damage mechanics model incorporated in three dimen-
| sional finite element .code simulates the response of uniaxially
loaded Srittle materials reasonably accurately, since the model

has been calibrated using uniaxial tension and compression

tests. Therefore, to be used effectively in three dimensional anal-

ysis it should be calibrated accordingly.

3. R_, critical strain energy release rate and D, are two material
parameters which depends on the uniaxial compressive. strength
of the material. An explicit relationship between these parame-

ters and uniaxial compressive strength needs to be determined

experimentally.

q, The model,when incorporated in three dimensional finite element

code fails to capture the strain softening part.This may be due

- 104 -
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to the fact that in the present study stress controlled conditions
were simulated.

Three dimensional analysis reflects the true response of the
material, and with the availability of high speed digitél comput-
ers, efficient solution algorithms and sophisticated models it

should be used instead of idealizing the situations.

6.2 RECOMMENDATIONS

The present work can be further extended/modified to address the fol-

lowing problems of practical significance:

1.

Incorporation of more refined and sophisticated continuum dam-
age model/models.

Modification of the code to handle ductile materials such as rein-
forcement in RC-memEers so that it can be used to analyse rein-
forced concrete members.

Modification of the code to handle cyclic loading, which will help
in predicting the fatigue failure of the structures.

Study of the size effect.

Study of the relationéhip between R, and D with the uniaxial

-~

compressive strength.



Appendix A
INSTRUCTIONS FOR PREPARING DATA
FOR PROGRAM DAMAG3D

CARD SET 1 - Title card - one card

Title of the problem CARD SET 2 - Control Data Card - two cards
First Card - Title Card - .

Second card

NPOIN -Total number of nodal points

NELEM -Total number of elements

NVFIX -Total number of points where one or more degrees of freedom
are prescribed - .

NﬁODE -Number of nodes per element

NMATS -Total number of different materials

NGAUS -Number of Gauss points

NSTRE -Number of stresses

NALGO -Nonlinear solution algorithm to be used

= 1 - Initial stiffness method
= 2 - Tangential stiffness method
= 3 - Stiffness matrix is recalculated in the first

iteration of each increment
= 4 - Stiffness matrix is recalculated in the second

- 106 -
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iteration of each increment
NINCS -Total number of load incrementis

CARD SET 3 - Element Cards-two title cards and one card for each ele-

ment

NUMEL -ELement number

MATNO(NUMEL) -Material number of each element
LNODS(NUMEL) -Node numbers of each element ( 1 - 20)
CARD SET 4 - Nodal coordinates card - one litle card -

one card for each node whose coordinates must be input
IPOIN -Node number i
COORD(IPOIN,1) - X- coordinate
COORD(IPOIN,2) - Y- coordinate
COORD(IPOIN,3) - Z- coordinate
CARD SET 5 - Restrained node Cards - two tille cards -
one card for each restrained node
NOFIX(IVFIX) -Restrained node number
IFPRE -Condition of the degree of freedom :
0 - Free

1 - Restrained

u - displacement ( x-dir )

v

displacement ( y-dir )

w - displacement ( z-dir )
CARD SET -6 - Material Cards - two title cards -
one card for each material

NUMAT -Material identification number



37

108
PROPS(NUMAT,1) Young's Modulus

PROPS(NUMAT,2) Poisson's ratio

PROPS(NUMAT,3) Ultimate compressive strength

PROPS(NUMAT,4) ALpha ( factor controlling tonsile strength ) -
PROPS(NUMAT,5) Beta ( factor conlrolling compressive strength )
PROPS(NUMAT,6) G (shear modulus )

CARD SET 7 - Applied Loading Cards - two title cards -

one card for identification of loading condition

one card for number of loaded nodes or surfaces

one card for each loaded node or surface and the applied node or sur-
face |
CARD SET 8 - Load increment control cards - NINCS cards

FACTO -Applied load factor for the current increment

TdLER -Convergence tolerance factor

MITER -Maximum number of iterations allowed

NOUTP(1) -Controls output parameter of the uncouver.ged results

after the first iteration

1 for displacements only

2 for displacements and reactions

i

3 for displacements, reactions, stresses, strains -~
and damage
NOUTP(2) -Controls output paraineter of the converged results

after the first iteration

1 for displacements only

2 for displacements and reactions
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= 3 for displacements, reactions, stresses, strains

and damage

109
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Appendix B
SAMPLE INPUT DATA AND OUPUT FILES
FOR PROGRAM DAMAG3D
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DATA FILE

PC PRISM UNDER STRIP LOADING

NSTRE NALGO NINCS

NPOIN NELEM NVFIX NNODE NMATS NGAUS

20
ELEMENT CONNECTIVITY DATA

ELEMENT MAT

35

51

NODE NUMBERS
19393131181 33 6 25 36 22 2 10 |

3 11 4133513 43 35 7 26 37 23 4 12
9 17 47 39 11 19 49 41 14 28 4y 2

1

NODAL COORDINATES

10 32 7 26 37 23

1
1

42 34 8 27 38 24
5 10 18 48 40 15 29 45 26

1
1

26 12 20 50 42 16 30 u6 27

119 49 41 13 21 51 43 15 29 45

X
0.0

NODE

0.0
2.0
4.0
6.0

0.0
0.0
0.0

0.0
0.0

0.0
0.0
0.0

0.0
0.0

8.0
0.0
4.0
8.0

1.0
1.0
1.0

0.0
0.0
.0.0

0.0

2.0
4.0

0.0

2.0

10

n

0.0

2.0
2.0

6.0
8.0
0.0

0.0

12
13
1
15
- 16

0.0
0.0

2.0
3.0

4.0

0.0
0.0

3.0
3.0
4.0

8.0

0.0

0.0

17
18
19
20
21

0.0 2.0

h.o
4.0
k.0
4.0

4.0

0.0
0.0
0.0
2.0

6.0

8.0
0.0

0.0
0.0

22
23

h.o

2.0

8.0
0.0

2.0
2.0

0.0
2.0
2.0

24
25

4.0
8.0
0.0

2.0

26
27

2.0
2.0
2.0

2.0

4,0

28
29
30
31

4.0

4.0 -

8.0
0.0

2.0
4.0

4.0

4.0

0.0
0.0

2.0
4.0
6.0
8.0

32
33

4.0
4.0

0.0
0.0

34
35
36
37

4.0

0.0

0.0
4.0

4,0
4.0

1.0
1.0
1.0
2.0

8.0

38 4.0

39
ho

0.0
2.0

4.0
4.0

2.0
2.0

LN
6.0

4.0

Y]

2.0 4.0

2.0

u2

8.0

4.0

43

0.0

4.0

3.0

uh

y LY >+.4%
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W 3.0 4.0 4.0
b6 3.0 4.0 8.0
47 y.0 h.o 0.0
h8 4.0 4.0 2.0
49 4.0 4.0 h.o
50 4.0 4.0 6.0
51 4.0 4.0 8.0
PRESCRIBED BOUNDAR I ES

