INFORMATION TO USERS

This manuscript has been reproduced from t;1e microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photoéraphs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leamning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

/7

{

| el el el el el ciekla?ebkiiz

{

X

elsleieiste! e isfe!Jai el Jel S lofel Sl ofe e el Sl ool Fet el fel el el el el et el

A TWO-DIMENSIONAL GEOMETRIC-SHAPES-BASED
COMPRESSION SCHEME FOR DETERMINISTIC
TESTING OF SYSTEMS-ON-A-CHIP

i
-

BY

ESAM ALI HASAN KHAN

A Thesis Presented to the
DEANSHIP OF GRADUATE STUDIES

el Il e e

I

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the
Requirements for the Degree of

9 e e 9 el e e el

MASTER OF SCIENCE

In

e

COMPUTER ENGINEERING

JUNE 2001

R P A A AR AP R

«WFWN%@W%FW@Wﬁﬁﬁﬂwﬁpﬁ?ﬂﬁwm?ﬂ%?ﬂ93@?9&7*T’WW%%

lskiia@da%b%ia%ﬁeb%

¥

UMI Number: 1406109

®

UMI

UMI Microform 1406109

Copyright 2001 by Bell & Howell Information and Leaming Company.

All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, M! 48106-1346

KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
DHARAN 31261, SAUDI ARABIA

DEANSHIP OF GRADUATE STUDIES

This thesis, written by

ESAM ALI HASAN KAHN
under the direction of his Thesis Advisor and approved by his Thesis Committee, has
been presented to and accepted by the Dean of Graduate Studies, in partial
fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER ENGINEERING.

Thesis Committee

% DNt A
Dr. Aiman EMaleh
, (Thesis Advisor)
@ 7 Suu 6\ _ ;Da/,_y
Department Chairman ' ’y’
- a Abd-El-Barr
%é/ (Member)
-
N\

Dr. Alaaeldin Amin
(Member)

DEDICATION

In the Name of Allah, the Most Gracious, the Most Merciful.
To
My parents, who opened the way for me to success
And to

My wife, who was patient and supported me a lot

iii

ACKNOWLEDGEMENT

All praise be to Allah, Subhanahu-wa-Ta’ala, for his limitless blessing and guidance.
May Allah bestow peace on his prophet, Muhammad (Peace and blessing of Allah be

upon him) and his family.

All my appreciation and thanks to my thesis advisor, Dr. Aiman H. El-Maleh, for his
guidance and help all the way till the achievement of this thesis. Thanks are also due to
Dr. Saif Al-Zahir, who started the work with us and had good ideas and suggestions.

I would like also to thank my thesis committee members, Prof. Mostafa I. Abd-El-Barr

and Dr. Alaaeldin Amin for their cooperation and constructive comments.

All my thanks to the Computer Engineering Department, and especially its chairman,
Prof. Sadiq M. Sait, for all support and motivation I got. I also thank the dean of the
College of Computer Sciences and Engineering, Dr. Jarallah Al-Ghamdi. My deepest
acknowledgement is due to King Fahd University of Petroleum and Minerals (KFUPM)

for all support and facilities.

Last, but not least, thanks to all my colleagues and friends, who encouraged me a lot in

my way to the achievement of this work.

iv

CONTENTS

DEDICATION i
ACKNOWLEDGEMENT iv
CONTENTS v
LIST OF TABLES ix
LIST OF FIGURES X
THESIS ABSTRACT xii
Ul y) LM xiii
CHAPTER 1. INTRODUCTION 1
CHAPTER 2. BACKGROUND MATERIAL 8
CHAPTER 3. LITERATURE REVIEW 14
3.1. COMPACTION TECHNIQUES ...eeveeveriuerereenencenecessereessssensessssssssssesenssssrmssmeseneeeeeneoes 14
3.1.1. Compaction Techniques for Combinational Circuits.............cccueureeruruerrveenn.n. 15
3.1.1.1. Static COMPACHIONceceereeereereraenrearaneseaseseisessescsessesesseseessesessensassssasaes 15

3.1.1.2. DynamiC COMPACHONcceeceeeeeerrrsrerearraneessssssaesssssssssesssnsssnsssesnsnsssnsessens 18

3.1.2. Compaction Techniques for Sequential CirCUitSccceeeeererreremrecerererneseaneneens 23
3.1.2.1. Static COMPACHONucocrvcerrerereeeerirrereranreaasassssessasssessessesesnsnmssssnssessessessens 23
3.1.2.2. DynamiC COMPACHONcccceeeeererrecreserreressnesnsenssessessessescssssasssssssssnssasessens 27

3.2. COMPRESSION TECHNIQUESccereuemcscsssncseressasassassassesssssssassssssnsuesssesensensssasssseseses 30

3.2.1. Basic Compression SChEmEScccccruirceeerieeereeeereeeseeeneeeeneresssesssessesssrasrasens 31

3.2.2. PRG- and BIST-Based Compression Techniquesccevuevreermeneenvereesenennes 33
3.2.2.1. Test Width COMPIESSIONceeecerrurrrerrrerreeeemessessasessesesssessesessessersssenes 34
3.2.2.2. Variable-Length Reseedingccccccvuoerereerinineecssnisiennsnnsneesesessssessesesens 38
3.2.2.3. Design For High Test Compression (DFHTC)cccvveeueeeeereeenerneresnenee 41

3.2.3. Deterministic Compression TEChNIGUEScueoveeeeeeeereeeesreeecccieeeaeeneessenene 43
3.2.3.1. Run-Length Coding.........ccvevecemrrnreienrenreesesesesenassensassssssssscssesesensssnes 44
3.2.3.2. StatistiCal COINGcccoereeireerireenerienreenerereesasssesessssesesrsssesssessasssessscasans 57
3.2.3.3. Compression by Replacement Words..........c.cceceeervnrenreeneneeeseesessesesenns 59

3.3. OVERALL COMPARISON......ccuemeennsensasasassscsssssassasassasasssasssssssssossenssnsnssssssesesssnsas 61
3.4. CONCLUDING REMARKSuuouueeencmecncrcncncmeenensinnesssensssesssssassssesssssensescassssnsssesssssosens 63
CHAPTER 4. PROPOSED COMPRESSION SCHEME 65
4.1. MOTIVATION ...ccuvrenrrireiininiisieneesessecnsasssssssssasassntnssesnssssssssssessassssessensssssasssssssssasssas 65
4.2. METHODOLOGY .ouveuvememsemsisisssessssensessensesssssssssmssssasssssssesessessassssssssssnsssasassssnsnsssneneses 67
4.3. SORTING TEST VECTORSueuueerenrnemreesssnsesrasnseessssessssessssssssesssssssensssssesessasasnssane 71

4.4, ENCODING PROCESS ..ooiocvteiereerceenressseeeeeeesaeseaessesessmssesssnessessssssesensnnensssnsesssssssesens 76

4.4.1. Test Set Partitioningccceeevvveiviicencerensnsecneicresinesesesssessssesesssesssssasseneans 76
4.4.2. ENCOAINEG BIOCKS ...ccctiumnieeeinininicecinceeacscaesaenttseesscussessnnsessasassassassssnssessssans 77
4.4.3. TiIme COMPIEXILY ...ceevriinirreriniiniieccnteseesecesienesesesesnssssessnrassssesnssassssnsssasesenee 81

4.5. AN [LLUSTRATIVE EXAMPLEcocociiinnrnrineeaceeseresessessamsssenssnesensonsnsassasssessessseneses 82
4.6. CONCLUDING REMARKScccocimuintrerncnrearnsrnansessssasssnsensarassssesssssssesasssssnessssssesssssens 87
CHAPTER 5. DECOMPRESSION PROCESS 89
S.1. SOFTWARE DECODER -.....ccoctrinieeineesenmrisnessessnsessssssssssassnsasssessenssssesssssssssssesesssssessas 90
5.2. HARDWARE DECODERcurueueecueccemcncneesesentssssessesmsnssrassessssssmsnssssasesssssessssesssssssessons 93
5.2.1. Data Path Implementation...........ccueoieerceneecenrncecsnensnesesseesecsseessessassssessonsacs 93
5.2.2. Implementation of the FSM ... iecereenerenseneecieeeee s sensessensenes 102

5.3. DECODER INTERFACEccteeeuireermesesssrmrmsessresesssssssssasssssssnsssssessssseesessescossnsssssensesnens 106
5.3.1. Interface of the SOftware dECOETccmeeeeereecreererereeereeeere e esseneensanen 107
5.3.2. Interface of the hardware decoderccueeeieoereeeenncecieeeeee et eeenanans 108

5.4. CONCLUDING REMARKSccotmeeemrnrnenencrrsssannsenssentsessonssessssensssssscsssnsssnsessssssaeens 109
CHAPTER 6. EXPERIMENTAL RESULTS 111
6.1. EFFECT OF DIFFERENT FACTORS ON COMPRESSION RATIOe.eeeeceereeecnenennrenes 112
6.2. TIMING PERFORMANCE........cuvcceurnreseneemmancnesnsensessesessesssesssesstscnsessassnsnssseseeesnseseasees 120
6.3. STATISTICS ON BLOCK ENCdDING ... 122
6.4. COMPARISON WITH OTHER TECHNIQUES........csceoverernsereneneseseeensseosmenseecsssnsscasmsessnns 125

vii

6.5. CONCLUDING REMARKS

CHAPTER 7. CONCLUSION AND FUTURE WORK

APPENDEX A. VHDL CODE FOR THE HARDWARE DECODER

REFERENCES

...

VITA

viil

127

129

134

162

168

LIST OF TABLES

TABLE 3.1. TRANSITION TABLE FOR RUN-LENGTH CODINGcueeeereeesaeneressessarasessessssassansens 47
TABLE 3.2. GOLOMB CODE (M = 4)....uoiviieecrccrrrntnenasessneassssceesesassssssessanmessssasssasssssssssssesens 54
TABLE 3.3 . ANEXAMPLE OF FDR CODEcuueiireenreercecceeesreteerenennennssnesssessesssssansasesens 56
TABLE 4.1. PRIMITIVE SHAPES USED IN THE PROPOSED SCHEMEccceuvreeeesrersvesssessasseesens 71
TABLE 4.2. WEIGHTS FOR THE 0-DISTANCE BETWEEN TWO TEST VECTORS.....ccccceerumeevennee 72
TABLE 4.3. WEIGHTS FOR THE 1-DISTANCE BETWEEN TWO TEST VECTORS.cccc0eeruenennns 72
TABLE 4.4. WEIGHTS FOR THE (/1 -DISTANCE BETWEEN TWO TEST VECTORSuevveermennene 73
TABLE 6.1. EFFECT OF X-WEIGHTccccerueerreerarcsssuneesessseesansessnsessessssesssssnsesssssessasssnsesseans 114
TABLE 6.2. EFFECT OF TYPE OF SORTING ...cceveetstererarsarsncessasssmsssessassssssasesensessssesssssesnssres 115
TABLE 6.3. EFFECT OF BLOCK SIZE........cerueeeeesiesesessnrasssraresseasssessessnsssssssasesessssesessssssassnseneas 117
TABLE 6.4. EFFECT OF TEST SET SIZE ...uveoeeesteserserssreseeeesssesssesssessasssassessessesssnsessessasssessons 119
TABLE 6.5. TIMING OF THE ENCODERcccvceetereressessersersessaessssasssasarssssssssssesssessssssonesssssssons 120
TABLE 6.6. TIMING OF THE HARDWARE DECODERccceceseeernrennressessesssesssesseressessessnsensennes 121
TABLE 6.7. STATISTICS ON BLOCK ENCODING (8X8 BLOCKS) «.eeveeureeminmriessessesessvessessenss 124
TABLE 6.8. STATISTICS ON BLOCK ENCODING (16X16 BLOCKS) -evevveeveniinereeseeacsrssessssesses 124
TABLE 6.9. STATISTICS ON BLOCK ENCODING (32X32 BLOCKS) «ecuveeerererirveseseesnssseesneassons 125
TABLE 6.10. COMPARISON WITH OTHER TECHNIQUES «..ceevseeeseseesessenseesesresesesssessasnsensanns 126

LIST OF FIGURES

FIGURE 1.1. TEST DATA TRANSFER BETWEEN THE TESTER AND THE CIRCUIT UNDER TEST. 3

FIGURE 3.1. MERGING OF TWO TEST SEQUENCES.....ccc.ceceureerrvreanesassassnsssneressssens 24
FIGURE 3.2. EXAMPLE OF VECTOR RESTORATION.......c.c.eerrvveererasesmasssessunresssssesssssnsssssssasanas 26
FIGURE 3.3. RUN-LENGTH CODING ...ccevecesurescessrerersrssssensassssssssesssasesessesasessessssssssssesssasessane 31
FIGURE 3.4. HUFFMAN CODING FOR THE EXAMPLE OF FIGURE 3.3coveeieerereeecenecennnnns 32
FIGURE 3.5. EXAMPLE OF A TEST SET TD (A) AND ITS TGC (B) ceeeeevvvuenneeneenserernesnensasnsnens 36
FIGURE 3.6. DECOMPRESSION USING VARIABLE-LENGTH RESEEDINGcececveeeenreessessannes 39
FIGURE 3.7. ARCHITECTURE OF A DFHTIC COREoucceveererenreecnenreesessnesessnsssssssssssesens 42
FIGURE 3.8. EXAMPLE OF WEIGHTED TEST GENERATIONcccecveeetesearesseessasssesssssassnsanessens 43
FIGURE 3.9. BW TRANSFORMATIONcceceeneuracersnmeremsaraessesseesnsesssssessessesesssensasesnssesssasssesssne 45
FIGURE 3.10. MODIFIED RUN-LENGTH CODING ..ccucmuuerrerrrerreerreesssssssesseseessseessassssssssasesessns 47
FIGURE 3.11 . PREPARATION OF THE MATRIX TO BE ENCODEDucvceviruiveeeesnverresssneesenssenes 49
FIGURE 3.12. NEXT SYMBOL....ccoceerrareeaasccreaomesceesesssrssersessessassssessssessesseseessssnsssssssssssssssssssnes 49
FIGURE 3.13. VARIABLE-TO-BLOCK RUN-LENGTH CODING.....cccoreesererseessvessnesnsersssessnenenes 51
FIGURE 3.14. CYCLICAL SCAN CHAIN ARCHITECTUREc.cesueerareecsrecssesseessesssnseesssessesasne 52
FIGURE 3.15. EXAMPLE OF MODIFIED STATISTICAL CODINGcvveeerereeneerseensessonssessessesarans 58
FIGURE 3.16. REPLACEMENT WORDccuccerttesseestrmersiseersessssssesssssssssesessnsess e smnsessssesssosesnn 60

FIGURE 4.1. AN EXAMPLE CIRCUIT (S420.BENCH) AND A SUBSET OF ITS TEST VECTORS .. 69

FIGURE 4.3. AN EXAMPLE OF A SUBSET OF A TEST SET. e uteumeemeeeeeereeeeemeeeeeeeeemseseeeeoon 83
FIGURE 4.4. THE TEST SET AFTER 0-SORTING.......cuveeereeeeeeeeeeeeeeeeeeeeeseeeereeeeseeseeseseons 83
FIGURE 4.5. THE TEST SET AFTER 1=SORTING.....cu.euemineeeeeeeeeeeeeeeseeeeeeemeeeeeeeseeseseenseensos 84
FIGURE 4.6. THE TEST SET AFTER (/1-SORTING «...ceeuveeuiineeeeceeeeeeeeeeseseseeesmsesesseeseseessnens 84
FIGURE 5.1. TEST VECTOR DECODING ALGORITHM.c.umeemeeeeeeeeeeeeeesenseeemseeemeensesessenons 92
FIGURE 5.2. DATA PATH OF THE DECODER.ceuieteuteeeeeeneeeneeseeessesseessessseensessmeessssesssssns 94
FIGURE 5.3. THE FSM OF THE DECODEReviueitttieeeeeeeeeeeeeeeeeeeeessseesssesesesesesssesseessans 103
FIGURE 5.4. INTERFACE OF THE SOFTWARE DECODER........c..uteeeerieeeeeeeseeeseeeesseessesenens 107
FIGURE 5.5. INTERFACE OF THE HARDWARE DECODERccoeuteeeeeeeeeeeeecereeeceeesnesseanas 108
FIGURE 6.1. EFFECT OF X-WEIGHT........cceoteiemmetteemeeeeeeeeeseeeesoeeseeseseeenesseesseesasseenesssanns 114
FIGURE 6.2. EFFECT OF TYPE OF SORTING..c.uceeveeeueeeeeeenieiteeeeasesseeseseeesaeeeesensesesassasss 116
FIGURE 6.3. EFFECT OF BLOCK SIZE......ccumieetreereeeneeeneieeneeeeeeeenessesessanesessesesssessmesseenes 117
FIGURE 6.4. GREEDY VS. NEAR=OPTIMAL «..veeuuiieneiieieeceeeeeeeneeeeanteeeseeeemeesesesmaeesssasresnans 118
FIGURE 6.5. COMPARISON WITH OTHER TECHNIQUESeeeeeeeeeeeereeeeeeeeeeeeoeneereeesenensens 127

THESIS ABSTRACT

Name: Esam Ali Hasan Khan

Title: A Two-Dimensional Geometric-Shapes-Based Compression
Scheme for Deterministic Testing of Systems-on-a-Chip

Major Field: Computer Engineering

Date of Degree: June 2001

The increasing complexity of systems-on-a-chip with the accompanied increase in their
test data size has made the need for test data reduction imperative. In this thesis, we
introduce a novel and very efficient lossless compression technique for testing systems-
on-a-chip based on two-dimensional geometric shapes. The technique is based on
reordering test vectors to minimize the number of shapes needed to encode the test data.
Then, the test set is partitioned into equal size blocks and each block is encoded
independently. To test a chip, the encoded data is transferred from the tester to the chip-
under-test and decoded there. The decoder can be implemented in software or in
hardware. For software decoder, there must be an embedded processor where the
decoding algorithm is executed. If this processor is not available, an additional hardware
may be added to perform the decoding process. Both solutions need some amount of
temporary memory to store a segment of decoded blocks. In this thesis, we have
implemented the decoder in both software and hardware. The experimental results on
ISCAS85 & ISCAS89 benchmark circuits showed the effectiveness of the proposed
scheme in achieving very high compression ratio for most of the circuits. The achieved
compression ratio is significantly higher than those obtained by most recently proposed
schemes in the literature.

MASTER OF SCIENCE DEGREE
King Fahd University of Petroleum & Minerals
Dhahran — Saudi Arabia
June 2001

Al s

ols gas oy @l O slms s
slunialy dlaldia Zahayl dpolall Gloadl dlesall Slkaadl sbly b @l 5oz
sleg¥l Zlis Rpamiall Jia¥L

—a 1422 Jo¥l ggs iz el

sds Aol Wl Glly e 3345 by oy e LY @ U AN 3 sl
bad) Blady s 13,0 pads (W Jods 3 Legs Lol UL o e oS) Bl et ot)
Ll bt S plasiaaly Sl glan (5T 4@ 040 WalSCae aadzy 4 5l T R SO
oo S L KW e JulEl Oas eV Olgmae o Bale) e daze a@ ki sda ke Y S
LA e e A w5l Gary el & glze L) QUL e ol o5 g UL
S5 on o 120 s 1 LW Sl o 55 UL JET b 30 LYy i e S8
e Gy I ey sz ol e o gl plsaaly SULIY jgey B S UL
i oo e s Sasd <l 3 y2e el i S f 1)y el iy 3,2 20 flas i
b @ I Il e dakd o pd @S G ST e ST (B e Sl Bl 2 et (O WS 3y e)
A e ojlndt ila UL e, S Galll oy Rl WST ks ¢ Wl eda 3 e,
B e bk i e J ekl 3 il 3l 0l o gl (ISCAS85 & ISCAS89) il

Gyl i a2l G el Sl oy JaiW s d il 18 Ll e 2L bl 4 g

solell o sanlall iy s
omleally Jg il map cllall Graly

Ky grall Koy sl KALIL — ol gaball

xiii

CHAPTER 1

INTRODUCTION

One of the primary tasks of any design process is the verification of system
functionality against the desired specifications. Functional tests are often used at the
various stages of the design process to verify correct system behavior. Once the
system is manufactured, manufacturing tests are used to verify that the circuit
implements the desired functionality. Manufacturing tests are based on fault models
that can detect certain specific faults in the structure of the implemented circuit. The
most widely used fault model is the single stuck-at fault model where each line in the
circuit can be tested for being stuck at 0 or 1. This simple fault model detects a large
number of the defects in the manufactured circuit. In this thesis, the test vectors

generated are based on the single stuck-at fault model.

Testing of a chip requires generating test vectors that can detect all the faults in the
structure of the circuit, if possible, according to the used fault model. Such test

vectors are often generated by automatic test pattern generation (ATPG) programs,

which can successfully generate test vectors with a high fault coverage (i.e. can
detect a large number of the modeled faults). Then, the test vectors are applied to the
circuit in sequence and the circuit responses are observed. If the observed responses
are not equal to the expected correct responses of the circuit, then the circuit is
marked as defective; otherwise it is said that the circuit passes the test without
failure. For defective circuits, another type of test set can then be applied to diagnose
the circuit and try to identify the locations of the defects. This can help in improving
the manufacturing process to increase the yield, which is the ratio between the non-
defective chips to the total number of manufactured chips. In this thesis, we focus on

detecting test sets rather than diagnostic ones.

To test a certain chip, the entire set of test vectors, for all the cores and components
inside the chip, has to be stored in the tester memory. Then, during testing the test
data must be transferred to the chip under test and test responses collected from the

chip to the tester (as illustrated in Figure 1.1).

Tester

Test Data
Bandwidth

Corel [Core3

11 [T1

Core2 UDL

System-on-a-Chip

Figure 1.1. Test data transfer between the tester and the circuit under test

With today’s technology, it is possible to build complete systems containing millions
of transistors on a single chip. Systems-on-a-chip (SOC) are comprised of a
collection of pre-designed and pre-verified cores and user defined logic (UDL). As
the complexity of systems-on-a-chip continues to increase, the difficulty and cost of

testing such chips is increasing rapidly [10], [39].

One of the challenges in testing SOC is dealing with the large size of test data that
must be stored in the tester and transferred between the tester and the chip. The
amount of time required to test a chip depends on the size of test data that has to be
transferred from the tester to the chip and the channel capacity. The cost of automatic
test equipment (ATE) increases significantly with the increase in their speed, channel
capacity, and memory. As testers have limited speed, channel bandwidth, and

memory, the need for test data reduction becomes imperative.

Test data reduction has many advantages. The most important one is the reduction of
testing time, which in turn reduces the time-to-market. Testing time includes time to
transfer test data from the Automatic Test Equipment (ATE) to the Circuit Under
Test (CUT) and test application time. In addition, reducing test data volume saves
memory requirement, which may be very expensive, especially if the test is to be

stored inside a chip [9].

The problem of test data reduction has been addressed in different solutions. These
solutions can be classified into two main categories, test set compaction and test
vector compression/decompression. In test set compaction, the goal is to minimize

the number of test vectors in the test set while maintaining the same fault coverage;

i.e. detecting the same number faults. There are two approaches to compact test sets.
The first is static compaction where the compaction is performed after generating the
test set. The second is dynamic compaction in which test set is minimized while

generating the vectors [17]. In test vector compression, test vectors are encoded in a

different format and transferred to the Automatic Test Equipment (ATE) and then to
the chip under test in this compressed format. Then, a decoding technique on the chip
is used to reconstruct the original test data. This approach usually exploits the fact

that test vectors are highly correlated to each other [38]. To achieve better test data

reduction, more than one of the above techniques can be applied. For example, it is
possible to generate a test set using a dynamic compaction technique. Then, a static
compaction technique is used to further reduce the test vectors. After that, a

compression technique is applied to encode the test data.

