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Chapter 1

introduction

Software Metrics can help to understand measure, analyze, control and
improve software product and process attributes. Coupling is a software
product attribute that is defined as the degree of inter-connection or
dependency between two or more units of software (a unit may be a class,
module, package, or system). Because coupling can give insight into the
complexity, error density, error propagation and quality of software, it has
been extensively studied in the software metrics literature and various
metrics have been proposed in the literature to measure this attribute.
Coupling is mainly a design-level metrics. Since the Unified Modeling
Language (UML) is widely used for expressing design artifacts in Object
Oriented Software Development (OOSD), it would be worthwhile to assess
coupling directly from UML models. In this research we investigated that
whether coupling could be derived at design level of software and propose a
suite of coupling metrics that can be computed for UML designs (package,
class and sequence/collaboration diagrams) stored in XMI format. Hence we
get all the advantages of UML like early availability, as well as coupling
metric like complexity estimate, effort prediction, error proneness and

understandability. In the remainder of the Chapter we will discuss the



concept of coupling, coupling in object oriented programs and motivation for

design level coupling.

1.1 Coupling

Coupling is an attribute of software that is defined as the degree of inter-
connection or dependency between two or more units (a unit may be a class,
module, package, system etc) of software [31]. Various metrics are proposed

in literature to measure this attribute.

1.1.1 Analogies of Coupling
Different disciplines of science have benefited immensely from intellectual
exchange of ideas among them. Hence we explore how the concept of
coupling came to software engineering from other disciplines. Literally the
word “couple” refers to two items of same kind, or a link that binds two
things together and informally used for a small number of things joined

together (“a couple of days™) [1].

Following are some interesting analogies of coupling that exist in other

disciplines.

e Word “couple” was used in Physics to mean two forces acting in

parallel but opposite in direction to cause rotation [2].



e [Its verb form “coupling” came into Electronics to refer to the
interference cause by electrical signals from one part of circuit to

another [3].

e Optical coupling in optical circuits is defined as the transmission of

light energy from one source to other [4].

In electronic circuits though coupling is sometimes considered harmful, it
can also be desirable in some cases. For example it is harmful in
communication circuits but useful in measuring circuits to measure attributes
of other circuits [3]. Optical coupling is a desirable feature in optical circuits

and efforts continue to make effective use of it [4].

Its earliest usage in software engineering dates back to 1974 by Stevens et.
al. [31] in one of their most cited works on structured programming titled
“Structured Design”. They defined coupling as the complexity of

communication between different modules.
1.2 Coupling in Object Oriented Programs

Initially the coupling metrics were designed and used for measuring
programs based on conventional structured programming paradigm [32].

Coupling was measured from the extent to which one function uses other



function or its members. Thus types of connections that could occur are

methods call or atiribute use.

With the advent of Object Oriented Software Development, coupling metrics
were proposed specially geared towards measuring coupling in object-
oriented programs [33]. Object technology raised the level of abstraction
from functional units to objects and classes. Hence for measuring coupling of
object oriented software, different types of connections that can occur

between classes has to be considered.
1.3 Motivation

The process of raising level of abstraction continues as software engineers
try to decrease the complexity of programs and enable the development of
quality software for large real life applications [5][6}{7]{8]. This explains the
emphasis today on design methodologies, notations to express design, design
patterns in the software engineering community [9]. As software engineers
realized importance of design and architecture, different methodologies
sprang up to support their applications. Unified Modeling Language (UML)
[18] has become the defacto standard for expressing software requirements,
design and process artifacts. There is a dearth of useful metrics for measuring
UML models in general anci coupling metrics in particular, although there

have been some elementary metrics proposed recently. However these are



mostly elementary measures e.g.,, UML numbers of classes, number of
messages [11][12]. Hence the important issues that this thesis addresses are

namely:
e Can coupling be derived from design?
e How is it different than Object technology?
e What could be its application?

Coupling is a major property of design that signifies the estimate of
dependency or relationship that each module has with other modules of
system and metrics have been proposed to measure different types of
coupling. But there are few works that try to measure coupling for UML

models.
Measuring coupling at design level offer the following advantages:
e FEarly detection of flaws.

e They can help to understand, assess software architecture in the

design stage and choose between alternatives.

e Gain insight into the development process when compared with

source level coupling .

e Measuring coupling of UML artifacts can be an important step

forward in understanding and improving their use.



1.4 Main Contributions

The main contributions of this thesis work are the following:

e Conducting an extensive critical survey of existing coupling metrics,

UML metrics and XMI processing.

e Demonstrating that information required for computing complex

metrics like coupling metrics can be gathered from UML diagrams.

e Proposing high level coupling metrics for UML models.

e Designing and building a UML Metric tool for parsing UML models

stored in XMI files and computing the coupling metrics.

e Conducting case studies to show that the design level coupling metric
convey similar information as conveyed by code level coupling

metrics.

e Exploring the relationship of UML coupling metrics to other design

level metrics.

e Introducing an approach of using design level and code level metrics
to gain insight into development process and identify the problems

introduced at the coding level.



1.5 Organization of Thesis

The rest of this thesis is organized as follows. Chapter 2 gives an extensive
literature survey of coupling related work. Chapter 3 presents the taxonomy
for coupling. Chapter 4 presents UML coupling metrics and approach for
measuring them from XMI. Chapter 5 explains the implementation of tool
that we designed and developed for measuring coupling of UML models.
Chapter 6 gives the theoretical validation and result of experiments for
empirical validation of UML coupling metrics. Chapter 7 gives the

conclusion and further work.



Chapter 2

Literature Survey

In this chapter, we discuss related work on coupling metrics and modeling
concepts. The classical coupling metric related work is divided into three
major parts, section 2.2 discuss the work of pioneers who initiated the
concept of coupling. Section 2.3 covers different coupling metric proposed in
literature. Section 2.4 discusses dynamic coupling metrics. Section 2.5
discusses the metrics that have been proposed and implemented for UML.

Section 2.6 presents an overview of modeling concepts.
2.1 Coupling

Parnas [30] in 1972 in a seminal paper titled “On the criteria to be used in
decomposing systems into modules” proposed the criteria of information
hiding to be used for system decomposition or modularization of large
systems. He discussed on methods for decomposition of functions and need
of information hiding between them. The same concept was later refined and
used to come up with design rules for well-formed classes in object-oriented
design like low coupling and high cohesion, although Parnas did not use the
term “coupling” in his work. It was also one of the motivations for our work

on package level coupling discussed in Section 5.5.



The earliest reference we could find in the literature to the term “coupling in
software engineering” is by Stevens, Myers and Constantine in 1974 [31]. In
his significant paper titled “Structured Design” authors have suggested
several design guidelines under the discipline of structured design for
developing large software systems. These guidelines were claimed to
increase the quality attributes such as simplicity, modifiability, predictability
and observability of the system. The concept of coupling was introduced in
this work to account for connections between modules. The module was
defined as the subprogram, procedure or function. Although the concepts and
design guidelines introduced in that paper were based on procedural
paradigm but the concepts were more generic and relevant for other
paradigms like Object Oriented Design. Hence the fundamental basis for
many of the coupling metrics (and other metrics for design quality such as
cohesiveness) can be witnessed in the paper. They defined coupling on an
ordinal scale (low, high) depending on the complexity of connection,
strength of connection and the complexity of message involved in that
connection. They classified coupling into data and control coupling. Data
coupling occurs when data was shared between modules and control
coupling occurs when the connection affects the control or execution of other
module. Control coupling was identified as more severe form of coupling

than data coupling and guidelines called structured design techniques were
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discussed on the ways to minimize control coupling in specific and coupling
in general and improve the design quality. Some of the techniques and
concepts introduced in paper like “scope of control”, “scope of effect”,
“highest level of abstraction”, “isolation”, “reducing dependencies” can be
seen as precursors to the birth of object oriented design. But the authors did

not introduce any metric as such for measuring coupling nor did they

conduct any experiments towards the same.

Myers 1978 classified coupling into six types on an ordinal scale, from the
most preferable type of “no coupling” to content coupling that was worse for

a design. These types were:

No Coupling: The two modules are not connected by any means

¢ Data Coupling: Direct communication between modules with all

interface data being homogenous data items

e Stamp Coupling: Two modules coupled by the function arguments

of a call.

¢ Control Coupling: One module controls the execution sequence or

logic of other module.

e External: Two or more modules reference a homogenous global data

item.
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e Common Coupling: Two modules coupled with global shared data.

¢ Content Coupling: One module refers to the internal data of another

module.

2.2 Object Oriented Coupling

Coad and Yourdon [33] were the first to classify coupling into interaction
and inheritance coupling as criteria for the design in their work on structured

design and object-oriented design.

e Imteraction coupling: This was defined as the coupling that results
from the exchange of messages between two classes. They proposed
that a message connection should normally not have more than three

parameters.

e Inheritance Coupling: This was defined as the interconnection
between generalizations and specializations. They cautioned against

the overuse of Inheritance.

Berard [34] classified coupling into necessary and vnnecessary types. He
was also the first to introduce the concept of Object Coupling.
“Unnecessary object coupling needlessly decreases the reusability of the

coupled objects. Unnecessary object coupling also increases the chances of
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system corruption when changes are made to one or more of the coupled

objects"[34]

Chidamber & Kemerer [36] were one of the first to propose a formal
coupling metric for object-oriented systems, in 1994. They defined their
coupling metric CBO (coupling between objects) as number of variables or
methods a class uses from other class. This use count is counied on both
sides of the relationship. They validated their metric theoretically using
Weyukers [114] formal properties that complexity metric should have like
Monotonicity, interaction, non coarseness, non uniqueness and permutation.
They also validated their metrics empirically to explore their relationship
with external quality attributes of software. They found that high coupling
suggests complex classes. One of the limitations of CBO was that frequency
of use, use of objects and event handling were ignored. Polymorphic calls

were accounted in all possible classes.

Eder [43] in 1994 classified coupling into 3 major types Interaction,
Component and Inheritance. For Interaction coupling they used the same
definition of Myers. They classified Inheritance coupling on an ordinal scale

from best to worst as:

e Modification Coupling: It was further divided as signature

modification and implementation modification. In the former



13

mmplementation as well as signature of an inherited method is

changed whereas in the latter only implementation is changed.

¢ Refinement Coupling where the inherited methods are not
completely modified but only refined. Hence on the same lines this

was also divided into:

o Signature refinement Coupling where the signature of
inherited method is changed but semantics remain

unchanged.

o Implementation Refinement Coupling where the
implementation of inherited methods is refined with same

semantics.

¢ Extension Coupling is the last type in inheritance coupling where a
method or instance variable is added to child class, and it is most

desirable type of coupling (except nil) in a system.

Interface Coupling was defined as the coupling that exists between classes if
one class is the domain of instance variable, parameter, parameter of a
method invoked within the class, or local variable of another class. This was
said to be a measure of how explicit the coupling is between classes. It was

again classified on an ordinal scale from worst to best as follows:
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e Hidden Coupling: when an object of other class is used in
implementation of a method not explicitly but as a return value of a

call to another method.

o Scattered Coupling: when another class is used as domain of

instance variable or a local variable.

e Specified Coupling: when it is specified in the specification of the
class that another class is used as domain of one of the instance

variable.

Although they explored the concept of coupling in detail and the work
extended the understanding of coupling for object oriented system, but it
cannot be called as coupling metrics. This is because most of the definitions
of different types of coupling do not lend themselves easily for objective and
automatic extraction from code. Concepts like semantics of a method are

very difficult to automatically verify.

Hitz and Montazeri [44] defined two levels of coupling, Class level coupling
and Object level coupling. Although object coupling was introduced earlier,
they proposed a method to estimate it. They used the concept of “stability of
class” to define the measure, but stability of class was itself left unmeasured.
In absence of any objective measure for stability of a class it is difficult to

measure this metric. Another issue with their object coupling is that they



15

claim that it captures dynamic coupling, from run time behavior of system,
but they estimate the dynamic coupling from static code. In contrast the two
approaches that we discuss in next chapter 2.3 for dynamic coupling are

better estimates of dynamic coupling.

Troy and Zweben [48] proposed 24 measures to analyze the modularity, the
size, the complexity, the cohesion and the coupling of a software system.
The basic division of software (complexity) measures into inter-modular and
intra-modular components and the specific conceptual measures of coupling

and cohesion are based on a work of Stevens et. al. [31].

In the above survey we did not include the coupling measures that differ in

some minor ways with the above metrics.
2.3 Dynamic coupling

Erich [59] mentions some limitations of static measures in his paper. By
static measures he means the measures derived from source code.
Limitations cited are that Static measures depend on static syntactic features
of a programming language. This information does not show the dynamic
behavior accurately. To know the actual dynamic execution behavior from
static code is hard as it involves excessive logical or semantic analysis. They

propose a test environment to capture the dynamic behavior from the
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program execution profile. But their work was limited to modeling and they
did not implement the program monitor nor did they compute any dynamic

coupling metric.

In contrast Henrique et. al. [60] proposed and implemented an approach for
estimating the dynamic coupling connections from the use case in the
analysis and design phase. They also discussed the problem of Application
partitioning, especially in distributed environment to minimize
communication as an NP-Complete problem. They have discussed some of
the visual tools that have been developed to assist the designer in portioning.
They propose a linear algorithm DCM (Dynamic Clustering Mechanism)
that constructs clusters of classes that are highly dynamically coupled. In
their approach first the user has to specify the frequencies for each use case
with which that use case is expected to be used in the application. These
frequencies are then percolated down to calculation of dynamic coupling
between the classes that each use case represents. For each cluster of classes
they calculate the interaction inside the cluster and interactions going outside

the cluster.