NODE CODE VALUES

1 111 0.0 0.0 0.0
2 110 0.0 0.0 0.0
3 110 0.0 0.0 0.0
b4 110 0.0 0.0 0.0
5 110 0.0 0.0 0.0
6 o1 0.0 0.0 0.0
7 010 0.0 0.0 0.0__
8 010 0.0 0.0 0.0
9 011 0.0 0.0 0.0
10 010 0.0 0.0 0.0
11 o010 0.0 0.0 0.0
12 010 0.0 0.0 0.0
13 010 0.0 0.0 0.0
L o011 0.0 0.0 0.0
15 010 0.0 0.0 0.0
16 010 0.0 0.0 0.0
17 011 0.0 0.0 0.0
18 010 - 0.0 0.0 0.0
19 o010 0.0 0.0 0.0
20 o010 0.0 0.0 0.0
21 oio 0.0 0.0 0.0
22 101 0.0 0.0 0.0
23 100 0.0 0.0 0.0
24 100 0.0 0.0 0.0
25 001 0.0 0.0 0.0
28 001 0.0 0.0 0.0 -~
31 101 0.0 0.0 0.0
32 100 0.0 0.0 0.0
33 100 0.0 0.0 0.0
3y 100 0.0 0.0 0.0
35 100 0.0 0.0 0.0
36 Q01 0.0 0.0 0.0
39 001 0.0 0.0 0.0
4y 001 0.0 0.0 0.0
47 001 0.0 0.0 0.0

MATERIAL PROPERT | ES
NUMAT young

1 3.5

0 0
1

6E06

POISSON FcoMp ALPHA BETA G

0.17 3900 b o0.08 ¢
APPLIED PRESSURE

1PLOD IGRAV ISURF

1

258 132743 38 35 2y

3900 0 0 3900 ¢ ¢ 3900 0 0 3900 0 o 3900 0 0 3900 ¢ ¢ 3900 0 0 3900 0 o
0.4 1,020 0 3
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OUTPUT FILES

PC PRISM UNDER STRIP LOADING

NPOIN = 51 NELEM = 4 NVFIX = 35
NMATS = 1 NGAUS = 3 NEVAB = 60
NALGO = 1 NINCS = 1 NSVAB = 153
ELEMENT  PROPERTY NODE NUMBERS
1 1 1 9 39 31
2 1 3 11 w1 33
3 1 9 17 47 39
u 1 1M 19 49
NODE X Y z
1 0.000 0.000  0.000
2 0.000 0.000 2.000
3 0.000 0.000 14.000
y 0.000 0.000 6.000
5 0.000 0.000 8.000
6 1.000 0.000 0.000
7 1.000 0.000 4.000
8 1:000 0.000 8.000
9 2.000 0.000 0.000
10 2.000 0.000 2.000
1 2.000 0.000 4.000
12 2.000 0.000 6.000
13 2.000 0.000 8.000
14 3.000 0.000 0.000
15 3.000 0.000 4.000
16 3.000 0.000 8.000
17 4.000 0.000 0.000
18 4.000 0.000 2.000
19 1.000 0.000 4.000
20 4.000 0.000 6.000
21 I.000 0.000 8.000
22 0.000 2.000 0.000
23 0.000 2.000 1.000
24 0.000 2.000 8.000
25 2.000 2.000 0.000
26 2.000 2.000 14.000
27 2.000 2.000 8.000
28 4.000 2.000 0.000
29 4.000 2.000 4.000
30 14.000 2.000 8.000
31 0.000 4.000 0.000
32 0.000 4.000. 2.000
33 0.000 4.000 4.000
3y 0.000 4.000 6.000
35 0.000 4.000 8.000
36 1.000 4.000 0.000
37 1.000 4.000 4.000

1

13

NNODE

NSTRE

11
13
19
21

41
43
u9
51

20

33
35
41
h3

m
15

25
26
28
29

36
37
by
u5

22
23
25
26

4
10

12

113
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12
18

20

ho
42
h8
50

32
3h
40
h2



23-7

38
39
4o
U |
u2
43
by
45
u6
47
48
49
50
51

NODE

@B~V E W -

N NN e owd b o cd ood bt ed md s

h7

NUMBER

1.000
2.000
2.000
2.000
2.000
2.000
3.000
3.000
3.000
4.000
4,000
4.000
4.000
4.000

CODE
111
110
110
110
110

1"
10
10
11
10
10
10
10
1
10
10
11
10
10
10
10
101
100
100

101
100
100
100
100

-t b b

4.000
h.000
4.000
h.000
4.000
4.000
4.000
4.000
4,000
4.000
4.000
4.000
4,000
4.000

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

8.000
0.000
2.000
&.000
6.000
8.000
0.000
4.000
8.000
0.000
2,000
4.000
6.000
8.000

.. FIXED VALUES

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

ELEMENT PROPERTIES

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
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0

0

0

0

1

0.800000E-01

MAXIMUM FRONTWIDTH ENCOUNTERED =

APP LIED

0 0
NO.

2

3900.000
3900.000
3900.000
3900.000
3900.000
3900.000
3900.000
3900.000

1

5

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

PRE SSUR E

OF LOADED SURFACES =
LIST OF LOADED SURFACES AND APPLIED LOADS
8 13 27

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

TOTAL NODAL FORCES FOR EACH

0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00

" 0.0000E+00

0.0000E+00
0.0000E+00
0.9207E-02
~0.8932E-02
-0.8932E-02
0.9207E-02
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00

0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.4572E-02
0.4572E-02
-0.5031E-02
-0.5031E-02
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00

1

5

43 38

ELEMENT
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.2600E+04
0.2600E+04
0.2600E+04
0.2600E+04
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00

35

0.356000E+07 0.170000£E+00 0.390000E+04 0.U4O0CO0E+01
0.000000E+00

24
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o

0

0.0000E+00
-0.4178E-02
-0.1375€-01
-0.1332E-02
0. 1044E-01
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
* 0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00

INCREMENT NUMBER
LOAD FACTOR =

0.0000E+00
0.6861E-02
0.6144E-03
~0.5943€E~02
0.1681E-02
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000€E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
1
0.40000

INITIAL OUTPUT PARAMETER = 0

CONVERGENCE CODE = 0  NORM OF RESIDUAL SUM RATIO =

0.0000E+00
-0. 1040E+05
=0.1040E+05
-0. 1040E+05
=0.1040E+05
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00

0.0000E+00 -~

0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00

0.0000E+00 -

0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.0000E+00
0.000CE+00

CONVERGENCE TOLERANCE =

1.00000

FINAL OUTPUT PARAMETER= 3

0.335438E+00
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MAX, NO. OF ITERATIONS= 20