Most of the compression techniques proposed in the literature for deterministic
testing take advantage of the high correlation between test vectors. However, most of
these techniques use a one-dimensional approach, where vectors are encoded
serially. In addition, most of these techniques are based on variations of run-length

coding and statistical coding. In this Thesis, we propose a novel technique to

compress/decompress deterministic test data based on two-dimensional geometric

shapes.

The proposed technique is based on reordering the test vectors to take advantage of
the high correlation between them. The goal of this reordering is to generate minimal
number of primitive geometric shapes needed to encode the test data. Then, the test
data is partitioned into blocks and then each block is encoded individually. There are
three possibilities to encode a block. The first is to encode the block as filled by
either 0’s or 1’s. The second is to encode the block using geometric shapes that cover
the 0’s or the 1’s depending on which gives minimum cost. The third is to store the
actual test data. This is done when the cost of encoding the block is more than the

cost of the real data.

The encoder is implemented in software because it is executed offline. The decoder
can be implemented in software if the SOC has an embedded processor to execute it.
However, if there is no such processor to run the software decoder on the chip, then a
hardware implementation of the decoder is needed. In this thesis, we have
implemented ther encoder and the software decoder in C++ code. The hardware

decoder has been designed and implemented using VHDL. The encoder and both

implementations of the decoder are very fast. Compared to the results of the most
recent compression techniques published in the literature, we achieved very high
compression ratio. The only limitation of our proposed technique is the need of the
decoder for some amount of memory to store a segment of decoded blocks before
applying its vectors to the circuit under test. However, the required memory is often

available in systems-on-a-chip, which can be exploited.

The organization of this thesis is as follows. In Chapter 2, some definitions and
preliminaries are given. A literature review of the solutions proposed for reducing
test data is presented in Chapter 3. In Chapter 4, details of our proposed encoding
scheme are described. The decoding process is explained in Chapter 5, including the
software and the hardware decoders. In Chapter 6, experimental resuits are discussed

to show the effect of some factors of the sorting and partitioning steps on the
compression ratio and to show the effectiveness of our proposed technique compared
to the most recent techniques published in the literature. Finally, we conclude and

indicate the future directions in Chapter 7.

CHAPTER 2

BACKGROUND MATERIAL

In this chapter, we give some definitions and preliminaries required to understand the

following chapters.

- A test vector is a string of » logical values (“0”, “1”, and don’t care “x”) that
are applied to the »n corresponding Primary Inputs (PIs) of a circuit at the

same time frame to detect one or more faults [32].

- A test sequence is a series of test vectors that are applied in order to detect

faults in sequential circuits [32].

- A test cube is a partially specified test vector, where only the necessary PIs for
detecting the targeted fault(s) are assigned binary values (0 or 1). The other Pls

are left as x’s. If all PIs are assigned binary values, then the vector is fully

specified [20]. Two test cubes are compatible if each PI is assigned the same
value (0 or 1) in both of them or it has an x in at least one of the two test cubes

[32].

A test set is a collection of test vectors that are applied to the Circuit Under
Test (CUT) to achieve a certain fault coverage, which is defined as ratio
between the number of detected faults to the total number of faults. For
sequential circuits, the order of test vectors must be preserved. However, this is
not necessary for combinational circuits. A test can be used for a test set, a test

vector or a test sequence [32].

An essential fault of a test vector ¢ in a test set T is the fault that is detected
only by ¢ in 7. In this case, ¢ is an essential vector in 7. A redundant vector is
a vector in a test set that does not detect any essential fault. In other words, it is

the vector whose all faults can be detected by other vectors in the set [24], [15].

10

Two faults are compatible if they can be detected by a single vector. In
contrast, two faults are incompatible (or independent) if they cannot be
detected by a single vector. An independent fault set is a set of faults in which
all faults are pairwise incompatible. A Maximal Independent Fault Set

(MIFS) is an independent fault set with maximal cardinality.

A test is generated using an Automatic Test Pattern Generator (ATPG). If
the test is generated such that each vector targets certain fault(s), the test is
deterministic. If the vectors are generated randomly, then the test is random.
Pseudo-random tests are generated by deterministic algorithms but have

statistical properties as random sets [1]. Fault simulation is the application of a

test to the CUT and determining faults detected by that test. An ATE
(Automatic Test Equipment) is a tester that stores the test data and applies it

to the CUT.

The reduction of the number of test vectors in a test set is called test
compaction. There are two main categories of compaction, static compaction

and dynamic compaction. In static compaction, the number of test vectors is

11

reduced after they have been generated. Examples of static compaction

algorithms include reverse order faults simulation [35], forced pair merging
(11], N_by M [24] and redundant vector elimination (RVE) [15]. In dynamic

compaction, number of vectors is minimized during the ATPG process.

Examples of dynamic compaction algorithms includle COMACTEST [30],

dynamic compaction using genetic optimization [29), and bottleneck removal

[7].

In test data compression, a test vector is encoded in such a way that reduces
the number of bits needed to store it. For test data compression, it is essential
that the compression is lossless. That is, no data is lost when a vector is
decompressed. In lossy compression, some of the original data can be lost,

which is not allowed in testing.

Compression ratio is the percentage of data reduced after compression. There

are a number of ways to compute it. In this thesis, the compression ratio is

12

computed according to the following equation: {compression ratio =

(Original data — reduced data) / Original data x 100}.

To simplify testing sequential circuits, some of the memory elements — or flip-
flops (FFs) — inside the circuit are modified to be controllable (i.e. their value
can be controlled by some PIs) and/or observable (i.e. their value can be
observed through some Primary Outputs (POs)). This is called scan design. A
scan register or a scan chain is a set of such modified flip flops that have a
serial in pin that is used to shift the desired values into the register (scan in)
and a serial out pin to shift the content of the register out (scan out). In full
scan design, all flip-flops in the circuit are included in the scan chain(s). In
partial scan design, only a partial set of flip-flops is included. In non-scan

design, no flip-flop is made scannable and this is the original sequential circuit

[32], [1].

A system-on-a-chip (SOC) is an integrated circuit (IC) constructed based on
pre-designed and pre-verified cores and user defined logic (UDL). Each core

has a specific function in the SOC. Examples of cores are CPUs, DSPs, MPEG,

13

and JBEG cores. For Intellectual property cores, no information is given about

the internal implementation of the core by the vendor. Only the test set is

provided [20].

Built-in Self-Test (BIST) is a type of Design For Testability (DFT), where the
circuit is designed to have a mechanism for testing itself. One of the most
popular means for designing BIST is the Linear Feedback Shift Register
(LFSR), which is a combination of flip-flops and XOR gates that act as a

special pseudo-random ATPG.

CHAPTER 3

LITERATURE REVIEW

3.1. Compaction Techniques

Test set compaction is the process of reducing the number of test vectors in a test set
while maintaining the same fault coverage. Finding the smallest set is proven to be

an NP-hard problem [17]. Therefore, some heuristics can be used in order to find a

reasonable solution.

There are two main categories of test compaction techniques: static compaction and
dynamic compaction. In static compaction, the test set is reduced after it has been
generated. On the other hand, it is reduced during the generation process in dynamic
compaction. In this section, we discuss some of the techniques proposed for each
class. We start by discussing those techniques proposed for combinational circuits.

Then, we discuss the techniques proposed for sequential circuits.

14

15

3.1.1. Compaction Techniques for Combinational Circuits

3.1.1.1. Static Compaction

One of the simplest techniques for static compaction is called reverse order fault

simulation [35]. In this technique, the order of the vectors is reversed and the

reversed vectors are fault simulated. It has been shown experimentally that usually
the desired fault coverage is achieved with a subset of the original set of test vectors.
The reason for this is that the vectors generated in the last stages usually target hard-
to-detect faults. Therefore, they can also detect some of the easy-to detect faults that
are addressed individually by other vectors. This leads to the reduction of test

vectors.

Another approach is called forced-pair-merging [11], in which test vectors are

relaxed to have more don’t care (x’s) while maintaining the same fault coverage.
This may lead to more compatible test vectors that can be merged and hence the set
is reduced. However, finding the inputs that can be don’t care is time consuming.

Furthermore, the best merging solution is by itself an NP-hard problem.

16

In [17], the merging process has been solved as a Set Cover problem. In a set cover

problem, the goal is to find the smallest collection of sets that cover a given set of
elements. Here, the elements are the faults to be covered and the set to be minimized

is the number of vectors. This problem has been formulated in [17] as an integer

programming problem and solved using Linear programming (LP) Relaxation. In LP
relaxation, the requirement that the variable must be integers is relaxed (or removed).
So, if the variables are binary (0 or 1) in the integer problem, they are converted to
real numbers between 0 and 1. This LP relaxation has the property that its solution is
a lower bound on the value of the optimal integer solution. The main objective of
using LP relaxation for merging test vectors is to find the maximum merging, i.e.

maximize the number of merged vectors.

Another approach for static compaction is the two_by_one scheme [24]. In this

approach, two vectors in a test set 7 are replaced by a new vector. The approach

depends on the following concepis:
- Finding the essential faults of each vector in 7. The definition of essential
faults is extended here to include essential faults of two vectors ¢; and ;.

These are the faults that are detected by either #; or #; but cannot be detected

by any other vector in T.

17

- Finding a maximal independent fault set F. This is used to make sure that for
two vectors to be replaced by one vector, their essential faults are not
independent. If some of these faults are independent, it is not possible to find

a replacement vector. Finding F will save search time.

The algorithm finds two vectors such that their essential faults are not independent
and generates a new vector to replace them. After all vectors are tried, the new
vectors are added to the set and fault simulation will remove the redundant vectors.
The algorithm can be extended to be an N_by_M in which M new vectors will
replace N vectors of 7. However, this seems to be more comj)lex and time

consuming.

In [15], a new algorithm called Essential Fault Reduction (EFR) is proposed to

enhance the two_by_one and the N_by_ M algorithms. It adds some new techniques

that can achieve better results in less computation time (especially than the

N_by_M).

18

3.1.1.2. Dynamic Compaction

One of the earliest and most popular dynamic compaction algorithms for

combinational circuits is COMPACTEST proposed in [30]. It is based on finding

maximal independent fault sets for fanout-free regions (FFRs) of the CUT. The

procedure can be summarized as follows:

1)
2)

3)

4)

For each FFR, find a maximal independent fault set (MIFS).

Build an ordered fault list for the CUT. The faults of the largest MIFS are
placed at the top of the list, followed by the second largest, and so on. Faults
that are not included in any MIFS are listed then.

Select a fault from the top of the ordered fault list as a primary target fault f.
Find a test vector to test this fault.

Maximally compact this vector by finding the maximum number of Pls that
can be unspecified (i.e. having x value). This is done as follows:

@) Complement a specified PI, p.

(ii) Fault simulate the vector.

(iii) Iffis still detected, mark p.

(iv) Complement p again.

W) Repeat the steps (i) to (iv) until all Pls are tried.

(vi) Unspecify the marked PIs.

19

This step is done to maximize the possibilities of detecting other faults by the -
same vector. It should be noted that this new vector might not detect £ if
some of the unspecified Pls are assigned certain values. However, this is a
rare case as shown experimentally.

5) Select another fault f; as a secondary target fault and try to detect it by the
same vector. Do not change any specified PIs. However, some of the
unspecified PIs can be now specified. If /; cannot be tested by this vector,
unspecify all PIs specified for f;.

6) Maximally compact the part of the vector specified for f..

7) Repeat steps (5) and (6) until all Pls are specified or all faults in the fault list
are tried as secondary target faults.

8) Ifthere exist some unspecified Pls, specify them randomly.

9) Fault simulate the vector and remove all detected faults from the fault list.

10) Repeat steps (3) to (9) until all faults are detected.

Modifications to COMPACTEST have been proposed in [24]. The first modification

is in the ordering of the fault list. Here, after each generation of a vector, all detected
faults are removed from the fault list. Then, the fault list is reordered based on the
same criterion (i.e. the largest MIFS after the removal of detected faults). This

reordering allows the selection of target faults from the independent fault sets that

20

have the largest number of undetected faults. The second modification is called
double detection, which is based on the generation of redundant test vectors. After
generating a test vector, the unspecified Pls are used to detect some of the already
detected faults. In this way, some of the previously generated vectors may become
redundant. Then, fault simulation is performed and redundant vectors are identified.

These vectors are removed from the test set.

Another algorithm that performs the same function as the double detection algorithm

is the Redundant Vector Elimination (RVE) algorithm proposed in [15]. This

algorithm keeps track of the faults detected by each vector, the number of times each
fault is detected and the number of essential faults of each vector. After generating
each vector, the algorithm fault simulates all the faults in the fault list and updates
the three parameters listed above. A test vector may become redundant if its number
of essential faults becomes zero. Then, these redundant vectors are removed. This

algorithm, along with the EFR algorithm (described in Section 3.1.1.1) has been

incorporated in an ATPG called MinTest, which is a dynamic compaction ATPG for

stuck-at faults. In [14], this ATPG is extended to include other fault models such as

transition and stuck-open fault models that require two-pattem test sets.

21

Another dynamic compaction algorithm that is based on building MIFSs is proposed

in [36]. The algorithm first finds MIFSs for all faults, and based on these sets, other

sets are constructed that include compatible faults. The goal is to find the minimum
number of compatible sets because faults in each set will be detected by one test

vector. However, finding the best solution for MIFSs and compatible sets is NP-hard.

So, some heuristics must be used. Another contribution in [36] is that in finding a test

vector, multiple target faults are chosen instead of only one.

Since finding 2 minimal test set is an NP-hard problem, iterative algorithms can be

used. One of the most popular iterative heuristics is Genetic Algorithm [18]. It has
been applied to the problem of finding a minimal test set in [26]. This technique

achieved complete fault coverage for the ISCAS85 benchmark circuits. In addition, it
generated complete n-detection test sets, which are the test sets in which each target
fault is detected » times. These n-detection test sets have desirable properties in
detecting unmodeled faults. However, this technique generates larger test sets than

those generated by deterministic compaction techniques.

In [29], another procedure was proposed to reduce the size of the test sets generated

by the technique proposed in [26]. In each iteration of the proposed scheme, one test

22

vector is added to the compacted test set COMP_T from the best set generated in any
previous iteration. This set is called BEST T. The procedure can be summarized as
follows:
1) Set COMP_T =¢. Set BEST T = ¢. F is the target faults.
2) For N iterations:
(i) LetT=COMP_T.

(it) Use the procedure of [26] to generate a test set 7" for F and add it to 7,

(iii) If T'is better than BEST T,let BEST T =T.

3) fCOMP_T = BEST T, stop.

4) Select the best vector ¢ in BEST T that is not in COMP_T and add it to
COMP_T.

5) Drop all faults in F detected by ¢.

6) Go to step (2).

There are two measures in the above procedure:

(1) A test set is better than another. This is measured by the first satisfied of the
following three criteria:
(a) Number of faults detected by the set that are not yet detected.
(b) Set size (number of test vectors)
(c) If there is a vector that detects more yet-undetected faults than any vector

in the other set.

23

(2) The best test vector in a test set. This vector is the vector that detects the

maximum number of yet-undetected faults.

3.1.2. Compaction Techniques for Sequential Circuits

The main criterion that has to be met in testing sequential circuits is to preserve the

order in which a test sequence is applied to the CUT [32]. This complicates the issue

of compaction (and compression) of test data for sequential circuits than for
combinational circuits because any technique based on reordering of test vectors
cannot be applied here. In this section, we review briefly some compaction
techniques proposed to solve this problem. We start with static compaction and then

discuss dynamic compaction.

3.1.2.1. Static Compaction

One important observation in testing sequential circuits is that overlapping of test
sequences is allowed as long as the order of each sequence is preserved. This fact can
be exploited to compact test sequences if they are self-initializing. This means that

each sequence is independent of the previous applied sequences. TESEUS is an

24

example of ATPGs that generate such sequences [16]. Such sequences can be

merged if they are compatible. Compatibility of test sequences can be defined in two

ways.

@) The first, which is simple and straightforward, is that two test sequences

S; and S, are compatible if the i vector of S is compatible with the i

vector of S, for i = 1 to smaller length of S} and S,

(ii) The second, which is more accurate, is that two sequences may be

compatible if the start of one of them is skewed from the start of the other

one.

Figure 3.1 shows the possibilities of skews of two sequences S) and S, of length /,

and A, respectively. Figure 3.1(a) shows the two sequences with no merging. Figure

3.1 (b) shows the first definition. Figure 3.1 (c¢), (d) and (e) show different start and

end points.

S Sy

S,

(a) No Merging

(b) skew =0

§

Sz

©

S

Sz

@

§

S;

(e)

Figure 3.1. Merging of two test sequences.

25

These compatibility definitions can be used to merge test sequences and hence

reduce the test set size. In [32], algorithms are given for merging compatible
sequences with and without skews. Another idea proposed in [32] that enhances the

compatibility of sequences is stretching of sequences. A sequence is stretched if
some of its vectors are repeated (one or more times) as long as each vector is
repeated in its order. For example, a sequence 1100 1000 1110 can be stretched as
1100 1000 1000 1110. It was observed that, in general, stretching a test sequence will
not affect the response of the CUT to the sequence as it does not change the state of

the circuit.

Another approach for static compaction is vector restoration [27], [4]. In this

technique, vectors are restored for each fault starting from the hardest-to-detect fault
to the easiest. [n this way, some faults can be detected by sequences of other faults.
This technique is similar in concept to the reverse order fault simulation explained in

Section 3.1.1.1. We summarize the technique in the following with the illustration by

an example of Figure 3.2.

26

Sequence to detect the fault
FAULT from all unknown states

| ->
fi A f fF /i nE

2 vy D vs

i v Vs Viz Vis Vo fi Vi1 P Vg OF Vi3 = Vo

fs Vi =P vy

Figure 3.2. Example of vector restoration

The first step is fault simulation to determine at which vector each fault is detected
(this is called detection time). Starting from the last detected fault (f5 in the figure),
vectors are restored one at a time until the fault is detected by a sequence of vectors
starting from all unknown states. For instance, v, is simulated first and since it does
not detect f5, vis is added to the sequence and now the sequence (vig, vyg) is
simulated, and so on until the sequence (vi7, ... , vag) is restored. Any fault that is
detected by this sequence is removed from the current fault list. For example, f; is

removed from the list since it is detected by (vig, ... , vag).

If all remaining faults have detection time less than the start of the last restored

sequence, the detected faults by this sequence form a segment. In our example, f; and

27

/s form a segment since all remaining faults have less detection time than 17 (3, 5 and
12 for fi, /2 and f;, respectively). Then, start from the last yet-undetected fault and
repeat the process until another segment is formed. For the example given, when
vectors are restored for f;, it is detected by (vs, ..., vi2) but 5 has detection time 5 > 3;
so the restoration continues for /5. And this continues for f; as well. Therefore, the
second segment contains f], /5, and f3. By applying this method to the given example,

a reduction of 4 vectors was achieved.

3.1.2.2. Dynamic Compaction

In this section, we discuss two dynamic compaction approaches for sequential

circuits. The first approach is based on omission and insertion of test sequences

[28]. This technique uses static compaction algorithms to implement dynamic
compaction. These algorithms are omission and insertion of test sequences. In the
omission operation, some test vectors are omitted from a test sequence T in order to
introduce a new subsequence 7" in T. For example, if T = (0,1,0,0,1,1,0,0), we can
introduce 7" = (1,1,1) by omitting the (0,0) in the third and forth positions of 7 and
we get 7= (0,1,1,1,0,0). In the insertion operation, a new subsequence 7" is inserted
in 7. This can be done in two ways: either by finding a prefix and a suffix of T”in T

and inserting the missing vectors of 7’ between them, or by finding a suffix only and

28

inserting the missing vectors before it. As an example of the first way, if T =
(00,10,11,00,00,01,10) and 7’ = (11,00,11,00), the prefix is (11,00), which is in the
3% and 4% positions of 7, and the suffix is (00), which is the 5 position. The missing
part of T’ is (11), so we can insert after the 4% position to get T =
(00,10,11,00.11.00,01,10) and 7 is underlined. For the second way, consider T =
(0,1,1,0,1,0) and 7” = (0, 0, O, 1, 0). A suffix of 7" is (1, 0), which exists in the 3™
and 4™ positions of 7. We can introduce T” in T by inserting (0,0,0) before the 4%

position and 7" becomes (0,1,0,0.0,1,0,1,0).

Both the omission and insertion operations modify the test sequences and they have
two effects: (i) some faults that were detected may no longer be detected, and (ii)
some undetected faults may now be detected. Experiments show that a large number
of omission and insertion operations does not reduce fault coverage but results in

reduced test set sizes.

The second approach we discuss here is based on using genetic algorithms (GA) in

the test generation process {33}, [34]. The procedure can be summarized as follows:

(1) Use some ATPG to generate a test sequence for a set of target faults.
(2) Fault simulate this sequence and remove any unnecessary vector.

(3) Invoke the GA algorithm to evolve new generations of the obtained sequence.

29

(4) Fault simulate the best sequence obtained in any generation and remove the
faults it detects.

(5) Go to step (1) for new set of target faults.

Two algorithms have been proposed using this technique, squeeze [34] and GA-
COMPACT [33]. The major difference between the two is that in GA-COMPACT,

the specified bits of the sequence generated by the ATPG must be preserved, while
they can be changed in squeeze. Experiments show that squeeze achieves better

results.

30

3.2. Compression Techniques

In test data compression, the goal is to minimize the number of bits needed to
represent the test data. The advantage of this technique is the reduction of the time
required to transfer data from an external workstation to the ATE and from the ATE
to the chip under test. Due to the limited speed, channel capacity, and memory of

ATE, the reduction of test data may save hours [37], [21].

Many techniques have been proposed to achieve minimal test data. One of the
earliest is BIST, where the circuit is designed to have the capability of testing itself.
The BIST-based compression techniques require pseudo-random test generation to
generate the test vectors. Another approach is the deterministic-test-set approach,
where a compression technique is applied to the test data regardless of the internal
architecture of the circuit. In this section, we review some of the techniques proposed

under these two approaches.

In the following section, the basic compression techniques (or algorithms) that have
been used either in testing or other fields are discussed briefly. Those used in some

of the techniques addressed in this thesis are discussed in more detail. In Section

3.2.2, compression techniques based on pseudo-random generators are discussed

31

briefly. Then, we discuss the techniques proposed for compressing deterministic test

data in Section 3.2.3.

3.2.1. Basic Compression Schemes

One of the simplest compression schemes is run length coding. A sequence of
symbols can be encoded using two elements for each run, which is a consecutive
sequence of equal symbols. The two elements are the repeating symbol and the

number of times it appears in the run. Figure 3.3 shows an example of a sequence of

letters with the corresponding run-length code [37].

AABCFGIIIMMMMM
(A2) B,1) (C1) F.D G
1,4) M,5)

Figure 3.3. Run-Length coding

Another more sophisticated and more efficient scheme is Huffman coding which
builds a binary tree based on the probability of the occurrence of symbols. Leaves in

the tree correspond to the symbols. So, a symbol can be encoded by traversing the

32

tree from the root to the corresponding node by encoding any left branch with “0”
and any right branch with “1”. Figure 3.4 shows the Huffman tree and the Huffman
code of the example of Figure 3.3. First, the two symbols with the smallest number
of occurrences are picked to form the first two leaves. In the example, these can be
any two of the four symbols B, C, F and G. The root of these two leaves has a value
equals the sum of their occurrences. This root is considered as a symbol in the next
phase. Then, another two symbols are selected and the procedure continues until all
symbols are selected. An important feature of Huffman coding is that it is prefix-free;

that is, no codeword is a prefix of another codeword.