Sherif et. al. [64] emphasized the significance of dynamic metrics for real
time object oriented systems. They propose two dynamic coupling metrics

Export and Import Object Coupling in terms of number of messages sent and
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received by a class respectively from another class. They experimented with
their metric using a real time application as a case study. Results show that
static and dynamic coupling measures differ and offer different indications

on quality of software.

Erik et.al. [68][69] also did a similar work on dynamic coupling, but they
tried to empirically validate dynamic coupling metric as an indicator of
change proneness of a class. The results do show a positive correlation

between the two.

Aine [65] took a different approach to capture dynamic behavior. She used
the JVMDI (JVM Debug Interface) to capture the dynamic method
invocations from the class files of running programs. She used the java
benchmark SPEC JVM 98 as a case study to show that dynamic coupling

differs in some case from the static counterpart.

Gamma et. al. [103] states that an Object Oriented program’s run time

structure often bears little resemblance to its code structure.
In summary dynamic coupling metrics are important for following reasons:
e (an give accurate estimate of coupling at run time

e (an take into account Polymorphic invocations of object-oriented

systems more accurately, which is not possible from static analysis
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2.4 UML Metrics

Design level metrics based on UML has been classified as elementary

metrics, composite metrics and higher level metrics.

e Elementary metrics are those that give a count of basic entities such

as number of classes, attributes.

e Composite metrics are those that are based on elementary metrics and
try to measure more abstract and complex measures like coupling,

cohesion etc.

o Higher-level metrics are those that try to use the elementary and
composite metrics to estimate or predict some external attribute of the

system like size, maintenance effort, etc.

In the remainder of this section we describe the metrics that are proposed in

each of these categories.

2.4.1 Elementary UML Metrics
Amador et. al. [84] have developed a tool to validate the quality of
requirements by using heuristics to process the requirements specified in
XML(Extensible ~ Markup Language) format wusing XSLT(XSL

Transformations) [23]. But they did not define any concrete metric, and that
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is conceivably a difficult task owing to the nature of requirements

specifications.

Kim et. al. [87] have proposed some basic UML metrics and incorporated
them into their tool "UML Metrics Producer (UMP)" based on rational Rose.
The metrics are counts of all basic elements of UML diagrams like class
diagrams, use case and sequence diagrams. Hence they include most of other

elementary metrics. The work lacks any validation effort.
Almost similar metrics were also proposed by Marcela [75].

Anh Le et. al. [80] used NSUML API for parsing UML class diagrams stored

in XMI format and calculating twelve elementary metrics from them.

Trevor Paterson [78] also calculated some elementary metrics, but using

XSLT.
All the elementary metrics are listed in Table 1.

Table 1: Elementary Metrics

Metric Explanation UML Reference
diagram

NC Numbers of classes Class {121
diagrams

NA Numbers of attributes Class [12]
diagrams

NM Numbers of methods Class {12]
diagrams

Massc Numbers of associations Class {121
diagrams
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Metric Explanation UML Reference

 diagram

Nagg Numbers of aggregations Class [12]
diagrams

Ndep Numbers of dependencies Class (12}
| diagrams

NgenH Numbers of generalizations Class (12}
diagrams

Max DIT | Maximum distance from class to | Class {121
root diagrams

MaxHagg | Maximum distance from class to | Class (12}
any leaf diagrams

NEntryA | Number of entry actions State Charts [12]

NExitA Number of exit actions State Charts [12]

NA Number of activities ' State Charts {121

NS Number of states State Charts [12]

NT Number of transitions - State Charts [12]

Nact Number of actors Use cases {12}

Nuse Number of use cases Use cases [12]

NMessag | Number of messages Sequence (12}
e diagrams

NClassf Number of Classifiers Sequence {12]
diagrams

2.4.2 Composite UML Metrics

Marcela et. al. [86] have proposed complexity metrics for UML class

diagrams.

The metric

is based on number

of classes,

methods,

generalizations, dependencies, aggregations and associations in the class

diagram.

Marcela et. al {83] derive some metrics from UML Statechart Diagrams.

Again the metrics are counts of the statechart like transitions, exit action etc
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4

and lack any theoretical basis to serve as an indicator of a useful property.
They did try to assess the metrics as an indicator of understandability, but it
lacked rigorous empirical validation, as the experimental objects were

students of a course.

Table 2: Composite Metrics

Metric Explanation | UML Definition Ref.
diagram
AsvsC Associations | Class n(assc) 21 [83]
; ASvsC =
vs Classes diagrams vs [n(assc)+ n(class))
AgvsC Aggregations | Class ’ AGsC nlage) 21 1[83]
vs Classes diagrams Vst = [ n(age) + n(dass))
DEPvsC | Dependencies | Class n(dep) ?1 [83]
vs Classes diagrams | DEPvsC :(n(dep) + n(class)j
GevsC Generalizatio | Class n(gen) 2 1183]
ns vs Classes | diagrams GEvsC = (n( gen) + n(class))
Mgh Complexity Class NLEAF [83]
of a diagrams FLEAF,; = NC
generalization '
hierarchy CJ, = FLEAF, - FLEAF;
Where ! ALLSUP;
FLEAF, is the
number of
leaf classes
Mmi Complexity Class NEX {83]
of a diagrams | CMILi = NC
generalization !
hierarchy due My = f:CMlz
to multiple i=1
inheritance
Where N™ is




Metric Explapation | UML Definition Ref.
diagram
the number of
exira parents
AvsC Attribute vs Class n{att) 2 1[83]
Classes diagrams | AvsC = (“‘"‘—"——“n (@t +n (class)}
MvsC Methods vs Class (___ntmen) 3 [83]
. MyvsC =} ————m—e
Classes diagrams \ n(meth) +n(clas.s‘))

2.4.3 Higher Level UML Metrics
Rufai [93] proposed a metric for structural similarity between two UML
models represented by their class diagrams and implemented a tool UML

Model Comparer for computing it.

Jukka et. al. [81] emphasized the lack of quality assurance methods for
software architecture design. They implemented a method for extracting the
pattern used in the architecture from the Class diagrams and Sequence
diagrams. They implemented the algorithm for pattern mining problem using
constraint satisfaction problem (CSP) approach and implement a tool
MAISA (Metrics for Analysis and Improvement of Software Architectures)
in java. It computes metrics predicting the quality attributes of the system

and some other size metrics.

2.4.4 UML Metrics Tools
Peter et. al. [79] have worked on a tool OSMAT for capturing metrics from

UML diagrams. The metrics calculated by OSMAT are mostly elementary
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metrics from Rational petal files, but they do mention other metrics in their

future plan.

Anh Le et. al.{80] implemented a UML metric tool based on NSUML API
for parsing UML class diagrams stored in XMI format and calculating

twelve elementary metrics from them.

Trevor Paterson [78] implemented a UML metric tool based on XSLT. It
computes some elementary metrics. Their work is significant for XMI

processing, but the metrics extracted are elementary.

SDMetrics [96] is a commercial UML metric tool that computes an

exhaustive list of elementary metrics as well as some composite metrics.

2.5 Modeling Concepts

Models play a very important role in software engineering to reduce the
complexity of application and enable designers to concentrate on the core
concepts, relationships to create a design that can satisfy the customer
requirements. Since our work is based on design models that are expressed in
UML [18] we present a brief overview of related concepts like software
modeling, Meta-Object Facility [21] (MOF), UML [18] (Unified Modeling
Language) and XML Metadata Interchange Format [20] (XMI) in this

section.
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2.5.1 Software Modeling
Formally a model is a set of statements about some system under study
(SUS) that may be used as a specification for an SUS, or for a class of SUS.
In this case, a specific SUS is considered valid relative to this specification if
no statement in the model is false for the SUS [13]. UML is a modeling
language for information-processing systems (an SUS). Software design is
not easy to define precisely because there are differing views on it. Subrata
[15] classifies the concept into two schools of thought: one that views it as a
blueprint for implementation and the other view of formalists who view
programs as mathematical objects and design as an exercise in applied

mathematics.

Going step higher above model we have "metamodel” that is a specification
model for which the SUS being specified is itself model in a certain
modeling language. It can also be defined as a language or vocabulary for
defining the model. Thus UML Specification provides a metamodel of UML,
as a set of statements about UML models that must not be violated by any
valid UML model [13]. MOF [21] (Meta-Object Facility) is the OMG's
metamodel specification for which the Information System being specified is
itself a model in UML. Thus UMIL becomes the minimal reflexive
metamodeling language for UML and MOF [13]. MDA (Model Driven

Architecture) is an attempt of OMG to harness the strength of all the above
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modeling concepts to come up with an approach for specifying functionality
and behavior of a system, independent of method of implementation. Thus
there 1s no need to repeat the process of modeling for every new
implementation. “A complete MDA specification consists of a definitive
platform-independent base UML model (PIM), plus one or more platform-
specific models (PSM) and interface definition sets, each describing how the
base model is implemented on a different middleware platform” [22]. The
next sections will explain the OMG’s specification of UML and XMI in

some detail.
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2.5.2 UML
The Unified Modeling Language (UML), proposed by OMG (Object
Management Group) is now industry-standard language for specifying,
visualizing, constructing, and documenting the artifacts of software systems.
Its success lies in the fact that it enjoys widespread industry support and
methodology-independence. Regardless of the methodology used to perform

analysis and design, UML can be used to express the results.

2.5.2.1 UML Semantics
The description that follows explains the semantics of three diagrams of
UML (Package, Class and Sequence) that are relevant for this work, from its

specification and the Rational Rose UML models available from OMG.

UML consists of three main packages at the highest level: Behavioral
Elements, Foundation, and Model Management, as shown in package

diagram of Figure 2.
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] ]
Behavioral Model |
Elemenis Management |

1
i
l
E
“

\\\Q\\

|
Foundation

Figure 2: UML Main Packages

The Model Management package defines how the elements are organized in

models, packages and systems as shown in Figure 3.
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The foundation package is the main package that defines different elements.
It is divided into three packages; Core, Extension Mechanisms and Data

Types as shown in its package diagram of Figure 4.

|
Core - - - Exension
Mechanisms

&_j 4
Data Types

Figure 4: UML Foundation Package

The Core package is the most fundamental sub package of UML Foundation
package. It defines the basic abstract and concrete metamodel constructs
needed for the development of object models. Abstract constructs defined in
the Core include ModelElement, GeneralizableElement, and Classifier.
Concrete constructs specified in the Core include Class, Attribute, Operation
and Association as shown in Figure 5 with attributes and operations on each

entity suppressed.
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The next important package for this work is behavioral package that contains

the entities required for specifying the behavioral features of a system, as

shown in Figure 6.
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Use Cases
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]

Common
Behavior

Figure 6: UML Behavioral Package

This package contains the sub-package Collaborations that contains the

elements for specifying the sequence diagrams as shown in Figure 7. It is one

of the packages that will be used in XMI Processing (6.5) for deriving the

coupling.
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2.5.2.2 UML Notations
UML has different diagrams for visual depiction of different artifacts in
different views. Using the above packages UML defines nine major kinds of
modeling diagrams. We describe below each of the diagrams from its

notation [18].

2.5.2.3 Package diagrams
A package is a collection of logically related UML elements. In Object

oriented terms it represents components that are collection of classes.

2524 Class diagrams
A Class diagram gives an overview of a system by showing its classes and
the relationships among them. Class diagrams are static, they display what
interacts but not what happens when they do interact. A Class is divided into
two main parts, attributes and method along with their parameters.
Association (Generalization, Aggregation and Simple Association) between
classes is also shown in the class diagram. Object diagrams show instances
instead of classes. They are useful for explaining small pieces with
complicated relationships, especially recursive relationships. Figure 8 shows

a simple example of class diagram that we will use throughout this chapter.
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Car Driver
-todel:String | 1 1 | -Mame:String
s started by starls

+glartyvoid +gdrivevoia

Figure 8: UML Class diagram example

2.5.25 Sequence diagrams
Class and object diagrams are static model views. Interaction diagrams are
dynamic. They describe how objects collaborate. A sequence diagram is an
interaction diagram that details how operations are carried out, what
messages are sent and when. Sequence diagrams are organized according to
time. The time progresses as you go down the page. The objects involved in
the operation are listed from left to right according to when they take part in
the message sequence. A Message is a specification of Stimulus; i.e., it
specifies the roles that the sender and the receiver Instances should conform
to, as well as the Procedure that will, when executed, dispatch a Stimulus
that conforms to the Message. The predecessor is a comma-separated list of

sequence numbers followed by a slash (/’): sequence-number *,” .../

The clause is omitted if the list is empty. Each sequence-number is a
sequence-expression without any recurrence terms. It must match the
sequence number of another Message. The meaning is that the Message is

not enabled until all of the communications whose sequence numbers appear
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in the list has occurred. Therefore, the list of predecessors represents a
synchronization of threads. Note that the Message corresponding to the
numerically preceding sequence number is an implicit predecessor and need
not be explicitly listed. All of the sequence numbers with the same prefix
form a sequence. The numerical predecessor is the one in which the final
term is one less. That is, number 3.1.4.5 is the predecessor of 3.1.4.6.
Sequence diagrams have two dimensions: 1) the vertical dimension
represents time and 2) the horizontal dimension represents different instances
or roles. Messages in sequence diagrams are ordered according to a time
axis. This time axis is usually not rendered on diagrams but it goes according
to the vertical dimension from top to bottom. Sequence diagrams do not use
sequence numbers like collaboration diagrams to represent the message

ordering. Message ordering is performed by the time axis.
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Figure 9: UML Sequence Diagram simple example

2.5.2.6 Collaboration diagrams
Collaboration diagrams are also interaction diagrams. They convey the same
information as sequence diagrams, but they focus on object roles instead of
the times that messages are sent, where as in a sequence diagram object roles
are the vertices and messages are the connecting links. One can be generated
from other and some case tools like Together [93] provide this functionality.