MAXIMUM RESIDUAL =

0.171559E+
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LOAD

NODE

-d
O VOO ~NOMY & WN

11
12
13
1
15
16
17
18
19
20
1
22
23
2y
25
26
27
28
29
30
31
32
33
3y
35
36
37
38
39
ho
Y]
42
43
4y
45
46
47
4g
49
50
51

FACTOR =  0.40000
DISPLACEMENTS

X-DISP.
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.494787E-04
0.841390E-04

~0.190109E-03
0.100377E~03
0.121215€E-03
0.145148E~03
0.137125€-03
-0.356970E-03
0.140846E~03
0.2019%3E-03
-0.380111E-03
0.184182E-03
0.202645E-03
0.233329€-03
0.141369E-03
~0.388956E-03
0.000000E+00
0.000000E+00
0.000000E+00
0.104206E-03
0.150652€-03
~0.365431E-03
0.188965E-03
0.241866E-03
-0.383234E-03
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.528845E~0Y
0.100991E-03
-0.153119€-03
0.106935E-03
0.133979E~03
0.174803E-03
0.196591E~03
-0.291913E~03
0. 147889E-03
0.239598E-03
-0.297410E~03
0.191203E-03
0.218103E~03
0.274363E~03
0.218566E-03
-0.296703E-03

Y-DIsSP,
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.701028E~-04
0.837348E-04
0.157187E-03
0.691760E-04
0.704943E~04
0.108649E-03
0.655092E~04
0.462189E~04
0.381888E-04
0.142485E-03
0. 143586E-03
0.158748E-03
0.229378E-03
0.353916E-03
0.140817E~-03
0.153339E-03
0.310211E-03
0.139819E-03
0.137285E-03
0.138357€~03
0.163997E-03
0.219399E-03
0.138090E-03
0.116588E-03
0.116407E-03
0.136600E-03
0.123811E-03
0.932688E-04
0.529405E-04
0.309422€E-04

Z-DIsp.
0.000000E+00
~0.468073E-03
=0.100228E-02
=0.164336E-02
=0.244508E~-02
0.000000E+00
-0.949048E~-03
~0.227785E-02
0.000000E+00
=0.439098E-03
~0.883479E-03
~0.134786€E-02
=0.178288E-02
0.000000E+00
~0.810423E-03
~0.122897E-02
0.000000E+00
=0.420399E-03
=0.762748E-03
~0.898420E-03
~0.827575E-03
0.000000E+00
=0.100443E-02
~0.245326E-02
0.000000E+00
~0.887914E-03
=0.179173E-02
0.000000E+00
~0.775035E~03
=0.835592E~-03
0.000000E+00
=0.475273E-03
=0.102273E-02
=0.169389E-02
-0.253104E-02
0.000000E+00
~0.966792E-03
=0.235225E-02
0.000000E+00
-0.441770E-03
=0.894950E-03
=0.137948E-02
~0.183253E~02
0.000000E+00
-0.816237E-03
~0.125418E~02
0.000000E+00
~0.423729€-03
~0.775104E-03
=0.918735E-03
-0.843353E£-03
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23-7

LOAD FACTOR =

REACT IONS

NODE

1

X-REAC,
0.156880E+03
~0.528967E+03
-0.419170E+02
0.212627E+03
0.348328E+03
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E%D0
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
=0.473106E+03

=0.1QU573E+04 .

0. 162496 E+04
0.000000E+00
0.000000E+00
0.151812€+03
-0.573672€E+03
~0.933025E+02
-0.943921E+01
0.274437€+03
0.000000E+00
0.000000E+00
0.000000E+400
0.000000E+00

0.

40000

Y-REAC.
-0.347243E+01
0.343750E+01
~0.338807E+02
0.756021E+02
0.221997E+02
~0.266821E+01
0.479106E+02
0.203015E+03
-0.614966E+01
0.176868E+02
0.250354E+01
-0.412878E+02
0.254852E+02
0.210923E+02
-0.730107E+02
-0.156344E+03
-0. 148926 E+00
0.224663E+02
0.299002E+02
-0.149603E+03
-0.458109E+01
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00

Z-REAC,
~0.543868E+03
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.213948E+04
0.000000E+00
0.000000E+00
=0.104777E+0U
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.201819E+04
0.000000E+00
0.000000E+00
-0.497218E+03
0.000000E+00
0.000000E+00
0.000000£+00
0.000000E+00
0.212907E+04
0.000000E+00
0.000000E+00
0.415533E+04
0.205306E+04
-0.542314E403
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.214505E+04
=0.104855E+04
0.201574E+04
=0.497715E4+03
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23.7

0

0 G.P,

0

DN AN EWN =

DN = b el oad owd b b oed ek b

27

24

LOAD FACTOR =
STRESS1

ELEMENT NO. =

0.572871E+02
0.99U661E+02
0.150826E+03
0.629833E+02
0. 104770E+03
0.160374E+03
0.682697€+02
0. 118568E+03
0.187608E+03
0.540823E+02
0.751715E+02
0. 107024E403
0.588467€+02
0.782576E+02
0.113317€+03
0.638997E+02
0. 907402E+02
0.138492E+03
0.523103E+02
0.520497€+02
0.647367E+02
0.562948E+02
0.531445E+02
0.683020E+02
'0.612891E+02
0.646239E+02
0.920853E+02

ELEMENT NO. =

0.205093E+03
0.159128E+02
-0.173000E+03
0.220424E+03
0.408333E+02
-0. 127006E+03
0.253991E+03
0.117764E+03
~0.643938E+02
0.163563E+03
0.464609E+02
~0.119718E+03
0. 174921E+03
0.618247E+02
-0.937821E+02
0.212859E+03
0.133886E+03
<0.511111E+02
0.181008E+03
0. 148254E+03
-0.595657E+02
0.188719E+03
0.155602E+03
~0.527136E+02

0.40000
STRESS2
1
<0.105728E+00
0.1877U46E+01
0.122576E+02
0.256349E+01
<0.171756E+01
0.335327E+01
0.377644E+01
=0.498241E+01
=0.337140E+01
=0.795425E+00
0.693085E+00
0.823120E+01
0.158551E+01
=0.201239E+01
0.137720E+01
0.312025E+01
~0.376462E+01
=0.262932E+01
=0.280014E+00
=0.158159E+01
0.753036E+00
0.197015E+01
~0.323720E+01
~0.394980E+01
0.399762E+01
=0.327975E+01
~0.499168E+01
2
0.104351E+02
=0.320051E+02
~0.736445E+03
0.786117E+01
=0.907129E+01
~0.712754E+03
0.351510E+01
0.196150E+02
~0.606124E+03
=0.796118E+01
-0.174382E+02
<0.596853E+03
-0.108206E+02
=0.502954E+01
=0.588987E+03
=0.127280E+02
0.137100E+02
-0.494904E+03
0.285205E+01
0.177925E+02
=0.334656E+03
-0.313965E+00
0.199370E+02
=0.339052E+03