Huffman coding belongs to a class of coding schemes called statistical coding

where codewords of variable length are used to encode fixed-length blocks of data

(371, [22].
M | 00
I |10
A |o10
F | 110
G |1
B |o110
c |o11l

Figure 3.4. Huffman coding for the example of Figure 3.3

33

Arithmetic coding is another scheme that assigns a unique identifier to each block

of symbols. This identifier is used to restore the original data [13].

Lempel-Ziv (LZ) and its variations (Lempel-Ziv-Welsh (LZW) and Lempel-Ziv-
Storer-Szymanski (LZSS)) are used to encode symbols by constructing a

dictionary. They differ in minor aspects [13].

Some of these techniques can be used in test data compression. However, any
scheme used in test data compression must have two characteristics: lossless
compression and simplicity in decompression. The first feature must be met to avoid
losing any bit, which in tum may reduce the fault coverage. The second characteristic

is important to reduce test application time and hardware overhead [37).

3.2.2. PRG- and BIST-Based Compression Techniques

BIST is a Design For Testability (DFT) technique. It has some characteristics such as
(i) the ability for a system to test itself in-speed, which reduces the test application

time, (ii) cheaper ATE, and (iii) the ability for testing systems on-line [6]. However,

it has many limitations. We can summarize them in the following:

34

(a) Difficulty to achieve high fault coverage because it depends only on pseudo-
random generators (PRG). Some faults are hard-to-detect using random

vectors. This can be solved by adding some test points to the circuit under

test (CUT) but this usually degrades performance [6], [23]-

(b) Long test lengths are required. This may add to the time that the chip sits in

the tester socket.

(¢) The complexity of designing a BIST testing tool, especially when other

cores on the chip are tested externally [22], [23].

Some techniques have been developed to overcome the first problem by combining
deterministic testing with BIST or other DFT methods that exploit PRG. In the
following subsections, some of these techniques are discussed briefly. These
techniques are somehow outside the scope of this survey, but we address them

because they have some kind of determinism for test data compression.

3.2.2.1. Test Width Compression

In test width compression, a Test Generation Circuit (TGC) produces a compressed

vector with width w that is less than the original test width N. Then, a decoder circuit

35

is responsible for restoring the original set. This technique can be used for both

combinational and sequential circuits.

The deterministic test set 7p is generated first using conventional ATPG. Then a
TGC is used to compress it in order to reduce both timing and storage requirements.
Different TGC implementations have been proposed. One uses a counter that
generates the addresses of the ROM in which 7 is stored. Another uses an FSM to
generate 7p without the need to store it. The most effective and widely used method
is to combine LFSR with ROM. T}, is stored in a compressed form then the LFSR is

used to decode it.

Width compression can be achieved in different ways. Here, we explain the method

proposed in [6]. The technique is based on the following assumptions:

1) Tp is a precomputed, partially specified set and stored as a matrix of mxN
size, where m is the number of vectors and N is the vector width.
2) Full scan is employed for sequential circuits.

3) LFSR (or another counter-like circuit) is available for decoding.

36

The following definitions are important to understand the technique:

- In a test matrix 7p, two columns g and b are compatible if for every row i,
a; = b; or one of them is don’t care (x). They are inversely compatible if for
every row 7, a; # b; or one of them is x. For example, columns 3, 4 and 5 in
Figure 3.5 (a) are compatible. Columns 1 and 2 are inversely compatible.

- Two columns a and b are d-compatible if there is no row in which both of
them equal 1. In Figure 3.5 (a), columns 1 and 2 are d-compatible and also 1
and 4 are d-compatible.

- A maximal d-compatible (MDC) class is the set of all columns in T that
are pairwise d-compatible. In an MDC, there is at most one 1 in each row.
Therefore, it is possible to encode the row by specifying the position of that

1 (1 to n, where #» is the number of columns in the MDC or 0 if no 1 exists).

So, for each row, the number of bits needed for encoding = I—log2 (n+ 1)_]

X; X2 X3 X4 X5 2-bit counter (TGC)
g1 10 1 x x
L 10 0 x x
101 1 1 x B] St
L 01 0 xx ! Decompression
5] x 0 0 x O i circuit
] x x 1 11 ke b i sinods
t5] x 1 0 x O X1 X2 X3 X4 Xs
c27 CUT
@ ®)

Figure 3.5. Example of a test set TD (a) and its TGC (b)

37

To encode a test set Tp, a set M of k MDCs {C), Cs, ..., Cx} is to be found such that:
() each column in 7p must appear in at least one MDC, and

(i) the width of all compressed vectors w is minimized, where

w="3[log,(n, +1)].

i=]
The set M is called an optimal MDC cover. However, finding the best M is an NP-
complete problem.
The procedure of encoding 7 can be summarized as follows:

1) Reduce Tp by merging compatible and inversely compatible columns. This is
done in hardware by assigning compatible columns to the same output and
inversely compatible columns to an inverter of the same output of the TGC.

2) Apply column complementation to reduce the number of 1’s. If a column is
complemented, the corresponding output of the TGC must be inverted.

3) Apply row complementation to reduce the number of 1’s. Here, a redundant
column is added to indicate whether a row is complemented or not. By
XORing this column with the rows, the original set can be restored.
However, careful computation must be done to compromise between
compression and added overhead.

4) Compute a near-optimal MDC cover using some heuristic.

5) Encode rows of each MDC.

38

3.2.2.2. Variable-Length Reseeding

This technique is used with deterministic test cubes (partially specified test vectors).
A test cube is constructed in a Multiple Polynomial LFSR (MP-LFSR) using a seed
computed based on the specified bits of the test cube. The seed can be of variable
length since specified bits vary from a test cube to another. The technique has the
following characteristics:

1) On average, a test cube with s specified bits can be encoded with a seed of s-
bit length. The seed size is usually less than the LFSR size.

2) The decompression hardware can be implemented using scan flip-flops
and/or RPG flip-flops because it is loaded for each test pattern; so, there is
no need to preserve the content of the MP-LFSR. Therefore, additional flip-
flops are not needed.

Variable-length reseeding uses a k-bit LFSR to generate the test patterns. The
following steps summarize the procedure:

€)) Reset the LFSR.

(ii) Switch to the shift mode and load the seed to the LFSR.

(iii) Apply enough clock cycles to shift the seed into the scan register, which

will hold the desired pattern.

(iv) Switch to the functional mode and apply the pattern to the CUT.

W) Shift out the response to the test response analyzer.

39

Figure 3.6 shows an example of decompressing a 9-bit test pattern using a 2-bit seed.
The decompression hardware consists of a 5-bit LFSR formed using an existing 3-bit

LFSR and 2 flip-flops of the scan chain.

Desired cube oo gt

2. Reset LFSR

3. Shift seed

4. Decompression

shift

Figure 3.6. Decompression using variable-length reseeding

Since seeds are of variable lengths, each one is assigned a bit to indicate when the
current length is to be increased. The increase is done with a constant d, with the
addition of extra 0’s whenever the current length + d is greater than the new length.

The first seed to be stored is the shortest one.

40

In [38] and [31], three techniques are proposed for the implementation of the

decompressor. The first one uses a two-dimensional hardware decompressor for
multiple-scan chain designs. It exploits the existing scan flip-flops and the flip-flops
of the PRGs with the addition of few extra logic (XOR and AND gates). The goal of
this implementation is to allow the decompression of large number of specified bits
while minimizing the area overhead.

The second implementation uses the embedded processor available in some core-
designs to load and execute the decompression algorithm. In this way, no additional
hardware is needed and hence no area overhead. Here, a program (or a microcode) is
executed in the embedded processor to read data from external memory to the local
register file and decompress the data to the scan chains of the CUT. To reduce test
application time, the number of instructions needed to decompress the data has to be
minimized.

The third alternative is used with designs that include boundary scan chains. This is

useful when CUTSs are mounted in a board during testing.

41

3.2.2.3. Design For High Test Compression (DFHTC)

The basic idea of this technique proposed in [23] is to design a core that is identical

to conventional cores but can be tested with a much smaller number of test vectors. It
combines PRG with deterministic testing. However, it is different from BIST in three
main concepts:
(a) It is compatible to all other cores that use scan chains. So, there is no need
for additional hardware for each core.
(b) BIST needs hardware for scheduling tests for different cores.
(c) BIST suffers from large power dissipation because it runs simultaneously

for all cores on a chip except one.

A DFHTC consists of the following components:

) A collection of N PRGs, each one generates a b-bit block, where Nb is
the width of a test vector for the CUT.

(ii) A test controller, which acts as an interface to the ATE and gets from it
two signals: SDI (scan data in) and SE (scan enable). It contains a b-bit
serial-in parallel-out shift register.

(iii) A multiple input signature register (MISR) that has a “scan data out” bit
(SDO).

These components are shown in Figure 3.7.

42

Controller

ATE CUT

iv
o

Figure 3.7. Architecture of a DFHTC core

The procedure for testing a DFHTC core can be summarized as follows:

1

2)

During the first b clock cycles, the first b bits of a deterministic test vector
are shifted in to the controller register. During this period, PRGs generate b
random test vectors to the CUT.

When the b bits are received completely, the controller loads them to the first
PRG and locks it. That is, that PRG will no longer generate random blocks.
Instead, the loaded bits are generated. This acts as a “weighting” technique

for the pseudo-random vectors.

43

3) In the following & cycles, the second b bits are shifted in and another b

“weighted” random vectors are generated.

4) The second PRG is loaded with the second b bits of the test vector and

locked.

5) This procedure is continued until all N blocks of the test vectors are loaded.

Figure 3.8 shows an example of generating a test vector with 12 bits. Its pattern is

(100010101110). In this figure, t; is the test vector generated from PRGs during the

* cycle.

tio
ti
tiz
ti3

1111 1000 0011
0111 6100 0001
0011 0010 1000
0001 1100 0010
1000 1100 0010
1000 0110 1001
1000 1011 1100
1000 0101 0110
1000 1010 1011
1000 1010 0101
1000 1019 1010
1000 1010 1101
10001010 1110

Figure 3.8. Example of weighted test generation

3.2.3. Deterministic Compression Techniques

In this section, we discuss the techniques that are used to compress deterministic test

data, regardless of the internal implementation of the cores (or SOC). Some of these

techniques modify some known compression techniques (explained in Section 3.2.1)

to gain higher compression ratio; others come up with new ideas to compress test
data. All these techniques take advantage of the high correlation between test
vectors. We discuss some of these techniques based on the basic compression

scheme utilized in each.

3.2.3.1. Run-Length Coding

Many proposed schemes are based on the well-known compression technique Run-
Length coding. However, each proposal has some modification to the basic idea in
order to get higher compression ratio. We discuss here four schemes proposed in the

literature using run-length coding.

(1) Run-Length coding with Burrows-Wheeler (BW) Transformation

This scheme was proposed in [37] and used a modified version of run-length coding

to encode columns of test data after performing a BW transformation on each
column. The technique is based on some observations on test data. These

observations are:

45

- Many test vectors differ only in a subset of inputs. Other inputs are kept

constant. Therefore, if a test set is viewed as a matrix, some columns change

their values more frequently than others. This introduces a feature of test

columns called “activity”. The activity of a string of symbols S (a(S)) is the

number of transitions on S. For instance, the string (aaabaaabcc) has an

activity of 4.

- These active columns usually form cycles, where a cycle is a sequence of

symbols that repeats more than once in a string. For example, the above

string has a cycle (aaab) that repeats two times before it breaks.

To exploit these two characteristics of test data, Burrows-Wheeler BwW)

transformation and run-length coding are used.

BW transformation is performed on a string S of length » as follows:

- Form a matrix of size nxn, the first row of the matrix is S, and the following

rows are formed by rotating-left the previous row.

- Sort the matrix lexicographically.

S=abraca

1 abraca 1 aabrdc
2 bracaa 2 abrada

3 racaab 3 acaah
4 acaabr 4 brac

S5 caabra S caabf
6 aabrac 6 raca
original sorted

Figure 3.9. BW transformation

46

- To restore S from the obtained matrix, we need to know the last column L
and the index I of the original string S. Details of how to restore the original

string S are discussed in [5] and [25]. Figure 3.9 illustrates the BW

transformation.
The advantage of BW transformation is that it usually results in less number of runs
than the original set. However, this is not always the case. Sometimes, BW
transformation results in more runs. This happens when the activity of the original
string is greater than some threshold value a,. Another advantage is that the inverse
operation is simple since it does not involve sorting. This is good for simple

decompression.

Another concept used in this technique is a modified version of run-length coding
that needs fewer bits to encode a string. It is based on the idea of activity (number of
transitions) of the string. The idea works as follows:
() Let s be a repeating symbol, L be the length of its run, ¢ be the following
symbol, and M be the length of the string.
(ii) Build a “transition table” that gives the equations to encode the next
symbol after each run. This table for the three-valued logic {0,1,x} is
shown in Table 3.1.
(iii) A string is encoded by giving the first symbol, then the number of

transitions, and then the integers corresponding to the following

47

transitions using the transition table. An example is given in Figure 3.10.

Since the length of all strings is the same, it is given only once. For

instance, column 1 starts with 0 and there are 3 transitions. The first run

is a “0” with L= 1; the following symbol is 1; so using Table 3.1, it is

encoded as L, which is 1. The next run is “11”, with L = 2 and the

transition is to 0. From the table, it is encoded as L+M, which is 7. Then

0 with L = 1 and the transition to x. It is encoded as L+M which is 6. The

last run does not have transitions, so no need to encode it.

Symbol ¢
Transition s > ¢
0 1 X
_ L L+M
Symbol s L+M _ L
L L+M _

Table 3.1. Transition table for run-length coding

y
4
Y
B

Encoded data

KO — O
x—tcxxl\)
[~N-N-N<N-k W

Ll Rl] o

M=5

Column 1: (0,3, 1, 7, 6)
Column 2: (x, 3,2, 1, 1)
Column 3: (0, 0)
Column 4: (x,2, 7, 1)

Figure 3.10. Modified run-length coding

48

The compression procedure can be summarized in the following steps:

1y

2)

3)

4)

Partition the test set into equal size matrices D; of size MxQ, where M = the
number of rows and Q = vector length (the last matrix may have smaller
size).

Apply BW transformation on each individual column and compute its
activity before and after the transformation.

Build a new matrix E; such that each column & of E; is the BW
transformation of the corresponding column in D; if its activity is less than
the original column and less than some threshold a.; otherwise, the original
column is copied to E; because run-length coding does not gain any
compression for columns whose activities exceed a..

Use the modified run-length coding to encode each column of E. An
example is shown in Figure 3.11 for o, = 3. The bolded columns are those on
which BW transformation is applied. Although column 1 has less activity
after BW transformation (4 < 5), the original column is copied to E; because

4>at.

49

D; BW transformation of D; E;
1 23 4 5 6 7 1. 2 3 4 5 6 7 1.2 3 4 5 6 7
1 X1 X 01 1 i X1 XX 11 1 X1 X011
X1X 1X 00 XX11X 11 XX X1X11
0 XX1X X1 XX X1 X X1 0 X X1X X1
X111X 10 0101 X X0 X1 11X X0
1 X1 1X 01 1 1 XXX 00 1 1 11X 00
0 0 0 XXX 0 0 01 1.0 0O 0 0 0 XX 06 0
§ §3 215 5§ 4 2 4 31 2 1 s 2 3 21 21

Figure 3.11 . Preparation of the matrix to be encoded

The decompression procedure is done as follows:
a) Start with the symbol given in the encoded data.
b) The length of the current run = (i%M) where i is the corresponding integer

given in the code for the run.
1
c) Letj= [ﬁ-l , then the following symbol in the string is the j™ symbol from

the current symbol as shown in Figure 3.12.

l—o-)l;) X _l

Figure 3.12. Next symbol

50

In [19], the authors enhanced this technique by including another compression

technique called “GZIP” to encode the resultant matrix E; This hybrid technique is
called COMPACT. It exploits the fact that GZIP is effective for encoding strings
with high activity, while run-length coding is efficient with low-active strings. So,
columns with high activity are encoded using GZIP and those with low activity are
encoded with run-length coding. For example, run-length coding is performed on
columns 24,5,6 and 7 of E; in Figure 3.11. The rest of the columns (1 and 3) are
encoded by GZIP. Two flags are needed here; one to indicate whether BW
transformation was performed on the column or not, and the other to indicate which

compression technique was used.

(2) Variable-to-Block Run-Length Coding

This technique was proposed in [20] for compressing fully specified test data that

feeds a Cyclical Scan Chain. A cyclical scan chain is used to decompress this data
and transfer it to the “test scan chain”. Two requirements are necessary for a cyclical
scan chain:

1) It must have the same number of scan elements as the test scan chain.

2) Its content must be protected against overwriting during the application of

tests to the CUT. This is important because the content of the cyclical scan

51

Data Block (1) Data Block (2) Codeword
1 10 000
01 11 001
001 01 010
0001 001 011
00001 0001 100
000001 00001 101
0000001 000001 110
0000000 000000 111

Figure 3.13. variable-to-block run-length coding

chain is used to build the next test vector from the compressed data. This will
be descried below.
The second requirement can be achieved by implementing the cyclical scan chain
using the chip boundary scan, the boundary scan around a core, or a scan chain in a

different system that has another clock.

Now let us look at the compression scheme. Test data will be compressed using the
variable-to-block run-length code as shown in Figure 3.13. Block (1) has the feature
that a three-bit codeword is used to encode a block of data based on the number of
zeros in that block. The decompression for this is simply a counter that counts down
to O and outputs a 0 each time it decrements, then outputs a 1 (except for 7 0’s).
Block (2) is a modification of block (1). It was obtained to have two advantages over
(1); the first is that it needs less bits for runs of 1’s; the second is that it needs at most

six clocks to decode a block of data, which is important for the efficiency of the

52

decoder. The decoder for this case can be implemented by a small finite state

machine (FSM).

A cyclical scan chain is implemented with a feedback to an XOR gate as shown in
Figure 3.14. Therefore, if test vector i is currently in the cyclical scan chain, the next
vector j is stored by scanning in the difference vector i @j. Since test vectors have
high cormelation, it is possible to maximize the number of zeros in the difference
vectors by careful sorting of the test vectors. Maximizing number of zeros will
minimize the number of bits needed for encoding them using run-length coding of

Figure 3.13.

CUT
Cyclical scan chain Test scan chain

Figure 3.14. Cyclical Scan chain architecture

The compression procedure is summarized as follows:

Q) For a test set, form a cyclical scan chain with stages equal to the vector

length.

53

(i) Sort the vectors so as to minimize the run-length code of the difference

vectors.
(iii) Initialize the cyclical scan chain to 0.
(iv) Scan in the first vector.
v) For the following vectors, decompress the difference vectors and scan in

the decompressed form.

(3) Golomb Coding

Golomb code is a variable-to-variable run-length code. It was used in [9] to enhance
the scheme proposed in [20] (described above). It is based on the same concept of

compressing test vectors by encoding the difference vectors and decompressing them
in a cyclical scan chain. The authors applied it to both full scan circuits, where
ordering of vectors is allowed, and non-scan (sequential) circuits, where the order of

vectors must be preserved.

Golomb code divides the runs into groups, each is of size m. The number of groups is
determined by the length of the longest run, and the group size m is dependent on the
distribution of test data. However, optimality can only be achieved through actual

experimentation.

54

Each group has a unique prefix. If m is selected as a power of 2 (2V), each group will
have 2V members. Each member will have a tail that distinguishes it from other
members of the group. Concatenating the prefix of the group with the tail of the
member constructs the codeword of the corresponding run. This is illustrated in
Table 3.2 for m = 4. The run-length is for 0’s followed by a 1. So, if a string is

00001, for example, then its corresponding codeword is 1000 (member 1 of A5).

Group | Run-length | Prefix | Tail | Codeword

0 00 000
1 01 001

A 2 0 10 010
3 11 011
4 00 1000
5 01 1001

A 6 10 10 1010
7 11 1011
8 00 11000
9 01 11001

As 10 10 11010
11 11 11011

Table 3.2. Golomb Code (m =4)

The decompression is done exactly as in the previous work of [20]. It needs an #-bit

counter (where i/ = log; m) and an FSM. The FSM reads the codewords one bit at a
time. For each codeword, the FSM allows the decoder to output m 0°s for each bit of

the prefix whose value is 1 until it reads a 0. Then, the FSM reads the tail and outputs

55

a number of 0’s equal to the tail followed by 1. The size of the FSM depends on m.

For example, if m = 4, then the FSM has 8 states.

(4) FDR coding
Another enhancement to the works done in [20] and [9] was proposed in [8]. It uses
frequency-directed run-length (FDR) codes, which is another variable-to-variable
coding technique. The following properties differentiate the FDR code from Golomb
code:
1. The prefix and the tail of any codeword are of equal size.
2. In any group 4,, the prefix is of size i bits.
3. The prefix of a group is the binary representation of the run length of the first
member of that group.
4. When moving from group 4; to group A;+1, the length of the codewords
increases by two bits, one for the prefix and one for the tail.
Table 3.3 shows the first three groups of an FDR code.
It has been shown by experimentation on ISCAS89 benchmark circuits that the run-

lengths are always within groups 4, to 4.

Group | Run-length | Prefix | Tail | Codeword

0 0 00

As 1 0 1 01
2 00 1000
3 01 1001

A 4 10 10 1010
5 11 1011
6 000 110000
7 001 110001
8 010 110010
9 011 110011

As 10 110 100 110100
11 101 110101
12 110 110110
13 111 110111

Table 3.3 . An example of FDR code

56

FDR outperforms Golomb code based on the observation that the frequency of runs

decreases with the increase in their lengths. Hence, assigning smaller codewords to

runs with small lengths and larger codewords to those with larger lengths will

decrease the overall cost.

Similar to the decoders in [9] and [20], the decoder of the FDR code is implemented

using counters and an FSM. A &-bit counter (where & is the number of the last group)

is used to decode the prefix and the tail of each codeword. Another counter of size

log; k is used to identify the group number. The FSM, which consists of 9 states,

controls the operations of these decoders.

57

Golomb codes and FDR codes have been applied to the original test sets and to the
difference test sets 7p, which requires a cyclical scan chain to restore the original

vectors. It has been concluded in [8] that, in general, applying these two techniques

to the original test sets achieves better results than applying them to the difference

test sets.

3.2.3.2. Statistical Coding

In [22], statistical coding is used for encoding deterministic test data. The technique

uses a modified version of Huffman coding as to minimize the bits needed for
codewords. The idea can be summarized as follows:

1) Divide the test vectors into equal size blocks, each of size b. If the size of
test vectors is not divisible by b, additional x’s can be added to the beginning
of the vectors (since shifting them to the scan chain will not affect the test as
long as the final content is the same as the original vectors).

2) Compute the frequency (number of occurrences) of each block.

3) Divide the blocks into two sets: one includes n most frequent blocks and the
other includes the rest.

4) Build a Huffman tree for the n blocks (the first set).

58

5) Encode the blocks as follows: (i) if the block belongs to the first set, its

codeword is obtained from the Huffman tree with a 1 preceding it. (ii)

Otherwise, the block is not encoded. Instead, it is preceded by a 0 to indicate

this situation.

Figure 3.15 shows an example of the proposed technique for 5 = 4 and n = 3. The

second column gives the frequency of each block in the test data. The last 3 blocks

are listed for completeness of all possible 4-bit blocks. The bolded bit in column 4 is

the added bit.

The important parameters are b and n. By careful choosing of these parameters, both

compression ratio and simplicity of the decoder are improved. The decoder can be

implemented by an FSM of n + b states.