Figure 9 shows the previous sequence diagram as collaboration diagram.
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Figure 10: UML Collaboration diagram for Simple example

2.5.2.7 Use case diagrams
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Use case diagrams describe what a system does from the standpoint of an

external observer. The emphasis is on what a system does rather than how.

Use case diagrams are closely connected to scenarios. A scenario is an

example of what happens when someone interacts with the system.

2.5.2.8 Statechart diagrams

Objects have behaviors and state. The state of an object depends on its

current activity or condition. A statechart diagram shows the possible states

of the object and the transitions that cause a change in state.
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2.5.2.9  Activity diagrams
An activity diagram is essentially a flowchart with some additional features.
Activity diagrams and statechart diagrams are related. While a statechart
diagram focuses attention on an object undergoing a process (or on a process
as an object), an activity diagram focuses on the flow of activities involved
in a single process. The activity diagram shows the how those activities

depend on one another.

2.5.210 Component diagrams
A component is a code module. Component diagrams are physical analogs of

class diagram.

2.5.2.11 Deployment diagrams
Deployment diagrams show the physical configurations of software and

hardware.

2.5.3 XMi
The XML Metadata Interchange Format (XMI) [20] is an XML based
exchange format between UML tools, posted in response to an OMG
Request for a Stream-based Model Interchange format. The main purpose of

XMI is to enable easy interchange of data and metadata between UML
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modeling tools and between tools and metadata repositories in distributed

heterogeneous environments. XMI integrates three key industry standards:

o XML - eXtensible Markup Language, a W3C standard [19] that
provides the universal format for structured documents and data on

the Web.

e UML - Unified Modeling Language, the OMG modeling standard for
specification, visualization, construction, and documentation of

object-oriented systems;

e MOF - Meta Object Facility, a CORBA-compliant architecture for
defining and sharing semantically rich metadata in distributed a
heterogeneous environment that is used as OMG modeling and

metadata repository standard.

XMI can be used to store not only UML model but also any MOF comphiant
model. XMI specification is very detailed and contains many features like
document modification, validation, merging etc, that are outside the scope of

this work.



Chapter 3

Coupling Taxonomy

In this chapter we discuss different frameworks according to which coupling
has been classified. Most comprehensive among them is Briand’s framework
and it has been discussed in detail. We extend Briand’s framework to include

the concepts that they did not consider like interfaces and dynamic coupling.
3.1 Classification of Coupling

Berard {34] classified coupling into two types Necessary Coupling and
Unnecessary Coupling. Necessary coupling was the coupling inherent in the
problem domain and that is necessary to support the interactions among the
program modules. Rest of the coupling is unnecessary. It is unnecessary
coupling that signifies bad design and introduces many problems in the

program. Hence it should be minimized.

Wild [42] classified coupling into Interface coupling and Internal Coupling.
Interface coupling occurs when one object refers to one or more items in the
public interface of another object. He classified Internal coupling as Inside

Internal and Outside Internal coupling. Inside Internal is the coupling that
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occurs among the components of an object or class. The outside internal
coupling occurs between two classes through members other than those

present in public interface.

Basili et. al. [38] classified coupling into three major types of Interaction,
Component and Inheritance Coupling. Briand et al.[46] proposed a suite of
metrics for C++ and extended Basili et. al. [38] classification. Inheritance,
Interaction and Component coupling were identified as three dimensions of
coupling. Some of the factors affecting these were: strength, locus and
relationship type of the coupling connection, stability of server class and
direct or indirect coupling. Strength of coupling depends on the frequency of
connections between the classes and the type of connections. Locus refers to
the direction of coupling. A coupling is of type export if the class is using the
service or is at the client side of connection. The coupling of class that is at
the other end of connection, providing a service or acting as server is of type
import. Relationships refer to inheritance, peers etc. Type refers to the type
of connection, like method-to-method, attribute-to-method, etc. Export
coupling measures were found to be related to fault-proneness. The
frequency with which a class is being used by other classes may not be
indicative of the cognitive complexity of a class: a class could be used by
many other classes, but still be constructed in a simple fashion. However, the

modification of a class with high export coupling is critical, because it may
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require follow-up modifications that potentially impact large parts of the
system. Stability of server class cannot be measured automatically. Direct
connections are those connections that occur at the first level. For example if
a class A is connected with class B through two connections and class B is
connected through three connections to class C, then direct connections of
class A are only two. Indirect Coupling measurement considers apart from
connections at first level, other connections that may be connected after the
first level. Thus the definition is of recursive nature. In previous example the
indirect connections of class A will be five (two direct at first level and three
at second level). Hence if connection is defined as a relation then Indirect
Coupling considers the transitive closure of this relation. RFC (Response Set
of a method) metric can be computed to account for number of methods that

can be invoked from a method.

Briand et. al. framework [46] is the most comprehensive work that is done to
collect all the coupling metrics and classify them. They introduced a
formalism to represent all the concepts that contribute towards coupling.
They considered three main coupling metric suites [381[431[44] and then
classified them according to this new framework. The classification of
coupling is significant in reducing the ambiguity and differentiating between
so many coupling metrics that were proposed. Table 3 presents Briand et. al.

formalism in some detail. We extend this formalism to include some more
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concepts like interfaces. Table 3 summarizes the classification of coupling

metrics and factors affecting each coupling type.
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Figure 11: Briand’s Coupling Taxonomy

Table 3: Briand's Coupling Formalism

Concept Explanation Formalism

Inheritance | Sets of parent, children, ancestor, | Parents(c) C C
and descendent classes of a class ¢ .
Children{c) < C

where C represents the set of all

Ancestors{cy < C
classes.




Concept Explanation Formalism
Descendents(c) < C
Methods Set of all methods in the system, | M (C) = U M{(c)
ceC
M(C) can be found from union of set
of methods each class ¢, M(c)
The first set in first equation denote | M (c) € M(c)
the set of methods declared in ¢ and
M, (c) c M(c)

the first set in second equation
shows the set of methods

implemented in ¢

M(c)=M,(c)UM,(c)

My (c)nM, (c)=

The first set in first equation denotes

the set of inherited methods of ¢.

The first set in second equation

shows the overriding methods of c.

The first set in third equation

denotes the set of new methods of c.

My (c) © M(c)

M yr(c) © M(c)

My (€) © M ()

M (UM e () UM
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Concept Explanation Formalism

Method Set of statically invoked methods | ' e SIM(m) & Ide C
) ) such that

Invocations | SIM and their number NSIL.

from each m € M{(d)and the

method body of m has a

method invocation

ceC

me M,(c) where m ' is invoked for

me M(c)

an object of status type

class d and NSI(m,m)

denotes number of such
static invocations of m

by m.
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Concept Explanation Formalism
Set of polymorphically invoked | m' e PIM(m) & 3de (
such that
methods PIM and their number NPI.
m € M(d)and the
Thus one method invocation can
body of m has a
contribute to the NPI count of
method invocation
several methods, because of
where m’ may, because
polymorphism.
of polymorphism, be
invoked for an object
of dynamic type class d
and NPI(m,m)
denotes number of such
dynamic invocations of
m by m.
Attributes | Set of attributes declared in class ¢ AL (o)
Set of attributes implemented in| A, (c)

class ¢

Set of al] attributes of class ¢

Alc) = A, (c) U A, (c)
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Concept Explanation Formalism
Set of all attributes of system Alc)= U Alc)
ceC
Attribute Set of all attributes referenced by the | AR(m)
References | method m.
Types Basic built-in-types by language BT
User defined types of global scope UDT
All available types in system T=BTrOuuDTVLC
Type of attribute or type of | T(a)eT
T(vyeT
parameter of method m.
where
ve Par(m)
Predicate A class ¢ uses a class d if a method | uses(c,d) &
uses implemented in class ¢ references a (
P dIme M,(c):
method or an attribute implemented | 3m' € M,(d):
in class d. m & PIM (m)
)
v
(
dme M,(c)
dae A/ (d):
ac AR(m)

)
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This formalism can be used to express any object oriented coupling metric
without any ambiguity. For example CBO [37] metric can be defined

formally as

CBO(c) = l{a’ e C—{c} }!uses(c,d) v uses(d,c)} [

3.2 Ambiguity in coupling metrics

The number of coupling metrics proposed in literature has grown in large
numbers. Among the large numbers of coupling measures the choice of the
measure i8 difficult. Reasons for different understanding of coupling metrics

are
e Different understanding of core concept
¢ Difference in objective of measuring coupling
e Difference in the underlying programming paradigm

In this section we will discuss some limitations of existing taxonomy for

coupling and propose some enhancements to it.
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3.3 Issues with present taxonomy

In this section we present some of the concepts that earlier taxonomies left
out, and that now have become important such as interfaces and dynamic

metrics.

3.3.1 Polymorphic Invocation
If a2 method m invokes another method m’ of class d then either it is static
invocation or dynamic invocation. The dynamic invocations because of
polymorphism contribute to NPI count of several methods. But Briand et. al.
ignored the fact that whether in case of overriding method, the method calls
its parent method also. If it calls parent method then it implies it is coupled to
both parent as well as child even if it is a case of static invocation. Hence this
implies that even static invocation can contribute to NSI count of several
methods that are parents of the method’s class. Hence we introduce a new
formalism for taking into account this difference. This is significant for it
shows that a child class” method is coupled to its parent’s counterpart and

can have an effect on computing inheritance metric.

Summarizing PIM can take care of method invocation traveling down the
hierarchy whereas the new formalism can take care of method invocation

going up the hierarchy.
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3.3.2 Granularity
In some of the metrics proposed, it has been observed that the module level
measures are aggregated and shown as total coupling of that module. We see
this more of cohesion than coupling. Similarly ‘internal coupling’ or ‘inside
internal coupling’ proposed by Berard et.al. [34] that measures how much a
method uses its own members and friends classes in case of C++. Coupling
is always between modules, (modules may be classes, packages, systems
etc), and whenever we have a metric for single module then it has to be
analyzed whether it is cohesion or how it can be better computed to express
cohesion. We do calculate total coupling for classes and packages but that

only shows total import coupling of that class with all others.

3.3.3 Nature of coupling
Recent studies in coupling have identified the importance of dynamic
coupling (2.3), hence it is one of the dimensions of coupling. But it does not
apply for all connection types, for example for inheritance connection it does
not make any difference, but for interaction connections static and dynamic

values may differ.

3.3.4 Strength of coupling
Most of the coupling metrics and Briand et. al. classification does not take

into account the module size when considering strength or magnitude of
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coupling. But size of module affects coupling. The bigger the module that is

at another end of connection the stronger should be the coupling.

3.4 Extension to coupling formalism

The Table 4 extends the earlier Briand's et. al. [46] formalism presented in

Table 3 with the new concepts discussed above.

Table 4: Extension to coupling formalism

Concept Explanation Formalism

Method Set of statically invoked methods | ' e SIM(m) < 3de C
. such that

Invocations | SIM and their number NSL

from  each m € M{(d)and the

method body of m has a

method invocation

ceC

me M,(c) where m' is invoked for

m € M(c)

an object of status type

class d and NSI(m,m )

denotes number of such
static invocations of m

by m.
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Concept Explanation Formalism
Methods invoked are represented by | message(m,Ceepa Crec )
messages i UML. Thus message
can be introduced as some metrics
use messages to define coupling
Set of polymorphically invoked | i e PIM(m) & Jde O
. such that
methods PIM and their number NPI.
m € M(d)and the
Thus one method invocation can
body of m has a
contribute to the NPI count of
method invocation
several methods, because of
where m may, because
polymorphism.
of polymorphism, be
invoked for an object
of dynamic type class d
and NPI(m,m)
denotes number of such
dynamic invocations of
m by m.
Interfaces Set of all interfaces in system I Hoycl
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Concept Explanation Formalism

Set of interfaces implemented by a

class

This framework can be used to express new coupling metric that can take
into account the effect of interface, association, and composition on
coupling. Figure 12 summarizes the classification of coupling mefrics into

different types and the factors affecting each type.

Coupling Types

lﬁhmtanm | Intﬁmﬂ;w
Cmmﬁmg l . Cou

Facmrs : ] B
Connection | | :umnwtmn 'l‘y;ms

Types: Classto | | Classto
Method/Attribute | | Memmifmmbutew n
. 1t Granularity: | | Class or m.,kagu
Class/Package | | = Loeuss
Locus: || ;{mportﬁaxgmﬂ
ampcﬂfmpm r
 Nature: B
, Smtzdﬂymmm: ‘

Figure 12: Coupling Taxonomy




Chapter 4

Metrics at Design Level and Source Level

This chapter discusses the motivation for design level metrics, how do they
differ from source level metrics and a comprehensive approach for

computing design level metrics from UML and XMIL.