STRESS3

~0.789350E+03
-0.864892E+03
~0.940626E+03
=0.787738E+03
=0.867604E+03
=0.946562E+03
=0.794256E+03
-0.876765£+03
=0.957615E+03
~0.785748E+03
-0.833398E+03
=0.883757E+03
-0.784883E+03
=0.836994E+03
=0.890939E+03
=0.789221E+03
-0.844323E+03
=0.900862E+03
=0.774862E+03
-0.795281E+03
=0.821456£+03
=0.773939E+03
=0.799029E+03
-0.829396E+03
=0.775320E+03
~0.803916E+03
=0.837977E403

~0.105684E+0Y
-0. 128599E+04
-0.163677E+04
-0. 106059E+04
=0. 128652E+0h
-0.163478E+0Y
-0.108946E+04
~0. 130445E+04
-0. 164265E+04
~0.108365E+0H
-0.118906E+0Y4
=0. 14396 1E+0h
~0.108997E+04
-0. 119244 E+0k
-0. 1H4149E+0Y
=0.111717E+04
-0. 121094 E+04
-0. 145450E+0Y
-0.953732E+03
-0.950896E+03
-0.117030E+04
-0.961667E+03
=0.955924E+03
-0.117561E+04

STRAIN1

0.537906E-0h
0.691516E~04
0.866994E-0h
0.551863E-04
0.709424E~0Y4
0.900900E-04
0.569245E-04
0.754119E-04
0.985890E-04
0.527516E-04
0.608799E~04
0.718719E-04
0.539350E-04
0.620477E-04
0.743101E~04
0.554880E~04
0.659878E-0U4
0.820469E-04
0.517093E-04
0.526733E-04
0.573754E~04
0.526772E-04
0.532390E-04
0.589806E-04
0.540490E-04
0.566988E-04
0.661210E-04

0.107579E-03
0.674080E-04
0.673951E~04
0.112470E-03
0.733385E-04
0.791843E-~04
0.125325E-03
0.944347E-0l
0.912843E-04
0.980721E-04
0.706648E-0N
0.642463E-0L
0.101701E-03
0.7u45498E-04
0.712474E-04
0.113997E-03
0.947797E-04
0.789225E-04
0.962525E-04
0.862029E~0h
0.551341E-04
0.989485E-0h
0.8840U4BE-0Y
0.575220E-04

STRAIN2

STRAIN3

.319408E-04
.371057E-04
.411606E-04
.353314E~0Y4
.379366E-04
.384835E-04
.357281E-04
.348057E-04
.358264E-04
0.347148E-04
0.364020E-04
0.394023E-04
0.351159E-04
0.35667UE~04
0.375192E-04
0.356126E-04
0.349281E-04
0.356658E-04
0.344242E-04
0.350461E-04
0.363458E~04
0.348219E-04
0.347076E-04
0.352337E-04
0.352193E~04
0.343845E-0
0.342150E-04

CO0O OO0 O00CO0OO0

0.436315E-04
0.516717E-04
-0.118406E-03
0.423841E-04
0.569364E-04
-0.114434E-03
0.412180E-04
0.621756E-04
-0.879896E~04
0.416992E-04
0.496622E~04
-0.928149E-0Y4
0.406550E-04
0.525755E-04
-0.918101E-04
0.396589E-04
0.552814E-01
-0.670600E~04
0.376993E-04
0.433248E-04
-0.352765E-04
0.368207E-04
0.4381G4E-04
-0.365851E-04
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_-0.224458E-03

-0.247786E-03
-0.272007E-03
-0.22U405E-03
~0.248629E-03
-0.273706E-03
-0.226546E-03
-0.251706E~-03
~0.277790E-03
-0.223260E-03
-0.237723E-03
~0.253750E-03
~0.223358E-03
~0.238751E~03
~0.255740E-03
~0.224892E-03
-0.201322E-03
-0.259539E-03
-0.220142E-03
-0.225803E-03
-0.233873E-03
-0.220181E-03
-0.226829E-03
-0.236049E-03
-0.220904E-03
-0.228748E-03
-0.239545E-03

-0.307156E-03
~0.360464E-03
=0.414775€-03
-0.308830E-03
-0.362899£-03
~0.417798E-03
=-0.318388E-03
~0.372979E-03
~0.1428764E-03
=0.311824E-03
~0.335391E-03
-0.369871E-03
-0.314006E-03
-0.337668E-03
=0.372051€£-03
=0.323375E-03
-0.347198E-03
-0.382409E-03
-0.276682E-03
-0.275034E-03
~0.309910E-03
=0.279127E-03
-0.276900E-03
~0.311518E-03



23.7

% 13

25
26
27

X ~NOE W=

0.228176E+03
0.225144E+03
=0.258025E£+02

ELEMENT NO. =

0.158715E+02
0.498285E+02
0.106008E+03
0.180941E+02
0.531808E+02
0. 114209E+03
0.197219E+02
0.597866E+02
0.130482E+03
0.145017E+02
0.236078E+02
0.526573E+02
0. 159279E+02
0.240816E+02
0.554557E+02
0.174608E+02
0.284088E+02
0.669291E+02
0.981470E+01
~0.535098E+01
=0.353900E+01
0.995801E+01
=0.758202E+01
=0.570514E+01
0.107500E+02
-0.390622E+01
-0.163600E+01

ELEMENT NO. =

0.128686E+03
0.959741E+01
0.349294E+02
0.141241E+03
0.188943E+02
0.414536E+02
0.166862E+03
0.503445E+02
0.750459€E+02
0.862302E+02
0.391770E+02
0.843560E+02
0.908322E+02
0.246873€E+02
0.608572E+02
0.109392E+03
.0.276534E+02
0.670305E+02
0.318485E+02
0.641317E+02
0.178869E+03
0.272996E+02
0.356204E+02

-0.141680E+01
0.293233€+02
=0.260654E+03
3
=0.771695E+01
=0.541199E+00
0.958141E+01
=0.504416E+01
-0.581604E+00
0.733618E+01
-0.269833E+01
-0.318161E+00
0.617584E+01
=0.109963E+02
-0.407230E+01
0.103304E+01
=0.630640E+01
~0.25830LE+01
-0.216049E+00
-0.130273E+01
=0.193405E+00
0.400620E+00
=0.173737E+02
=0.117917E+02
~0.134405E+02
=0. 112447E+02
-0.989874E+01
=0.151136E+02
-0.412819E+01
-0.824406E+01
=0.114961E+02
4
0.340228E+01
=0.162941E+02
=0.355950E+02
0.101622E+01
=~0.961304E+01
-0.194136E+02
=0.358968E+01
~0.145T7U6E+02
~0.172170E+02
0.194530E+02
=0.117809E+02
0.650528E+01
0. 1U8575E+02
-0.576329E+01
0.123586E+02
0.872375E+01
-0.609258E+01
0.500487E+01
0.183461E+02
=0.150000E+02
0.130136E+03
0.125487E+02
-0.143806E+02