Symbol | Freq. block code
So 22 0010 10

S 13 0100 110
S, 7 0110 111
S; S 0111 00111
Ss 3 0000 00000
S5 2 1000 01000
Se 2 0101 00101
S, 1 1011 01011
Ss 1 1100 01100
Ss 1 0001 00001
Sio 1 1101 01101
Si 1 1111 01111
Si2 1 0011 00011
Si5 0 1110 -

Sis 0 1010 -

Sis 0 1001 -

(a) 4-bit blocks and their codewords

(b) Huffiman tree

Figure 3.15. Example of modified statistical coding

59

The benefit of this technique over the normal Huffman coding is in the simplicity of
the decoding hardware, which reduces the area overhead. However, Huffman coding

gives better compression ratio.

3.2.3.3. Compression by Replacement Words

This technique was proposed in [21] to compress test data that is decompressed using

an embedded processor, which usually exists in a SOC. The technique is based on
storing the different bits between two test vectors. It divides each test vector into
blocks and stores those blocks that are different from the preceding vector. The block
size is dependent on the word size of the processor. To minimize the number of

different blocks, careful sorting of test vectors is required.

The compression procedure can be summarized as follows:
1) Divide test vectors into N blocks, each of which has the size of the word of
the processor.
2) Sort the vectors as to minimize the different blocks between consecutive
vectors.

3) Store the first block.

60

4) For each vector, find the different blocks. Store each block in a replacement

word.

A replacement word has three fields as shown in Figure 3.16: (i) the last block flag
which is set for the last block of a vector, (ii) the block number, which indicates
which block in the vector is to be replaced by this block, and (iii) the block pattern

which represents the test data that has to be replaced in the indicated block.

Last Block # block pattern
block

Figure 3.16. Replacement word

The decompression is done by first loading a program to the embedded processor.
Then, the stored data is transferred into the memory on the chip. The processor runs
the program and stores the blocks of a vector in a portion of the memory. When the

last block is read, the processor loads the scan chain(s) with the resultant vector.

61

3.3. Overall Comparison

In this section, we discuss the main advantages and disadvantages of the techniques

reviewed in the previous sections for reducing the size of test data.

Test compaction techniques aim at reducing the number of vectors in a test set while
maintaining the same fault coverage. So, one advantage of compaction techniques is
the reduction in test application time. Compaction techniques are classified into
dynamic and static. The main advantage of dynamic compaction techniques is that
they generate the test vectors and minimize them at the same time. However, this
may increase the ATPG time. In addition, dynamic compaction techniques cannot be
applied to already-generated test sets. On the other hand, static compaction
techniques can be applied to any generated test set because they compact test sets
after the ATPG process. The disadvantage of these techniques is that they are limited
by the generated test vectors. Sometimes, other vectors that do not exist in the test set
may be better in fault detection than some of the existing vectors. There is no exact
criterion to tell which compaction techniques (dynamic or static) will result in less
number of vectors. Although compaction techniques reduce the size of test data, it

still needs to be reduced more.

62

Compression techniques are used to further reduce the size of test data. There are two
main categories of test compression techniques. The first is based on BIST and
PRGs. The problem with this class is the hardware overhead required for self-testing

capability. Not all designs can afford this overhead.

The other category of test compression techniques is based on deterministic testing.
This can be applied to any design because it is independent of the internal
architecture. Several techniques under this category are based on run length coding.
The first one uses Burrows Wheeler transformation to reduce the number of runs and
then applies a modified version of run length coding. Although it is based on
partitioning the test set into two-dimensional blocks, the encoding is done in one-
dimensional basis. In addition, the scope of this technique is in decoding the test data
in the ATE based on software algorithm. Therefore, it may not be applicable for
encoding test data that is transferred to chips. The other techniques that are based on
run length coding use variable-to-block or variable-to-variable run length coding.
The technique based on FDR codes enhanced the one based on Golomb codes, which
enhanced the variable-to-block approach. The problem of these techniques is that
they encode runs of 0’s followed by a 1. Hence, when the test set contains many runs
of 1’s, their performance in compression degrades. Another technique is based on
statistical coding. The main advantage of this technique is the simplicity of the

decoder. However, the decoding scheme depends on the test set. In addition, the

63

compression ratio achieved by this technique is not as much as the one achieved by
the original statistical coding. The last technique discussed in this category encodes
the difference bits in a replacement word. It achieves a good compression ratio.
However, the decoding scheme depends on the existence of an embedded processor
on the chip under test. If this processor is not available, this technique cannot be

applied.

3.4. Concluding Remarks

In this chapter, we have reviewed some of the techniques proposed in the literature to
reduce the amount of test data. These techniques are classified into two main

categories, test set compaction and test data compression.

In test set compaction, the number of vectors in the test set is reduced. This is done
either dynamically during the test generation process or statically after generating the

test set.

In test data compression, some encoding algorithm is applied to the test data to

represent it in a different format with smaller cost than the original data. This

encoded format is then decoded on chip using a decoding algorithm. Lossless
compression is required for compressing test data. There are two main approaches
for test data compression, one is based on BIST and PRGs and the other is based on
deterministic testing. The former requires the internal architecture of the chip under
test to be capable of self testing. However, the latter can be used for compression

regardless of the internal architecture.

In the last section of the chapter, we have outlined the main advantages and

disadvantages of the above discussed techniques.

CHAPTER 4

PROPOSED COMPRESSION SCHEME

4.1. Motivation

In the previous chapter, we have reviewed some of the techniques proposed in the
literature to reduce the amount of test data. These techniques are classified into two

main categories, test set compaction and test data compression.

There are two main approaches for test data compression, one is based on BIST and
PRGs and the other is based on deterministic testing. The former requires the internal
architecture of the chip under test to be capable of self testing. However, the latter
can be used for compression regardless of the internal architecture. In this thesis, ee

focus on this category.

Most of the techniques proposed for deterministic testing take advantage of the high

correlation between test vectors. However, most of these techniques consider each

65

66

vector separately, i.e. they work in one-dimensional basis. So, the advantage of this

correlation is not exploited completely. Although the technique that is based on BW

transformation partitions the test set into two-dimensional blocks, each column is

encoded separately, which means that it is again a one-dimensional approach.

Another observation about these techniques is that most of them are based on

variations of some of the basic compression schemes such as run length coding and

statistical coding.

In this thesis, we propose a novel idea for deterministic testing. The main

contributions of our proposed scheme are the following:

A new idea for reordering the test vectors in order to maximize the
correlation between consecutive test vectors.

The partitioning of the test set into two-dimensional blocks. Each block is
encoded separately and independently.

Using geometric shapes for encoding the blocks, which exploits the high
correlation between test vectors.

The choice to encode either the 0’s or the 1’s in a block.

The possibility of encoding a block as filled with 0’s or 1’s.

67

e The choice of not to encode a block and to store the real data when the cost of

encoding the block is more than the cost of the original test data in that block.

In the following section, we discuss the methodology upon which our proposed
scheme is based. Then we talk about the sorting algorithm in Section 4.3. In Section
4.4, we discuss the encoding process, which consists of partitioning the test set into
blocks and encoding each block independently, and analyze its time complexity.

Finally, we give an illustrative example in Section 4.5.

4.2. Methodology

In this work, we assume that a full scan test methodology is used for deterministic
testing of SOC. The scan-based methodology is the dominantly used design-for-
testability (DFT) technique as it reduces the complexity of automatic test pattern
generation from that of a sequential ATPG to that of a combinational one. It also
improves the testability of the design. In this methodology, sequential elements are
converted into a scan type where they are connected in a scan chain that works like a

shift register. During scan test mode, the desired test pattern on the sequential

68

elements is shifted in through the scan-in (SI) pin. Then, the vectors are applied to
the primary inputs and the circuit is put in functional mode. This allows capturing the
output generated by the circuit, which can be observed either through the primary
outputs of the circuit or through scanning out the captured pattern through the scan-
out (SO) pin. For example, consider the circuit shown in Figure 4.1. This circuit,
s420.bench, is one of the [ISCAS89 benchmark circuits, which has 18 primary inputs,
1 primary output, and 16 sequential elements. To convert this circuit into a full-scan
circuit, the 16 FFs are converted into a shift register during test mode, and two pins
are added; namely, scan-in (SI) for serially shifting the desired pattemn into the scan
chain, and scan-out (SO) for serially shifting out the captured output from the scan
chain. An additional control pin is added, called scan enable (SE), to control the

selection of data in the scan chain.

Test data was generated for the full-scanned version of the circuit and 167 vectors
were needed to detect all single stuck-at faults in the circuit. Portions of the
generated test vectors required for the scan chain are shown in Figure 4.1. Examining
the test vectors for this circuit, and other circuits, has led to the following important
observations:

® Most of the test vectors have a large number of unspecified bits.

¢ Similar vectors that differ by few bits can be grouped into sets.

69

PO

18
PI #:> Combinatioaal —P
>
l16 P 16
/ [
/ /

SE SI

Sequential Elements

0000000000000000

0000000000000

0000000000001000

0000000000001000

000000000000100x

0000000000001010

00000000000010xx

0000000000001100

TITI111111110011

1111111111110101

1111111111110111

1111111111111011

1T11111111111101

Ittt

I11111111111x00

11111111111 1xx01

;oooooocxxxxxOxx

2000000000xx 110

2000000000xx 1xx

2000000000 0x

}.2,9.9.0.0.66.669004¢064

). 9.0.0.6.99.9906¢¢¢004

xoooooooooooaoxx0

000000000000 1

Figure 4.1. An example circuit (s420.bench) and a subset of its test vectors

These two observations clearly indicate that the test sets generated can be highly

compressed. As we can see from the test set for the circuit s420, test vectors can be

70

repeated or they can be a subset of other test vectors. This is expected in case of
testing for faults that have the same requirements on the sequential elements with
different requirements on the primary inputs. In this thesis, we propose a scheme that
takes advantage of the similarities between a group of test vectors resulting in a

compressed test data.

Having a large number of unspecified bits also helps in the compression process as
these bits can be assigned any desired value, i.e. either 0 or 1. The proposed encoding
algorithm is based on encoding the 0’s or the 1’s in a test set by primitive geometric
shapes. In this work, we limit those primitive shapes to the basic four, namely: point,
line, triangle, and rectangle as shown in Table 4.1. These shapes are the most
frequently encountered shapes in any test set. First, we need to order the vectors in
such a way that minimizes the number of primitive geometric shapes needed to
encode test data. It should be noted here that this reordering does not affect the
detection of faults and the fault coverage remains the same. This step will be
explained in the following section. Then, the encoding process takes place which is

explained in Section 4.4.

Type 1 Type 2 Type 3 Type 4
Point xy) @ X X X
xLy) @ ,_9_ ’\{
Lines d *-— (Xl,y:\
(x1y1) xLy1)
(xi,y1) x1.y)
Triangles d{ ; d d d
) xiy)
d
(x1y: . !
Rectangle d; X X X

Tabie 4.1. Primitive shapes used in the proposed scheme

4.3. Sorting Test Vectors

71

Sorting the vectors in a test set is crucial and has a significant impact on the

compression ratio. In this step, we aim at generating clusters of either 0’s or 1’s in

such a way that minimizes the number of shapes, shown in Table 4.1, needed to fit

these clusters. Several sorting scenarios may be considered. In this work, we use a

simple correlation-based sorting technique in which a distance D between two

vectors A and B that maximizes the clusters of 0°s and 1°s is found. The distance D

72

may be computed with respect to 0’s (0-distance), to 1’s (I-distance) or to 0’s and

I’s (0/1-distance) as follows:
k-1
D= i_z(;W(Ai: B;_)+W(A;, B) +W(A;,By,)
where k is the test vector length and W(A; ,B;) is the weight between bits A; and B;.
Table 4.2, Table 4.3 and Table 4.4 specify the weights used in computing the
O-distance, the l-distance, and the 0/1-distance between two vectors, respectively.
The assignment of these weights will be discussed later. Note that for i = 0,
W(A;, Bi1) = 0 and for i = k-1, W(A;, Bi1) = 0. Finding the O-distance results in

O-sorting, finding the 1-distance results in /-sorting and finding the 0/1-distance

results in 0/1-sorting.

0 1 X
o 1.0 0.0 025
1 0.0 0.0 0.0
X 0.25 0.0 025
Table 4.2. Weights for the 0-distance
between two test vectors.
0 1 X
0 0.0 0.0 0.0
1 0.0 1.0 0.25
x 0.0 025 0.25

Table 4.3. Weights for the 1-distance
between two test vectors.

73

0 1 X
(1] 1.0 0.0 0.25
1 0.0 1.0 0.25
x 0.25 0.25 0.25

Table 4.4. Weights for the 0/1-distance
between two test vectors

The sorting algorithm starts by selecting a vector to be the first vector in the sorted
test set. Then, for each test vector added to the sorted set, the distance D to all
remaining vectors is computed. The vector that generates the maximum distance is
then selected and added to the test set. This process continues until all vectors are

included.

The following factors may affect the sorting and hence may affect the compression

ratio:

(1) Selecting the first vector:
The first vector selected in the new test set is important because it is the base
upon which all other vectors are selected. Different approaches in selecting
the first vector can be considered. We have experimented with two of them.
The first one is to select the first vector in the original test set to be the first

vector in the sorted test set. The second approach is to select the vector with

74

the maximum number of 1’s for 1-sorting and the maximum number of 0’s
for O-sorting. This approach is better because it puts this vector in the first
line of the test set which may arrange the shapes in a better way than if it is
put in the middle of the test set. For 0/1-sorting, it is possible to select the
vector with the maximum number of 1’s or with the maximum number of 0’s.
However, we always select the one with maximum number of 0’s because we
have found by experiments that 0-sorting gives better results than 1-sorting
most of the time as will be shown in Chapter 6. A third possible approach is
to select the first vector randomly. However, this is similar to the first

approach and does not have any advantage.

(2) The weight of the ‘x’ bit:

Assigning a weight to the x bit whenever its neighbor bit is x or the bit used
for sorting (0 for 0-sorting, 1 for 1-sorting and 0 and 1 for 0/1-sorting) is done
due to the following reasons. First, this weight may help in completing,
integrating, or generating additional geometric shapes that can lead to a better
solution. Second, this can help in generating blocks filled with ‘x’s which can
be minimally encoded. It is possible to treat the x bit as the bit used for
sorting or treat it differently. In the first case, we assign a weight of 1.0 to the

x bit. In the second case, the x bit is assigned a weight that is less than 1.0.

75

The advantage of the second method is that it favors the vectors with more
bits of the type used in the sorting than those with x’s, which may minimize
the shapes needed for encoding the bits; taking into consideration that each
block is encoded separately. As shown in Table 4.2, Table 4.3 and Table 4.4,
the weight of the x bit is assigned 0.25 as the second method suggests. We
have also experimented with other weights including the weight of 0.5 and
1.0 and found that a weight of 0.25 gives better results in general. In the
experimental results that will be shown in Chapter 6, we only show the

results of weights 0.25, 0.5 and 1.0 to give an insight of the effect of the x-

weight.

(3) The ‘next’ vector:

As explained above, the sorting algorithm selects each time the closest vector
to the last vector selected. We call this approach the “greedy” approach. One
can think of optimizing the solution by finding a Hamiltonian cycle between
all vectors, which gives a near-optimal solution [12]. We have tried this near-
optimal sorting but we have found that greedy sorting is better. We have tried
another near-optimal sorting in which the Hamiltonian cycle is built for the
whole set and then a subset of these vectors are selected. Then, the

Hamiltonian cycle for the remaining vectors is built and another subset is

76

selected and so on. The size of the subset could be 8, 16 or 32 (depending on
the block size as will be explained in the next section). However, greedy
sorting also gave better results than this algorithm. A possible reason for this

will be discussed in Chapter 6.

4.4. Encoding Process

After sorting the test set, the encoding process takes place. Since this process is
performed offline, it does not matter how much complicated it is. However, the
decoding process must be simple enough to be run online. The decompression
process will be explained in Chapter 5. Figure 4.2 shows an outline of the encoding

algorithm. In the following subsections, we explain each step in details.

4.4.1. Test Set Partitioning

A set of sorted test vectors, M, is represented in a matrix form, TxV, where T is the

number of test vectors and V is the length of each test vector. The test set is

77

segmented into LxK blocks each of which is NxN bits, where L is equal to H}:’ and

K is equal to [K} A segment consists of K blocks. In other words, the test set is
N

segmented into L segments each contains K blocks. For test vectors whose columns
and/or rows are not divisible by the predetermined block dimension N, a partial
block will be produced at the right end columns and/or the bottom rows of the test
data. These partial blocks are useful because the number of bits used to encode the
coordinates of the geometric shapes can be less than log> N. The decoder is provided
by a test header consisting of five parameters that help in decoding the test set. These
parameters are the block size (N), the number of segments (L), the number of blocks
per segment (K), the remainder (R) of dividing T by », and the remainder (C) of

dividing V by N.

4.4.2. Encoding Blocks

For each block of the test set, the procedure Extract Shapes(b) finds the best group
of shapes that cover the bits that are of type b as shown in the algorithm in Figure

4.2. It goes through all bits in the block line by line from left to right. For each bit of

78

Encoder (N)
Fartition_Test Set (N);
For i =1to #of segments
Forj=1to #ofblocks ini
Extract _Shapes (1, j);
a; = Encode_Shapes ();
Extract_Shapes (0, j);
ap = Encode_Shapes ();
B=4#ofbitsinj + 2;
E =min (g, a;,B);
Store_Encoded_Bits (),
E total +=E;
End Encoder;

Extract_Shapes(b, j)
For each bit x in blockj {
Ifx=bThen{
Find the largest line of each type starting at x
Find the largest triangle of each type such that x is the vertex of the right
angle
Find the largest rectangle such that x is its up-left corner
/
y

Solve a covering problem to find the best group of shapes covering all bits b in
blockj.
End Extract_Shapes;

Figure 4.2. Test vectors encoding algorithm

type b, the procedure finds the largest shape of each type covering this bit as stated in
the figure. Then, after finding all possible shapes for all bits, a covering problem is

solved to select the best group of shapes that cover all bits with minimum cost.

79

The procedure Encode_Shapes determines the number of bits, a, needed to encode

the group of shapes found by Extract_Shapes. There are two cases that may occur:

(@)

®)

The block contains only 0’s and x’s or only 1’s and x’s. In this case, the block

can be encoded as a rectangle. However, instead of this, it is encoded as “01”

(indicating that the block can be filled by 0’s or 1’s) followed by the bit that

fills the block. Hence, the number of bits to encode the block a = 3. We call

such blocks filled blocks.

The block needs to be encoded by a number of shapes. We call such a block

encoded block. In this case, we need the following:

e 2 bits to indicate the existence of shapes and the type of bit encoded. If the
encoded bit is 0, then the code is 10, otherwise it is 11.

e P =(2*Log: N - 3) bits to encode the number of shapes, S. If the number
of shapes exceeds 2, then the number of bits needed to encode the shapes
is certainly greater than the total number of bits in the block. In this case,
the block is not encoded and the real data is stored. Therefore, selecting
N = 4 or less is not effective in our technique because the maximum
possible number of shapes in this case = 2F = 2**>3 = 2! =2 shapes. Hence,

we have experimented with 8x8, 16x16, and 32x32 block sizes.

S
e > L bits; where L; is computed as follows (refer to Table 4.1)

i=l

80

- Ifshapeiis apoint, L; =2 + 2*log> N (shape type + 2 coordinates).

- If shape i is a line or a triangle, L; = 2 + 2 + 3*log, N (shape type +
type of line or triangle + 2 coordinates + distance)

- If shape i is a rectangle, Li = 2 + 4*logo N (shape type + 2

coordinates + 2 distances)

S
Therefore,a =2 +P+ > L,

i=l
For partial blocks, the encoder will output the needed bits and the decoder will take

care of that. This will be explained in more detail in Chapter 5.

If o (number of bits needed to encode shapes with 0) and a; (number of bits needed
to encode shapes with 1) are greater than B which equals (N*N+2), then it is better
not to encode the block. Instead, the real data is stored after a 2-bit code (00). We
call such blocks real-data blocks. The procedure Store_Encoded_Bits will decide

which case is the best (encoding 0’s, encoding 1°s, or storing the real data) based on

E, which is the minimum of g, o, and B.

81

4.4.3. Time Complexity

Now let us analyze the time complexity of the encoding process (see [2] for more

information about time analysis). This process consists of two algorithms, the sorting
and the encoding. The sorting algorithm compares every bit of a vector with three
bits of every other vector. This requires O(VTZ) time; where T is the number of
vectors in the test set and V is the vector length. This algorithm is executed once

before the encoding algorithm.

For the encoding algorithm, there are three main steps, test set partitioning,
extracting shapes in each block, and solving a covering problem to select the best
group of shapes. The partitioning step requires constant time; i.e. it runs in O(1) time.
For each block, all possible shapes that cover every bit of the block are extracted.
There are N? bits in a block; where N is the dimension of the block. Extracting each
type of shapes requires O(N?) time at most (for example, the rectangle). Since we
have constant number of shapes, the time complexity of extracting shapes for each
block is ON*). Then, a covering step is performed to select the best group of shapes.
The maximum number of shapes for any block (before selecting) is 10*N?; where 10
is the number of shape types. Therefore, this step requires O(N?). Hence, the

encoding algorithm for each block requires O(N*) time. There are L*K blocks; where

82

L = "T‘l and K = [V 'l . Therefore, the total time complexity of the encoding
N N

algorithm is O (LKN*) = O (TVN?). Since the maximum value of N in our algorithm

is 32, then N? = 1024 at most, which means that N? is constant. Hence, the time

complexity of the algorithm is O(TV), which means that the algorithm runs in linear

time with respect to the size of the test set. The (N°) term gives an indication that the

time needed by the encoding algorithm increases with the increase in the block size.

4.5. An Illustrative Example

In this section, we give an example that illustrates the sorting and encoding
processes. We illustrate this example on a portion of a test set shown in Figure 4.3.
This subset consists of 20 vectors of length 34 each. The horizontal lines divide the
subset into segments of 8 vectors each except for the last segment, which consists of
4 vectors (the remainder vectors, or row remainder). The vertical lines divide each
segment into blocks of size 8x8. Notice that the last block of each segment consists
of vectors of two bits each (column remainder). Therefore, the subset has been
divided into 15 blocks, 8 of them are of size 8x8, 4 are of size 4x8, 2 are of size 8x2,

and one is of size 4x2 (which is the last block of the last segment).

Y00OXXXXX
000000
XT1300000¢
X 100000
x1000¢1x
x0o0000x
x1x1xGx0
X 1200000

2000000 | 30OX0H00K
0000 | XXX
000000xx | xx 11 1)00¢
2000000 | 300X 1 200¢
x1112000¢|3000¢1 00
3OOV | X000 T XXX
101 100} 10xx1x0x
2000000¢X | X000 XXX

2000000
2000000CK
20O
X% 1 000X
hooox001x
2000000
00T X1 xx
D 0.0.0.0.0.¢.0.4

X1>00000X
00000NX
x0x0000xx
x0xx 0o
x0xooo11
X 120000
x1>0000(X
X 100000

3OCDOOX | X00X0XXX
xx 1 13000¢ xooex 1)00¢
20000000 | xo0ex0x0¢x
20000000 | X0000X 1
x1112000¢} 0000000
11 1>00¢[x1xx0x1x
20000¢1 10} >000x0x00X
200000KX | X0000XX0

2007 XXX
000000
HOOOOKK
01300000
%1x0xx1x
20000000X
000000
0000000

x 100000
x1x1000¢
x1x1000x
x10xx1x1

x¢113000¢|xx001>0¢x
0000000 | 1X000000¢
300001 0¢[>0¢1 10x0x¢1

poex 1 1x0x
x00x0000¢
X1 3000¢¢X

0x1 13000 |xx 11 100¢

00X

RS EE R R RN R

Figure 4.3.