4.1 Motivation for Design Level Metrics
Design Level Metrics offer the following advantages over source level
Metrics:

e An insight into the software architecture

e FEarly design critic information

¢ Flaws in the design

e Predicting most critical parts of the design

4.2 Design Level Vs Source Level Metrics

Design level metrics are those metrics that can be computed from software
design. Source level metrics are those metrics that can be computed from

source code. This leads to an important question “what is design”? Subrata
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[15] classifies the concept into two schools of thought: one that views it as a
blueprint for implementation and the other view of formalists who view
programs as mathematical objects and design as an exercise in applied
mathematics. Whichever view we take it is clear that source contains design.
However, source code may include details that are not part of the design.
Hence any design metric can be computed from the source code but not vice
versa. Whether a source metric can be computed from the design depends on
how the design is expressed and how does design leads to source. This brings
software implementation process into picture. For expression of design we
consider only UML as it is the de facto language for design now. Water fall
model consists of fixed number of stages of development like analysis,
design, development and testing that strictly follow one another. In such a
model the whole design always precedes code. Hence code may reveal a
different design than the design that was freezed in the design phase. Hence
the difference between design and source metric will reveal the change that
took place between design phase to implementation phase. If the design is
reverse engineered from source and the difference between design and
source metric 1s how much UML design differ with explicit design in source.
In RUP (Rational Unified Process) the waterfall model is followed in
iterations. All activities like analysis, design, implementation and testing are

repeated in every iteration. The difference between design and source metric
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will be less than Waterfall model and represent the difference between two
iterations. In Agile process the iterations are still smaller and round trip
engineering is one of the major features in agile methodology. Hence source
and design are always in synchronization. In such a case the difference
between design and source metric will reveal how much UML design differ

with explicit design in source.

4.3 Coupling at Design and Source level

As discussed earlier most of metrics proposed and implemented in literature
have been extracted from the source code. This applies more for coupling
metrics. Hence it is important to define coupling in more detail in the context
of whether it is source level property or design level. Before we present our

view let us see what other researchers have to say on this.

Trevor Paterson [78] mentions, “in the absence of code implementation it is
not possible to derive any of Chidamber and Kemerer's metrics pertaining to

cohesion and coupling from UML diagrams”

Reibing (2001) adds that although it is theoretically possible for UML
diagrams to include relations between operations and attributes, information
that could be used to calculate these metrics, this level of detail would rarely

be included in a UML diagram, particularly at an early design stage.
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Scott A. Whitmire [76] makes an interesting and contrary claim to the above
view, “Amount of coupling between modules is completely dependent on the
design, if the design was taken to that level.” He also notes that measuring

coupling from source code is a form of indirect measurement.

Briand et. al.[46] states that there is no coupling measure that can be
classified as usable at the analysis or HLD (High Level Design) phase. Some
are partially usable, but empirical studies are required to analyze how
accurate such approximations are and whether they are useful predictors of

external attributes.

Finally we conclude that coupling is a design level as well as source level
property. Hence its computation from design and source will differ
depending on the language used to express design. In case of UML following
points can‘ Se‘ concluded .

e [Inheritance Metrics if based on usability information (whether the
sub-class is using the parent class’ methods or attributes), like
Usability Inheritance Metric [27] it cannot be accurately computed
from the design. On the other hand Inheritance Metrics like
AlMulla’s [28] metric that is based on visibility of class members can

be accurately computed from the design. Component Coupling can be
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accurately computed from design if it is based on associations

between classes.

e Since Interaction coupling is based on interactions among the classes
that are only partially captured in sequence diagram, the source will
always have more complete information on the interactions. Thus
Interaction Coupling cannot be accurately computed from the design
because its computation from source will always differ from the

design.

4.4 Conceptual framework for UML Metrics

This section gives a complete description of coupling measures that can be
computed from UML design. We use the same formalism introduced earlier
in Table 4. For each concept of formalism we see whether it can be measured
from UML designs stored as XMI files. This is summarized in Table 5. For
each concept we present the formalism, the UML diagram needed to measure
it and the XMI nodes needed to extract the information required for

measurement.
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In most cases to measure a certain concept, information about the child nodes
is needed. The child nodes are not mentioned in Table 5. For example to
know all the classes of system, we need class diagrams. Now in the XMI file
of this class diagram we need all “Foundation.Core.Class” nodes. For details

of each class the children of this node can be traversed.

Table 5 can be used to classify all coupling measures that can be computed

from UML as well as the required UML diagrams to compute those metrics.

In Table 6 we express the coupling metrics possible with UML in terms of
the entities required in UML. It also indicates the cases where the
computation of metric from source and design will be different and the cause

of the difference.
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None of dynamic coupling measures proposed in literature tried to use
dynamic sequence diagrams for dynamic coupling. Dynamic sequence
diagrams can be generated from the traces of running application. Dynamic
coupling has been claimed to give insight into several quality attributes of
system like fault tolerance [59]{65][66][68]. Therefore we introduce it as
another dimension of coupling. Sequence diagrams can be used for dynamic
coupling, if they are derived from the execution trace. The only tool we came
across is J2U [63] that instruments byte code of a java program and generate
the sequence diagrams from the trace of running program. But the tool is not

mature enough to be used for large size programs.



Chapter 5

UML Coupling Metrics

Most coupling metrics including proposed coupling metrics use class size as
an elementary metric for computation of coupling. Hence the proposed
metric for UML class size is discussed in section 5.1 as an elementary metric
for computing other higher level metrics. We did not use the existing metrics
for UML Class size like number of attributes, methods because they are very
rough estimates of class size at design level as well as code level. Section
5.2, 5.3, 54 and 5.5 discuss the Inheritance coupling metric, component
coupling metric, interactive coupling metric and package coupling metric for

UML, respectively.

5.1 UML Class Size

The design artifacts that are available in early design phase are Use Cases,
Package Diagrams, Class Diagrams and Sequence Diagrams. Class diagrams
and Sequence diagrams are used to compute the Class Size metric because
class and sequence diagrams map directly to source code. Hence the metric
could be used as better predictor of actual size of source code. We used the

following weights for complexity of a data type, they are proportional to
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their size in Java, and are mostly proportional across other programming

languages as well.

Table 7; Attribute Size

Attribute Type Attribute Size Attribute size in Java
(in bytes)

Int 4 4

Byte 1 1

Short 2 2

Long 8 8

Float 4 4

Double 8 8

Char 2 2
Boolean 1 1

String or any other | 20 Variable

object type
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A similar attribute weighing scheme was proposed in {29], but the weights
and attribute types were based on C language and some data types existing in

java were not there.

Method size in UML can be estimated from the size of each of parameters
and the return value and messages exchanged by the method. The more the
numbers of messages, it will increase the size of method. For method m, the
method size can be computed as:

np
Size(m) = (Z Size( param,) + Size(return)) X n{(message)

i=1
where:
¢ np is the number of parameters in method m

It should be noted above that the messages considered are only the messages
that travel between classes. The messages within the class are ignored

because the information is only available later in the development lifecycle.

Finally the UML Class Size can now be defined as the sum of each of its
constituents like attribute, method and inner classes. The class size is
estimated from the size of each of its attributes, methods and the size of its

inner classes as follows:

Size{c) = Z Size(art,) + Z Size(meth,) + Z Size(innerClasses)
i=l i=l

i=l
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where:
s na is the number of attributes
e pm is the number of methods

® niis the number of inner classes

5.2 UML Inheritance Coupling

UML inheritance coupling (UINC) metric is based on the inheritance
coupling metric proposed by AlMulla [28]. For class size UML class size
metric was used. Detailed information like Polymorphic method calls and
used attributes are not available in UML design artifacts as shown in Table 5.
Therefore most of the inheritance coupling metrics give less information
about use of inheritance. AlMulla’s metric does not depend on details. It
estimates the inheritance coupling from the visibility of class members.
Therefore it is the most appropriate metric for computing inheritance

coupling at design level.

AlMulla’s coupling metric use a measurement framework proposed by
AlGhamdi [26]. This framework was also used by Elish [27] in computing

Usability Inheritance Coupling metric.



5.2.1 Measurement Framework
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In AlGhamdi et. al. [26] measurement framework there is a definition matrix

consisting of classes represented as rows and attributes and methods

represented as columns. Each entry represents the strength or weight of

connection between a class and the respective attribute or method. The

entries of definition metric are computed using the following formula:

d-1
d; =w,+ ) (NOC, *(d~k))
k=0

where:

e w; is the attribute or method complexity

e d is the longest length from current class to any of its descendents

e NOC is the number of descendents of current class that inherit the

attribute or method.

Table 8: Definition Matrix

Attribute;

Attribute,,

Method;

J Method,,,

Class;

Classe
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where
e an is the number of attributes
e mn is the number of methods
® c¢n is the number of classes

From this definition matrix the coupling matrix is derived using following

formula:

where:
. o is the inverse of sum of i” row

P is the inverse of k™ column of definition matrix

Table 9: Coupling Matrix

Class; . . Class,

Class;

(Class,
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Al-Mulla [28]used this framework for computing his metrics, and he
considered weights for every attribute or method that can be visible in any
descendents. Hence we can say that AlMulla’s coupling metric measures
potential coupling. This potential coupling should also be the maximum

static coupling that can exist.

Elish [27] used the same framework but he computed the weights in
definition metric only if the sub classes really used the attribute or method,
otherwise they were not considered. Hence he called his metric Usability
Based Coupling Metric. But Elish’s Metric can only be roughly estimated
with UML because it is based on usability information that is only partially

available in UML.

The following are the interpretations of coupling metric that were used in all

of the above works:

. Each non-diagonal entry is the coupling between classes indicated by
the column and the row. Thus Cj; is the coupling between classes C;

and Ci.

e FEach diagonal entry shows the separation of the respective class from

the rest of the system.
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5.3 UML Interactive Coupling

UML Interactive Coupling (UIC) represents the interclass interactive

coupling that exists between different classes of the system.

AlGhamdi framework [25] for computing inheritance coupling can not be

used for interactive coupling, because of following issues:

e If we increase the weight of an attribute for another class, the self-
coupling of the class changes. This leads to violation of one of the
axiom [114] that is used to theoretically validate coupling metrics.
This axiom states that merging of unconnected classes should not

affect coupling at all.

¢ The framework does not take into account the direction of coupling,

which is necessary for interactive coupling.

We propose a simpler framework for measuring interactive coupling that
takes into account the weights for every type of connections between classes.
In this case we can represent definition matrix as in Table 10 where each
entry in the matrix represents the total weight of connection between the
client class represented by row and server class represented by column. The
types of connection included can be defined depending on the type of

coupling metric being computed. In this metric we have included all the
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connections that can be computed from UML that were summarized in Table
5. Table 5 shows that the predicate uses can be partially measured from
UML. This predicate means that a class is using an attribute or a method of
another class. It can be partially measured because the information about
attribute use is not always available in design stage. Hence we consider only
the method use for computing the interaction coupling. Hence the UML
Interactive Coupling Metric gives a comprehensive measure of interactive
coupling in the design.

dij = ZMethodSize(uses(i, 7)) where i#j

k=0
d; =0 where i=j
where:

e nm is the number of methods that class i is using from class j

Table 10: Definition Matrix and Coupling Matrix for UIC

Class; . | Class, Overall Class
Coupling

Class; n

Class, "
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For example in the Sequence diagram shown in Figure 13, there is only one
interaction connection between the two classes shown. The first class is
importly coupled with the second class and the weight of this connection is

given by the method weight. The method weight as discussed before.

i HCa,
Driver Car
Objoct
i
£ ariveQold :
BTt startowoid

ORI ey SV

Figure 13: Interaction Connection

We sum all the entries of definition matrix and finally normalize all the

entries with this sum to come up with a coupling matrix.

S=Z Zdij

=0 j=1
C=D<+S§

where
e 1 is the number of classes in system

e D is Definition matrix of sizen * n
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e (Cis Coupling matrix of sizen * n
e S isscalar

Although a very simple framework for computing coupling matrix this

framework offers following advantages:

e Each entry C; represents the import coupling between class C; and

class C;.
e Diagonal entries are zero and have no effect on coupling calculations

e Since the measures are normalized over the system, they serve as

useful indicator of coupling relative to the other classes of the system.

. The Export coupling matrix can be easily derived, as it is just

transpose of this matrix.

e If needed a finely detailed coupling can be computed like coupling

due to a particular connection type.

5.4 UML Component Coupling

The interclass UML Component Coupling (UCC) takes into account the
coupling between classes when a class is used as a type in another class’
member variable. In UML this corresponds with associations. We consider

only the class member variables and not the temporary variables or method
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parameters. The same framework is used for computation as used for
Interactive coupling. The definition matrix entries are computed by the

following equation:

n
d; = p ClassSize(association, )
k=1

As the equation shows it does not only take into account the number of
associations but also the size of class that is associated. The coupling metric
is derived from the definition matrix in the same way as for Interactive
coupling. The example below demonstrates how the component coupling is
computed between two classes. Here Class 2 has two associations with class
1. Hence the definition matrix entry between class 1 and class 2 will contain
a definition weight of 4+4=8.

T

‘ ii‘i%b?

Figure 14: Component coupling example
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5.5 Package Coupling

We use the interaction-coupling matrix (UIC Matrix) to compute the package
coupling. We derive three measures of package coupling from the
interaction-coupling matrix, the Inter-Package Coupling, Internal Package

Coupling and External Package Coupling.