-0.989138E+03
=0.975540E+03
~0.118860E+0Y

<0.774164E+03
=0.765317E+03
~0.764722E+03
~0.772934E+03
~0.767T946E+03
=0.771390E+03
~0.7726U48E+03
=0.771755E+03
-0.780606E+03
-0.771692E+03
~0.721422E+03
=0.679056E+03
=0.770711E+03
=0.724375E+03
-0.685638E+03
-0.767369E+03
=0.725059E+03
~0.691508E+03
-0.784417E+03
-0.692776E+03
-0.607357E+03
-0.78644BE+03
-0.698928E+03
=0.616698E+03
-0.782681E+03
-0.699083E+03
-0.621656E+03

-0.831957€+03
-0.792950E+03
~0.7979U7E+03
-0.8387U1E+03
-0.794076E+03
~0.792370E+03
-0.871120E+03
-0.824496E+03
-0.822720E+03
-0.581186E+03
-0.409002E+03
-0.281338£+03
-0.586269E+03
-0.409038E+03
-0.273687E+03
-0.613067€+03
~0.433538E+03
-0.299909E+03
-0, 403968E+03
-0.109347E+03
0.179793E+02
-0.408035E+03
-0.114213E+03

0.111646E-03
0.108529E-03
0.619584E-04L

0.417953E-04
0.505686E -0k
0.658378E-04
0.422337E-04
0.516377E-04
0.685671E-04
0.425649E-04
0.536627E~04
0.736337E-0k
0.414491E-04
0.412760E~04
0.471691E~04
0.415788E-04
0.4145790E-0k
0.483291E-04
0.416102E-04
0.426119E-04
0.518029E-04
0.410450E-04
0.321418E-04
0.286501E-0l
0.408897E-04
0.317178E-04
0.285681E-04
0.405913E-04
0.326789E-04
0.297751E-04

0.757138E-04
0.413395E-04
0.496156E-04
0.796787E-04
0.436862E-04
0.504093E-04
0.886415E~04
0.542098E-0l
0.611898E-04
0.510467E-0h
0.310985E-04
0.368196E-04
0.528014E-04
0.267425E-04
0.295739E-04
0.595873E-04
0.287617E-04
0.329113E-04
0.273607E-04
0.239525E-04
0.431714E-04
0.265541E-04
0.161461E-04

0.359797E-04
0.440892E-04
=0.152281E-04

0.340420E-04
0.340138E-04
0.341458E-04
0.346309E-04
0.339679E-04
0.334418E-04
0.351982E-04
0.339081E-04
0.327788E-0U
0.330682E-0L
0.321776E~0U
0.302014E~04
0.345543E-04
0.327145E-04
"0.300311E-04
0. 354442E-08
0.332119E-04
0.299368E-04
0.321080E-04
0.300247E-04
0.253965E~-04
0.340431E-04
0.309573E-04
0.254755E-04
0.357032E-04
0.312538E~04
0.265339E-04

0.345375E-04
0.328293E-04
0.264365E-04
0.335915E-04
0.343156E-04
0.304039E-04
0.326205E-04
0.328727E-04
0.308661E-04
0.290987E-04
0.143504E-04
0.112332E-04
0.278308E-04
0.167344E-04
0.136343E-04
0.265013E-04
0.176700E-0l
0.125260E-04
0.229228E-04
-0.205459E-05
0.271545E~04
0.217055E-04
~0.286701E-06
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-0.288681E-03
-0.286183E-03
-0.320197E-03

-0.217851£-03
-0.217330E-03
-0.220329E-03
-0.217739E-03
-0.218227€E-03
-0.222487E-03
-0.217849E-03
-0.219624E-03
~0.225797E-03
-0.216934E-03
-0.203579E-03
-0.193310E-03
-0.216951E-03
-0.204503E-03
~0.195233E-03
-0.216325E-03
-0.205015E-03
-0.197459E-03
=0.219981E-03
-0.193781E-03
-0.169795E+03
-0.220851E-03
-0.195493E-03
=-0.172236E-03
-0.220170E-03
=0.195791E-03
-0.173995E-03

-0.240003E-03
~-0.222419E-03
=-0.224111E-03
-0.242394E-03
~0.223498E-03
-0.223628E-03
~0.252493E-03
~0.233308E-03
-0.233863E-03
-0.168301E-03
=0.116197E-03
~-0.833662E-04
-0.169729E-03
-0.115802E-03
-0.803743E-04
-0.177850£-03
~0.122810E-03
-0.876838E-04
-0.115871E-03
~0.330615E-04
=-0.970539E-05
-0.116519E-03
-0.330965E-04



‘237

24
25
26
27

0.183217E+03 0.793146E+02 0,153137E+02
0.378005E+02 0.545001E+01 -0.429701E+03
0.916634E+01 -0, 165424E+02 -0.126260E+03
0.166U92E+03 0. L418422E+02 0.839252E+01

0.u469469E-0U
0.308774E-Oh
0.939404E-05
0.443684E-0Y

0.127986E-04
0.202446E-0N
0.9h4585E~-06
0.310198E-05
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~0.823489E-05
-0.122768E-03
=0.351139E-04
~0.759092E-05



123-7

N EWN =

DN

LOAD FACTOR =

DAMAGE

R

ELEMENT NO. =

0.225550E~01
0.325971E-01
0.496700E-01
0.230928E~01
0.337172E-01
0.530106E~01
0.240475E-01
0.371219E-01
0.634879E-01
0.220301E~01
0.269395E-01
0.351589E-01
0.224997E-01
0.274714€E-01
0.368688E-01
0.232728E-01
0.297614E-01
0.436751E-01
0.213530E-01
0.222805E-01
0.249976E-01
0.217028E-01
0.224911E-01
0.256514E-01
0.222996E-01
0.239370E-01
0.296179€E-01

ELEMENT NoO. =

0.766303E-01
0.502368E-01
0. 149102400
0.837947E-01
0.531922E-01
0. 140110E+00
0. 102685E+00
0.662726E-01
0.117733E+00
0.619736E-01
0.454026E-01
0. 104296E+00
0.662251E-01
0.479482E~01
0.101353E+00
0.833579E~01
0.625993E~01
0.859592€-01
0.607964E-01
0.495357E-01
0.490156E-01
0.642431E-01
0.521463€-01

0.40000

DAMAG1
1

0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+C0
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
2