An example of a subset of a test set

83

Figure 4.4, Figure 4.5 and Figure 4.6 show the subset after sorting it using the

O-distance, the 1-distance and the 0/1-distance, respectively.

x1x1x0x0
x0xx0xxx
X0x0000(x
20000000
200N
X00000(x
X1 300000¢
X1 20000¢x

1011X)0(xﬁ))x7@(0x
OOCO00X xx:oo<0)@
HOOOOXXX oo 0x00¢
OOOOOONX hooxx0X00x
OO0 | XOOOOK
0000000 ooo{Thook
OO0 oo x0X00x
0.0,0,6.0.:0.0.0.4)0.0.940).9.¢ 4

oot xx 1 xx
01:20000x¢

x1>0000¢x
X 100000
20000
X 130000¢X
x1x12000¢
X1 X00000x
X10000(x
X1 20000(X

HOOOOOONC oKX 100¢
xx 1 12000 X000] »orx
xxxxx110xx>oé(xx
OOOOOKX | 1200000(X
OO0 poc] 1 1X0¢x

hoc1 1X00(x XXX
xx11100¢|x1 1x

x000000¢
HOOOOOOX
hook 1 1x0x
000N

x1000¢1x
x0x000¢11
x10xx1x1

x111000¢ hooex 1 xxx
%11 13000¢ X000
0x11x000¢[>0¢1 1 1300¢

oox001 x|
x1x0xx1x|
X 00000

x1x 1000

o0 1 0¢ axd 1

X 1300000

AR XK XRRARRERRRERS

Figure 4.4. The test set after O-sorting

x1x1x0x0

x1ooox1x x111x000¢
xOoox11 |x1113000¢

x10x¢1x1

X 100000 hoOOOOoNX
x1x712000¢ POOOXTXX
x 10000 [xx111300¢

X0

1601 G poct xoc1xx

HoOoO 1 XXX

OO
hoct 11x00¢
o1 19 xxx

hoc0X0000¢
HOOOOOOX
xx11 1 ix1500000¢
x1 1% poCO000K

hooox001x
x1x00¢1x

OO0

x100000¢ pox1 13000
X 1000 OO0
X 1200000 PO
X 1000 [XO00xX

2K000OXXK

000K PDOOXXX
X000 OO0

X1 X00000¢

hooxt 1x0x|
1 33000¢
hot 1 X0000¢

X10000¢X
x1x71x00¢x
x0x00000¢

x0xxx0x00¢ HOOOOOOKX

=X X X

x000000¢
OO
01>00000¢

RERRRRE RN RNNES

Figure 4.5. The test set after 1-sorting

x1x1x0x0
X10000(X
x1oox1x
x000c¢11
x10xx1x1
X1000XX
X1x1000¢
X 1o x

101 1000¢
ho¢ 1 13000x
x111000¢
x1 1100
Ox1 1000
HOOOOOKX
DOOKXX T3¢
xx11100¢

oo
&O0M xxx
000X T XXX
XOOO000K
hoet 1 1x0xx
a1 1 1xxx

hocd 1
x1 1x

X1 3001 xx
oo 1 1x0x
o001
x1x0x0¢1x
xx0x0000¢
DOOOOOX
X1 50000(X
OO0

OO0
x10000¢(x
X1 20000(X
X1000XX
X 100000
30000COK
x0x0000¢x
x0ocQxox

hox 1 1300¢x

oo 1X00¢
hooo1 XXX
XKX
XXX
XXX
KX
KX
kK1

000000
0T 0000¢

x00000xx
OO000X
X 100000

H000¢ T XXX

OOOOOO

mcoocc‘i

x 11 xx0x

1xxxxxxx|x00xxxxx

OO

%
REXXRARRRRRRREIRRERR

Figure 4.6. The test set after 0/1-sorting

84

85

The first vector in Figure 4.4 and in Figure 4.6 is the one with the maximum number
of 0’s, while it is the one with the maximum number of 1’s in Figure 4.5. As an
example, consider the third block of each segment. The shapes needed to be encoded
are circled. Let us analyze each block individually. In this analysis, we consider only
the cost of the shapes since the cost of the header information is the same for all
blocks. Remember that, for 8x8 blocks, the cost of a point = 2+3+3 = 8, the cost of a
line = 24+2+3+3+43 = 13, the cost of a triangie = 2+2+3+3+3 = 13, and the cost of a
rectangle = 2+3+3+3+3 = 14,

1) The first block: In Figure 4.4, the bit used for encoding shapes is 1 and there are

4 points. So, the cost of this block = 4*8 = 32. In Figure 4.5, the bit is 0 and
there are 3 shapes, 2 points and 1 line. So, the cost of this block = 13 + 2*8 = 29.
In Figure 4.6, the bit is also 0 and there are 3 shapes again, 1 point, 1 line and 1
rectangle. So the cost of this block = 8+13+14 = 35_ Notice the benefit of the x’s
in encoding the rectangle. Although the number of shapes is equal in Figure 4.5
and Figure 4.6, the cost is different because the cost of a rectangle is more than

that of a point.
2) The second block: In Figure 4.4, the bit used for encoding shapes is 0 and there
are 4 shapes, 3 points and one line. So, the cost of this block = 3*8 + 13 =37.In

Figure 4.5, the bit is 0 and there are 2 shapes, 1 point and 1 line. So, the cost of

86

this block = 13 + 8 = 21. In Figure 4.6, the bit is 0 and there is 1 shape which is a
rectangle. So the cost of this block = 14.

3) The third block: This block is a partial block where the y-dimension is less than 8.

Therefore, we can represent the y-dimension by 2 bits (logz 4) instead of 3 bits. In
Figure 4.4, there is 1 point. So, the cost of this block = 2+3+2 = 7. In Figure 4.5,
there is 1 rectangle. So, the cost of this block = 2+3+2+3+2 = 10. In Figure 4.6,
there is 1 point. So, the cost of this block =2+3+2 =7.
After encoding the three blocks, we find that
e The cost of the 0-sorting (Figure 4.4)= 32+37+7=76.
e The cost of the 1-sorting (Figure 4.5)=29+21+10= 60.
e The cost of the 0/1-sorting (Figure 4.6)= 35+14+7= 56.
This shows that, for this part of the subset, the 0/1-sorting gives the best

compression.

When we applied the encoding algorithm to the three subsets, we got the following
compression ratios:

e 57.5% for the O-sorting (Figure 4.4).

e 58.38% for the 1-sorting (Figure 4.5).

® 59.7% for the 0/1-sorting (Figure 4.6).

87

4.6. Concluding Remarks

In this chapter, we have discussed our proposed compression scheme. First, we have
talked about the motivation of our work by looking at the disadvantages of the
previous proposed techniques and the need for improvement in the compression
schemes. Then, we have outlined the methodology of our technique, which is based
on encoding the test data using two-dimensional geometric shapes. The geometric
shapes used in our proposed technique are point, four types of a line, for types of a

triangle, and rectangle.

The proposed compression technique consists of three main steps. First, the test
vectors are sorted in order to minimize the number of shapes needed to encode the
test data. Second, the test set is partitioned into equal size blocks. Third, each block
is encoded separately. There are three possibilities for encoding a block. The first is
to fill the whole block with 0’s or 1’s. The second is to encode the 0 bits or the 1 bits

in the block using geometric shapes. The third is to store the real data.

88

The time complexity of the sorting algorithm is O(VT?), where T is the number of
vectors and V is the vector length. The encoding algorithm requires O(VT) time,

which is linear with respect to the size of the test set.

CHAPTER 5§

DECOMPRESSION PROCESS

One of the main issues when designing a compression scheme for testing data is the
implementation of the decompressor (or the decoder). The decoder of any
compression scheme must be simple enough to achieve two requirements,
minimizing the time needed for decompression and minimizing hardware overhead.
We can classify the decoders of the compression schemes described in Chapter 3 into
three main categories:
1. The scan chains available in the SOC are exploited to implement the decoder
with possibly some additional logic.
2. An FSM is used to decompress the testing data. Sometimes, additional
hardware is needed.
3. If there exists an embedded processor in the SOC, a microcode is loaded to

this processor and used to decode the compressed data.

Since our proposed compression scheme does not require any specific internal

architecture, the first solution is not applicable here. We have implemented the

89

90

decoder for our scheme using the other two choices. We call the third choice the
software decoder and this is explained in Section 5.1. The second solution is called
the hardware decoder and is explained in Section 5.2. In Section 5.3, we outline the

interface between these decoders and the whole system.

5.1. Software Decoder

Most of the SOC’s have embedded processors and some amount of memory inside
the chip. In this case, the decoder can be implemented as a microcode executed by
the processor to output the original test vectors. In our scheme, some amount of
temporary memory is needed to store the blocks one after the other until a whole
segment is decoded. Then, the test vectors of that segment are applied to the scan

chains in order.

Figure 5.1 shows the pseudo-code of the decoding algorithm. It first reads the
arguments given by the encoder. In order to reconstruct the vectors, each segment

has to be stored before sending its vectors to the circuit under test. For each segment,

91

its blocks are decoded one at a time. The first two bits indicate the status of the block
as follows:

e 00: the block is not encoded and the following N*N bits are the real data.

e 01: fill the whole block with 0’s or 1’s depending on the following bit.

e 10: There are shapes that are filled with 0’s.

e 11: There are shapes that are filled with 1’s.
For those blocks that have shapes, the procedure Decode_Shapes is responsible for
decoding these shapes. It reads the number of shapes in the block and then for each
shape it reads its type and based on this it reads its parameters and fills it

accordingly.

Based on the arguments read first, the decoder can determine the number of bits
needed for each variable (e.g. the coordinates and the distances). These are used for
the partial blocks when only one block of each segment remains and when the last

segment is being decoded.

Similar to the complexity analysis shown in Chapter 4 for the encoding algorithm,
we can conclude that the time required by the software decoder is O(VT). This

means that it runs in linear time with respect to the test set size. It should be noted

92

here that this algorithm is much simpler than the encoding algorithm because it does

not require extracting shapes; i.e. the (N?) term found in the analysis of the encoding

algorithm does not exist here.

Decoder ()

Read (N, # of segments (L), # of blocks per
segment (K), row remainder (R}, column
remainder (C));

Fori=1to# of segments {

Forj=1to #ofblocksini {
bb, = Read_Bits (2);
Case b lbo
00 : Read_Bits (N* N);
0! : b_type = Read_Bits (1);
Fill_Block (j, b_type);
10 : Decode_Shapes (0);
11 : Decode_Shapes (1);
End Case;
}
Output_Segment ();

}
End Decoder;

Decode_Shapes (b)
Num_Shapes = Read_Bits (2log, N -3);
Forj = I to Num_Shapes
Shape_type = Read_Bits (2);
Case Shape_type

00 : ¢ = Get_Coordinate ();
Fill_Point (bc);

01 : t = Get_Type ();
¢ = Get_Coordinate ();
d = Get_Distance ();
Fill_Line(b,t,c,d);

10 : t =Get_Type ();
¢ = Get_Coordinate ();
d = Get_Distance ();
Fill_Triangle(b, t, c,d);

11 : ¢ = Get_Coordinate ();
d; = Get_Distance ();
d, = Get_Distance ();
Fill_Rectangle (b,c,,d.d>);

End Decode_Shapes;

Figure 5.1. Test vector decoding algorithm.

93

5.2. Hardware Decoder

The hardware decoder is implemented using an FSM controlling the data path which
consists of some counters, registers and some basic gates. The data path is shown in

Figure 5.2 and is explained in Section 5.2.1. Section 5.2.2 discusses the FSM
implementation, which is shown in Figure 5.3. The hardware decoder has been
designed and then modeled and verified using VHDL [3]. The basic components of

the data path have been modeled functionally while the data path has been modeled
structurally. The FSM has been modeled algorithmically. The VHDL code of the

hardware decoder is shown in Appendix A.

5.2.1. Data Path Implementation

The data path consists mainly of some registers and counters. The registers are:

(1) A shift register 7 is used to hold the input data before loading it to the
corresponding register or counter. So, the size of this register is the maximum

size of all registers and counters, which is 12 bits (as shown in Figure 5.2).

Input
(T EEFERREERRR AL
L SHLC,::E Wb i fnintnlninlsic on C_[J» . [T
‘::L- Lnule]Ln]s]u]u]s] Load cik
P eenly -
et I T] S T TTTT]
K 0y BCNT wly
s .
= Decrementer \

g T e

RCNT

LN|LR

BONT=K

— Dec
©-> Cdist

L=1

LNILC

Tl
Minimum LNJLR LNILC Il
-

g _/q_wuluzmm:u: LN P

)
Cdix Minimum ioto (100 10! 10

P P ’iiii”

“

[} 3

LC \ 7 s A—rempscl

Figure 5.2. Data path of the decoder

95

A shift-left signal (SHL I) is used to shift a bit from the input data to the LSB
of I'and a clear signal (CLR I) is used to reset the register.

(2) Another shift register (code) is used to save the type of the shape that is
currently decoded (point, line...etc) and the type of that shape if it is line or
triangle. The size of this register is 4 bits. Only one signal is needed to
control this register which is (SHL code) that shifts a bit from the input data
to the LSB of code.

(3) A 1-bit register (B) to save the bit with which the current block is filled.
This FF can be loaded from either the input data or from [, So, a MUX is
needed to select between these two inputs. The signals needed here are Load
B and the select signal.

(4) A 2-bit register (V) is used to save the block dimension (8, 16 or 32). We
need to get the actual size N from two bits given by the encoder as follows:

- 00 =» N=8=00111 (we start counting from 0).

- Ol ¥ N=16=01111.

- 11 » N=32=11111.

Let the two bits given by the encoder be I; and I; and the needed 5 bits be
N4N3N2NNp. Then, we find that Ny =1}, N3 =I5, and N> =N; = No=1. The

last three bits can be stored as wires connected to VDD. Therefore, the only

96

hardware added here is a two-bit register connected directly to the least
significant two bits of the input shift register J as shown in Figure 5.2. For

this register, only a Load signal is required.

(5) Another two S-bit registers are used to save the row remainder R and the
column remainder C. These two registers will be loaded directly from the

input register 1. For these two registers, only a Load signal is required.

(6) In order to know how many bits are to be read for each dimension (for the
coordinates and the distances), log; of the current dimension (¥, R, or C) is
required. In addition, we need to know how many bits are needed to store the

number of shapes. We showed in Section 4.4 that this number (P) depends

on the dimension of the block N such that P = 2*log, N — 3. All these can be
obtained from the N, R and C registers using some combinational logic. We
illustrate this as follows:

First, we want to get logz N (LN) as follows:

- N=00111 = LN =011 (log, 8 =3).

- N=01111 <% LN =100 (log216 = 4).

- N=11111 ¥ LN =101 (log232 = 5).

We can notice that LN> = N3, LN; = N3 and LN, = NyXNOR N;,

97

We can get the value of P from N as follows:

- 00111 (N=8)> 011 (2*log28 -3 =3).

- 01111 (N=16) =» 101 (2*logz 16 -3 =5).

- 11111 (N=32) < 111 (2*log232 -3 =7).

Notice that P, = N3, P; = N4XNOR N3 and P; = 1.

For the partial blocks, the dimensions range between 1 and 31. We need
to get log: of these dimensions to know how many bits need to be read
for the coordinates and distances in these blocks. Let the input (the
dimension given by the encoder) be A4A3A2A 1A and the output (the bits

needed) be BB, By, then the following truth table is obtained:

As A3 A A1 Ap B2>B:Bg

I x x x x 101 5 bits needed for 17 to 31
0 1 x x x 100 4 bits needed for 9 to 15
0 01 x x 011 3 bits needed for 5 to 7
0 00 1 x 010 2 bits needed for 2 and 3
0 00 01 001 1 bit needed for 1

Using K-map technique, we get the following equations for B,, B, and By:
- B,=As4+ As.

- Bi=A4.A; .(A2+A)).

98

- Bo=Ast A; .(A2+ A)

(7) The last register needed in the data path is X which holds the number of
blocks in a segment. In our implementation, we assume that the maximum
vector length is 8K. Therefore, the maximum number of blocks in a segment
is 1K blocks (when the dimension of a block = 8) and hence K is a 10-bit

register.

Now, let us discuss the counters used in the data path:

(1) The first counter needed is L which is initially loaded with the number of

segments in the test set. The size of this counter = [log, L]. We assume that

the maximum number of vectors in a test set is 32K vectors. Therefore, the
maximum number of segments = 32K / 8 = 4K. So, the size of L = 12 bits.
Whenever a segment is decoded, it is sent to the scan chains and L is
decremented. When L = 0, the process is terminated. This condition can be
checked by NORing all bits of L. Another condition that has to be checked is
when L = 1 whereby the last segment is to be decoded. This can be checked
also by NORing all bits of L with inverting L, The signals that we need here

are Load and Dec (Decrement).

99

(2) Another counter (BCNT) is required to keep track of the block number
within the cumrent segment. The size of this counter equals the size of
register K which is 10 bits. This counter must start counting from 0 because
it is used for addressing the memory (as will be explained shortly).
Therefore, we did not use this counter as in the case of the number of
segments L. Instead, we added some comparators to check for the last block
and to check if all blocks in a segment have been decoded. For each
segment, BCNT is cleared first and then incremented for every block
decoded until it equals K, which means that all blocks in the current segment
have been decoded. This condition can be checked by XNORing every bit of
BCNT with the corresponding bit of K then ANDing the results. To know
when the last block of the current segment is to be decoded, BCNT is
compared with X-1, which is obtained by decrementing the content of K and
XNORing the result with BCNT. The signals needed to control BCNT are
CLR (Clear) and Inc (Increment).

(3) In each block, there may be some shapes encoded. To know how many
shapes are in the block, a counter S is used. The size of this counter = 7 bits
(2*logz 32 — 3) which is the maximum possible for all block sizes as

explained in Section 4.4. For each block that has shapes, S is loaded with the

100

number of shapes. Whenever a shape is decoded, S is decremented until it
reaches 0. Also here we need to check for O (similar to L). The signals
needed are Load and Dec.

(4) Four 5-bit counters are used for decoding shapes and writing them to
memory. These are RCN7T, CCNT, Rdist and Cdist. RCNT and CCNT are
used to address the bit to be written within the current block in the form
(row, column), respectively. They are loaded with the coordinate of a shape
and then incremented or decremented according to the direction of writing.
Rdist and Cdist are used for the length of writing in each direction. They are
loaded with the distance and then decremented until they reach 0. Hence, a
check for 0 is needed for each. The loading can be from N, R, or [for Rdist
and from N, C, I or Rdist for Cdist. This depends on the block number, on
whether a full block is to be filled or only a portion of it and on the type of
the shape (line, triangle, or rectangle). For RCNT and CCNT, the signals
needed are Load, CLR, Inc and Dec. For Rdist and Cdist, the signals are
Load, Dec and the select signals.

(5) The last counter is a temporary counter (femp) that is used mainly to decide
the number of bits to be read from input data. Since there are many cases,

the value that is loaded to femp must be selected depending on the parameter

101

to be read. The values LN|LR, LN|LC, and Minimum are used to select
between full blocks and partial blocks. Each value is selected in a certain
case as shown in Figure 5.3. For reusing resources, femp is used as a
temporary register in the case of decoding a triangle. In this case, it is loaded
from Cdist. In all cases, we need to know when femp = 0 to stop reading
data. So, a check for 0 is required. The signals required to control temp are

Load, Dec and the select signals.

For hardware implementation, as well as for software implementation, some amount
of memory is required to store a segment before applying its vectors to the CUT. The
size of this memory is equal to the size of the scan chain times the number of vectors
per segment, which is in our case equal to 32 as maximum. For the hardware decoder
to be simple and fast, we need to address this memory bit-wise. This can be achieved
by dividing the address into three fields:

1) Block #: this specifies the block to be decoded among the blocks of the
current segment. The size of this field = [log, K |; where K = the number of
blocks per segment.

2) Row #: this indicates the row of the current block. The size of this field =

logoN =5 as maximum (when N=32).

102

3) Column #: this indicates the column of the current block. The size of this
field =logs N =S5 as maximum (when N=32).

The three counters BCNT, RCNT, and CCNT are used to decide the address of the bit
to be written.
As we mentioned before, the maximum vector length is 8K. Therefore, the maximum
memory size required = 32*8K = 256 Kbit. This needs an address of 18 bits. Since
we have 5+5+10 = 20 bits in the three counters, we need to select the bits to
represent the address in each case (V=8, 16, or 32) using multiplexers. The outputs

of the multiplexers are connected directly to the memory address bus.

5.2.2. Implementation of the FSM

The FSM controlling the decoding process is shown in Figure 5.3. It consists of 62
states, which means that 6 FFs plus some combinational logic are enough to
implement it. This FSM is designed to decode the whole test set, not only one
segment or one block. The FSM can be summarized in the following:

(1) The decoding process is activated at state Sp when a starting signal starr = 1.

103

o0de =0100& Rdist 0

Temp~10

S2 ee
SHL1
Dec Temp

p=0

=3

Load
Temp = 1100
s Tempas
| I
Temp
3 Temp~0
L
Temp = 1010

Fa

E

Teopad

Temp = 101

$10 Tempad
SHL!
Dec Temp
st Temp=0
si2
CLR BONT
s13

Load Cdist, Rdist
CLR CONT,RCNT

(code =01 xx & Rdss1 =0} |
{code =10xx&Rdm =0& Cdist ~0)

Temp=0&
code=(10xx |
(2301 20004

04 WP Y| 1= 3pD

Inc RCNT

Load Cdist
\LudCCNTfmm Tem,
.l
L4

Write bit

2 =3 s :
] 25 =3 2

-) _$ g
= ST 2 5
2 s T3 3

= o Q o
3 s 34 o LE g
Dec Rdist Des Rdist \ Dec Rdist
Dec RCNT Inc RONT loc RCNT 3
Inc CCNT Load CONT from Temp Load CCNT from Temp

s61
Losd Cdist Gom Rdist
N 4 N\,
- o

*10xx & Cdint 20& Rt #0

Figure 5.3. The FSM of the decoder

104

(2) From S, to Sy, the five parameters (block dimension (N), # of segments (L),
of blocks per segment (K), row remainder (R), and column remainder (C))
are read and loaded to the appropriate counters and registers. Then, the
counters used for addressing the memory are initialized in states S;; and S;3
and this is done for each block.

(3) In S,4, there are two possibilities:

(i) There are no shapes to be decoded: in this case the whole block

will be filled with either 1 bit (0 or 1) or filled with real data. In
the former case, S;s is visited only once to initialize the bit with
which the block is filled and then the process goes through states
Sis, S17 and Sis. In the latter case, S;5is visited for each bit read.

{(ii) There are shapes to be decoded: in this case the process goes to

state S»;.

(4) States Sy; to Sy4 initialize the block with the complement of the bit with
which ail shapes are encoded. This is important to make sure that all bits in
the block have the correct values. When the shapes are decoded, the
corresponding bits will be overwritten.

(5) The number of shapes is read in states Sasto Sa7.

(6) For each shape, Sz is visited to read the first bit in that shape.

105

(7) The type of the shape is determined in Sy. If it is a point or a rectangle, the
process continues in Szo. Otherwise, it goes to S,.

(8) States S3; and S;3; initialize the first bit of the point and the rectangle shapes.
If the shape is a point, only this bit is written in Ss4. If, on the other hand, it is
a rectangle, the process goes to states S3s to S3g to initialize the counters and
then goes through S34, S4g and S, until the whole rectangle is written.