5.5.1 Inter-Package Coupling
Inter-Package Coupling (IPC) is the coupling that exists between different
packages of the system. The UIC Matrix is traversed and for each entry of
coupling matrix the packages of both the classes are checked and the
coupling value is added to the respective cell in the Package Coupling
Matrix. The following algorithm is used to compute the inter-package

coupling.

Algorithm IPC

Input: UIC[nc][nc] (Inter-class Coupling matrix)
where nc is the number of classes.

Output: IPC[np][np] (Inter-package Coupling matrix)
where np is the number of packages in system.

1. while (i < nc) and (j < nc)
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2. if (Package(C;) < > Package(C;) ) then
3. IPC[Package(C)}[Package(C))] + = UICIil[j]
4. end while

Table 11: IPC (Infer-Package Coupling) Matrix

Package; . Package,
Package np
81 S IPC,,,
j=1
Package, p
IPC, ..
np np
S=2"% IPCpy
=0 j=0
where

e np is the number of packages in the system

The Package coupling matrix is normalized by the sum of all package

couplings for easy comparison across packages.

5.5.2 internal Package Coupling
Internal Package Coupling (INPC) represents the total coupling between the

classes of same package. This measure may give an idea of the cohesion of
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package itself. The UIC coupling matrix (Table 10) is traversed and for each
entry of coupling matrix the packages of both the classes are checked and if
both are same then the coupling value is added to the Internal Package
coupling measure of that Package. The following algorithm is used to

compute the inter-package coupling.

Algorithm INPC

Input: UIC[nc}{nc] (Inter-class Coupling matrix)
where nc is the number of classes.

Output: INPC[np] (Internal Package Coupling matrix)

where np is the number of packages in system.

1. while (i < nc) and (j < nc)
2. if ( Package(Ci) = = Package(Cj) ) then

3. INPC[Package(Ci)] + = UIC[i][j]
4. end while
5.5.3 External Package Coupling

The External Package Coupling (EPC) represents the total coupling that a

package has with all other packages of the system. From the Package
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coupling matrix the sum of Package’s coupling with external packages is

summed as the External Package coupling measure of that Package.

EPC, = IPC(F,P)
j=1

5.6 Conclusion

In this chapter we propose a suite of coupling metrics to compute different
types of coupling of UML designs (Package, Class and Sequence diagrams)
stored in XMI format. The proposed suite of coupling metrics measures all
the dimensions of coupling like inheritance, interaction and component
coupling considering all the factors that exist in design. The Package
coupling metrics give a package-level of design coupling. Figure 15 gives

the overview of UML coupling suite.
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Inter-Package
Coupling (IPC)
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Internal Package )
Coupling (INPC) )
|
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Figure 15: UML Coupling Suite
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Chapter 6

UML Metric Tool

In this chapter, we discuss our prototype tool that we developed for
measuring coupling. It also demonstrates an approach for computing
coupling from UML designs. The approach can be easily exiended to
compute other higher level metrics that can prove to be useful in design
phase. Different approaches for XMI processing are presented in the first
section of this chapter, then our approach and its justification is presented.
The architecture and design of tool follows next. We end this section with

different ways in which tool can be used.

6.1 XMl Processing

In this section we present some of approaches that may be used for
processing XML in general and XMI in specific, to get relevant data out of
the XMI documents. The strength and weakness of each approach is

presented along with the types of application they are suited for.
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6.1.1 XML Query languages
One approach of XMI processing is to use a standardized XML query or
transformation language. There are several such languages including the
W3C proposed standard Extensible Stylesheet Language Transformations
(XSLT). A more comprehensive literature about several approaches is W3C
page on Query Languages at The Technology & Society Domain. These
query languages provide a declarative SQL like interface to XML data. But
given the differences in the many versions of the XMI (and UML) standards
and the constant upgrade of these standards, this approach sounds like

building from scratch with every change in the standards of UML and XMI.

6.1.2 XMI-Specific API's
Another approach is the use of APIs for XMI data management. Here the
onus of complying with latest versions of standards will lie with the API
implementations and we just need to shift to the latest API implementation.

We discuss next three such APIs.

The Java Metadata Interface (JMI) Specification is based on the Meta
Object Facility (MOF) specification from the Object Management Group
(OMG), an industry-endorsed standard for metadata management. It enables
the creation, storage, access, discovery, and exchange of metadata. JMI

defines standard Java interfaces to these modeling components, and thus
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enables platform-independent discovery and access of metadata. These
interfaces are generated automatically from the models, for any kind of
metadata. Additionally, metamodel and metadata interchange via XML is
enabled by JMI's use of the XML Metadata Interchange (XMI) specification.

NSUML and CIM Standard are reference implementations of JML

NSUML (Novosoft UML) metadata framework is based on JMI
specification and generated classes that are required by JMI specification and
also provides additional services like event notification, undo/redo support,

and XMI support.

CIM Standard is Java implementation of the MOF and JML It is a platform
independent metadata infrastructure for developing model-driven tool and

application suites.

6.1.3 Criteria for Selection
There are following criteria for selection of an approach for XMI processing

for the type of processing that we plan to do.

6.1.3.1 Simplicity
Any metrics extraction process as well as a metric cannot afford to be so
complex to render it impractical for calculation. A major requirement is the

ease and simplicity of implementation. In this XSLT scores low than other
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approaches because XSLT is declarative language. Hence its learning curve
is steep. Apart XMI in its present (1.0) form does not render itself easily for
XSLT processing. Future versions of XMI are changing particularly changes
like storing values in element attributes rather than element content can
simplify XSLT processing. Reason for staying with lower versions of XMI is
the discussed in next section. As for API's SAX, JAXP, DOM are well
documented ones for XML, but NSUML the only one for specially XMI is
not so well documented. Hence it is not straightforward to use, but the most

important reason against its use is inter-operability that is discussed next.

6.1.3.2 Inter-Operability
As discussed in the introduction about the chaos with XMI standard, inter-
operability is the one of the major criteria when working with XMI or UML.
A metric tool can only collect data from UML models stored in XMI format,
but these models will be generated in some case tools. Each case tool has its
own peculiarities and whims. Lot has been written on the issues with case
tools in these references, and if we add XMI support to our requirement most
of case tools do not even stand in the race. In summary any approach should
either be inter-operable with at least some tools and versions of XMI and

UML or it should be flexible enough for upgrade that is our next criteria.
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6.1.3.3 Flexibility
Using APT's gives the flexibility if the API is ‘alive’ in the sense that it is
supported by its makers and a strong user community. Only DOM and SAX

satisfy this criterion.

6.1.3.4 Speed and Storage
Since size of XMI files is considerably large chosen approach for metric
processing should be practical in terms of speed and memory that it can be
used to process real project models. A benchmark study [77] compares the
performance of all of the above XML processing approaches. It rates SAX as

best in terms of time and memory.

Following table shows our subjective scores for each of the approach and

justifies our choice in view of our objectives and scope.

Approach Simplicity | Inter- Flexibility | Speed- Total
Operability Memory | Score
XSLT 1 1 2 0.5 45
DOM 2 2 2 1 7
NSUML 1.5 0.5 1 1 4
SAX 2 2 2 2 8
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Hence we chose to implement a state machine-using SAX to capture all the
information we need from XMI files and store it in an independent data
model for further metric processing. The brief design and requirements of

tool follows next.

6.2 Use case Specifications

XMI Parser is a part of another parent project “OOMeter”. The main
objective of this project is a metrics tool “OOMeter” that could capture all
metrics for a system for analysis and also support customization of metrics.
Below we show the use cases of OOMeter in general and XMI Parser in
specific and how they fit in the overall picture. Further details of OOMeter

can be found in its Project Report.
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Figure 16: Requirement XMI Parser

The main functional requirements of XMI Parser were

e The state machine should be able to extract all information related to
classes, attributes, methods and there interrelations, including

package structure.

e It should compute important proposed coupling metrics transparently

and accurately



The important non-functional requirements of the design are:
e Flexible so that changes of XMI can be accommodated

e It should be robust enough to ignore the whims of case tools (as

discussed before)
6.3 Architecture

Architecture of OOMeter can be classified as a heterogeneous architecture in
Garlan & Shaw’s [56] terminology. Main components are two parsers for
java and XMI, two data repositories for storing source data and metrics

output and a front end.
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T

Front End

Figure 17: Architecture OOMeter

The system boundary in the above architecture shows our main focus of
discussion. The results of XMI parsing are stored in the data repository in
language independent format. It can be observed in the data model shown in
Figure 18 that it captures all basic information that is needed for most of the

software metrics.
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The data model serves as our language independent repository for storing all
the information parsed from the projects, whether it may be java source files

or UML models stored in XML

System
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=
{Classhame
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AparentPackage
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lientType . Ga;'sil«sed i
serverType Methodlised ‘i:
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Figure 18: Data Model of OOMeter

Figure 19 shows the component or package diagram of OOMeter. OOMeter
is the main package of the system that uses other packages. XMIParser and
JavaParser are the parsers for XMI and java files respectively. Common
contains the database handling classes and XMIParserTest and

JavaParserTest are the Junit test classes for the two parsers.
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Figure 19: Component Diagram of OOMeter

6.4 Design of XMI Parser

In this section we will focus on the design of the XMI parser component of
the system, Appendix provides the detailed design of tool. As discussed in
the XMI processing approach selection section, we selected a state machine-
using SAX. We used a hybrid of table driven state pattern and sub classing

state pattern {57]
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The XMI parser goes through several states that denote the basic entities in
the UML Meta model, capturing in each state all the information needed

from the child nodes and entity values.

The following state charts show the transitions for each of the UML diagram

types that we take as input.
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Figure 20: State Chart for Package diagram
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Figure 21: State Chart for Class diagram
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The class diagram below shows all classes of XMI Parser.
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As show in the class diagram each of the concrete state implements the state
interface. All the logic of state transitions is encapsulated in XMI and UML
version specific State Transition table XMI11UMLI0StateTransition in this
case. This transition table implements the StataTransition interface; hence if
we want to support another version of XMI or UML other concrete classes
can be dertved for those versions. The amount of change needed in concrete
classes depend on the nature of change in version. For example node names
can be easily mapped from XMI 1.0 to XMI 1.1, hence change is a question
of mapping the tag names, but for major changes as in XMI 2.0, this may not

be very straightforward.

6.5 XM Parser Metric Tool

Table 12 compares XMI Parser with other metric tools covered in section

24.4.

Table 12: Comparison of XMI Parser with other UML metric tools

Name of | Metrics Approach used | Limitation Reference
Tool calculated

UML Model | Four Similarity | Semantic Tool need | [93]
Comparer Metric distance optimization as the

measures  and | process is heavily
class hierarchy | compute intensive.

siructure
MAISA Architectural CSp Pattern | Work is significant | [81]
Pattern mining  using | from design pattern
measures: Java and Prolog | view, but not from
for pattern | metrics, because. it

Number of

includes only




Name of | Metrics Approach used | Limitation Reference

Tool calculated
classes representation elementary metrics.
Number of
messages
Depth of
inberitance
hierarchy
Predictive
Estimate  over
final  systems
based on pattern
mining analysis:

Size,
performance,
complexity

Metrics from | Global and Work is significant | [78]

UML Class level from XMI
metrics. processing  view,

but not from
In global .

L E metrics, because
metrics it gives .

. include elementary
mumbers (min, .
max avg m_etr_lcs:

’ . Limitations from
percentage) of XSLT for XMI
class, attribute, . 1
method processing are also
. i visible, as
interfaces, . .

. . discussed in
associations in
the system Chapter .o

Implementation.
In Class level
metrics it gives
same pumbers
per class.

OSMAT Including the Includes only | [79]
above it also elementary metrics.
computes:

CK suite
Weighted
method per class
Number of
children per
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Name of | Metrics Approach used | Limitation Reference
Tool calculated
class
Cool UML Similar to Includes only | [80]
“Metrics  from elementary metrics.
UML”, but
excluding
associations
SDMetrics Exhaustive XSLT Lacks some | [96]
elementary composite metrics
metrics and
some composite
mefrics
XMI Parser | Elementary SAX Lacks some
metrics and composite metrics
composite
metrics like
coupling metrics
with  different

granularities




Chapter 7

Validation

In this chapter, we present an evaluation of design level coupling metrics.
We theoretically validate the proposed metrics. Section 7.2 presents this
theoretical validation. We empirically validate the UML design coupling
metrics against the source level coupling metrics and other design level
coupling metrics proposed in literature. Section 7.3 introduces the goal and
hypothesis of this validation. Section 7.4 presents the experimental plan to
achieve the goal of testing the stated hypothesis about design coupling
metrics. In Section 7.5 we present the results of empirical validation. In

section 7.6 we discuss the results.

7.1 Theoretical Validation

Representation Condition of measurement asserts that a metric must map
entities into numbers and empirical relations into numerical relation in such a
way that the empirical relations preserve and are pre-served by the numerical
relations [101]. Coupling metrics have been theoretically validated using
modified Weyuker’s properties [114}[37] and Briand’s Framework [46].

Weyuker [114][37]proposed nine properties that should be satisfied by any
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complexity metric. Out of these Chidamber et. al. [37] dropped three

properties as they did not apply to object oriented metrics. These properties

arc:

. Noncoarseness: Given a class P and metric u another class Q

can always be found such that u(P) # u(Q).