0.000000E+00
0.000000E+00
0.179884E-02
0.208839E-03
0.000000E+00
0.199054E~02
0.160900E~02
0.000000E+00
0.153010E-02
0.000000E+00
0.000000E+00
0.545530E-03
0.000000E+00
0.000000E+00
0.553092E-03
0.182881E-03
0.000000E+00
0.179597E-03
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00

DAMAG2

0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00

0.000000E+00
0.000000E+00
0.360074E-02
0.662764E~04
0.000000E+00
0.275495E-02
0.433032E-03
G.000000E+00
0.105843E-02
0.000000E+00
0.000000E+00
0.732029E-03
0.000000E+00
0.000000E+00
0.601328E-03
0.616789E~04
0.000000E+00
0.972470E~04
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00

DAMAG3

0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00

0.000000E+00
0.000000E+00
0.7010L44E-02
0.000000E+00
0.000000E+00
0.552448E-02

0.000000E+00

0.000000E+00
0.269115E-02
0.000000E+00
0.000000E+00
0.157235E~02
0.000000E+00
0.000000E+00
0.131029E-02
0.313009E-05
0.000000E+00
0.290012E~-03
0.000000E+00
0.000000E+00
0.000000E+00
0.00000CE+00
0.000000E+00

-~
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24
25
26
27

P~ EWN =

0.496058E~01
0.833995E-01
0.814670E-01
0.1429435E-01

ELEMENT NO. =

0.188626E-01
0.206557E-01
0.289727€-01
0.189943E-01
0.210822E-01
0.310800E-01
0.191469E-01
0.219384E-01
0.355812E-01
0.185537e-01
0.167992E-01
0.170014E-01
0.187644E-01
0.170211E-01
0. 175455€E-01
0.188914E~-01
0.173509E-01
0.190904E-01
0.18787T0E-01
0.144919E-01
0.110744E~-01
0.191700E-01
0.147382£-01
0.112851E-01
0.193469€-01
0.149781E-01
0.117629E-01

ELEMENT NO. =

0.375404E-01
0.192499€E-01
0.197077E-01
0.413640E-01
0.198382E~01
0.204803E-01
0.511594E-01
0.230126E-01
0.256523E-01

"0.178465E-01

0.641851E-02
0.994324E-02
0.187709E-01
0.568378E~02
0.613186E-02
0.234953E-01
0.6U5601E-02
0.736070E-02
0.628262E-02
0.489857E-02
0.406756E-01
0.602650E-02

0.000000E+00
0.188340E-03
0.785259E-04
0.000000E+00
3

0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000Q00E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
N

0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000006E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00

0.000000E+00
0.511359€-04
0.224050E-04
0.000000E+00

0.000000E-+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000£+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00

0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00

0.000000E+00.

0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00C
0.000000E+00
0.000000E+00
0.000000E+00

0.000000E+00
0.313092E-06
0.000000E+00
0.000000E+00

0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+Q0
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.0000C0E+00
0.000000E+00

0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00

0.000000E+00

0.000000E+00
0.000000E+00
0.000000F+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
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23
24
25
26
27

0.173548E-02
0.383749E-01
0.711420E-02
0.522560E-03
0.312076E~0%

0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00

0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00

0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
0.000000E+00
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Appendix C
DETAILED EXPRESSIONS FOR D
MATRICES
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126

Dy(1,1) = (1-aw)(1 —vz(i—awg)(l - aw3))Eo _ %
Di(1,2) = Xl—am)(1 —a.,fv:)(l + (1~ awy)) ;. _ %
Dy(1,3) = Xz ew)1 -O'ﬁs)(l ol - awg) Af
Di(2,1) = v(1 - aw)(1 —mﬁ:)(l + (1 — awa))E., _ %
Di(2,2) = (1~ aw) (1~ ﬁ(‘:— ow; )(1 — aw;;))Eo _ Af
Di2;3) = Y(1 — awp)(1 —&?f::)(l + (1 - a-w,))Eo _ %
Di(3,1) = V(1 —aw )(1 - au:)(l + (1 - awg))Eo _ %
 Di3,2)= Y(1 - aw,)(1 —fttt:)(l + (1 - awl))Eo - AIS
 Dy(3,3) = Lew)(1- u?(il— o)1~ awp) o _ A

A= 1-2((1- aw,)(1 — aws) + (1 ;awl)(l —aw;) + (1 — awy )(1 — aw,)) — 203 x
(1 —aw;)(1 ~ awp)(1 - aws) .
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—adw, (1 - u2(1 —ows)(1 — aws ))

—adw; + Vzadwl(l —awy)(1 - aws) = DA11
(1 — awy ) Padwy(1 — aws)

vadws(1 — awy )(1 — aws) = DA12

(1-ouw )u2adw3(1 - aws)

Vadws(1 — aw )(1 ~ awp) = DA13
—vodw (1 — ow,) (1 + (1 ~ aw;)) = DA21

~vadws(1 — aw) (1+v(1 - aws)) = DA22

Y(1 — awn )(1 - aws)(~vadw;)
~adws(1 — aw )(1 — aws) = DA23
—vadw (1 — aws) (1 + (1 — aw,)) = DA31

—uzadwg(l —ow;)(1 - aws) = DA32
—vadws(l — aw;) (1 + (1 — aws)) = DA33
Vadw, (1 - awy)(1 — aw;) = DA41

—~adw, (1 - (1 - awp)(1 — aw;;))
—adw, + uzad;vg(l —owy)(1 — aw;) = DA42
Viadws(1 - aw )(1 — awy) = DA43

—v’adw, (1 - awz)(1 —- awz) = DA51
~vadwy(1 - aws) (1 + v(1 — aw;)) = DA52
~vadws(1 - aws)(1 + v(1 — aw,) = DA53
Vadw (1 - aws)(1 — awy) = DAG1
Vadws(1 - awg)(l —ouwy) = DAG2"

—adw; (1 -1~ aw; )(1 - awg))
—adw; + V2adw3(l —aw)(1 — awy) = DAG3

127
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Dn(l, 2)

Dp(1,3)

Dyr(2,1)

Dp1(2,2)

Dy(2,3)

Dp(3,1)

128

(1~ w1)’(1 = Buw,)(1 ~ Bug) (1 — wp)*(1 — w3)? — v2(1 — By )Y(1 - Fwy)(1 — ﬂws))E
B o
B,

. B

(L= Bun)(1 — Buo)(1 = Bug)(1 — wy)(1 - wa) (V(1 — w3)® + v3(1 — Gy )(1 — )

B
B,
B

(1= fun)(L = Bus)(1 ~ BupP(1 — wy)(1 — ws) (U1 = wp)? + 12(1 = 3wy )(1 — Jws))
B 0

.‘B3

B

(1 = Bun)(1 — p)(1 = Bug)?(1 — wy )(1 — W) ((1 = w3)? + 12(1 - Buwy )(1 — Buy))