(9) If the shape is a line or a triangle, the process goes through states S4; to Ss; to
initialize the counters and determine the type of the shape. Then according to
the type of the shape and the status of the counters, the process goes to one of
the states Ss; to Seo. Then, the process repeats until the shape is written.

(10) After every shape is decoded, the number of shapes is decremented in Sss. If
there are other shapes, the process goes back to Szs. Otherwise, it goes to Sio
in which the number of blocks (BCNT) is incremented. If there are still other
blocks, the process goes to S;3; otherwise it goes to S if all blocks of the
current segment have been decoded.

(11) In Sz, the segment just decoded is sent to the scan chains and the process
waits for an acknowledgment to proceed. If there are other segments, the

process goes to S),. Otherwise, the process is terminated and goes back to the

106

initial state. This is the only case where a mealy output is required. Therefore,

we can say that our FSM is almost Moore.

Because applying test vectors to scan chains needs a special kind of control, which is
out of the scope of our work, we left that to another controller. The FSM will send a
signal indicating that a segment is ready to be applied and then holds on until an

acknowledgment reaches and then resumes.

5.3. Decoder Interface

In this section, we outline the interface between the decoder and the tester and
between the decoder and the scan chains. First, we discuss the interface of the

software decoder and then we discuss the interface of the hardware decoder.

107

5.3.1. Interface of the software decoder

Figure 5.4 shows the interface between the software decoder and the tester. The
decoding program is stored in a ROM on chip. When the tester starts sending the
encoded data to the processor, the processor reads the instructions from the ROM
and executes them in order to decode the test data. Then, it writes the decoded data to
the memory. After a whole segment is decoded, the processor will send a signal to
the controller to start applying the test vectors to the scan chains. It should be stated
here that there must be some synchronization mechanism between the processor and

the tester in order to avoid overflow.

Tester

ROM (> Processor ‘_j

Memory lt—p>{ Controller

Scan chain 1

Scan chain 2

® ©
e O
Scan chain 7

Figure 5.4. Interface of the software decoder

108

5.3.2. Interface of the hardware decoder

Similar to the interface explained above for the software decoder, the hardware
decoder can be interfaced to the tester in place of the processor. This is shown in
Figure 5.5. Here, the hardware decoder reads the encoded data from the tester and
writes the decoded data to the memory. After decoding a complete segment, the
decoder sends a signal to the controller to apply the test vectors and waits for the
acknowledgement to start decoding another segment. Also here, we need some

synchronization mechanism between the tester and the decoder.

Tester

Hardware
decoder ,

——P> Scan chain 1
Memory -4————>{ Controller
*—] Scan chain 2
e o
o O
e Scan chain n

Figure 5.5. Interface of the hardware decoder

109

In both implementations of the decoder, the test application process and the decoding
process can be performed in parallel if there is enough memory. In this case, the
controller will read the decoded vectors from the memory and apply them to the scan
chains. At the same time, the decoder will start decoding another segment and write
it in another portion of the memory. This process requires more memory but it can

speed up the testing time.

5.4. Concluding Remarks

In this chapter, we have discussed the implementation of the decompression process
of our proposed technique. The decoder can be implemented in software or in
hardware. The software decoder is executed using an embedded processor, which is
available in most of the SOC's. This decoder runs in linear time with respect to the

size of the test set.

If the embedded processor is not available on chip, then a hardware decoder is
required. We have designed this decoder using an FSM of 62 states and a data path.

The design has been modeled and verified using VHDL.

110

Both implementations of the decoder need some amount of temporary memory to
store a segment of decoded blocks before applying its vectors to the circuit under
test. This memory requirement and the complexity of the hardware decoder represent

the overhead of our technique.

CHAPTER 6

EXPERIMENTAL RESULTS

In this chapter, we show the results of our proposed compression scheme. In Section

6.1, we show the effect of different factors on the compression ratio. These factors
are the x-weight, the type of sorting, the block size, the greedy sorting in comparison
with the near-optimal sorting, and the size of the test sets. In Section 6.2, the timing
performance of the encoder and the decoder of our technique is discussed. In Section

6.3, we give some statistics on block encoding that show the advantages of
partitioning the test set into blocks and also show the possibility of improvement in
future work. Finally, we compare the achieved results of our technique with some of

the best results achieved in the literature in Section 6.4.

We ran our experiments on a number of the largest ISCAS85 and full-scanned
versions of ISCAS89 benchmark circuits. The experiments have been run on a

Pentium II processor with a speed of 350 MHz and a 32 Mbyte RAM. We have used

111

112

two test sets generated by MinTest [15], one is based on dynamic compaction and the

other is based on static compaction. These test sets are highly compacted test sets
that achieve 100% fault coverage of the detectable faults in each circuit. For the test
sets generated by static compaction, test cubes were generated as this has the
advantage of keeping unnecessary assignments as x’s, which enables higher
compression. To make sure that all results are correct, we have fault simulated the

decoded test sets obtained from both the software and the hardware decoders.

6.1. Effect of Different Factors on Compression Ratio

There are a number of factors that affect the compression ratio resulting from our
proposed scheme. These factors have been outlined in Chapter 4. In this section, we
show the effect of these factors on the compression ratio. We assume a default value
for each of these factors. This value is the one that gives the best results most of the
time. These factors are:

1. The weight of the x bit in a test vector. The default value is x=0.25.

2. The type of sorting (0-sorting, 1-sorting or 0/1-sorting). The default value is

the 0/1-sorting.

113

3. The block size (8x8, 16x16, or 32x32). The default size is 8x8.

4. The greedy sorting versus the near-optimal sorting. The default is greedy
sorting.

5. The size of the test set. For this factor, we compared the same benchmark
circuits with different sizes (different number of test vectors). The first set is
generated using static compaction and the other is generated using dynamic
compaction. The default is the set generated using dynamic compaction,

which is larger in size.

In each experiment, we changed only one factor and fixed the other factors to the
default. Doing so, we can illustrate the effect of that factor on the compression ratio.

The compression ratio is calculated using the following formula:

#Original Bits —#Compressed Bits X100.

Comp. Ratio =
P #Original Bits

(1) The x-Weight

Table 6.1 and Figure 6.1 show the compression ratio for the three values of
x-weight. It is clear from the figure that the best results are achieved when x=0.25 in
most of the cases. The only exception in this set of circuits is for circuit s35932f in

which the best result is for x=1.0. A possible reason for this exception is that most of

114

the shapes in this test set are of type rectangle or horizontal line. Therefore, if we
treat the x’s as the other bits, rectangles with maximum sizes may be formed. For all

the cases, the compression ratio is moderate when x=0.5.

Circuit
s13207f | 85.561 85372 85.098
s15850f | 70.188 69.239 66.971
s35932f | 62.231 63.812 64.4

s38417f | 62.226 60.229 61.72
s38584f | 65.594 63.474 64.868
s5378f 57.94 52.936 53.006
s9234f 57.22

Table 6.1. Effect of x-weight

x=0.25 B:=0.50x10|

80

Comp.
Ratio

s13207f s15850f $35932f s38417f s38584f sS378f $9234f
Test Sets

Figure 6.1. Effect of x-weight

(2) Type of Sorting

115

The 0/1-sorting gives the best results in most of the cases as shown in Table 6.2 and

Figure 6.2. This is because our technique partitions the test set into blocks and has

the option of encoding either the 0’s or the 1’s for each block separately. Therefore,

it is better to have clusters of both the 0’s and the 1’s rather than having only clusters

of 0’s or clusters of 1’s. Also in this case, the only exception is circuit s35932f, In

this case, the 0-sorting achieves the best. It is interesting to notice that the average

compression ratio for the three sorting criteria is almost the same.

Circuit

s13207f 84.952 84.724 85.561
s15850f | 69.646 69.782 70.188
s35932f | 65.177 65.889 62.231
s38417f 61.84 61.677 62.226
s38584f | 65.203 65.186 65.594
sS378f 55.805 55.658 57.94
s9234f 54.989

Table 6.2. Effect of type of sorting

116

1-sorting B O-sorting [J O/1-sorting

s13207f

s15850f $35932f s38417f s38584f
Test Sets

sS5378F

§9234f

(3) Block Size

Figure 6.2. Effect of type of sorting

The block size has a high impact on the compression ratio. This is shown in Table

6.3 and Figure 6.3. In five of the seven cases, the 8x8 block size gives the best result.

For circuit s35932f, the 32x32 block size is the best. The reason for this case is that

the number of test vectors in this test set is 16, which means that all the blocks are

partial blocks. In addition, most of the shapes in this test set are of type rectangle or

horizontal line. This means that when the horizontal dimension increases, the cost of

encoding these shapes decreases.

Circuit

s13207f | 85.561 86.628 85.316
s15850f { 70.188 69.253 65.776
s35932f | 62.231 74.688 78.123
s38417f | 62.226 59.304 54.245
s38584f | 65.594 65.085 61.13
s5378f 5794 52.854 48.657
§9234f 57.22 55.789 52.148

Table 6.3. Effect of block size

117

B 88 W 16xi6 [0132x32

Comp.
Ratio

s13207f s15850f

$35932f

s38417F
test Sets

s38584f

Figure 6.3. Effect of block size

118

(4) Greedy versus Near-Optimal

As explained in Chapter 4, in the greedy sorting, each time we select the closest
vector to the last vector selected. We have tried to optimize the solution using the
Hamiltonian cycle. However, we have found that the greedy solution is always better
than the near-optimal solution. This is illustrated in Figure 6.4. The problem of this
near-optimal solution is that it is based on finding a spanning tree and then finding a
walk through the vertices of the tree (see [12] for details). It is possible by this
solution that the walk groups vectors that are not highly correlated together which

may take away some vectors that may have more correlation.

B greedyl near-optimal

Comp.
Ratio 70

s13207f s15850f s35932f s38417f s38584f s5378f s9234f
Test Sets

Figure 6.4. Greedy vs. near-optimal

(5) Size of the Test Set

the test set may help in achieving higher compression.

Testset2

H s15850

11835932

s38417

164736

113152

s38584

199104

161040

Table 6.4. Effect of test set size

119

The two test sets shown in Table 6.4 have different sizes. The first set is generated
using a dynamic compaction technique based on MinTest [15] while the second is
generated using a static compaction technique also based on MinTest [15]. The first
set is larger in size than the second. The effect of the test set size cannot be shown if
we consider only the compression ratio. However, if we look at the number of bits
after compression, we can see that some of the circuits ended up with smaller number
of bits although the size of the original test set is larger. These circuits are shaded in

Table 6.4. From this observation, we can conclude that adding some redundancy to

120

6.2. Timing Performance

In this section, we show the timing performance of our technique. As we stated
earlier, we performed our experiments on a Pentium II processor with a 32 Mbyte

RAM.

(1) Performance of the Encoder

The encoder is implemented in software and it is run offline. Therefore, it can be
more complicated than the decoder. Table 6.5 shows the time (in seconds) needed to
encode each circuit for different block sizes. The last column gives the total time if
all three sizes are tried to choose the best among them. This timing includes the
sorting step. Since the block size has a high impact on the compression ratio and
because the encoder is fast, all three sizes can be used for encoding and the one that

gives the best results is selected.

Circuit

s13207f 6 15 29
s15850f 2 2 6 10
$35932f 2 2 1 5
s38417f 8 11 35 54
s38584f 8 9 16 33
s5378f 1 2 4
§9234f 2 2 10 14

Table 6.5. Timing of the encoder

(2) Performance of the Decoder

121

The decoder can be implemented in software or hardware. In our experiments, we

have found that the software decoder of our technique is very fast and the time

needed for it to finish decoding a whole test set is very small and can be neglected.

For the hardware decoder, we have counted the clock cycles needed to complete

decoding each circuit using the VHDL model of the hardware decoder described in

Chapter 5. If we assume a certain clock rate, then we can find the time required by

the decoder by dividing the number of clock cycles by the clock rate. Table 6.6

shows the results for a clock rate of 500 MHz and for different block sizes. The time

given in the table is in p seconds. We should indicate here that this timing is for the

decoding process only and does not include the test application time.

Table 6.6. Timing of the hardware decoder

circuit
s13207f 366506 733.012 373039 746.078 406249 812.498
s15850f 191193 382.386 200540 401.08 220739 441.478
s35932f 83120 166.24 80880 161.76 77967 155.934
s38417f 438157 876.314 464892 929.784 516920 1033.84
s38584f 509046 1018.092| 542300 1084.6 562884 1125.768
s5378f 61748 123.496 67458 134.916 72380 144.76
§9234f 107482 214.964 113818 227.636 118152 236.304

122

If we look at Table 6.6 and Table 6.3, we can notice that the number of clock cycles
needed to decode a test set increases with the decrease in the compression ratio. The
only exception in this trend is in the case of circuit s13207f, where the highest
compression ratio is for the 16x16 block size while the smallest number of clock
cycles is for the 8x8 block size. The reason for this is that the compression ratios for
the two block sizes are very close to each other while the percentage of real-data
blocks is higher for the case of 16x16 block size (as will be shown in the following
section). Since the real-data blocks need more time for decoding (because they
require more reading cycles), the number of clock cycles increases with the increase

in the percentage of real-data blocks.

6.3. Statistics on Block Encoding

As explained in Chapter 4, there are three possibilities for encoding a block. The first
is to encode the block as filled by either 0’s or 1's. The second is to encode the block
using geometric shapes. The third is to store the real data if the number of bits
needed to encode the block is greater than the actual number of bits in that biock.

We call the first type of blocks filled blocks, the second type of blocks encoded

123

blocks and the last type of blocks real-data blocks. The cost of each filled block is
only 3 bits, while the cost of each real-data block is the size of the block + 2. The
cost of an encoded block depends on the shapes in that block. In this section, we
show the percentage of each type of blocks to the total number of blocks for the

benchmark circuits used.

Table 6.7, Table 6.8, and Table 6.9 show the percentage of these types of blocks for
the benchmark circuits used for block size 8x8, 16,16, and 32x32, respectively. From
these tables, we can notice the following:

1) The percentage of filled blocks decreases with the increase in block size while
the percentage of real-data blocks does change much. This shows why the 8x8
block size gives the best results most of the time followed by the 16x16 block
size. From this point, we can notice the advantage of partitioning the test set into
blocks.

2) Some of the circuits have high percentage of real-data blocks. This shows that
there is a room for improvement if these blocks are encoded using another

compression scheme.

circuit

total # of
blocks

#ofreal |

s13207f

2640

68

2.5758

7731061

20.113636

s15850f

1232

82

6.6558

49.83766

43.506494

§35932f

442

0.4525

12.66968

86.877828

s38417f

2704

189

6.9896

39.49704

53.513314

s38584f

3111

347

11.154

37.92993

50.916104

s5378f

378

78

20.635

37.83069

41.534392

$9234f

620

9.6774

24.19355

66.129032

60

83057 s

3989559 . oy

51.798686

Table 6.7. Statistics on block encoding (8x8 blocks)

circuit

‘total # of # of real

“blocks

- -blocks - L

T exi6
T#otfmea]

5 % :

[Fotemcote [,

%

s13207f

660

3.3333

356

53.93939

282

42.727273

s15850f

312

27

8.6538

75

24.03846

210

67.307692

$35932f

111

0.9009

0

110

99.099099

s38417f

728

41

5.6319

162

2225275

525

72.115385

s38584f

828

98

11.836

145

17.51208

385

70.652174

s5378f

98

17

17.347

13

13.26531

68

69.387755

§9234f

10.625

4375

85

“average

160

17

. |83325) T T

11934043}

136

Table 6.8. Statistics on block encoding (16x16 blocks)

124

circuit | 1011 #OF | #ofreal | -
 blocks | blocks |

§13207f 176 0

s15850f 80 6 7.5 3 3.75 71 88.75
s35932f | s6 1 | 17857 0 0 55 98.214286
s38417f | 208 2 |09615] 31 [14.90385 175 84.134615
s38584f | 230 44 | 1913 21 [9.130435 165 71.73913
sS378f | 28 s |17.857 2 |7.142857 21 75
s9234f | 40 7 17.5 0 0 82.5
caverage | Gl 192478 0 S Ulgse102) o [82:191147

Table 6.9. Statistics on block encoding (32x32 blocks)

6.4. Comparison with Other Techniques

125

In this section, we compare the results of our technique with some of the best results

published in the literature. These are the techniques proposed in [8] and [9], which

are the most recent techniques proposed in the literature. The first technique uses the

variable-to-variable run length coding using the FDR codes while the second uses the

variable-to-variable run length coding using Golomb codes. Table 6.10 and Figure

6.5 show the results of each of the three techniques. The first column (Geometric)

shows our results using the default factors (explained in Section 6.1 above) except

126

for the block size where the best among the three block sizes (8x8, 16x16, or 32x32)
is selected. The other two columns show the compression ratio achieved by FDR
code and Golomb code when applied to the original test sets. It should be stated here
that the test sets used for comparison are the same, which are the ones obtained by

dynamic compaction by MinTest.

In all cases, we got significantly higher compression ratio than the other techniques.
The average percentage of compression is shown in the last row of Table 6.10. One
of the interesting circuits is s35932f, where Golomb codes did not achieve any
compression and the FDR codes only got 19.37% compression; while our technique
achieved 78.12% compression. This is because these techniques depend on encoding
runs of 0’s followed by a 1. The cost of encoding runs of 1’s is more than the cost of
the runs themselves because each 1 is encoded as a run of 0’s of length 0 followed by
a 1. Since circuit s35932f has many runs of 1’s (which are sometimes very long),

these techniques do not perform well for encoding this circuit.

circuit |G
s5378f | 5794 48.02 37.11
§9234f | 57.22 43.59 4525

s13207f | 86.628 81.3 79.74
s15850f | 70.188 66.23 62.82
s35932f | 78.123 19.37 0

s38417f | 62.226 43.26 28.37

s38584f | 65.594 60.91 57.17

Table 6.10. Comparison with other techniques

127

Geometric Il FDR 83 Golomb

s5378f $9234f s13207f s 15850f $35932f s38417f s3838%4f
Test Sets

Figure 6.5. Comparison with other techniques

6.5. Concluding Remarks

In this chapter, we have presented the experimental results of our proposed
technique. First we have shown the effect of different factors on the compression
ratio. These factors are the x-weight, the type of sorting, the block size, the greedy

sorting, and the size of the test set.

128

Then, we have discussed some statistics on block encoding. These statistics show the
advantage of the partitioning step and the impact of the block size. In addition, they
show that there is a room for improvement on our technique if the real-data blocks

(those blocks that are not encoded) are exploited.

After that, we have discussed the timing performance of the encoder and the decoder.
It has been shown that the encoder is fast and hence it is possible to try all block
sizes and select the one that gives the best compression ratio. The software decoder
runs in negligible time. For hardware decoder, we used the VHDL model to compute
the number of clock cycles required to decode the test data. This also shows that the

hardware decoder is fast.

To show the effectiveness of our technique, we have compared the achieved
compression ratio with those of the most recent techniques proposed in the literature.
These are the techniques that use Golomb codes and FDR codes for encoding the test
data. To be fair in comparison, we used the same test sets used by these techniques. It
has been shown by this comparison that our technique outperforms the others in all

the cases.

CHAPTER 7

CONCLUSION AND FUTURE WORK

Systems-on-a-chip (SOC) design is popular nowadays and it is evolving very rapidly.
Testing SOC requires a huge amount of test data, which increases testing time. It is,
therefore, very desirable to reduce this time by reducing the amount of test data that

must be transferred to the chip under test.

Two solutions are possible to reduce test data. The first is test set compaction in
which the number of test vectors is reduced while the fault coverage is maintained.
There are two kinds of compaction, static and dynamic. In static compaction, the test
set is reduced after it has been generated. In dynamic compaction, the reduction is

performed during the test generation process.

The other solution is test data compression. In this case, test data is represented in a
different format that requires less number of bits. This is called encoding the test
data. It is then transferred to the chip under test and decoded there to restore the

original test data. The compression must be lossless. Some of the compression

129

130

techniques are based on BIST and PRGs, where the internal architecture of the chip
under test is designed to have self-testing capability. Other techniques are based on
deterministic testing, regardless of the internal architecture. The scope of this thesis

is in the latter case.

In Chapter 3, a review of the compaction and compression techniques proposed in
the literature has been discussed. Most of the compression techniques are based on
one-dimensional approaches, where vectors are encoded serially. Furthermore, most
of these techniques are based on variations of some of the basic compression

schemes such as run-length and statistical coding for encoding test data.

In this thesis, we have proposed a novel technique for encoding test data. This
technique is a two-dimensional approach in which the test set is partitioned into
equal-size blocks, each of which is encoded separately and independently. The
encoding of test data in each block is based on geometric shapes, which exploits the

high correlation between test vectors.

The encoding process can be summarized as follows. First, the test set is sorted in
order to group the test data into the minimum number of shapes. The sorting
procedure we used in this thesis is greedy, where a test vector is selected each time

based on a distance function. The sorting can be done with respect to the 0 bits (0-

131

sorting), the 1 bits (I-sorting,) or to both 0’s and 1’s (0/1-sorting). Second, the test
set is partitioned into equal-size blocks. The block size has very high impact on the
compression ratio. We have experimented with three block sizes, 8x8, 16x16, and
32x32. After partitioning the test set, each block is encoded individually. There are
three possibilities for encoding a block. The first one is to fill the whole block by
either 0’s or 1’s. This case is the least costly because it requires only three bits. The
second possibility is to encode the block by geometric shapes that cover either the 0
bits or the 1 bits. The third possibility is to store the real test data if its cost is less
than the cost of encoding the block. It has been shown that the sorting algorithm runs
in O(VT?) time, where T is the number of vectors and V is the vector length. The
encoding algorithm requires O(VT) time, which is linear with respect to the size of
the test set. The discussion of the sorting and the encoding processes has been

presented in Chapter 4.

An important step of any compression technique is the design of the decoder. The
decoder should be simple enough because it is run on-chip. There are two
possibilities for implementing the decoder, either in software or in hardware. In
software decoder, a simple procedure is run using an embedded processor on-chip,
which is available in most of the SOCs nowadays. In hardware decoder, some
additional hardware is added to the chip to perform the decoding process. We have

implemented the software decoder using C++ code. The design for the hardware

132

decoder has been modeled and verified using VHDL. The implementation of the
decoding process has been discussed in Chapter 5. One limitation of our decoder is
the requirement of some amount of memory to store a segment of decoded blocks

before the test vectors of that segment are applied to the circuit under test.

In Chapter 6, we have discussed the experimental results of our technique. First, we
have shown the effect of different factors on the compression. These factors are the
x-weight, the type of sorting, the size of the block, the greedy sorting and the size of
the test set. Each factor has a default value that gives the best results most of the
time. Then, we have discussed some statistics on the encoding process that show the
advantage of the partitioning step and the possibilities for improvement. After that,
the timing of the encoder and the decoders have been discussed. It has been shown
that this time is very small for both the encoder and the two implementations of the
decoder. Finally, we have compared our results to those of the most recent
techniques proposed in the literature. This comparison shows the effectiveness of our
proposed technique since we achieved significantly higher compression ratio than the

others in all the cases.

133

Future Work

The future direction can be summarized in the following:

e Since sorting of test vectors highly affects the compression ratio, it is
desirable to find better sorting criteria or approaches that may increase the
compression ratio.

e We have shown that there are some blocks that are not encoded because the
cost of their encoding is more than the cost of the real data. Hence, it is
possible to combine our technique with some other techniques to produce a
hybrid compression scheme, which may exploit these real-data blocks. This is
possible because each block in our technique is encoded independently. A

possible candidate is the FDR coding scheme proposed in [8].