. NonUniqueness: There can exist distinct classes P and Q

such that u(P) = u(Q)

. Design Details are Important: Given two class designs, P&

Q. which provide the same functionality, does not imply that
u(P) = u(Q). The specifics of class must influence the metric

value.

. Moneotonicity: For all classes P and Q, u(P) < u(P+Q) and

w(Q) < u(P+Q), where P+Q implies combination of P& Q.

. Nonequivalence of Interaction: u(P) = u(Q) does not imply

that u(P+R) = u(Q+R).

. Interaction increases Complexity: When two classes are

combined the interaction between them can increase the

metric value.
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Similarly Briand [46] also proposed five intuitive coupling properties that
any coupling measure should satisfy. QuterR(c) is defined as total of export

and import coupling and InterR(C) = U_,.OuterR(c).

1. Nomnnegativity: The coupling of a class can never be negative.

Coupling(c) 2 0|Coupling(C) 2 0

2. Null Value: The Coupling of a class is null if OuterR(c) or

InterR(C) is empty.

OuterR(c) = ¢ = C‘oupling(c) = OIInterR(C )= ¢ = Coupling(C) =0

3. Monotonicity: If we add something to a class, its coupling

should only increase.
Coupling(c) < Coupling(c) = O]Coupling(C) < Coupling(C')

Merging of conmmected classes: Merging of two related

classes can only decrease coupling.
Coupling(c,) + Coupling(c,) = Coupling(c')lCoupling(C ) = Coupling(C')

5. Merging of unconnected classes: Merging of two

unconnected classes should not affect coupling at all.

Coupling(c,) + Coupling(c,) = Coupling(c')tCOupling(C ) = Coupling(C")
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Briand’s properties are closer to intuition of coupling than Weyuker’s
because they apply in general to all complexity metric, where as Briand’s
properties apply specifically to coupling metric. Briand also showed that
come of the Weyuker’s properties go against the intuition of coupling, like
property 6. Hence we will theoretically validate our proposed metrics against

Briand’s properties.
For Size metrics, Briand proposed three properties:

Briand [108] published following three intuitive properties that any size

measure should satisfy.

Nonnegativity: The size of a module can never be negative.
Size(c) = 0|Size(C) = 0

Null Value: The size of a module is null if it is empty.

S =< E,R >
E=¢= Size(§)=20

Disjoint Module Additivity: The total size of system consisting of two

disjoint modules should be sum of size of individual sub components.

micS,m2cS,E=E, UE,,.E
Size(S) = Size(ml) + Size(m2)

r\E'mZ :¢

ml
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7.1.1 Theoretical Validation of UML Class Size
Nonnegativity: In the equation for class size each of the term except number
of messages depends on the attribute size that is always positive (Table 7).

Finally number of messages cannot be negative.
Size(c) =Y Size(att,)+ Y Size(meth)+ Y Size(innerClass,)
i=1 i=1 i=1

Hence the right hand side of above equation of class size can never be
negative this property is proved.
Null value: If a class is empty it implies that it has no attributes and no

methods (and messages), hence the class size is null.

Disjoint Module Additivity: If two classes are merged then methods and
attributes complexities will be added, and hence over all size will be sum of

individual sizes.

7.1.2 Theoretical Validation of UML Interactive Coupling Metric
Nomnnegativity: In the equation for computing the entries of definition matrix

the right hand side represents class size that can never be negative.
d; = MethodSize(uses(i, j))

Null value: Suppose we have a system in which import and export

interaction coupling (InterR(c)) is null, it implies that there is no interaction
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connections among the classes of system. Hence the initial definition matrix

will contain a zero value for all cells resulting in a zero overall coupling.

Monotonicity: A method, attribute or an inner class can be added to a class.

We discuss effect of each:

e If an attribute is added to a class, it will increase the class size. This
will increase its coupling with other classes (where it is server or

expertly coupled)

e If a method is added to a class, it may add a connection thereby
increasing coupling or will not add any connections. But still in this
case also it will increase the size of class. This will increase its

coupling with other classes (where it is server or expertly coupled)

e If an inner class is added to a class, it will increase the class size. This
will increase its coupling with other classes (where it is server or

expertly coupled)
In all above cases the coupling may only increase but never decrease.

Merging of connected modules: If two connected classes are merged then
some of the connections that were present between these classes will vanish
decreasing their coupling. Hence over all coupling will be maximum of

individual connections.
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Merging of unconnected modules: If two unconnected classes are merged

then the connections in the system will remain unchanged. No new

connections will appear, hence over all coupling will remain unchanged.
7.1.3 Theoretical Validation of UML Component Coupling
Metric

Nonnegativity: In the equation for component coupling, it can be seen that it

is the summation of class size that can never be negative.
d; = Z ClassSize(association(i, j))

Null value: In a system where the import and export component coupling
(InterR(c)) is null, it implies that there are no associations among the classes
of the system. Hence the initial definition matrix will contain a zero value for

all cells resulting in a zero overall coupling.

Monetonicity: A method, attribute or an inner class can be added to a class.

We discuss effect of each:

e [f an attribute is added to a class, it will increase the class size. This
will increase its coupling with other classes (where it is server or

expertly coupled)
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e If a method is added to a class, it will have no effect on associations
but it will increase the size of class. This will increase its coupling

with other classes (where it is server or expertly coupled)

e If an inner class is added to a class, it will increase the class size. This
will increase its coupling with other classes (where it is server or

expertly coupled)
In all above cases the coupling may only increase but never decrease.

Merging of connected modules: If two connected classes are merged then
some associations may vanish thereby reducing the coupling. Hence over all

coupling will be maximum of the old and modified system.

Merging of unconnected modules: If two unconnected classes are merged
then association connections will remain unchanged. No new connections

will appear, hence over all coupling will remain unchanged.

7.1.4 Theoretical Validation of UML Package Coupling Metric
Nonnegativity: Since the package coupling is just sum of inter-class
coupling that has already been shown to satisfy this property, hence this

property is satisfied.

Null value: In a system where the import and export package coupling

(InterR(c)) is null, it implies that there are no coupling connections between



112

classes of different packages. Thus this implies the inter class coupling

matrix was itself null and resulting in a zero overall package coupling.

Monotonicity: If a class is added to a package it may either introduce new
connections thereby increasing coupling or it will have no effect on coupling.
In both the cases the coupling may only increase but never decrease and

same will be the case with overall coupling.

Merging of connected modules: If two connected packages (i.e. with some
non zero coupling value between them) are merged then that coupling will
disappear thereby reducing the overall coupling of system. Hence this

property can not be violated.

Merging of unconnected modules: If two unconnected packages (i.e. with
zero coupling between them) are merged then the coupling of new system

will remain unchanged, hence this property can not be violated.
7.2 Goals and Hypothesis for Empirical Validation

The goal of this empirical validation is to validate whether the design level
mefrics measure convey similar information as their source level

counterparts, and compare them with similar design level measures, if any.

The hypothesis for this validation can be stated as follows:
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e Hypothesis H1: The design level metrics correlate with their source

level counterparts.

e Hypothesis H2: The design level metrics correlate with other design

level metrics, if any.

7.3 Experimental Design

The metrics to be validated are elementary metrics that are used for
computing coupling and inheritance based coupling metric, interaction
coupling metric and Package coupling metric. For some design metrics we
were unable to find their exact counterparts, hence we selected the closest
metrics that measures similar properties. Priority was given to those metrics
that have already been internally as well as externally validated. Table 13
shows the experimental plan for validation. For Inheritance coupling metrics,
the results of previous case study that computed the same metric from source
code was available, hence those case studies were repeated for these metrics.
Please note that design level counterpart to class size are computed by
SDMetrics, like Number of attributes, methods etc. But since we had already
source level metrics to compare with, we neglected these elementary metrics

that give a very rough idea of class complexity.
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In this section, we present an empirical validation of the design metrics.
Since the higher-level composite metrics like class coupling and package
coupling are based on elementary metrics like attribute, method and class
complexity, hence we first validate them using our own tool “OOMeter” as a
case study. The reason for selecting this was that since we developed the

system, we were aware of the details and its design issues.

7.3.1 Treatments (Design Coupling Metrics)
The treatments that are applied to experimental objects (UML Package,
Class, Sequence and Collaboration diagrams, Java Source Code) are the
coupling metrics implemented in XMI Parser and the tools Together and

SDMetrics.

7.3.2 Experimental Objects

The experimental objects are

e  OOMeter UML Design (.xmi files for package, class, sequence and
collaboration diagrams) and Source code (.java files). OOMeter is
software metrics tool under development that can compute the
metrics from java source programs or UML designs. It consists of 53
classes and 6 packages. The code of consists of about 6000 LOC

(Lines of Code).
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e JavaLangRef Package of Java 1.2 UML Design (.xmi files for
package, class, sequence and collaboration diagrams) and Source
code (java files). Java.Lang.Ref Package is a package in JDK that

consists of 7 classes.

e Java.Awt.Event Package of Java 1.2 UML Design (xmi files for
package, class, sequence and collaboration diagrams) and Source
code (.java files). Java.Awt.Event Package is a package in JDK that

consists of 23 classes.

The UML designs for each of the above experimental objects were reverse
engineered from the java source code using Together case tool and exported
in XMI format. Class and Package diagrams are reverse engineered by
default in Together, but Sequence diagram have to be explicitly reverse

engineered.

7.3.3 Subjects
Since the whole process from reverse engineering to treatment application is
completely automated by the case tools and metrics tools the effect of subject

bias in experiments is not a consideration.
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7.3.4 Data Collection and Validation Procedures
Metrics Results from XMI Parser are automatically saved in the Excel
Workbook using JExcel APL For each metric computed at least three sheets
are created to save the metrics at the finest granularity as well as the
summary statistics and relative and normalized values. The intermediate data
structures used for coupling computation like class hierarchy are also stored
in the ‘workbook just to verify the results. This verification was done
manually initially usiﬁg small test programs. The results obtained from tools
liké Together and SDMetrics were also saved manually in the same excel

workbook.

7.3.5 Data Analysis Procedure
For both the hypothesis we obtain the two metrics to be compared and test
the two metrics for correlation using Spearman Rank Correlation test
[107}{113]. The Spearman Rank Correlation was used because the coupling

measure is ordinal. The Spearman Rank Coefficient is computed as follows:

6 d’

SpearmanRankCorrelationCoefficient = 1— ————
n{n" —1)

where d is the difference between ranks of two respective observations from

the two datasets and n is the number of ranks.
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Note that Null hypothesis below means the converse of the hypothesis that

we want to prove.

For the class size we use the Pearson Correlation because the size measure is

on ratio scale. The Pearson Coefficient is computed as follows:

ZXY_'Z—E]\}ZK

PearsonCorrelationCoefficient =

S e

where X and Y are the data sets and N is the number of cases.

We calculate the two-tailed p-value that is the probability under the null
hypothesis to obtain a result as extreme as the observed one, at the two tails
of the distribution (meaning that the result obtained was from randomness of
sample and not real correlation). We reject the null hypothesis when the
probability is lower than the alpha level that is the probability that our results

are false.

The value of o = 0.05 i.e. Confidence Interval of 95 %. (We can say with 95
% confidence that results are true). We used the XLSTAT [115] package that

simplifies the procedure of computing the p-value [113].



7.4 Validation results

To validate the UML metrics we used the already validated metrics from

literature and implemented by most of the metric tools.

7.4.1 UML Class Size
For validating UML class size we used the metrics, LOC (Lines of Code),
WMC (Weighted Method per Class), and Cyclomatic Complexity. One of
the tools that measured these metrics reliably was found to be Together [93].

The results from Together are in the appendix. (Table 28)

Note that Together calculates two variations of WMC metric; WMCI in
which the methods are weighed by their Cyclomatic complexity and WMC2
where the method are weighed by their number of parameters and return

value.
The results for our class size metric are also shown in appendix. (Table 29)

The results of correlation of our metric with each of the selected metrics for

class complexity are shown in Table 14 along with the correlation values.

Figure 24 shows the scatter diagram of correlation of UML class size metric

with LOC metric
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Figure 24: Pearson Correlation Scatter Chart for LOC Vs UML Class Size

Table 14: Pearson Correlation results for LOC Vs UML Class Size

Pearson Correlation Coefficient 0.973
N 53
p-value ' 0.0001
Alpha 0.05

The correlation value is close to 1 that shows a strong correlation between

UML Class size and LOC.

For the significance of this correlation (to test whether this value is from

randomness of sample) we compare the p-value with the alpha value. Since
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p-value is less than the alpha value we conclude that the correlation is

significant at the confidence level of 95 %.

Figure 25 shows the scatter diagram of correlation of UML class size metric

with Cyclomatic complexity metric.
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Figure 25: Pearson Correlation Coefficient Scatter Chart for Cyclomatic Vs
UML Class Size

The strength of correlation in this case is lower because of two reasons:
Cyclomatic complexity is not exactly a size measure.

The Cyclomatic Complexity metric is defined for methods, when together
computes it for class, it sums up all cyclomatic complexities in the class to

give the class level metric.
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Table 15: Pearson Correlation Coefficient results for Cyclomatic Vs UML

Class Size

Pearson Correlation Coefficient 0.748
N 53
p-value 0.014
Alpha 0.05

Now we compare the p-value with the alpha probability. Since p-value is less
than the alpha value, we conclude that the observed correlation is significant

at the confidence level of 95 %.
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Figure 26: Pearson Correlation Coefficient Scatter Chart for WMC1 Vs UML

Class Size

Figure 26 shows the scatter diagram of correlation of UML class complexity

metric with WMC1 complexity metric

Table 16: Pearson Correlation Coefficient results for WMIC1 Vs UML Class

Size

Pearson Correlation Coefficient 0.748
N 53
p-value 0.0001

Alpha 0.05




125

Here also strength of correlation is relatively lower. This is because WMC is

a source level size metric that depends on weights of method body. But the

method body is not available in design stage (in UML).