B
5
B

(1- w2)2(1 = Buwy)(1 - Bws) ((1 - w1)2(1 —w3)? — V(1 - Bw )(1 — 3ws)?(1 - /3w3))E
B o

By

B

(L= B )1 = Buoa)(1 ~ Bu)(L = wp)(1 ~ wg) ({1 = w;)? + w2(1 - Bu)(1 - fu))

B [+
B;
B

(1= Bun)(1 = Bug)(1 = Bual(1 — w)(1 = w) (1 = w)? + (1 3un)(1 = Bug))
B (]
B;

B



23-7

129

(1~ Bun)*(1 = Bun)(1 ~ Burg)2(1 — wa)(1 — wy) (W1 — wy)? + v2(1 — Bun)(1 — ﬁ'w:s))E
B j 0
B

B

D(3,2)

Di(3,3) = (L= wn)(1 = Bu)(1 = fun) (1 = wy)P1 5 we)? = V(1= Bun)(1L - frog)(1 = ) ;.
B

B

B = {(1~ u)’(1 = wa)*(1 — ws)? — v%((1 = Buwy )(1 - Bun)(1 — Buwg)? + (1 - Bw)? x
(1= Sun)(1 = Bug)(l = wr)? + (1 = Bun )(1 ~ Bun)?(1 — fws)(1 - ws)?) — 2% x

((1 = Bun)*(1 — Bua)(1 - Buy)?)}
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8(1 — wi)X(1 — fuy)?
6w1

3(1 — fun)*(1 — wy)?
6w!

8(1 = w)(1 — Bwn)
awl-
a(1 — wy)(1 = fun)?
6w1

(1 — wp)2(1 — Bw,)?

.awz

(1 — Bwy)’(1 — wy)?
6w2

8(1 — wp)(1 — Bw,)
0w2
(1 — wy)(1 — Buwy)®

aw?

A(1 — w3)?(1 — Bus)?
6w3

A(1 — Pws)*(1 — ws)?
6w3

130

= =2(1-w)(1 - Bwy) {1l — Buwy + B(1 — w;)}

~9(1 = wy)(1 — Bwr)(1 + B — 2Bw,) = DBW1

-8(1 - w)? — 2(1 - Bwy)(1 — wy)

—(1—w) {8 - Buwy +2 - 28w} = —(1 — w1 )(2 + B — 38w))
DBW?2

—(1=Bw) - Bl —wy) = -1 -3 +2Bw, = DBW3

= —(1- ﬂw;)2 —26(1 - Bwn)(1 —wy) = —(1 — Bwy) {1 — By +23 - 23w, }

—(1 = Bwy)(1 + 2B — 3Bw,) = DBI'4

=2(1 = wq)(1 — Pw») {1 — Bwa + 3(1 — wa)}
—2(1 — wo)(1 = Bwo)(1 + 8 — 2Pus) = DBW35
—B(1 — w2)? — 2(1 — Bwe)(1 — wy)

—(1=wp) {B = Pwa+2 - 2Bws} = —(1 — w2 )(2+ 5 — 35ws)
DBW6 '

~(1 = Bws) — B(1 — wy) = =1 — B+ 2fwy = DBWT

—(1 = Bwz)? = 2B(1 — fwy)(1 — wp) = —(1 = Fwp) {1 — Bwz +23 - 23w }
—(1 — Bwa)(1 + 26 — 3fwy) = DBWS

—2(1 — w3)(1 — Bws) {1 — fws + 3(1 — w3)}

-2(1 - w3)(1 - ﬂ‘w;;)(l + 8 — 2pw3) = DBW9

—B(1 — w3)? — 2(1 — Bws)(1 — ws)

—(1 = w3) {8 — Bws +2 — 2Bw3} = ~(1 — w3)(2 + 3 — 33w3)

= DBWI10

9(1 — w3)(1 — Buy).
6w3
8(1 — ws)(1 — Bw;s)?

0w3

—~(1 — fws) — BfE— w3) = —1 — B + 2Bws = DBW11

—(1 = Bws)? — 2B(1 — Bw3)(1 — w3) = —(1 — Pws) {1 — Bwz +23 — 23wy }
—(1 = Bws3)(1 + 26 — 3fw;) = DBW12
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{-2(1 ~w)(1 - Bwy)(1 - Bws)(1 — w2)?(1 — w3)? + 20%(1 — w)(1 = Buy) x
(1 + 8 = 28w )(1 - Bwy)2(1 — Buy)?}dw, = DB11 .
—(1-w2)(2+ B — 38w»)(1 — w1)%(1 = Bug)(1 — wy)? + 28031 — w))? x
(1= Bw)*(1 - Bwa)(1 ~ Bws)?dw, = DB12

{-(1 - ws)(2 + 8 - 3pw3)(1 - w1 (1 = Juwa)(1 — wp)? + 280%(1 — wp)? x
(1= Bw1)*(1 — Bun)X(1 - Bws)}dws = DB13

{U(=1 = B+26w1)(1 - Bun)(1 - wy)(1 ~ Jug)2(1 ~ w3)® = V(1 - Buy) x
(1426 = 38w,)(1 — wa)(1 — Buwg)?(1 — BuwsPldw, = DB21

{v(~1 = 8+ 28w,)(1 - Bwi)(1 - wy )(1 — Juws)?(1 - w3)? — V(1 - Bws) x

(1428 = 3Bwa)(1 - w, )(1 — By (1 - Bws)?}dwy = DB22

{=2v(1 - wa)(1 - Bun)(1+ 5 - 2Bws)(1 = Bwn)(1 — wy (1 — Buy) x

(1= w2) = 26021 - wy)(1 - Buy)?(1 - w2)(1 — Bw2)X(1 ~ Bws)}dws = DB23

{v(-1-3+ 208w, )(1 - Bwy)?(1 - wy)?(1 - Juz)(1 — wy) ~ (1 - Jwy) x
(1+28 = 3Bw; )(1 — ws)(1 ~ Buz)*(1 - 3ws)?}dw, = DB31

{-2v(1 — wy)(1 - Bwa)(1+ 8 - 28w,)(1 - Jw ) (1 —w )1 — fws) x ~
(1 —ws) - 260%(1 — wy)(1 = Buy)(1 — w3)(1 ~ Bws)*(1 — Bws)}dwy = DB32

(=1 = B+ 2Bws)(1 = Bun)(1 - wp)X(1 — Suy)(1 — w) = V(1 = fu) x
(1+28 - 3Bws)(1 - wy )(1 ~ fuy )*(1 = fws)?}dws = DB33

{=(1—w)(2+ 8 - 36w,)(1 - wa)*(1 ~ Bug)(1 ~ wy)? + 230%(1 — Bw,) x

(1= w)X(1 - Bun)(1 - Bws)?}dw, = DB41

{—2(1-wy)(1 - Bur)(1 = Bwy)(1 - wy P(1 - ws)? + 20°(1 — w»)(1 — Jwy) x
(148 = 26uws)(1 - B, 21~ Bw3)*}dw, = DB12