APPENDEX A

VHDL CODE FOR THE HARDWARE DECODER

135

-- THESE ARE THE ENTITIES FOR THE COMPONENTS USED IN THE DATA

— PATH (FUNCTINAL MODELING)

Entity xnor2 is

generic(N:positive:=4;delay:time:=2 ns);

port (A,B:in bit_vector (N-1 downto 0); O:out bit);
End xnor2;

Architecture behav of xnor2 is
Begin
process (A, B)
variable R:bit;
begin
R:="'1";
for i in 0 to N-1 loop
R :=R and not(A(i) xor B(i)):;
end locop;
O <= R after delay:
end process;
End behav;
Entity and2 is
port (A,B:in bit; O:out bit):
End and2:;

Architecture behav of and2 is
Begin
O <= A and B after 3 ns;
End behav;
Entity and3 is
port(A,B,C:in bit; O:out bit);
End and3;

Architecture behav of and3 is
Begin
O <= A and B and C after 3 ns;
End behav;

D S s . —— —— ——— ——— - ——— — ————— —— — - " — ——— ——— —— = ——

136

Entity or2 is
port (A,B:in bit; O:out bit):;
End or2;

Architecture behav of or2 is
Begin
O <= A or B after 3 ns:;
End behav;
Entity xnor2 1 is
port(A,B:in bit; O:cut bit}:;
End xnor2 1;

Architecture behav of xnor2_ 1 is
Begin
O <= not (A xor B) after 4 ns;
End behav;
Entity inv is
port (A:in bit; O:out bit);
End inv;

Architecture behav of inv is
Begin
O <= not A after 1 ns;
End behav;
Entity norN is
generic(N:positive:=4;delay:time:=2 ns);
port(A:in bit vector(N-1 downto 0); O:out bit);
End norN;

Architecture behav of norN is
Begin
process (A)
variable R:bit:
begin
R:='0";
for i in 0 to N-1 loop
R :=R or A(i) :
end loop:;
O <= not R after delay:

137

end process;
End behav;
Entity MUX2 1 is

generic{delay:time:=4 ns);

port (A,B:in bit; sel:in bit; O:out bit):
End MUX2 1;

Architecture behave of MUX2 1 is
Begin
with sel select
O <= A after delay when '0’,
B after delay when 'l';
end behave;
Entity MUX2 is
generic (N:positive:=4; delay:time:=4 ns);
port(A,B:in bit_vector (N-1 downto 0); sel:in bit;
O:out bit_vector (N-1 downto 0)):
End MUX2;

Architecture behave of MUX2 is
Begin
with sel select
O <= A after delay when '0’',
B after delay when '1°';
end behave;
Entity MUX4 is
generic (N:positive:=4; delay:time:=4 ns);
port(A,B,C,D:in bit_vector(N-1 downto 0); sel:in
bit_wvector (1l downto 0);
O:out bit_vector (N-1 downto 0));
End MUX4:;

Architecture behave of MUX4 is
Begin
with sel select
O <= A after delay when "00",
B after delay when "0O1",
C after delay when "10",
D after delay when "11";

138

end behave;
Entity MUX8 is
generic(N:positive:=4; delay:time:=4 ns);
port(Aa,B,C,D,E,F,G,H:in bit_vector (N-1 downto 0):;
sel:in bit_vector(2 downto 0);
O:out bit_vector(N-1 downto 0));
End MUX8;

Architecture behave of MUX8 is
Begin
with sel select
O <= A after delay when "000",
B after delay when "001",
C after delay when "010",
D after delay when "011",
E after delay when "100",
F after delay when "101",
G after delay when "110",
H after delay when "111";
end behave;
Entity DFF is
generic (delay:time:=2 ns);
port (D,clk:in bit; Q,Q bar:out bit);
End DFF;

Architecture behav of DFF is

Begin
process (D, clk)
begin
if(clk='1' and clk'event) then
Q <= D after delay:
Q bar <= not D after delay:
end if;
end process;
End behav;

Entity Reqg is
generic(N:positive:=4; delay:time:=4 ns);
port(A:in bit_vector (N-1 downto 0); Load,clk:in bit;
O:out bit_vector (N-1 downto 0));

End Reg;

Architecture behave of Reg is
Begin
process (clk, Load)
begin
if(clk='0' and clk'event) then
if(Load='1"') then
0O <= A after delay:
end if;
end if:
end process;
end behave;

Entity Sh_Reg is

generic(N:positive:=4; delay:time:=4 ns);

139

port (A,SHL,clr,clk:in bit; O:out bit_vector(N-1

downto 0));
End Sh_Reg;

Architecture behave of Sh Reg is
Begin
process (clk, SHL, clr)

variable R:bit_vector(N-1 downto 0);

begin
if(clk='0' and clk'event) then
if(clr='1'} then
for i in N-1 downto 0 loop
R(i):= '0"*;
end loop;
O <= R after delay:
elsif (SHL='1") then
for i in N-1 downto 1 loop
R(i}):= R(i-1});
end loop:;
R(0) :=A;
O <= R after delay:
end if;
end if;
end process;
end behave;

140

Entity counter is
generic(N:positive:=4; delay:time:=4 ns);
port(A:in bit_vector(N-1 downto 0);
Load,clr,inc,dec,clk:in bit;
O:out bit_vector(N-1 downto 0)):
End counter;

Architecture behave of counter is
Function int to_bin(int:integer) return bit_vector is
variable temp:integer;
variable bin:bit_vector (N-1 downto 0);
begin
temp := int:;
for i in 0 to N-1 loop
if (temp mod 2=1) then

bin(i} := '17;
else
bin(i) := '0';
end if;
temp := temp/2;
end loop:;

return{bin) ;
end int_to bin;

Function bin_to_int (bin:bit_vector) return integer is

variable int:integer:=0;
begin

for 1 in 0 to bin'length-1 loop

if(bin(i)='1l"') then

int := int+2**ji;
end if;
end loop:;

return(int);

end bin_to_int;

Begin
process (clk, Load, clr,dec, inc)
variable R:integer;
begin
if(clk='0' and clk'event) then
if(Load='1"'}) then
R := bin _to_int(Aa);

elsif(clr='1"') then

R := 0;
elsif(dec='1") then
R := R-1;
elsif(inc='1') then
R := R+1;

end if;

end if;

O <= int_to_bin(R) after delay:

end process;
end behave;

Entity Decrementer is

generic(N:positive:=4; delay:time:=4 ns);
port(A:in bit_vector (N-1 downto 0); O:out
bit vector (N-1 downto 0));

End Decrementer;

Architecture behave of Decrementer is
Function int_to _bin(int:integer)

variable temp:integer;

variable bin:bit_vector(N-1 downto 0);

begin
temp := int;
for i in 0 to N-1 loop
if(temp mod 2=1) then

bin(i) := '1"%;
else

bin(i) := '0';
end if;
temp := temp/2;

end loop:
return({bin};
end int_to_bin;

Function bin_to_int{bin:bit vector) return integer is

variable iﬁtzznteger:=0;
begin

for i in 0 to bin'length-1 loop

if(bin(i)='1') then
int := int+2**ji;
end if;

141

return bit_vector is

142

end loop:;
return{int) ;
end bin_to_int;

Begin
process (A)
variable R:integer:;
begin

bin_to_int(a):
R-1;
O <= int_to_bin(R) after delay:
end process;
end behave;

R
R

Entity memory is
generic(Nb:positive:=3;N:positive:=5; delay:time:=4
ns; per:time:=40 ns);
port(blc_size:in bit_vector (N-1 downto 0);
Num_Blc,Blc:in bit vector (Nb-1 downto 0);
Row,Col:in bit vector (N-1 downto 0):;
clk,R,W:in bit; B:in bit; ack:out bit);
End memory:;

use STD.TEXTIO.all;

Architecture behave of memory is
Function bin_to_int (bin:bit_vector) return integer is
variable int:integer:=0;
begin
for i in 0 to bin'length-1 loop
if(bin(i)='1"'} then
int := int+2**ji;
end if;
end loop;
return(int) ;
end bin_tc_int:;

signal Ml1l,vl: bit:

Begin
process(clk,R,W,Num;Blc,blc_size)

143

type mem is array (0 to 2**Nb-1,0 to 2**N-1,0 to
2**N-1)of bit:
variable M:mem;
variable vector: line;
variable v:bit:;
file ocutfile:text is out "output.out";
begin
assert not(R='1l' and W='1")
report ("ILLIGAL: READING AND WRITING AT THE
SAME TIME")
severity error;
if(clk='0"'" and clk'event) then
if(W='1"') then
M(bin_to_int(Blc),bin_to_int (Row),bin to in
t(Col)) := B;
Ml <=
M(bin_to_int(Blc),bin to int (Row),bin
_to_int(Col));
elsif(R='1") then
for i in 0 to bin_to_int(blc_size) loop
for j in 1 to bin to_int (Num Blc) loop
for k in 0 to bin_to_int(blc_size)
loop
v:=M(j-1,1i,k):;
vl <= M(j-1,i,k);
write(vector,v);
end loop:;
end loop:;
writeline (outfile,vector):;

end loop:;
ack <= 'l' after delay, '0O' after per:;
end if;
end if;

end process;
End behave;

144

—— THIS IS THE DATA PATH ENTITY (STRUCTURAL MODELING)

Entity DataPath is
port (input, clk, SHL code,Clr I,SHL_I,IOorINPUT, Load_ B,

BorB _bar,Load_S,Dec_S,
Load L,Dec_L, Load K, Clr BCNT, Inc_BCNT, Load N,
TemporI Load R,goad C, Clr _CCNT, Load __CCNT,
Inc_CCNT, Dec_CCNT,Clr RCNT Load RCNT, Inc_RCNT,
Dec RCNT FULLorDIST RdlStOII Load _Cdist,
Dec_Cdlst Load Rdist,Dec_Rdist, LRorLC, Load_temp,
Dec_temp,W,Rd:in bit;
Dir,L_1,BCNT_K 1l:inocut bit:
temp_sel:in bit vector (2 downto 0);code:out
bit_vector (3 downto 0);
11,10,S_0,L_0,BCNT_K,Rdist 0,Cdist O, temp O,
ack:out bit);

End DataPath:

Architecture struct of DataPath is
—- COMPONENET DECLARATION

component xnor2

generic(N:positive;delay:time);

port(A,B:in bit _vector (N-1 downto 0); O:out bit);
End component;

component and?
port(A,B:in bit; O:out bit);
End component;

component and3
port(A,B,C:in bit; O:out bit);
End component:

component or2
port (A,B:in bit; O:out bit):;
End component:;

component xnor2 1
port(A,B:in bit; O:out bit):

145

End component;

component inv
port(A:in bit; O:out bit):
End component:;

component norN
generic(N:positive;delay:time);
port(A:in bit_vector (N-1 downto 0); O:out bit):
End component;

component MUX2 1
generic{delay:time);
port (A,B:in bit; sel:in bit; O:ocut bit);
End component:;

component MUX2
generic (N:positive; delay:time) ;
port(A,B:in bit vector(N-1 downto 0); sel:in bit;
O:out bit vector (N-1 downto 0));
End component:

component MUX4
generic(N:positive; delay:time);
port(A,B,C,D:in bit vector(N-1 downto 0); sel:in
bit vector(l downto 0);
O:out bit_vector (N-1 downto 0));
End component:

component MUXS8
generic(N:positive; delay:time);
port(A,B,C,D,E,F,G,H:1in bit_vector (N-1 downto
0); sel:in bit_vector(2 downto 0):
O:out bit_vector(N-1 downto 0)):;
End component;

component DFF

generic(delay:time) ;

port(D,clk:in bit; Q,Q bar:out bit);
End compcnent:;

component Reg

146

generic(N:positive; delay:time) ;
port(A:in bit_vector(N-1 downto 0); Load,clk:in bit;
O:out bit_vector(N-1 downto 0));
End component;

component Sh Reg
generic(N:positive; delay:time) ;
port (A,SHL,clr,clk:in bit; O:out bit_vector (N-1
downto 0));
End component;

component counter
generic(N:positive; delay:time) ;
port(A:in bit_ vector (N-1 downto 0);
Load,clr,inc,dec,clk:in bit;
O:out bit_vector (N-1 downto 0));
End component;

component Decrementer
generic(N:positive; delay:time);
port (A:in bit_vector (N-1 downto 0); O:out
bit_vector (N-1 downto 0));
End component;

component memory
generic(Nb,N:positive; delay,per:time):;
port (blc_size:in bit vector (N-1 downto 0);
Num Blc,Blc:in bit_vector (Nb-1 downto 0):
Row,Col:in bit_vectcr(N-1 downto 0);
clk,R,W:in bit; B:in bit; ack:out bit);
End component;

~— COMPONENT INSTANTIATION
For all:xnor2 use entity work.xnor?2 (behav) ;
For all:and2 use entity work.and?2 (behav) ;
For all:and3 use entity work.and3 (behav):;
For all:or2 use entity work.or2 (behav):
For all:xnor2_1 use entity work.xnor2 1(behav):;
For all:inv use entity work.inv(behav):;
For all:norN use entity work.norN (behav):;
For all:MUX2_1 use entity work.MUX2 1 (behave):;
For all:MUX2 use entity work.MUX2 (behave) ;

147

For all:MUX4 use entity work.MUX4 (behave) ;
For all:MUX8 use entity work.MUX8 (behave) ;
For all:DFF use entity work.DFF (behav);
For all:Reg use entity work.Reg (behave);
For all:Sh_Reqg use entity work.Sh_Reg(behave);
For all:counter use entity work.counter (behave);
For all:Decrementer use entity
work.Decrementer (behave) ;
For all:memory use entity work.memory(behave);

signal Txnor,Tnecr,T ff:time:=4 ns;
signal Tmux,Tdec:time:=6 ns;
signal Treg,Tcount:time:=8 ns;
signal per:time:=200 ns;

signal Tmem:time:=10 ns;

signal one:positive:=1;

signal two:pcsitive:=2;

signal three:positive:=3;
signal four:positive:=4;
signal five:positive:=5;
signal seven:positive:=7;
signal eight:positive:=8;
signal ten:positive:=10;
signal twelve:positive:=12;

signal clk_bar,DB,clk_B,B,B bar,Dir_bar,LO bar:bit;
signal N3_bar,R4_bar,R3_bar,R1_bar,R20rRl,R20rRl b:bit;
signal C4_bar,C3_bar,Cl bar,C20rCl,C20rCl b,Candl:bit;
signal LNLRO_b,LNLR1_b,LNLR2_b,MINorl,MINor2:bit;
signal Randl,MINand2,CCNT Dec,B_Bbar,MINandl:bit;
signal high:bit:='1";

signal nul:bit:='0";

signal bin_ 2:bit_vector(4 downto 0):=B"00010";

signal bin_ 5:bit_vector(4 downto 0):=B"00101";

signal bin_10:bit vector(4 downto 0):=B"01010";

signal bin_12:bit vector(4 downto 0):=B"01100";

signal I,L,Lin:bit vector (1l downto 0);

signal S:bit_vector (6 downto 0);

signal K,K1,BCNT:bit_vector (9 downto 0);

signal temp,N,R,C, NR,NC:bit_vector(4 downto 0):;
signal CCNT,RCNT,Cdist,Rdist:bit vector (4 downto 0);

148

signal Nin,Nout:bit vector (1l downto 0);

signal RdistI,TempI, TempIn:bit_vector (4 downto 0);
signal P5,LNLR5,Min5:bit wvector (4 downto 0);

signal CdistIn,RdistIn:bit vector (4 downto 0):

signal P,LN,LR,LC,LN_LR,LN LC:bit_vector(2 downto 0):
signal LNLROrLNLC,Pin,LNin,Min:bit_vector(2 downto 0);

begin
—-— THE TWO SHIFT REGISTERS (CODE & I)
codeReg:Sh_Reg generic map(four, Treq)
port map (input, SHL_code,nul, clk,code) ;
I Reg:Sh Reg generic map{twelve,Treq)
port map(input,SHL_I,Clr_I,clk,I);

-- THE FLIP FLOP (B)
Bmux1:MUXZ2 1 generic map (Tmux)
port map (input,I(0), I0orINPUT, DB) ;
invclk:inv port map(clk,clk_bar);
and B:and2 port map(Load_B,clk bar,clk Bj:
BFF:DFF generic map(T_ff)
port map (DB,clk B,B,B bar):;
Bmux2:MUX2 1 generic map (Tmux)
port map(B_bar,B,BorB_bar,B_Bbar);

—- S COUNTER (FOR # OF SHAPES)

S_count:counter generic map (seven, Tcount)
port map(I (6 downto 0),
Load_S,nul,nul,Dec_S,clk,S):;

Snor:norN generic map (seven, Tnor)

port map(S,S_0);

--— L COUNTER (FOR # OF SEGMENTS)
L_count:counter generic map (twelve, Tcount)
port
map (I, Load L,nul,nul,Dec L,clk,L);
LnorO:norN generic map (twelwve, Tnor)
port map(L,L_0):;
invLO:inv port map(L(0),L0_bar);
Lin<=L (1l downto 1)&LO_bar;
ILnorl:norN generic map(twelve,Tnor)
port map(Lin,L_1);

149

—— K REGISTER & BCNT (FOR # OF BLOCKS PER SEGMENT)

K _Reg:Reg generic map (ten,Treqg)

port map(I(9 downto 0),Load K,clk,K);
BCNT_count:counter generic map (ten, Tcount)

port map(K,nul,Clr BCNT, Inc_BCNT,nul,clk,BCNT) ;
Kxnor:xnor2 generic map(ten, Tnor)
port map (K,BCNT,BCNT K);
K Dec:Decrementer generic map(ten, Tdec)
port map (K,K1) ;

Klxnor:xnor2 generic map (ten, Tnor)

port map (K1,BCNT,BCNT K 1);

N REGISTER (FOR BLOCK SIZE)
Nin<=I (1) &I (0);
N_Reg:Reg generic map (two,Treq)
port map (Nin, Load_N,clk,Nout);
N<=Nout&high&highg&high;

FINDING P & Log N

Pxnor: xnor2 1 port map(N(4), N(3), P(1l)):
P(2)<=N(3);

P (0)<=high;

invN3:inv port map(N(3),N3_bar);

LN<=N(3) &N3_bar&P(1);

R & C REGISTERS (FOR ROW & COLUMN REMAINDERS) AND THEIR
Log
R Reg:Reg generic map(five, Treqg)
port map (I (4 downto 0),Load R,clk,R);
C_Reg:Reg generic map (five, Treqg)
port map(I(4 downto 0),Load C,clk,C);
invR4:inv port map (R(4),R4_bar) ;
invR3:inv port map(R(3),R3 bar):
invRl:inv port map(R(1l),R1_bar);
Rorl:or2 port map(R(2),R(1l),R20rR1);
Ror2:0r2 port map(R(Z),Rl_bar,RZorRl_b);
Rand:and2 port map(R3_bar,R20rRl_b,Rand1);
LRorl:or2 port map(R(4),R(3),LR(2)):;
LRand:and3 port map(R4_bar,R3_bar,RZOrRl,LR(l));
LRor2:0r2 port map(R(4),Randl,LR(0));
invC4:inv port map (C(4),C4_bar) ;
invC3:inv port map(C(3),C3_bar):;

150

invCl:inv port map(C(1l),Cl bar);

Corl:or2 port map(C(2),C(1),C20rCl);

Cor2:or2 port map(C(2),Cil_bar,C2orCl_b):
Cand:and?2 port map(C3_bar,C20rCl_b,Candl);
LCorl:or2 port map(C(4),C(3),LC(2)):

LCand:and3 port map (C4_bar,C3_bar,C2o0rCl1l,LC(1));
LCor2:0r2 port map(C(4),Candl,LC(0});

CCNT & RCNT (FOR ADDRESSING THE MEMORY)
TempImux:MUX2 generic map (five, Tmux)
port map(I(4 downto 0), temp, TEMPorI, TempI) :
Ccount:counter generic map(five, Tcount)
port map(TempI, Load CCNT, Clr_ CCNT,
Inc_CCNT, Dec CCNT,clk,CCNT) ;
Rcount:counter generic map (five, Tcount)
port map(I{4 downto 0), Load RCNT,
Clr_RCNT, Inc_RCNT,Dec RCNT, clk,RCNT) ;
NRmux :MUX2 generic map (five, Tmux)
port map(N,R,L 1,NR);
NCmux:MUX2 generic map (five, Tmux)
port map(N,C,becnt_K 1,NC);

Rdist & Cdist (FOR COVERING THE SHAPES)
RdistImux:MUX2 generic map (five, Tmux)
port map(I(4 downto 0), Rdist,
RdistorI,RdistI);
RdistMux:MUX2 generic map (five, Tmux)
port map(I(4 downto 0), NR,
FULLorDIST,RdistIn);
CdistMux:MUX2 generic map (five, Tmux)
port map (RdistI,NC,FULLorDIST,CdistIn);
RDcount:counter generic map (five, Tcount)
port map(RdistIn,Load Rdist, nul,
nul, Dec_Rdist,clk,Rdist) ;
CDcount:counter generic map(five, Tcount)
port map(CdistIn,Load Cdist, nul,nul,
Dec_Cdist,clk,Cdist);
RDnor:norN generic map (five, Tnor)
port map (Rdist,Rdist 0);
CDnor:norN generic map (five, Tnor)
port map (Cdist,Cdist_0);

—— FINDING THE MINIMUM (FOR PARTIAT BLOCKS)

LNLRmux:MUX2 generic map (three, Tmux)

port map(LN,LR,L_1,LN_LR);
LNLCmux:MUX2 generic map (three, Tmux)

port map (LN,LC,BCNT_K 1,LN LC);
invLRO:inv port map(LN_LR(0),LNLRO b);
invLRl:inv port map(LN_LR(1),LNLRl b);
invLR2:inv port map(LN_LR(2),LNLR2 b);
orlMin:or2 port map(LNLR1_b,LN_LC(2),MINorl);
andlMin:and2 port map(LNLRO_b,LN LC(2),MINandl);
andZMin:and2 port map(LNLR2_ b,MINorl,MINand2);
orZ2Min:or2 port map(MINandl,MINand2,MINor2):;
MINmux:MUX2 generic map (three, Tmux)

port map (LN_LC,LN LR,MINor2,Min);

-- TEMP (THE CQOUNTER FOR READING INPUTS)
LRLCmux:MUX2 generic map (three, Tmux)
port map(LN_LC,LN LR,LRorLC,LNLRorLNLC) ;
P5<=nulsgnul&P;
LNLR5<=nul&nul&LNLRorLNLC;
Min5<=nul&nul&Min;
TempMux :MUX8 generic map (five, Tmux)
port

151

map (bin_2,bin_5,bin_10,bin_12,P5,LNLR5,Min

5,Cdist,temp_sel, TempIn) ;
Temp_ count:counter generic map (five, Tcount)
port map (TempIn,Load_ temp,nul,nul,
Dec_temp, clk, temp) ;
TempNor:norN generic map(five, Tnor)
port map (temp, temp_0) ;

--— THE MEMORY
RAM:memory generic map(ten, £ive, Tmem, per)
port map(N,K, BCNT, RCNT, CCNT,
clk,Rd,W,B_Bbar,ack);
I1<=I(1});
I0<=I(0);
End struct;

152

—-— THIS IS THE FSM ENTITY (ALGORITHMIC MODELING)