Since the p-value is less than the alpha value, we conclude that this observed

correlation is significant at the confidence level of 95 %.

Figure 27 shows the scatter diagram of correlation of UML class complexity

metric with WMC2 complexity metric
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Figure 27: Pearson Correlation Scatter Chart for WMC2 Vs UML Class

Complexity
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Table 17: Pearson Correlation results for WMC2 Vs UML Class Complexity

Pearson Correlation Coefficient 0.737
N 53
p-value 0.0001
Alpha 0.05

Here also strength of correlation is lower because of reason discussed before.

Since the p-value is less than the alpha value we conclude that the observed

correlation is significant at the confidence level of 95 %.

Results for UML Class Size show that our design level measure for class size
correlates with most of the existing standard metrics of class size at Soﬁrce
Level. Hence it can be used as a reliable metric for computing other
composite and higher level metric. It can also be used to estimate the size,

effort and cost of project from the initial design.

7.4.2 Inheritance Coupling
Using the same case study we compare the UML Inheritance coupling metric

with the one obtained from source code.

We use these case studies because the Source Inheritance Metrics were

computed from them, and we wanted to compare the design metrics with
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source metrics. For comparison with design level metric we use third case

study “OOMeter”.

7.4.2.1 Case Study 1: Java.Lang.Ref Package
Figure 28 shows the simplified class diagram of this case study that is a

package from Java 1.2. It consists of seven classes and two inner classes.

Reforence
<7
//7"" , .
SoftReference PhantomReference ReferenceQueue WeakReforence FinalRgference

=

Finalizer

@

The results of inheritance metrics for this case study obtained by Elish [27]

Figure 28:Case Study 1: Java.Lang.Ref Package

are shown in Table 18. Table 19 shows the results of the UIC (UML

Inheritance Coupling) metric for this case study.



Table 18: Case Study 1 Elish Results

128

Class Inheritance Coupling
java 1.2 Lang-Reference 0.6769
java 1.2 Lang-PhantomReference 0.7956
java 1.2 Lang-SoftReference 0.7644
java 1.2 Lang-WeakReference 0.7956

Table 19: Case Study 1 Design Metrics results

Class Inheritance Coupling
java 1.2 Lang-Reference 0.306766917

java 1.2 Lang-PhantomReference 0.84962406

java 1.2 Lang-SoftReference 0.606874329

java 1.2 Lang-WeakReference 0.84962406

java 1.2 Lang- ReferenceQueue 0

java 1.2 Lang- Finalizer 0.349641499
java 1.2 Lang- FinalReferencee 0.758279602

The results of Spearman Rank Correlation are show in Figure 29.




129

Scattorgram of the ranks

5 @<
o] w0 v B
... . - _ .

~N
-

N

i

-
o

0. ,.M‘.MMKWWm....w,u.w.{w“,“",,,_@.qu_.W(awﬂ:ﬂ«’h—whwm%..q.-;w., ,.,«7.,(,,4? ;
85 1 15 2 25 3 25 4
Design Metrigs

o

Figure 29: Case Study i Spearman Rank Correlation Scatter Chart for Case
Study 1

Table 20: Case Study 1 Spearman Rank Correlation results for Case Study 1

Spearman Rank Correlation 0.957
Coefficient

N ' 7
p-value 0.0001
Alpha 0.05
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Here the strength of correlation is nearly one showing that inheritance metric

correlates well with source level metric.

Since p-value is less than the alpha-value, we conclude that the correlation is

significant at the confidence level of 95 %.

7.4.2.2 Case Study 2: Java.Awt.Event

The second case study was Event Package of Java 1.2 that contains 23

classes as shown in Figure 30.
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Figure 30: Case Study 2 Class Diagram
The results of inheritance metrics for this case study obtained by Elish [27]

are in the appendix.

The reason for difference in the number of classes is that in previous work
some of the classes were not captured and also the inner classes were
ignored. Hence in further calculations for correlation we also ignored those

classes. The results of Spearman Rank Correlation are show in Table 21.
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Figure 31: Spearman Rank Correlation Scatter Chart for Case Study 2

Table 21: Spearman Rank Correlation results for Case Study 2

Spearman Rank Correlation 0.868
Coefficient

N 23
p-value 0.0001
Alpha 0.05




132

Strength of correlation in this case indicate strong correlation between two

inheritance metrics.

Since p-value is less than the alpha-value, we conclude that the correlation is

significant at the confidence level of 95 %.

7.4.2.3 Case Study 3: OOMeter
The last case study was OOMeter. The results of inheritance metrics for this

case study are in the appendix.

The results of Spearman Rank Correlation are show in Figure 32.
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Figure 32: Spearman Rank Correlation Scatter Chart for Case Study 3
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Table 22: Spearman Rank Correlation results for Case Study 3

Spearman Rank Correlation 0.683
Coefficient

N 53
p-value 0.0001
Alpha 0.05

Strength of correlation shows medium correlation between Henrili and

UML Inheritance metric.

Since p-value is less than the alpha-value, we conclude that the correlation is

significant at the confidence level of 95 %.

7.4.3 Interaction Coupling
The Interaction coupling that we used in the experiment is of type “Total
Interaction Coupling” i.e. Sum of Import (where the class is coupled as a
client to another class) as well as Export Coupling (where the class is
coupled as a server to another class). We compared this metric against two
sets of metrics; design level metrics and source level metrics. Together

measures some source level metrics like VOD (Violation of Demeter Law)
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and CBO (Coupling between Objects). SDMetrics [96] also measures some
coupling measures from design like Message Based coupling, dependency
client, etc. Exact definition of these metrics is not available, except for the
standard metrics. Others are just counts of elementary components of UML
design. These metrics also do not differentiate in locus of coupling (export or
import). MsgSend Metric of SDMetrics is defined as number of messages
sent to a class. Other metrics computed by these tools are mostly zero, which
may indicate that they have not been implemented yet. We present the results

obtained from these tools for the case study.

The results of Spearman Rank Correlation of UML Interaction coupling
metric against source level metric VOD and design level metric MsgSent are

show in Figure 33.
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Figure 33: Spearman Rank Correlation Scatter Chart for UML Interactive
Coupling Vs VOD

Table 23: Spearman Rank Correlation results for UML Interactive Coupling
VsVOD

Spearman Rank Correlation 0.385

Coefficient

N 53

p-value 0.015

Alpha 0.05
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Here we observe that correlation is weak. As we already noted in 4.4 that
Interactive coupling from UML can only be approximately computed as
compared with that from source. In sequence diagrams we do not consider all
messages, but only the cross-class messages. Hence this correlation value

was expected to be weak.

Since p-value is less than the alpha-value, we conclude that the correlation is

significant at the confidence level of 95 %.

The results of Spearman Rank Correlation of UML Interaction coupling

metric against design level metric MsgSent are shown in Figure 34.
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Figure 34: Spearman Rank Correlation Scatter Chart for Interactive Coupling

Vs MisgSent -

Table 24: Spearman Rank Correlation results for UML Interactive Coupling

Vs MisgSent

Spearman Rank Correlation 0.528
Coefficient

N 53
p-value 0.001
Alpha 0.05
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Here we observe that correlation is not strong but better than last case

because here we compare our metric with another design level metric.

Since p- value is less than the alpha-value, we conclude that the correlation is

significant at the confidence level of 95 %.

As discussed before although these results show that interaction coupling
metric correlates with lower strength with the source level than design level
counterparts, still the source level metric we used were different coupling
metric, hence better results can be expected if source level metrics were also

measured in the same way as design level metrics.

7.4.4 Package Coupling
We used the two measures of Package coupling that we proposed, the
External Package Coupling and Internal Package Coupling. The External
Package Coupling was of type Import. We were unable to find any source
level metric tool for Java that could compute package level coupling.
SDMetrics [96] computes design level package coupling, both of internal and
external types. We present the results obtained from these tools for the case

study.

The results of Spearman Rank Correlation of Internal Package coupling

metric against SDMetrics Package coupling metric are show in Table 25.
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Figure 35: Spearman Rank Correlation Scatter Chart for Internal Package
Coupling Vs MsgSentWithin

Table 25: Spearman Rank Correlation results for Internal Package Coupling

Vs MsgSentWithin

Spearman Rank Correlation 0.857
Coefficient

N 53
p-value 0.014
Alpha 0.05




140
Since observed p-value is less than the alpha-value, we conclude that the
correlation is significant at the confidence level of 95 %.

The results of Spearman Rank Correlation of External Package coupling

metric against SDMetrics Package coupling metric are shown in Table 26.

e ... ;rwym.“ . ,m s
1 2 3 % 5 6 " 8 |
Total External Package Coupling

Figure 36: Spearman Rank Correlation Scatter Chart for External Package
Coupling Vs MsSentOutside

Since observed p-value is less than the alpha-value as shown in Table 26, we

conclude that the correlation is significant at the confidence level of 95 %.
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Table 26: Spearman Rank Correlation results for Internal Package Coupling
Vs MisgSentOutside

Spearman Rank Correlation 0.855
Coefficient

N 53
p-value 0.014
Alpha 0.05

7.5 Results

The results of all experiments are summarized in Table 27. It can be
appreciated from the results that except one all the null hypothesis were
rejected, indicating correlation between UML design Metrics and source
level Metrics. It can be noted here that the metrics used were still not exactly
measuring the properties in same way, hence if a tool can implement source
level and design metrics both in the same way, then a stronger correlation
can be observed. The results for class complexity are promising because they
are computed completely from design information and they are still able to

predict the actual class complexity.




Table 27: Experimental Results
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Metric Case Study Source Level | Design Level | Results
Validated Counterpart | Counterpart
Class OOMeter LOC Significant
Complexity Correlation
WMACI Significant
Correlation
WMAC2 Significant
Correlation
Cyclomatic Significant
Complexity Correlation
Inheritance | Java.Lang.Ref AlMulla IC Significant
Coupling Correlation
Metric
Java.Awt.Eve AlMulla IC Significant
Correlation
nt
OOMeter Henri Li Significant
Correlation
Import OOMeter VOD Weak
Interaction Correlation
Coupling
Metric MsgSent Weak
Correlation
Internal OOMeter MessageSent | Significant
Package Within Correlation
Coupling
Metric
External OOMeter MessageSent | Significant
Correlation
Package Outside
Coupling

Metric
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In some case where design and code level metric differ too much, then it
calls for careful investigation. For example in case study “oometer” the class
complexities for class “coupling” differs significantly. Although its interface,
design was good, it was ill coded because of lack of time. For the same class
the values differ significantly for interactive coupling. It was because there
was no coupling in design, but code contained many temporary variables
coupled to other classes. This violates a design principle that coupling should

be specified as much as possible at design level.

Package coupling meirics can be useful to suggest proper package
composition. For example if external package coupling for a package is more
than its internal package coupling, then merging the two will reduce the

coupling.



Chapter 8

Conclusion

In this chapter, we present a summary of our work and suggest ways of
improvement in future. The suite of UML coupling metrics proposed and
implemented can prove useful in the early design stage of Object Oriented

Software Development in many ways like:

e UML Inheritance metrics can reflect on the quality of inheritance
hierarchy of the system. Inheritance coupling is desirable type of
coupling because sub classes should be coupled with the super

classes.

o UML Interaction Coupling can reflect on the complexity,

maintenance efforts and error probability of the system.

e UML Component coupling can reflect on the error propagation of the

modules.

e UML Interaction Coupling and Package Coupling metrics can also be
used for project management. For example a class or package with
high export coupling means that it provides service to large number

of clients. Hence it needs the best development efforts.
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e UML Interaction Coupling, UML Component Coupling and Package
Coupling metrics can also be useful in refactoring. During the
refactoring process they can predict how much the change in one
class will affect the coupled class. Based on these different
refactoring alternatives can also be compared based on development

efforts.

e The difference in source and design level metrics like size and

interaction coupling can indicate a need for further investigation.

8.1 Limitations and Further Work

In this section we discuss some of the directions where this work can be

taken to and prove useful.

8.1.1 External Validation
The validation of design level metrics was only done with other similar
metrics, but this validation if done with some external attributes like fault
density, maintainability, understandability could reveal some interesting

features of design level measures and help them make more useful.
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8.1.2 Process Metrics
An interesting experiment could be to analyze the difference between source
and design level metric measured in the same way. This can be made easy
with good metric tools. The difference in measures could provide insight into

the developiment process and help to control it.

8.1.3 Higher Level UML Metrics
The analysis of metrics possible with UML can be extended and built upon
to measure other useful metrics like cohesion, reuse etc. The conceptual
framework developed in Chapter 4 can be used to find those higher level

metrics that can be readily measured from UML designs.

The framework can be extended to include other UML artifacts like use
cases and state diagrams. The UML coupling metrics proposed are based on
Package, Class and Sequence diagrams. The definition can be extended to
include use cases. In a process centered on UML use cases are linked to the
sequence diagrams. There are connections between use cases like
inheritance, extension and inclusion. Hence the information about these
connections can be added to the coupling or cohesion metrics. For example
two classes implementing the same use case are cohesive functionally.
Similarly if there is a dependency between two use cases then it will also

show up in the classes that implement those use cases as coupling. These
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metrics can then even predict the code level coupling or cohesion of the
system from the early design consisting of use cases, package, class and

sequence diagrams.