23-7

132

E—;dw;; = {=(1-w3)(2+28 - 3Bws)(1 — wa)X(1 — B, )(1 — wy)? + 23031 — Jwy) x
(1 — w2)%(1 — Bwa)(1 — fw,)?}dws = DB43

s—dw = {=20(1 —w)(1 - Buwy )(1 + B — 20w, )(1 — Bwo)(1 — wa)(1 — Puws) x
(1 —w3) — 26V%(1 - Buy)(1 ~ Bw2)*(1 — Bws)*(1 — ws)(1 — w3)}dw, = DB51

o dwz = {v(=1—B+2Bws)(1 — Bwy )21 - wy)2(1 — Buwz)(1 — w3) — V(1 — Ju) x
(1+28 — 38ws)(1 — Bun )’(1 - fws)*(1 — w3)}dwy = DB52

o dws = {U-1=B+28ws)(1 — Bun X1 — w))X(1 = Bwn)(1 — wa) — v¥(1 — Fuwg) x -
(1428 - 3Bws)(1 - Bwy )*(1 - fw,)*(1 — wp)}dws = DB53

'Z_ifd"’l = {~(1 - w1)(2+ 8- 3fw)(1 - fun)(l — ws)(1 — wg)? +26v%(1 — Juy) X
(1= Bun)2(1 ~ Bws)’(1 — ws)?}dw, = DB61

9Bg : 2 2 . 2 , .

%dwg = {=(1=w)(2+ 8 — 36w2)(1 — fwy)(1 — w1 )2(1 — w3)® + 28V%(1 — 3un) x

(1= Bun)’(1 - Bws)’(1 — ws)*}dw, = DB62

%dws = {-2(1 - ws)(1 - By )(1 - w1)*(1 = Buwa)(1 — wp)? + 20%(1 — wy) X

aw;;
(1~ Bws)(1 + B — 2Bw3)(1 ~ fuw, )*(1 — Bws)?}dws = DB63

%dwl = {uza((l — aw3) + (1 — awy)) + 2v3(1 — awy)(1 — aw3)} dw, = DAl
1

aa_Adwz = {u2a ((1 = awy) + (1 - aws)) + 2%a(l — aw; )(1 - O‘lU3)} dwy = DA2
Wo )
%dw:‘ = {"2“((1 — aw) + (1 ~ awz)) + 2va(l — ow )(1 - O"wg)} dws = DA3

'aa%;d?lh = {—2(1 - wl)(l —_ 1D2)2(1 - 1D3)2 + V2(3(1 _ /321}2)(1 _ Bu'3)2(1 _ 'LU3)2 + .2(1 _ u-’l) X
(1= By N1+ B~ 2Bwi)(1 = Buwn)(1 — Bws) + A1 — Buwy)?(1 — wy)X(1 — Fuws)) +
2°B(1 = Bun)(1 = Buws)*(1 = Buws)?}dwy = DBI
%dw = {=2(1—w1)’(1 - wo)(1 — w3)? + V2(3(1 — Bwi )(1 ~ Buws)?(1 — ws)® + B(1 — By )? x

(1= w1)’(1 = Bwy) + 2(1 = Bun)(1 — wy)(1 + B — 23ws)(1 — By )(1 — Juwz)) + 20°3 x

(1 - Bw)*(1 = Bua)(1 — fws)?}dw, = DB2
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——

8w3

dwy = {~2(1 - wy)2(1 - w2)X(1 - wy) + (21

(143 - 28us) 4 (1 - Bun (1~ wy )
(1 - w)®) + 23801 - Buwn)*(1 - fuw,
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= Bwi )(1 = Buwy)(1 - Aws)(1 - wy) x
1= Bwa) + B(1 - pwy)(1 - Jus)? x

)2(1 - ,Bw3)}dw3 = .DB3
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DTMATI(1,1)
DTMATI(L,2)
DTMAT1(1,3)
DTMAT1(2,2)
DTMAT1(2,3)
DTMAT1(3,3)
DTMAT2(1,1)
DTMAT2(1,2)
DTMAT2(1,3)
DTMAT2(2,2)
DTMAT2(2,3)
DTMAT2(3,3)
DTMAT3(1,1)
DTMAT3(1,2)
DTMAT3(1,3)
DTMAT3(2,2)

DTMAT3(2,3)

DAll x 41— 41 x DAL
Az

DA21 x A — A2 x DAl
A2

DA31 x A — A3 x DAl
A2

DA41 x A— A4 x DAl
A2

DAS1 x 4 — A5 x DAl
A2

DA61 x 4 — A6 x DA1
A?

DA12 x A — Al x DA2

m

2

2

&

2

§

2

A?
DA22 x A - A2 x DA2

S

A?

DA32x A — A3 x DA2
A2

DA42 x A - A4 x DA2
A?

DA52 x 4 — 45 x DA2
A?

DA62 x 4 — A6 x DA2

2

&

&

&

A?
DA13 x A— Al x DA3

3

A2
DA23 x A— A2 x DA3
A?

DA33 x A — A3 x DA3
A2
DA43 x A - A4 x DA3

A? '
DA53 x A— A5 x DA3
A?

&

&

&

&
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DCMATI1(1,1)
DCMATI(1,2)
DCMAT1(1,3)
DCMATI1(2,2)
DCMAT1(2,3)
DCMAT1(3,3)
DCMAT2(1,1)
DCMAT2(1,2)
DCMAT2(1,3)
DCMAT?2(2,2)
DCMAT?2(2,3)
DCMAT?2(3,3)
DCMAT3(1,1)
DCMAT3(1,2)
DCM;4T3(1,3)
DCMAT3(2,2)
DCMAT3(2,3)

DCMAT3(3,3)

DB11 x B - Bl x DB1
B2

DB21 x B- B2 x DB1
B2

DB31 x B - B3 x DB1
B2

DB41 x B— B4 x DB1
B2

‘BB31 x B - B5 x DB1
B2

DB61 x B - B6 x DB1
B2

DB12x B— Bl x DB?
B2

DB22 x B- B2 x DB?2
B2

DB32 x B— B3-x DB?2
- 5

DB42 x B— B4 x DB?2
B2

DB32 x B— B5 x DB2
B2

DB62 x B—- B6 x DB?2
B2

DB13x B - Bl x DB3
B2

DB23 x B—- B2 x DB3
B?

DB33 x B—- B3 x DB3
B2

DB43 x B— B4 x DB3
B2

DB53 x B— B5 x DB3
B2

DBG63 x B — B6 x DB3
B2

&

&

i

&

i

&

2

$

&

&

&

&

&

&

&

&

§

&
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