Entity FSM is
port(clk,clock,start,L_1,BCNT_K 1,I1,I0,S_0,L O,

BCNT_K,Rdist_0,Cdist_0, temp O,
ack:in bit;code:in bit_vector (3 downto 0);
input,BorB_bar,Load_S, Dec_S, Load_L, Dec_L,
Load_K,Clr_BCNT, Inc_BCNT, Load N,
Load_R,Load C,Clr _CCNT,
Load | _CCNT, Inc _CCNT, Dec_CCNT, TemporI,
Clr_ RCNT Load | _RCNT, Inc RCNT Dec_RCNT,
FULLorDIST RdlstorI Load.Cdlst Dec_Cdist,
Load Rdist, Dec _Rdist, LRorLC,
Load _temp, Dec temp,W Rd,Clr_I:out bit;
SHL code,SHL I,IC0orINPUT, Load B:inout bit;
temp sel:out bit _vector (2 downto 0));

End FSM;

use STD.TEXTIO.all;
Architecture Alg of FSM is

signal PS,NS:integer:=0;
signal NL:boolean:=true;
signal i:integer;
signal count:integer:=0;
signal codelO,code32,RCdist:bit vector(l downto 0);

begin
—— THIS PROCESS COUNTS THE NUMBER OF CLOCKS UNTIL THE
DECODING FINISHES
clk_count:process(clk,NS)
begin
if(NS=0) then
NULL;
elsif(clk='1l' and clk'event) then
count<=count+1;
end if;
end process;

—— THIS PROCESS READS THE INPUTS BIT BY BIT
read bit:process

variable vline,oline:line;
variable v:character;
file infile:text is "s15850f.minbin";
file debug:text is out "debug.out";
begin
while not(endfile(infile)) loop
readline (infile,vline);
for j in 1 to vline'length loop
wait until ((SHL code='l' or SHL I='l' or
(Load B='1l'" and IOorINPUT='0"'))and

—kclock='1' and clock'event)):;
read(vline,v);

write(oline,v);
if(v='1"') then
input<='1"';

else
input<='0"';
end if;
end loop;
writeline (debug,ocline);

end loop:
end process;

—— THIS PROCESS UPDATES THE PRESENT STATES
P_S:process(clk, NS)
begin
if(clk="'1' and clk'event) then
PS<=NS;
end if;
end process;

—=— THIS PROCESS OQUTPUTS THE Dec_L SIGNAL (A MEALY STATE)
mealy:process

begin
wait until (PS=19 and BCNT _K='l'); =--then
Dec L<='l";
wait until clk'event;
wait until clk'event;
Dec_L<='0"';
end process;

153

154

-- THIS IS A BLOCK FOR DEFINING SOME SIGNALS

define:block

begin

codelO<=code (1) &code(0) ;
code32<=code (3) &code (2) ;
RCdist<=Rdist_0&Cdist_0;
end block define;

—-— THIS PROCESS DETERMINES THE NEXT STATE

N_S:process(PS,L_l,BCNT_K_l,Il,IO,S_O,L_O,BCNT_K,Rdist_O,
Cdist 0, temp 0, ack,code,codell,code32,RCdist, start)

begin

case PS is

when

when
when

when
when

when
when

when
when

when
when

when
when
when
when

when
when

0

1
2

W

oA n

[S IEN|

11
12
13
14

16

=> if(start='1"') then NS<=1; else
NS<=0; end if;

=> NS<=2;

=> if(temp_0='1') then NS<=3; else
NS<=2; end if;

=> NS<=4;

=> if(temp 0='1l') then NS<=5; else
NS<=4; end if;

=> NS<=6;

=> if(temp 0='1l') then NS<=7; else
NS<=6; end if;

=> NS<=8;

=> if(temp 0='1l') then NS<=9; else
NS<=8; end if;

=> NS<=10;

=> if(temp_0='1') then NS<=11l; else
NS<=10; end if;

=> NS<=12;

=> NS<=13;

=> NS<=14;

=> if(I1='1l') then NS<=21; else
NS<=15; end if;
=> NS<=16;
=> if(Cdist_0='0"') then NS<=17;
elsif(Cdist_0='1l' and Rdist 0='0"')
then NS<=18;
else NS<=19; end if;

i,

155

when 17 => if(I0="'0"'} then NS<=15; else
NS<=16; end if;
when 18 => if(I0='0"') then NS<=15; else
NS<=16; end if;
when 19 => if(BCNT_K='0') then NS<=13; else
NS<=20; end if;
when 20 => if(ack='0") then NS<=20:;
elsif(ack='1l' and L _0='0') then
NS<=12;
else NS<=0; end if;
when 21 => NS<=22;
when 22 => if(Cdist_0='0') then NS<=23;
elsif(Cdist_0='1' and Rdist 0='0")
then NS<=24;
else NS<=25; end if;
when 23 => NS<=22;
when 24 => NS<=22;
when 25 => NS<=26;
when 26 => if(temp_O0='l') then NS<=27; else
NS<=2%6; end if;
when 27 => NS<=28;
when 28 => NS<=29;
when 29 => case codel0 is
when "00"|"11l" => NS<=30;
when "01"|"10" => NS<=43;
end case;
when 30 => if(temp_0='l') then NS<=31; else
NS<=30; end if;
when 31 => NS<=32;
when 32 => if(temp_0='1') then NS<=33; else
NS<=32; end if;
when 33 => case codel0 is
when "00" => NS<=34;
when "11" => NS<=36;
when others => NULL;
end case;
when 34 => case codell is
when "00" => NS<=35;
when "11" => case RCdist is
when
"00"{"10" =>
NS<=40;

156

when "Q01" =>
NS<=41;
when "11" =>
NS<=35;
end case;
when others => NULL;
end case;
when 35 => if(S_0='0"') then NS<=28; else
NS<=19; end if;
when 36 => if(temp 0='1l') then NS<=37; else
NS<=36; end if;
when 37 => NS<=38;
when 38 => if(temp_O0='1l') then NS<=39; else
NS<=38; end if;
when 39140[41 => NS<=34:
when 43 => NS<=44;
when 44 => NS<=45;
when 45 => if(temp 0='l') then NS<=46; else
NS<=45; end if;
when 46 => NS<=47;
when 47 => if(temp C='0') then NS<=47;
else
if(code="0101") then NS<=48;
elsif (code="0100"}) then NS<=49;
else NS<=50; end if;
end if;
when 48|49}50 => NS<=51;
when 51 => if(temp 0='0') then NS<=51;
else NS<=52;
end if;
when 52 => NS<=54;
when 54 => case code32 is
when "01" =>
if(Rdist_0='0') then
case codell is
when "00" =>
NS<=55;
when "01" =>
NS<=56;
when "10% =>
NS<=57;

157

when "11" =>
NS<=58;
end case;
else NS<=35;
end if;
when 10" =>
if(Cdist 0='0') then
if(code(1l)='1")
then NS<=61;
else NS<=62;
end if;
else
if(Rdist _0='0")
then
case codell is
when "00"|™11"
=> NS<=59;
when "01"|"10"
=> NS<=60;
end case;
else
NS<= 35;
end if;
end if:;
when others => NULL;
end case;
when 55([(56[57158[61]62|63 => NS<=54;
when 59|60 => NS<=63;
when others => NULL;
end case;
end process;

—— THIS PART ASSIGNS THE APPROPRIATE VALUES TO THE UTPUT
SIGNALS

SHL code<='l' when (PS=28 or PS=29 or PS=43 or PS=44) else
lOl’.

SHL_I<='l' when(PS=2 or PS=4 or PS=6 or PS=8 or PS=10 or
PS=13 or PS=14 or PS=26 or PS=30 or PS=32 or PS=36 or
PS=38 or PS=45 or PS=47 or PS=51) else '0';

Clr_I<='l' when (PS5=25 or PS=29 or PS=31 or PS=33 or PS=37
or PS=46 or PS=48 or PS=49 or PS=50) else '0';
IOorINPUT<='0' when PS=15 else '1l"';

158

Load B<='l' when (PS=15 or PS=21) else '0Q';
BorB_bar<='0' when PS=22 else 'l’';

Load_S<='l' when PS=27 else '0';

Dec_S<='l' when PS=35 else '0';

Load_IL<='l' when PS=5 else '0';

Load K<='l' when PS=7 else '0°';

Clr BCNT<='l' when PS=12 else '0Q';

Inc_BCNT<='l' when PS=19 else '0°';

Load_N<='l' when PS=3 else '0';

Load R<='l' when PS=9 else '0Q';

Load_C<='l' when PS=11 else '0';

Clr CCNT<='l' when (PS=13 or PS=18 or PS=24) else '0‘';
Load CCNT<='l' when (PS=33 or PS=41 or PS=48 or PS=49 or
PS=50 or PS=59 or PS=60) else '0';

Inc_CCNT<='l' when (PS=17 or PS=23 or PS=40 or PS=56 or
PS=57 or PS=58 or PS5=62) else '0';

Dec_CCNT<='l' when (PS=42 or PS=6l) else '0’';
TemporI<='l' when (PS=41 or PS=59 or PS=60) else '0';
Clr RCNT<='l' when PS=13 else '0';

Load RCNT<='l' when (PS=31 or PS=46) else '0';
Inc_RCNT<='l' when (PS=18 or PS=24 or PS=41 or PS=55 or
PS=57 or PS=59) else '0';

Dec_RCNT<='l' when (PS=58 or PS=60) else '0';
FULLOrDIST<='l' when (PS=13 or PS=18 or PS=24) else '0';
RdistorI<='1l' when PS=63 else '0';

Load_Cdist<='l' when (PS=13 or PS=18 or PS=24 or PS=33 or
PS=39 or PS=41 or PS=48 or PS=49 or PS=50 or PS=52 or
PS=53 or PS=63) else '0';

Dec_Cdist<='l' when (PS=17 or PS=23 or PS=39 or PS=40 or
PS=42 or PS=61 or PS=62) else '0';

Load_Rdist<='l' when (PS=13 or PS=37 or PS=52 or PS=53)
else '0';

Dec_Rdist<='l' when (PS=18 or PS=24 or PS=41 or PS=55 or
PS=56 or PS=57 or PS=58 or PS=59 or PS=60) else '0';
LRorLC<='1l' when (PS=29 or PS=33 or PS=49) else '0';
Load_temp<='l' when (PS=1 or PS=3 or PS=5 or PS=7 or PS=9
or PS=25 or PS=29 or PS=31 or PS=33 or PS=37 or PS$=39 or
PS=46 or PS=48 or PS=49 or PS=50 or PS=52 or PS=53) else
IOI;

Dec_temp<='l' when (PS=2 or PS=4 or PS=6 or PS=8 or PS=10
or PS=26 or PS=30 or PS=32 or PS=36 or PS=38 or PS=45
or PS=47 or PS=51) else '0';

159

W<='1l' when (PS=16 or PS=22 or PS=34 or PS=54) else '0';
Rd<='1' when PS=20 else '0';

temp_sel<= "000" when PS=1 else

"001" when (PS=7 or PS=9) else

"010" when PS=5 else

"01l1l" when PS=3 else

"100" when PS=25 else

"101" when (PS=29 or PS=31 or PS=33 or
PS=37 or PS=46 or PS=48 or
PS=49) else

"110" when PS=50 else

"111"; -- when (PS=52 or PS=53);

—— THIS IS THE DECODER ENTITY, WHICH ASSEMBLES THE FSM AND
THE DATA PATH

Entity Decoder is
port(start,clk,clock:in bit);
end Decoder:;

Architecture struct of Decoder is

component DataPath
port(input,clk,SHL_code,Clr_I,SHL_I,IOorINPUT,Load;B,
BorB bar,Load_S,Dec_S,Load L,Dec_L,Load_K,Clr BCNT,
Inc_BCNT,Load_N,TemporI,Load_R,Load_C,Clr_CCNT,
Load_CCNT, Inc_CCNT, Dec_CCNT,Clr RCNT, Load RCNT,
Inc_RCNT, Dec_RCNT, FULLorDIST,RdistorI,Load Cdist,
Dec_Cdist,Load_Rdist,Dec_Rdist,LRorLC,Load_temp,
Dec_temp,W,Rd:in bit;
Dir,L_l,BCNT_K_l:inout bit:
temp_sel:in bit_vector (2 downto 0);code:out
bit_vector (3 downto 0):
Il,IO,S_O,L_O,BCNT_K,Rdist_O,Cdist_O,temp_O,ack:out
bit);

160

End component;

component FSM
port(clk,clock,start,L_l,BCNT_K;l,Il,IO,S_O,L_O,BCNT_K,

Rdist_O,Cdist_O,temp_O,ack:in bit;code:in
bit vector (3 downto 0);
input,BorB_bar,Load_S,Dec_S,Load L, Dec_L,Load_K,
Clr BCNT, Inc BCNT, Load N, Load R, Load cC, ,Clr __CCNT,
Load CCNT, Inc CCNT, Dec__ CCNT TemporI Clr_RCNT,
Load . RCNT, Inc _RCNT, Dec __RCNT,
FULLorDIST RdlStOII Load_Cdist,Dec_Cdist,
Load_Rdist,Dec_Rdist, LRorLC,
Load_temp,Dec_temp,W Rd,Clr_I:out bit;
SHL_code, SHL_I, I0orINPUT,Load B:inout bit;
temp_sel:out bit_vector (2 downto 0));

End component;

for F:FSM use entity work.FSM(Alg):;
for D:DataPath use entity work.DataPath2 (struct):;

signal input,SHL_code,Clr_I,SHL_I,IOorINPUT,Load_B,
BorB_bar,Comp_Dir,set_Dir,reset_ Dir,Load_S,Dec_S, Load_L,
Dec_L,Load K,Clr BCNT Inc_BCNT, Load _N, Load R,Load C,

Clr CCNT, Load CCNT Inc CCNT Dec_ CCNT Sel Dir,Clr_ RCNT,
Load RCNT, Inc RCNT Dec ~_RCNT, FULLorDIST TEMPorI Load _Cdist,
Dec Cdlst Load __Rdist, Dec _Rdist, LRorLC,Load_temp,Dec_temp, W
,Rd RdistorI, Dlr L1, BCNT K 1,I11,10,s 0, L 0, BCNT_K, Rdist 0

Cdist_O,temp_O,ack:bit;
signal temp_sel:bit_vector (2 downto 0):
signal code:bit_vector (3 downto 0);

begin

F:FSM port map(clk,clock,start,L_1,BCNT K 1,I1,I0,S_0,
L_O,BCNT_K,Rdist_O,Cdist_O,temp_O,ack,code,input,BorB_bar,
Load_s, Dec_s, Load L,Dec L,

Load K, Clr . _BCNT, Inc _BCNT, Load N,

Load R, Load C,Clr_ CCNT Load_CCNT, Inc_CCNT, Dec_CCNT, TemporI
,Clr_RCNT,Load_RCNT Inc_RCNT Dec_RCNT FULLOrDIST, RdistorlI,
Load_Cdist,Dec_Cdist,Load_Rdist,Dec_Rdist,LRorLC,Load_temp

161

rDec_temp,W,Rd,Clr_I,SHL_code,SHL_I,I0orINPUT,Load B,
temp sel):

D:DataPath port map (input,clk,SHL_code,Clr_I,SHL_I,
I0orINPUT, Load B,BorB bar,Load_s, Dec S, Load L, Dec L,Load K
Clr BCNT, Inc BCNT Load N, TemporI Load R, Load c, Clr CCNT,
Load_ CCNT, Inc_| CCNT Dec CCNT Clr RCNT, Load RCNT Inc_RCNT,
Dec__ RCNT FULLorDIST RdlstorI Load Cdist, Dec_Cdist,

Load _Rdist,Dec_Rdist, LRorLC, Load temp,Dec temp, W, Rd,

Dir, L 1, BCNT_K_l temp_sel,code,I1,10,S_0,L_0,BCNT_K,
Rdlst_O Cdist_ O, temp 0,ack);

end struct;

REFERENCES

(1]

[2]

(3]

[4]

(3]

(6]

(7]

Abramovici, M., Breuer, M., and Friedman, A., Digital System T esting and
Testable Design, IEEE Press, 1990.

Alsuwaiyel, M. H. Algorithms: Design Techniques and Analysis, World
Scientific, 1999.

Baker, L., VHDL Programming with Advanced Topics, John Wiley & Sons,
1993.

Bommu, S., Chakradhar, S. and Doreswamy, K., “Static Test Sequence
Compaction Based on Segment Reordering and Accelerated Vector Restoration,”
Proc. of International Test Conference, pp. 954-961, Oct. 1998.

Burrows, M. and Wheeler, D., “Block Storing Lossless Data Compression
Algorithm,” System Research Center, Research Report 124, digital system
Research Center, Palo Alto, CA, May 1994,

Chakrabatry, K., Murray, B., Liu, J. and Zhu, M., “Test Width Compression for
Built-in Self Testing,” Proc. of International Test Conference, pp. 328-337,
1997.

Chakradhar, S. and Raghunathan, A., “Bottleneck Removal Algorithm for
Dynamic Compaction in Sequencial Circuits,” IEEE Trans. on Computer-Aided

Design, Vol. 16, No. 10, pp. 1157-1172, Oct. 1997.

(8]

[9]

[10]

[11]

[12]

[13]

(14]

[15]

163

Chandra, A. and Chakrabarty, K., “Frequency-Directed Run-Length (FDR)
Codes with Application to Systems-on-a-Chip Test Data Compression,” Proc. of
IEEE VLSI Test Symposium, pp. 42-47, 2001.

Chandra, A. and Chakrabarty, K., “Test Data Compression for System-On-a-
Chip using Gelomb Codes,” Proc. of IEEE VLSI Test Symposium, pp. 113-120,
2000.

Chandramouli, R. and Pateras, S., “Testing Systems on a Chip,” IEEE Spectrum,
pp. 4247, Nov. 1996.

Chang, J. and Lin, C., “Test Set Compaction for Combinational Circuits,” IEEE
Trans. on Computer Aided Design, pp. 1370-1378, Nov. 1995.

Cormen, T.H., Leiserson, C.E. and Rivest, R.L., Introduction to Algorithms,
McGraw Hill, 1989.

Gibson, J., Berger, T., Lookabaugh, T., Lindbergh, D. and Baker, R., Digital
Compression for Multimedia, Morgan Kaufman Publisher, Inc. 1998.

Hamzaoglu, 1. and Patel, J., “Compact Two-Pattern Test Set Generation for
Combinational and Full Scan Circuit,” Proc. of IEEE International Test
Conference, pp. 944-953, Oct. 1998.

Hamzaoglu, I. and Patel, J., “Test Set Compaction Algorithms for Combinational
Circuits,” Proc. of the International Conference on Computer-Aided Design, pp.

260-267, Nov. 1998.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

164

HHB Inc., THESEUS User’s Manual, Malwah, New Jersey: HHB Inc., Oct.
1987.

Hochbaum, D., “An Optimal Test Compression Procedure for Combinational
Circuits,” IEEE Tran. on Computer-Aided Design of Integrated Circuits and
Systems, Vol. 15, No. 10, pp.1294-1299, Oct. 1996.

Holland, J. H., Adaptation in Natural and Artificial Systems, University of
Michigan Press, 1975.

Ishida, M., Ha, D. S. and Yamaguchi, T., “COMPACT: A Hybrid Method for
Compressing Test Data,” Proc. of VLSI Test Symposium, pp. 62-69, 1998.

Jas, A. and Touba, N., “Test Vector Decompression via Cyclical Scan Chains and
its Application to Testing Core-Based Designs,” Proc. of International Test
Conference, pp. 458-464, 1998.

Jas, A. and Touba, N., “Using an Embedded Processor for Efficient Deterministic
Testing of System-on-a<chip,” Proc. of IEEE International Conference on
Computer Design, pp. 418-423, 1999.

Jas, A, Dastidar, J. G. and Touba, N, “Scan Vector
Compression/Decompression Using Statistical Coding,” Proc. of IEEE VLSI Test
Symposium, pp. 202-207, 1994.

Jaz, A., Mohanram, K. and Touba, N., “An Embedded Core DFT Scheme to
Obtain Highly Compressed Test Sets,” Proc. of IEEE Asian Test Symposium, pp.

275-280, 1999.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

165

Kajihara, S., Pomeranz, I., Kinoshita, K., and Reddy, S., “Cost-Effective
Generation of Minimal Test sets for Stuck-at Faults in Combinational Circuits,”
IEEE Trans. on Computer Aided Design, pp. 1496-1504, Dec. 1995.

Nelson, M. R., “Data compression with the Burrows Wheeler Transformation,”
Dr. Dobbs Journal, pp. 46-50, Sept. 1996.

Pomeranz, I. and Reddy, S. M., “On Improving Genetic Optimization based Test
Generation,” Proc. of Europ. Design & Test Conf-, pp. 506-511, March 1997.
Pomeranz, I. and Reddy, S. M., “Vector Restoration Based Static Compaction of
Test Sequences for Synchronous Sequential Circuits,” Proc. of the International
Conference on Computer Design, pp. 360-365, University of Iowa, Aug. 1997.
Pomeranz, I. and Reddy, S., “Dynamic Test Compaction for Synchronous
Sequential Circuits Using Static Compaction Techniques,” Proc. of International
Symposium on Fault Tolerant Computing, pp. 53-61, 1996.

Pomeranz, 1. and Reddy, S., “On the Compaction of Test Sets Produced by
Genetic Optimization,” Proc. of IEEE Asian Test Symposium, pp. 4-9, Nov.
1997.

Pomeranz, I., Reddy, L., and Reddy, S., “COMPACTEST: A Method to Generate
Compact Test Sets for Combinational Circuits,” Proc. of IEEE Intenational Test

Conference, pp- 194-203, 1991.

[31]

(32]

[33]

[34]

[35]

[36]

[37]

166

Rajski J., Tyszer, J. and Zacharia, N., “Test Data Decompression for Multiple
Scan Designs with Boundary Scan,” IEEE Tran. on Computers, Vol. 47, No. 11,
pp- 1188-1200, Nov. 1998.

Roy, R., Niermann, T., Patel, J., Abraham, J., and Saleh, R., “Compaction of
ATG-Generated Test Sequences for Sequential Circuits,” Proc. of IEEE
International Conference on Computer-Aided Design, pp. 382-385, Nov. 1998.
Rudnick, E. and Patel, J., “Putting the squeeze on Test Sequences,” Proc. of
IEEE International Test Conference, pp. 723-732, 1997.

Rudnick, E. and Patel, J., “Simulation-Based Technique for Dynamic Test
Sequence Compaction,” Proc. of International Conference on Computer-Aided
Design, pp. 67-73, 1996.

Schulz, M., Trischhler, E., and Sarfert, T., “SOCRATES: A Highly Efficient
Automatic Test Pattern Generation System,” IEEE Trans. on Computer-Aided
Design, pp. 126-137, Jan. 1988.

Tromp, G., “Minimal Test Sets for Combinational Circuits,” Proc. of IEEE
International Test Conference, pp. 204-209, 1991.

Yamaguchi, T., Tilgner, M., Ishida, M. and Ha, D. S., “An Efficient Method for
Compressing Test Data,” Proc. of International Test Conference, pp. 79-88, Nov.

1997.

167

[38] Zacharia, N., Rajski, J., Tyszer, J. and Waicukauski, A., “Two-Dimentional Test
Data Decompressor for Multiple Scan Designs,” International Test Conference,
pp- 186-194, 1996.

[39] Zorian, Y., Marinissen, E.J. and Dey, S., “Testing Embedded-Core Based

System Chips,” Proc. of Int. Test Conference, pp. 130-143, 1998.

VITA

Esam Ali Hasan Khan.

Bom in Makkah, Saudi Arabia.

Received Bachelor of Science (B. S.) degree in Computer Engineering from
King Fahd University of Petrocleum and Minerals (KFUPM), Dhahran, Saudi
Arabia in June 1999.

Joined Computer Engineering Department, KFUPM, as a graduate assistant in
September 1999.

Received Master of Science (M. S.) degree in Computer Engineering from

KFUPM, Dhahran, Saudi Arabia, in June 2001.