8.1.4 Refactoring Tool
Refactoring is an important part of software development and maintenance.
Since coupling metric provides the quantitative information of connectedness
of modules, it can be used to compute the total amount of change caused by a
small change in a particular module. The visualization of this information
can be very helpful for the designers and software architects and important
addition to the use of UML in design as well as refactoring. There are some

tools that provide similar facilities for portioning of VLSI circuits.

8.2 Summary and Contributions of Thesis

We proposed a suite of UML coupling metrics that can measure all
dimensions of coupling from UML design artifacts (Package, Class and
Sequence diagrams). We designed and implemented a UML Metric tool to
extract above design features from UML design artifacts stored in XMI
format and compute all the above metrics. These metrics were validated
theoretically and empirically. The contributions of this thesis can be

summarized as follows: -



148

e Proposed UML Size metric
o UML Class Size

e Proposed 6 UML Coupling metrics
o UML Inheritance Coupling
o UML Interaction Coupling
o UML Component Coupling
o Inter-Package Coupling
o Internal Package Coupling
o External Package Coupling

e Implemented a Metrics Tool to extract the design level information
and compute above metrics from UML Models (Package, Class,

Sequence diagrams) stored in XMI files.

e Theoretically and empirically validated the above metrics.
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Appendix A: Tool Design



Appendix B: Experimental Results

Case Study: OOMeter

Table 28: Together class metric results for OOMeter

Class Names Cyclomatic WMC1 WMC2 LOC
common-Association 22 22 32 80
common-Attribute 24 24 22 80
common-ClassDeclaration 30 30 45 117
common-ClassInterface 16 16 24 62
common-DB 82 82 70 706
common-DBMetrics 23 23 28 166
common-Elementaryltem 2 2 2 7
common-InterfaceDeclaration 19 19 28 75
common-Message 28 28 42 110
common-Method 17 17 25 71
common-PackageDeclaration 13 13 19 53
comunon-Parameter 13 13 19 53
common-UsedAttribute 21 21 29 73
common-UsedMethod 20 20 29 74
javaparser-FileHandler 2 2 6 32
javaparser-FolderHandler 6 6 6 32
javaparser-Interpreter 237 237 119 993
javaparser-Main 16 16 14 86
javaparsertesi- & 6 8 53
ElementaryMetricTest

javaparsertest-TBeingUsed 1 2 6
javaparsertest-TchildBeingUsed 3 4 13
oometer-ClassComplexity 7 7 5 69
oometer-Coupling 158 158 73 937
oometer-CTC 0 0 0 3
oometer-DIT 5 5 5 48
oometer-ICC 0 0 0 3
oometer-MeasurementTask 0 0 0 5
cometer-MeasurementTasks 15 15 24 21
oometer-MethodComplexity 5 5 5 62
ocometer-Metrics 15 15 24 20
oometer-NOC 4 4 5 41
oometer-OOMeter 0 0 0 4
oometer-O0System 0 0 G 5
oometer-O0Systems 15 15 24 22
oometer-OSC 0 0 0 3
oometer-XMLMetric 0 0 3
oometertest-oometer 8 8 10 50
xmiparser-AssociationEndState 15 114 134 59
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Class Names Cyclomatic WMCL WMC2 LOC
xmiparser-AssociationState 13 15 18 43
xmiparser-AttributeState 17 13 16 58
xmiparser-ClassifierRole 14 17 18 61
xmiparser-ClassifierRoleState 15 14 21 45
xmiparser-ClassState 29 15 18 110
xmiparser-Collaboration 16 29 19 68
xmiparser-CollaborationState 17 16 24 61
xmiparser-InitialState 9 17 21 27
xmiparser-InterfaceState 17 9 18 67
xmiparser-MessageState 27 27 18 137
xmiparser-OperationState 28 28 23 32
xmiparser-PackageState 17 17 19 66
xmiparser-ParameterState 18 | 18 18 69
Xmiparser- 50 50 34 171
XMIT0UML11StateTransition
xmiparser-XMIParser 114 114 134 485
xmiparsertest-PrintXMIElements | 12 12 3 147
Table 29: XMI Parser Class size results for OOMeter
Class Names UML Class | Relative Relative
Size Values to Sum | Values to
Maximum
common-Association 654 0.005161555 0.012716313
common-Attribute 395 0.003117453 0.007680342
common-ClassDeclaration 831 0.00655849 0.016157885
common-ClassInterface 408 0.003220053 0.007933113
common-DB 51430 0.405900273 1
common-DBMetrics 840 0.00662952 0.01633288
common-Elementaryltem 44 0.000347261 0.000855532
common-InterfaceDeclaration 512 0.00404085 0.009955279
common-Message 825 0.006511136 0.016041221
common-Method 401 0.003164807 0.007797006
common-PackageDeclaration 323 0.002549208 0.006280381
common-Parameter 380 0.002999069 0.007388684
common-UsedAtiribute 590 0.004656449 0.011471504
common-UsedMethod 590 0.004656449 | 0.011471904
javaparser-FileHandler 163 0.001286443 0.003169356
javaparser-FolderHandler 263 0.002075671 0.005113747
javaparser-Interpreter 6476 0.051110445 0.125918724
javaparser-Main 1316 0.010386248 0.025588178
javaparsertest- 167 0.001318012 0.003247132
ElementaryMetricTest
javaparsertest-1BeingUsed 41 0.000323584 0.0007972
javaparsertest-TChildBeingUsed 126 0.000994428 0.002445932
oometer-ClassComplexity 191 0.001507427 0.003713786
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Class Names UML Class | Relative Relative
Size Values to Sum | Values to
Mazximum
cometer-Coupling 2402 0.018957271 0.046704258
oometer-CTC 0 0 0
oometer-DIT 135 0.001065459 0.002624927
ocometer-ICC 0 0 0
oometer-MeasurementTask 40 0.000315691 0.000777756
oometer-MeasurementTasks 293 0.00231244 0.005697064
oometer-MethodComplexity 183 0.001444288 0.003558234
oometer-Metrics 293 0.00231244 0.005697064
oometer-NOC 135 0.001065459 0.002624927
oometer-O0Meter 20 0:.000157846 0.000388878
cometer-O0System 20 0.000157846 0.000388878
oometer-O0Systems 293 0.00231244 0.005697064
oometer-OSC 0 0 0
oometer-XMLMetric 0 0 0
oometertest-cometer 261 0.002059887 0.005074859
xmiparser-AssociationEndState 4985 0.039343046 0.096927863
xmiparser-AssociationState 1213 0.009573343 0.023585456
xmiparser-AttributeState 3357 0.026494404 0.065273187
xmiparser-ClassifierRole 384 0.003030638 0.007466459
xmiparser-ClassifierRoleState 2030 0.016021341 0.039471126
xmiparser-ClassState 5982 0.047211655 0.116313436
xmiparser-Collaboration 447 0.003527852 0.008691425
xmiparser-CollaborationState 1583 0.012493489 0.030779701
xmiparser-InitialState 701 0.005532493 0.013630177
xmiparser-InterfaceState 3038 0.023976765 0.059070581
xmiparser-MessageState 7680 0.060612757 0.149329185
xmiparser-OperationState 3089 0.024379272 0.06006222
xmiparser-PackageState 3202 0.0252711 0.062259382
xmiparser-ParameterState 4484 0.035389011 0.087186467
Xwmiparser- 5597 0.044173125 0.108827533
XMI10UMI11StateTransition
xmiparser-XMIParser 6854 0.054093729 0.13326852
Xmiparsertest-PrintXXMiElements 486 0.003835651 0.009449738

Table 30: Case Study 2 Elish Results

Class Inheritance Coupling
java.awt.event.ActionEvent 0.7118
java.awt.event. AdjustmentEvent 0.6676
java.awt.event.ComponentAdapter 0.7447
java.awt.event.ComponentBEvent 0.8107
java.awt.event.ContainerAdapter 0.8274
java.awt.event.ContainerEvent 0.7996
java.awt.event.FocusAdapter 0.8274
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Class

Inheritance Coupling

java.awt.event.FocusEvent

0.8469

java.awt.event.InputEvent 0.8222
java.awt.event.InputMethodEvent 0.7677
java.awt.eventInvocationEvent 0.7165
java.awt.event.ItemEvent 0.7362
java.awt.event. KeyAdapter 0.7839
java.awt.event.KeyEvent 0.2029
java.awt.event. MouseAdapter 0.7092
java.awt.event.MouseEvent 0.7047
java.awt.event. MouseMotionAdapter 0.8274
java.awt.event.PaintBvent 0.79%6
java.awt.event.TextEvent 0.8738
java.awt.event. Window Adapter 0.6476

Table 31: Case Study 2 Henri Li Metric

Class

Inheritance Coupling

java.awt.event.ActionEvent

java.awt.event. AdjustmentEvent

java.awt.event.ComponentAdapter

java.awt.event.ComponentEvent

java.awt.event.Container Adapter

java.awt.event.ContainerEvent

java.awt.event.FocusAdapter

java.awt.event.FocusEvent

java.awt.event.InputEvent

java.awt.event.InputMethodEvent

java.awt.event.InvocationEvent

java.awt.event.ltemEvent

java.awt.event.KeyAdapter

java.awt.event.KeyEvent

java.awt.event. MouseAdapter

java.awt.event. MouseEvent

java.awt.event. MouseMotionAdapter

java.awt.event.PaintEvent

java.awt.event. TextEvent

java.awt.event. Window Adapter

e | DN | et | et | (a0 |t ] (oD | bt | bt | ot e e | D2 ] e [ DO ] e | QO i | s § ot

Table 32: Interaction Coupling Results

Class VOD | CF | CDBC | Dep Dep

Client | Supp

Msg
Sent

UML
Interaction
Coupling

common-Association 1

0.052107177

common-Attribute 1

B ] s

0.099008124
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Class YOD | CF | CDBC | Dep Dep | Msg | UML
Client | Supp | Sent | Interaction
Coupling

common-ClassDeclaration 1 i 0.098626633
common-Classinterface 1 0 0.002356268
common-DB 8 1995 | 0.957115928
Common-DBMetrics 6 0 0.000493694
Common-Elementaryltem 0 1 - 0.047596607
Common-InterfaceDeclaration | | B! 0.050895382
Common-Message 1 1 0.051030026
Common-Method 1 3 0.147479916
Common-PackageDeclaration | 1 1 0.049952875
Common-Parameter 1 2 0.098649073
Common-UsedAttribute 1 0 0.009784121
Common-UsedMethod 1 5 0.24931556
javaparser-FileHandler 2 6 0.00139132
javaparser-FolderHandler 0 8 | 0.001929895
javaparser-Interpreter 3 176 | 0.004802298
javaparser-Main 2 30 0.008662089
javaparsertest- 3 6
ElementaryMetricTest 0.001840133
javaparsertest-TBeingUsed 0 0 O
javaparsertest- 1 o
TChildBeingUsed 0.000179525
oometer-ClassComplexity 2 10 0.000493694
oometer-Coupling 9 35 0.004106638
oometer-CTC 0 0 0
cometer-DIT 3 6 0.000314169
oometer-ICC 0 0 0
oometer-MeasurementTask Y 0 0
gometer-MeasurementTasks 0 0 0
oometer-MethodComplexity 2 6 0.000314169
ocometer-Metrics 0 0 0
oometer-NOC 2 6 0.000314169
oometer-OOMeter 0 0 0

| oometer-O0System 0 0 0
oometer-O0Systems 0 0 0
oometer-OSC 0 0 0
oometer-XMLMetric 0 0 Y
oometertest-oometer 3 0 Y
xmiparser- 3 46
AssociationEndState 0.002647996
xmiparser-AssociationState 3 14 0.003096809
xmiparser-AttributeState 5 36 10001997217
xmiparser-ClassifierRole 1 0 0.000201966
xmiparser-ClassifierRoleState | 1 22 0.002468471
xmiparser-ClassState 6 73 0.005251111
xmiparser-Collaboration i 0 0.000179525




Class vOD | CF | CDBC | Dep Dep | Msg | UML
Client | Supp | Sent | Interaction
Coupling

xmiparser-CollaborationState | 1 19 0.002199183
xmiparser-InitialState 1 3 0.001077151
xmiparser-InterfaceStaie 3 38 0.001705489
xmiparser-MessageState 5 51 0.003164131
xmiparser-OperationState 5 40 | 0.00381491
xmiparser-PackageState 3 40 0.003186572
xmiparser-ParameterState 3 48 0.002715318
Xmiparser- 1 37
KMI10UML11StateTransition 0.003276334
xmiparser-XMIParser 2 18 0.019096988
Xmiparsertest- 3 324
PrintXMIElements 0.005161348

Table 33: Package Coupling Results

Package MsgSend | MsgSend | External Package | Internal Package

Qutside Within Coupling Coupling

Oometer 63 180 0.003678649 0.008611783

Xmiparsertest 1 3 0.001531281 5.85371E-06

Xmiparser 122 430 0.0028763260 0.00654835

javaparsertest 2 9 0.00398246 0.000288783

javaparser 194 80 0.01951537 0.008161047

Common 0 2278 0 0.951881529

Qometertest 0 12 0 7.51226E-05
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